WorldWideScience

Sample records for source water body

  1. 40 CFR 141.701 - Source water monitoring.

    Science.gov (United States)

    2010-07-01

    ... (a)(4) of this section based on the E. coli level that applies to the nearest surface water body. If no surface water body is nearby, the system must comply based on the requirements that apply to... Monitoring Requirements § 141.701 Source water monitoring. (a) Initial round of source water monitoring...

  2. Pollutants in drinking water - sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2005-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemicals and radionuclide etc. This is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  3. Can tritiated water-dilution space accurately predict total body water in chukar partridges

    International Nuclear Information System (INIS)

    Crum, B.G.; Williams, J.B.; Nagy, K.A.

    1985-01-01

    Total body water (TBW) volumes determined from the dilution space of injected tritiated water have consistently overestimated actual water volumes (determined by desiccation to constant mass) in reptiles and mammals, but results for birds are controversial. We investigated potential errors in both the dilution method and the desiccation method in an attempt to resolve this controversy. Tritiated water dilution yielded an accurate measurement of water mass in vitro. However, in vivo, this method yielded a 4.6% overestimate of the amount of water (3.1% of live body mass) in chukar partridges, apparently largely because of loss of tritium from body water to sites of dissociable hydrogens on body solids. An additional source of overestimation (approximately 2% of body mass) was loss of tritium to the solids in blood samples during distillation of blood to obtain pure water for tritium analysis. Measuring tritium activity in plasma samples avoided this problem but required measurement of, and correction for, the dry matter content in plasma. Desiccation to constant mass by lyophilization or oven-drying also overestimated the amount of water actually in the bodies of chukar partridges by 1.4% of body mass, because these values included water adsorbed onto the outside of feathers. When desiccating defeathered carcasses, oven-drying at 70 degrees C yielded TBW values identical to those obtained from lyophilization, but TBW was overestimated (0.5% of body mass) by drying at 100 degrees C due to loss of organic substances as well as water

  4. Pollutants in drinking water: their sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2004-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemical and radionuclide etc. this is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication. Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  5. About Body Water

    Science.gov (United States)

    ... Video) Thyroid Disease Additional Content Medical News About Body Water By James L. Lewis, III, MD, Attending ... here for the Professional Version Water Balance About Body Water Dehydration Overhydration Water accounts for about one ...

  6. Phytoremediation of water bodies contaminated with radioactive heavy metal

    International Nuclear Information System (INIS)

    Yan Zhen; Yuan Shichao; Ling Hui; Xie Shuibo

    2012-01-01

    The sources of the radioactive heavy metal in the water bodies were analyzed. The factors that affect phyto remediation of water contaminated with radioactive heavy metal were discussed. The plant species, mechanism and major technology of phyto remediation of water contaminated with radioactive heavy metal were particularly introduced. The prospective study was remarked. (authors)

  7. Assessment of Pressure Sources and Water Body Resilience: An Integrated Approach for Action Planning in a Polluted River Basin.

    Science.gov (United States)

    Mirauda, Domenica; Ostoich, Marco

    2018-02-23

    The present study develops an integrated methodology combining the results of the water-quality classification, according to the Water Framework Directive 2000/60/EC-WFD, with those of a mathematical integrity model. It is able to analyse the potential anthropogenic impacts on the receiving water body and to help municipal decision-makers when selecting short/medium/long-term strategic mitigation actions to be performed in a territory. Among the most important causes of water-quality degradation in a river, the focus is placed on pollutants from urban wastewater. In particular, the proposed approach evaluates the efficiency and the accurate localisation of treatment plants in a basin, as well as the capacity of its river to bear the residual pollution loads after the treatment phase. The methodology is applied to a sample catchment area, located in northern Italy, where water quality is strongly affected by high population density and by the presence of agricultural and industrial activities. Nearly 10 years of water-quality data collected through official monitoring are considered for the implementation of the system. The sample basin shows different real and potential pollution conditions, according to the resilience of the river and surroundings, together with the point and diffuse pressure sources acting on the receiving body.

  8. Assessment of Pressure Sources and Water Body Resilience: An Integrated Approach for Action Planning in a Polluted River Basin

    Directory of Open Access Journals (Sweden)

    Domenica Mirauda

    2018-02-01

    Full Text Available The present study develops an integrated methodology combining the results of the water-quality classification, according to the Water Framework Directive 2000/60/EC—WFD, with those of a mathematical integrity model. It is able to analyse the potential anthropogenic impacts on the receiving water body and to help municipal decision-makers when selecting short/medium/long-term strategic mitigation actions to be performed in a territory. Among the most important causes of water-quality degradation in a river, the focus is placed on pollutants from urban wastewater. In particular, the proposed approach evaluates the efficiency and the accurate localisation of treatment plants in a basin, as well as the capacity of its river to bear the residual pollution loads after the treatment phase. The methodology is applied to a sample catchment area, located in northern Italy, where water quality is strongly affected by high population density and by the presence of agricultural and industrial activities. Nearly 10 years of water-quality data collected through official monitoring are considered for the implementation of the system. The sample basin shows different real and potential pollution conditions, according to the resilience of the river and surroundings, together with the point and diffuse pressure sources acting on the receiving body.

  9. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  10. Nitrogen-isotopes and multi-parameter sewage water test for identification of nitrate sources: Groundwater body Marchfeld East of Vienna

    Science.gov (United States)

    Kralik, Martin

    2017-04-01

    The application of nitrogen and oxygen isotopes in nitrate allows, under favourable circumstances, to identify potential sources such as precipitation, chemical fertilisers and manure or sewage water. Without any additional tracer, the source distinction of nitrate from manure or sewage water is still difficult. Even the application of boron isotopes can in some cases not avoid ambiguous interpretation. Therefore, the Environment Agency Austria developed a new multi parametrical indicator test to allow the identification and quantification of pollution by domestic sewage water. The test analyses 8 substances well known to occur in sewage water: Acesulfame and sucralose (two artificial, calorie-free sweeteners), benzotriazole and tolyltriazole (two industrial chemicals/corrosion inhibitors), metoprolol, sotalol, carbamazepine and the metabolite 10,11-Dihydro-10,11-dihydroxycarbamazepine (pharmaceuticals) [1]. These substances are polar and degradation in the aquatic system by microbiological processes is not documented. These 8 Substances do not occur naturally which make them ideal tracers. The test can detect wastewater in the analysed water sample down to 0.1 %. This ideal coupling of these analytic tests helps to identify the nitrogen sources in the groundwater body Marchfeld East of Vienna to a high confidence level. In addition, the results allow a reasonable quantification of nitrogen sources from different types of fertilizers as well as sewage water contributions close to villages and in wells recharged by bank filtration. Recent investigations of groundwater in selected wells in Marchfeld [2] indicated a clear nitrogen contribution by wastewater leakages (sewers or septic tanks) to the total nitrogen budget. However, this contribution is shrinking and the main source comes still from agricultural activities. [1] Humer, F.; Weiss, S.; Reinnicke, S.; Clara, M.; Grath, J.; Windhofer, G. (2013): Multi parametrical indicator test for urban wastewater influence

  11. Water use sources of desert riparian Populus euphratica forests.

    Science.gov (United States)

    Si, Jianhua; Feng, Qi; Cao, Shengkui; Yu, Tengfei; Zhao, Chunyan

    2014-09-01

    Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies.

  12. Body water, extracellular water, body potassium, and exchangeable sodium in body builders using anabolic steroids

    International Nuclear Information System (INIS)

    Wang, J.; Colt, E.D.W.; Pierson, R.N. Jr.

    1986-01-01

    Nine competitive male body builders aged 21 to 34 who were determined to take anabolic steroids were studied before and 6 to 10 weeks after a training cycle which included steroid administration. A control group of nine subjects matched in age and duration of competitive career, but using only natural training methods were studied on a single occasion while in training. Total body potassium (TBK) by 40 K, total body water (TBW) by 3 H 2 O dilution, extracellular water (ECW) by 35 SO 4 dilution and zero time extrapolation, and exchangeable sodium by 24 Na dilution were measured before and after training. Intracellular water (ICW) was calculated from TBW - ECW. Initially steroid users had a greater skeletal muscle mass than control subjects, and obtained a further weight gain on steroids, all in skeletal muscle, based on parallel increases in TBK and ICW. Other body composition measurements did not change significantly. A single steroid user became ill taking steroids, decreased potassium by 5%, and increased extracellular water, changes which may represent the effects of hepatic dysfunction which occurred while on anabolic steroids

  13. Tracing water sources of terrestrial animal populations with stable isotopes: laboratory tests with crickets and spiders.

    Directory of Open Access Journals (Sweden)

    Kevin E McCluney

    2010-12-01

    Full Text Available Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the "water web". Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change.

  14. Tracing water sources of terrestrial animal populations with stable isotopes: laboratory tests with crickets and spiders.

    Science.gov (United States)

    McCluney, Kevin E; Sabo, John L

    2010-12-31

    Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the "water web"). Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change.

  15. Sources of variation in estimates of lean body mass by creatinine kinetics and by methods based on body water or body mass index in patients on continuous peritoneal dialysis.

    Science.gov (United States)

    Tzamaloukas, Antonios H; Murata, Glen H; Piraino, Beth; Raj, Dominic S C; VanderJagt, Dorothy J; Bernardini, Judith; Servilla, Karen S; Sun, Yijuan; Glew, Robert H; Oreopoulos, Dimitrios G

    2010-03-01

    We identified factors that account for differences between lean body mass computed from creatinine kinetics (LBM(cr)) and from either body water (LBM(V)) or body mass index (LBM(BMI)) in patients on continuous peritoneal dialysis (CPD). We compared the LBM(cr) and LBM(V) or LBM(BMI) in hypothetical subjects and actual CPD patients. We studied 439 CPD patients in Albuquerque, Pittsburgh, and Toronto, with 925 clearance studies. Creatinine production was estimated using formulas derived in CPD patients. Body water (V) was estimated from anthropometric formulas. We calculated LBM(BMI) from a formula that estimates body composition based on body mass index. In hypothetical subjects, LBM values were calculated by varying the determinants of body composition (gender, diabetic status, age, weight, and height) one at a time, while the other determinants were kept constant. In actual CPD patients, multiple linear regression and logistic regression were used to identify factors associated with differences in the estimates of LBM (LBM(cr)LBM(V), or LBM(cr)LBM(BMI)). We sought predictors of the differences LBM(V) - LBM(cr) and LBM(BMI) - LBM(cr). Both LBM(V) (regardless of formula used to estimate V) and LBM(BMI) exceeded LBM(cr) in hypothetical subjects with average body compositions. The sources of differences between LBM estimates in this group involved differences in the coefficients assigned to gender, age, height, weight, presence or absence of diabetes, and serum creatinine concentration. In CPD patients, mean LBM(V) or LBM(BMI) exceeded mean LBM(cr) by 6.2 to 6.9 kg. For example, the LBM(V) obtained from one anthropometric formula was 50.4+/-10.4 kg and the LBM(cr) was 44.1+/-13.6 kg (P LBM(cr)>LBM(V). The differences in determinants of body composition between groups with high versus low LBM(cr) were similar in hypothetical and actual CPD patients. Multivariate analysis in actual CPD patients identified serum creatinine, height, age, gender, weight, and body mass

  16. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  17. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    Science.gov (United States)

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  18. CHARACTERIZATION OF SALMONELLA SPECIES FROM WATER BODIES IN DAR-ES-SALAAM CITY, TANZANIA

    Directory of Open Access Journals (Sweden)

    Eliningaya Kweka

    2013-03-01

    Full Text Available Background: Water-borne diseases are the most common cause of illness and death among the poor population from developing countries. The majority of the people are inadequately aware that aquatic environment is a major source of salmonellosis. Dar es Salaam city is among the cities with most of its population live in squatter. Typhoid fever ranks second with 14.3% of all notifiable disease cases in the city. The city experience water scarcity which forces water wells and rivers to become the main sources of water for domestic use and livestock. This study therefore, characterized Salmonella strains from different water bodies of city as possible sources for enteric diseases endemicity. Methods: The Salmonella Chromogenic Agar (SC Agar and Kligler Iron Agar (KIA media were used for isolation and enumeration of the strains. The inoculated cultures were incubated at 370C for 24 hours. Salmonella colonies were confirmed by magenta colorations and hydrogen sulfide production on SC Agar and KIA Agar, respectively. The Analytical Profile Index 20 Enterobacteriaceae kit (API 20E kit was used to identify Salmonella species. Results: Based on the API 20E kit, the identified Salmonella species from different water bodies were Salmonella ser. paratyphi A (96.9%, Salmonella cholelaesuis spp choleraesuis (99.5% and Salmonella typhi (99.9%. Conclusion: This study shows that shallow wells and rivers which are mainly used by the city dwellers were highly contaminated with Salmonella and were more contaminated than deep wells and marine water bodies. This warrants further investigation on the disease mapping in the urban and peri-urban areas.

  19. Spatial-temporal particularities of the ecological status of surface water bodies and pollution sources from Siret river basin

    Directory of Open Access Journals (Sweden)

    Dan DĂSCĂLIȚA

    2011-06-01

    Full Text Available The ecological status of surface water bodies from Siret River Basin is monitored systematically and spatial in accordance with the requirements of European Directives in the water area. Analysis temporary and spatial of qualitative and quantitative status of surface waters (rivers, lakes is achieved according to the specificities of each body of water resulting from physical and geographical conditions, climatic and hydromorphological regimes of river basin and from human activities.In order to know of those features, there are needed specific monitoring systems of water bodies. The parametersunderlying the assessment of ecological status of rivers and lakes are monitored systematically and temporary: daily, monthly, quarterly, annually, according to these characteristics. In this context, the daily variations in environmental condition, expresses the current status of surface waters. Monthly changes are correlated with climate change and characterize the seasonal variations. On annual basis are identified the mean, minimum and maximum for each parameter and the trends (increase, decrease, regularity, periodicity, changes, etc.. Based on this information, extensive to multiannual level, itcan achieve medium and long term forecasts and it might be issued the concepts and strategies for maintaining a balance and sustainable development of water resources.In this paper we have presented some issues related to the synthesis of spatial-temporal ecological status of water bodies managed by Administration of Siret Water Basin(ABAS. Results of studies on the ecological status of water bodies have been presented for the year 2009. Also, in this paper it was presented an evolution of the quantities ofpollutants from wastewater discharged in surface receptors and their purification by water users from of activity of ABAS area in 1999-2009 periods.

  20. Protection of Urban Water body Infrastructure - Policy Requirements

    Science.gov (United States)

    Neelakantan, T. R.; Ramakrishnan, K.

    2017-07-01

    Water body is an important infrastructure of urban landscape. Water bodies like tanks and ponds are constructed to harvest rainwater for local use. Such water bodies serve many environmental functions including flood and soil erosion control and are useful for irrigation, drinking water supply and groundwater recharge. A large number of water bodies recently have been lost due to anthropogenic activities and the remaining water bodies are under stress due to risk of degradation. There are many phases to solve or control the problem; starting from stopping the abuse, to restoration to monitoring and maintenance. In this situation, the existing urban and peri-urban water bodies are to be preserved and rehabilitated. In this study, policy requirements for the protection (preservation and rehabilitation) of water bodies are analyzed with special reference to Thanjavur city. Thanjavur city has many water bodies and moat around the Big-Temple and the palace, and stands as an evidence for water management in ancient days. These water bodies are to be protected and used properly for sustainable growth of the city. This paper envisages the following three: (a) need for evaluation of hydraulic and hydrologic properties of the water bodies for conserving rainwater and controlling flood water in the existing urban water bodies; (b) need for evaluation of potential of socio-environmental services by the water bodies, and (c) need for developing a relative importance index for protection of water bodies to prioritize the remedial actions.

  1. Characterization of Salmonella species from water bodies in Dar-Es-Salaam city, Tanzania

    Directory of Open Access Journals (Sweden)

    Eliningaya Kweka

    2013-01-01

    Full Text Available Background: Water-borne diseases are the most common cause of illness and death among the poor population from developing countries. The majority of the people are inadequately aware that aquatic environment is a major source of salmonellosis. Dar es Salaam city is among the cities with most of its population live in squatter. Typhoid fever ranks second with 14.3% of all notifiable disease cases in the city. The city experience water scarcity which forces water wells and rivers to become the main sources of water for domestic use and livestock. This study therefore, characterized Salmonella strains from different water bodies of city as possible sources for enteric diseases endemicity. Methods: The Salmonella Chromogenic Agar (SC Agar and Kligler Iron Agar (KIA media were used for isolation and enumeration of the strains. The inoculated cultures were incubated at 370C for 24 hours. Salmonella colonies were confirmed by magenta colorations and hydrogen sulfide production on SC Agar and KIA Agar, respectively. The Analytical Profile Index 20 Enterobacteriaceae kit (API 20E kit was used to identify Salmonella species. Results: Based on the API 20E kit, the  identified Salmonella species from different water bodies were Salmonella ser. paratyphi A (96.9%, Salmonella cholelaesuis spp choleraesuis (99.5% and Salmonella typhi (99.9%. Conclusion: This study shows that shallow wells and rivers which are mainly used by the city dwellers were highly contaminated with Salmonella and were more contaminated than deep wells and marine water bodies. This warrants further investigation on the disease mapping in the urban and peri-urban areas.

  2. Bursting bodies of water

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    2014-01-01

    A silent threat is growing below receding glaciers: lakes are formed as the tongues of the glaciers draw back up the mountain, and huge and growing bodies of water beneath them are contained only be weak moraine walls.......A silent threat is growing below receding glaciers: lakes are formed as the tongues of the glaciers draw back up the mountain, and huge and growing bodies of water beneath them are contained only be weak moraine walls....

  3. An experimental study on the excitation of large volume airguns in a small volume body of water

    International Nuclear Information System (INIS)

    Wang, Baoshan; Yang, Wei; Yuan, Songyong; Ge, Hongkui; Chen, Yong; Guo, Shijun; Xu, Ping

    2010-01-01

    A large volume airgun array is effective in generating seismic waves, which is extensively used in large volume bodies of water such as oceans, lakes and reservoirs. So far, the application of large volume airguns is subject to the distribution of large volume bodies of water. This paper reports an attempt to utilize large volume airguns in a small body of water as a seismic source for seismotectonic studies. We carried out a field experiment in Mapaoquan pond, Fangshan district, Beijing, during the period 25–30 May 2009. Bolt LL1500 airguns, each with volumes of 2000 in 3 , the largest commercial airguns available today, were used in this experiment. We tested the excitation of the airgun array with one or two guns. The airgun array was placed 7–11 m below the water's surface. The near- and far-field seismic motions induced by the airgun source were recorded by a 100 km long seismic profile composed of 16 portable seismometers and a 100 m long strong motion seismograph profile, respectively. The following conclusions can be drawn from this experiment. First, it is feasible to excite large volume airguns in a small volume body of water. Second, seismic signals from a single shot of one airgun can be recognized at the offset up to 15 km. Taking advantage of high source repeatability, we stacked records from 128 shots to enhance the signal-to-noise ratio, and direct P-waves can be easily identified at the offset ∼50 km in stacked records. Third, no detectable damage to fish or near-field constructions was caused by the airgun shots. Those results suggest that large volume airguns excited in small bodies of water can be used as a routinely operated seismic source for mid-scale (tens of kilometres) subsurface explorations and monitoring under various running conditions

  4. Source Water Protection Contaminant Sources

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Simplified aggregation of potential contaminant sources used for Source Water Assessment and Protection. The data is derived from IDNR, IDALS, and US EPA program...

  5. Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance

    DEFF Research Database (Denmark)

    McGloin, Ryan; McGowan, Hamish; McJannet, David

    2014-01-01

    Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy......% greater than eddy covariance measurements. We suggest possible reasons for this difference and provide recommendations for further research for improving measurements of surface energy fluxes over small water bodies using eddy covariance and scintillometry. Key Points Source areas for Eddy covariance...... and scintillometry were on the water surface Reasonable agreement was shown between the sensible heat flux measurements Scintillometer estimates of latent heat flux were greater than eddy covariance...

  6. Distortion of calculated whole-body hematocrit during lower-body immersion in water.

    Science.gov (United States)

    Knight, D R; Santoro, T; Bondi, K R

    1986-11-01

    We found a difference between the venous hematocrits of immersed and nonimmersed arms during immersion of the lower body in cold water but not during a comparable exposure to warm water. Fourteen healthy men were exposed to three different experimental conditions: arm immersion, body immersion, and control. The men always sat upright while both upper extremities hung vertically at their sides. During arm immersion, one forearm was completely immersed for 30 min in either cold water (28 degrees C, n = 7) or warm water (38 degrees C, n = 7). This cold-warm water protocol was repeated on separate days for exposure to the remaining conditions of body immersion (immersion of 1 forearm and all tissues below the xiphoid process) and control (no immersion). Blood samples were simultaneously drawn from cannulated veins in both antecubital fossae. Hematocrit difference (Hct diff) was measured by subtracting the nonimmersed forearm's hematocrit (Hct dry) from the immersed forearm's hematocrit (Hct wet). Hct diff was approximately zero when the men were exposed to the control condition and body immersion in warm water. In the remaining conditions, Hct wet dropped below Hct dry (P less than 0.01, 3-way analysis of variance). The decrements of Hct diff showed there were differences between venous hematocrits in immersed and nonimmersed regions of the body, indicating that changes of the whole-body hematocrit cannot be calculated from a large-vessel hematocrit soon after immersing the lower body in cold water.

  7. Influential sources affecting Bangkok adolescent body image perceptions.

    Science.gov (United States)

    Thianthai, Chulanee

    2006-01-01

    The study of body image-related problems in non-Western countries is still very limited. Thus, this study aims to identify the main influential sources and show how they affect the body image perceptions of Bangkok adolescents. The researcher recruited 400 Thai male and female adolescents in Bangkok, attending high school to freshmen level, ranging from 16-19 years, to participate in this study. Survey questionnaires were distributed to every student and follow-up interviews conducted with 40 students. The findings showed that there are eight main influential sources respectively ranked from the most influential to the least influential: magazines, television, peer group, familial, fashion trend, the opposite gender, self-realization and health knowledge. Similar to those studies conducted in Western countries, more than half of the total percentage was the influence of mass media and peer groups. Bangkok adolescents also internalized Western ideal beauty through these mass media channels. Alike studies conducted in the West, there was similarities in the process of how these influential sources affect Bangkok adolescent body image perception, with the exception of familial source. In conclusion, taking the approach of identifying the main influential sources and understanding how they affect adolescent body image perceptions can help prevent adolescents from having unhealthy views and taking risky measures toward their bodies. More studies conducted in non-Western countries are needed in order to build a cultural sensitive program, catered to the body image problems occurring in adolescents within that particular society.

  8. Predicting hydrocarbon potential of an earth formation underlying a body of water

    International Nuclear Information System (INIS)

    Kaplan, I.R.; Demaison, G.J.

    1983-01-01

    A method for the on-site collection and examination of small concentrations of methane dissolved in water so as to predict hydrocarbon potential of an earth formation underlying a body of water, said formation being a source of said methane, comprises: (i) sampling the water; (ii) continuously vacuum separating said water into liquid and gas phases; (iii) quantitatively separating interfering gas species from methane; (iv) quantitatively oxidising said methane; (v) cryogenically trapping the resulting gaseous carbon dioxide and water vapor at a trapping station, and (vi) isotopically examining said trapped carbon dioxide and water vapour for carbon and deuterium distribution. (author)

  9. Fusion of radar and optical data for mapping and monitoring of water bodies

    Science.gov (United States)

    Jenerowicz, Agnieszka; Siok, Katarzyn

    2017-10-01

    Remote sensing techniques owe their great popularity to the possibility to obtain of rapid, accurate and information over large areas with optimal time, spatial and spectral resolutions. The main areas of interest for remote sensing research had always been concerned with environmental studies, especially water bodies monitoring. Many methods that are using visible and near- an infrared band of the electromagnetic spectrum had been already developed to detect surface water reservoirs. Moreover, the usage of an image obtained in visible and infrared spectrum allows quality monitoring of water bodies. Nevertheless, retrieval of water boundaries and mapping surface water reservoirs with optical sensors is still quite demanding. Therefore, the microwave data could be the perfect complement to data obtained with passive optical sensors to detect and monitor aquatic environment especially surface water bodies. This research presents the methodology to detect water bodies with open- source satellite imagery acquired with both optical and microwave sensors. The SAR Sentinel- 1 and multispectral Sentinel- 2 imagery were used to detect and monitor chosen reservoirs in Poland. In the research Level, 1 Sentinel- 2 data and Level 1 SAR images were used. SAR data were mainly used for mapping water bodies. Next, the results of water boundaries extraction with Sentinel-1 data were compared to results obtained after application of modified spectral indices for Sentinel- 2 data. The multispectral optical data can be used in the future for the evaluation of the quality of the reservoirs. Preliminary results obtained in the research had shown, that the fusion of data obtained with optical and microwave sensors allow for the complex detection of water bodies and could be used in the future quality monitoring of water reservoirs.

  10. Body composition and water metabolism in tropical ruminants using tritiated water

    International Nuclear Information System (INIS)

    Ranjhan, S.K.; Kalanidhi, A.P.; Gosh, T.K.; Singh, U.B.; Saxena, K.K.

    1982-01-01

    Experiment 1. Studies were conducted on Muzaffarnagri, Muzaffarnagri x Dorset and Muzaffarnagri x Suffolk breeds of sheep to determine the water turnover rates and body composition. The native Muzaffarnagri and crossbred animals did not differ significantly in body composition. The water turnover rates were not significantly different between breeds within the same season, but a significant difference was observed between the two seasons (winter and summer). Experiment 2. Nine animals, three each of crossbred cattle (Hariana x Holstein), buffalo and crossbred sheep (Muzaffarnagri x Suffolk), were used to determine the body composition by the indirect method in the two seasons. There was a reduction in the TOH space and total body water during the summer season in cattle and buffalo as compared with the winter season. Experiment 3. Four adult Barbari goats were used to study body composition by direct (slaughter) and indirect (isotope dilution) techniques. There was a significant correlation between corrected TOH space and total body water, fat and protein. Experiment 4. Twelve animals, three each of buffalo, crossbred cattle (Hariana x Holstein), crossbred sheep (Muzaffarnagri x Suffolk) and Barbari goats, were used to determine the water requirements during the two seasons (winter and summer) by the tritiated water (TOH) dilution technique. There were significant differences (P < 0.01) in the water requirement and water turnover between seasons and between species within a season. The lowest water turnover and water requirement were found in goats, followed by sheep, crossbred cattle and buffalo when expressed as ml/kgsup(0.82).d. The metabolic water production was 10% of the total water input in the case of buffalo and crossbred cattle, but it was more in sheep and goats in both seasons

  11. Modeling of Regionalized Emissions (MoRE into Water Bodies: An Open-Source River Basin Management System

    Directory of Open Access Journals (Sweden)

    Stephan Fuchs

    2017-03-01

    Full Text Available An accurate budget of substance emissions is fundamental for protecting freshwater resources. In this context, the European Union asks all member states to report an emission inventory of substances for river basins. The river basin management system MoRE (Modeling of Regionalized Emissions was developed as a flexible open-source instrument which is able to model pathway-specific emissions and river loads on a catchment scale. As the reporting tool for the Federal Republic of Germany, MoRE is used to model annual emissions of nutrients, heavy metals, micropollutants like polycyclic aromatic hydrocarbons (PAH, Bis(2-ethylhexylphthalate (DEHP, and certain pharmaceuticals. Observed loads at gauging stations are used to validate the calculated emissions. In addition to its balancing capabilities, MoRE can consider different variants of input data and quantification approaches, in order to improve the robustness of different modeling approaches and to evaluate the quality of different input data. No programming skills are required to set up and run the model. Due to its flexible modeling base, the effect of reduction measures can be assessed. Within strategic planning processes, this is relevant for the allocation of investments or the implementation of specific measures to reduce the overall pollutant emissions into surface water bodies and therefore to meet the requirements of water policy.

  12. The tracer function of isotope composition and deuterium excess parameter of water bodies on prospecting for geothermal water: taking the prospecting for geothermal water in Sanjianshui, Sichuan for example

    International Nuclear Information System (INIS)

    Yang Bo; Yin Guan

    2003-01-01

    Based on the isotope composition features of water bodies in Sanjiashui area, this paper use the theory of deuterium excess parameter (d) to discuss and cause of formulation, recharge source, removed patch, detained time and dynamics feature on ground water. These discussed problems have far-reaching meaning on evaluating the size of geothermal water, exploited potential of thermal spring and find new thermal spring in neighboring area. We analyze the relation of d and tritium content (T) on different water bodies in Sanjianshui area and draw some conclusions. Firstly, all water bodies in Sanjianshui origin from precipitation. Secondly, precipitation of northwest mountain area that have long removed patch and long detained time is the recharge resource of groundwater in basin. In addition, we demonstrate the possibility of existence of geothermal water in several positions of Sanjianshui area. (authors)

  13. Use of total body electrical conductivity (TOBEC) to determine total body water

    International Nuclear Information System (INIS)

    Cochran, W.; Wong, W.; Sheng, H.P.; Klein, P.; Klish, W.

    1986-01-01

    Total body electrical conductivity (TOBEC) has been introduced as a safe and rapid method to estimate body composition in infants and adults. Recently, a second generation instrument that operates in a scanning mode has been developed. A study was undertaken to calibrate this new instrument and to assess the feasibility of its use in estimating total body water. Six healthy adults, 3 males and 3 females, ranging in age from 25 to 57 years, and in weight from 43.3 to 104.7 kg were analyzed. Simultaneously, determinations of total body water were made by standard dilutional techniques using H 2 18 O. A baseline plasma sample was obtained and 60 mg 18 O/kg was given orally as H 2 18 O. Five hr later, a postdose plasma sample was obtained. The 18 O/ 16 O ratio in the plasma samples was determined as CO 2 by gas-isotope-ratio mass spectrometry and used to calculate the H 2 18 O volume of distribution. The total body water values ranged from 26.35 to 58.02 and represented 51 to 58% of body weight. There was good linear correlation between the total body water measurement and its phase average (TOBEC number) with a linear correlation coefficient of 0.998. The standard error of the estimate was 0.98. In addition to estimating fat and fat-free mass, the TOBEC method also estimates total body water with excellent correlation to physical dilutions methods

  14. Indices of quality surface water bodies in the planning of water resources

    Directory of Open Access Journals (Sweden)

    Rodríguez-Miranda, Juan Pablo

    2016-12-01

    Full Text Available This paper considers a review of the literature major and significant methods of quality indices of water applied in surface water bodies, used and proposed for assessing the significance of parameters of water quality in the assessment of surface water currents and they are usually used in making decisions for intervention and strategic prevention measures for those responsible for the conservation and preservation of watersheds where these water bodies belong. An exploratory methodology was applied to realize the conceptualization of each water quality index. As a result, it is observed that there are several important methods for determining the water quality index applied in surface water bodies.

  15. SPH for impact force and ricochet behavior of water-entry bodies

    Science.gov (United States)

    Omidvar, Pourya; Farghadani, Omid; Nikeghbali, Pooyan

    The numerical modeling of fluid interaction with a bouncing body has many applications in scientific and engineering application. In this paper, the problem of water impact of a body on free-surface is investigated, where the fixed ghost boundary condition is added to the open source code SPHysics2D1 to rectify the oscillations in pressure distributions with the repulsive boundary condition. First, after introducing the methodology of SPH and the option of boundary conditions, the still water problem is simulated using two types of boundary conditions. It is shown that the fixed ghost boundary condition gives a better result for a hydrostatics pressure. Then, the dam-break problem, which is a bench mark test case in SPH, is simulated and compared with available data. In order to show the behavior of the hydrostatics forces on bodies, a fix/floating cylinder is placed on free surface looking carefully at the force and heaving profile. Finally, the impact of a body on free-surface is successfully simulated for different impact angles and velocities.

  16. Factors affecting reservoir and stream-water quality in the Cambridge, Massachusetts, drinking-water source area and implications for source-water protection

    Science.gov (United States)

    Waldron, Marcus C.; Bent, Gardner C.

    2001-01-01

    milligrams per liter), and lowest in Fresh Pond (54 milligrams per liter). Bed sediments in Hobbs Brook and Stony Brook Reservoirs were enriched in iron, manganese, and arsenic relative to those in the impounded lower Charles River in Boston, Massachusetts. Trophic state indices, calculated for each reservoir based on nutrient concentrations, water-column transparency, and phytoplankton abundances, indicated that the upper and middle basins of Hobbs Brook Reservoir were moderately to highly productive and likely to produce algal blooms; the lower basin of Hobbs Brook Reservoir and Stony Brook Reservoir were similar and intermediate in productivity, and Fresh Pond was relatively unproductive and unlikely to produce algal blooms. This pattern is likely due to sedimentation of organic and inorganic particles in the three basins of Hobbs Brook Reservoir and in Stony Brook Reservoir. Molar ratios of nitrogen to phosphorus ranged from 55 in Stony Brook Reservoir to 120 in Hobbs Brook Reservoir, indicating that phytoplankton algae in these water bodies may be phosphorus limited and therefore sensitive to small increases in phosphorus loading from the drainage basin. Nitrogen loads were found to be less important than phosphorus to the trophic condition of the reservoirs. Hobbs Brook and Stony Brook, the two principle streams draining the Cambridge drinking-water source area, differed in their relative contributions to many of the estimated constituent loads. The estimated load of fecal coliform bacteria was more than seven times larger for the mainly residential Stony Brook subbasin upstream from Kendal Green, Mass., than it was for the more commercial and industrial Hobbs Brook subbasin, though the drainage areas of the two subbasins differ only by about 20 percent. The State standard for fecal coliform bacteria in streams in the Cambridge drinking-water source area (20 colony forming units per 100 milliliters) was exceeded at all sampling stations. Estimated s

  17. INEEL Source Water Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sehlke, Gerald

    2003-03-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 mi2 and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL’s drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey’s Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency’s Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a thick vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL’s Source Water Assessment. Of the INEEL’s 12 public water systems, three systems rated as low susceptibility (EBR-I, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will

  18. A global, 30-m resolution land-surface water body dataset for 2000

    Science.gov (United States)

    Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.

    2014-12-01

    Inland surface water is essential to terrestrial ecosystems and human civilization. The distribution of surface water in space and its change over time are related to many agricultural, environmental and ecological issues, and are important factors that must be considered in human socioeconomic development. Accurate mapping of surface water is essential for both scientific research and policy-driven applications. Satellite-based remote sensing provides snapshots of Earth's surface and can be used as the main input for water mapping, especially in large areas. Global water areas have been mapped with coarse resolution remotely sensed data (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)). However, most inland rivers and water bodies, as well as their changes, are too small to map at such coarse resolutions. Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) imagery has a 30m spatial resolution and provides decades of records (~40 years). Since 2008, the opening of the Landsat archive, coupled with relatively lower costs associated with computing and data storage, has made comprehensive study of the dynamic changes of surface water over large even global areas more feasible. Although Landsat images have been used for regional and even global water mapping, the method can hardly be automated due to the difficulties on distinguishing inland surface water with variant degrees of impurities and mixing of soil background with only Landsat data. The spectral similarities to other land cover types, e.g., shadow and glacier remnants, also cause misidentification. We have developed a probabilistic based automatic approach for mapping inland surface water bodies. Landsat surface reflectance in multiple bands, derived water indices, and data from other sources are integrated to maximize the ability of identifying water without human interference. The approach has been implemented with open-source libraries to facilitate processing large

  19. Seasonal changes in total body water; body composition and water turnover in reindeer

    Directory of Open Access Journals (Sweden)

    Terje S. Larsen

    1985-05-01

    Full Text Available Total body water and water turnover were measured at different times throughout the year in 3 captive Norwegian reindeer, using a tritiated water dilution method (Holleman et al. 1982. Total body water (percent of body weight increased during late autumn and winter, from 59.1 ± 1.5 % in October to 72.5 ± 2.0 % in April. Using the equatation by Pace and Rathbun (1945 for predicting total body fat (% fat = 100 - % water/0.732, this increase in total body water indicates a concomitant reduction in body fat, from a maximum value of 18.9 ± 2.6 % (of body weight in October to a minimum of 0.9 ± 2.7 % in April. During summer, on the other hand, fat content increased at the expense of a reduced percentage of body water. Water turnover was low in winter (December - April, ranging between 30.8 ± 5.2and43.6 ± 13.5ml.d-'. kg-1, but increased nearly fourfold during summer (June-August with a maximum of 117.7 ± 5.9 ml.d-1. kg-1 in August. Positive correlations between water turnover and food intake and between water turnover and ambient temperature were found, the latter probably resulting from an incidental correlation between food intake and ambient temperature.Sesongmessige forandringer i totalt kroppsvann, kropps-sammensetning og vannomsetning hos reinsdyr.Abstract in Norwegian / Sammendrag: Totalt kroppsvann og vannomsetning av vann ble målt til forskjellige årstider i 3 norske reinsdyr ved hjelp av utvasking av tritiert vann (Holleman et al. 1982. Totalt kroppsvann (prosent av kroppsvekt økte utover høsten og vinteren, fra 59.1 ± 1.5 % i oktober til 72.5 ± 2.0 % i april. Ved hjelp av en ligning som er gitt av Pace og Rathbun (1945 for beregning av totalt kroppsfett (% fett = 100 - % vann/0.732, fant en at denne økningen i vanninnhold tilsvarte en samtidig reduksjon i fettinnhold, fra en maksimums-verdi på 18.9 ± 2.6 % av kroppsvekt i oktober til et minimum på 0.9 ± 2.7 % i april. Utover sommeren økte derimot innholdet av fett p

  20. Machine-learning methods in the classification of water bodies

    Directory of Open Access Journals (Sweden)

    Sołtysiak Marek

    2016-06-01

    Full Text Available Amphibian species have been considered as useful ecological indicators. They are used as indicators of environmental contamination, ecosystem health and habitat quality., Amphibian species are sensitive to changes in the aquatic environment and therefore, may form the basis for the classification of water bodies. Water bodies in which there are a large number of amphibian species are especially valuable even if they are located in urban areas. The automation of the classification process allows for a faster evaluation of the presence of amphibian species in the water bodies. Three machine-learning methods (artificial neural networks, decision trees and the k-nearest neighbours algorithm have been used to classify water bodies in Chorzów – one of 19 cities in the Upper Silesia Agglomeration. In this case, classification is a supervised data mining method consisting of several stages such as building the model, the testing phase and the prediction. Seven natural and anthropogenic features of water bodies (e.g. the type of water body, aquatic plants, the purpose of the water body (destination, position of the water body in relation to any possible buildings, condition of the water body, the degree of littering, the shore type and fishing activities have been taken into account in the classification. The data set used in this study involved information about 71 different water bodies and 9 amphibian species living in them. The results showed that the best average classification accuracy was obtained with the multilayer perceptron neural network.

  1. Antioxidant activity of water extracts from fruit body of Lentinus edodes enriched with selenium

    Directory of Open Access Journals (Sweden)

    Savić Milena D.

    2011-01-01

    Full Text Available Shiitake (Lentinus edodes belongs to medically important and delicious fungi. It is recognizable for its healing properties, excellent taste and rich aroma. According to the traditional Japanese and Chinese medicine, shiitake mushroom significantly increases the strength and vitality of the body. Shiitake contains immunostimulants, compounds that lower cholesterol, prevents clogging of blood vessels, regulates the pressure, balances blood sugar levels, regulates digestion, and improves the performance of respiratory organs by its antirheumatic and antiallergic activities. Shiitake is recommended to use as food, prevention and cure, usually in a form of a spice (dried and ground or tea. It can be consumed fresh, too. The objective of this study was to test the effect of enrichment in selenium on antioxidant, reducing and free radical scavenging activity of water extracts from fruit body of Lentinus edodes. The fungus was enhanced by adding organic selenium, zinc (II complex with the ligand 2.6-bis diacetylpyridine (selenosemicarbazon and inorganic compounds (Na2SeO3 of selenium in nutritional substrate where the fungus was grown. The total selenium content in fruit body was around 50 ppm for the sample enriched with selenium originating from organic sources, and 80 ppm for the sample enriched with selenium from inorganic sources. Samples were prepared by extraction of fruiting bodies in heated water. The results indicated that water extracts of whole fruit bodies, from both control and mushrooms supplemented with selenium, had quite good antioxidant activity. However, there was no significant difference between the samples supplemented with selenium content and those that were not.

  2. Water-body use by Asian elephants in Southern Sri Lanka

    OpenAIRE

    Pastorini, J; Nishantha, H G; Janaka, H K; Isler, K; Prithiviraj, F

    2010-01-01

    We assessed water-body use by elephants through monitoring elephant signs around them. Elephant footprints and dung piles were recorded at 25 water bodies fortnightly for one year. Elephants preferred perennial water bodies and avoided those with temporary human dwellings. Human activities did not significantly affect elephant use of water bodies, suggesting low incidence of activities and behavioral adaptation to them by elephants. Elephant signs at perennial water bodies increased in the dr...

  3. Application of isotopic and hydro-geochemical methods in identifying sources of mine inrushing water

    Institute of Scientific and Technical Information of China (English)

    Dou Huiping; Ma Zhiyuan; Cao Haidong; Liu Feng; Hu Weiwei; Li Ting

    2011-01-01

    Isotopic and hydro-geochemical surveys were carried out to identify the source of mine inrushing water at the #73003 face in the Laohutai Mine.Based on the analysis of isotopes and hydro-chemical features of surface water,groundwater from different levels and the inrushing water,a special relationship between water at the #73003 face and cretaceous water has been found.The results show that the isotopic and hydro-chemical features of the inrushing water are completely different from those of other groundwater bodies,except for the cretaceous water.The isotopic and hydrochemical characteristics of cretaceous water are similar to the inrushing water of the #73003 face,which aided with obtaining the evidence for the possible source of the inrushing water at the #73003 face.The isotope calculations show that the inrushing water at the #73003 face is a mixture of cretaceous water and Quaternary water,water from the cretaceous conglomerate is the main source,accounting for 67% of the inrushing water,while the Quaternary water accounts for 33%.The conclusion is also supported by a study of inrushing-water channels and an active fault near the inrushing-water plot on the #73003 face.

  4. Modeling water demand when households have multiple sources of water

    Science.gov (United States)

    Coulibaly, Lassina; Jakus, Paul M.; Keith, John E.

    2014-07-01

    A significant portion of the world's population lives in areas where public water delivery systems are unreliable and/or deliver poor quality water. In response, people have developed important alternatives to publicly supplied water. To date, most water demand research has been based on single-equation models for a single source of water, with very few studies that have examined water demand from two sources of water (where all nonpublic system water sources have been aggregated into a single demand). This modeling approach leads to two outcomes. First, the demand models do not capture the full range of alternatives, so the true economic relationship among the alternatives is obscured. Second, and more seriously, economic theory predicts that demand for a good becomes more price-elastic as the number of close substitutes increases. If researchers artificially limit the number of alternatives studied to something less than the true number, the price elasticity estimate may be biased downward. This paper examines water demand in a region with near universal access to piped water, but where system reliability and quality is such that many alternative sources of water exist. In extending the demand analysis to four sources of water, we are able to (i) demonstrate why households choose the water sources they do, (ii) provide a richer description of the demand relationships among sources, and (iii) calculate own-price elasticity estimates that are more elastic than those generally found in the literature.

  5. Water rent: essence, sources of formation and accounting reflection

    Directory of Open Access Journals (Sweden)

    T.S. Osadcha

    2016-06-01

    Full Text Available There is the urgent necessity of the transition to a higher level of economic relations in the system of environmental management in the present conditions of economy of the country. As a result, the issues like formation of information support for water rent management, determining the ways of its calculation, distribution as well as usage of water rents require urgent solutions. The study focuses on the essence of water rent and forming organizational and methodological provisions of its accounting reflection to ensure sustainable ecological and economic development of the enterprise. As a result of research the classification of water rent, that affects reflection of such rent in accounting has been formed. It is established that the amount of water rent for accounting reflection can be defined as the difference between actual and normal profit of enterprise-water users. A number of analytical accounts of first and second order as well as the typical correspondence of accounts for accounting reflection of water rent have been suggested. The information from the Report on the formation of water rent that contains data on the sources of payback of expenses incurred for the maintenance of water bodies and the impact of ecological condition of water body on the size of water rent has been suggested to be used in order to manage the size of water rent and expenses incurred to obtain it. Thus, determining the amount of water rent will allow management personnel to adjust the activity of the company in accordance with the strategic objectives of the company’s development regarding the profitability and compliance with the concept of sustainable development.

  6. Creating prototypes for cooling urban water bodies

    NARCIS (Netherlands)

    Cortesoao, Joao; Klok, E.J.; Lenzholzer, Sanda; Jacobs, C.M.J.; Kluck, J.

    2017-01-01

    Abstract When addressing urban heat problems, climate- conscious urban design has been assuming that urban water bodies such as canals, ditches or ponds cool down their surroundings. Recent research shows that this is not necessarily the case and that urban water bodies may actually have a warming e

  7. BMAA in shellfish from two Portuguese transitional water bodies suggests the marine dinoflagellate Gymnodinium catenatum as a potential BMAA source.

    Science.gov (United States)

    Lage, Sandra; Costa, Pedro Reis; Moita, Teresa; Eriksson, Johan; Rasmussen, Ulla; Rydberg, Sara Jonasson

    2014-07-01

    The neurotoxin β-N-methylamino-l-alanine (BMAA) and its putative role in multiple neurodegenerative diseases have been intensely studied since 2005 when the toxin was discovered to be produced by worldwide-distributed cyanobacterial species inhabiting terrestrial, marine, brackish, and freshwater ecosystems. Recently, BMAA production was also associated with one eukaryotic group, namely, diatoms, raising questions about its production by other phytoplanktonic groups. To test for BMAA bioavailability in ecosystems where abundant phytoplanktonic blooms regularly occur, samples of filter-feeding shellfish were collected in two Portuguese transitional water bodies. BMAA content in cockles (Cerastoderma edule) collected weekly between September and November 2009 from Ria de Aveiro and at least once a month from May to November from Ria Formosa, fluctuated from 0.079±0.055 to 0.354±0.066μg/g DW and from below the limit of detection to 0.434±0.110μg/g DW, respectively. Simultaneously to BMAA occurrence in cockles, paralytic shellfish toxins were detected in shellfish as a result of Gymnodinium catenatum blooms indicating a possible link between this marine dinoflagellate and BMAA production. Moreover, considerable high BMAA levels, 0.457±0.186μg/g DW, were then determined in a laboratory grown culture of G. catenatum. This work reveals for the first time the presence of BMAA in shellfish from Atlantic transitional water bodies and consubstantiate evidences of G. catenatum as one of the main sources of BMAA in these ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Prevalent flucocorticoid and androgen activity in US water sources

    Science.gov (United States)

    Stavreva, Diana A.; George, Anuja A.; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C.; Schiltz, R. Louis; Blazer, Vicki; Iwanowiczl, Luke R.; Hager, Gordon L.

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  9. Prevalent glucocorticoid and androgen activity in US water sources.

    Science.gov (United States)

    Stavreva, Diana A; George, Anuja A; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C; Schiltz, R Louis; Blazer, Vicki S; Iwanowicz, Luke R; Hager, Gordon L

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  10. The Body That Speaks: Recombining Bodies and Speech Sources in Unscripted Face-to-Face Communication.

    Science.gov (United States)

    Gillespie, Alex; Corti, Kevin

    2016-01-01

    This article examines advances in research methods that enable experimental substitution of the speaking body in unscripted face-to-face communication. A taxonomy of six hybrid social agents is presented by combining three types of bodies (mechanical, virtual, and human) with either an artificial or human speech source. Our contribution is to introduce and explore the significance of two particular hybrids: (1) the cyranoid method that enables humans to converse face-to-face through the medium of another person's body, and (2) the echoborg method that enables artificial intelligence to converse face-to-face through the medium of a human body. These two methods are distinct in being able to parse the unique influence of the human body when combined with various speech sources. We also introduce a new framework for conceptualizing the body's role in communication, distinguishing three levels: self's perspective on the body, other's perspective on the body, and self's perspective of other's perspective on the body. Within each level the cyranoid and echoborg methodologies make important research questions tractable. By conceptualizing and synthesizing these methods, we outline a novel paradigm of research on the role of the body in unscripted face-to-face communication.

  11. Water Supply: Management of Water Sources in the City of San Luis Potosí (México, 1831-1887

    Directory of Open Access Journals (Sweden)

    Yuritzi Hernández Fuentes

    2015-07-01

    Full Text Available This paper proposes an approach about the management of water sources, hydraulic systems and the measures taken by the city government of San Luis Potosí (México concerning the need of water supply during the years 1831 to 1886. This paper examines two important projects on water management in the city: the aqueduct of La Cañada del Lobo and the policies taken by the authorities on waterways through La Corriente. Both projects faced several problems, including the outbreak of illnesses associated with bodies of water and shortage of liquid flow through the aqueduct of La Cañada del Lobo.

  12. Contaminant transport modelling in tidal influenced water body for low level liquid waste discharge out

    International Nuclear Information System (INIS)

    Singh, Sanjay; Naidu, Velamala Simhadri

    2018-01-01

    Low level liquid waste is generated from nuclear reactor operation and reprocessing of spent fuel. This waste is discharged into the water body after removing bulk of its radioactivity. Dispersion of contaminant mainly depends on location of outfall and hydrodynamics of water body. For radiological impact assessment, in most of the analytical formulations, source term is taken as continuous release. However, this may not be always true as the water level is influenced by tidal movement and the selected outfall may come under intertidal zone in due course of the tidal cycle. To understand these phenomena, a case study has been carried out to evaluate hydrodynamic characteristics and dilution potential of outfall located in inter-tidal zone using numerical modelling

  13. Use of tritiated water for estimating body composition in grazing ewes

    International Nuclear Information System (INIS)

    Russel, A.J.F.; Foot, J.Z.; McFarlane, D.M.

    1982-01-01

    Tritiated water was used to estimate total body water, body composition and water turnover of non-pregnant, pregnant, non-lactating and lactating grazing sheep. Body composition was estimated from equilibrated and extrapolated values of tritiated water space. These methods both overestimated the total body water measured directly. Body fat could be predicted satisfactorily from tritiated water space within the physiological states of ewes, i.e. lactating, pregnant, etc., although for lactating ewes the error of prediction is greater. It appears inadvisable at this stage to use equations derived from all classes of ewes to estimate body fat in ewes of any one physiological state. Water turnover varied, with the physiological state being highest for lactating ewes. (author)

  14. Evaluation of significantly modified water bodies in Vojvodina by using multivariate statistical techniques

    Directory of Open Access Journals (Sweden)

    Vujović Svetlana R.

    2013-01-01

    Full Text Available This paper illustrates the utility of multivariate statistical techniques for analysis and interpretation of water quality data sets and identification of pollution sources/factors with a view to get better information about the water quality and design of monitoring network for effective management of water resources. Multivariate statistical techniques, such as factor analysis (FA/principal component analysis (PCA and cluster analysis (CA, were applied for the evaluation of variations and for the interpretation of a water quality data set of the natural water bodies obtained during 2010 year of monitoring of 13 parameters at 33 different sites. FA/PCA attempts to explain the correlations between the observations in terms of the underlying factors, which are not directly observable. Factor analysis is applied to physico-chemical parameters of natural water bodies with the aim classification and data summation as well as segmentation of heterogeneous data sets into smaller homogeneous subsets. Factor loadings were categorized as strong and moderate corresponding to the absolute loading values of >0.75, 0.75-0.50, respectively. Four principal factors were obtained with Eigenvalues >1 summing more than 78 % of the total variance in the water data sets, which is adequate to give good prior information regarding data structure. Each factor that is significantly related to specific variables represents a different dimension of water quality. The first factor F1 accounting for 28 % of the total variance and represents the hydrochemical dimension of water quality. The second factor F2 accounting for 18% of the total variance and may be taken factor of water eutrophication. The third factor F3 accounting 17 % of the total variance and represents the influence of point sources of pollution on water quality. The fourth factor F4 accounting 13 % of the total variance and may be taken as an ecological dimension of water quality. Cluster analysis (CA is an

  15. Brookhaven National Laboratory source water assessment for drinking water supply wells

    International Nuclear Information System (INIS)

    Bennett, D.B.; Paquette, D.E.; Klaus, K.; Dorsch, W.R.

    2000-01-01

    The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wells 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered controls implemented over the past

  16. Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water, Spain

    Science.gov (United States)

    Gómez-Ortiz, David; Fernández-Remolar, David C.; Granda, Ángel; Quesada, Cecilio; Granda, Teresa; Prieto-Ballesteros, Olga; Molina, Antonio; Amils, Ricardo

    2014-04-01

    The acidic waters of the Río Tinto rise from several acidic springs that emerge in the area surrounding Peña de Hierro (Fernández-Remolar et al., 2005). These springs are located above minor normal faults that act as natural conduits for the water from the underlying deep aquifer. Although it has been suggested that the acidity of the river originates from the biooxidation of massive and stockwork sulfides (Fernández-Remolar et al., 2008a), the location of the source for these acidic solutions has not previously been established. This lack of evidence has been used to suggest that the acidity of the Río Tinto may be the product of the most conspicuous of the possible source, the extensive mining of the area over approximately the last 5000 years (Davis et al., 2000). In this paper, we report resistivity and time-domain electromagnetic sounding data from the Río Tinto aquifer to a depth of ∼600 m, revealing the locations for the acidic sources. Both types of data support the presence of two distinct geological units that we interpret as thrust sheets emplaced onto each other during the Variscan orogeny of the Carboniferous. These units, both of which contain massive and stockwork sulfides, act as the aquifer for the acidic waters of the Río Tinto. Under this scenario, which is in agreement with the geological record of the Río Tinto fluvial system for the past 6 Ma (Moreno et al., 2003), our results imply that mining activity had little influence on the generation of the acidic river waters.

  17. Supplementary household water sources to augment potable ...

    African Journals Online (AJOL)

    This paper addresses on-site supplementary household water sources with a focus on groundwater abstraction, rainwater harvesting and greywater reuse as available non-potable water sources to residential consumers. An end-use model is presented and used to assess the theoretical impact of household water sources ...

  18. How close do we live to water? A global analysis of population distance to freshwater bodies.

    Directory of Open Access Journals (Sweden)

    Matti Kummu

    Full Text Available Traditionally, people have inhabited places with ready access to fresh water. Today, over 50% of the global population lives in urban areas, and water can be directed via tens of kilometres of pipelines. Still, however, a large part of the world's population is directly dependent on access to natural freshwater sources. So how are inhabited places related to the location of freshwater bodies today? We present a high-resolution global analysis of how close present-day populations live to surface freshwater. We aim to increase the understanding of the relationship between inhabited places, distance to surface freshwater bodies, and climatic characteristics in different climate zones and administrative regions. Our results show that over 50% of the world's population lives closer than 3 km to a surface freshwater body, and only 10% of the population lives further than 10 km away. There are, however, remarkable differences between administrative regions and climatic zones. Populations in Australia, Asia, and Europe live closest to water. Although populations in arid zones live furthest away from freshwater bodies in absolute terms, relatively speaking they live closest to water considering the limited number of freshwater bodies in those areas. Population distributions in arid zones show statistically significant relationships with a combination of climatic factors and distance to water, whilst in other zones there is no statistically significant relationship with distance to water. Global studies on development and climate adaptation can benefit from an improved understanding of these relationships between human populations and the distance to fresh water.

  19. Determination of Key Risk Supervision Areas around River-Type Water Sources Affected by Multiple Risk Sources: A Case Study of Water Sources along the Yangtze’s Nanjing Section

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2017-02-01

    Full Text Available To provide a reference for risk management of water sources, this study screens the key risk supervision areas around river-type water sources (hereinafter referred to as the water sources threatened by multiple fixed risk sources (the risk sources, and establishes a comprehensive methodological system. Specifically, it comprises: (1 method of partitioning risk source concentrated sub-regions for screening water source perimeter key risk supervision areas; (2 approach of determining sub-regional risk indexes (SrRI, which characterizes the scale of sub-regional risks considering factors like risk distribution intensity within sub-regions, risk indexes of risk sources (RIRS, characterizing the risk scale of risk sources and the number of risk sources; and (3 method of calculating sub-region’s risk threats to the water sources (SrTWS which considers the positional relationship between water sources and sub-regions as well as SrRI, and the criteria for determining key supervision sub-regions. Favorable effects are achieved by applying this methodological system in determining water source perimeter sub-regions distributed along the Yangtze’s Nanjing section. Results revealed that for water sources, the key sub-regions needing supervision were SD16, SD06, SD21, SD26, SD15, SD03, SD02, SD32, SD10, SD11, SD14, SD05, SD27, etc., in the order of criticality. The sub-region with the greatest risk threats on the water sources was SD16, which was located in the middle reaches of Yangtze River. In general, sub-regions along the upper Yangtze reaches had greater threats to water sources than the lower reach sub-regions other than SD26 and SD21. Upstream water sources were less subject to the threats of sub-regions than the downstream sources other than NJ09B and NJ03.

  20. Azolla pinnata growth performance in different water sources.

    Science.gov (United States)

    Nordiah, B; Harah, Z Muta; Sidik, B Japar; Hazma, W N Wan

    2012-07-01

    Azolla pinnata R.Br. growth performance experiments in different water sources were conducted from May until July 2011 at Aquaculture Research Station, Puchong, Malaysia. Four types of water sources (waste water, drain water, paddy field water and distilled water) each with different nutrient contents were used to grow and evaluate the growth performance of A. pinnata. Four water sources with different nutrient contents; waste, drain, paddy and distilled water as control were used to evaluate the growth performance of A. pinnata. Generally, irrespective of the types of water sources there were increased in plant biomass from the initial biomass (e.g., after the first week; lowest 25.2% in distilled water to highest 133.3% in drain water) and the corresponding daily growth rate (3.61% in distilled water to 19.04% in drain water). The increased in biomass although fluctuated with time was consistently higher in drain water compared to increased in biomass for other water sources. Of the four water sources, drain water with relatively higher nitrate concentration (0.035 +/- 0.003 mg L(-l)) and nitrite (0.044 +/- 0.005 mg L(-1)) and with the available phosphate (0.032 +/- 0.006 mg L(-1)) initially provided the most favourable conditions for Azolla growth and propagation. Based on BVSTEP analysis (PRIMER v5), the results indicated that a combination of more than one nutrient or multiple nutrient contents explained the observed increased in biomass of A. pinnata grown in the different water sources.

  1. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  2. Groundwater recharge in suburban areas of Hanoi, Vietnam: effect of decreasing surface-water bodies and land-use change

    Science.gov (United States)

    Kuroda, Keisuke; Hayashi, Takeshi; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Funabiki, Ayako; Takizawa, Satoshi

    2017-05-01

    Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  3. The Body in New Age from the Perspective of the Subtle Body: The Example of the Source Breathwork Community

    Directory of Open Access Journals (Sweden)

    Katre Koppel

    2013-10-01

    Full Text Available The article discusses the perception of the body among Source Breathwork practitioners. Source Process and Breathwork can be classified as a New Age healing practice that aims to heal the person as a whole. There is also a specific emphasis on healing birth trauma, which is understood as healing the fundamental experience of an individual’s life. The body in New Age can be described with the notion of the ‘subtle body’, a non-dualistic approach to the body that blurs the boundaries between ‘matter’ and ‘spirit’. Subtle bodies, the ‘places’ where healing occurs, are considered energetic, invisible and nebulous. The concept of the subtle body as a scholarly tool is applied in the analysis of fieldwork data collected between 2011 and 2013 in Estonia. In a Source community, the body is considered to be energetic and to include chakras. Members of the community claim that the functioning of the body and well-being in life bear upon negative and positive thoughts or decisions that are held in the subconscious and embedded at a cellular level in the body. Moreover, the breathwork practitioners believe that an individual already makes fundamental decisions about life in the womb or during birth. Since the perception of the body and birth are closely interrelated in the Source community, the meaning of birth is viewed from the perspective of the subtle body

  4. The Body in New Age from the Perspective of the Subtle Body: The Example of the Source Breathwork Community

    Directory of Open Access Journals (Sweden)

    Katre Koppel

    2013-05-01

    Full Text Available The article discusses the perception of the body among Source Breathwork practitioners. Source Process and Breathwork can be classified as a New Age healing practice that aims to heal the person as a whole. There is also a specific emphasis on healing birth trauma, which is understood as healing the fundamental experience of an individual’s life. The body in New Age can be described with the notion of the ‘subtle body’, a non-dualistic approach to the body that blurs the boundaries between ‘matter’ and ‘spirit’. Subtle bodies, the ‘places’ where healing occurs, are considered energetic, invisible and nebulous. The concept of the subtle body as a scholarly tool is applied in the analysis of fieldwork data collected between 2011 and 2013 in Estonia. In a Source community, the body is considered to be energetic and to include chakras. Members of the community claim that the functioning of the body and well-being in life bear upon negative and positive thoughts or decisions that are held in the subconscious and embedded at a cellular level in the body. Moreover, the breathwork practitioners believe that an individual already makes fundamental decisions about life in the womb or during birth. Since the perception of the body and birth are closely interrelated in the Source community, the meaning of birth is viewed from the perspective of the subtle body.

  5. Re-designating water bodies in Denmark bypasses the Water Framework Directive objectives

    DEFF Research Database (Denmark)

    Baaner, Lasse

    2015-01-01

    Despite the initially ambitious provisions of the Water Framework Directive (WFD) when it first entered into force, thousands of kilometres of Danish watercourses have now lost their legal protection through the application of the WFD’s provisions concerning the designation of water bodies....... This article describes the designation process and concludes that it does not conform to the obligation carefully to assign an environmental objective to discrete and significant water bodies as set out in the WFD. Neither does it ensure the same level of protection that existed prior to the implementation...

  6. Re-designating water bodies in Denmark bypasses the Water Framework Directive objectives

    DEFF Research Database (Denmark)

    Baaner, Lasse

    2017-01-01

    Despite the initially ambitious provisions of the Water Framework Directive (WFD) when it first entered into force, thousands of kilometres of Danish watercourses have now lost their legal protection through the application of the WFD’s provisions concerning the designation of water bodies....... This article describes the designation process and concludes that it does not conform to the obligation carefully to assign an environmental objective to discrete and significant water bodies as set out in the WFD. Neither does it ensure the same level of protection that existed prior to the implementation...

  7. Comparison of total body water determinations in lactating women by anthropometry, water displacement, and deuterium isotope dilution

    International Nuclear Information System (INIS)

    Wong, W.; Butte, N.; Lee, L.; Garza, C.; Klein, P.

    1986-01-01

    To expand the limited data on the total body water in lactating women, the authors have determined total body water contents, in eight subjects from anthropometric measurements, water displacement, and isotope dilution of deuterium oxide. On the day of the study, their skinfold thicknesses were measured over the biceps and triceps muscles and at the suprailiac and subscapular areas. Their body densities were measured by water displacement. Deuterium oxide was administered orally at 100 mg/kg of body weight. One predose milk sample was collected from each subject. The milk samples were defatted by centrifugation and the milk water was reduced to hydrogen gas for hydrogen isotope ratio measurements by gas-isotope-ratio mass spectrometry. The results indicated that total body water in lactating women estimated from anthropometric measurements was 49.7 +/- 3.3% of body weight, by water displacement was 54.9 +/- 7.2%, and by isotope dilution was 50.8 +/- 3.7%

  8. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree.

    Science.gov (United States)

    Acharya, Tri Dev; Lee, Dong Ha; Yang, In Tae; Lee, Jae Kang

    2016-07-12

    Water bodies are essential to humans and other forms of life. Identification of water bodies can be useful in various ways, including estimation of water availability, demarcation of flooded regions, change detection, and so on. In past decades, Landsat satellite sensors have been used for land use classification and water body identification. Due to the introduction of a New Operational Land Imager (OLI) sensor on Landsat 8 with a high spectral resolution and improved signal-to-noise ratio, the quality of imagery sensed by Landsat 8 has improved, enabling better characterization of land cover and increased data size. Therefore, it is necessary to explore the most appropriate and practical water identification methods that take advantage of the improved image quality and use the fewest inputs based on the original OLI bands. The objective of the study is to explore the potential of a J48 decision tree (JDT) in identifying water bodies using reflectance bands from Landsat 8 OLI imagery. J48 is an open-source decision tree. The test site for the study is in the Northern Han River Basin, which is located in Gangwon province, Korea. Training data with individual bands were used to develop the JDT model and later applied to the whole study area. The performance of the model was statistically analysed using the kappa statistic and area under the curve (AUC). The results were compared with five other known water identification methods using a confusion matrix and related statistics. Almost all the methods showed high accuracy, and the JDT was successfully applied to the OLI image using only four bands, where the new additional deep blue band of OLI was found to have the third highest information gain. Thus, the JDT can be a good method for water body identification based on images with improved resolution and increased size.

  9. Keratinophilic fungi in various types of water bodies

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-08-01

    Full Text Available The keratinophilic fungi in various types of water bodies (slough. pond. beach pool. two lakes and two rivers were studied. Samples of water were collected every other month for bydrochemical analysis and once a month (1989-1990 in order to determine the fungus content. Human hair, snippings of finger-nails, chips of hoofs, feathers and snake exuviae were used as bait. Twenty-five species of keratinophilic fungi were found in various types of water bodies. Hyphochytrium catenoides, Aphanomyces stellatus, Leptolegniella caudala and Achlya oligacantha represent new records as koratinophilic fungi.

  10. Assessment of variable drinking water sources used in Egypt on broiler health and welfare.

    Science.gov (United States)

    ELSaidy, N; Mohamed, R A; Abouelenien, F

    2015-07-01

    This study assessed the impact of four water sources used as drinking water in Egypt for broiler chickens on its performance, carcass characteristic, hematological, and immunological responses. A total of 204 unsexed 1-day old Indian River broiler chickens were used in this study. They were randomly allocated into four treatment groups of 51 birds in each, with three replicates, 17 birds per replicate. Groups were classified according to water source they had been received into (T1) received farm tap water; (T2) received filtered tap water (T3) received farm stored water at rooftop tanks, (T4) received underground (well) water. All water sources showed no significant differences among treated groups at (p>0.05) for most of the performance parameters and carcass characteristics. However (T2) group showed higher records for body weight (BWT), BWT gain (BWG), feed conversion ratio, bursa weight, serum total protein, globulin (G), albumin (A) and A/G ratio, Ab titer against New castle disease virus vaccine. On the other hand, it showed lower records for water intake (WI), WI/Feed intake ratio, total leukocytes count %, heterophil %, lymphocyte %, H/L ratio, liver weight, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, serum uric acid and creatinine. Where filtered water reverse osmosis showed lowest records for bacterial load, the absence of coliform bacteria, total dissolved solids (TDS), electrical conductivity (EC) and salinity. On the other hand stored water showed higher numerical values for TDS, EC, alkalinity, salinity, pH, bacterial count, and coliform count. Base on the results of this study, it is concluded that different water sources could safely be used as drinking water for poultry; as long as it is present within the acceptable range of drinking water quality for chickens. Suggesting the benefits of treatment of water sources on improving chickens' health and welfare. Draw attention to the importance of maintaining the hygienic quality

  11. Assessment of variable drinking water sources used in Egypt on broiler health and welfare

    Directory of Open Access Journals (Sweden)

    N. ELSaidy

    2015-07-01

    Full Text Available Aim: This study assessed the impact of four water sources used as drinking water in Egypt for broiler chickens on its performance, carcass characteristic, hematological, and immunological responses. Materials and Methods: A total of 204 unsexed 1-day old Indian River broiler chickens were used in this study. They were randomly allocated into four treatment groups of 51 birds in each, with three replicates, 17 birds per replicate. Groups were classified according to water source they had been received into (T1 received farm tap water; (T2 received filtered tap water (T3 received farm stored water at rooftop tanks, (T4 received underground (well water. Results: All water sources showed no significant differences among treated groups at (p>0.05 for most of the performance parameters and carcass characteristics. However (T2 group showed higher records for body weight (BWT, BWT gain (BWG, feed conversion ratio, bursa weight, serum total protein, globulin (G, albumin (A and A/G ratio, Ab titer against New castle disease virus vaccine. On the other hand, it showed lower records for water intake (WI, WI/Feed intake ratio, total leukocytes count %, heterophil %, lymphocyte %, H/L ratio, liver weight, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, serum uric acid and creatinine. Where filtered water reverse osmosis showed lowest records for bacterial load, the absence of coliform bacteria, total dissolved solids (TDS, electrical conductivity (EC and salinity. On the other hand stored water showed higher numerical values for TDS, EC, alkalinity, salinity, pH, bacterial count, and coliform count. Conclusion: Base on the results of this study, it is concluded that different water sources could safely be used as drinking water for poultry; as long as it is present within the acceptable range of drinking water quality for chickens. Suggesting the benefits of treatment of water sources on improving chickens’ health and welfare. Draw

  12. Assessment of variable drinking water sources used in Egypt on broiler health and welfare

    Science.gov (United States)

    ELSaidy, N.; Mohamed, R. A.; Abouelenien, F.

    2015-01-01

    Aim: This study assessed the impact of four water sources used as drinking water in Egypt for broiler chickens on its performance, carcass characteristic, hematological, and immunological responses. Materials and Methods: A total of 204 unsexed 1-day old Indian River broiler chickens were used in this study. They were randomly allocated into four treatment groups of 51 birds in each, with three replicates, 17 birds per replicate. Groups were classified according to water source they had been received into (T1) received farm tap water; (T2) received filtered tap water (T3) received farm stored water at rooftop tanks, (T4) received underground (well) water. Results: All water sources showed no significant differences among treated groups at (p>0.05) for most of the performance parameters and carcass characteristics. However (T2) group showed higher records for body weight (BWT), BWT gain (BWG), feed conversion ratio, bursa weight, serum total protein, globulin (G), albumin (A) and A/G ratio, Ab titer against New castle disease virus vaccine. On the other hand, it showed lower records for water intake (WI), WI/Feed intake ratio, total leukocytes count %, heterophil %, lymphocyte %, H/L ratio, liver weight, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, serum uric acid and creatinine. Where filtered water reverse osmosis showed lowest records for bacterial load, the absence of coliform bacteria, total dissolved solids (TDS), electrical conductivity (EC) and salinity. On the other hand stored water showed higher numerical values for TDS, EC, alkalinity, salinity, pH, bacterial count, and coliform count. Conclusion: Base on the results of this study, it is concluded that different water sources could safely be used as drinking water for poultry; as long as it is present within the acceptable range of drinking water quality for chickens. Suggesting the benefits of treatment of water sources on improving chickens’ health and welfare. Draw attention to

  13. Occurrence and sources of bromate in chlorinated tap drinking water in Metropolitan Manila, Philippines.

    Science.gov (United States)

    Genuino, Homer C; Espino, Maria Pythias B

    2012-04-01

    Significant levels of potentially carcinogenic bromate were measured in chlorinated tap drinking water in Metropolitan Manila, Philippines, using an optimized ion-chromatographic method. This method can quantify bromate in water down to 4.5 μg l⁻¹ by employing a postcolumn reaction with acidic fuchsin and subsequent spectrophotometric detection. The concentration of bromate in tap drinking water samples collected from 21 locations in cities and municipalities within the 9-month study period ranged from 7 to 138 μg l⁻¹. The average bromate concentration of all tap drinking water samples was 66 μg l⁻¹ (n = 567), almost seven times greater than the current regulatory limit in the country. The levels of bromate in other water types were also determined to identify the sources of bromate found in the distribution lines and to further uncover contaminated sites. The concentration of bromate in water sourced from two rivers and two water treatment plants ranged from 15 to 80 and 12 to 101 μg l⁻¹, respectively. Rainwater did not contribute bromate in rivers but decreased bromate level by dilution. Groundwater and wastewater samples showed bromate concentrations as high as 246 and 342 μg l⁻¹, respectively. Bromate presence in tap drinking water can be linked to pollution in natural water bodies and the practice of using hypochlorite chemicals in addition to gaseous chlorine for water disinfection. This study established the levels, occurrence, and possible sources of bromate in local drinking water supplies.

  14. Storm water runoff-a source of emerging contaminants in urban streams

    Science.gov (United States)

    Xia, K.; Chen, C.; FitzGerald, K.; Badgley, B.

    2016-12-01

    Emerging contaminants (ECs) that refers to prescription, over-the-counter, veterinary, and illicit drugs in addition to products intended to have primary effects on the human body, such as sunscreens and insect repellants. Historically municipal wastewater treatment effluent has been considered to be the main source of ECs in aquatic environment. However, recent investigations have suggested urban storm water runoff as an important source of ECs in the environment. The objective of this multi-year study was to investigate the occurrence of a wide range of ECs and the special and temporal change of 4-Nonlyphenol (4-NP), an endocrine disruptor, in a stream solely impacted by the storm water runoff from Blacksburg, VA. Urban land cover has doubled during the past 15 years surrounding this. Water and sediment samples were collected periodically along the stream during a 3-year period and analyzed for 4-NP using a gas chromatography/tandem mass spectrometry and for EC screening using an ultra- performance liquid chromatography/tandem mass spectrometry. In addition, human-associated Bacteroides sp. (HF183) was analyzed to explore possible cross contamination between the sewer system and storm water collection system of the city. Fifteen ECs were detected in water samples from various locations along the stream at estimated levels ranging from low ppt to low ppb. The levels of 4-NP in the storm water sediment samples, ranging from 30-1500 µg/kg (d.w.), positively correlated with the levels of Human-associated Bacteroides sp. (HF183) in the storm water. Our study suggested: 1) collective urban activity and leaky urban sewer systems are significant sources of ECs in storm water runoff that are often untreated or with minimum treatment before flowing into urban streams; and 2) sediment transport and re-suspension can further releases accumulated ECs back into stream water during rain events, resulting in occurrence of ECs downstream and possibly in the receiving river. This

  15. Water quality assessment of selected domestic water sources in ...

    African Journals Online (AJOL)

    However, lead ion appears higher than the approved WHO and SON standard for water quality in all the sources except that of water vendors which is 0.04mg/l. It is therefore recommended that periodic monitoring of water quality, effective waste management system to improve the general water quality in the town, and ...

  16. CARACTERISTICS OF THE LOWER DANUBE WATER BODIES BETWEEN PORTILE DE FIER

    Directory of Open Access Journals (Sweden)

    Elena ŢUCHIU

    2010-12-01

    Full Text Available The main goal of the Water Framework Directive (2000/60/EC Directive is the achievement of the “good status” of the water bodies, environmental objective which can be reached through elaboration and implementation of the River Basin Management Plan. According to the legal requirements, at the 22nd of December 2009, Romania has elaborated the first National Management Plan – synthesis of the River Basin Management Plans. This process assumes the types identification and water bodies delineation on the basis of some abiotic and biotic parameters, such: water category, abiotic and biotic typology, physical features, water status, pressures and their impacts, as well as protected areas. Therefore, for the lower Danube sector between Bazias and Isaccea 4 water bodies have been delineated: 2 reservoirs (Portile de Fier/Iron Gates and Ostrov and 2 river sectors (Ostrov – Chiciu, Chiciu – Isaccea. The procedure for assessment of the environmental objectives risk failing (on the basis of pressures and impacts has shown that all 4 water bodies have been identified at risk from the point of view of organic substances, nutrients, hazardous substances and hydro-morphological alterations. The Water Framework Directive defines the surface water status through: the ecological status - 5 classes (based on biological, hydro-morphological and physic-chemical elements and chemical status – 2 classes (based on priority substances. In present, the 4 water bodies identified on the lower Danube sector do not reach the good status, being designated as heavily modified water bodies.

  17. METHODS OF ESTIMATION TECHNOGENIC POLLUTION OF WATER BODIES IN URBANIZED TERRITORIES

    Directory of Open Access Journals (Sweden)

    Kurochkina Valentina Aleksandrovna

    2016-06-01

    Full Text Available In the article the authors consider the problem of the impact of man-caused load on river hydraulics processes and on the properties of river sediments that determine river channels evolution and general ecological state of water bodies. The interrelation between ecological state of water bodies, the quality of water in them and the level of contamination of sediments was determined. It is established that the conditions of long-term aquatic life as a whole and of water quality in particular directly depend on the contamination level of sediments. It is shown that the rate and volume of sediments accumulation, as well as contamination level of sediment layers, vary throughout the lifecycle of water body, which allows using sediments as the main indicator of the ecological state of water body reflecting the level of technogenic impact on aquatic ecosystems.

  18. Low species richness of non-biting midges (Diptera: Chironomidae) in Neotropical artificial urban water bodies

    DEFF Research Database (Denmark)

    Hamerlik, Ladislav; Jacobsen, Dean; Brodersen, Klaus Peter

    2011-01-01

    Chironomid assemblages of 22 artificial water bodies, mainly fountains, in two South American cities were surveyed. We found surprisingly low diversities, with a total of 11 taxa, averaging two taxa per site. The typical fountain assemblages mainly consisted of common species that have a wide...... distribution pattern and are tolerant to organic pollution. Also taxa independent of the natural aquatic sources, such as tap-water and semi-terrestrial species were represented. There was no significant difference between the taxa richness of the two S. American regions, however, the assemblage structures...

  19. Whole body cooling by immersion in water at moderate temperatures.

    Science.gov (United States)

    Marino, F; Booth, J

    1998-06-01

    This study investigated the potential use of whole body cooling by water immersion for lowering body temperatures prior to endurance exercise. Rectal temperature (Tre), mean skin temperature (Tsk), oxygen consumption (VO2), and ventilation (VE) were measured in 7 male and 3 female subjects who were immersed in a water bath for up to 60 min. Initial water temperature was 28.8+/-1.5 degrees C and decreased to 23.8+/-1.1 degrees C by the end of immersion. Pre-immersion Tre of 37.34+/-0.36 degrees C was not altered by 60 min water immersion but decreased to 36.64+/-0.34 degrees C at 3 min post immersion (p immersion. Reductions in Tre and Tsk resulted in reduced body heat content (Hc) of approximately 545 kJ (p immersion. VO2 and VE increased from pre-immersion values of 0.34+/-0.08 L x min(-1) and 6.2+/-1.4 L x min(-1) to 0.54+/-0.09 L x min(-) and 11.5+/-5.4 L x min(-1) at the end of immersion, respectively. Heart rate remained unchanged throughout immersion. These results indicate that whole body immersion in moderately cold water temperatures is an effective cooling maneuver for lowering body temperatures and body Hc in the absence of severe physiological responses generally associated with sudden cold stress.

  20. Bacteriological physicochemical quality of recreational water bodies ...

    African Journals Online (AJOL)

    tinsae

    logical quality, and there are no guidelines (standards) towards the safe use and quality control of recreational water. Under this circumstances, it is neither possible to know the gravity of the problem, nor simple to manage the possible health related risks that are associated with the use of recreational water bodies.

  1. Autonomous profiling device to monitor remote water bodies

    Digital Repository Service at National Institute of Oceanography (India)

    Madhan, R.; Dabholkar, N.A.; Navelkar, G.S.; Desa, E.; Afzulpurkar, S.; Mascarenhas, A.A.M.Q.; Prabhudesai, S.P.

    implications to human health, and requires frequent and effective monitoring, particularly during summer months (March–May) when water consumption is highest. These water bodies are frequently located in remote areas away from human habitation, making...

  2. Ammonia pollution characteristics of centralized drinking water sources in China.

    Science.gov (United States)

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  3. In-vivo determination of total body water and lean body mass in subjects by deuterium dilution

    International Nuclear Information System (INIS)

    Blagojevic, N.; Allen, B.J.; Baur, L.; Gaskin, K.

    1988-01-01

    Total body water (TBW) estimation is one of a number of basic techniques required for the determination of body composition in normal and malnourished subjects. When combined with total body nitrogen (TBN) analysis by prompt gamma neutron activation, an accurate compartmental model of in vivo body composition can be formed, providing valuable nutritional and other data. This study examines the role of TBW on its own in evaluating lean body mass. Total body water was studied in six male and five female subjects using deuterium oxide and a Fourier transform infrared spectrometer. The lean body mass calculated from the results was compared with the lean body mass deduced from established total body nitrogen measurements. A four-compartment model was also used to calculate lean body mass. Excellent agreement was shown between lean body mass derived from TBW, the four-compartment model and TBN. Hence, TBW can provide a fast, cost-efficient method for evaluating normal subjects. However, for disease-induced malnutrition, or highly developed athletes, both TBN and TBW measurements are essential to establish an accurate picture of their body composition. TBW measurements alone can monitor the hydration state of patients and as such have a useful diagnostic value

  4. In-vivo determination of total body water and lean body mass in subjects by deuterium dilution

    Energy Technology Data Exchange (ETDEWEB)

    Blagojevic, N; Allen, B J; Baur, L; Gaskin, K

    1988-12-01

    Total body water (TBW) estimation is one of a number of basic techniques required for the determination of body composition in normal and malnourished subjects. When combined with total body nitrogen (TBN) analysis by prompt gamma neutron activation, an accurate compartmental model of in vivo body composition can be formed, providing valuable nutritional and other data. This study examines the role of TBW on its own in evaluating lean body mass. Total body water was studied in six male and five female subjects using deuterium oxide and a Fourier transform infrared spectrometer. The lean body mass calculated from the results was compared with the lean body mass deduced from established total body nitrogen measurements. A four-compartment model was also used to calculate lean body mass. Excellent agreement was shown between lean body mass derived from TBW, the four-compartment model and TBN. Hence, TBW can provide a fast, cost-efficient method for evaluating normal subjects. However, for disease-induced malnutrition, or highly developed athletes, both TBN and TBW measurements are essential to establish an accurate picture of their body composition. TBW measurements alone can monitor the hydration state of patients and as such have a useful diagnostic value.

  5. Anthropogenic change in water bodies in the southern part of the Silesian Upland

    Directory of Open Access Journals (Sweden)

    Machowski Robert

    2014-06-01

    Full Text Available The paper analyses the anthropogenic change in water bodies in the southern part of the Silesian Upland as exemplified by the town of Knurów. The assessment was based on topographic maps from the years 1827-1828, 1928-1936, 1960 and 1993, and on a 2011 orthophotomap. The cartographic materials used were processed as required for analysis purposes. Maps were calibrated in the Quantum GIS program on the basis of map corner coordinates and using the common points method. In Knurów, four main types of water bodies were distinguished with respect to their origins: reservoirs impounded by dams, flooded mineral workings, industrial water bodies and water bodies in subsidence basins and hollows. Historically, the first water bodies to appear were reservoirs impounded by dams, which dominated until the 1930s. They later fell into disuse and were completely dismantled. Water bodies in mineral workings formed in the early 20th century and were associated with the excavation of raw materials for producing bricks. The period of their greatest significance were the 1960s, when they constituted slightly more than 46% of water bodies in total and accounted for nearly 40% of overall surface area. At the end of the 19th and at the beginning of the 20th century, industrial reservoirs began to appear. Within the town of Knurów, those were sedimentation tanks that held mine water, washery effluent, backfill and cooling water, fire-fighting water pools and tanks, tanks at sewage treatment plants, industrial water tanks and others. Presently, these account for 41.4% (29 of the total number of water bodies and have a total surface area of 32.0 ha (25,2%. Within the study area, water bodies in subsidence basins and hollows only began to form in the second half of the 20th century. In 2011, such water bodies numbered 38 (54.3% and occupied an area of 90.4 ha (71.2%.

  6. ICPP water inventory study progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richards, B.T.

    1993-05-01

    Recent data from the Idaho Chemical Processing Plant (ICPP) indicate that water is entering the sumps located in the bottom of Tank Firm Vaults in quantities that exceed expected levels. In addition, perched water body(s) exist beneath the northern portion of the ICPP. Questions have been raised concerning the origin of water entering the Tank Farm sumps and the recharge sources for the perched water bodies. Therefore, in an effort to determine the source of water, a project has been initiated to identify the source of water for Tank Farm sumps and the perched water bodies. In addition, an accurate water balance for the ICPP will be developed. The purpose of this report is to present the specific results and conclusions for the ICPP water balance portion of the study. In addition, the status of the other activities being conducted as part of study, along with the associated action plans, is provided.

  7. ICPP water inventory study progress report

    International Nuclear Information System (INIS)

    Richards, B.T.

    1993-05-01

    Recent data from the Idaho Chemical Processing Plant (ICPP) indicate that water is entering the sumps located in the bottom of Tank Firm Vaults in quantities that exceed expected levels. In addition, perched water body(s) exist beneath the northern portion of the ICPP. Questions have been raised concerning the origin of water entering the Tank Farm sumps and the recharge sources for the perched water bodies. Therefore, in an effort to determine the source of water, a project has been initiated to identify the source of water for Tank Farm sumps and the perched water bodies. In addition, an accurate water balance for the ICPP will be developed. The purpose of this report is to present the specific results and conclusions for the ICPP water balance portion of the study. In addition, the status of the other activities being conducted as part of study, along with the associated action plans, is provided

  8. Clustering of water bodies in unpolluted and polluted environments based on Escherichia coli phylogroup abundance using a simple interaction database

    Directory of Open Access Journals (Sweden)

    Nancy de Castro Stoppe

    2014-12-01

    Full Text Available Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microorganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water samples revealed higher frequencies of subgroups A1 and B2(3 in rivers impacted by human pollution sources, while subgroups D1 and D2 were associated with pristine sites, and subgroup B1 with domesticated animal sources, suggesting their use as a first screening for pollution source identification. A simple classification is also proposed based on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted sites.

  9. A new approach to inventorying bodies of water, from local to global scale

    Directory of Open Access Journals (Sweden)

    Bartout, Pascal

    2015-12-01

    Full Text Available Having reliable estimates of the number of water bodies on different geographical scales is of great importance to better understand biogeochemical cycles and to tackle the social issues related to the economic and cultural use of water bodies. However, limnological research suffers from a lack of reliable inventories; the available scientific references are predominately based on water bodies of natural origin, large in size and preferentially located in previously glaciated areas. Artificial, small and randomly distributed water bodies, especially ponds, are usually not inventoried. Following Wetzel’s theory (1990, some authors included them in global inventories by using remote sensing or mathematical extrapolation, but fieldwork on the ground has been done on a very limited amount of territory. These studies have resulted in an explosive increase in the estimated number of water bodies, going from 8.44 million lakes (Meybeck 1995 to 3.5 billion water bodies (Downing 2010. These numbers raise several questions, especially about the methodology used for counting small-sized water bodies and the methodological treatment of spatial variables. In this study, we use inventories of water bodies for Sweden, Finland, Estonia and France to show incoherencies generated by the “global to local” approach. We demonstrate that one universal relationship does not suffice for generating the regional or global inventories of water bodies because local conditions vary greatly from one region to another and cannot be offset adequately by each other. The current paradigm for global estimates of water bodies in limnology, which is based on one representative model applied to different territories, does not produce sufficiently exact global inventories. The step-wise progression from the local to the global scale requires the development of many regional equations based on fieldwork; a specific equation that adequately reflects the actual relationship

  10. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    Science.gov (United States)

    Smith, Kirk P.

    2011-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and five subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water years 2007-08 (October 2006 through September 2008). Water samples were collected during base-flow conditions and storms in the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. Composite samples of stormwater also were analyzed for concentrations of total petroleum hydrocarbons and suspended sediment in one subbasin in the Stony Brook Reservoir drainage basin. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply.

  11. Tritium content in tissue free water of Japanese bodies

    Energy Technology Data Exchange (ETDEWEB)

    Ujeno, Y.; Yamamoto, K.; Aoki, T.; Kurihara, N.

    1986-01-01

    The tritium content of tissue free water was measured in fresh, non-diseased organs (brain, lungs, liver, kidneys and muscle) removed by forensic autopsy from 4 male and 4 female bodies. Tissue free water was extracted by freeze drying and distillation and tritium measured in the absence of background radon gas. A typical count was approximately 2.70 cpm. The mean tritium content of tissue free water in all the organs examined was 2.50 + - 0.67 Bq.1/sup -1/ (67.6 + -18.2 pCi1/sup -1/). This value was much lower than that obtained for tissues from Italian bodies: the value was, however, similar to that obtained for tap water (70.2 + -28.0 pCi.1/sup -1/), rain water (77.8 + - 47.4 pCi.1/sup -1/) and tissue free water of foods (55.6 + - 26.2 pCi.1/sup -1/).

  12. Datasets related to in-land water for limnology and remote sensing applications: distance-to-land, distance-to-water, water-body identifier and lake-centre co-ordinates.

    Science.gov (United States)

    Carrea, Laura; Embury, Owen; Merchant, Christopher J

    2015-11-01

    Datasets containing information to locate and identify water bodies have been generated from data locating static-water-bodies with resolution of about 300 m (1/360 ∘ ) recently released by the Land Cover Climate Change Initiative (LC CCI) of the European Space Agency. The LC CCI water-bodies dataset has been obtained from multi-temporal metrics based on time series of the backscattered intensity recorded by ASAR on Envisat between 2005 and 2010. The new derived datasets provide coherently: distance to land, distance to water, water-body identifiers and lake-centre locations. The water-body identifier dataset locates the water bodies assigning the identifiers of the Global Lakes and Wetlands Database (GLWD), and lake centres are defined for in-land waters for which GLWD IDs were determined. The new datasets therefore link recent lake/reservoir/wetlands extent to the GLWD, together with a set of coordinates which locates unambiguously the water bodies in the database. Information on distance-to-land for each water cell and the distance-to-water for each land cell has many potential applications in remote sensing, where the applicability of geophysical retrieval algorithms may be affected by the presence of water or land within a satellite field of view (image pixel). During the generation and validation of the datasets some limitations of the GLWD database and of the LC CCI water-bodies mask have been found. Some examples of the inaccuracies/limitations are presented and discussed. Temporal change in water-body extent is common. Future versions of the LC CCI dataset are planned to represent temporal variation, and this will permit these derived datasets to be updated.

  13. Source-water susceptibility assessment in Texas—Approach and methodology

    Science.gov (United States)

    Ulery, Randy L.; Meyer, John E.; Andren, Robert W.; Newson, Jeremy K.

    2011-01-01

    Public water systems provide potable water for the public's use. The Safe Drinking Water Act amendments of 1996 required States to prepare a source-water susceptibility assessment (SWSA) for each public water system (PWS). States were required to determine the source of water for each PWS, the origin of any contaminant of concern (COC) monitored or to be monitored, and the susceptibility of the public water system to COC exposure, to protect public water supplies from contamination. In Texas, the Texas Commission on Environmental Quality (TCEQ) was responsible for preparing SWSAs for the more than 6,000 public water systems, representing more than 18,000 surface-water intakes or groundwater wells. The U.S. Geological Survey (USGS) worked in cooperation with TCEQ to develop the Source Water Assessment Program (SWAP) approach and methodology. Texas' SWAP meets all requirements of the Safe Drinking Water Act and ultimately provides the TCEQ with a comprehensive tool for protection of public water systems from contamination by up to 247 individual COCs. TCEQ staff identified both the list of contaminants to be assessed and contaminant threshold values (THR) to be applied. COCs were chosen because they were regulated contaminants, were expected to become regulated contaminants in the near future, or were unregulated but thought to represent long-term health concerns. THRs were based on maximum contaminant levels from U.S. Environmental Protection Agency (EPA)'s National Primary Drinking Water Regulations. For reporting purposes, COCs were grouped into seven contaminant groups: inorganic compounds, volatile organic compounds, synthetic organic compounds, radiochemicals, disinfection byproducts, microbial organisms, and physical properties. Expanding on the TCEQ's definition of susceptibility, subject-matter expert working groups formulated the SWSA approach based on assumptions that natural processes and human activities contribute COCs in quantities that vary in space

  14. Phytoplankton diversity and their succession in water bodies of the Lednice park during 2002 season

    Directory of Open Access Journals (Sweden)

    Zohreh Ramezanpoor

    2004-01-01

    Full Text Available Phytoplankton communities of three water bodies in the Lednice park were studied from 22nd April till 1st October 2002. These water bodies are the Zámecký pond, Růžový pond and the Dyje River, which is water source of both ponds.Phytoplankton samples were taken every two weeks between 8 - 9 am. Collected phytoplankton samples were preserved with 4% formalin solution and Lugol solution (JJK and transported to the laboratory. They were determined and counted using inverted microscope. Water temperature, pH and dissolved oxygen were measured in the field using digital portable instruments. Total of 317 phytoplankton species were determined in this study.Heavy algal bloom was observed in the Zámecký pond in mid-summer coinciding with increase in water temperature. Fish diseases and partial mortality occurred during the period of algal bloom and unpleasant smell was dominant feature. A light algal bloom was also observed in the Růžový pond and the Dyje River nearly by the end of summer.The main algae species responsible for blue-green algae bloom were Anabaena flos-aquae, Microcystis aeruginosa, M. ichtyoblabe, M. flos-aquae and M. wesenbergii. Dissolved oxygen values varied between 3.4 - 19.5 mg l-1, pH ranged from 7.6 - 9.7. Secchi depth varied from 0- 65 cm in the Zámecký pond, 15-45 cm in the Růžový pond and 35-65 cm in the Dyje River. Concentration of total phosphate, nitrate and chlorophyll-a in the Dyje River before drainage into the Zámecký and Růžový pond verified heavy nutrient load (Total-P = 0.3, NO3- = 12 mg.l-1 of the river. Although the Dyje River is main water source for both ponds, presence of relatively different phytoplankton communities in these two ponds suggest that probably different nutrient sources might be responsible for differences in phytoplankton communities and eutrophication patterns in the Zámecký pond as compared to the Růžový pond.

  15. Drinking Water Sources with Surface Intakes from LDHH source data, Geographic NAD83, LOSCO (1999) [drinking_water_surface_intakes_LDHH_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a point dataset for 87 public drinking water sources with surface intakes. It was derived from a larger statewide general drinking water source dataset...

  16. Evaluation of parasitic contamination from local sources of drinking ...

    African Journals Online (AJOL)

    A survey on the parasitic contamination of drinking-water sources was carried out ... the extent of contamination of these water sources and their public health implication. ... of the water bodies and boil their drinking-water before consumption.

  17. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  18. Assessed Clean Water Act 305(b) Water Sources of Impairment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Identifies the sources of impairment for assessed waters under the Clean Water Act 305(b) program. This view can be used for viewing the details at the assessment...

  19. Pollution source localization in an urban water supply network based on dynamic water demand.

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  20. [Metallic content of water sources and drinkable water in industrial cities of Murmansk region].

    Science.gov (United States)

    Doushkina, E V; Dudarev, A A; Sladkova, Yu N; Zachinskaya, I Yu; Chupakhin, V S; Goushchin, I V; Talykova, L V; Nikanov, A N

    2015-01-01

    Performed in 2013, sampling of centralized and noncentralized water-supply and analysis of engineering technology materials on household water use in 6 cities of Murmansk region (Nikel, Zapolyarny, Olenegorsk, Montchegorsk, Apatity, Kirovsk), subjected to industrial emissions, enabled to evaluate and compare levels of 15 metals in water sources (lakes and springs) and the cities' drinkable waters. Findings are that some cities lack sanitary protection zones for water sources, most cities require preliminary water processing, water desinfection involves only chlorination. Concentrations of most metals in water samples from all the cities at the points of water intake, water preparation and water supply are within the hygienic norms. But values significantly (2-5 times) exceeding MACs (both in water sources and in drinkable waters of the cities) were seen for aluminium in Kirovsk city and for nickel in Zapolarny and Nikel cities. To decrease effects of aluminium, nickel and their compounds in the three cities' residents (and preserve health of the population and offsprings), the authors necessitate specification and adaptation of measures to purify the drinkable waters from the pollutants. In all the cities studied, significantly increased concentrations of iron and other metals were seen during water transportation from the source to the city supply--that necessitates replacement of depreciated water supply systems by modern ones. Water taken from Petchenga region springs demonstrated relatively low levels of metals, except from strontium and barium.

  1. Generation of dynamo waves by spatially separated sources in the Earth and other celestial bodies

    Science.gov (United States)

    Popova, E.

    2017-12-01

    The amplitude and the spatial configuration of the planetary and stellar magnetic field can changing over the years. Celestial bodies can have cyclic, chaotic or unchanging in time magnetic activity which is connected with a dynamo mechanism. This mechanism is based on the consideration of the joint influence of the alpha-effect and differential rotation. Dynamo sources can be located at different depths (active layers) of the celestial body and can have different intensities. Application of this concept allows us to get different forms of solutions and some of which can include wave propagating inside the celestial body. We analytically showed that in the case of spatially separated sources of magnetic field each source generates a wave whose frequency depends on the physical parameters of its source. We estimated parameters of sources required for the generation nondecaying waves. We discus structure of such sources and matter motion (including meridional circulation) in the liquid outer core of the Earth and active layers of other celestial bodies.

  2. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    Science.gov (United States)

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  3. Water quality monitoring for high-priority water bodies in the Sonoran Desert network

    Science.gov (United States)

    Terry W. Sprouse; Robert M. Emanuel; Sara A. Strorrer

    2005-01-01

    This paper describes a network monitoring program for “high priority” water bodies in the Sonoran Desert Network of the National Park Service. Protocols were developed for monitoring selected waters for ten of the eleven parks in the Network. Park and network staff assisted in identifying potential locations of testing sites, local priorities, and how water quality...

  4. Total body water and total body potassium in anorexia nervosa

    Energy Technology Data Exchange (ETDEWEB)

    Dempsey, D.T.; Crosby, L.O.; Lusk, E.; Oberlander, J.L.; Pertschuk, M.J.; Mullen, J.L.

    1984-08-01

    In the ill hospitalized patient with clinically relevant malnutrition, there is a measurable decrease in the ratio of the total body potassium to total body water (TBK/TBW) and a detectable increase in the ratio of total exchangeable sodium to total exchangeable potassium (Nae/Ke). To evaluate body composition analyses in anorexia nervosa patients with chronic uncomplicated semistarvation, TBK and TBW were measured by whole body K40 counting and deuterium oxide dilution in 10 females with stable anorexia nervosa and 10 age-matched female controls. The ratio of TBK/TBW was significantly (p less than 0.05) higher in anorexia nervosa patients than controls. The close inverse correlation found in published studies between TBK/TBW and Nae/Ke together with our results suggest that in anorexia nervosa, Nae/Ke may be low or normal. A decreased TBK/TBW is not a good indicator of malnutrition in the anorexia nervosa patient. The use of a decreased TBK/TBW ratio or an elevated Nae/Ke ratio as a definition of malnutrition may result in inappropriate nutritional management in the patient with severe nonstressed chronic semistarvation.

  5. Total body water and total body potassium in anorexia nervosa

    International Nuclear Information System (INIS)

    Dempsey, D.T.; Crosby, L.O.; Lusk, E.; Oberlander, J.L.; Pertschuk, M.J.; Mullen, J.L.

    1984-01-01

    In the ill hospitalized patient with clinically relevant malnutrition, there is a measurable decrease in the ratio of the total body potassium to total body water (TBK/TBW) and a detectable increase in the ratio of total exchangeable sodium to total exchangeable potassium (Nae/Ke). To evaluate body composition analyses in anorexia nervosa patients with chronic uncomplicated semistarvation, TBK and TBW were measured by whole body K40 counting and deuterium oxide dilution in 10 females with stable anorexia nervosa and 10 age-matched female controls. The ratio of TBK/TBW was significantly (p less than 0.05) higher in anorexia nervosa patients than controls. The close inverse correlation found in published studies between TBK/TBW and Nae/Ke together with our results suggest that in anorexia nervosa, Nae/Ke may be low or normal. A decreased TBK/TBW is not a good indicator of malnutrition in the anorexia nervosa patient. The use of a decreased TBK/TBW ratio or an elevated Nae/Ke ratio as a definition of malnutrition may result in inappropriate nutritional management in the patient with severe nonstressed chronic semistarvation

  6. Joint Inversion of Earthquake Source Parameters with local and teleseismic body waves

    Science.gov (United States)

    Chen, W.; Ni, S.; Wang, Z.

    2011-12-01

    In the classical source parameter inversion algorithm of CAP (Cut and Paste method, by Zhao and Helmberger), waveform data at near distances (typically less than 500km) are partitioned into Pnl and surface waves to account for uncertainties in the crustal models and different amplitude weight of body and surface waves. The classical CAP algorithms have proven effective for resolving source parameters (focal mechanisms, depth and moment) for earthquakes well recorded on relatively dense seismic network. However for regions covered with sparse stations, it is challenging to achieve precise source parameters . In this case, a moderate earthquake of ~M6 is usually recorded on only one or two local stations with epicentral distances less than 500 km. Fortunately, an earthquake of ~M6 can be well recorded on global seismic networks. Since the ray paths for teleseismic and local body waves sample different portions of the focal sphere, combination of teleseismic and local body wave data helps constrain source parameters better. Here we present a new CAP mothod (CAPjoint), which emploits both teleseismic body waveforms (P and SH waves) and local waveforms (Pnl, Rayleigh and Love waves) to determine source parameters. For an earthquake in Nevada that is well recorded with dense local network (USArray stations), we compare the results from CAPjoint with those from the traditional CAP method involving only of local waveforms , and explore the efficiency with bootstraping statistics to prove the results derived by CAPjoint are stable and reliable. Even with one local station included in joint inversion, accuracy of source parameters such as moment and strike can be much better improved.

  7. Potential of a novel airborne hydrographic laser scanner for capturing shallow water bodies

    Science.gov (United States)

    Mandlburger, G.; Pfennigbauer, M.; Steinbacher, F.; Pfeifer, N.

    2012-04-01

    morphology, thus, providing an excellent data source for calibrating and validating sediment transport models. With the focus on capturing shallow water bodies under clear water conditions, the instrument is not designed for mapping of broader rivers (turbid water due to suspended material). However, even for these rivers the presented technique can close the gap between the river bank (captured, e.g., by topographic LiDAR) and the main channel (e.g., by echo sounding).

  8. Impact of highway construction on water bodies: a geospatial assessment.

    Science.gov (United States)

    Vijay, Ritesh; Kushwaha, Vikash K; Mardikar, Trupti; Labhasetwar, P K

    2017-08-01

    India has witnessed a massive infrastructure boom in the past few years. One of such projects is National Highway-7 (NH-7), a North-South highway connecting Kanyakumari, Tamil Nadu, to Varanasi, Uttar Pradesh, traversing many water bodies. The present study aims to assess the pre- and post-construction impact due to existing, new and widened NH-7 on the physical status of the water bodies, using remote sensing techniques. Satellite images spanning 22 years were procured and analysed for change detection in land use and land cover within the waterbodies. The study indicates that construction activities have led to transformation within the water bodies regarding reduction in area and inter-changing of land use and land cover classes, in turn leading to siltation and reduction of recharge.

  9. The Relationship of Body Size and Adiposity to Source of Self-Esteem in College Women

    Science.gov (United States)

    Moncur, Breckann; Bailey, Bruce W.; Lockhart, Barbara D.; LeCheminant, James D.; Perkins, Annette E.

    2013-01-01

    Background: Studies looking at self-esteem and body size or adiposity generally demonstrate a negative relationship. However, the relationship between the source of self-esteem and body size has not been examined in college women. Purpose: The purpose of this study was to evaluate the relationship of body size and adiposity to source of…

  10. Sources of spurious force oscillations from an immersed boundary method for moving-body problems

    Science.gov (United States)

    Lee, Jongho; Kim, Jungwoo; Choi, Haecheon; Yang, Kyung-Soo

    2011-04-01

    When a discrete-forcing immersed boundary method is applied to moving-body problems, it produces spurious force oscillations on a solid body. In the present study, we identify two sources of these force oscillations. One source is from the spatial discontinuity in the pressure across the immersed boundary when a grid point located inside a solid body becomes that of fluid with a body motion. The addition of mass source/sink together with momentum forcing proposed by Kim et al. [J. Kim, D. Kim, H. Choi, An immersed-boundary finite volume method for simulations of flow in complex geometries, Journal of Computational Physics 171 (2001) 132-150] reduces the spurious force oscillations by alleviating this pressure discontinuity. The other source is from the temporal discontinuity in the velocity at the grid points where fluid becomes solid with a body motion. The magnitude of velocity discontinuity decreases with decreasing the grid spacing near the immersed boundary. Four moving-body problems are simulated by varying the grid spacing at a fixed computational time step and at a constant CFL number, respectively. It is found that the spurious force oscillations decrease with decreasing the grid spacing and increasing the computational time step size, but they depend more on the grid spacing than on the computational time step size.

  11. Estimation of contribution ratios of pollutant sources to a specific section based on an enhanced water quality model.

    Science.gov (United States)

    Cao, Bibo; Li, Chuan; Liu, Yan; Zhao, Yue; Sha, Jian; Wang, Yuqiu

    2015-05-01

    Because water quality monitoring sections or sites could reflect the water quality status of rivers, surface water quality management based on water quality monitoring sections or sites would be effective. For the purpose of improving water quality of rivers, quantifying the contribution ratios of pollutant resources to a specific section is necessary. Because physical and chemical processes of nutrient pollutants are complex in water bodies, it is difficult to quantitatively compute the contribution ratios. However, water quality models have proved to be effective tools to estimate surface water quality. In this project, an enhanced QUAL2Kw model with an added module was applied to the Xin'anjiang Watershed, to obtain water quality information along the river and to assess the contribution ratios of each pollutant source to a certain section (the Jiekou state-controlled section). Model validation indicated that the results were reliable. Then, contribution ratios were analyzed through the added module. Results show that among the pollutant sources, the Lianjiang tributary contributes the largest part of total nitrogen (50.43%), total phosphorus (45.60%), ammonia nitrogen (32.90%), nitrate (nitrite + nitrate) nitrogen (47.73%), and organic nitrogen (37.87%). Furthermore, contribution ratios in different reaches varied along the river. Compared with pollutant loads ratios of different sources in the watershed, an analysis of contribution ratios of pollutant sources for each specific section, which takes the localized chemical and physical processes into consideration, was more suitable for local-regional water quality management. In summary, this method of analyzing the contribution ratios of pollutant sources to a specific section based on the QUAL2Kw model was found to support the improvement of the local environment.

  12. NONPOINT SOURCES AND WATER QUALITY TRADING

    Science.gov (United States)

    Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...

  13. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Science.gov (United States)

    2010-07-01

    .... (5) Loss of water supply is not a basis for assistance under this authority. (6) Water will not be... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Emergency water supplies due to... PROCEDURES Emergency Water Supplies: Contaminated Water Sources and Drought Assistance § 203.61 Emergency...

  14. Ingested water equilibrates isotopically with the body water pool of a shorebird with unrivaled water fluxes

    NARCIS (Netherlands)

    Visser, G.H.; Dekinga, A; Achterkamp, B.; Piersma, T.

    We investigated the applicability of H-2 to measure the amount of body water (TBW) and water fluxes in relation to diet type and level of food intake in a mollusk-eating shorebird, the Red Knot (Calidris canutus). Six birds were exposed to eight experimental indoor conditions. Average fractional H-2

  15. Mycoflora and Water Quality index Assessment of Water Sources in ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    water sources (31.96 - 47.31) falls within the classification “Bad” despite the slight increase during the dry season. The quality of water in the study area is poor and portends health risk; ... tributary that originates from the New Calabar River.

  16. In vivo measurement of total body carbon using 238Pu/Be neutron sources

    International Nuclear Information System (INIS)

    Sutcliffe, J.F.; Mitra, S.; Hill, G.L.

    1990-01-01

    Total body carbon has been measured by in vivo neutron activation analysis (IVNAA) in 278 surgical gastroenterological patients and 29 normal volunteers. This is based on the inelastic scattering reaction { 12 C(n,n') 12 C*} for neutrons with energy above 4.8MeV, producing 4.43 MeV gamma rays. Since only part of the body is scanned, total body carbon is estimated as the ratio of the gamma ray emission from carbon to the emission from hydrogen, using hydrogen as the internal standard. The precision of the estimate is ±1.6kg for a whole body dose of 0.3mSv. There is a significant difference between the estimates of total body water from IVNAA measurements of carbon and nitrogen and measurements of body water in these subjects by tritium dilution (t=3.1, p < 0.005). (author)

  17. Propagation of Exploration Seismic Sources in Shallow Water

    Science.gov (United States)

    Diebold, J. B.; Tolstoy, M.; Barton, P. J.; Gulick, S. P.

    2006-05-01

    The choice of safety radii to mitigation the impact of exploration seismic sources upon marine mammals is typically based on measurement or modeling in deep water. In shallow water environments, rule-of-thumb spreading laws are often used to predict the falloff of amplitude with offset from the source, but actual measurements (or ideally, near-perfect modeling) are still needed to account for the effects of bathymetric changes and subseafloor characteristics. In addition, the question: "how shallow is 'shallow?'" needs an answer. In a cooperative effort by NSF, MMS, NRL, IAGC and L-DEO, a series of seismic source calibration studies was carried out in the Northern Gulf of Mexico during 2003. The sources used were the two-, six-, ten-, twelve-, and twenty-airgun arrays of R/V Ewing, and a 31-element, 3-string "G" gun array, deployed by M/V Kondor, an exploration industry source ship. The results of the Ewing calibrations have been published, documenting results in deep (3200m) and shallow (60m) water. Lengthy analysis of the Kondor results, presented here, suggests an approach to answering the "how shallow is shallow" question. After initially falling off steadily with source-receiver offset, the Kondor levels suddenly increased at a 4km offset. Ray-based modeling with a complex, realistic source, but with a simple homogeneous water column-over-elastic halfspace ocean shows that the observed pattern is chiefly due to geophysical effects, and not focusing within the water column. The same kind of modeling can be used to predict how the amplitudes will change with decreasing water depth, and when deep-water safety radii may need to be increased. Another set of data (see Barton, et al., this session) recorded in 20 meters of water during early 2005, however, shows that simple modeling may be insufficient when the geophysics becomes more complex. In this particular case, the fact that the seafloor was within the near field of the R/V Ewing source array seems to have

  18. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    Science.gov (United States)

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Water entry of cylindrical bodies with various aspect ratios

    Science.gov (United States)

    Kim, Nayoung; Park, Hyungmin

    2017-11-01

    We experimentally investigate the water entry of cylindrical bodies with different aspect ratio (1.0-8.0), focusing on the deformation of free surface and resulting phenomena over and under the surface. The experiment is performed using a high-speed imaging (upto 10000 fps) and PIV. The head and tail of bodies are hemispherical and the nose part is additionally roughened with a sandpaper to see the effect of roughness as well. The release height is also adjusted to change the impact velocity at the free surface (Reynolds number is order of 105). For smooth surface (without cavity formation), a thin liquid film rises up the body after impacting, gathers at the pole and forms a jet over the free surfaces. The jet is created in the form of a thick and thin jet. The thin jet is produced by a water film riding up the surface of an object, and a thick jet is produced by rising water from underwater as the object sinks. However, as the aspect ratio increases, the liquid film does not fully ride up the body and cannot close, so there is an empty space below the free surface. With roughness (with cavity), the liquid film is detached from the body and splash/dome is formed above the free surface. The splash height and its collapsing time decrease with increasing the aspect ratio. Supported by Grants (MPSS-CG-2016-02, NRF-2017R1A4A1015523) of the Korea government.

  20. What Happens Where the Water and the Rock Touch in Small Space Bodies

    Science.gov (United States)

    Byrne, P. K.; Regensburger, P. V.; Klimczak, C.; Bohnenstiehl, D. R.; Dombard, A. J.; Hauck, S. A., II

    2017-12-01

    There are several small space bodies that go around bigger worlds that might have a layer of water under a layer of ice. Lots of study has been done to understand the outside ice layer of these small space bodies, because the ice can tells us important things about the big water layer under it. Some of these small space bodies are very interesting because the right things for life—water, hot rock, and food—might be at the bottom of the water layer, where it touches the top of the next layer down, which is made of rock. But it is very hard to understand what this rock at the bottom of the water is like, because we can't see it. So, we are imagining what this rock is like by thinking about what the rock is like under the water layer on our own world. If hot rock comes out of the rock layer through cracks under the water, the cold of the water makes the hot rock go very cold very fast, and it makes funny rolls as it does so. This might happen on some small space bodies that are hot enough on the inside to make hot rock. We know that on our own world the rock layer under the water is wet to as far down as cracks can go, so it makes sense that this is true for small space bodies, too. We did some thinking about numbers and found out that the cracks can go a few ten hundred steps into the rock layer on small space bodies, but for bigger (well, not quite so small) space bodies, the cracks can go at least tens of ten hundred steps into the rock layer. This means that water goes into the rock layer this much, too. But get this: some small bodies are not really that small—one of them is bigger than the first world from the Sun! And on a few of these big (small) bodies, the layer of water is so heavy that the bottom of that water is pushed together from all sides and turns into a type of hot ice. This means that, for these big (small) worlds, the water can't get into the rock layer through cracks (since there is a layer of hot ice in the way), and so these bodies are

  1. Development of fauna of water beetles (Coleoptera in waters bodies of a river valley – habitat factors, landscape and geomorphology

    Directory of Open Access Journals (Sweden)

    Pakulnicka Joanna

    2016-01-01

    Full Text Available The goal of the study was to identify the beetle fauna of a small lowland river valley against its spatial arrangement and the directions of beetle migrations between habitats, as well as to determine which environmental factors affect the characteristics of water beetle populations in a river valley's lentic water bodies. The field studies were carried out in various types of water bodies. 112 species of beetles with various ecological characteristics were identified. It was demonstrated that the diversity of water bodies in the valley is conducive to high local species richness. At the same time, the observed high degree of faunistic individualism may be regarded as a sign of poor symmetry in the directions of fauna propagation, particularly that of stagnobionts. The authors argue that high individualism is the consequence of poor hydrological contact between the water bodies due to topography and rare instances of high tide in the river, which, in turn, is the reason for active overflights remaining the main mean of migration between those water bodies. The factors restricting migration of fauna between the water bodies include certain landscape characteristics of the catchment which form topographical obstacles, mainly numerous and dense forest areas. The character of fauna in the respective types of water bodies is affected also by internal environmental factors, particularly the degree to which they are overgrown with macrophytes, type of bottom, type of mineral and organic matter as well as physical parameters of water, such as saturation, pH, temperature and biological oxygen demand.

  2. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Science.gov (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  3. [The body as source of significance. Interdisciplinary perspectives].

    Science.gov (United States)

    Tofan, I A; Crumpei, Irina

    2010-01-01

    This paper concerns a general theoretical aspect, followed by different examples which discusses the thesis in relation to major connected domains of research: psychology and philosophy. The thesis which we are arguing for is that the body represents a source of significance in the definitions of he self used as theoretical background in moral problems (philosophical aspect) and the explanations of the way the image of the self is constituted (psychological aspect). The philosophical "conclusion" is that the body, in its materiality, cannot be judged by the metaphysical dualism scheme, which assigns it a secondary role in the hierarchy of categories. From a psychological point of view, this paper tends to show that the body does not represent an accident of personality or a "prison of the soul" as Plato refers to it, but rather an element through which personality is built on and develops and similarly, the mental and personality structures are those which allow the forming of corporeality and then the person's reference to it.

  4. COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS

    Science.gov (United States)

    Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...

  5. Sources of Phthalates and Nonylphenoles in Municipal Waste Water

    DEFF Research Database (Denmark)

    Vikelsøe, J.; Thomsen, M.; Johansen, E.

    The overall aim of the present study is to identify and evaluate the importance of sources of nonylphenoles and phthalates in waste water in a local environment. The investigations were carried out in a Danish local community, Roskilde city and surroundings. Nonylphenoles and phthalates were...... analysed in the waste water from different institutions and industries thought to be potential sources. These were: car wash centers, a hospital, a kindergarten, an adhesive industry and a industrial laundry. Furthermore, analysis of the deposition in the area were carried out. This made it possible...... to estimate the contribution from all of these sources to the waste water as well as the role of long-range air transport. Two local rivers were analysed for comparison. Finally, waste water inlet from the local water treatment plant, where the sources converge at a single point, were analysed. A mass balance...

  6. Innate recognition of water bodies in echolocating bats.

    Science.gov (United States)

    Greif, Stefan; Siemers, Björn M

    2010-11-02

    In the course of their lives, most animals must find different specific habitat and microhabitat types for survival and reproduction. Yet, in vertebrates, little is known about the sensory cues that mediate habitat recognition. In free flying bats the echolocation of insect-sized point targets is well understood, whereas how they recognize and classify spatially extended echo targets is currently unknown. In this study, we show how echolocating bats recognize ponds or other water bodies that are crucial for foraging, drinking and orientation. With wild bats of 15 different species (seven genera from three phylogenetically distant, large bat families), we found that bats perceived any extended, echo-acoustically smooth surface to be water, even in the presence of conflicting information from other sensory modalities. In addition, naive juvenile bats that had never before encountered a water body showed spontaneous drinking responses from smooth plates. This provides the first evidence for innate recognition of a habitat cue in a mammal.

  7. Bioimpedance measurement of body water correlates with measured volume balance in injured patients.

    Science.gov (United States)

    Rosemurgy, A S; Rodriguez, E; Hart, M B; Kurto, H Z; Albrink, M H

    1993-06-01

    Bioimpedance technology is being used increasingly to determine drug volume of distribution, body water status, and nutrition repletion. Its accuracy in patients experiencing large volume flux is not established. To address this, we undertook this prospective study in 54 consecutive seriously injured adults who had emergency celiotomy soon after arrival in the emergency department. Bioimpedance measurements were obtained in the emergency department before the patient was transported to the operating room, on completion of celiotomy, and 24 hours and 48 hours after celiotomy. Bioimpedance measurements of body water were compared with measured fluid balance. If insensible losses are subtracted from measured fluid balance, the percentage of body weight, which is body water determined by bioimpedance, closely follows fluid flux. This study supports the use of bioimpedance measurements in determining total body water even during periods of surgery, blood loss, and vigorous resuscitation.

  8. Water-body preferences of dominant calanoid copepod species in ...

    African Journals Online (AJOL)

    The distribution of five dominant calanoid copepods was related to different water masses in the Angola-Benguela Front system. Five water bodies were identified by principal component analysis, on the basis of abiotic parameters such as temperature, salinity, dissolved oxygen, phosphate, silicate, nitrate and nitrite.

  9. Preparation of water-equivalent radioactive solid sources

    International Nuclear Information System (INIS)

    Yamazaki, Ione M.; Koskinas, Marina F.; Dias, Mauro S.

    2011-01-01

    The development of water-equivalent solid sources in two geometries, cylindrical and flat without the need of irradiation in a strong gamma radiation source to obtain polymerization is described. These sources should have density similar to water and good uniformity. Therefore, the density and uniformity of the distribution of radioactive material in the resins were measured. The variation of these parameters in the cylindrical geometry was better than 2.0% for the density and 2.3% for the uniformity and for the flat geometry the values obtained were better than 2.0 % and better than 1.3%, respectively. These values are in good agreement with the literature. (author)

  10. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation.

    Science.gov (United States)

    Tugulea, A-M; Bérubé, D; Giddings, M; Lemieux, F; Hnatiw, J; Priem, J; Avramescu, M-L

    2014-10-01

    Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag(+) ions (as AgNO3). The stability of the nano-silver dispersions in

  11. Chironomidae (Diptera, Chironomidae) as biological indicators of water bodies ecological condition

    International Nuclear Information System (INIS)

    Bakhtin, M.M.; Sejsebaev, A.T.

    2002-01-01

    The paper presents data confirming that Chironomidae are good to be used as an indicative criterion when classifying lakes. It was found that their quantity and presence of certain species could serve as an index in assessment of water body ecological condition. Results of cytotaxonomic analysis helped to reveal the nature of Chironomini species diversity in STS water bodies. (author)

  12. Nationwide assessment of nonpoint source threats to water quality

    Science.gov (United States)

    Thomas C. Brown; Pamela Froemke

    2012-01-01

    Water quality is a continuing national concern, in part because the containment of pollution from nonpoint (diffuse) sources remains a challenge. We examine the spatial distribution of nonpoint-source threats to water quality. On the basis of comprehensive data sets for a series of watershed stressors, the relative risk of water-quality impairment was estimated for the...

  13. [Remote sensing monitoring and screening for urban black and odorous water body: A review.

    Science.gov (United States)

    Shen, Qian; Zhu, Li; Cao, Hong Ye

    2017-10-01

    Continuous improvement of urban water environment and overall control of black and odorous water body are not merely national strategic needs with the action plan for prevention and treatment of water pollution, but also the hot issues attracting the attention of people. Most previous researches concentrated on the study of cause, evaluation and treatment measures of this phenomenon, and there are few researches on the monitoring using remote sensing, which is often a strain to meet the national needs of operational monitoring. This paper mainly summarized the urgent research problems, mainly including the identification and classification standard, research on the key technologies, and the frame of remote sensing screening systems for the urban black and odorous water body. The main key technologies were concluded too, including the high spatial resolution image preprocessing and extraction technique for black and odorous water body, the extraction of water information in city zones, the classification of the black and odorous water, and the identification and classification technique based on satellite-sky-ground remote sensing. This paper summarized the research progress and put forward research ideas of monitoring and screening urban black and odorous water body via high spatial resolution remote sensing technology, which would be beneficial to having an overall grasp of spatial distribution and improvement progress of black and odorous water body, and provide strong technical support for controlling urban black and odorous water body.

  14. Detection of Water Bodies from AVHRR Data—A TIMELINE Thematic Processor

    Directory of Open Access Journals (Sweden)

    Andreas J. Dietz

    2017-01-01

    Full Text Available The assessment of water body dynamics is not only in itself a topic of strong demand, but the presence of water bodies is important information when it comes to the derivation of products such as land surface temperature, leaf area index, or snow/ice cover mapping from satellite data. For the TIMELINE project, which aims to derive such products for a long time series of Advanced Very High Resolution Radiometer (AVHRR data for Europe, precise water masks are therefore not only an important stand-alone product themselves, they are also an essential interstage information layer, which has to be produced automatically after preprocessing of the raw satellite data. The respective orbit segments from AVHRR are usually more than 2000 km wide and several thousand km long, thus leading to fundamentally different observation geometries, including varying sea surface temperatures, wave patterns, and sediment and algae loads. The water detection algorithm has to be able to manage these conditions based on a limited amount of spectral channels and bandwidths. After reviewing and testing already available methods for water body detection, we concluded that they cannot fully overcome the existing challenges and limitations. Therefore an extended approach was implemented, which takes into account the variations of the reflectance properties of water surfaces on a local to regional scale; the dynamic local threshold determination will train itself automatically by extracting a coarse-scale classification threshold, which is refined successively while analyzing subsets of the orbit segment. The threshold is then interpolated by fitting a minimum curvature surface before additional steps also relying on the brightness temperature are included to reduce possible misclassifications. The classification results have been validated using Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS data and proven an overall accuracy of 93.4%, with the majority of

  15. Development of sealed sheet sources for calibration of whole-body counters

    International Nuclear Information System (INIS)

    Miyamoto, Mai; Ishigure, Nobuhito; Ogata, Yoshimune; Narita, Norihiko; Kawaura, Chiyo; Nakano, Takashi

    2009-01-01

    Whole body counters are usually calibrated with the aid of a whole body phantom assembled with simply-shaped plastic vessels that are filled with an aqueous solution of the relevant radioisotopes. Most vessel-type phantoms represent only a human body in which radioisotopes are homogeneously distributed, whereas the radioisotopes in vivo are sometimes localized to specific organs. Each set of the vessels is usually applicable only to a specific combination of radioisotopes, because the replacement of radioisotopes requires troublesome procedures. Possible leakage of the solution is another disadvantage of the vessel-type phantom. The authors are developing a new-type calibration phantom that is free from these disadvantages, in which sealed sheet sources are sandwiched between sections of a sliced anthropomorphic phantom. This paper describes a method to prepare sealed sheet sources for this calibration phantom. Instead of γ-ray emitters a pure β-ray emitter 32 P was used. This isotope is suitable for autoradiography and is easy to handle as its half-life is relatively short. An ink-jet printer was used to spread the solution of 32 P mixed with ink on a sheet of paper. The surface concentration of radioactivity was regulated by the function of color density adjustment of an image processing software. The radioisotope-printed paper was laminated for sealing. Through the measurement of surface concentration of radioactivity with a liquid scintillation counter, the autoradiographical investigation of the pattern of the radioactivity distributed on the sheet sources, the immersion test of the sealed sheet sources and the monitoring of the concentration of 32 P in air during the printing, it was demonstrated that sealed sheet sources for the calibration phantom can be prepared safely by the method described in this paper. Furthermore, by using sheet sources of 99m Tc prepared as a trial it was confirmed that discrete arrangement of sheet sources in a phantom at a

  16. COMMERCIAL FISH HARVEST IN INLAND WATER BODIES OF GERMANY (A REVIEW

    Directory of Open Access Journals (Sweden)

    А. Didenko

    2016-10-01

    Full Text Available Purpose. To analyze scientific and statistical sources on commercial fishery in inland water bodies of Germany. To summarize German experience and identify specific features of this sector. Findings. Commercial fishery in Germany is carried out on 30% (≈250 000 hectares of inland water bodies of Germany. The main fishing regions are prealpine lakes in Bavaria, Lake Constance, lakes in Schleswig-Holstein, Mecklenburg-Western Pomerania federal states as well as lakes and rivers of Brandenburg and Berlin. Commercial fishing on rivers usually has a local importance and is practiced in regions with poorly developed industry. There were 670 commercial fishing organizations in 2014, where 932 people were employed. Each fishing license owner is allowed deploying simultaneously a clearly defined number of fishing gears depending on season. In addition, fishing nets are regulated not only based on their mesh size and length, but also height and the minimum thread diameter. The cardinal difference of German inland fishing is the absence of the periods of total ban on commercial fishing. There are only ban periods for fishing on certain fish species during their spawning seasons. These periods differ for federal states and are listed in the relevant regional fishing rules. The total fish catch in inland waters of Germany by commercial fishermen in 2014 was 3132 tons, much lower than the catches of anglers who caught 18 450 tons at the same year. Most of fish were caught by fishing organizations in the Brandenburg Federal State. Average fish productivity in 2014 was approx. 13 kg/ha (ranging from 10 to 20 kg/ha. Whitefish was the dominant species in catches in the Lake Constance and prealpine lakes of Bavaria, while cyprinids (roach, bream, silver bream, blue bream, etc. dominated in Northern Germany. The profit of commercial fish catch in 2014 was about 12.5 million euros. Among numerous activities aimed at preserving commercial fish populations, Germans

  17. Cold-water acclimation does not modify whole-body fluid regulation during subsequent cold-water immersion.

    Science.gov (United States)

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-06-01

    We investigated the impact of cold-water acclimation on whole-body fluid regulation using tracer-dilution methods to differentiate between the intracellular and extracellular fluid compartments. Seven euhydrated males [age 24.7 (8.7) years, mass 74.4 (6.4) kg, height 176.8 (7.8) cm, sum of eight skinfolds 107.4 (20.4) mm; mean (SD)] participated in a 14-day cold-water acclimation protocol, with 60-min resting cold-water stress tests [CWST; 18.1 (0.1) degrees C] on days 1, 8 and 15, and 90-min resting cold-water immersions [18.4 (0.4) degrees C] on intervening days. Subjects were immersed to the 4th intercostal space. Intracellular and extracellular fluid compartments, and plasma protein, electrolyte and hormone concentrations were investigated. During the first CWST, the intracellular fluid (5.5%) and plasma volumes were reduced (6.1%), while the interstitial fluid volume was simultaneously expanded (5.4%). This pattern was replicated on days 8 and 15, but did not differ significantly among test days. Acclimation did not produce significant changes in the pre-immersion distribution of total body water, or changes in plasma osmolality, total protein, electrolyte, atrial natriuretic peptide or aldosterone concentrations. Furthermore, a 14-day cold-water acclimation regimen did not elicit significant changes in body-fluid distribution, urine production, or the concentrations of plasma protein, electrolytes or the fluid-regulatory hormones. While acclimation trends were not evident, we have confirmed that fluid from extravascular cells is displaced into the interstitium during acute cold-water immersion, both before and after cold acclimation.

  18. Drinking water: a major source of lead exposure in Karachi, Pakistan.

    Science.gov (United States)

    Ul-Haq, N; Arain, M A; Badar, N; Rasheed, M; Haque, Z

    2011-11-01

    Excess lead in drinking water is a neglected source of lead toxicity in Pakistan. A cross-sectional survey in 2007/08 was made of water samples from drinking water sources in Karachi, a large industrial city. This study aimed to compare lead levels between untreated ground water and treated surface (tap) water in 18 different districts. Of 216 ground and surface water samples collected, 86% had lead levels higher than the World Health Organization maximum acceptable concentration of l0 ppb. Mean lead concentration in ground water [146 (SD 119) ppb] was significantly higher than in surface water [77.1 (SD 54) ppb]. None of the 18 districts had a mean lead level of ground or surface water below the WHO cut-off and ground water sources in 9 districts had a severe level of contamination (>150 ppb). Urgent action is needed to eliminate sources of contamination.

  19. Evaluation of nuclear magnetic resonance spectroscopy for determination of deuterium abundance in body fluids: application to measurement of total-body water in human infants

    International Nuclear Information System (INIS)

    Rebouche, C.J.; Pearson, G.A.; Serfass, R.E.; Roth, C.W.; Finley, J.W.

    1987-01-01

    Nuclear magnetic resonance (NMR) spectroscopy was used to quantitate abundance of 2H in body water of human infants. This method provides precise measurement of total-body water without the extensive sample preparation requirements of previously described methods for determination of 2H content in body fluids. 2H2O (1 g/kg body weight) was administered to infants and saliva and urine were collected for up to 5 h. An internal standard was added directly to the fluid specimen and 2H enrichment in water was measured by NMR spectroscopy. Working range of deuterium abundance was 0.04-0.32 atom %. Coefficients of variation for saliva samples at 0.20 atom % 2H was 1.97%. 2H content in urine and saliva water reached a plateau by 4 h after administration, and amounts in the two fluids were virtually identical. Mean total-body water determination for six infants was 58.3 +/- 5.8% of body weight (range 53-66%)

  20. Effect of ramadan fasting on body water status markers after a rugby sevens match.

    Science.gov (United States)

    Trabelsi, Khaled; Rebai, Haithem; El-Abed, Kais; Stannard, Stephen R; Khannous, Hamdi; Masmoudi, Liwa; Sahnoun, Zouheir; Hakim, Ahmed; Fellman, Nicole; Tabka, Zouhair

    2011-09-01

    To evaluate the effect of Ramadan fasting on body water status markers of rugby players at basal condition and following a simulation of rugby sevens match. TWELVE RECREATIONAL RUGBY SEVENS PLAYERS PLAYED THREE MATCHES: one day before Ramadan (before Ramadan), at the end of the first week of Ramadan (Beg-R) and at the end of Ramadan (End-R). Before and immediately after each match, body weight was determined and blood samples were taken for the measurement of body water status markers. Total body water was measured with an impedancemeter only before matches. At rest, an increase in hematocrit (+4.4%, P=0.03), hemoglobin (+3.4%, P=0.01) and plasma osmolarity (+2.8%, PRamadan. Total body water measured before Ramadan did not differ significantly from that of Ramadan. After the match, values of hematocrit and plasma osmolarity increased significantly at End-R (+1.4%, P=0.02; +3.1%, PRamadan. Although, hemoglobin measured after matches occurring during Ramadan did not differ from those of before Ramadan. In response to matches, the change of percentage of body water status markers did not differ during each period of the investigation. The present results show that Ramadan fasting induces dehydration at basal conditions. Also, rugby sevens match played during Ramadan did not exacerbate the magnitude of responses to matches of blood and body water status markers.

  1. Modeling Source Water TOC Using Hydroclimate Variables and Local Polynomial Regression.

    Science.gov (United States)

    Samson, Carleigh C; Rajagopalan, Balaji; Summers, R Scott

    2016-04-19

    To control disinfection byproduct (DBP) formation in drinking water, an understanding of the source water total organic carbon (TOC) concentration variability can be critical. Previously, TOC concentrations in water treatment plant source waters have been modeled using streamflow data. However, the lack of streamflow data or unimpaired flow scenarios makes it difficult to model TOC. In addition, TOC variability under climate change further exacerbates the problem. Here we proposed a modeling approach based on local polynomial regression that uses climate, e.g. temperature, and land surface, e.g., soil moisture, variables as predictors of TOC concentration, obviating the need for streamflow. The local polynomial approach has the ability to capture non-Gaussian and nonlinear features that might be present in the relationships. The utility of the methodology is demonstrated using source water quality and climate data in three case study locations with surface source waters including river and reservoir sources. The models show good predictive skill in general at these locations, with lower skills at locations with the most anthropogenic influences in their streams. Source water TOC predictive models can provide water treatment utilities important information for making treatment decisions for DBP regulation compliance under future climate scenarios.

  2. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  3. Role of water source in the growth of kale

    Science.gov (United States)

    Coates, M.

    2017-12-01

    Over the course of 2 months we watered Kale with tap water, water from turtle bayou, rain water, water from university lake, and deionized water. We found little difference between height and number of seedlings with different water treatments even though nutrient levels were different between these water sources.

  4. Consumer Perception and Preference of Drinking Water Sources.

    Science.gov (United States)

    Sajjadi, Seyed Ali; Alipour, Vali; Matlabi, Mohammad; Biglari, Hamed

    2016-11-01

    Understanding consumer perception of drinking water can contribute to improvements in water management and consumer satisfaction. The aim of this study was to assess the consumer perception of tap water quality and other drinking water sources in Gonabad as a small semiarid city. This study was performed in autumn and winter 2013. For collection data a researcher-made a questionnaire consisting of nine questions, based on demographic information prepared. Questions were asked for participants to provide information regarding household drinking water usage and patterns, opinion about tap water safety, taste and reasons for purchasing bottled water. For statistical analysis, analysis of variance (ANOVA) using SPSS version 16 was applied in this study. Results showed that demographic variables had a significant relationship with consumer satisfaction (p Consumer reasons for using domestic water softeners are: suitable taste (80%), easy availability (71%), economical (56%) and low health side effects (34%). According to these results it was clear that each consumer group, based on self-condition, prefers using a specific drinking water source.

  5. Numerical Prediction of Wave Patterns Due to Motion of 3D Bodies by Kelvin-Havelock Sources

    Directory of Open Access Journals (Sweden)

    Ghassemi Hassan

    2016-12-01

    Full Text Available This paper discusses the numerical evaluation of the hydrodynamic characteristics of submerged and surface piercing moving bodies. Generally, two main classes of potential methods are used for hydrodynamic characteristic analysis of steady moving bodies which are Rankine and Kelvin-Havelock singularity distribution. In this paper, the Kelvin- Havelock sources are used for simulating the moving bodies and then free surface wave patterns are obtained. Numerical evaluation of potential distribution of a Kelvin-Havelock source is completely presented and discussed. Numerical results are calculated and presented for a 2D cylinder, single source, two parallel moving source, sphere, ellipsoid and standard Wigley hull in different situation that show acceptable agreement with results of other literatures or experiments.

  6. Increase of Total Body Water with Decrease of Body Mass while Running 100 km Nonstop--Formation of Edema?

    Science.gov (United States)

    Knechtle, Beat; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas

    2009-01-01

    We investigated whether ultraendurance runners in a 100-km run suffer a decrease of body mass and whether this loss consists of fat mass, skeletal muscle mass, or total body water. Male ultrarunners were measured pre- and postrace to determine body mass, fat mass, and skeletal muscle mass by using the anthropometric method. In addition,…

  7. Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization

    Science.gov (United States)

    Newman, J. P.; Dandy, G. C.; Maier, H. R.

    2014-10-01

    In many regions, conventional water supplies are unable to meet projected consumer demand. Consequently, interest has arisen in integrated urban water systems, which involve the reclamation or harvesting of alternative, localized water sources. However, this makes the planning and design of water infrastructure more difficult, as multiple objectives need to be considered, water sources need to be selected from a number of alternatives, and end uses of these sources need to be specified. In addition, the scale at which each treatment, collection, and distribution network should operate needs to be investigated. In order to deal with this complexity, a framework for planning and designing water infrastructure taking into account integrated urban water management principles is presented in this paper and applied to a rural greenfield development. Various options for water supply, and the scale at which they operate were investigated in order to determine the life-cycle trade-offs between water savings, cost, and GHG emissions as calculated from models calibrated using Australian data. The decision space includes the choice of water sources, storage tanks, treatment facilities, and pipes for water conveyance. For each water system analyzed, infrastructure components were sized using multiobjective genetic algorithms. The results indicate that local water sources are competitive in terms of cost and GHG emissions, and can reduce demand on the potable system by as much as 54%. Economies of scale in treatment dominated the diseconomies of scale in collection and distribution of water. Therefore, water systems that connect large clusters of households tend to be more cost efficient and have lower GHG emissions. In addition, water systems that recycle wastewater tended to perform better than systems that captured roof-runoff. Through these results, the framework was shown to be effective at identifying near optimal trade-offs between competing objectives, thereby enabling

  8. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  9. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2006

    Science.gov (United States)

    Smith, Kirk P.

    2008-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2006 (October 2005 through September 2006). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir contents for the Cambridge Reservoir varied from about 59 to 98 percent of capacity during water year 2006, while monthly reservoir contents for the Stony Brook Reservoir and the Fresh Pond Reservoir was maintained at greater than 83 and 94 percent of capacity, respectively. If water demand is assumed to be 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2006 water year is equivalent to an annual water surplus of about 127 percent. Recorded precipitation in the source area was about 16 percent greater for the 2006 water year than for the previous water year and was between 12 and 73 percent greater than for any recorded amount since water year 2002. The monthly mean specific-conductance values for all continuously monitored stations within the drinking-water source area were generally within the range of historical data collected since water year 1997, and in many cases were less than the historical medians. The annual mean specific conductance of 738 uS/cm (microsiemens per centimeter) for water discharged from the Cambridge Reservoir was nearly identical to the annual

  10. Aerosol behavior and light water reactor source terms

    International Nuclear Information System (INIS)

    Abbey, F.; Schikarski, W.O.

    1988-01-01

    The major developments in nuclear aerosol modeling following the accident to pressurized water reactor Unit 2 at Three Mile Island are briefly reviewed and the state of the art summarized. The importance and implications of these developments for severe accident source terms for light water reactors are then discussed in general terms. The treatment is not aimed at identifying specific source term values but is intended rather to illustrate trends, to assess the adequacy of the understanding of major aspects of aerosol behavior for source term prediction, and demonstrate in qualitative terms the effect of various aspects of reactor design. Areas where improved understanding of aerosol behavior might lead to further reductions in current source terms predictions are also considered

  11. Spatio-Temporal Variations and Source Apportionment of Water Pollution in Danjiangkou Reservoir Basin, Central China

    Directory of Open Access Journals (Sweden)

    Pan Chen

    2015-05-01

    Full Text Available Understanding the spatio-temporal variation and the potential source of water pollution could greatly improve our knowledge of human impacts on the environment. In this work, data of 11 water quality indices were collected during 2012–2014 at 10 monitoring sites in the mainstream and major tributaries of the Danjiangkou Reservoir Basin, Central China. The fuzzy comprehensive assessment (FCA, the cluster analysis (CA and the discriminant analysis (DA were used to assess the water pollution status and analyze its spatio-temporal variation. Ten sites were classified by the high pollution (HP region and the low pollution (LP region, while 12 months were divided into the wet season and the dry season. It was found that the HP region was mainly in the small tributaries with small drainage areas and low average annual discharges, and it was also found that most of these rivers went through urban areas with industrial and domestic sewages input into the water body. Principal component analysis/factor analysis (PCA/FA was applied to reveal potential pollution sources, whereas absolute principal component score-multiple linear regression (APCS-MLR was used to identify their contributions to each water quality variable. The study area was found as being generally affected by industrial and domestic sewage. Furthermore, the HP region was polluted by chemical industries, and the LP region was influenced by agricultural and livestock sewage.

  12. Using Dual Isotopes and a Bayesian Isotope Mixing Model to Evaluate Nitrate Sources of Surface Water in a Drinking Water Source Watershed, East China

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-08-01

    Full Text Available A high concentration of nitrate (NO3− in surface water threatens aquatic systems and human health. Revealing nitrate characteristics and identifying its sources are fundamental to making effective water management strategies. However, nitrate sources in multi-tributaries and mix land use watersheds remain unclear. In this study, based on 20 surface water sampling sites for more than two years’ monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3− and δ18O-NO3− were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, China. Nitrate-nitrogen concentrations (ranging from 0.02 to 8.57 mg/L were spatially heterogeneous that were influenced by hydrogeological and land use conditions. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage, M & S; soil nitrogen, NS; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall were estimated by using a Bayesian isotope mixing model. The results showed that nitrate sources contributions varied significantly among different rainfall conditions and land use types. As for the whole watershed, M & S (manure and sewage and NS (soil nitrogen were major nitrate sources in both wet and dry seasons (from 28% to 36% for manure and sewage and from 24% to 27% for soil nitrogen, respectively. Overall, combining a dual isotopes method with a Bayesian isotope mixing model offered a useful and practical way to qualitatively analyze nitrate sources and transformations as well as quantitatively estimate the contributions of potential nitrate sources in drinking water source watersheds, Jianghuai hilly region, eastern China.

  13. Public water supply sources - the practical problems

    International Nuclear Information System (INIS)

    Chambers, E.G.W.

    1990-01-01

    A complex system of reservoirs, streams, treatment works and pipe networks is used to provide the public water supply to consumers in Strathclyde. The manner in which a nuclear event would affect the quality of water available from this supply would depend on a wide variety of factors. The extent to which the quality from each source could be maintained or improved if found to be unsatisfactory would depend on the extent of contamination and the particular characteristics of each source. Development of contingency plans will incorporate monitoring of supplies and development of effective communications both internally and externally. (author)

  14. Worldwide Eutrophication of Water Bodies: Causes, Concerns, Controls

    Science.gov (United States)

    Prepas, E. E.; Charette, T.

    2003-12-01

    Eutrophication is the nutrient enrichment of waters that stimulates an array of symptomatic changes, that can include increased phytoplankton and rooted aquatic plant (macrophyte) production, fisheries and water quality deterioration, and other undesirable changes that interfere with water uses (Bartsch, 1972). The trophic state, or degree of fertility, of water bodies ranges from oligotrophic to mesotrophic to eutrophic with increasing supply of nutrients and organic matter ( Table 1). Eutrophication is most often the result of an elevated supply of nutrients, particularly nitrogen and phosphorus, to surface waters that results in enhanced production of primary producers, particularly phytoplankton and aquatic plants. Table 1. Mean annual values for the trophic classification system Total phosphorus (μg L-1)Chlorophyll a (μg L-1)Secchi disk depth (m) Ultra-oligotrophic12 Oligotrophic6 Mesotrophic10-352.5-86-3 Eutrophic35-1008-253-1.5 Hypertrophic>100>25fish kills, millions of dollars in losses to seafood-related industries, human memory loss, paralysis, and even death (Van den Hoeck et al., 1995; Silbergeld et al., 2000). Bloom-forming species of cyanobacteria can produce potent hepato-(liver) toxins termed microcystins that have been implicated in poisonings of domestic livestock, pets, wildlife, and susceptible humans ( Codd, 1995; Dunn, 1996). In addition, an accumulation of dead phytoplankton in bottom waters of eutrophic systems can lead to high decomposition rates by bacteria. Dissolved oxygen consumption by decomposers, combined with a barrier to gas exchange (thermocline or ice cover), can reduce (hypoxia) or eliminate (anoxia) dissolved oxygen in bottom waters. (A thermocline is the junction between an upper layer of warm, less dense water (the epilimnion) and a deeper layer of cold water (the hypolimnion). When this stratification is in place, the typically oxygen-rich waters of the epilimnion do not mix with the waters of the hypolimnion.) Oxygen

  15. The Impact Analysis of Water Body Landscape Pattern on Urban Heat Island: A Case Study of Wuhan City

    Directory of Open Access Journals (Sweden)

    Bohan Yang

    2015-01-01

    Full Text Available Based on the LST and the landscape metrics of water body with remote sensing technique and spatial analysis, the relationship between the mean LST and the attributes of water body was revealed via Pearson’s correlation analysis and multiple stepwise regression analysis. Result showed that, in 32 class-based metrics we selected, the proportion of water body, average water body size, the isolation and fragmentation of water body, and other eight metrics have high correlation with the LST. As a resultant force, the quantity, shape, and spatial distribution of water body affect the forming of temperature. We found that the quantity and spatial pattern of city water body could be allocated reasonably to maximize its cooling effect.

  16. Valuing the Potential Benefits of Water Quality Improvements in Watersheds Affected by Non-Point Source Pollution

    Directory of Open Access Journals (Sweden)

    Sergio Alvarez

    2016-03-01

    Full Text Available Nonpoint source (NPS pollution has been identified by the US Environmental Protection Agency (EPA as “the nation’s largest water quality problem”. Urban development, septic systems, and agricultural operations have been identified as the major sources of diffuse pollution in surface and ground water bodies. In recent decades, urban and agricultural Best Management Practices (BMP have been developed in several states to address agricultural water quality and water use impacts, including the reduction of nutrient loads to help meet water quality standards. Compliance with BMPs is associated with some costs to local governments, homeowners, and agricultural operations, but the improvements in water quality associated with BMP adoption are expected to yield significant benefits to society in the form of improved recreational opportunities, navigation, flood control, and ecosystem health. The development of sound policies and decision making processes require balancing the costs of BMP adoption to the agricultural operations with the social benefits to be derived from the improved water quality. In this paper we develop a benefits transfer model to provide estimates of the economic benefits of properly implemented and effective Best Management Practices (BMP throughout the state of Florida. These benefit estimates can be used in a cost-benefit framework to determine the optimal level of BMP adoption throughout the state of Florida and provide a framework for other regions to estimate the potential benefits of BMP-mediated water quality improvements.

  17. Lead isotopes in tap water: implications for Pb sources within a municipal water supply system

    International Nuclear Information System (INIS)

    Cheng Zhongqi; Foland, Kenneth A.

    2005-01-01

    Residential tap waters were investigated to examine the feasibility of using isotopic ratios to identify dominant sources of water Pb in the Columbus (Ohio, USA) municipal supply system. Overall, both the concentrations, which are generally low (0.1-28 μg/L), and isotopic compositions of tap water Pb show wide variations. This contrasts with the situation for a limited number of available service lines, which exhibit only a limited Pb-isotope variation but contain Pb of two very different types with one significantly more radiogenic than the other. Most tap water samples in contact with Pb service lines have Pb-isotope ratios that are different from the pipe Pb. Furthermore, the Pb isotope compositions of sequentially drawn samples in the same residence generally are similar, but those from separate residences are different, implying dominant Pb sources from domestic plumbing. A separate pilot study at two residences without Pb service lines shows isotopic similarity between water and solders in each house, further suggesting that the major Pb sources are domestic in these cases and dominated by Pb from solder joints. Although complicated by the broad range of overall Pb-isotope variations observed and limited by sample availability, the results suggest that Pb isotopes can be used effectively to constrain the sources of Pb in tap waters, especially for individual houses where multiple source candidates can be identified

  18. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  19. Legislation and water management of water source areas of São Paulo Metropolitan Region, Brazil

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Gregolin Grisotto

    2010-12-01

    Full Text Available This paper presents the history of occupation in the water source areas in São Paulo Metropolitan Region (hereinafter SPMR and the evolution of the legislation related to this issue, from the point of view of the environmental and water management. A descriptive methodology was used, with searches into bibliographical and documental materials, in order to present the main laws for the protection of the water supply areas of SPMR and environmental and water management. It was possible to observe some progress in the premises of the both legislation and the format proposed for the management of the water source areas. However, such progress is limited due to the lack of a more effective mechanism for metropolitan management. The construction of the metropolitan management in SPMR would enlarge the capacity of integration between municipalities and sectors. The integration between the management of water and the land use management showed to be fundamental for the protection of the water sources. The new law for protection of the water sources, State Law nº 9.866/97, is decentralized and participative, focusing on non-structural actions and integrated management. However, the effective implementation of the law still depends on the harmonization of sectoral public policies, extensive coordination and cooperation among municipalities and the progress in the degree of the commitment of the governments.

  20. Monte Carlo modeling of 60 Co HDR brachytherapy source in water and in different solid water phantom materials

    Directory of Open Access Journals (Sweden)

    Sahoo S

    2010-01-01

    Full Text Available The reference medium for brachytherapy dose measurements is water. Accuracy of dose measurements of brachytherapy sources is critically dependent on precise measurement of the source-detector distance. A solid phantom can be precisely machined and hence source-detector distances can be accurately determined. In the present study, four different solid phantom materials such as polymethylmethacrylate (PMMA, polystyrene, Solid Water, and RW1 are modeled using the Monte Carlo methods to investigate the influence of phantom material on dose rate distributions of the new model of BEBIG 60 Co brachytherapy source. The calculated dose rate constant is 1.086 ± 0.06% cGy h−1 U−1 for water, PMMA, polystyrene, Solid Water, and RW1. The investigation suggests that the phantom materials RW1 and Solid Water represent water-equivalent up to 20 cm from the source. PMMA and polystyrene are water-equivalent up to 10 cm and 15 cm from the source, respectively, as the differences in the dose data obtained in these phantom materials are not significantly different from the corresponding data obtained in liquid water phantom. At a radial distance of 20 cm from the source, polystyrene overestimates the dose by 3% and PMMA underestimates it by about 8% when compared to the corresponding data obtained in water phantom.

  1. Water Quality Protection from Nutrient Pollution: Case Analysis

    Science.gov (United States)

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, incre...

  2. Body ion loss as a bioindicator of water quality impaired by coal mining

    International Nuclear Information System (INIS)

    Grippo, R.S.; Dunson, W.A.

    1994-01-01

    Protection of surface waters receiving discharges from coal mines is currently based on performance standards set by the EPA after passage of the Clean Water Act. These standards were technology-driven and reflect the Best Achievable Control Technology (BAT) available at the time of promulgation. Changes proposed as part of the upcoming reauthorization of the US Clean Water Act suggest that such technology-based standards may be reevaluated in light of more recent information on the toxicological effect of mine discharges on aquatic biota. The authors present here a physiological-based method for evaluating the site-specific toxicity of mine-derived discharges into receiving waters. They tested the usefulness of the body ion loss rate bioassay by exposing fathead minnows, brook charr and stoneflies to coal mine-impacted waters (elevated acidity and trace metals) in the field and to artificial mine water (AMW) in the laboratory. Body ion loss rate was significantly correlated with levels of mine pollution in the field. Body ion loss measured in AMW revealed strong interactions between metals and acid. Because the test animals exhibited differing levels of sensitivity to mine discharge, the selection of an appropriate organism for the body ion loss bioassay may vary depending on the (1) physical characteristics, (2) chemical characteristics and (3) pre-existing level of mine impact of the receiving waters

  3. The Idaho National Engineering and Environmental Laboratory Source Water Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sehlke, G.

    2003-03-17

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead

  4. [Mineral waters from several Brazilian natural sources].

    Science.gov (United States)

    Rebelo, M A; Araujo, N C

    1999-01-01

    To divulge information on the chemical composition and physical-chemical features of some mineral waters from Brazilian natural sources that will be of useful protocol investigation and patient advice. The survey was based on bottle labels of non-gaseous mineral waters commercially available in the city of Rio de Janeiro. The íon concentration of each mineral was calculated from the salt content. 36 springs were enralled from different states of the country. The pH (25 degrees C), 4.1 to 9.3, varied on dependence of the source and it was linearey correlated with the cations calcium, magnesium and sodium and the anion bicarbonate. It was atributed to high alkalinity (about 70% of bicarbonate in the molecula-gram) of these salts. The calcium (0.3 to 42 mg/l), magnesium (0.0 to 18 mg/l) and bicarbonate (4 to 228 mg/l) contents are relatively low. The mineral content of the Brazilian springs enrolled in this survey is low; about 70% of the sources having calcium and magnesium less than 10 mg/l and 1.0 mg/l, respectively, similar to local tap water.

  5. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  6. Implementations of Riga city water supply system founded on groundwater sources

    Science.gov (United States)

    Lāce, I.; Krauklis, K.; Spalviņš, A.; Laicāns, J.

    2017-10-01

    Drinking water for Riga city is provided by the groundwater well field complex “Baltezers, Zakumuiza, Rembergi” and by the Daugava river as a surface water source. Presently (2016), the both sources jointly supply 122 thous.metre3day-1 of drinking water. It seems reasonable to use in future only groundwater, because river water is of low quality and its treatment is expensive. The research on this possibility was done by scientists of Riga Technical university as the task drawn up by the company “Aqua-Brambis”. It was required to evaluate several scenario of the groundwater supply for Riga city. By means of hydrogeological modelling, it was found out that groundwater well fields could provide 120-122 thous.metre3day-1 of drinking water for the Riga city and it is possible further not to use water of the Daugava river. However, in order to provide more extensive use of groundwater sources, existing water distribution network shall be adapted to the change of the water sources and supply directions within the network. Safety of water supply shall be ensured. The publication may be of interest for specialists dealing with problems of water supply for large towns.

  7. Eutrophication and cyanobacteria in South Africa's standing water bodies: A view from space

    OpenAIRE

    Matthews, Mark W.; Bernard, Stewart

    2015-01-01

    Satellite remote sensing can make a significant contribution to monitoring water quality in South African standing water bodies. Eutrophication, defined as enrichment by nutrients, and toxin-producing cyanobacteria (blue-green algae) blooms pose a significant threat to the quality of South African surface water bodies. The status and trends of chlorophyll a (chl-a, a proxy for eutrophication), cyanobacterial blooms and cyanobacterial surface scum were determined for South Africa’s 50 largest ...

  8. Data for absorbed dose calculations for external sources and for emitters within the body

    International Nuclear Information System (INIS)

    Hep, J.; Valenta, V.

    1976-01-01

    Tables give data for the calculation of absorbed doses from radioactivity sources accumulated in individual body organs. The tables are arranged in such manner that the gamma energy (J) absorbed in 1 kg of target organ (19 organs and total body) are given for 18 source organs (16 different organs, total doby and surrounding air) resulting from 1 decay event, this for more than 250 radioisotopes evenly distributed in the source organ (1 J/kg=100 rad). Also given are the energies of alpha and beta radiations related to one decay. In tables having the surrounding air as the source it is assumed that the intensity of the external source is 1 decay per 1 m 3 of surrounding air which is constant in the entire half-space. The tables are only elaborated for radioisotopes with a half-life of more than 1 min. (B.S.)

  9. [Water sources of Nitraria sibirica and response to precipitation in two desert habitats].

    Science.gov (United States)

    Zhou, Hai; Zhao, Wen Zhi; He, Zhi Bin

    2017-07-18

    Nitraria sibirica usually exists in a form of nebkhas, and has strong ecological adaptability. The plant species has distinctive function for wind prevention and sand fixation, and resistance drought and salt. However, the water condition is still a limiting factor for the plant survival and development. In order to understand the water use strategy of the plant in different desert habitats, we selected the N. sibirica growing in sandy desert habitat and gravel desert habitat to study the seaso-nal variation of plant water sources and response to precipitation at the edge of the oasis of Linze in the Hexi Corridor. We measured the oxygen stable isotope of the plant stem water and the different potential water sources (precipitation, soil water and ground water), and used the IsoSource model to calculate the proportion of water sources from the potential water. The results showed that there were significant seasonal variation characteristics of δ 18 O value and water source of stem water for the plant in the two habitats. In the sandy habitat, the plant used more ground water in the less precipitation seasons including spring and fall, and more than 50% of the water sources absorbed from ground water. However, under the condition of gravel habitat, the plant could not achieve the ground water level depth of 11.5 m, and its water source was controlled by precipitation, which had large seasonal variability. The water sources of N. sibirica had significant responses to the change of precipitation in the two desert habitats. Following the rapid decrease of soil water content after the precipitation events, the plant in the sandy habitat turned to use the abundant ground water as the main sources of water, while the plant in the gravel habitat only used the less water from precipita-tion infiltration to the deep soil. Therefore, different water use strategies of the plant in the two habitats were the main reason for the difference in growth characteristics, and it had a

  10. Water and the thermal evolution of carbonaceous chondrite parent bodies

    International Nuclear Information System (INIS)

    Grimm, R.E.; Mcsween, H.Y. Jr.

    1989-01-01

    Two hypotheses are proposed for the aqueous alteration of carbonaceous chondrites within their parent bodies, in which respectively the alteration occurs (1) throughout the parent body interior, or (2) in a postaccretional surface regolith; both models assume an initially homogeneous mixture of ice and rock that is heated through the decay of Al-26. Water is seen to exert a powerful influence on chondrite evolution through its role of thermal buffer, permitting substitution of a low temperature aqueous alteration for high temperature recrystallization. It is quantitatively demonstrated that liquid water may be introduced by either hydrothermal circulation, vapor diffusion from below, or venting due to fracture. 104 refs

  11. Water privatization, water source, and pediatric diarrhea in Bolivia: epidemiologic analysis of a social experiment.

    Science.gov (United States)

    Tornheim, Jeffrey A; Morland, Kimberly B; Landrigan, Philip J; Cifuentes, Enrique

    2009-01-01

    Water and sanitation services are fundamental to the prevention of pediatric diarrhea. To enhance both access to water and investment, some argue for the privatization of municipal water networks. Water networks in multiple Bolivian cities were privatized in the 1990s, but contracts ended following popular protests citing poor access. A population-based retrospective cohort study was conducted in two Bolivian cities. Data were collected on family water utilization and sanitation practices and on the prevalence of diarrhea among 596 children. Drinking from an outdoor water source (OR, 2.08; 95%CI, 1.25-3.44) and shorter in-home water boiling times (OR, 1.99; 95%CI, 1.19-3.34) were associated with prevalence of diarrhea. Increased prevalence was also observed for children from families using private versus public water services, using off-network water from cistern trucks, or not treating their water in-home. Results suggest that water source, water provider, and in-home water treatment are important predictors of pediatric diarrhea.

  12. Drinking water quality and source reliability in rural Ashanti region, Ghana.

    Science.gov (United States)

    Arnold, Meghan; VanDerslice, James A; Taylor, Brooke; Benson, Scott; Allen, Sam; Johnson, Mark; Kiefer, Joe; Boakye, Isaac; Arhinn, Bernard; Crookston, Benjamin T; Ansong, Daniel

    2013-03-01

    Site-specific information about local water sources is an important part of a community-driven effort to improve environmental conditions. The purpose of this assessment was to gather this information for residents of rural villages in Ghana. Sanitary surveys and bacteriological testing for total coliforms and Escherichia coli (EC) using Colilert(®) were conducted at nearly 80 water sources serving eight villages. A focus group was carried out to assess the desirability and perceived quality of water sources. Standpipes accounted for almost half of the available water sources; however, a third of them were not functioning at the time of the survey. EC bacteria were found in the majority of shallow wells (80%), rivers (67%), and standpipes (61%), as well as 28% of dug wells. Boreholes were free of EC. Residents felt that the standpipes and boreholes produced safe drinking water. Intermittent service and poor water quality from the piped supply has led to limited access to drinking water. The perception of residents, that the water from standpipes is clean and does not need to be treated at home, is particularly troubling in light of the poor bacteriological quality of water from the standpipes.

  13. Turnover of body water in relation to the hydric diet studied with tritiated water in Locusta migratoria migratorioides

    International Nuclear Information System (INIS)

    Buscarlet, L.A.; Proux, Jacques

    1975-01-01

    The elimination of triated water injected in a locust Locusta migratoria migratorioides is described by an exponential function of the cumulative water diet and fits a one-compartment model. This result shows that body water occupies a single pool the mass of which is kept constant by an equilibrium between the water diet and the water elimination rate [fr

  14. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus).

    Science.gov (United States)

    Aguilar, Fredy A A; Cruz, Thaline M P DA; Mourão, Gerson B; Cyrino, José Eurico P

    2017-01-01

    Knowledge on fasting heat production (HEf) of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR) of pacu (17 - 1,050 g) at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10) for pacu (2.06) shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1) from body mass (W, kg) and water temperature (T, °C), and can be used in bioenergetical models for the species.

  15. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    FREDY A.A. AGUILAR

    Full Text Available ABSTRACT Knowledge on fasting heat production (HEf of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR of pacu (17 - 1,050 g at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10 for pacu (2.06 shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1 from body mass (W, kg and water temperature (T, °C, and can be used in bioenergetical models for the species.

  16. The effect of milk source on body weight and immune status of lambs

    DEFF Research Database (Denmark)

    Hernandez Castellano, Lorenzo E; Moreno-Indias, I.; Morales-delaNuez, A.

    2015-01-01

    Milk source is one of the several factors that can affect lamb body weight (BW) and immune status before weaning. The aim of this experiment was to evaluate the effect of milk source (natural rearing method, named NR group, vs. artificial rearing method using a commercial milk replacer, named MR ...

  17. Broiler breeders utilise body lipid as an energy source | Nonis ...

    African Journals Online (AJOL)

    However, where 80 g was allocated daily in Phase 2 this was clearly insufficient to sustain performance, but in this case egg production was considerably higher in birds that had been given larger amounts of food in Phase 1, and which could therefore draw on body lipid reserves as a source of energy. Rate of lay increased ...

  18. Impacts of water quality on the corrosion of cast iron pipes for water distribution and proposed source water switch strategy.

    Science.gov (United States)

    Hu, Jun; Dong, Huiyu; Xu, Qiang; Ling, Wencui; Qu, Jiuhui; Qiang, Zhimin

    2018-02-01

    Switch of source water may induce "red water" episodes. This study investigated the impacts of water quality on iron release, dissolved oxygen consumption (ΔDO), corrosion scale evolution and bacterial community succession in cast iron pipes used for drinking water distribution at pilot scale, and proposed a source water switch strategy accordingly. Three sets of old cast iron pipe section (named BP, SP and GP) were excavated on site and assembled in a test base, which had historically transported blended water, surface water and groundwater, respectively. Results indicate that an increasing Cl - or SO 4 2- concentration accelerated iron release, but alkalinity and calcium hardness exhibited an opposite tendency. Disinfectant shift from free chlorine to monochloramine slightly inhibited iron release, while the impact of peroxymonosulfate depended on the source water historically transported in the test pipes. The ΔDO was highly consistent with iron release in all three pipe systems. The mass ratio of magnetite to goethite in the corrosion scales of SP was higher than those of BP and GP and kept almost unchanged over the whole operation period. Siderite and calcite formation confirmed that an increasing alkalinity and hardness inhibited iron release. Iron-reducing bacteria decreased in the BP but increased in the SP and GP; meanwhile, sulfur-oxidizing, sulfate-reducing and iron oxidizing bacteria increased in all three pipe systems. To avoid the occurrence of "red water", a source water switch strategy was proposed based on the difference between local and foreign water qualities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. X-ray body scanner for computerised tomography

    International Nuclear Information System (INIS)

    1977-01-01

    An X-ray source is described whose source is collimated into a thin fan-shaped beam. The detector means is spaced from the sources and both are mounted for scanning and orbiting jointly about a body in a partial or complete resolution. The X-ray intensities thus obtained provide data for reconstructing an image. The detector and source combination and the body are moved relative to one another in an axial direction to enable scanning of the body layers in sequence. In one embodiment the X-ray source is pulsed as it scans, and in another the fan-shaped beam is on continuously and readout is done sequentially. Thus in either case a large number of intensities for each layer are obtained. A high precision encoder system is used to synchronize X-ray pulses and readouts spatially and with line frequency. Means are provided for storing the cables leading to the rotatable source, the detectors and other moveable components. An embodiment for scanning a body part such as a breast has means for conditioning and controlling the water in which the part is immersed. (C.F.)

  20. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    Science.gov (United States)

    Daya Sagar, B. S.

    2005-01-01

    Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  1. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar

    2005-01-01

    Full Text Available Spatio-temporal patterns of small water bodies (SWBs under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  2. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2018-05-01

    Full Text Available Accurate information on urban surface water is important for assessing the role it plays in urban ecosystem services in the context of human survival and climate change. The precise extraction of urban water bodies from images is of great significance for urban planning and socioeconomic development. In this paper, a novel deep-learning architecture is proposed for the extraction of urban water bodies from high-resolution remote sensing (HRRS imagery. First, an adaptive simple linear iterative clustering algorithm is applied for segmentation of the remote-sensing image into high-quality superpixels. Then, a new convolutional neural network (CNN architecture is designed that can extract useful high-level features of water bodies from input data in a complex urban background and mark the superpixel as one of two classes: an including water or no-water pixel. Finally, a high-resolution image of water-extracted superpixels is generated. Experimental results show that the proposed method achieved higher accuracy for water extraction from the high-resolution remote-sensing images than traditional approaches, and the average overall accuracy is 99.14%.

  3. Fecal Contamination in the Surface Waters of a Rural- and an Urban-Source Watershed

    DEFF Research Database (Denmark)

    Stea, Emma C.; Hansen, Lisbeth Truelstrup; Jamieson, Rob C.

    2015-01-01

    Surface waters are commonly used as source water for drinking water and irrigation. Knowledge of sources of fecal pollution in source watersheds benefits the design of effective source water protection plans. This study analyzed the relationships between enteric pathogens (Escherichia coli O157:H...

  4. Two different sources of water for the early solar nebula.

    Science.gov (United States)

    Kupper, Stefan; Tornow, Carmen; Gast, Philipp

    2012-06-01

    Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.

  5. Discussion on application of water source heat pump technology to uranium mines

    International Nuclear Information System (INIS)

    An Qiang

    2011-01-01

    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines. (authors)

  6. Extra source implantation for suppression floating-body effect in partially depleted SOI MOSFETs

    International Nuclear Information System (INIS)

    Chen Jing; Luo Jiexin; Wu Qingqing; Chai Zhan; Huang Xiaolu; Wei Xing; Wang Xi

    2012-01-01

    Silicon-on-insulate (SOI) MOSFETs offer benefits over bulk competitors for fully isolation and smaller junction capacitance. The performance of partially depleted (PD) SOI MOSFETs, though, is not good enough. Since the body is floating, the extra holes (for nMOSFETs) in this region accumulate, causing body potential arise, which of course degrades the performance of the device. How to suppress the floating-body effect becomes critical. There are mainly two ways for the goal. One is to employ body-contact structures, and the other SiGe source/drain structures. However, the former consumes extra area, not welcomed in the state-of-the-art chips design. The latter is not compatible with the traditional CMOS technology. Finding a structure both saving area and compatible technology is the most urgent for PD SOI MOSFETs. Recently, we have developed a new structure with extra heavy boron implantation in the source region for PD SOI nMOSFETs. It consumes no extra area and is also compatible with CMOS technology. The device is found to be free of kink effect in simulation, which implies the floating-body effect is greatly suppressed. In addition, the mechanisms of the kink-free, as well as the impact of different implanting conditions are interpreted.

  7. Method and apparatus for recovering oil from an oil spill on the surface of a body of water

    International Nuclear Information System (INIS)

    Schweizer, R.W.; Patel, K.P.; Lau, P.Y.

    1991-01-01

    This patent describes a method of recovering a hydrophobic hydrocarbon oil from the surface of a body of water, the body of water having a water temperature, the oil having a specific gravity which is less than the specific gravity of the water in the body of water and a viscosity which is greater than approximately 80 centipoise at the water temperature. It comprises continuously withdrawing a feed oil-water mixture from the surface of the body of water; continuously adjusting the viscosity of the oil in the feed oil-water mixture to a level below approximately 80 centipoise to form an adjusted oil-water mixture; and continuously passing the adjusted oil-water mixture through an oil-water coalescer to separate the oil in the adjusted oil-water mixture from the water in the adjusted oil-water mixture

  8. Study of Chironomidae Natural Populations of the Former Semipalatinsk Test Site Water Bodies

    International Nuclear Information System (INIS)

    Aimanova, K.G.; Blinov, A.G.; Kiknadze, I.I.; Bakhtin, M.M.; Seisebaev, A.T.; Rakhimbaeva, K.T.

    1998-01-01

    The open water bodies as a component of the biosphere serve as the accumulators of artificial radionuclides generated during the nuclear explosions; therefore their radioactive contamination needs to be registered. The assessment of the environmental radioactive contamination consequences for the natural populations of organisms living in water bodies is of particular importance. Chironomini (Diptera, Chironomidae) play an important role as they are a significant component of water and air biocenoses and provide the self-cleaning of water bodies and food chains of industrial fish and bird. Chironomini have been chosen to be a model for the UNESCO International Program titled 'Man and Biosphere' and are used as the biologic indicator for ecological studies of anthropogenic influence on water bodies. The study of Chironomini natural mutagenic process and its alteration due to the radioactive contamination of water bodies is of extreme scientific interest and can serve as the indicator of the scale of genetic damage of water organisms. This work presents the data on natural populations of Chironomini of former STS water bodies: Shagan Lake, Balapan Lake, the artificial water body on the Karazhyra Coal Field, the backwater near the Shagan River, Balykty col Lake, etc. The analysis of morphology and caryotype of Camptochironomus sp. S (S - larvae have been sampled from the Semipalatinsk Test Site) showed that this is a new species as compared to studied species (C. tentans, C. pallidivittatus) of Camptochironomus subfamily. The caryotype Camptochironomus sp. S differs sharply from the caryotypes of other Camptochironomus species due to its strong hetero chromatization of centromeric discs. The immediate molecular analysis of genome DNA of Camptochironomus sp. S larvae sampled from Shagan Lake was performed: the total DNA of larvae of this species was obtained, nucleonic sequences of genes of cytochrome B (Cyt B) and cytochrome I (COI) were determined using methods of

  9. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    Science.gov (United States)

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  10. Economics of Water Quality Protection from Nonpoint Sources: Theory and Practice

    OpenAIRE

    Ribaudo, Marc; Horan, Richard D.; Smith, Mark E.

    1999-01-01

    Water quality is a major environmental issue. Pollution from nonpoint sources is the single largest remaining source of water quality impairments in the United States. Agriculture is a major source of several nonpoint-source pollutants, including nutrients, sediment, pesticides, and salts. Agricultural nonpoint pollution reduction policies can be designed to induce producers to change their production practices in ways that improve the environmental and related economic consequences of produc...

  11. Influence of climate on alpine stream chemistry and water sources

    Science.gov (United States)

    Foks, Sydney; Stets, Edward; Singha, Kamini; Clow, David W.

    2018-01-01

    The resilience of alpine/subalpine watersheds may be viewed as the resistance of streamflow or stream chemistry to change under varying climatic conditions, which is governed by the relative size (volume) and transit time of surface and subsurface water sources. Here, we use end‐member mixing analysis in Andrews Creek, an alpine stream in Rocky Mountain National Park, Colorado, from water year 1994 to 2015, to explore how the partitioning of water sources and associated hydrologic resilience change in response to climate. Our results indicate that four water sources are significant contributors to Andrews Creek, including snow, rain, soil water, and talus groundwater. Seasonal patterns in source‐water contributions reflected the seasonal hydrologic cycle, which is driven by the accumulation and melting of seasonal snowpack. Flushing of soil water had a large effect on stream chemistry during spring snowmelt, despite making only a small contribution to streamflow volume. Snow had a large influence on stream chemistry as well, contributing large amounts of water with low concentrations of weathering products. Interannual patterns in end‐member contributions reflected responses to drought and wet periods. Moderate and significant correlations exist between annual end‐member contributions and regional‐scale climate indices (the Palmer Drought Severity Index, the Palmer Hydrologic Drought Index, and the Modified Palmer Drought Severity Index). From water year 1994 to 2015, the percent contribution from the talus‐groundwater end member to Andrews Creek increased an average of 0.5% per year (p < 0.0001), whereas the percent contributions from snow plus rain decreased by a similar amount (p = 0.001). Our results show how water and solute sources in alpine environments shift in response to climate variability and highlight the role of talus groundwater and soil water in providing hydrologic resilience to the system.

  12. Characterization and source apportionment of water pollution in Jinjiang River, China.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Yue, Weifeng; Song, Liuting

    2013-11-01

    Characterizing water quality and identifying potential pollution sources could greatly improve our knowledge about human impacts on the river ecosystem. In this study, fuzzy comprehensive assessment (FCA), pollution index (PI), principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) were combined to obtain a deeper understanding of temporal-spatial characterization and sources of water pollution with a case study of the Jinjiang River, China. Measurement data were obtained with 17 water quality variables from 20 sampling sites in the December 2010 (withered water period) and June 2011 (high flow period). FCA and PI were used to comprehensively estimate the water quality variables and compare temporal-spatial variations, respectively. Rotated PCA and receptor model (APCS-MLR) revealed potential pollution sources and their corresponding contributions. Application results showed that comprehensive application of various multivariate methods were effective for water quality assessment and management. In the withered water period, most sampling sites were assessed as low or moderate pollution with characteristics pollutants of permanganate index and total nitrogen (TN), whereas 90% sites were classified as high pollution in the high flow period with higher TN and total phosphorus. Agricultural non-point sources, industrial wastewater discharge, and domestic sewage were identified as major pollution sources. Apportionment results revealed that most variables were complicatedly influenced by industrial wastewater discharge and agricultural activities in withered water period and primarily dominated by agricultural runoff in high flow period.

  13. Estimating the Seasonal Importance of Precipitation to Plant Source Water over Time and Space with Water Isotopes

    Science.gov (United States)

    Nelson, D. B.; Kahmen, A.

    2017-12-01

    The stable isotopic composition of hydrogen and oxygen are physical properties of water molecules that can carry information on their sources or transport histories. This provides a useful tool for assessing the importance of rainfall at different times of the year for plant growth, provided that rainwater values vary over time and that waters do not partially evaporate after deposition. We tested the viability of this approach using data from samples collected at nineteen sites throughout Europe at monthly intervals over two consecutive growing seasons in 2014 and 2015. We compared isotope measurements of plant xylem water with soil water from multiple depths, and measured and modeled precipitation isotope values. Paired analyses of oxygen and hydrogen isotope values were used to screen out a limited number of water samples that were influenced by evaporation, with the majority of all water samples indicating meteoric sources. The isotopic composition of soil and xylem waters varied over the course of an individual growing season, with many trending towards more enriched values, suggesting integration of the plant-relevant water pool at a timescale shorter than the annual mean. We then quantified how soil water residence times varied at each site by calculating the interval between measured xylem water and the most recently preceding match in modeled precipitation isotope values. Results suggest a generally increasing interval between rainfall and plant uptake throughout each year, with source water corresponding to dates in the spring, likely reflecting a combination of spring rain, and mixing with winter and summer precipitation. The seasonally evolving spatial distribution of source water-precipitation lag values was then modeled as a function of location and climatology to develop continental-scale predictions. This spatial portrait of the average date for filling the plant source water pool provides insights on the seasonal importance of rainfall for plant

  14. Sources of trends in water-quality data for selected streams in Texas, 1975-89 water years

    Science.gov (United States)

    Schertz, T.L.; Wells, F.C.; Ohe, D.J.

    1994-01-01

    Sources of trends in water-quality data for selected streams in Texas for the 1975-89 water years were investigated in this study. The investigation of sources was confined to distinct geographic patterns in the trend indicators for one constituent or for a group of related constituents.

  15. Potential Impacts of Food Production on Freshwater Availability Considering Water Sources

    Directory of Open Access Journals (Sweden)

    Shinjiro Yano

    2016-04-01

    Full Text Available We quantify the potential impacts of global food production on freshwater availability (water scarcity footprint; WSF by applying the water unavailability factor (fwua as a characterization factor and a global water resource model based on life cycle impact assessment (LCIA. Each water source, including rainfall, surface water, and groundwater, has a distinct fwua that is estimated based on the renewability rate of each geographical water cycle. The aggregated consumptive water use level for food production (water footprint inventory; WI was found to be 4344 km3/year, and the calculated global total WSF was 18,031 km3 H2Oeq/year, when considering the difference in water sources. According to the fwua concept, which is based on the land area required to obtain a unit volume of water from each source, the calculated annual impact can also be represented as 98.5 × 106 km2. This value implies that current agricultural activities requires a land area that is over six times larger than global total cropland. We also present the net import of the WI and WSF, highlighting the importance of quantitative assessments for utilizing global water resources to achieve sustainable water use globally.

  16. Importance of body-water circulation for body-heat dissipation in hot-humid climates: a distinctive body-water circulation in swamp buffaloes

    Directory of Open Access Journals (Sweden)

    S. Chanpongsang

    2010-02-01

    Full Text Available Thermo-regulation in swamp buffaloes has been investigated as an adaptive system to hot-humid climates, and several distinctive physiological responses were noted. When rectal temperature increased in hot conditions, blood volume, blood flow to the skin surface and skin temperature markedly increased in buffaloes relatively to cattle. On the other hand, the correlation between blood volume and plasma concentration of arginine vasopressin (AVP was compared between buffaloes and cattle under dehydration. Although plasma AVP in cattle increased immediately for reducing urine volume against a decrease in blood volume as well as the response observed in most animal species, the increase in plasma AVP was delayed in buffaloes, even after a large decrease in blood volume. In buffaloes, a marked increase in blood volume facilitated the dissipation of excess heat from the skin surface during wallowing. In addition, the change in plasma AVP observed in buffaloes was consistent with that of other animals living in habitats with the high availability of water. These results suggest that the thermo-regulatory system in buffaloes accelerates body-water circulation internally and externally. This system may be adaptive for heat dissipation in hot-humid climates, where an abundance of water is common.

  17. When land breezes collide: Converging diurnal winds over small bodies of water

    OpenAIRE

    Gille, ST; Llewellyn Smith, SG

    2014-01-01

    © 2013 Royal Meteorological Society. Over enclosed and semi-enclosed bodies of water, the land-breeze/sea-breeze circulation is expected to be modified by the presence of opposing coastlines. These effects are studied using satellite scatterometer surface wind observations from the QuikSCAT and ADEOS-2 tandem mission from April-October 2003. Winds are studied for six bodies of water: the Red Sea, the Gulf of California, the Mediterranean, the Adriatic Sea, the Black Sea and the Caspian Sea. T...

  18. Parasitic amoebae found in water bodies of Ukraine.

    Science.gov (United States)

    Patsyuk, Marina

    2017-12-01

    Two parasitic amoebian species are found in mollusks of the water bodies of Ukraine. Vahlkampfia sp. is found in hepatopankreas of Unio conus Spengler, 1793, and Acanthamoeba sp. is observed in mantle cavity of Viviparus viviparus Linnaeus, 1758. For these protist species, the mollusks are shown to be intermediate hosts where amoebae feed and reproduce. An experimental infection with Vahlkampfia sp. and Acanthamoeba sp. was not successful, no pathological changes in mollusks were observed. These amoebae are successfully cultured in fresh water and agar medium, hence we can safely consider them free-living. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  20. Multiple sources of boron in urban surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Hasenmueller, Elizabeth A., E-mail: eahasenm@wustl.edu; Criss, Robert E.

    2013-03-01

    Previous studies attribute abnormal boron (B) levels in streams and groundwaters to wastewater and fertilizer inputs. This study shows that municipal drinking water used for lawn irrigation contributes substantial non-point loads of B and other chemicals (S-species, Li, and Cu) to surface waters and shallow groundwaters in the St. Louis, Missouri, area. Background levels and potential B sources were characterized by analysis of lawn and street runoff, streams, rivers, springs, local rainfall, wastewater influent and effluent, and fertilizers. Urban surface waters and groundwaters are highly enriched in B (to 250 μg/L) compared to background levels found in rain and pristine, carbonate-hosted streams and springs (< 25 μg/L), but have similar concentrations (150 to 259 μg/L) compared to municipal drinking waters derived from the Missouri River. Other data including B/SO{sub 4}{sup 2-}−S and B/Li ratios confirm major contributions from this source. Moreover, sequential samples of runoff collected during storms show that B concentrations decrease with increased discharge, proving that elevated B levels are not primarily derived from combined sewer overflows (CSOs) during flooding. Instead, non-point source B exhibits complex behavior depending on land use. In urban settings B is rapidly mobilized from lawns during “first flush” events, likely representing surficial salt residues from drinking water used to irrigate lawns, and is also associated with the baseflow fraction, likely derived from the shallow groundwater reservoir that over time accumulates B from drinking water that percolates into the subsurface. The opposite occurs in small rural watersheds, where B is leached from soils by recent rainfall and covaries with the event water fraction. Highlights: ► Boron sources and loads differ between urban and rural watersheds. ► Wastewaters are not the major boron source in small St. Louis, MO watersheds. ► Municipal drinking water used for lawn

  1. Experimental justification of indicative microbiological values for the safety of water bodies in the recreation areas

    Directory of Open Access Journals (Sweden)

    Е.V. Drozdova

    2015-03-01

    Full Text Available The article provides the assessment of the microbiological values of water bodies if they are used for recreational purposes and distinguishes the epidemiologically significant parameters. In order to validate the indicative safety values taking into account the existing conditions of the recreational use of water we conducted the hygienic assessment of water in the water bodies used for recreational purposes under the indicative microbiological values (total microbial count, thermotolerant coliform bacteria, E. coli; enterococcus, spores of sulfite-reducing Clostridia; coliphages; Ps. aeruginosa and the content of pathogenic microorganisms; also the microbiological profile of water was identified. The obtained data will be used to improve the system for monitoring of water bodies in the recreation areas.

  2. Simulation model of pollution spreading in the water bodies affected by mining mill

    Directory of Open Access Journals (Sweden)

    Kalinkina Natalia Mikhailovna

    2015-09-01

    Full Text Available Water bodies of the northern Karelia are polluted by liquid wastes of Kostomukshsky iron ore-dressing mill. The main components of these wastes are potassium ions. The processes of the potassium spreading in lake-river system of the River Kenty were studied using simulation modeling. For water bodies, where chemical observations were not carried out, the reconstruction of data was realized. The parameters of the model (constants of potassium transfer for seven lakes were calculated. These constants reflect the hydrological regime of water bodies and characterize high-speed transfer of potassium in the upstream and downstream, and low transfer rate - in the middle stream. It is shown that the vast majority of potassium (70% is carried out of the system Kenty and enters the lake Srednee Kuito

  3. An artificial water body provides habitat for an endangered estuarine seahorse species

    Science.gov (United States)

    Claassens, Louw

    2016-10-01

    Anthropogenic development, especially the transformation of natural habitats to artificial, is a growing concern within estuaries and coastal areas worldwide. Thesen Islands marina, an artificial water body, added 25 ha of new estuarine habitat to the Knysna Estuary in South Africa, home to the Knysna seahorse. This study aimed to answer: (I) Can an artificial water body provide suitable habitat for an endangered seahorse species? And if so (II) what characteristics of this new habitat are important in terms of seahorse utilization? Four major habitat types were identified within the marina canals: (I) artificial reno mattress (wire baskets filled with rocks); (II) Codium tenue beds; (III) mixed vegetation on sediment; and (IV) barren canal floor. Seahorses were found throughout the marina system with significantly higher densities within the reno mattress habitat. The artificial water body, therefore, has provided suitable habitat for Hippocampus capensis, a noteworthy finding in the current environment of coastal development and the increasing shift from natural to artificial.

  4. WATER QUALITY INDEX FOR ASSESSMENT OF DRINKING WATER SOURCES FROM MEDIAŞ TOWN, SIBIU COUNTY

    Directory of Open Access Journals (Sweden)

    ROŞU CRISTINA

    2014-03-01

    Full Text Available The purpose of this study was to evaluate the drinking water sources quality from Mediaş Town, Sibiu County. In November 2013, 6 water samples were taken from different drinking water sources and each water sample was analysed to determinate physico-chemical parameters (using a portable multiparameter WTW 320i major ions (using DIONEX ICS1500 ion chromatograph and heavy metals (using Atomic Absorption Spectrophotometer model ZENIT 700 Analytik Jena. The investigated physico-chemical parameters were: temperature, salinity, electrical conductivity (EC, pH, total dissolved solids (TDS and redox potential (ORP. The analysed major ions were: lithium (Li+, sodium (Na+, potassium (K+, magnesium (Mg2+, calcium (Ca2+, fluoride( F-, chloride (Cl-, bromide (Br-, nitrite (NO2-, nitrate (NO3-, phosphate (PO43- and sulphate (SO42-. The investigated heavy metals were: lead (Pb, zinc (Zn, cooper (Cu, iron (Fe, cadmium (Cd, nickel (Ni, chromium (Cr and arsenic (As. The Water Quality Index (WQI was calculated using the analysed water quality parameters and it ranged from 76 (very poor water quality to 375 (unsuitable for drinking.

  5. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water.

    Science.gov (United States)

    Su, Hao-Chang; Liu, You-Sheng; Pan, Chang-Gui; Chen, Jun; He, Liang-Ying; Ying, Guang-Guo

    2018-03-01

    As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region. Pearson correlation analysis suggested that sul1, sul2, floR, and cmlA could be potential indicators for ARGs in water samples. The total abundance of the detected ARGs in tap water was much lower than that in source water. Sand filtration and sedimentation in drinking water treatment plants could effectively remove ARGs; in contrast, granular activated carbon filtration increased the abundance of ARGs. It was found that Pseudomonas may be involved in the proliferation and dissemination of ARGs in the studied drinking water treatment system. Bacteria and ARGs were still present in tap water after treatment, though they were significantly reduced. More research is needed to optimize the water treatment process for ARG removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. European perspectives on regional estimates of standing water bodies and the relevance of man-made ponds

    Science.gov (United States)

    Terasmaa, Jaanus; Bartout, Pascal; Marzecova, Agata; Touchart, Laurent; Koff, Tiiu; Choffel, Quentin; Kapanen, Galina; Maleval, Véronique; Millot, Camille; Qsair, Zoubida; Vandel, Egert

    2015-04-01

    Until recently, the small water bodies have been disregarded in the environmental management and protection policies. For example, the European Water Framework Directive 2000/60/EC proposes the threshold surface area of water bodies for typology and reporting as 50 ha. The inventories on state level or scientific studies took into account smaller water bodies (e.g. third higher than officially registered inventories. Also, in Estonia, the water bodies with a surface area below 1 ha are almost 50 times more abundant than those above 1 ha and 92% of all standing water bodies are smaller than 0.2 ha. Using the OpenStreetMap database we will discuss the differences between global inventories and EU-level analysis. We will show the alternative regional estimates of water bodies with the surface size threshold limit 0.01 ha which will illustrate the quantitative importance of very small often man-made ponds, which are however, abundant cultural heritage in many parts of Europe. Secondly, by comparing detailed national inventories compiled for France and Estonia, we will introduce usefulness of the the 'local to global' approach in which the local databases may significantly strengthen the precision of the regional (EU) level analysis. Overall, we will disss that all standing water bodies - including small and man-made ponds - play an important role in ecosystem services and require careful management to avoid hydrological and environmental deterioration. References: Verpoorter et al. (2014) Geophysical Research Letters, 41. Bartout & Touchart,(2013) Annales de Géographie, 691. Downing et al., (2006) Limnology and Oceanography, 51(5). Kuusisto & Raatikainen, (1988) Terra, 102. Meybeck, (1995) in Lerman et al., Physics and chemistry of lakes. Rjanžin, (2005) Priroda, 4.

  7. Microbial and metal water quality in rain catchments compared with traditional drinking water sources in the East Sepik Province, Papua New Guinea.

    Science.gov (United States)

    Horak, Helena M; Chynoweth, Joshua S; Myers, Ward P; Davis, Jennifer; Fendorf, Scott; Boehm, Alexandria B

    2010-03-01

    In Papua New Guinea, a significant portion of morbidity and mortality is attributed to water-borne diseases. To reduce incidence of disease, communities and non-governmental organizations have installed rain catchments to provide drinking water of improved quality. However, little work has been done to determine whether these rain catchments provide drinking water of better quality than traditional drinking water sources, and if morbidity is decreased in villages with rain catchments. The specific aim of this study was to evaluate the quality of water produced by rain catchments in comparison with traditional drinking water sources in rural villages in the East Sepik Province. Fifty-four water sources in 22 villages were evaluated for enterococci and Escherichia coli densities as well as 14 health-relevant metals. In addition, we examined how the prevalence of diarrhoeal illness in villages relates to the type of primary drinking water source. The majority of tested metals were below World Health Organization safety limits. Catchment water sources had lower enterococci and E. coli than other water sources. Individuals in villages using Sepik River water as their primary water source had significantly higher incidence of diarrhoea than those primarily using other water sources (streams, dug wells and catchments).

  8. Sources of radioiodine at pressurized water reactors. Final report

    International Nuclear Information System (INIS)

    Pelletier, C.A.; Cline, J.E.; Barefoot, E.D.; Hemphill, R.T.; Voilleque, P.G.; Emel, W.A.

    1978-11-01

    The report determines specific components and operations at operating pressurized water reactors that have a potential for being significant emission sources of radioactive iodine. The relative magnitudes of these specific sources in terms of the chemical forms of the radioiodine and the resultant annual averages from major components are established. The data are generalized for broad industry use for predictive purposes. The conclusions of this study indicate that the majority of radioiodine emanating from the primary side of pressurized water reactors comes from a few major areas; in some cases these sources are locally treatable; the interaction of radioiodine with plant interior surfaces is an important phenomenon mediating the source and affecting its release to the atmosphere; the chemical form varies depending on the circumstances of the release

  9. A Study on Water Pollution Source Localization in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-01-01

    Full Text Available The water pollution source localization is of great significance to water environment protection. In this paper, a study on water pollution source localization is presented. Firstly, the source detection is discussed. Then, the coarse localization methods and the localization methods based on diffusion models are introduced and analyzed, respectively. In addition, the localization method based on the contour is proposed. The detection and localization methods are compared in experiments finally. The results show that the detection method using hypotheses testing is more stable. The performance of the coarse localization algorithm depends on the nodes density. The localization based on the diffusion model can yield precise localization results; however, the results are not stable. The localization method based on the contour is better than the other two localization methods when the concentration contours are axisymmetric. Thus, in the water pollution source localization, the detection using hypotheses testing is more preferable in the source detection step. If concentration contours are axisymmetric, the localization method based on the contour is the first option. And, in case the nodes are dense and there is no explicit diffusion model, the coarse localization algorithm can be used, or else the localization based on diffusion models is a good choice.

  10. Tackling non-point source water pollution in British Columbia : an action plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    British Columbia`s approach to water quality management is discussed. The BC efforts include regulating `end of pipe` point discharges from industrial and municipal outfalls. The major remaining cause of water pollution is from non-point sources (NPS). NPS water pollution is caused by the release of pollutants from different and diffuse sources, mostly unregulated and associated with urbanization, agriculture and other forms of land development. The importance of dealing with such problems on an immediate basis to avoid a decline in water quality in the province is emphasized. Major sources of water pollution in British Columbia include: land development, agriculture, storm water runoff, onsite sewage systems, forestry, atmospheric deposition, and marine activities. 3 tabs.

  11. Effect of Ramadan Fasting on Body Water Status Markers after a Rugby Sevens Match

    OpenAIRE

    Trabelsi, Khaled; Rebai, Haithem; el-Abed, Kais; Stannard, Stephen R.; Khannous, Hamdi; Masmoudi, Liwa; Sahnoun, Zouheir; Hakim, Ahmed; Fellman, Nicole; Tabka, Zouhair

    2011-01-01

    Purpose To evaluate the effect of Ramadan fasting on body water status markers of rugby players at basal condition and following a simulation of rugby sevens match. Methods Twelve recreational rugby sevens players played three matches: one day before Ramadan (before Ramadan), at the end of the first week of Ramadan (Beg-R) and at the end of Ramadan (End-R). Before and immediately after each match, body weight was determined and blood samples were taken for the measurement of body water status...

  12. Contamination levels of domestic water sources in Maiduguri ...

    African Journals Online (AJOL)

    The study examines the levels of contamination of domestic water sources in Maiduguri Metropolis area of Borno State based on their physicochemical and bacteriological properties. It was informed by the global concern on good drinking water quality which is an indicator of development level; hence the focus on domestic ...

  13. Comparative analysis of doses to aquatic biota in water bodies impacted by radioactive contamination

    International Nuclear Information System (INIS)

    Kryshev, A.I.; Sazykina, T.G.

    2012-01-01

    Comparative analysis of doses to the reference species of freshwater biota was performed for the following water bodies in Russia or former USSR: Chernobyl NPPs cooling pond, Lakes Uruskul and Berdenish located in the Eastern Urals Radioactive Trace, Techa River, Yenisei River. It was concluded that the doses to biota were considerably different in the acute and chronic periods of radioactive contamination. The most vulnerable part of all considered aquatic ecosystems was benthic trophic chain. A numerical scale on the “dose rate – effects” relationships for fish was formulated. Threshold dose rates above which radiation effects can be expected in fish were evaluated to be the following: 1 mGy d −1 for appearance of the first morbidity effects in fish; 5 mGy d −1 for the first negative effects on reproduction system; 10 mGy d −1 for the first effects on life shortening of fish. The results of dose assessment to biota were compared with the scale “dose rate – effects” and the literature data on the radiobiological effects observed in the considered water bodies. It was shown that in the most contaminated water bodies the dose rates were high enough to cause the radiobiological effects in fish. - Highlights: ► Comparative analysis of dose rates to biota in different water bodies was performed. ► A numerical scale on the dose rates – effects relationships for fish was formulated. ► Results of assessment of exposure to biota were compared with the dose rates – effects scale. ► In the most contaminated water bodies the doses were high enough to cause radiobiological effects in fish. ► Current dose rates to biota in all considered water bodies are below the safety level of 1 mGy/day.

  14. NAA study on characteristics and sources of raw materials of celadon bodies from Qingliangsi kiln and Zhanggongxiang kiln

    International Nuclear Information System (INIS)

    Wu Zhanjun; Zhao Weijuan; Lu Xiaoke; Li Guoxia; Guo Min; Xie Jianzhong; Qiu Xia; Feng Songlin

    2007-01-01

    Thirty-seven samples of ancient Chinese Ru porcelain bodies unearthed from Qingliangsi kiln (containing 32 Ru official porcelain bodies and 5 Ru folk porcelain bodies), thirty-two samples of ancient celadon bodies from Zhanggongxiang kiln, and fourteen samples of modern mineral, were selected and analyzed by neutron activation analysis (NAA) method. Twenty-three elements were measured. The data of these elemental contents were processed by scatter analysis and principle component analysis methods in order to determine the characteristics and sources of the raw materials of the celadon porcelain bodies from the foregoing two kilns. The results show that Fe, Ce, Ba, Ta, Th, La, Sm and Cr are the fingerprint elements to distinguish the ancient Ru official porcelain bodies from ancient celadon bodies of Zhanggongxiang kiln. The sources of the raw material of the ancient Ru official porcelain bodies from Qingliangsi kiln are more concentrated and stable than those from Zhanggongxiang kiln. The Ru folk porcelain bodies and the Ru official porcelain bodies from Qingliangsi kiln have the same provenance, both sources of which are local. The raw material origins of the ancient celadon bodies from Zhanggongxiang kiln is a little dispersed and the compositions of the raw material are different from the Ru porcelains, but the distance is not far away from each other. (authors)

  15. Water ages of 20 groundwater bodies and its relevance for the implementation of the European Water Framework Directive

    Science.gov (United States)

    Kralik, Martin; Brielmann, Heike; Humer, Franko; Grath, Johannes; Sültenfuß, Jürgen; Philippitsch, Rudolf

    2015-04-01

    The 'Mean Residence Time' (MRT) of groundwater is required to develop reliable hydrogeological concepts of groundwater bodies as a prerequisite for a qualified monitoring and risk assessment. MRTs from monitoring wells help to assess if groundwater bodies are 'at risk' or 'not at risk' failing to meet good groundwater quantitative and chemical status according to the Water Framework Directive and therefore not being able to use the groundwater as drinking water or industrial water resource. A combination of 18O/2H, 3H, 3H/3He and in some cases additional CFC, SF6, 85Kr and 35S measurements allow to calculate reliable MRTs in 20 groundwater bodies covering 13% (approx.10719 km2) of the Austrian territory. Altogether 401 groundwater wells and springs from the existing groundwater monitoring network were analysed for δ18O (n=1500), 3H (n=800) and 3He (n=327) since 2006. Considering both the fact that monitoring wells may have multiple or long well screens and the inherent uncertainties of groundwater age dating techniques, age estimations were classified into 5 categories of short ( 50years) mean residence times for each monitoring site. Subsequently, median values of the MRT categories were assigned to each investigated groundwater body. These are valuable information to fix extraction rates, to set measures to improve the land use and groundwater protection and to validate hydrogeological concepts. Generally, MRTs of groundwater bodies increase from shallow Alpine groundwater bodies over deeper Alpine valley-aquifers to longer MRTs in the Pannonian climate range in the east of Austria.

  16. Environmental monitoring and assessment of the water bodies of a pre-construction urban wetland.

    Science.gov (United States)

    Zuo, Shengpeng; Wan, Kun; Zhou, Shoubiao; Ye, Liangtao; Ma, Sumin

    2014-11-01

    It is planned that the Dayanghan Wetland in China will be transformed into a national park but little is known about its current water quality and pollution status. Thus, we monitored the physical and chemical characteristics of the Dayanghan Wetland, which showed that the water quality was generally good. However, the chemical oxygen demand was more than double the reference value, which may be attributable to previous tillage for vegetable crops and other farmlands. In addition, nickel and chromium caused low-level pollution in the water bodies of the Dayanghan Wetland. The mean trophic level index and nutrient quality index were 39.1 and 2.69, respectively. Both indices suggest that the water bodies of the Dayanghan Wetland are in a mesotrophic state and that no eutrophication has occurred. The study would provide a precise report on the status of environmental quality of the water bodies of a typical pre-construction wetland for the administration and decision of the local government and the planning agent.

  17. Reclaimed water as an alternative source of water for the city of Bulawayo, Zimbabwe

    Science.gov (United States)

    Taigbenu, Akpofure E.; Ncube, Mthokozisi

    Perennial water problems, precipitated by increased water demand in Bulawayo, the second largest city in Zimbabwe, has prompted the consideration of a wide array of strategies from demand management and water conservation measures to exploitation of alternative water sources. One of such strategies in the latter category includes recycling of blue water for both potable and non-potable purposes. This paper examines the existing reclaimed water system with a view at revamping the existing infrastructure to maximise reclaimed water use for purposes that are amenable to water of lower quality. It is a generally accepted practice to avoid the use of water of high quality for purposes that can tolerate a lower grade, unless it is in excess in amount [ Okun, D.A., 1973. Planning for water reuse. Journal of AWWA 65(10)]. The reclaimed water is assessed in terms of its quality and quantity vis-à-vis possible uses. Perceptions and expectations of both current and identified prospective consumers are examined and discussed, in addition to the feasibility of accommodating these identified prospective consumers in an expanded network. Apart from enhancement of the existing infrastructure, the paper highlights the need for social marketing and education in order to realise the optimum benefits of this alternative water source. The cost implications of implementing the proposed project are evaluated, including suggestions on suitable tariff structure and an allocation distribution that achieves equity.

  18. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2005

    Science.gov (United States)

    Smith, Kirk P.

    2007-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2005 (October 2004 through September 2005). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for selected elements, organic constituents, suspended sediment, and Escherichia coli bacteria. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir capacities for the Cambridge Reservoir varied from about 59 to 98 percent during water year 2005, while monthly reservoir capacities for the Stony Brook Reservoir and the Fresh Pond Reservoir were maintained at capacities greater than 84 and 96 percent, respectively. Assuming a water demand of 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2005 water year is equivalent to an annual water surplus of about 119 percent. Recorded precipitation in the source area for the 2005 water year was within 2 inches of the total annual precipitation for the previous 2 water years. The monthly mean specific conductances for the outflow of the Cambridge Reservoir were similar to historical monthly mean values. However, monthly mean specific conductances for Stony Brook near Route 20, in Waltham (U.S. Geological Survey station 01104460), which is the principal tributary feeding the Stony Brook Reservoir, were generally higher than the medians of the monthly mean specific conductances for the period of record. Similarly, monthly mean specific conductances for a small tributary to Stony Brook (U.S. Geological Survey

  19. Caffeine As An Indicator Of Estrogenic Activity In Source Water.

    OpenAIRE

    Montagner, C C; Umbuzeiro, G A; Pasquini, C; Jardim, W F

    2015-01-01

    Caffeine has already been used as an indicator of anthropogenic impacts, especially the ones related to the disposal of sewage in water bodies. In this work, the presence of caffeine has been correlated with the estrogenic activity of water samples measured using the BLYES assay. After testing 96 surface water samples, it was concluded that caffeine can be used to prioritize samples to be tested for estrogenic activity in water quality programs evaluating emerging contaminants with endocrine ...

  20. Caffeine as an indicator of estrogenic activity in source water.

    Science.gov (United States)

    Montagner, C C; Umbuzeiro, G A; Pasquini, C; Jardim, W F

    2014-08-01

    Caffeine has already been used as an indicator of anthropogenic impacts, especially the ones related to the disposal of sewage in water bodies. In this work, the presence of caffeine has been correlated with the estrogenic activity of water samples measured using the BLYES assay. After testing 96 surface water samples, it was concluded that caffeine can be used to prioritize samples to be tested for estrogenic activity in water quality programs evaluating emerging contaminants with endocrine disruptor activity.

  1. [Comparative study of some clinical and laboratory indicators in a group of patients using wells as source of drinking water and a control group using safe water].

    Science.gov (United States)

    Vasilescu, L; Ciochină, D A

    2011-01-01

    In time, well water, as a source of drinking and coking water, with physical-chemical, bacteriological, and biological indicators suggestive of alteration in water potability, determines complex, sometimes irreversible, metabolic disorders. Sixty individuals residing in a rural community were divided into 2 groups: study group -30 subjects using well water, and control group--30 subjects using safe water. For the study group the selection criteria were: age, sex, use of well water as drinking and cooking water, history suggestive of chronic poisoning (pregnancy course, birth weight, susceptibility to infectious agents, and current chronic diseases). In the study group, gestosis, prematurity, and altered body mass index are more frequent as compared to the subjects in the control group. The identified laboratory changes indicate moderate anemia, hepatic cytolysis, dyslipidemia, presence of nitrites in urine, and positive urine cultures. Long-term use of water with mineral constituents in excess, absent, or inadequate, the direct biological and chemical water pollution, or most frequently the indirect pollution through the soil determine, in time, complex, sometimes irreversible, metabolic disorders.

  2. Urban Water Services in Fragile States: An Analysis of Drinking Water Sources and Quality in Port Harcourt, Nigeria, and Monrovia, Liberia

    Science.gov (United States)

    Kumpel, Emily; Albert, Jeff; Peletz, Rachel; de Waal, Dominick; Hirn, Maximilian; Danilenko, Alexander; Uhl, Vincent; Daw, Ashish; Khush, Ranjiv

    2016-01-01

    Establishing and maintaining public water services in fragile states is a significant development challenge. In anticipation of water infrastructure investments, this study compares drinking water sources and quality between Port Harcourt, Nigeria, and Monrovia, Liberia, two cities recovering from political and economic instability. In both cities, access to piped water is low, and residents rely on a range of other private and public water sources. In Port Harcourt, geographic points for sampling were randomly selected and stratified by population density, whereas in Monrovia, locations for sampling were selected from a current inventory of public water sources. In Port Harcourt, the sampling frame demonstrated extensive reliance on private boreholes and a preference, in both planned and unplanned settlements, for drinking bottled and sachet water. In Monrovia, sample collection focused on public sources (predominantly shallow dug wells). In Port Harcourt, fecal indicator bacteria (FIB) were detected in 25% of sources (N = 566), though concentrations were low. In Monrovia, 57% of sources contained FIB and 22% of sources had nitrate levels that exceeded standards (N = 204). In Monrovia, the convenience of piped water may promote acceptance of the associated water tariffs. However, in Port Harcourt, the high prevalence of self-supply and bottled and sachet drinking water suggests that the consumer's willingness to pay for ongoing municipal water supply improvements may be determined by service reliability and perceptions of water quality. PMID:27114291

  3. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  4. Providing Longitudinal Connection In Case Of Cross Sluicing On Water Bodies In Banat Hydrographic Area

    Directory of Open Access Journals (Sweden)

    Hoancă Diana

    2014-10-01

    Full Text Available On Banat Hydrographic Area level, there are a series of works which put hydrological pressures on bodies of water: accumulations, damming, water diversions, regulations, shore protection, etc. These works were created in order to ensure water demand, defend against floods, regulate discharges, and combat humidity excess. Speaking justly, they have an important socioeconomic role. Among the negative effects of longitudinal connection interruption of water bodies we can mention, the risk of not achieving the positive ecological potential of water bodies in accordance with the Water Framework Directive, the reduction of the aquatic biodiversity, the reduction or even extinction of certain aquatic species and the alteration of the flow process. Because the negative effects of the hydromorphological alterations, especially those due to the interruption of the longitudinal connection, have a significant impact on the aquatic biodiversity. At Banat Hydrographic Area level, a series of measures, have been identified for the rehabilitation of the affected water courses: the removal of the hydrotechnical constructions from the water body if they have lost their functional features, building of passages for the migration of the ichthyofauna, reconnecting of the affluents and the disconnected arms as well as other measures intended to bring things back to their natural state. The implementation of these measures is made according to the importance and the extent of their positive impact as opposed to the negative effect that might occur as a consequence of their application. Analyzing the measures aforementioned and taking into consideration the characteristics of the hydromorphological pressures on water bodies in Banat Hydrographic Area, a number of measures regarding control are supplied in this paper.

  5. ZZ DOSDAT-2, Gamma and Electron Dose Conversion Factor Data Library for Body Organs

    International Nuclear Information System (INIS)

    1983-01-01

    1 - Description of problem or function: Format: DOSDAT-R; Nuclides: gamma-ray and electron dose rates for whole-body and for various body organs (24) for air and water immersion and from ground-surface sources (approximately 500 radioactive nuclides). Origin: DLC-80/DRALIST library of radioactive decay data. The data are used to estimate the gamma-ray and electron dose rates for whole-body and for various body organs (24) for air and water immersion and from ground-surface sources. The data are given for approximately 500 radioactive nuclides. 2 - Method of solution: The data were computed by the CCC-400 DOSAFACTER II code from the DLC-80/DRALIST library of radioactive decay data for approximately 500 nuclides

  6. Oblique water entry of a three dimensional body

    Directory of Open Access Journals (Sweden)

    Scolan Yves-Marie

    2014-12-01

    Full Text Available The problem of the oblique water entry of a three dimensional body is considered. Wagner theory is the theoretical framework. Applications are discussed for an elliptic paraboloid entering an initially flat free surface. A dedicated experimental campaign yields a data base for comparisons. In the present analysis, pressure, force and dynamics of the wetted surface expansion are assessed.

  7. Pythium species in 13 various types of water bodies of N-E Poland

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-01-01

    Full Text Available Pythium species and environmental factors in various types of water bodies (2 springs, 2 rivers, 3 ponds and 6 different trophic lakes were studied. Samples of water were collected every two months (springs, rivers, ponds and every three months (lakes in the years 1996-1999 for hydrochemical analysis and in order to determine the Pythium species content. From springs rivers and ponds collected were also ice blocks for determinations of presence of Pythium species. Buckwheatand hemp-seeds, cellophane and snake exuviae were used as bait. Forty-five species of Pythium were found in various types of water bodies. Pythium acanthicum, P. complectens, P. complens, P. diameson, P. dissimile, P. elongatum, P. lucens, P. megalacanthum, P. nagae, P. oedochilum, P. oryzae, P. palingenes, P. periilum and P. polysporum were recorded for the first time in Poland. The largest mean number of species was observed in spring Cypisek, a bit fewer in spring Jaroszówka and lake Białe (oligotrophic-like waters. The lowest mean number of Pythium species was noted in pond Akcent and Pałacowy (polytrophic waters. In all types of water bodies the higest mean number of species was found in winter, and the lowest in summer.

  8. Association of Supply Type with Fecal Contamination of Source Water and Household Stored Drinking Water in Developing Countries: A Bivariate Meta-analysis.

    Science.gov (United States)

    Shields, Katherine F; Bain, Robert E S; Cronk, Ryan; Wright, Jim A; Bartram, Jamie

    2015-12-01

    Access to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household. We assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type. We performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type. Water quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine. Piped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water.

  9. Warming combined with more extreme precipitation regimes modifies the water sources used by trees.

    Science.gov (United States)

    Grossiord, Charlotte; Sevanto, Sanna; Dawson, Todd E; Adams, Henry D; Collins, Adam D; Dickman, Lee T; Newman, Brent D; Stockton, Elizabeth A; McDowell, Nate G

    2017-01-01

    The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. We analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously. Piñon and juniper exhibited different and opposite shifts in water uptake depth in response to experimental stress and background climate over 3 yr. During a dry summer, juniper responded to warming with a shift to shallow water sources, whereas piñon pine responded to precipitation reduction with a shift to deeper sources in autumn. In normal and wet summers, both species responded to precipitation reduction, but juniper increased deep water uptake and piñon increased shallow water uptake. Shifts in the utilization of water sources were associated with reduced stomatal conductance and photosynthesis, suggesting that belowground compensation in response to warming and water reduction did not alleviate stress impacts for gas exchange. We have demonstrated that predicted climate change could modify water sources of trees. Warming impairs juniper uptake of deep sources during extended dry periods. Precipitation reduction alters the uptake of shallow sources following extended droughts for piñon. Shifts in water sources may not compensate for climate change impacts on tree physiology. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Neonatal body water turnover: a putative index of perinatal morbidity

    International Nuclear Information System (INIS)

    MacLennan, A.H.; Millington, G.; Grieve, A.; McIntosh, J.E.; Seamark, R.F.; Cox, L.W.

    1981-01-01

    The water metabolism of 46 newborn babies was determined during a 10 day period by means of an isotope dilution technique, and correlations were sought with the clinical assessment of the babies by multiple obstetric and pediatric clinical criteria. The babies, 48 to 72 hours of age, were given a single oral dose (2 ml/kg) of deuterated water (D 2 O), a nonradioactive tracer, and the urinary excretion rate was followed by means of infrared spectrophotometry. After a period of equilibration of the D 2 O with body water (20 hours), the rate of D2O clearance was found to be a single exponential decay process, thus allowing the fraction of total body water lost each hour (the rate constant) to be calculated for each baby. The median values of the rate constants X 10(4)(h-1) for 14 growth-retarded babies ws 104 (98% confidence limits, 97.8 to 122) compared with 76.3 (67.0 to 80.2) for 16 normal mature babies and 82.1 (73.4 to 90.6) for 16 normal premature babies. These data indicate that, compared with normal mature or normal premature babies, growth-retarded infants have a significantly (P less than 0.05) faster turnover of water during the first 10 days of postnatal life. Since there was little overlap in results between the normally grown and the retarded infants, the measurement of water turnover may provide a useful index of perinatal morbidity

  11. Microbial pathogens in source and treated waters from drinking water treatment plants in the US

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...

  12. Intertidal beach sands as monitors for heavy metal pollution in coastal water bodies

    International Nuclear Information System (INIS)

    Lacerda, L.D. de; Pfeiffer, W.C.; Fiszman, M.

    Intertidal beach sands were investigated for their use as indicators of metal transport in a contaminated water body, Sepetiba Bay, Rio de Janeiro, Brazil, and are proposed as an alternative and rapid screening method to determine metal pollution status of coastal areas. The results showed that, at least for Cu, Cr, Zn and Pb, beach sands can be included in the existing environmental monitoring programs for heavy metal pollution in water bodies. (Author) [pt

  13. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Directory of Open Access Journals (Sweden)

    Mugisidi Dan

    2018-01-01

    Full Text Available Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3, chloride, sodium, sulphate, and (KMnO4. In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  14. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Science.gov (United States)

    Mugisidi, Dan; Heriyani, Okatrina

    2018-02-01

    Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3), chloride, sodium, sulphate, and (KMnO4). In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  15. Sources Of Incidental Events In Collective Water Supply System

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2015-11-01

    Full Text Available The publication presents the main types of incidental events in collective water supply system. The special attention was addressed to the incidental events associated with a decrease in water quality, posing a threat to the health and life of inhabitants. The security method against incidental contamination in the water source was described.

  16. Assessment of the microbial quality of river water sources in rural ...

    African Journals Online (AJOL)

    drinie

    2002-07-03

    Jul 3, 2002 ... Assessment of the microbial quality of river water sources ... These untreated water sources are used for drinking and domestic purposes and pose a serious threat to ... These diseases cause crippling, devastating and debilitating effects ..... gastrointestinal illness, due mainly by enteric viruses in sewage.

  17. Water requirement and total body water estimation as affected by species, pregnancy and lactation using tritiated water

    International Nuclear Information System (INIS)

    Kamal, T.H.; El Banna, I.M.; Ayad, M.A.; Kotby, E.A.

    1978-01-01

    Radiotracer dilution technique was used to determine total body water (TBW) and the water turnover rate (WTR) estimate of water requirements in water buffaloe, Red Dannish cattle, fat tailed Osemi sheep and Camellus Dromedarius. Water buffaloes were found to have highest TBW, followed by camels, sheep and cattle in a descending order. The WTR ranking was highest for sheep followed by water buffaloe endurance to heat was found inseperable to high water usage, while in camels, an intericate water retention mechanism help animals to thrive in deserts. Fat tailled Osemi sheep and cattle failed to cope with high environmental temperature resulting in temporary dehydration. TBW was 17% and 6% higher in pregnant cattle and sheep than non-pregnant animals respectively, while there was no observed change in pregnant buffaloes. Water retention of pregnant cattle was associated with an appriciable increase in WTR, which was not noticable in buffaloe or sheep. Lactating buffaloe have had a higher TBW and WTR than lactating cattle. Milk yield per day during the period of measurement was higher in buffalo than cattle. Wallowing of buffalo in water pools during grazing, represents a behavioural adaptation for life in hot regions, aside of tendency for higher WTR with concomitant water retention

  18. Bacterial composition in a metropolitan drinking water distribution system utilizing different source waters.

    Science.gov (United States)

    Gomez-Alvarez, Vicente; Humrighouse, Ben W; Revetta, Randy P; Santo Domingo, Jorge W

    2015-03-01

    We investigated the bacterial composition of water samples from two service areas within a drinking water distribution system (DWDS), each associated with a different primary source of water (groundwater, GW; surface water, SW) and different treatment process. Community analysis based on 16S rRNA gene clone libraries indicated that Actinobacteria (Mycobacterium spp.) and α-Proteobacteria represented nearly 43 and 38% of the total sequences, respectively. Sequences closely related to Legionella, Pseudomonas, and Vibrio spp. were also identified. In spite of the high number of sequences (71%) shared in both areas, multivariable analysis revealed significant differences between the GW and SW areas. While the dominant phylotypes where not significantly contributing in the ordination of samples, the populations associated with the core of phylotypes (1-10% in each sample) significantly contributed to the differences between both service areas. Diversity indices indicate that the microbial community inhabiting the SW area is more diverse and contains more distantly related species coexisting with local assemblages as compared with the GW area. The bacterial community structure of SW and GW service areas were dissimilar, suggesting that their respective source water and/or water quality parameters shaped by the treatment processes may contribute to the differences in community structure observed.

  19. Contamination of community water sources by potentially pathogenic vibrios following sea water inundation.

    Science.gov (United States)

    Kanungo, Reba; Shashikala; Karunasagar, I; Srinivasan, S; Sheela, Devi; Venkatesh, K; Anitha, P

    2007-12-01

    Potentially pathogenic members of the Vibrionaceae family including Vibrio cholerae and Vibrio parahemolyticus were isolated from domestic sources of drinking water in coastal villages following sea water inundation during the tsunami in Southern India. Phenotypic and genotypic studies were done to confirm the identity and detection of toxins. Vibrio-gyr (gyrase B gene) was detected in all sixteen vibrio isolates. Toxin regulating genes i.e.: ctx gene, tdh gene, and trh gene, however were not detected in any of the strains, thereby ruling out presence of toxins which could endanger human life. Other potentially pathogenic bacteria Aeromonas and Plesiomonas were also isolated from hand pumps and wells, in a few localities. There was no immediate danger in the form of an outbreak or sporadic gastroenteritis at the time of the study. Timely chlorination and restoration of potable water supply to the flood affected population by governmental and nongovernmental agencies averted waterborne gastroenteritis. Assessment of quality of water and detection of potential virulent organisms is an important public health activity following natural disasters. This work highlights the importance of screening water sources for potentially pathogenic microorganisms after natural disasters to avert outbreaks of gastroenteritis and other infectious diseases.

  20. Toxicological and chemical insights into representative source and drinking water in eastern China.

    Science.gov (United States)

    Shi, Peng; Zhou, Sicong; Xiao, Hongxia; Qiu, Jingfan; Li, Aimin; Zhou, Qing; Pan, Yang; Hollert, Henner

    2018-02-01

    Drinking water safety is continuously threatened by the emergence of numerous toxic organic pollutants (TOPs) in environmental waters. In this study, an approach integrating in vitro bioassays and chemical analyses was performed to explore toxicological profiles of representative source and drinking water from waterworks of the Yangtze River (Yz), Taihu Lake (Th), and the Huaihe River (Hh) basins in eastern China. Overall, 34 of 96 TOPs were detected in all water samples, with higher concentrations in both source and drinking water samples of Hh, and pollutant profiles also differed across different river basins. Non-specific bioassays indicated that source water samples of Hh waterworks showed higher genotoxicity and mutagenicity than samples of Yz and Th. An EROD assay demonstrated dioxin-like toxicity which was detected in 5 of 7 source water samples, with toxin concentration levels ranging from 62.40 to 115.51 picograms TCDD equivalents per liter of water (eq./L). PAHs and PCBs were not the main contributors to observed dioxin-like toxicity in detected samples. All source water samples induced estrogenic activities of 8.00-129.00 nanograms 17β-estradiol eq./L, and estrogens, including 17α-ethinylestradiol and estriol, contributed 40.38-84.15% of the observed activities in examined samples. While drinking water treatments efficiently removed TOPs and their toxic effects, and estrogenic activity was still observed in drinking water samples of Hh. Altogether, this study indicated that the representative source water in eastern China, especially that found in Hh, may negatively affect human health, a finding that demonstrates an urgent requirement for advanced drinking water treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ecological risk of heavy metals in sediments of the luan river source water

    Science.gov (United States)

    Liu, J.; Li, Y.; Zhang, B.; Cao, J.; Cao, Z.; Domagalski, Joseph L.

    2009-01-01

    Distribution and characteristics of heavy metals enrichment in sediment were surveyed including the bio-available form analyzed for assessment of the Luan River source water quality. The approaches of sediment quality guidelines (SQG), risk assessment code and Hakanson potential ecological risk index were used for the ecological risk assessment. According to SQG, The results show that in animal bodies, Hg at the sampling site of Wuliehexia was 1.39 mg/kg, Cr at Sandaohezi was 152.37 mg/kg and Cu at Hanjiaying was 178.61 mg/kg exceeding the severe effect screening level. There were 90% of sampling sites of Cr and Pb and 50% sites of Cu exceeded the lowest effect screening level. At Boluonuo and Wuliehexia, the exchangeable and carbonate fractions for above 50% of sites were at high risk levels and that for above 30% of sites at Xiahenan and Wulieheshang were also at high risk levels. Other sites were at medium risk level. Compared to soil background values of China, Hg and Cd showed very strong ecological risk, and the seven heavy metals of Hg, Cd, Cu, As, Pb, Cr, Zn at ecological risk levels were in the descending order. The results could give insight into risk assessment of environmental pollution and decision-making for water source security. ?? 2009 Springer Science+Business Media, LLC.

  2. Association between body water status and acute mountain sickness.

    Directory of Open Access Journals (Sweden)

    Hannes Gatterer

    Full Text Available PURPOSE: The present study determined the association between body fluid variation and the development of acute mountain sickness (AMS in adults. METHODS: Forty-three healthy participants (26 males and 17 females, age: 26 ± 6 yr, height: 174 ± 9 cm, weight: 68 ± 12 kg were passively exposed at a FiO2 of 12.6% (simulated altitude hypoxia of 4500 m, PiO2 = 83.9 mmHg for 12-h. AMS severity was assessed using the Lake Louise Score (LLS. Food and drink intakes were consumed ad libitum and measured; all urine was collected. Before and after the 12-h exposure, body weight and plasma osmolality were measured and whole-body bioimpedance analysis was performed. RESULTS: The overall AMS incidence was 43% (38% males, 50% females. Participants who developed AMS showed lower fluid losses (3.0 ± 0.9 vs. 4.5 ± 2.0 ml/kg/h, p = 0.002, a higher fluid retention (1.9 ± 1.5 vs. 0.6 ± 0.8 ml/kg/h, p = 0.022, greater plasma osmolality decreases (-7 ± 7 vs. -2 ± 5 mOsm/kg, p = 0.028 and a larger plasma volume expansion (11 ± 10 vs. 1 ± 15%, p = 0.041 compared to participants not developing AMS. Net water balance (fluid intake--fluid loss and the amount of fluid loss were strong predictors whether getting sick or not (Nagelkerkes r(2 = 0.532. The LLS score was related to net water balance (r = 0.358, p = 0.018, changes in plasma osmolality (r = -0.325, p = 0.033 and sodium concentration (r = -0.305, p = 0.047. Changes in the impedance vector length were related to weight changes (r = -0.550, p<0.001, fluid intake (r = -0.533, p<0.001 and net water balance (r = -0.590, p<0.001. CONCLUSIONS: Participants developing AMS within 12 hours showed a positive net water balance due to low fluid loss. Thus measures to avoid excess fluid retention are likely to reduce AMS symptoms.

  3. Community shift of biofilms developed in a full-scale drinking water distribution system switching from different water sources.

    Science.gov (United States)

    Li, Weiying; Wang, Feng; Zhang, Junpeng; Qiao, Yu; Xu, Chen; Liu, Yao; Qian, Lin; Li, Wenming; Dong, Bingzhi

    2016-02-15

    The bacterial community of biofilms in drinking water distribution systems (DWDS) with various water sources has been rarely reported. In this research, biofilms were sampled at three points (A, B, and C) during the river water source phase (phase I), the interim period (phase II) and the reservoir water source phase (phase III), and the biofilm community was determined using the 454-pyrosequencing method. Results showed that microbial diversity declined in phase II but increased in phase III. The primary phylum was Proteobacteria during three phases, while the dominant class at points A and B was Betaproteobacteria (>49%) during all phases, but that changed to Holophagae in phase II (62.7%) and Actinobacteria in phase III (35.6%) for point C, which was closely related to its water quality. More remarkable community shift was found at the genus level. In addition, analysis results showed that water quality could significantly affect microbial diversity together, while the nutrient composition (e.g. C/N ration) of the water environment might determine the microbial community. Furthermore, Mycobacterium spp. and Pseudomonas spp. were detected in the biofilm, which should give rise to attention. This study revealed that water source switching produced substantial impact on the biofilm community. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Palatability of water-soluble extracts of protein sources and replacement of fishmeal by a selected mixture of protein sources for juvenile turbot ( Scophthalmus maximus)

    Science.gov (United States)

    Dong, Chun; He, Gen; Mai, Kangsen; Zhou, Huihui; Xu, Wei

    2016-06-01

    Poor palatability is a limiting factor for replacing fishmeal with other protein sources in aquaculture. The water-soluble molecules with low molecular weights are the major determinants of the palatability of diets. The present study was conducted to investigate the palatability of water-soluble extracts from single protein source (single extract pellets) and the mixture of these extracts with different proportions (blended extract pellets) in juvenile turbot ( Scophthalmus maximus). Then according to the palatability of blended extract pellets, an optimal mixture proportion was selected, and a new protein source made from raw protein materials with the selected proportion was formulated to replace fishmeal. Summarily, the palatability of single extract pellets for turbot was descendent from fishmeal to pet-food grade poultry by-product meal, wheat gluten meal, soybean meal, peanut meal, meat and bone meal, and corn gluten meal. Subsequently, according to the palatability of single extract pellets, 52 kinds of blended extract pellets were designed to test their palatability. The results showed that the pellets presented remarkably different palatability, and the optimal one was diet 52 (wheat gluten meal: pet-food grade poultry by-product meal: meat and bone meal: corn gluten meal = 1:6:1:2). The highest ingestion ratio (the number of pellets ingested/the number of pellets fed) was 0.73 ± 0.03, which was observed in Diet 52. Then five isonitrogenous (52% crude protein) and isocaloric (20 kJ g-1 gross energy) diets were formulated by replacing 0 (control), 35%, 50%, 65% and 80% of fishmeal with No.52 blending proportion. After a 10-weeks feeding trial, a consistent feed intake was found among all replacement treatments. Replacement level of fishmeal up to 35% did not significantly influence final body weight, specific growth rate, feed efficiency ratio, and protein efficiency ratio of turbot. Therefore, the water-soluble extracts of protein sources play an

  5. Residual volume on land and when immersed in water: effect on percent body fat.

    Science.gov (United States)

    Demura, Shinichi; Yamaji, Shunsuke; Kitabayashi, Tamotsu

    2006-08-01

    There is a large residual volume (RV) error when assessing percent body fat by means of hydrostatic weighing. It has generally been measured before hydrostatic weighing. However, an individual's maximal exhalations on land and in the water may not be identical. The aims of this study were to compare residual volumes and vital capacities on land and when immersed to the neck in water, and to examine the influence of the measurement error on percent body fat. The participants were 20 healthy Japanese males and 20 healthy Japanese females. To assess the influence of the RV error on percent body fat in both conditions and to evaluate the cross-validity of the prediction equation, another 20 males and 20 females were measured using hydrostatic weighing. Residual volume was measured on land and in the water using a nitrogen wash-out technique based on an open-circuit approach. In water, residual volume was measured with the participant sitting on a chair while the whole body, except the head, was submerged . The trial-to-trial reliabilities of residual volume in both conditions were very good (intraclass correlation coefficient > 0.98). Although residual volume measured under the two conditions did not agree completely, they showed a high correlation (males: 0.880; females: 0.853; P body fat computed using residual volume measured in both conditions was very good for both sexes (males: r = 0.902; females: r = 0.869, P body fat: -3.4 to 2.2% for males; -6.3 to 4.4% for females). We conclude that if these errors are of no importance, residual volume measured on land can be used when assessing body composition.

  6. Land-based sources of pollution and environmental quality of Weija ...

    African Journals Online (AJOL)

    A survey of land-based sources of pollution was undertaken in the catchment area of Weija Lake. Activities that may influence the quality of the environment, and the sources, amounts and effects of the pollution of the water body were assessed. Water and precipitation chemistry showed that Na:Ca (0.48) and Na:K (2.0) ...

  7. High prevalence of enteric viruses in untreated individual drinking water sources and surface water in Slovenia.

    Science.gov (United States)

    Steyer, Andrej; Torkar, Karmen Godič; Gutiérrez-Aguirre, Ion; Poljšak-Prijatelj, Mateja

    2011-09-01

    Waterborne infections have been shown to be important in outbreaks of gastroenteritis throughout the world. Although improved sanitary conditions are being progressively applied, fecal contaminations remain an emerging problem also in developed countries. The aim of our study was to investigate the prevalence of fecal contaminated water sources in Slovenia, including surface waters and groundwater sources throughout the country. In total, 152 water samples were investigated, of which 72 samples represents groundwater from individual wells, 17 samples from public collection supplies and 63 samples from surface stream waters. Two liters of untreated water samples were collected and concentrated by the adsorption/elution technique with positively charged filters followed by an additional ultracentrifugation step. Group A rotaviruses, noroviruses (genogroups I and II) and astroviruses were detected with real-time RT-PCR method in 69 (45.4%) out of 152 samples collected, of which 31/89 (34.8%) drinking water and 38/63 (60.3%) surface water samples were positive for at least one virus tested. In 30.3% of drinking water samples group A rotaviruses were detected (27/89), followed by noroviruses GI (2.2%; 2/89) and astroviruses (2.2%; 2/89). In drinking groundwater samples group A rotaviruses were detected in 27 out of 72 tested samples (37.5%), genogroup I noroviruses in two (2.8%), and human astroviruses in one (1.4%) samples. In surface water samples norovirus genogroup GII was the most frequently detected (41.3%; 26/63), followed by norovirus GI (33.3%; 21/63), human astrovirus (27.0%; 17/63) and group A rotavirus (17.5%; 11/63). Our study demonstrates relatively high percentage of groundwater contamination in Slovenia and, suggests that raw groundwater used as individual drinking water supply may constitute a possible source of enteric virus infections. In the future, testing for enteric viruses should be applied for drinking water sources in waterborne outbreaks

  8. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    Science.gov (United States)

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  9. Multiple-source tracking: Investigating sources of pathogens, nutrients, and sediment in the Upper Little River Basin, Kentucky, water years 2013–14

    Science.gov (United States)

    Crain, Angela S.; Cherry, Mac A.; Williamson, Tanja N.; Bunch, Aubrey R.

    2017-09-20

    The South Fork Little River (SFLR) and the North Fork Little River (NFLR) are two major headwater tributaries that flow into the Little River just south of Hopkinsville, Kentucky. Both tributaries are included in those water bodies in Kentucky and across the Nation that have been reported with declining water quality. Each tributary has been listed by the Kentucky Energy and Environment Cabinet—Kentucky Division of Water in the 303(d) List of Waters for Kentucky Report to Congress as impaired by nutrients, pathogens, and sediment for contact recreation from point and nonpoint sources since 2002. In 2009, the Kentucky Energy and Environment Cabinet—Kentucky Division of Water developed a pathogen total maximum daily load (TMDL) for the Little River Basin including the SFLR and NFLR Basins. Future nutrient and suspended-sediment TMDLs are planned once nutrient criteria and suspended-sediment protocols have been developed for Kentucky. In this study, different approaches were used to identify potential sources of fecal-indicator bacteria (FIB), nitrate, and suspended sediment; to inform the TMDL process; and to aid in the implementation of effective watershed-management activities. The main focus of source identification was in the SFLR Basin.To begin understanding the potential sources of fecal contamination, samples were collected at 19 sites for densities of FIB (E. coli) in water and fluvial sediment and at 11 sites for Bacteroidales genetic markers (General AllBac, human HF183, ruminant BoBac, canid BacCan, and waterfowl GFD) during the recreational season (May through October) in 2013 and 2014. Results indicated 34 percent of all E. coli water samples (n=227 samples) did not meet the U.S. Environmental Protection Agency 2012 recommended national criteria for primary recreational waters. No criterion currently exists for E. coli in fluvial sediment. By use of the Spearman’s rank correlation test, densities of FIB in fluvial sediments were observed to have a

  10. Incidence of visceral leishmaniasis in the Vaishali district of Bihar, India: spatial patterns and role of inland water bodies

    Directory of Open Access Journals (Sweden)

    Gouri Sankar Bhunia

    2011-05-01

    Full Text Available The role of the distribution of inland water bodies with respect to the transmission of visceral leishmaniasis (VL and its dominant vector, Phlebotomous argentipes, has been studied at the regional scale in Bihar, eastern India. The Landsat TM sensor multispectral scanning radiometer, with a spatial resolution of 30 m in the visible, reflective-infrared and shortwave- infrared (SWIR bands, was used to identify water bodies using the normalized differential pond index (NDPI calculated as follows: (Green – SWIR I/(Green + SWIR I. Nearest neighbour and grid square statistics were used to delineate spatial patterns and distribution of the sandfly vector and the disease it transmits. The female P. argentipes sandfly was found to be associated with the distance from open water and particularly abundant near non-perennial river banks (68.4%; P <0.001, while its association with rivers was focused further away from the water source (X2 = 26.3; P <0.001. The results also reveal that the distribution of VL is clustered around non-perennial riverbanks, while the pattern is slightly random around the perennial river banks. The grid square technique illustrate that the spatial distribution of the disease has a much stronger correlation with lower density of open waters surfaces as well as with sandfly densities (X2 = 26.0; P <0.001. The results of our study suggest that inland water presence poses a risk for VL by offering suitable breeding sites for P. argentipes, a fact that should be taken into account when attempting to control disease transmission.

  11. Modeling the movement and equilibrium of water in the body of ruminants in relation to estimating body composition by deuterium oxide dilution

    International Nuclear Information System (INIS)

    Arnold, R.N.

    1986-01-01

    Deuterium oxide (D 2 O) dilution was evaluated for use in estimating body composition of ruminants. Empty body composition of cattle could not be accurately estimated by two- or three-compartment models when solved on the basis of clearance of D 2 O from blood. A 29-compartment blood-flow model was developed from measured blood flow rates and water volumes of tissues of sheep. The rates of equilibration of water in tissues that were simulated by the blood-flow model were much faster than actual rates measured in sheep and cattle. The incorporation of diffusion hindrances for movement of water into tissues enabled the blood flow model to simulate the measured equilibration rates in tissues, but the values of the diffusion coefficients were different for each tissue. The D 2 O-disappearance curve for blood simulated by the blood-flow model with diffusion limitations was comprised for four exponential components. The tissues and gastrointestinal tract contents were placed into five groups based upon the rate of equilibration. Water in the organs of the body equilibrated with water in blood within 3 min. Water in visceral fat, head, and some of the gastrointestinal tract tissues equilibrated within 8 to 16 min. Water in skeletal muscle, fat, and bone and the contents of some segments of the gastrointestinal tract equilibrated within 30 to 36 min. Water in the tissues and contents of the cecum and upper-large intestine equilibrated within 160 to 200 min. Water in ruminal tissue and contents equilibrated within 480 min

  12. Institutional impediments to using alternative water sources in thermoelectric power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-08-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Obtaining adequate water supplies for cooling and other operations at a reasonable cost is a key factor in siting new and maintaining existing thermoelectric power plant operations. One way to reduce freshwater consumption is to use alternative water sources such as reclaimed (or recycled) water, mine pool water, and other nontraditional sources. The use of these alternative sources can pose institutional challenges that can cause schedule delays, increase costs, or even require plants to abandon their plans to use alternative sources. This report identifies and describes a variety of institutional challenges experienced by power plant owners and operators across the country, and for many of these challenges it identifies potential mitigating approaches. The information comes from publically available sources and from conversations with power plant owners/operators familiar with using alternative sources. Institutional challenges identified in this investigation include, but are not limited to, the following: (1) Institutional actions and decisions that are beyond the control of the power plant. Such actions can include changes in local administrative policies that can affect the use of reclaimed water, inaccurate growth projections regarding the amount of water that will be available when needed, and agency workloads and other priorities that can cause delays in the permitting and approval processes. (2) Developing, cultivating, and maintaining institutional relationships with the purveyor(s) of the alternative water source, typically a municipal wastewater treatment plant (WWTP

  13. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources

    International Nuclear Information System (INIS)

    Sanches, S.; Leitao, C.; Penetra, A.; Cardoso, V.V.; Ferreira, E.; Benoliel, M.J.; Crespo, M.T. Barreto; Pereira, V.J.

    2011-01-01

    Highlights: → Low pressure UV photolysis can be used by drinking water utilities to degrade PAHs. → Real water matrices with different compositions were tested. → Photolysis kinetic parameters and by-product formation are described. → The formation of photolysis by-products is highly dependent on the source waters. - Abstract: The widely used low pressure lamps were tested in terms of their efficiency to degrade polycyclic aromatic hydrocarbons listed as priority pollutants by the European Water Framework Directive and the U.S. Environmental Protection Agency, in water matrices with very different compositions (laboratory grade water, groundwater, and surface water). Using a UV fluence of 1500 mJ/cm 2 , anthracene and benzo(a)pyrene were efficiently degraded, with much higher percent removals obtained when present in groundwater (83-93%) compared to surface water (36-48%). The removal percentages obtained for fluoranthene were lower and ranged from 13 to 54% in the different water matrices tested. Several parameters that influence the direct photolysis of polycyclic aromatic hydrocarbons were determined and their photolysis by-products were identified by mass spectrometry. The formation of photolysis by-products was found to be highly dependent on the source waters tested.

  14. Energy consumption modeling of air source electric heat pump water heaters

    International Nuclear Information System (INIS)

    Bourke, Grant; Bansal, Pradeep

    2010-01-01

    Electric heat pump air source water heaters may provide an opportunity for significant improvements in residential water heater energy efficiency in countries with temperate climates. As the performance of these appliances can vary widely, it is important for consumers to be able to accurately assess product performance in their application to maximise energy savings and ensure uptake of this technology. For a given ambient temperature and humidity, the performance of an air source heat pump water heater is strongly correlated to the water temperature in or surrounding the condenser. It is therefore important that energy consumption models for these products duplicate the real-world water temperatures applied to the heat pump condenser. This paper examines a recently published joint Australian and New Zealand Standard, AS/NZS 4234: 2008; Heated water systems - Calculation of energy consumption. Using this standard a series TRNSYS models were run for several split type air source electric heat pump water heaters. An equivalent set of models was then run utilizing an alternative water use pattern. Unfavorable errors of up to 12% were shown to occur in modeling of heat pump water heater performance using the current standard compared to the alternative regime. The difference in performance of a model using varying water use regimes can be greater than the performance difference between models of product.

  15. [Differences of inherent optical properties of inland lake water body in typical seasons].

    Science.gov (United States)

    Sun, De-Yong; Li, Yun-Mei; Wang, Qiao; Le, Cheng-Fen; Huang, Chang-Chun; Wang, Li-Zhen

    2008-05-01

    Inherent optical property is one of the important properties of water body, which lays the foundation for the establishment of water color analytical models. By using quantity filter technology (QFT) and BB9 backscattering meter, the absorption coefficients of chromophoric dissolved organic matter (CDOM) and total suspended matters (TSM) and the backscattering coefficient of TSM in the water body at Meiliang Bay of Taihu Lake were measured in summer and winter. Based on the spectral comparison of the absorption and backscattering coefficients, their differences between the two seasons were demonstrated, and the reasons that caused these differences were also explored in the context of their relations to the changes in water quality. Consequently, water environment condition could be revealed by using the inherent optical property. The relationship between the backscattering coefficient and the TSM concentration was established, which could provide supporting coefficients to the analytical models to be developed.

  16. POLLUTION SOURCES AND WATER QUALITY STATE OF THE SUPRAŚL RIVER

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2016-04-01

    Full Text Available The main purpose of the study was to evaluate water quality of the Supraśl river and identify its main pollution sources. On the river and its tributaries, 8 control points were selected, located near Krynica, Gródek, Nowosiółki, Zasady (mouth of the tributary Sokołda, Supraśl, Nowodworce, Dobrzyniewo (mouth of the tributary Biała and Dzikie. The control points were selected in such a way as to take into account the impact of major point sources of analyzed components located along the river and its main tributaries on water quality in the main stream catchment. Water samples were collected once a month during the period from May to November in 2014. In water samples the concentration of dissolved oxygen, Cl-, SO42-, N-NH4+, P-PO43- and the values of pH, BOD5 and electrolytic conductivity were indicated. Based on the obtained results, loads of the individual components in river waters were calculated as a product of concentration and Supraśl waters flow rate in a particular month. Supraśl waters, due to values of most analyzed parameters, should be classified as first quality class. The source of Cl-, SO42-, N-NH4+ in Supraśl waters were treated wastewater and other anthropogenic sources associated with the basin development. Reduced Supraśl water quality is caused by the inflow of organic substances expressed by BZT5 from natural and anthropogenic origin and concentration of PO43-, which were mainly delivered with treated wastewater.

  17. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016) Abstract

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  18. Drinking water intake and source patterns within a US-Mexico border population.

    Science.gov (United States)

    Regnier, Adam; Gurian, Patrick; Mena, Kristina D

    2015-01-01

    This study was undertaken to identify water intake and source patterns among a population that resides in a hot, arid region on the US-Mexico border. A cross-sectional community-based survey was conducted among households in the neighbouring cities of El Paso, TX, USA and Ciudad Juárez, Chihuahua, Mexico to obtain data on the quantity and source of water consumed. The study was also designed to identify factors that impact water consumption patterns, including gender, demographics, socio-economic status, cultural characteristics, health status, types of occupations and residences, available water sources and outdoor temperature, among many others. Of all factors studied, outdoor air temperature was found to have the strongest impact upon water intake quantity. Specifically, among the survey participants, when the outdoor air temperature exceeded 90 °F, water consumption increased by 28 %. Additionally, it was found that participants in this region consumed approximately 50 % more water than the values reported in previous studies.

  19. Identification of fecal contamination sources in water using host-associated markers.

    Science.gov (United States)

    Krentz, Corinne A; Prystajecky, Natalie; Isaac-Renton, Judith

    2013-03-01

    In British Columbia, Canada, drinking water is tested for total coliforms and Escherichia coli, but there is currently no routine follow-up testing to investigate fecal contamination sources in samples that test positive for indicator bacteria. Reliable microbial source tracking (MST) tools to rapidly test water samples for multiple fecal contamination markers simultaneously are currently lacking. The objectives of this study were (i) to develop a qualitative MST tool to identify fecal contamination from different host groups, and (ii) to evaluate the MST tool using water samples with evidence of fecal contamination. Singleplex and multiplex polymerase chain reaction (PCR) were used to test (i) water from polluted sites and (ii) raw and drinking water samples for presence of bacterial genetic markers associated with feces from humans, cattle, seagulls, pigs, chickens, and geese. The multiplex MST assay correctly identified suspected contamination sources in contaminated waterways, demonstrating that this test may have utility for heavily contaminated sites. Most raw and drinking water samples analyzed using singleplex PCR contained at least one host-associated marker. Singleplex PCR was capable of detecting host-associated markers in small sample volumes and is therefore a promising tool to further analyze water samples submitted for routine testing and provide information useful for water quality management.

  20. A large mantle water source for the northern San Andreas Fault System: A ghost of subduction past

    Science.gov (United States)

    Kirby, Stephen H.; Wang, Kelin; Brocher, Thomas M.

    2014-01-01

    Recent research indicates that the shallow mantle of the Cascadia subduction margin under near-coastal Pacific Northwest U.S. is cold and partially serpentinized, storing large quantities of water in this wedge-shaped region. Such a wedge probably formed to the south in California during an earlier period of subduction. We show by numerical modeling that after subduction ceased with the creation of the San Andreas Fault System (SAFS), the mantle wedge warmed, slowly releasing its water over a period of more than 25 Ma by serpentine dehydration into the crust above. This deep, long-term water source could facilitate fault slip in San Andreas System at low shear stresses by raising pore pressures in a broad region above the wedge. Moreover, the location and breadth of the water release from this model gives insights into the position and breadth of the SAFS. Such a mantle source of water also likely plays a role in the occurrence of Non-Volcanic Tremor (NVT) that has been reported along the SAFS in central California. This process of water release from mantle depths could also mobilize mantle serpentinite from the wedge above the dehydration front, permitting upward emplacement of serpentinite bodies by faulting or by diapiric ascent. Specimens of serpentinite collected from tectonically emplaced serpentinite blocks along the SAFS show mineralogical and structural evidence of high fluid pressures during ascent from depth. Serpentinite dehydration may also lead to tectonic mobility along other plate boundaries that succeed subduction, such as other continental transforms, collision zones, or along present-day subduction zones where spreading centers are subducting.

  1. Body water handling in response to hypertonic-saline induced diuresis in fasting northern elephant seal pups (Mirounga angustirostris)

    Science.gov (United States)

    Ortiz, Rudy M.; Wade, Charles E.; Ortiz, C. Leo

    2003-01-01

    During natural fasting conditions in postweaned northern elephant seal (NES) (Mirounga angustirostris) pups, urinary water loss is minimized and percent total body water (TBW) is maintained constant. However, following infusion of hypertonic saline, glomerular filtration rate (GFR) and urine output increased in fasting pups. Therefore, we quantified the magnitude of the hypernatremia-induced diuresis relative to the animal's total body water (TBW) pool and the percentage of filtered water reabsorbed. Following a 24 h control period, naturally fasting NES pups (n=7) were infused (4 ml min(-1)) with hypertonic saline (16.7%) at a dose of 3 mmol NaCl kg(-1) body mass. Total body water was estimated prior to infusion by tritium dilution, GFR was estimated by standard creatinine clearance, and urine output (V) was measured for 24 h during the control and post infusion periods. Percentage of filtered water reabsorbed was calculated as (1-(V/GFR))x100. Twenty-four hours following the infusion, GFR (control: 69+/-12 ml min(-1) and post-infusion: 118+/-19 ml min(-1); mean+/-S.E.) increased 77+/-28% above control and the percentage of filtered water reabsorbed was decreased 0.4+/-0.1%. The increase in urine output (control: 218+/-47 ml d(-1) and post-infusion: 883+/-92 ml d(-1)) accounted for 1.7+/-0.2% of the pups' TBW. The hypernatremia-induced diuresis was accompanied by the loss of body water indicating the lack of water retention. Although the 77% increase in GFR was only associated with a 0.4% decrease in the percentage of filtered water reabsorbed, this decrease was significant enough to result in a 4-fold increase in urine output. Despite the observed diuresis, fasting NES pups appear to possess an efficient water recycling mechanism requiring only a small percentage of body water to excrete an excess salt load. This water recycling mechanism may allow pups to avoid negative perturbations in body water as they initiate feeding in a marine environment following the

  2. Estrogen-related receptor gamma disruption of source water and drinking water treatment processes extracts.

    Science.gov (United States)

    Li, Na; Jiang, Weiwei; Rao, Kaifeng; Ma, Mei; Wang, Zijian; Kumaran, Satyanarayanan Senthik

    2011-01-01

    Environmental chemicals in drinking water can impact human health through nuclear receptors. Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects. To date, however, ERR disruption of drinking water potency has not been reported. We used ERRgamma two-hybrid yeast assay to screen ERRgamma disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water from a reservoir, focusing on agonistic, antagonistic, and inverse agonistic activity to 4-hydroxytamoxifen (4-OHT). Water treatment processes in the DWTP consisted of pre-chlorination, coagulation, coal and sand filtration, activated carbon filtration, and secondary chlorination processes. Samples were extracted by solid phase extraction. Results showed that ERRgamma antagonistic activities were found in all sample extracts, but agonistic and inverse agonistic activity to 4-OHT was not found. When calibrated with the toxic equivalent of 4-OHT, antagonistic effluent effects ranged from 3.4 to 33.1 microg/L. In the treatment processes, secondary chlorination was effective in removing ERRgamma antagonists, but the coagulation process led to significantly increased ERRgamma antagonistic activity. The drinking water treatment processes removed 73.5% of ERRgamma antagonists. To our knowledge, the occurrence of ERRgamma disruption activities on source and drinking water in vitro had not been reported previously. It is vital, therefore, to increase our understanding of ERRy disrupting activities in drinking water.

  3. Feasibility study of an aeration treatment system in a raw water storage reservoir used as a potable water source

    OpenAIRE

    Fronk, Robert Charles

    1996-01-01

    The systems engineering process has been utilized to determine the feasibility of an aeration treatment system for a raw water storage reservoir used as a potable water source. This system will be used to ensure a consistently high quality of raw water by the addition of dissolved oxygen into the reservoir. A needs analysis establishes the importance and requirements for a consistently high quality of raw water used as a source for a potable water treatment facility. This s...

  4. Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies' Functions.

    Science.gov (United States)

    Yao, Hong; You, Zhen; Liu, Bo

    2016-01-22

    The number of surface water pollution accidents (abbreviated as SWPAs) has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies' functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident's origin and other indirect losses. In the valuation of damage to people's life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water's recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole.

  5. Identification of sources and mechanisms of salt-water pollution ground-water quality

    International Nuclear Information System (INIS)

    Richter, B.C.; Dutton, A.R.; Kreitler, C.W.

    1990-01-01

    This book reports on salinization of soils and ground water that is widespread in the Concho River watershed and other semiarid areas in Texas and the United States. Using more than 1,200 chemical analyses of water samples, the authors were able to differentiate various salinization mechanisms by mapping salinity patterns and hydrochemical facies and by analyzing isotopic compositions and ionic ratios. Results revealed that in Runnels County evaporation of irrigation water and ground water is a major salinization mechanism, whereas to the west, in Irion and Tom Green Counties, saline water appears to be a natural mixture of subsurface brine and shallowly circulating meteoric water recharged in the Concho River watershed. The authors concluded that the occurrence of poor-quality ground water is not a recent or single-source phenomenon; it has been affected by terracing of farmland, by disposal of oil-field brines into surface pits, and by upward flow of brine from the Coleman Junction Formation via insufficiently plugged abandoned boreholes

  6. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Source Policies

    Energy Technology Data Exchange (ETDEWEB)

    Harto, C. B. [Argonne National Lab. (ANL), Argonne, IL (United States); Schroeder, J. N. [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, R. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Patton, T. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Durham, L. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Murphy, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Clark, C. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel–based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  7. Estimates of water source contributions in a dynamic urban water supply system inferred via a Bayesian stable isotope mixing model

    Science.gov (United States)

    Jameel, M. Y.; Brewer, S.; Fiorella, R.; Tipple, B. J.; Bowen, G. J.; Terry, S.

    2017-12-01

    Public water supply systems (PWSS) are complex distribution systems and critical infrastructure, making them vulnerable to physical disruption and contamination. Exploring the susceptibility of PWSS to such perturbations requires detailed knowledge of the supply system structure and operation. Although the physical structure of supply systems (i.e., pipeline connection) is usually well documented for developed cities, the actual flow patterns of water in these systems are typically unknown or estimated based on hydrodynamic models with limited observational validation. Here, we present a novel method for mapping the flow structure of water in a large, complex PWSS, building upon recent work highlighting the potential of stable isotopes of water (SIW) to document water management practices within complex PWSS. We sampled a major water distribution system of the Salt Lake Valley, Utah, measuring SIW of water sources, treatment facilities, and numerous sites within in the supply system. We then developed a hierarchical Bayesian (HB) isotope mixing model to quantify the proportion of water supplied by different sources at sites within the supply system. Known production volumes and spatial distance effects were used to define the prior probabilities for each source; however, we did not include other physical information about the supply system. Our results were in general agreement with those obtained by hydrodynamic models and provide quantitative estimates of contributions of different water sources to a given site along with robust estimates of uncertainty. Secondary properties of the supply system, such as regions of "static" and "dynamic" source (e.g., regions supplied dominantly by one source vs. those experiencing active mixing between multiple sources), can be inferred from the results. The isotope-based HB isotope mixing model offers a new investigative technique for analyzing PWSS and documenting aspects of supply system structure and operation that are

  8. Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water sources

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset shows the concentration of cyanobacteria cells/ml in fresh water bodies and estuaries of the Ohio and Florida derived from 300x300 meter MEdium...

  9. The lower body muscle activation of intermediate to experienced kayakers when navigating white water.

    Science.gov (United States)

    Murtagh, Misha; Brooks, Darrell; Sinclair, Jonathan; Atkins, Stephen

    2016-11-01

    In white-water kayaking, the legs play a vital part in turning, stabilising and bracing actions. To date, there has been no reported information on neuromuscular activation of the legs in an authentic white-water environment. The aim of the current study was to identify lower body muscle activation, using 'in-boat' electromyography (EMG), whilst navigating a white-water run. Ten experienced male kayakers (age 31.5 ± 12.5 yr, intermediate to advanced experience) completed three successful runs of an international standard white-water course (grade 3 rapids), targeting right and left sides of the course, in a zigzag formation. Surface EMG (sEMG) outputs were generated, bilaterally, for the rectus femoris (RF), vastus lateralis, biceps femoris and gastrocnemius, expressed as a percentage of a dynamic maximal voluntary contraction (dMVC). Only RF showed significantly higher activation than any muscle on the left side of the body, and only on the left side of the course (P = .004; ETA(2) = 0.56). Other results showed no significant difference between muscle activation in the right and left legs during each run, nor when assessed at either the right or left side of the course (P > .05). These findings indicate that contralateral symmetry in lower limb muscle activation is evident during white-water kayaking. This symmetry may provide a stable base to allow more asymmetrical upper body and trunk movements to be fully optimised. Lower body symmetry development should be considered useful in targeted training programmes for white-water kayakers.

  10. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    Science.gov (United States)

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).

  11. The Historical Distribution of Main Malaria Foci in Spain as Related to Water Bodies

    Directory of Open Access Journals (Sweden)

    Arturo Sousa

    2014-08-01

    Full Text Available The possible connectivity between the spatial distribution of water bodies suitable for vectors of malaria and endemic malaria foci in Southern Europe is still not well known. Spain was one of the last countries in Western Europe to be declared free of malaria by the World Health Organization (WHO in 1964. This study combines, by means of a spatial-temporal analysis, the historical data of patients and deceased with the distribution of water bodies where the disease-transmitting mosquitos proliferate. Therefore, data from historical archives with a Geographic Information System (GIS, using the Inverse Distance Weighted (IDW interpolation method, was analyzed with the aim of identifying regional differences in the distribution of malaria in Spain. The reasons, why the risk of transmission is concentrated in specific regions, are related to worse socioeconomic conditions (Extremadura, the presence of another vector (Anopheles labranchiae besides A. atroparvus (Levante or large areas of water bodies in conditions to reproduce theses vectors (La Mancha and Western Andalusia. In the particular case of Western Andalusia, in 1913, the relatively high percentage of 4.73% of the surface, equal to 202362 ha, corresponds to wetlands and other unhealthy water bodies. These wetlands have been reduced as a result of desiccation policies and climate change such as the Little Ice Age and Global Climate Change. The comprehension of the main factors of these wetland changes in the past can help us interpret accurately the future risk of malaria re-emergence in temperate latitudes, since it reveals the crucial role of unhealthy water bodies on the distribution, endemicity and eradication of malaria in southern Europe.

  12. Bacteriological assessment of urban water sources in Khamis Mushait Governorate, southwestern Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Sh AlOtaibi Eed L

    2009-03-01

    Full Text Available Abstract Background Urban water sources of Khamis Mushait Governorate, southwestern Saudi Arabia, were studied to assess their bacteriological characteristics and suitability for potable purposes. A cross-sectional epidemiological method was adopted to investigate the four main urban water sources (i.e. bottled, desalinated, surface, and well water. These were sampled and examined between February and June 2007. Results A total of 95 water samples from bottled, desalinated, surface, and well water were collected randomly from the study area using different gathering and analysing techniques. The bacteriological examination of water samples included the most probable number of presumptive coliforms, faecal coliforms, and faecal streptococci (MPN/100 ml. The results showed that the total coliform count (MPN/100 ml was not detected in any samples taken from bottled water, while it was detected in those taken from desalinated, surface, and well water: percentages were 12.9, 80.0, and 100.0, respectively. Faecal coliforms were detected in desalinated, surface, and well water, with percentages of 3.23, 60.0 and 87.88, respectively. About 6.45% of desalinated water, 53.33% of surface water, and 57.58% of well water was found positive for faecal streptococci. Colonies of coliforms were identified in different micro-organisms with various percentages. Conclusion Water derived from traditional sources (wells showed increases in most of the investigated bacteriological parameters, followed by surface water as compared to bottled or desalinated water. This may be attributed to the fact that well and surface water are at risk of contamination as indicated by the higher levels of most bacteriological parameters. Moreover, well water is exposed to point sources of pollution such as septic wells and domestic and farming effluents, as well as to soil with a high humus content. The lower bacteriological characteristics in samples from bottled water indicate that

  13. Biofilm in water pipelines; a potential source for off-flavours in the drinking water.

    Science.gov (United States)

    Skjevrak, I; Lund, V; Ormerod, K; Due, A; Herikstad, H

    2004-01-01

    Volatile organic compounds (VOC) are identified in natural biofilm established in plastic pipes used at the drinking water supply. Odour potent VOCs such as ectocarpene, dictyopterene A and C', geosmin, beta-ionone, 6-methyl-5-hepten-2-one, menthol and menthone were prominent compounds in biofilm in the distribution network and at raw water test sites, and are associated with algae and cyanobacteria present in the raw water source.

  14. Gas Well Top Hole Locations, LP and LNG - Marcellus Gas Well Water Sources View

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains all approved water sources within water managment plans (WMP). A WMP contains water sources utilized in the fracture stimulation of Marcellus...

  15. Water: from the source to the treatment plan

    Science.gov (United States)

    Marquet, V.; Baude, I.

    2012-04-01

    As a biology and geology teacher, I have worked on water, from the source to the treatment plant, with pupils between 14 and 15 years old. Lesson 1. Introduction, the water in Vienna Aim: The pupils have to consider why the water is so important in Vienna (history, economy etc.) Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2. Soil, rock and water Aim: Permeability/ impermeability of the different layers of earth Activities: The pupils have measure the permeability and porosity of different stones: granite, clay, sand, carbonate and basalt. Lesson 3. Relationship between water's ion composition and the stone's mineralogy Aim: Each water source has the same ion composition as the soil where the water comes from. Activities: Comparison between the stone's mineralogy and ions in water. They had a diagram with the ions of granite, clay, sand, carbonate and basalt and the label of different water. They had to make hypotheses about the type of soil where the water came from. They verified this with a geology map of France and Austria. They have to make a profile of the area where the water comes from. They had to confirm or reject their hypothesis. Lesson 4 .Water-catchment and reservoir rocks Aim: Construction of a confined aquifer and artesian well Activities: With sand, clay and a basin, they have to model a confined aquifer and make an artesian well, using what they have learned in lesson 2. Lesson 5. Organic material breakdown and it's affect on the oxygen levels in an aquatic ecosystem Aim: Evaluate the relationship between oxygen levels and the amount of organic matter in an aquatic ecosystem. Explain the relationship between oxygen levels, bacteria and the breakdown of organic matter using an indicator solution. Activities: Put 5 ml of a different water sample in each tube with 20 drops of methylene blue. Observe the tubes after 1 month. Lesson 6. Visit to the biggest water treatment plant in

  16. Satellite monitoring at high spatial resolution of water bodies used for irrigation purposes

    Science.gov (United States)

    Baup, F.; Flanquart, S.; Marais-Sicre, C.; Fieuzal, R.

    2012-04-01

    In a changing climate context, with an increase of the need for food, it becomes increasingly important to improve our knowledge for monitoring agricultural surfaces by satellite for a better food management and to reduce the waste of natural resources (water storages and shortages, irrigation management, increase of soil and water salinity, soil erosion, threats on biodiversity). The main objective of this study is to evaluate the potentialities of multi-spectral and multi-resolution satellites for monitoring the temporal evolution of water bodies surfaces (mainly used for irrigation purposes). This analysis is based on the use of a series of images acquired between the years 2003 and 2011. The year 2010 is considered as a reference, with 110 acquisitions performed during the MCM'10 campaign (Multispectral Crop Monitoring 2010, http://www.cesbio.ups-tlse.fr/us/mcm.html). Those images are provided by 8 satellites (optical, thermal and RADAR) such as ALOS, TERRASAR-X, RADARSAT-2, FORMOSAT-2, SPOT-2, SPOT-4, SPOT-5, LANDSAT-5. The studied area is situated in the South-West of Toulouse in France; in a region governed by a temperate climate. The irrigated cultures represent almost 12% of the cultivated surface in 2009. The method consists in estimating the water bodies surfaces by using a generic approach suitable for all images, whatever the wavelength (optical, infrared, RADAR). The supervised parallelepiped classification allows discriminating four types of surfaces coverage: forests, water expanses, crops and bare soils. All RADAR images are filtered (Gamma) to reduce speckle effects and false detections of water bodies. In the context if the "South-West" project of the CESBIO laboratory, two spatial coverages are analyzed: SPOT 4 (4800km2) and FORMOSAT 2 (576km2). At these scales, 154 and 38 water bodies are identify. They respectively represent 4.85 km2 (0.10% of the image cover) and 2.06 km2 (0.36% of the image cover). Statistical analyses show that 8% of lakes

  17. Sources of water column methylmercury across multiple estuaries in the Northeast U.S.

    Science.gov (United States)

    Balcom, Prentiss H; Schartup, Amina T; Mason, Robert P; Chen, Celia Y

    2015-12-20

    Estuarine water column methylmercury (MeHg) is an important driver of mercury (Hg) bioaccumulation in pelagic organisms and thus it is necessary to understand the sources and processes affecting environmental levels of MeHg. Increases in water column MeHg concentrations can ultimately be transferred to fish consumed by humans, but despite this, the sources of MeHg to the estuarine water column are still poorly understood. Here we evaluate MeHg sources across 4 estuaries and 10 sampling sites and examine the distributions and partitioning of sediment and water column MeHg across a geographic range (Maine to New Jersey). Our study sites present a gradient in the concentrations of sediment, pore water and water column Hg species. Suspended particle MeHg ranged from below detection to 187 pmol g -1 , dissolved MeHg from 0.01 to 0.68 pM, and sediment MeHg from 0.01 to 109 pmol g -1 . Across multiple estuaries, dissolved MeHg correlated with Hg species in the water column, and sediment MeHg correlated with sediment total Hg (HgT). Water column MeHg did not correlate well with sediment Hg across estuaries, indicating that sediment concentrations were not a good predictor of water MeHg concentrations. This is an unexpected finding since it has been shown that MeHg production from inorganic Hg 2+ within sediment is the primary source of MeHg to coastal waters. Additional sources of MeHg regulate water column MeHg levels in some of the shallow estuaries included in this study.

  18. Body water distribution and risk of cardiovascular morbidity and mortality in a healthy population

    DEFF Research Database (Denmark)

    Knudsen, Nikoline Nygård; Kjærulff, Thora Majlund; Ward, Leigh Cordwin

    2014-01-01

    Early alterations in the cardiovascular structure and function may change normal body water distribution. The resulting fluid shifts may thus serve as an early marker for cardiovascular disease. However, studies examining this in healthy populations are absent.......Early alterations in the cardiovascular structure and function may change normal body water distribution. The resulting fluid shifts may thus serve as an early marker for cardiovascular disease. However, studies examining this in healthy populations are absent....

  19. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA.

    Science.gov (United States)

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2017-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history. Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Results indicated that arsenic and uranium concentrations exceeded national drinking water standards in 15.1 % (arsenic) and 12.8 % (uranium) of tested water sources. Unregulated sources in close proximity (i.e., within 6 km) to abandoned uranium mines yielded significantly higher concentrations of arsenic or uranium than more distant sources. The demonstrated regional trends for potential co-exposure to these chemicals have implications for public policy and future research. Specifically, to generate solutions that reduce human exposure to water pollution from unregulated sources in rural areas, the potential for co-exposure to arsenic and uranium requires expanded documentation and examination. Recommendations for prioritizing policy and research decisions related to the documentation of existing health exposures and risk reduction strategies are also provided.

  20. Infrared and Raman Spectroscopy of Liquid Water through "First-Principles" Many-Body Molecular Dynamics.

    Science.gov (United States)

    Medders, Gregory R; Paesani, Francesco

    2015-03-10

    Vibrational spectroscopy is a powerful technique to probe the structure and dynamics of water. However, deriving an unambiguous molecular-level interpretation of the experimental spectral features remains a challenge due to the complexity of the underlying hydrogen-bonding network. In this contribution, we present an integrated theoretical and computational framework (named many-body molecular dynamics or MB-MD) that, by systematically removing uncertainties associated with existing approaches, enables a rigorous modeling of vibrational spectra of water from quantum dynamical simulations. Specifically, we extend approaches used to model the many-body expansion of interaction energies to develop many-body representations of the dipole moment and polarizability of water. The combination of these "first-principles" representations with centroid molecular dynamics simulations enables the simulation of infrared and Raman spectra of liquid water under ambient conditions that, without relying on any ad hoc parameters, are in good agreement with the corresponding experimental results. Importantly, since the many-body energy, dipole, and polarizability surfaces employed in the simulations are derived independently from accurate fits to correlated electronic structure data, MB-MD allows for a systematic analysis of the calculated spectra in terms of both electronic and dynamical contributions. The present analysis suggests that, while MB-MD correctly reproduces both the shifts and the shapes of the main spectroscopic features, an improved description of quantum dynamical effects possibly combined with a dissociable water potential may be necessary for a quantitative representation of the OH stretch band.

  1. Water sources accessed by arid zone riparian trees in highly saline environments, Australia.

    Science.gov (United States)

    Costelloe, Justin F; Payne, Emily; Woodrow, Ian E; Irvine, Elizabeth C; Western, Andrew W; Leaney, Fred W

    2008-05-01

    The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees-soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using delta(18)O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000-30,000 mg L(-1).

  2. Environmental Survey of Drinking Water Sources in Kampala, Uganda, during a Typhoid Fever Outbreak.

    Science.gov (United States)

    Murphy, J L; Kahler, A M; Nansubuga, I; Nanyunja, E M; Kaplan, B; Jothikumar, N; Routh, J; Gómez, G A; Mintz, E D; Hill, V R

    2017-12-01

    In 2015, a typhoid fever outbreak began in downtown Kampala, Uganda, and spread into adjacent districts. In response, an environmental survey of drinking water source types was conducted in areas of the city with high case numbers. A total of 122 samples was collected from 12 source types and tested for Escherichia coli , free chlorine, and conductivity. An additional 37 grab samples from seven source types and 16 paired large volume (20 liter) samples from wells and springs were also collected and tested for the presence of Salmonella enterica serovar Typhi. Escherichia coli was detected in 60% of kaveras (drinking water sold in plastic bags) and 80% of refilled water bottles; free chlorine was not detected in either source type. Most jerry cans (68%) contained E. coli and had free chlorine residuals below the WHO-recommended level of 0.5 mg/liter during outbreaks. Elevated conductivity readings for kaveras, refilled water bottles, and jerry cans (compared to treated surface water supplied by the water utility) suggested that they likely contained untreated groundwater. All unprotected springs and wells and more than 60% of protected springs contained E. coli Water samples collected from the water utility were found to have acceptable free chlorine levels and no detectable E. coli While S Typhi was not detected in water samples, Salmonella spp. were detected in samples from two unprotected springs, one protected spring, and one refilled water bottle. These data provided clear evidence that unregulated vended water and groundwater represented a risk for typhoid transmission. IMPORTANCE Despite the high incidence of typhoid fever globally, relatively few outbreak investigations incorporate drinking water testing. During waterborne disease outbreaks, measurement of physical-chemical parameters, such as free chlorine residual and electrical conductivity, and of microbiological parameters, such as the presence of E. coli or the implicated etiologic agent, in drinking

  3. The effect of heat stress and other factors on total body water and some blood constituents in lactating goats

    International Nuclear Information System (INIS)

    Haggag, A.M.A.

    1988-01-01

    Goats mostly live in the desert or semidesert areas in egypt. Such areas are under adverse environmental conditions. They represent indispensable source of meat and milk for the natives of these areas . Few studies are carried out on goats in connection with their biochemical and physiological response to the high environmental temperature. The present investigation carried out was constructed to study the state of heat stress(35 C and 25% ) in nine Baladi lactating goats as compared with the reactions under mild conditions (15 C and 50% RH). Animals were Kept under each of these controlled conditions for 7 days - eight hours / day. The study included blood haemoglobin level, erythrocyte count, haematocrit value, serum activity of alkaline and acid phosphatases, creatinine, urea and prolactin. The effect of heat stress on body water content and water turnover rate using tritiated water diulation technique was studied

  4. Bacteriological investigation of ground water sources in selected ...

    African Journals Online (AJOL)

    cml

    2012-06-16

    Jun 16, 2012 ... Microbial contamination of ground water sources is a common problem in all the big cities, which endangers ... include leakage of pipes, pollution from sewerage pipes ..... and Quality Control Authority, Karachi, Pakistan.

  5. Tracing the source and fate of nitrate in contemporary mixed land-use surface water systems

    Science.gov (United States)

    Stewart, S. D.; Young, M. B.; Horton, T. W.; Harding, J. S.

    2011-12-01

    Nitrogenous fertilizers increase agricultural productivity, ultimately feeding the planet. Yet, it is possible to have too much of a good thing, and nitrogen is no exception. When in excess nitrogen has been shown to accelerate eutrophication of water bodies, and act as a chronic toxin (e.g. methemoglobinemia). As land-use intensity continues to rise in response to increases in agricultural productivity, the risk of adverse effects of nitrogen loading on surface water bodies will also increase. Stable isotope proxies are potential tracers of nitrate, the most common nitrogenous phase in surface waters. Applying stable isotope proxies therefore presents an opportunity to identify and manage sources of excess nitrogen before aquatic systems are severely degraded. However, the heterogeneous nature of potential pollution sources themselves, and their distribution with a modified catchment network, make understanding this issue highly complex. The Banks Peninsula, an eroded late tertiary volcanic complex located on the east coast of the South Island New Zealand, presents a unique opportunity to study and understand the sources and fates of nitrate within streams in a contemporary mixed land-use setting. Within this small geographic area there a variety of agricultural activities are practiced, including: heavily fertilized golf courses; stands of regenerating native forest; and areas of fallow gorse (Ulex europaeus; a invasive N-fixing shrub). Each of these landuse classes has its own unique nitrogen budget. Multivariate analysis was used on stream nitrate concentrations to reveal that stream reaches dominated by gorse had significantly higher nitrate concentrations than other land-use classes. Nitrate δ15N & δ18O data from these sites show strong covariance, plotting along a distinct fractionation line (r2 = 0.96). This finding facilitates interpretation of what processes are controlling nitrate concentration within these systems. Further, complementary aquatic

  6. Functional groups in North Chilean desert shrub species, based on the water sources used

    International Nuclear Information System (INIS)

    Squeo, Francisco A; Olivares, Nancy; Olivares, Sandra; Jorquera, Carmen; Pollastri, Alberto; Aguirre, Evelyn; Aravena, Ramon; Ehleringer, James R

    1999-01-01

    Primary productivity and vegetation structure in arid ecosystems are determined by water availability. In studies conducted in the coastal dry land of North Central Chile (29 degrees 43'S; 71degrees 14'0, 300m), the mechanisms to use different water sources by shrubs species, in two contrasting rainfall years were compared. Information on pheno logical studies, root architecture and water sources used by shrubs through the use of stable isotopes is are discussed. Six functional groups based on water uptake and water use are recognized. The functional groups were defined based on their habits (deciduous and evergreen), their root systems, (shallow, dimorphic and deep), and their ability to use different water sources (surficial and/or deep). Because of the differential impact of the goat overgrazing on different functional groups, this would result on a lower utilization of surficial waters. A management and/or restoration plan should maximize the use of all water sources available to recover the primary productivity and the system stability

  7. A case study characterizing animal fecal sources in surface water using a mitochondrial DNA marker.

    Science.gov (United States)

    Bucci, John P; Shattuck, Michelle D; Aytur, Semra A; Carey, Richard; McDowell, William H

    2017-08-01

    Water quality impairment by fecal waste in coastal watersheds is a public health issue. The present study provided evidence for the use of a mitochondrial (mtDNA) marker to detect animal fecal sources in surface water. The accurate identification of fecal pollution is based on the notion that fecal microorganisms preferentially inhabit a host animal's gut environment. In contrast, mtDNA host-specific markers are inherent to eukaryotic host cells, which offers the advantage by detecting DNA from the host rather than its fecal bacteria. The present study focused on sampling water presumably from non-point sources (NPS), which can increase bacterial and nitrogen concentrations to receiving water bodies. Stream sampling sites located within the Piscataqua River Watershed (PRW), New Hampshire, USA, were sampled from a range of sites that experienced nitrogen inputs such as sewer and septic systems and suburban runoff. Three mitochondrial (mtDNA) gene marker assays (human, bovine, and canine) were tested from surface water. Nineteen sites were sampled during an 18-month period. Analyses of the combined single and multiplex assay results showed that the proportion of occurrence was highest for bovine (15.6%; n = 77) compared to canine (5.6%; n = 70) and human (5.7%; n = 107) mtDNA gene markers. For the human mtDNA marker, there was a statistically significant relationship between presence vs. absence and land use (Fisher's test p = 0.0031). This result was evident particularly for rural suburban septic, which showed the highest proportion of presence (19.2%) compared to the urban sewered (3.3%), suburban sewered (0%), and agricultural (0%) as well as forested septic (0%) sites. Although further testing across varied land use is needed, our study provides evidence for using the mtDNA marker in large watersheds.

  8. Multiple Household Water Sources and Their Use in Remote Communities With Evidence From Pacific Island Countries

    Science.gov (United States)

    Elliott, Mark; MacDonald, Morgan C.; Chan, Terence; Kearton, Annika; Shields, Katherine F.; Bartram, Jamie K.; Hadwen, Wade L.

    2017-11-01

    Global water research and monitoring typically focus on the household's "main source of drinking-water." Use of multiple water sources to meet daily household needs has been noted in many developing countries but rarely quantified or reported in detail. We gathered self-reported data using a cross-sectional survey of 405 households in eight communities of the Republic of the Marshall Islands (RMI) and five Solomon Islands (SI) communities. Over 90% of households used multiple sources, with differences in sources and uses between wet and dry seasons. Most RMI households had large rainwater tanks and rationed stored rainwater for drinking throughout the dry season, whereas most SI households collected rainwater in small pots, precluding storage across seasons. Use of a source for cooking was strongly positively correlated with use for drinking, whereas use for cooking was negatively correlated or uncorrelated with nonconsumptive uses (e.g., bathing). Dry season water uses implied greater risk of water-borne disease, with fewer (frequently zero) handwashing sources reported and more unimproved sources consumed. Use of multiple sources is fundamental to household water management and feasible to monitor using electronic survey tools. We contend that recognizing multiple water sources can greatly improve understanding of household-level and community-level climate change resilience, that use of multiple sources confounds health impact studies of water interventions, and that incorporating multiple sources into water supply interventions can yield heretofore-unrealized benefits. We propose that failure to consider multiple sources undermines the design and effectiveness of global water monitoring, data interpretation, implementation, policy, and research.

  9. Abundance and diversity of Odonata in temporary water bodies of Coimbatore and Salem districts in Tamil Nadu

    Directory of Open Access Journals (Sweden)

    R. Arulprakash

    2010-07-01

    Full Text Available Odonata diversity was assessed in 13 temporary water bodies of Coimbatore and Salem districts in Tamil Nadu. Assessment revealed the presence of 21 species of Odonata (14 species of Anisoptera and seven species of Zygoptera belonging to 17 genera under four families. Libellulidae (Anisoptera was represented by the maximum number of species and individuals. Pantala flavescens (Libellulidae was the most abundant among 21 species. Among the temporary water bodies, the maximum number of individuals as well as species was recorded from Utkulam tank (Coimbatore district. Odonata diversity was higher in Kamalapuram tanks 1 and 2 (Salem district and lower in Ukkadam tank (Coimbatore District. Diplacodes trivialis (Rambur, Orthetrum sabina (Drury and Pantala flavescens (Fabricius were identified as temporary water body specialists because of their presence in all the 13 temporary water bodies sampled.

  10. Family dinner frequency, settings and sources, and body weight in US adults.

    Science.gov (United States)

    Sobal, Jeffery; Hanson, Karla

    2014-07-01

    Contemporary families and food systems are both becoming more dynamic and complex, and current associations between adult family meals and body mass index (BMI) are not well understood. This investigation took a new approach by examining diverse settings and sources of food for family dinners in relationship to BMI in a cross-sectional nationally representative survey of 360 US adults age 18-85 living with family members. In this sample, 89% of adults ate family dinners at least 5 days per week and almost all ate family dinners cooked and eaten at home. About half of these adults also ate family dinners at restaurants, fast food places, or ate takeout food at home, and less common were family dinners at homes of relatives or friends. Family dinners eaten at fast food places, but not other settings or sources, were significantly associated with higher BMI. Overall, adult family dinners were commonplace, usually involved home cooking, and when at fast food places may be related with higher adult body weights. Copyright © 2014. Published by Elsevier Ltd.

  11. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.

  12. Tritium water as a marker for the measurement of body water turnover rates in desert livestock, rodent and bird species

    International Nuclear Information System (INIS)

    Khan, M.S.; Ghosh, P.K.; Bohra, R.C.

    1990-01-01

    Tritiated water has been used for estimating body water turnover rates (BWTRs) in desert livestock, rodent and birds. BWTRs in relation to adaption of these animal species to desert environment have been discussed. (author). 5 refs., 2 tabs

  13. A source of ground water 222Rn around Tachikawa fault

    International Nuclear Information System (INIS)

    Saito, Masaaki; Takata, Sigeru

    1994-01-01

    Radon ( 222 Rn) concentration in ground water was characteristically high on the south-western zone divided by the Tachikawa fault, Tokyo. (1) The concentration did not increase with depth, and alluvium is thick on the zone. The source of radon was not considered as the updraft from base rock through the fault. Comparing the south-western zone with its surrounding zone, the followings were found. (2) The distribution of tritium concentration was supported that water had easily permeated into ground on the zone. (3) As the zone is located beside the Tama River and its alluvial fan center, the river water had likely affected. The source of radon on the zone would be 226 Ra in the aquifer soil. It can be presumed that the water of the Tama River had permeated into ground on the zone and had accumulated 226 Ra. (author)

  14. Drinking water sources, availability, quality, access and utilization for goats in the Karak Governorate, Jordan.

    Science.gov (United States)

    Al-Khaza'leh, Ja'far Mansur; Reiber, Christoph; Al Baqain, Raid; Valle Zárate, Anne

    2015-01-01

    Goat production is an important agricultural activity in Jordan. The country is one of the poorest countries in the world in terms of water scarcity. Provision of sufficient quantity of good quality drinking water is important for goats to maintain feed intake and production. This study aimed to evaluate the seasonal availability and quality of goats' drinking water sources, accessibility, and utilization in different zones in the Karak Governorate in southern Jordan. Data collection methods comprised interviews with purposively selected farmers and quality assessment of water sources. The provision of drinking water was considered as one of the major constraints for goat production, particularly during the dry season (DS). Long travel distances to the water sources, waiting time at watering points, and high fuel and labor costs were the key reasons associated with the problem. All the values of water quality (WQ) parameters were within acceptable limits of the guidelines for livestock drinking WQ with exception of iron, which showed slightly elevated concentration in one borehole source in the DS. These findings show that water shortage is an important problem leading to consequences for goat keepers. To alleviate the water shortage constraint and in view of the depleted groundwater sources, alternative water sources at reasonable distance have to be tapped and monitored for water quality and more efficient use of rainwater harvesting systems in the study area is recommended.

  15. Sprectroradiometric characteristics of inland water bodies infestated by Oscillatoria rubescens algae

    Science.gov (United States)

    Ciraolo, Giuseppe; La Loggia, Goffredo; Maltese, Antonino

    2010-10-01

    In December 2006 blooms of Oscillatoria rubescens were found in the reservoir Prizzi in Sicily. Oscillatoria is a genus of filamentous alga comprising approximately 6 species, between these the O. rubescens is sadly famous since this organism produces microcystins which are powerful hepatotoxins. Firstly found in Europe in 1825 on Geneva lake, recently (2006) those algae has been find out in Pozzillo, Nicoletti e Ancipa reservoirs (Enna Province), as well as in Prizzi (Palermo Province) and Garcia reservoirs (Trapani Province). Toxins produced by those bacteria (usually called microcystine LR-1 and LR-2) are highly toxic since they can activate oncogenes cells causing cancer pathologies on liver and gastrointestinal tract. Even if water treatment plants should ensure the provision of safe drinking water from surface waters contaminated with those toxic algae blooms, the contamination of reservoirs used for civil and agricultural supply highlights human health risks. International literature suggests a threshold value of 0.01 μgl-1 to avoid liver cancer using water coming from contaminated water bodies for a long period. Since O. rubescens activities is strongly related to phosphate and nitrogen compounds as well as to temperature and light transmission within water, the paper presents the comparison between optical properties of the water of an infested reservoir and those of a reservoir characterized by clear water. Field campaigns were carried out in February-March 2008 in order to quantify the spectral transparencies of two water bodies through the calculation of the diffuse attenuation coefficient, measuring underwater downwelling irradiance at different depths as well as water spectral reflectance. Results show that diffuse attenuation coefficient is reduced by approximately 15% reducing light penetration in the water column; coherently reflectance spectral signature generally decreases, exhibiting a characteristic peak around 703 nm not present in

  16. Simulation of heavy metal contamination of fresh water bodies: toxic ...

    African Journals Online (AJOL)

    Michael Horsfall

    www.bioline.org.br/ja. Simulation of heavy metal contamination of fresh water bodies: toxic effects in the ... 96 hours (though sampling was done at the 48th hour). Biochemical markers of ... silver, while enhancing the bioavailability of mercury in Ceriodaphnia ..... Biochemical and molecular disorders of bilirubin metabolism.

  17. Seasonal Variation in Drinking and Domestic Water Sources and Quality in Port Harcourt, Nigeria

    Science.gov (United States)

    Kumpel, Emily; Cock-Esteb, Alicea; Duret, Michel; de Waal, Dominick; Khush, Ranjiv

    2017-01-01

    We compared dry and rainy season water sources and their quality in the urban region of Port Harcourt, Nigeria. Representative sampling indicated that municipal water supplies represent < 1% of the water sources. Residents rely on privately constructed and maintained boreholes that are supplemented by commercially packaged bottled and sachet drinking water. Contamination by thermotolerant coliforms increased from 21% of drinking water sources in the dry season to 42% of drinking water sources in the rainy season (N = 356 and N = 397). The most significant increase was in sachet water, which showed the lowest frequencies of contamination in the dry season compared with other sources (15%, N = 186) but the highest frequencies during the rainy season (59%, N = 76). Only half as many respondents reported drinking sachet water in the rainy season as in the dry season. Respondents primarily used flush or pour-flush toilets connected to septic tanks (85%, N = 399). The remainder relied on pit latrines and hanging (pier) latrines that drained into surface waters. We found significant associations between fecal contamination in boreholes and the nearby presence of hanging latrines. Sanitary surveys of boreholes showed that more than half were well-constructed, and we did not identify associations between structural or site deficiencies and microbial water quality. The deterioration of drinking water quality during the rainy season is a serious public health risk for both untreated groundwater and commercially packaged water, highlighting a need to address gaps in monitoring and quality control. PMID:27821689

  18. The validation of organ dose calculations using voxel phantoms and Monte Carlo methods applied to point and water immersion sources.

    Science.gov (United States)

    Hunt, J G; da Silva, F C A; Mauricio, C L P; dos Santos, D S

    2004-01-01

    The Monte Carlo program 'Visual Monte Carlo-dose calculation' (VMC-dc) uses a voxel phantom to simulate the body organs and tissues, transports photons through this phantom and reports the absorbed dose received by each organ and tissue relevant to the calculation of effective dose as defined in ICRP Publication 60. This paper shows the validation of VMC-dc by comparison with EGSnrc and with a physical phantom containing TLDs. The validation of VMC-dc by comparison with EGSnrc was made for a collimated beam of 0.662 MeV photons irradiating a cube of water. For the validation by comparison with the physical phantom, the case considered was a whole body irradiation with a point 137Cs source placed at a distance of 1 m from the thorax of an Alderson-RANDO phantom. The validation results show good agreement for the doses obtained using VMC-dc and EGSnrc calculations, and from VMC-dc and TLD measurements. The program VMC-dc was then applied to the calculation of doses due to immersion in water containing gamma emitters. The dose conversion coefficients for water immersion are compared with their equivalents in the literature.

  19. The validation of organ dose calculations using voxel phantoms and Monte Carlo methods applied to point and water immersion sources

    International Nuclear Information System (INIS)

    Hunt, J. G.; Da Silva, F. C. A.; Mauricio, C. L. P.; Dos Santos, D. S.

    2004-01-01

    The Monte Carlo program 'Visual Monte Carlo-dose calculation' (VMC-dc) uses a voxel phantom to simulate the body organs and tissues, transports photons through this phantom and reports the absorbed dose received by each organ and tissue relevant to the calculation of effective dose as defined in ICRP Publication 60. This paper shows the validation of VMC-dc by comparison with EGSnrc and with a physical phantom containing TLDs. The validation of VMC-dc by comparison with EGSnrc was made for a collimated beam of 0.662 MeV photons irradiating a cube of water. For the validation by comparison with the physical phantom, the case considered was a whole body irradiation with a point 137 Cs source placed at a distance of 1 m from the thorax of an Alderson-RANDO phantom. The validation results show good agreement for the doses obtained using VMC-dc and EGSnrc calculations, and from VMC-dc and TLD measurements. The program VMC-dc was then applied to the calculation of doses due to immersion in water containing gamma emitters. The dose conversion coefficients for water immersion are compared with their equivalents in the literature. (authors)

  20. Multi-criteria evaluation of sources for self-help domestic water supply

    Science.gov (United States)

    Nnaji, C. C.; Banigo, A.

    2018-03-01

    Two multi-criteria decision analysis methods were employed to evaluate six water sources. The analytical hierarchical process (AHP) ranked borehole highest with a rank of 0.321 followed by water board with a rank of 0.284. The other sources ranked far below these two as follows: water tanker (0.139), rainwater harvesting (0.117), shallow well (0.114) and stream (0.130). The Technique for Order Performance by Similarity to the Ideal Solution (TOPSIS) ranked water board highest with a rank of 0.865, followed by borehole with a value of 0.778. Quality and risk of contamination were found to be the most influential criteria while seasonality was the least.

  1. Water body and riparian buffer strip characteristics in a vineyard area to support aquatic pesticide exposure assessment.

    Science.gov (United States)

    Ohliger, Renja; Schulz, Ralf

    2010-10-15

    The implementation of a geodata-based probabilistic pesticide exposure assessment for surface waters in Germany offers the opportunity to base the exposure estimation on more differentiated assumptions including detailed landscape characteristics. Since these characteristics can only be estimated using field surveys, water body width and depth, hydrology, riparian buffer strip width, ground vegetation cover, existence of concentrated flow paths, and riparian vegetation were characterised at 104 water body segments in the vineyard region Palatinate (south-west Germany). Water body segments classified as permanent (n=43) had median values of water body width and depth of 0.9m and 0.06m, respectively, and the determined median width:depth ratio was 15. Thus, the deterministic water body model (width=1m; depth=0.3m) assumed in regulatory exposure assessment seems unsuitable for small water bodies in the study area. Only 25% of investigated buffer strips had a dense vegetation cover (>70%) and allow a laminar sheet flow as required to include them as an effective pesticide runoff reduction landscape characteristic. At 77 buffer strips, bordering field paths and erosion rills leading into the water body were present, concentrating pesticide runoff and consequently decreasing buffer strip efficiency. The vegetation type shrubbery (height>1.5m) was present at 57 (29%) investigated riparian buffer strips. According to their median optical vegetation density of 75%, shrubberies may provide a spray drift reduction of 72±29%. Implementing detailed knowledge in an overall assessment revealed that exposure via drift might be 2.4 and via runoff up to 1.6 fold higher than assumed by the deterministic approach. Furthermore, considering vegetated buffer strips only by their width leads to an underestimation of exposure by a factor of as much as four. Our data highlight that the deterministic model assumptions neither represent worst-case nor median values and therefore cannot

  2. Source water assessment and nonpoint sources of acutely toxic contaminants: A review of research related to survival and transport of Cryptosporidium parvum

    Science.gov (United States)

    Walker, Mark J.; Montemagno, Carlo D.; Jenkins, Michael B.

    1998-12-01

    Amendments to the Safe Drinking Water Act (PL-930123) in 1996 required that public water supply managers identify potential sources of contamination within contributing areas. Nonpoint sources of acutely toxic microbial contaminants, such as Cryptosporidium parvum, challenge current approaches to source identification and management as a first step toward developing management plans for public water supply protection. Little may be known about survival and transport in the field environment, prescribed practices may not be designed to manage such substances, and infective stages may be present in vast numbers and may resist water treatment and disinfection processes. This review summarizes research related to survival and transport of C. parvum oocysts, as an example of an acutely toxic contaminant with nonpoint sources in animal agriculture. It discusses ∥1) significance of infected domesticated animals as potential sources of C. parvum, (2) laboratory and field studies of survival and transport, and (3) approaches to source control in the context of public health protection.

  3. Mobilization of radionuclides from sediments. Potential sources to Arctic waters

    International Nuclear Information System (INIS)

    Oughton, D.H.; Boerretzen, P.; Mathisen, B.; Salbu, B.; Tronstad, E.

    1995-01-01

    Contaminated soils and sediments can act as secondary sources of radionuclides to Arctic waters. In cases where the original source of contamination has ceased or been greatly reduced (e.g., weapons' testing, waste discharges from Mayak and Sellafield) remobilization of radionuclides from preciously contaminated sediments increases in importance. With respect to Arctic waters, potential secondary sources include sediments contaminated by weapons' testing, by discharges from nuclear installations to seawater, e.g., the Irish Sea, or by leakages from dumped waste containers. The major land-based source is run-off from soils and transport from sediments in the catchment areas of the Ob and Yenisey rivers, including those contaminated by Mayak discharges. Remobilization of radionuclides is often described as a secondary source of contamination. Whereas primary sources of man-made radionuclides tend to be point sources, secondary sources are usually more diffuse. Experiments were carried out on marine (Kara Sea, Irish Sea, Stepovogo and Abrosimov Fjords), estuarine (Ob-Yenisey) and dirty ice sediments. Total 137 Cs and 90 Sr concentrations were determined using standard radiochemical techniques. Tracer studies using 134 Cs and 85 Sr were used to investigate the kinetics of radionuclide adsorption and desorption. It is concluded that 90 Sr is much less strongly bound to marine sediments than 137 Cs, and can be chemically mobilized through ion exchange with elements is seawater. Radiocaesium is strongly and rapidly fixed to sediments. Discharges of 137 Cs to surface sediments (i.e., from dumped containers) would be expected to be retained in sediments to a greater extent than discharges to sea-waters. Physical mobilization of sediments, for example resuspension, may be of more importance for transport of 137 Cs than for 90 Sr. 7 refs., 4 figs

  4. Increased water contamination and grow-out Pekin duck mortality when raised with water troughs compared to pin-metered water lines using a United States management system

    Science.gov (United States)

    Schenk, A.; Porter, A. L.; Alenciks, E.; Frazier, K.; Best, A. A.; Fraley, S. M.; Fraley, G. S.

    2016-01-01

    Controversy has developed as to whether or not pin-metered water lines or water troughs are more appropriate for Pekin ducks. We hypothesized that water troughs would show improved duck body conditions and environmental quality compared to pin-metered water lines. To test this hypothesis, we housed ducks in 2 barns, one with water lines and one with water troughs. Water troughs were constructed to meet RSPCA guidelines for number and density of ducks and with recently described verandas. Ducks were divided into 4 pens per barn (n = 1,000 ducks/pen). The study was then repeated (n = 8 pens per water source) in a cross-over design so the barns each contained the opposite water source to the first experiment. We scored the ducks’ body condition using an established scoring rubric and analyzed using SAS Proc GLM-Mix as binomial data. Ducks housed with water troughs showed higher (thus worse condition; P duck mortality using a Student t test for both water sources each week. We found that the water troughs showed higher iron (P Ducks housed with water troughs used greater (P = 0.001) volumes of water compared to ducks housed with water lines. Ducks with water troughs also showed a greater percent (P = 0.008) mortality at all ages compared to ducks with water lines. These data suggest that water troughs may not be beneficial for duck welfare and could adversely impact both environment and duck or human health. PMID:26769272

  5. Safety and Security of Radioactive Sources: Initiatives of the Forum of Nuclear Regulatory Bodies in Africa (FNRBA)

    International Nuclear Information System (INIS)

    Severa, R.

    2010-01-01

    Safety and Security of Radioactive Sources: Initiatives of the Forum of Nuclear Regulatory Bodies in Africa(FNRBA) is a regional organization comprising of nuclear regulatory bodies it’s goals are to promote the establishment of regulatory infrastructure in all countries of the Region to adopt joint action plan for implementation of self-assessment and work with Member States to upgrade their regulatory infrastructures, develop and promote a framework for capacity building in areas of radiation and nuclear safety and security, to create an opportunity for mutual support and coordination of regional initiatives by leveraging the development and utilization of regional and international resources and expertise and to serve as reference body on matters relating to nuclear and radiation safety and security in the Region. Radioactive active sources continue to play an increasingly important role in socio-economic activities on the African continent. There is also an ever increasing need to ensure that radioactive sources are utilized in a safe and secure manner

  6. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    Science.gov (United States)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  7. SIMULATION OF SURFACE HEATING FOR ARBITRARY SHAPE’S MOVING BODIES/SOURCES BY USING R-FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Sergiy Plankovskyy

    2016-12-01

    Full Text Available The purpose of this article is to propose an efficient algorithm for determining the place of an action of a heat source with a given motion law for a body of an arbitrary shape using methods of analytical geometry. The solution to this problem is an important part of a modeling of a laser, plasma, ion beam treatment. In addition, it can also be used for mass transfer problems, such as simulation of coating, sputtering, painting etc. The problem is solved by the method of R-functions to define the shape of the test body and the heat source and the analytical determination zone shadowing. As an example, we consider the problem of using the method of ion cleaning parameters optimization considering temperature limitations. Application of the R-functions can significantly reduce the amount of computation with usage of the ray tracing algorithm. The numerical realization of the proposed method requires an accurate creation of a numerical mesh. The best results in terms of accuracy of determination the scope of the source can be expected when applying adaptive tunable meshes. In case of integration of the R-functions into the CAD system, the use of the proposed method would be simple enough. The proposed method allows to determine the range of the source by the expression, which is constructed only once for the body and the source of arbitrary geometric shapes moving in any law. This distinguishes the proposed approach against all known algorithms for ray tracing. The proposed method can also be used for time-dependent multisource with arbitrary shapes, which move in different directions.

  8. On the variability of the Priestley-Taylor coefficient over water bodies

    Science.gov (United States)

    Assouline, Shmuel; Li, Dan; Tyler, Scott; Tanny, Josef; Cohen, Shabtai; Bou-Zeid, Elie; Parlange, Marc; Katul, Gabriel G.

    2016-01-01

    Deviations in the Priestley-Taylor (PT) coefficient αPT from its accepted 1.26 value are analyzed over large lakes, reservoirs, and wetlands where stomatal or soil controls are minimal or absent. The data sets feature wide variations in water body sizes and climatic conditions. Neither surface temperature nor sensible heat flux variations alone, which proved successful in characterizing αPT variations over some crops, explain measured deviations in αPT over water. It is shown that the relative transport efficiency of turbulent heat and water vapor is key to explaining variations in αPT over water surfaces, thereby offering a new perspective over the concept of minimal advection or entrainment introduced by PT. Methods that allow the determination of αPT based on low-frequency sampling (i.e., 0.1 Hz) are then developed and tested, which are usable with standard meteorological sensors that filter some but not all turbulent fluctuations. Using approximations to the Gram determinant inequality, the relative transport efficiency is derived as a function of the correlation coefficient between temperature and water vapor concentration fluctuations (RTq). The proposed approach reasonably explains the measured deviations from the conventional αPT = 1.26 value even when RTq is determined from air temperature and water vapor concentration time series that are Gaussian-filtered and subsampled to a cutoff frequency of 0.1 Hz. Because over water bodies, RTq deviations from unity are often associated with advection and/or entrainment, linkages between αPT and RTq offer both a diagnostic approach to assess their significance and a prognostic approach to correct the 1.26 value when using routine meteorological measurements of temperature and humidity.

  9. Bacterial community diversity and variation in spray water sources and the tomato fruit surface.

    Science.gov (United States)

    Telias, Adriana; White, James R; Pahl, Donna M; Ottesen, Andrea R; Walsh, Christopher S

    2011-04-21

    Tomato (Solanum lycopersicum) consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water) when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an important step forward towards the development of science

  10. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    Directory of Open Access Journals (Sweden)

    Ottesen Andrea R

    2011-04-01

    Full Text Available Abstract Background Tomato (Solanum lycopersicum consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an

  11. Phthalate esters in main source water and drinking water of Zhejiang Province (China): Distribution and health risks.

    Science.gov (United States)

    Wang, Xiaofeng; Lou, Xiaoming; Zhang, Nianhua; Ding, Gangqiang; Chen, Zhijian; Xu, Peiwei; Wu, Lizhi; Cai, Jianmin; Han, Jianlong; Qiu, Xueting

    2015-10-01

    To evaluate the distributions and health risks of phthalate esters in the main source water and corresponding drinking water of Zhejiang Province, the concentrations of 16 phthalate esters in water samples from 19 sites were measured from samples taken in the dry season and wet season. The concentration of the total phthalate ester congeners in source water ranged from 1.07 μg/L to 7.12 μg/L in the wet season, from 0.01 μg/L to 1.58 μg/L in the dry season, from 1.18 μg/L to 15.28 μg/L from drinking water in the wet season, and from 0.16 μg/L to 1.86 μg/L from drinking water in the dry season. Of the 16 phthalate esters, dimethyl phthalate, dibutyl phthalate, di-(2-ethyl-hexyl) phthalate, di-iso-butyl phthalate, bis-2-n-butoxyethyl phthalate, and dicyclohexyl phthalate were present in the samples analyzed, dominated by di-iso-butyl phthalate and di-(2-ethyl-hexyl) phthalate. The concentrations of phthalate esters in the wet season were all relatively higher than those in the dry season, and the drinking water had higher concentrations of phthalate esters than source water. The phthalate ester congeners studied pose little health risk to nearby citizens. Environ Toxicol Chem 2015;34:2205-2212. © 2015 SETAC. © 2015 SETAC.

  12. Establishment of a Practical Approach for Characterizing the Source of Particulates in Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Seon-Ha Chae

    2016-02-01

    Full Text Available Water quality complaints related to particulate matter and discolored water can be troublesome for water utilities in terms of follow-up investigations and implementation of appropriate actions because particulate matter can enter from a variety of sources; moreover, physicochemical processes can affect the water quality during the purification and transportation processes. The origin of particulates can be attributed to sources such as background organic/inorganic materials from water sources, water treatment plants, water distribution pipelines that have deteriorated, and rehabilitation activities in the water distribution systems. In this study, a practical method is proposed for tracing particulate sources. The method entails collecting information related to hydraulic, water quality, and structural conditions, employing a network flow-path model, and establishing a database of physicochemical properties for tubercles and slimes. The proposed method was implemented within two city water distribution systems that were located in Korea. These applications were conducted to demonstrate the practical applicability of the method for providing solutions to customer complaints. The results of the field studies indicated that the proposed method would be feasible for investigating the sources of particulates and for preparing appropriate action plans for complaints related to particulate matter.

  13. Enhancing the water management schemes of H08 global hydrological model to attribute human water use to six major water sources

    Science.gov (United States)

    Hanasaki, N.; Yoshikawa, S.; Pokhrel, Y. N.; Kanae, S.

    2017-12-01

    Humans abstract water from various sources to sustain their livelihood and society. Some global hydrological models (GHMs) include explicit schemes of human water management, but the representation and performance of these schemes remain limited. We substantially enhanced the human water management schemes of the H08 GHM by incorporating the latest data and techniques. The model enables us to estimate water abstraction from six major water sources, namely, river flow regulated by global reservoirs (i.e., reservoirs regulating the flow of the world's major rivers), aqueduct water transfer, local reservoirs, seawater desalination, renewable groundwater, and nonrenewable groundwater. All the interactions were simulated in a single computer program and the water balance was always strictly closed at any place and time during the simulation period. Using this model, we first conducted a historical global hydrological simulation at a spatial resolution of 0.5 x 0.5 degree to specify the sources of water for humanity. The results indicated that, in 2000, of the 3628 km3yr-1 global freshwater requirement, 2839 km3yr-1 was taken from surface water and 789 km3yr-1 from groundwater. Streamflow, aqueduct water transfer, local reservoirs, and seawater desalination accounted for 1786, 199, 106, and 1.8 km3yr-1 of the surface water, respectively. The remaining 747 km3yr-1 freshwater requirement was unmet, or surface water was not available when and where it was needed in our simulation. Renewable and nonrenewable groundwater accounted for 607 and 182 km3yr-1 of the groundwater total, respectively. Second, we evaluated the water stress using our simulations and contrasted it with earlier global assessments based on empirical water scarcity indicators, namely, the Withdrawal to Availability ratio and the Falkenmark index (annual renewable water resources per capita). We found that inclusion of water infrastructures in our model diminished water stress in some parts of the world, on

  14. The use of biomarkers as integrative tools for transitional water bodies monitoring in the Water Framework Directive context - A holistic approach in Minho river transitional waters.

    Science.gov (United States)

    Capela, R; Raimundo, J; Santos, M M; Caetano, M; Micaelo, C; Vale, C; Guimarães, L; Reis-Henriques, M A

    2016-01-01

    The Water Framework Directive (WFD) provides an important legislative opportunity to promote and implement an integrated approach for the protection of inland surface waters, transitional waters, coastal waters and groundwaters. The transitional waters constitute a central piece as they are usually under high environmental pressure and by their inherent characteristics present monitoring challenges. Integrating water quality monitoring with biological monitoring can increase the cost-effectiveness of monitoring efforts. One way of doing this is with biomarkers, which effectively integrate physical-chemical status and biological quality elements, dealing holistically with adverse consequences on the health of water bodies. The new Marine Strategy Framework Directive (MSFD) already incorporates the biomarker approach. Given the recent activities of OSPAR and HELCOM to harmonize existing monitoring guidelines between MSFD and WFD the use of similar methodologies should be fostered. To illustrate the potential of the biomarker approach, juveniles of flounder (Platichthys flesus) were used to evaluate the quality of the Minho river-estuary water bodies. The use of juveniles instead of adults eliminates several confounding factors such changes on the biological responses associated with reproduction. Here, a panel of well-established biomarkers, EROD, AChE, SOD, CAT, GST, LPO, ENA and FACs (1-Hydroxyrene) were selected and measured along with a gradient of different physical conditions, and integrated with trace elements characterization on both biota and sediments. In general, a clear profile along the water bodies was found, with low seasonal and spatial variation, consistent with a low impacted area. Overall, the results support the use of both the battery of biomarkers and the use of juvenile flounders in the monitoring of the water quality status within the WFD. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies.

    Science.gov (United States)

    Zhang, Yongjun; Geissen, Sven-Uwe; Gal, Carmen

    2008-11-01

    In the aquatic environment, pharmaceuticals have been widely found. Among them, carbamazepine and diclofenac were detected at the highest frequency. To evaluate the worldwide environmental impacts of both drugs, their global consumption volumes are estimated, based on the dose per capita. The metabolites of these pharmaceuticals are also of environmental concerns, especially trans-10,11-dihydro-10,11- dihydroxycarbamazepine (CBZ-diol) which probably has a similar concentration in water bodies to that of its parent drug. The removal efficiencies and mechanisms of both drugs in the wastewater treatment plants (WWTPs) are discussed with the actual state of knowledge. The occurrences of both drugs are examined in various water bodies including WWTP effluents, surface waters, groundwater and drinking water. Their chemical, physical and pharmacological properties are also addressed in context, which can largely influence their environmental behaviors. The ecotoxicological studies of both drugs imply that they do not easily cause acute toxic effects at their environmental concentrations. However their chronic effects need cautious attention.

  16. Estimation of body composition of pigs

    International Nuclear Information System (INIS)

    Ferrell, C.L.; Cornelius, S.G.

    1984-01-01

    A study was conducted to evaluate the use of deuterium oxide (D2O) for in vivo estimation of body composition of diverse types of pigs. Obese (Ob, 30) and contemporary Hampshire X Yorkshire (C, 30) types of pigs used in the study were managed and fed under typical management regimens. Indwelling catheters were placed in a jugular vein of 6 Ob and 6 C pigs at 4, 8, 12, 18 and 24 wk of age. The D2O was infused (.5 g/kg body weight) as a .9% NaCl solution into the jugular catheter. Blood samples were taken immediately before and at .25, 1, 4, 8, 12, 24 and 48 h after the D2O infusion and D2O concentration in blood water was determined. Pigs were subsequently killed by euthanasia injection. Contents of the gastrointestinal tract were removed and the empty body was then frozen and later ground and sampled for subsequent analyses. Ground body tissue samples were analyzed for water, fat, N, fat-free organic matter and ash. Pig type, age and the type X age interaction were significant sources of variation in live weight, D2O pool size and all empty body components, as well as all fat-free empty body components. Relationships between age and live weight or weight of empty body components, and between live weight, empty body weight, empty body water or D2O space and weight of empty components were highly significant but influenced, in most cases, by pig type. The results of this study suggested that, although relationships between D2O space and body component weights were highly significant, they were influenced by pig type and were little better than live weight for the estimation of body composition

  17. Assessing Many-Body Effects of Water Self-Ions. I: OH-(H2O) n Clusters.

    Science.gov (United States)

    Egan, Colin K; Paesani, Francesco

    2018-04-10

    The importance of many-body effects in the hydration of the hydroxide ion (OH - ) is investigated through a systematic analysis of the many-body expansion of the interaction energy carried out at the CCSD(T) level of theory, extrapolated to the complete basis set limit, for the low-lying isomers of OH - (H 2 O) n clusters, with n = 1-5. This is accomplished by partitioning individual fragments extracted from the whole clusters into "groups" that are classified by both the number of OH - and water molecules and the hydrogen bonding connectivity within each fragment. With the aid of the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method, this structure-based partitioning is found to largely correlate with the character of different many-body interactions, such as cooperative and anticooperative hydrogen bonding, within each fragment. This analysis emphasizes the importance of a many-body representation of inductive electrostatics and charge transfer in modeling OH - hydration. Furthermore, the rapid convergence of the many-body expansion of the interaction energy also suggests a rigorous path for the development of analytical potential energy functions capable of describing individual OH - -water many-body terms, with chemical accuracy. Finally, a comparison between the reference CCSD(T) many-body interaction terms with the corresponding values obtained with various exchange-correlation functionals demonstrates that range-separated, dispersion-corrected, hybrid functionals exhibit the highest accuracy, while GGA functionals, with or without dispersion corrections, are inadequate to describe OH - -water interactions.

  18. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    Science.gov (United States)

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  19. 40 CFR 141.402 - Ground water source microbial monitoring and analytical methods.

    Science.gov (United States)

    2010-07-01

    ... approves the use of E. coli as a fecal indicator for source water monitoring under this paragraph (a). If the repeat sample collected from the ground water source is E.coli positive, the system must comply... listed in the in paragraph (c)(2) of this section for the presence of E. coli, enterococci, or coliphage...

  20. Man-made organic compounds in source water of nine community water systems that withdraw from streams, 2002-05

    Science.gov (United States)

    Kingsbury, James A.; Delzer, Gregory C.; Hamilton, Pixie A.

    2008-01-01

    Initial findings from a national study by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) characterize the occurrence of about 250 anthropogenic organic compounds in source water (defined as water collected at a surface-water intake prior to water treatment) at nine community water systems in nine States in the Nation. The organic compounds analyzed in this study are primarily man-made and include pesticides, solvents, gasoline hydrocarbons, personal-care and domestic-use products, disinfection by-products, and manufacturing additives. The study also describes and compares the occurrence of selected compounds detected in source water with their occurrence in finished water, which is defined as water that has passed through treatment processes but prior to distribution. This fact sheet summarizes major findings and implications of the study and serves as a companion product to two USGS reports that present more detailed and technical information for the nine systems studied during 2002-05 (Carter and others, 2007; Kingsbury and others, 2008).

  1. [Retaining and transformation of incoming soil N from highland to adjacent terrestrial water body in riparian buffer zone].

    Science.gov (United States)

    Wang, Qing-cheng; Yu, Hong-li; Yao, Qin; Han, Zhuang-xing; Qiao, Shu-liang

    2007-11-01

    Highland soil nitrogen can enter adjacent water body via erosion and leaching, being one of the important pollutants in terrestrial water bodies. Riparian buffer zone is a transitional zone between highland and its adjacent water body, and a healthy riparian buffer zone can retain and transform the incoming soil N through physical, biological, and biochemical processes. In this paper, the major pathways through which soil nitrogen enters terrestrial water body and the mechanisms the nitrogen was retained and transformed in riparian buffer zone were introduced systematically, and the factors governing the nitrogen retaining and transformation were analyzed from the aspects of hydrological processes, soil characters, vegetation features, and human activities. The problems existing in riparian buffer zone study were discussed, and some suggestions for the further study in China were presented.

  2. THERMAL CONDUCTANCE IN AQUATIC BIRDS IN RELATION TO THE DEGREE OF WATER CONTACT, BODY-MASS, AND BODY-FAT - ENERGETIC IMPLICATIONS OF LIVING IN A STRONG COOLING ENVIRONMENT

    NARCIS (Netherlands)

    DEVRIES, J; VANEERDEN, MR

    1995-01-01

    Thermal conductance of carcasses of 14 aquatic bird species was determined by the warming constant technique. The effect on thermal conductance of body mass, age sex, fat deposits, and the degree of contact with water were studied. Only body mass and the degree of submergence in water had an effect.

  3. Atmospheric exchange of carbon dioxide and methane of a small water body and a floating mat in the Luther Marsh peatland, Ontario, Canada

    Science.gov (United States)

    Burger, Magdalena; Berger, Sina; Blodau, Christian

    2015-04-01

    Recent investigations have suggested that small water bodies cover larger areas in northern peatlands than previously assumed. Their role in the carbon cycle and gas exchange rates are poorly constrained so far. To address this issue we measured CO2 and CH4 fluxes on a small water body (ca. 700 m2) and the surrounding floating mat in the Luther Marsh peatland in Ontario, Canada from July to September 2014. To this end we used closed chambers combined with a portable Los Gatos high-resolution trace gas analyzer at different water depths and distances from the shore on the pond and with different dominating plant types on the floating mat surrounding the pond. In addition, CO2 concentrations were recorded in high temporal resolution using an infrared sensor system during selected periods. Air and water temperature, humidity and temperature of the floating mat, wind speed and direction, photosynthetically active radiation, air pressure and relative humidity were also recorded as auxiliary data at the study site. The results show that pond and floating mat were sources of methane throughout the whole measuring period. Methane emissions via the ebullition pathway occurred predominantly near the shore and on the floating mat. During the daytime measurements the floating mat acted as a net sink and the pond as a net source of CO2. The dynamics of CO2 exchange was also strongly time dependent, as CO2 emissions from the pond strongly increased after mid-August. This suggests that photosynthesis was more affected by seasonal decline than respiration process in the pond and that the allochthonous component of the CO2 flux increased in relative importance towards fall.

  4. Eutrophication and cyanobacteria in South Africa’s standing water bodies: A view from space

    CSIR Research Space (South Africa)

    Matthews, MW

    2015-05-01

    Full Text Available Satellite remote sensing can make a significant contribution to monitoring water quality in South African standing water bodies. Eutrophication, defined as enrichment by nutrients, and toxin-producing cyanobacteria (blue-green algae) blooms pose a...

  5. Applicability of a desiccant dew-point cooling system independent of external water sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2015-01-01

    The applicability of a technical solution for making desiccant cooling systems independent of external water sources is investigated. Water is produced by condensing the desorbed water vapour in a closed regeneration circuit. Desorbed water recovery is applied to a desiccant dew-point cooling...... system, which includes a desiccant wheel and a dew point cooler. The system is simulated during the summer period in the Mediterranean climate of Rome and it results completely independent of external water sources. The seasonal thermal COP drops 8% in comparison to the open regeneration circuit solution...

  6. Magnesium-rich minerals in sediment and suspended particulates of South Florida water bodies: implications for turbidity.

    Science.gov (United States)

    Harris, W G; Fisher, M M; Cao, X; Osborne, T; Ellis, L

    2007-01-01

    Fine sediments in shallow water bodies such as Lake Okeechobee are prone to resuspension. Predominantly inorganic "mud" sediment that covers approximately 670 km2 of the lake has been recognized as a persistent source of turbidity. The objective of this study was to determine if mineral components of sediments in Lake Okeechobee and water conveyances of the northern Everglades also occur as suspended sediment and hence constitute a potential abiotic contributor to turbidity. Sediment samples were collected from nine stations within the lake and eight locations north of Water Conservation Area 2A in the Everglades. Water samples were also collected at selected locations. The silt and clay mineralogy of sediment and suspended particles was determined using X-ray diffraction, thermogravimetry, scanning-electron microscopy, energy-dispersive X-ray elemental microanalysis, and high-resolution transmission-electron microscopy. Clay fractions of the lake sediment contained the Mg silicate minerals sepiolite and palygorskite, along with smectite, dolomite, calcite, and kaolinite. Sediment silt fractions were dominated by carbonates and/or quartz, with smaller amounts of Ca phosphates and sepiolite. Mineralogy of the mud sediment was similar to that reported for geologic phosphate deposits. This suggests that the mud sediment might have accumulated by stream transport of minerals from these deposits. Suspended solids and mud-sediment mineralogy were similar, except that smectite was more abundant in suspended solids. Everglade samples also contained Mg-rich minerals. The small size, low density, and fibrous or platy nature of the prevalent mud sediment minerals make them an abiotic, hydrodynamically sensitive source of persistent turbidity in a shallow lake. Mitigation efforts focused exclusively on P-induced biogeochemical processes do not address the origin or effects of these minerals. Ecological management issues such as turbidity control, P retention, geologic P input

  7. The use of bioelectrical impedance analysis to estimate total body water in young children with cerebral palsy.

    Science.gov (United States)

    Bell, Kristie L; Boyd, Roslyn N; Walker, Jacqueline L; Stevenson, Richard D; Davies, Peter S W

    2013-08-01

    Body composition assessment is an essential component of nutritional evaluation in children with cerebral palsy. This study aimed to validate bioelectrical impedance to estimate total body water in young children with cerebral palsy and determine best electrode placement in unilateral impairment. 55 young children with cerebral palsy across all functional ability levels were included. Height/length was measured or estimated from knee height. Total body water was estimated using a Bodystat 1500MDD and three equations, and measured using the gold standard, deuterium dilution technique. Comparisons were made using Bland Altman analysis. For children with bilateral impairment, the Fjeld equation estimated total body water with the least bias (limits of agreement): 0.0 L (-1.4 L to 1.5 L); the Pencharz equation produced the greatest: 2.7 L (0.6 L-4.8 L). For children with unilateral impairment, differences between measured and estimated total body water were lowest on the unimpaired side using the Fjeld equation 0.1 L (-1.5 L to 1.6 L)) and greatest for the Pencharz equation. The ability of bioelectrical impedance to estimate total body water depends on the equation chosen. The Fjeld equation was the most accurate for the group, however, individual results varied by up to 18%. A population specific equation was developed and may enhance the accuracy of estimates. Australian New Zealand Clinical Trials Registry (ANZCTR) number: ACTRN12611000616976. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  8. Microbial quality of improved drinking water sources: evidence from western Kenya and southern Vietnam.

    Science.gov (United States)

    Grady, Caitlin A; Kipkorir, Emmanuel C; Nguyen, Kien; Blatchley, E R

    2015-06-01

    In recent decades, more than 2 billion people have gained access to improved drinking water sources thanks to extensive effort from governments, and public and private sector entities. Despite this progress, many water sector development interventions do not provide access to safe water or fail to be sustained for long-term use. The authors examined drinking water quality of previously implemented water improvement projects in three communities in western Kenya and three communities in southern Vietnam. The cross-sectional study of 219 households included measurements of viable Escherichia coli. High rates of E. coli prevalence in these improved water sources were found in many of the samples. These findings suggest that measures above and beyond the traditional 'improved source' definition may be necessary to ensure truly safe water throughout these regions.

  9. Loading functions for assessment of water pollution from nonpoint sources

    International Nuclear Information System (INIS)

    McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W.

    1976-05-01

    Methods for evaluating the quantity of water pollutants generated from nonpoint sources including agriculture, silviculture, construction, mining, runoff from urban areas and rural roads, and terrestrial disposal are developed and compiled for use in water quality planning. The loading functions, plus in some instances emission values, permit calculation of nonpoint source pollutants from available data and information. Natural background was considered to be a source and loading functions were presented to estimate natural or background loads of pollutants. Loading functions/values are presented for average conditions, i.e., annual average loads expressed as metric tons/hectare/year (tons/acre/year). Procedures for estimating seasonal or 30-day maximum and minimum loads are also presented. In addition, a wide variety of required data inputs to loading functions, and delineation of sources of additional information are included in the report. The report also presents an evaluation of limitations and constraints of various methodologies which will enable the user to employ the functions realistically

  10. Studies on the physico-chemical parameters of Omi water body of ...

    African Journals Online (AJOL)

    In Omi water body, the physico-chemical parameters such as dissolved oxygen ranged from 1.4 to 4.8 mg/L; pH, 6.7 to 7.2; temperature, 26.5 to 31.5°C; alkalinity, 24.2 to 25.4 ppm; conductivity, 23.0 to 28.3 Ohms/cm; turbidity 0.11 to 0.15 m; and free carbon dioxide from 3.5 to 4.5 mg/L. Dissolved oxygen, pH and water ...

  11. Determination of the Relative Sediment Concentration in Water Bodies Using Remote Sensing Methodology

    Directory of Open Access Journals (Sweden)

    Germán Vargas Cuervo

    2017-01-01

    Full Text Available Studies for the determination of the relative concentration of sediments (RCS in bodies of water such as rivers, marshes and river deltas require specialized equipment, field work and laboratory analyses of samples, all with high economic costs. Remote sensing, in regions of the optical electromagnetic spectrum, particularly in the visible range between 0.4 and 0.6 µm, shows radiometric contrasts associated with the relative concentration of sediments in water bodies. This work presents an analysis of the principal spectral, spatial and radiometric properties or characteristics of remote sensors for the determination of the relative concentration of sediments in bodies of water, a methodological process for its cartography at a given time or an established period of time. This cartography is based on digital processing of images rather than direct measurements in the field. Lastly, applications are presented for the delta coast of the southwestern area of the Colombian Caribbean between Barranquilla and Punta Piedra and in the lacustrine area of the Guajaro Reservoir and the Jobo and Capote Wetlands in the upper Canal del Dique, Colombia.

  12. Development and Validation of an Acid Mine Drainage Treatment Process for Source Water

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Ann [Battelle Memorial Institute, Columbus, OH (United States)

    2016-03-01

    Throughout Northern Appalachia and surrounding regions, hundreds of abandoned mine sites exist which frequently are the source of Acid Mine Drainage (AMD). AMD typically contains metal ions in solution with sulfate ions which have been leached from the mine. These large volumes of water, if treated to a minimum standard, may be of use in Hydraulic Fracturing (HF) or other industrial processes. This project’s focus is to evaluate an AMD water treatment technology for the purpose of providing treated AMD as an alternative source of water for HF operations. The HydroFlex™ technology allows the conversion of a previous environmental liability into an asset while reducing stress on potable water sources. The technology achieves greater than 95% water recovery, while removing sulfate to concentrations below 100 mg/L and common metals (e.g., iron and aluminum) below 1 mg/L. The project is intended to demonstrate the capability of the process to provide AMD as alternative source water for HF operations. The second budget period of the project has been completed during which Battelle conducted two individual test campaigns in the field. The first test campaign demonstrated the ability of the HydroFlex system to remove sulfate to levels below 100 mg/L, meeting the requirements indicated by industry stakeholders for use of the treated AMD as source water. The second test campaign consisted of a series of focused confirmatory tests aimed at gathering additional data to refine the economic projections for the process. Throughout the project, regular communications were held with a group of project stakeholders to ensure alignment of the project objectives with industry requirements. Finally, the process byproduct generated by the HydroFlex process was evaluated for the treatment of produced water against commercial treatment chemicals. It was found that the process byproduct achieved similar results for produced water treatment as the chemicals currently in use. Further

  13. Early warning system for detection of protozoal contamination of source waters

    DEFF Research Database (Denmark)

    Al-Sabi, Mohammad Nafi Solaiman; Mogensen, Claus; Berg, Tommy W.

    2012-01-01

    Ensuring water quality is an ever increasing important issue world-wide. Currently, detection of protozoa in drinking water is a costly and time consuming process. We have developed an online, real-time sensor for detection of Cryptosporidium and Giardia spp. in a range of source waters. The novel...

  14. Tackling non-point source water pollution in British Columbia: An action plan

    Energy Technology Data Exchange (ETDEWEB)

    1998-01-01

    Efforts to protect British Columbia water quality by regulating point discharges from municipal and industrial sources have generally been successful, and it is recognized that the major remaining cause of water pollution in the province is from non-point sources. These sources are largely unregulated and associated with urbanization, agriculture, and other forms of land development. The first part of this report reviews the provincial commitment to clean water, the effects of non-point-source (NPS) pollution, and the management of NPS in the province. Part 2 describes the main causes of NPS in British Columbia: Land development, agriculture, stormwater runoff, on-site sewage systems, forestry and range activities, atmospheric deposition, and boating/marine activities. Finally, it presents key components of the province's NPS action plan: Education and training, prevention at site, land use planning and co-ordination, assessment and reporting, economic incentives, legislation and regulation, and implementation.

  15. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junjie Ma

    2018-02-01

    Full Text Available Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  16. Use of oleaginous plants in phytotreatment of grey water and yellow water from source separation of sewage.

    Science.gov (United States)

    Lavagnolo, Maria Cristina; Malagoli, Mario; Alibardi, Luca; Garbo, Francesco; Pivato, Alberto; Cossu, Raffaello

    2017-05-01

    Efficient and economic reuse of waste is one of the pillars of modern environmental engineering. In the field of domestic sewage management, source separation of yellow (urine), brown (faecal matter) and grey waters aims to recover the organic substances concentrated in brown water, the nutrients (nitrogen and phosphorous) in the urine and to ensure an easier treatment and recycling of grey waters. With the objective of emphasizing the potential of recovery of resources from sewage management, a lab-scale research study was carried out at the University of Padova in order to evaluate the performances of oleaginous plants (suitable for biodiesel production) in the phytotreatment of source separated yellow and grey waters. The plant species used were Brassica napus (rapeseed), Glycine max (soybean) and Helianthus annuus (sunflower). Phytotreatment tests were carried out using 20L pots. Different testing runs were performed at an increasing nitrogen concentration in the feedstock. The results proved that oleaginous species can conveniently be used for the phytotreatment of grey and yellow waters from source separation of domestic sewage, displaying high removal efficiencies of nutrients and organic substances (nitrogen>80%; phosphorous >90%; COD nearly 90%). No inhibition was registered in the growth of plants irrigated with different mixtures of yellow and grey waters, where the characteristics of the two streams were reciprocally and beneficially integrated. Copyright © 2016. Published by Elsevier B.V.

  17. Sources and chronology of nitrate contamination in spring waters, Suwannee River basin, Florida

    Science.gov (United States)

    Katz, Brian G.; Hornsby, H.D.; Bohlke, J.K.; Mokray, M.F.

    1999-01-01

    A multi-tracer approach, which consisted of analyzing water samples for n aturally occurring chemical and isotopic indicators, was used to better understand sources and chronology of nitrate contamination in spring wate rs discharging to the Suwannee and Santa Fe Rivers in northern Florida. Dur ing 1997 and 1998, as part of a cooperative study between the Suwannee River Water Management District and the U.S. Geological Survey, water samples were collected and analyzed from 24 springs and two wells for major ions, nutrients, dissolved organic carbon, and selected environmental isotopes [18O/16O, D/H, 13C/12C, 15N/14N]. To better understand when nitrate entered the ground-water system, water samples were analyzed for chlorofluorocarbons (CFCs; CCl3F, CCl2F2, and C2Cl3F3) and tritium (3H); in this way, the apparent ages and residence times of spring waters and water from shallow zones in the Upper Floridan aquifer were determined. In addition to information obtained from the use of isotopic and other chemical tracers, information on changes in land-use activities in the basin during 1954-97 were used to estimate nitrogen inputs from nonpoint sources for five counties in the basin. Changes in nitrate concentrations in spring waters with time were compared with estimated nitrogen inputs for Lafayette and Suwannee Counties. Agricultural activities [cropland farming, animal farming operations (beef and dairy cows, poultry, and swine)] along with atmospheric deposition have contributed large quantities of nitrogen to ground water in the Suwannee River Basin in northern Florida. Changes in agricultural land use during the past 40 years in Alachua, Columbia, Gilchrist, Lafayette, and Suwannee Counties have contributed variable amounts of nitrogen to the ground-water system. During 1955-97, total estimated nitrogen from all nonpoint sources (fertilizers, animal wastes, atmospheric deposition, and septic tanks) increased continuously in Gilchrist and Lafayette Counties. In

  18. FREEWAT: FREE and open source software tools for WATer resource management

    OpenAIRE

    Rossetto, Rudy; Borsi, Iacopo; Foglia, Laura

    2015-01-01

    FREEWAT is an HORIZON 2020 project financed by the EU Commission under the call WATER INNOVATION: BOOSTING ITS VALUE FOR EUROPE. FREEWAT main result will be an open source and public domain GIS integrated modelling environment for the simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and other EU wa...

  19. Surface-water nutrient conditions and sources in the United States Pacific Northwest

    Science.gov (United States)

    Wise, D.R.; Johnson, H.M.

    2011-01-01

    The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts.

  20. Water Adsorption Isotherms on Fly Ash from Several Sources.

    Science.gov (United States)

    Navea, Juan G; Richmond, Emily; Stortini, Talia; Greenspan, Jillian

    2017-10-03

    In this study, horizontal attenuated total reflection (HATR) Fourier-transform infrared (FT-IR) spectroscopy was combined with quartz crystal microbalance (QCM) gravimetry to investigate the adsorption isotherms of water on fly ash, a byproduct of coal combustion in power plants. Because of composition variability with the source region, water uptake was studied at room temperature as a function of relative humidity (RH) on fly ash from several regions: United States, India, The Netherlands, and Germany. The FT-IR spectra show water features growth as a function of RH, with water absorbing on the particle surface in both an ordered (ice-like) and a disordered (liquid-like) structure. The QCM data was modeled using the Brunauer, Emmett, and Teller (BET) adsorption isotherm model. The BET model was found to describe the data well over the entire range of RH, showing that water uptake on fly ash takes place mostly on the surface of the particle, even for poorly combusted samples. In addition, the source region and power-plant efficiency play important roles in the water uptake and ice nucleation (IN) ability of fly ash. The difference in the observed water uptake and IN behavior between the four samples and mullite (3Al 2 O 3 ·2SiO 2 ), the aluminosilicate main component of fly ash, is attributed to differences in composition and the density of OH binding sites on the surface of each sample. A discussion is presented on the RH required to reach monolayer coverage on each sample as well as a comparison between surface sites of fly ash samples and enthalpies of adsorption of water between the samples and mullite.

  1. Structural investigation of water-soluble polysaccharides extracted from the fruit bodies of Coprinus comatus

    NARCIS (Netherlands)

    Li, Bo; Dobruchowska, Justyna M.; Gerwig, Gerrit J.; Dijkhuizen, Lubbert; Kamerling, Johannis P.

    2013-01-01

    Water-soluble polysaccharide material, extracted from the stipes of the fruit bodies of Coprinus comatus by hot water, was fractionated by sequential weak anion-exchange and size-exclusion chromatography. The relevant fractions were subjected to structural analysis, including (D/L)

  2. Spatial distribution of saline water and possible sources of intrusion ...

    African Journals Online (AJOL)

    The spatial distribution of saline water and possible sources of intrusion into Lekki lagoon and transitional effects on the lacustrine ichthyofaunal characteristics were studied during March, 2006 and February, 2008. The water quality analysis indicated that, salinity has drastically increased recently in the lagoon (0.007 to ...

  3. Coliform bacteria as in indicator of sewerage water mixing with drinking water sources in Rawalpindi city

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.; Bibi, S.; Javed, T.; Shah, Z.; Sajjad, M.I.

    1993-12-01

    The coliform group of bacteria are consider to be one of the prominent indicators of surface/groundwater pollution as their presence in drinking water sources shows that water has been in contact with soil, plants, septic tanks or sewerage lines/drains. As a part of surface/groundwater pollution studies in various areas of Rawalpindi city coliform bacteria have been determined in the available drinking sources to evaluate their possible connection with the nearby septic tanks and sewerage lines/drains. Selective water samples were tapped from 72 domestic dug wells, and 98 municipal corporation tube-wells and associated water supply lines in some poorly drained areas of Rawalpindi. These samples were analyzed using membrane filter technique. In general, the sampled areas have indicated poor water quality w.r.t. coliform activity. 52% samples of the collected samples have indicated presence of Ecoli. Of these, 73% samples mostly collected from the poorly drained areas have shown significant counts of Ecoli. These water are rendered unfit for drinking purposes. Thirteen water samples collected indicated toxic levels of Ecoli in the municipal water supply caused due to a known leakage in the main domestic water supply line. The presence of coliform in the tube-well water supply taps are thus attributed to ruptures in the underground water supply lines. Present study reveals that general sanitary condition and water quality in the city are poor and that there is an urgent need of improvement in the water treatment and distribution systems by the concern quaters. (Orig./A.B.)

  4. Anthropogenic organic compounds in source water of select community water systems in the United States, 2002-10

    Science.gov (United States)

    Valder, Joshua F.; Delzer, Gregory C.; Kingsbury, James A.; Hopple, Jessica A.; Price, Curtis V.; Bender, David A.

    2014-01-01

    Drinking water delivered by community water systems (CWSs) comes from one or both of two sources: surface water and groundwater. Source water is raw, untreated water used by CWSs and is usually treated before distribution to consumers. Beginning in 2002, the U.S. Geological Survey’s (USGS) National Water-Quality Assessment Program initiated Source Water-Quality Assessments (SWQAs) at select CWSs across the United States, primarily to characterize the occurrence of a large number of anthropogenic organic compounds that are predominantly unregulated by the U.S. Environmental Protection Agency. Source-water samples from CWSs were collected during 2002–10 from 20 surface-water sites (river intakes) and during 2002–09 from 448 groundwater sites (supply wells). River intakes were sampled approximately 16 times during a 1-year sampling period, and supply wells were sampled once. Samples were monitored for 265 anthropogenic organic compounds. An additional 3 herbicides and 16 herbicide degradates were monitored in samples collected from 8 river intakes and 118 supply wells in areas where these compounds likely have been used. Thirty-seven compounds have an established U.S. Environmental Protection Agency (EPA) Maximum Contaminant Level (MCL) for drinking water, 123 have USGS Health-Based Screening Levels (HBSLs), and 29 are included on the EPA Contaminant Candidate List 3. All compounds detected in source water were evaluated both with and without an assessment level and were grouped into 13 categories (hereafter termed as “use groups”) based on their primary use or source. The CWS sites were characterized in a national context using an extract of the EPA Safe Drinking Water Information System to develop spatially derived and system-specific ancillary data. Community water system information is contained in the EPA Public Supply Database, which includes 2,016 active river intakes and 112,099 active supply wells. Ancillary variables including population served

  5. Fluctuating water depths affect American alligator (Alligator mississippiensis) body condition in the Everglades, Florida, USA

    Science.gov (United States)

    Brandt, Laura A.; Beauchamp, Jeffrey S.; Jeffery, Brian M.; Cherkiss, Michael S.; Mazzotti, Frank J.

    2016-01-01

    Successful restoration of wetland ecosystems requires knowledge of wetland hydrologic patterns and an understanding of how those patterns affect wetland plant and animal populations.Within the Everglades, Florida, USA restoration, an applied science strategy including conceptual ecological models linking drivers to indicators is being used to organize current scientific understanding to support restoration efforts. A key driver of the ecosystem affecting the distribution and abundance of organisms is the timing, distribution, and volume of water flows that result in water depth patterns across the landscape. American alligators (Alligator mississippiensis) are one of the ecological indicators being used to assess Everglades restoration because they are a keystone species and integrate biological impacts of hydrological operations through all life stages. Alligator body condition (the relative fatness of an animal) is one of the metrics being used and targets have been set to allow us to track progress. We examined trends in alligator body condition using Fulton’s K over a 15 year period (2000–2014) at seven different wetland areas within the Everglades ecosystem, assessed patterns and trends relative to restoration targets, and related those trends to hydrologic variables. We developed a series of 17 a priori hypotheses that we tested with an information theoretic approach to identify which hydrologic factors affect alligator body condition. Alligator body condition was highest throughout the Everglades during the early 2000s and is approximately 5–10% lower now (2014). Values have varied by year, area, and hydrology. Body condition was positively correlated with range in water depth and fall water depth. Our top model was the “Current” model and included variables that describe current year hydrology (spring depth, fall depth, hydroperiod, range, interaction of range and fall depth, interaction of range and hydroperiod). Across all models, interaction

  6. Fruiting bodies of Hericium erinaceus (Bull. Pers. – a new source of water-insoluble (1→3-α-d-glucan

    Directory of Open Access Journals (Sweden)

    Adrian Wiater

    2016-09-01

    Full Text Available A water-insoluble polysaccharide (WIP was isolated from the fruiting bodies of Hericium erinaceus HE01 by an alkaline solution with the yield of 5%. Structural and compositional analyses by total acid hydrolysis, methylation analysis, FT-IR, FT-Raman, and 1H NMR spectroscopy as well as other instrumental techniques showed predominantly glucose linked by α-glycosidic bonds and small amounts of mannose, xylose, rhamnose, galactose, and ribose. The methylation analysis showed that (1→3-linked Glcp is the major constituent (70.8% of the polymer, while the 3,4 substituted d-Glcp represents the main branching residue of the glucan. The presence of (1→3-α-d-glucan in the hyphae of H. erinaceus was additionally confirmed by the use of specific fluorophore-labeled antibodies.

  7. The daily radon dose in body organs caused by drinking milk and water

    International Nuclear Information System (INIS)

    Mansoureh Mansour Bahmani; Mohammad Reza Rezaie; Elham Rezvan Nejad; Hassan Reza Dehghan

    2014-01-01

    Milk is considered as the richest nutrition, being used by people. When drinking milk or water the radon gas will transfer from air to them rapidly. Since milk is majorly composed of water, probably radon existence in livestock consumable water could be the main cause of its presence in milk. Different portion of milk changed by radon gamma ray and consumption of radon included water or milk has its effects on the human body. For investigation the effect of radon in water or milk on human organs, this study has been done in two phases with MCNPX software. In the first phase, the dose rate of absorbed gamma ray by different portion of milk which is indoctrinated by 1 Bq/m 3 of radon during a day is calculated. Moreover, the effects shown by milk and its components in radon gamma spectrum, which is demonstrator of milk absorption spectrum, are also surveyed. In the second phase as well, according to the human body phantom, the absorbed gamma dose caused by daily consumption of indoctrinated water or milk with 1 Bq/m 3 radon is calculated. The production rate of free radicals in milk and its different components are derived according to escape data of MCNPX code. (author)

  8. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhang, Yuan, E-mail: zhangyuan@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhou, Changbo [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Guo, Changsheng; Wang, Dingming [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Du, Ping [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Luo, Yi [College of Environmental Sciences and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071 (China); Wan, Jun; Meng, Wei [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2014-11-01

    The occurrence of 15 antibiotics classified as sulphonamides, fluoroquinolones, macrolides, tetracyclines and trimethoprim in sediment, overlying water, and pore water matrices in Taihu Lake, China was studied. The total concentrations were from 4.1 μg/kg to 731 μg/kg, from 127 ng/L to 1210 ng/L, and from 1.5 ng/L to 216 ng/L in sediment, overlying water and pore water, respectively. Antibiotics in different locations originated from various sources, depending on human, agricultural and aquacultural activities. Composition analysis indicated that human-derived and animal-derived drugs significantly contributed to the total contamination of antibiotics in the lake, indicating the high complexity of contamination sources in Taihu Lake Basin. The in situ sediment–pore water partitioning coefficients were generally greater than sediment–overlying water partitioning coefficients, suggesting continuous inputs into the lake water. This study shows that antibiotics are ubiquitous in all compartments in Taihu Lake, and their potential hazards to the aquatic ecosystem need further investigation. - Highlights: • Antibiotics are ubiquitous in sediment, overlying water and pore water in Taihu Lake. • Antibiotics in Taihu Lake originated from human and nonhuman activities. • Ksp is higher than Ksw, indicating the continuous antibiotics input to lake water.

  9. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China

    International Nuclear Information System (INIS)

    Xu, Jian; Zhang, Yuan; Zhou, Changbo; Guo, Changsheng; Wang, Dingming; Du, Ping; Luo, Yi; Wan, Jun; Meng, Wei

    2014-01-01

    The occurrence of 15 antibiotics classified as sulphonamides, fluoroquinolones, macrolides, tetracyclines and trimethoprim in sediment, overlying water, and pore water matrices in Taihu Lake, China was studied. The total concentrations were from 4.1 μg/kg to 731 μg/kg, from 127 ng/L to 1210 ng/L, and from 1.5 ng/L to 216 ng/L in sediment, overlying water and pore water, respectively. Antibiotics in different locations originated from various sources, depending on human, agricultural and aquacultural activities. Composition analysis indicated that human-derived and animal-derived drugs significantly contributed to the total contamination of antibiotics in the lake, indicating the high complexity of contamination sources in Taihu Lake Basin. The in situ sediment–pore water partitioning coefficients were generally greater than sediment–overlying water partitioning coefficients, suggesting continuous inputs into the lake water. This study shows that antibiotics are ubiquitous in all compartments in Taihu Lake, and their potential hazards to the aquatic ecosystem need further investigation. - Highlights: • Antibiotics are ubiquitous in sediment, overlying water and pore water in Taihu Lake. • Antibiotics in Taihu Lake originated from human and nonhuman activities. • Ksp is higher than Ksw, indicating the continuous antibiotics input to lake water

  10. Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling.

    Science.gov (United States)

    Nazeer, Summya; Ali, Zeshan; Malik, Riffat Naseem

    2016-07-01

    The present study was designed to determine the spatiotemporal patterns in water quality of River Soan using multivariate statistics. A total of 26 sites were surveyed along River Soan and its associated tributaries during pre- and post-monsoon seasons in 2008. Hierarchical agglomerative cluster analysis (HACA) classified sampling sites into three groups according to their degree of pollution, which ranged from least to high degradation of water quality. Discriminant function analysis (DFA) revealed that alkalinity, orthophosphates, nitrates, ammonia, salinity, and Cd were variables that significantly discriminate among three groups identified by HACA. Temporal trends as identified through DFA revealed that COD, DO, pH, Cu, Cd, and Cr could be attributed for major seasonal variations in water quality. PCA/FA identified six factors as potential sources of pollution of River Soan. Absolute principal component scores using multiple regression method (APCS-MLR) further explained the percent contribution from each source. Heavy metals were largely added through industrial activities (28 %) and sewage waste (28 %), nutrients through agriculture runoff (35 %) and sewage waste (28 %), organic pollution through sewage waste (27 %) and urban runoff (17 %) and macroelements through urban runoff (39 %), and mineralization and sewage waste (30 %). The present study showed that anthropogenic activities are the major source of variations in River Soan. In order to address the water quality issues, implementation of effective waste management measures are needed.

  11. A Novel Approach to Extract Water Body from ASAR Dual-Polarized Data

    International Nuclear Information System (INIS)

    Ma, Jianwei; Song, Xiaoning; Leng, Pei; Zhou, Fangcheng; Li, Shuang; Li, Xiaotao

    2014-01-01

    SAR (Synthetic Aperture Radar) has become a useful and efficient method for monitoring flood extent due to its capability of 24-hour and all weather observation. In this paper, a novel approach is proposed to extract water bodies from ASAR dual-polarized images. Firstly, a new SAR image was created from ASAR Dual-Polarized data using a discrete wavelet transformation (DWT) fusion method. Then, a modified Otsu threshold method was used to extract water bodies of Poyang Lake with the new fused image. Next, this image was compared with the one extracted from ETM+ data. The result showed that the fused image was feasible and more accurate. Besides, it could reduce the influences of shadow and noise. Moreover, the approach could be conducted automatically, which is very important under urgent condition for flood monitoring

  12. Aggregation of Adenovirus 2 in Source Water and Impacts on Disinfection by Chlorine

    Science.gov (United States)

    Cromeans, Theresa L.; Metcalfe, Maureen G.; Humphrey, Charles D.; Hill, Vincent R.

    2016-01-01

    It is generally accepted that viral particles in source water are likely to be found as aggregates attached to other particles. For this reason, it is important to investigate the disinfection efficacy of chlorine on aggregated viruses. A method to produce adenovirus particle aggregation was developed for this study. Negative stain electron microscopy was used to measure aggregation before and after addition of virus particles to surface water at different pH and specific conductance levels. The impact of aggregation on the efficacy of chlorine disinfection was also examined. Disinfection experiments with human adenovirus 2 (HAdV2) in source water were conducted using 0.2 mg/L free chlorine at 5 °C. Aggregation of HAdV2 in source water (≥3 aggregated particles) remained higher at higher specific conductance and pH levels. However, aggregation was highly variable, with the percentage of particles present in aggregates ranging from 43 to 71 %. Upon addition into source water, the aggregation percentage dropped dramatically. On average, chlorination CT values (chlorine concentration in mg/L × time in min) for 3-log10 inactivation of aggregated HAdV2 were up to three times higher than those for dispersed HAdV2, indicating that aggregation reduced the disinfection rate. This information can be used by water utilities and regulators to guide decision making regarding disinfection of viruses in water. PMID:26910058

  13. Coliform Sources and Mechanisms for Regrowth in Household Drinking Water in Limpopo, South Africa.

    Science.gov (United States)

    Mellor, Jonathan E; Smith, James A; Samie, Amidou; Dillingham, Rebecca A

    2013-09-01

    Resource-limited communities throughout the developing world face significant environmental health problems related to the myriad of coliform sources within those communities. This study comprehensively investigated contamination sources and the biological and chemical mechanisms sustaining them in two adjacent communities in rural Limpopo, South Africa. An 8-month study was conducted of household ( n = 14) and source water quality, measurements of biofilm layers on the inside of household water storage containers and water transfer devices, and also hand-based coliforms and hand-washing effectiveness. A 7-day water container incubation experiment was also performed to determine the biological and chemical changes that occur in a household water storage container independent of human interference. Results indicate that household drinking water frequently becomes contaminated after collection but before consumption (197 versus 1,046 colony-forming units/100 mL; n = 266; p water treatment and other interventions aimed at maintaining the safe water chain and preventing biological regrowth.

  14. Seasonal Shifts in Primary Water Source Type: A Comparison of Largely Pastoral Communities in Uganda and Tanzania

    Directory of Open Access Journals (Sweden)

    Amber L. Pearson

    2016-01-01

    Full Text Available Many water-related illnesses show an increase during the wet season. This is often due to fecal contamination from runoff, yet, it is unknown whether seasonal changes in water availability may also play a role in increased illness via changes in the type of primary water source used by households. Very little is known about the dynamic aspects of access to water and changes in source type across seasons, particularly in semi-arid regions with annual water scarcity. The research questions in this study were: (1 To what degree do households in Uganda (UG and Tanzania (TZ change primary water source type between wet and dry seasons?; and (2 How might seasonal changes relate to water quality and health? Using spatial survey data from 92 households each in UG and TZ this study found that, from wet to dry season, 26% (UG and 9% (TZ of households switched from a source with higher risk of contamination to a source with lower risk. By comparison, only 20% (UG and 0% (TZ of households switched from a source with lower risk of contamination to a source with higher risk of contamination. This research suggests that one pathway through which water-related disease prevalence may differ across seasons is the use of water sources with higher risk contamination, and that households with access to sources with lower risks of contamination sometimes choose to use more contaminated sources.

  15. Development of sustainable water treatment technology using scientifically based calculated indexes of source water quality indicators

    Directory of Open Access Journals (Sweden)

    А. С. Трякина

    2017-10-01

    Full Text Available The article describes selection process of sustainable technological process flow chart for water treatment procedure developed on scientifically based calculated indexes of quality indicators for water supplied to water treatment facilities. In accordance with the previously calculated values of the indicators of the source water quality, the main purification facilities are selected. A more sustainable flow chart for the modern water quality of the Seversky Donets-Donbass channel is a two-stage filtering with contact prefilters and high-rate filters. The article proposes a set of measures to reduce such an indicator of water quality as permanganate oxidation. The most suitable for these purposes is sorption purification using granular activated carbon for water filtering. The increased water hardness is also quite topical. The method of ion exchange on sodium cation filters was chosen to reduce the water hardness. We also evaluated the reagents for decontamination of water. As a result, sodium hypochlorite is selected for treatment of water, which has several advantages over chlorine and retains the necessary aftereffect, unlike ozone. A technological flow chart with two-stage purification on contact prefilters and two-layer high-rate filters (granular activated carbon - quartz sand with disinfection of sodium hypochlorite and softening of a part of water on sodium-cation exchangers filters is proposed. This technological flow chart of purification with any fluctuations in the quality of the source water is able to provide purified water that meets the requirements of the current sanitary-hygienic standards. In accordance with the developed flow chart, guidelines and activities for the reconstruction of the existing Makeevka Filtering Station were identified. The recommended flow chart uses more compact and less costly facilities, as well as additional measures to reduce those water quality indicators, the values of which previously were in

  16. Level of Faecal Coliform Contamination of Drinking Water Sources ...

    African Journals Online (AJOL)

    2018-03-01

    Mar 1, 2018 ... ... of Drinking Water Sources and Its Associated Risk Factors in Rural Settings of North Gondar ... of Environmental & Occupational. Health & Safety, Gondar, Ethiopia. 2University of Gondar .... technicians. All sampling bottles ...

  17. Root distribution of Nitraria sibirica with seasonally varying water sources in a desert habitat.

    Science.gov (United States)

    Zhou, Hai; Zhao, Wenzhi; Zheng, Xinjun; Li, Shoujuan

    2015-07-01

    In water-limited environments, the water sources used by desert shrubs are critical to understanding hydrological processes. Here we studied the oxygen stable isotope ratios (δ (18)O) of stem water of Nitraria sibirica as well as those of precipitation, groundwater and soil water from different layers to identify the possible water sources for the shrub. The results showed that the shrub used a mixture of soil water, recent precipitation and groundwater, with shallow lateral roots and deeply penetrating tap (sinker) roots, in different seasons. During the wet period (in spring), a large proportion of stem water in N. sibirica was from snow melt and recent precipitation, but use of these sources declined sharply with the decreasing summer rain at the site. At the height of summer, N. sibirica mainly utilized deep soil water from its tap roots, not only supporting the growth of shoots but also keeping the shallow lateral roots well-hydrated. This flexibility allowed the plants to maintain normal metabolic processes during prolonged periods when little precipitation occurs and upper soil layers become extremely dry. With the increase in precipitation that occurs as winter approaches, the percentage of water in the stem base of a plant derived from the tap roots (deep soil water or ground water) decreased again. These results suggested that the shrub's root distribution and morphology were the most important determinants of its ability to utilize different water sources, and that its adjustment to water availability was significant for acclimation to the desert habitat.

  18. Urea, creatinine, uric acid, and phosphate spaces and their relationship to total body water during chronic hemodialysis

    International Nuclear Information System (INIS)

    Ericsson, F.; Odar-Cederloef, I.E.; Eriksson, C.G.; Lindgren, S.; Kjellstrand, C.M.

    1988-01-01

    The authors determined total body water (TBW) with tritium in 11 patients on chronic hemodialysis and compared this space to that estimated by 60% of body weight, and removal spaces of urea, creatinine, uric acid, and phosphate (PO 4 ). The latter spaces were determined by dividing the total amount of substance (measured in total dialysate) by pre- minus post-dialysis concentrations. Body water X 0.6 was more than 10% less than the tritium space, and showed a maximal variation of 10 liters, or 24%. The removal space of urea was 80% of the tritium space, but correlated closely with it. The difference between total body water and urea removal space was variable and dependent on fluid excess (edema) in the patients. Creatinine, uric acid, and phosphate removal spaces were highly variable and not correlated to total body water. The authors suggest that actual measured TBW should be used, rather than estimations using BW X 0.6, for V in K X T/V, where K = clearance, T = duration of dialysis, and V = the removal space of urea. Furthermore, one may need to introduce a correction factor for urea removal space over TBW in the equation to allow better quantification of dialysis in edematous patients and during very fast dialyses

  19. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA

    OpenAIRE

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2016-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history.?Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Re...

  20. Natural uranium and strontium isotope tracers of water sources and surface water-groundwater interactions in arid wetlands: Pahranagat Valley, Nevada, USA

    Science.gov (United States)

    Paces, James B.; Wurster, Frederic C.

    2014-01-01

    Near-surface physical and chemical process can strongly affect dissolved-ion concentrations and stable isotope compositions of water in wetland settings, especially under arid climate conditions. In contrast, heavy radiogenic isotopes of strontium (87Sr/86Sr) and uranium (234U/238U) remain largely unaffected and can be used to help identify unique signatures from different sources and quantify end-member mixing that would otherwise be difficult to determine. The utility of combined Sr and U isotopes are demonstrated in this study of wetland habitats on the Pahranagat National Wildlife Refuge, which depend on supply from large-volume springs north of the Refuge, and from small-volume springs and seeps within the Refuge. Water budgets from these sources have not been quantified previously. Evaporation, transpiration, seasonally variable surface flow, and water management practices complicate the use of conventional methods for determining source contributions and mixing relations. In contrast, 87Sr/86Sr and 234U/238U remain unfractionated under these conditions, and compositions at a given site remain constant. Differences in Sr- and U-isotopic signatures between individual sites can be related by simple two- or three-component mixing models. Results indicate that surface flow constituting the Refuge’s irrigation source consists of a 65:25:10 mixture of water from two distinct regionally sourced carbonate aquifer springs, and groundwater from locally sourced volcanic aquifers. Within the Refuge, contributions from the irrigation source and local groundwater are readily determined and depend on proximity to those sources as well as water management practices.

  1. ArcNLET: A GIS-based software to simulate groundwater nitrate load from septic systems to surface water bodies

    Science.gov (United States)

    Rios, J. Fernando; Ye, Ming; Wang, Liying; Lee, Paul Z.; Davis, Hal; Hicks, Rick

    2013-03-01

    Onsite wastewater treatment systems (OWTS), or septic systems, can be a significant source of nitrates in groundwater and surface water. The adverse effects that nitrates have on human and environmental health have given rise to the need to estimate the actual or potential level of nitrate contamination. With the goal of reducing data collection and preparation costs, and decreasing the time required to produce an estimate compared to complex nitrate modeling tools, we developed the ArcGIS-based Nitrate Load Estimation Toolkit (ArcNLET) software. Leveraging the power of geographic information systems (GIS), ArcNLET is an easy-to-use software capable of simulating nitrate transport in groundwater and estimating long-term nitrate loads from groundwater to surface water bodies. Data requirements are reduced by using simplified models of groundwater flow and nitrate transport which consider nitrate attenuation mechanisms (subsurface dispersion and denitrification) as well as spatial variability in the hydraulic parameters and septic tank distribution. ArcNLET provides a spatial distribution of nitrate plumes from multiple septic systems and a load estimate to water bodies. ArcNLET's conceptual model is divided into three sub-models: a groundwater flow model, a nitrate transport and fate model, and a load estimation model which are implemented as an extension to ArcGIS. The groundwater flow model uses a map of topography in order to generate a steady-state approximation of the water table. In a validation study, this approximation was found to correlate well with a water table produced by a calibrated numerical model although it was found that the degree to which the water table resembles the topography can vary greatly across the modeling domain. The transport model uses a semi-analytical solution to estimate the distribution of nitrate within groundwater, which is then used to estimate a nitrate load using a mass balance argument. The estimates given by ArcNLET are

  2. Fractured Epikarst Bedrock as Water Source for Woody Plants in Savanna

    Science.gov (United States)

    Schwinning, S.; Goodsheller, K. R.; Schwartz, B. F.

    2010-12-01

    Study of the soil-vegetation-atmosphere system has been overwhelmingly dominated by systems with deep soils, yet large portions of the world are characterized by shallow soils underlain by fractured bedrock. In these systems, fractured bedrock may provide significant water storage, but we know little about the function of fractured bedrock as a water source for plants. In this study we examined the water use of three co-dominant tree species on the eastern rim of the karstic Edwards Plateau where the soil is extremely rocky, only 20 -30 cm thick, and overlies a well-developed epikarst. We used Granier sap flow sensors to estimate changes in sapflow velocity with the onset of summer drought. Simultaneously, we measured precipitation inputs and drip rates in a shallow cave below the field site. Precipitation, stem and drip water were also periodically sampled for stable isotope analysis to match stem water with potential source waters. The year of the study, 2009, was characterized by extreme drought conditions developing during summer. Sap flow rates began to decline in mid-May for all three species, but there were distinct species differences in the development of water stress: live oak (Quercus fusiformis) was the first to show significant loss of transpiration, reaching minimal sap flow values by early June. Cedar elm (Ulmus crassifolia) reached minimal sap flow values by early July, while Ashe juniper’s (Juniperus ashei) loss of transpiration was very gradual, continuing to decline until early August. The isotope ratios of hydrogen and oxygen in water were not significantly different between species, suggesting that root development and water uptake was similarly constrained for the three species. In summer, all stem water isotope ratios were enriched relative to precipitation, while all drip waters coincided with the local meteoric water line. This suggests that tree water sources were relatively shallow and water draining out of the root zone did not have a

  3. Spatio-Temporal Patterns and Source Identification of Water Pollution in Lake Taihu (China

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-03-01

    Full Text Available Various multivariate methods were used to analyze datasets of river water quality for 11 variables measured at 20 different sites surrounding Lake Taihu from 2006 to 2010 (13,200 observations, to determine temporal and spatial variations in river water quality and to identify potential pollution sources. Hierarchical cluster analysis (CA grouped the 12 months into two periods (May to November, December to the next April and the 20 sampling sites into two groups (A and B based on similarities in river water quality characteristics. Discriminant analysis (DA was important in data reduction because it used only three variables (water temperature, dissolved oxygen (DO and five-day biochemical oxygen demand (BOD5 to correctly assign about 94% of the cases and five variables (petroleum, volatile phenol, dissolved oxygen, ammonium nitrogen and total phosphorus to correctly assign >88.6% of the cases. In addition, principal component analysis (PCA identified four potential pollution sources for Clusters A and B: industrial source (chemical-related, petroleum-related or N-related, domestic source, combination of point and non-point sources and natural source. The Cluster A area received more industrial and domestic pollution-related agricultural runoff, whereas Cluster B was mainly influenced by the combination of point and non-point sources. The results imply that comprehensive analysis by using multiple methods could be more effective for facilitating effective management for the Lake Taihu Watershed in the future.

  4. Relationship between organic precursors and N-nitrosodimethylamine (NDMA) formation in tropical water sources.

    Science.gov (United States)

    Qi, Wang; Fang Yee, Lim; Jiangyong, Hu

    2014-12-01

    The presence of organic compounds in water sources is one of the concerns in water treatment. They are potential precursors of disinfection byproducts (DBPs) and thus induce health problems in humans. Among the emerging DBPs, carcinogenic compound N-nitrosodimethylamine (NDMA) has been receiving attention during the last decade. This study examined the characteristics of organic components in various water sources and investigated their relationships with NDMA formation. Experiments were carried out on selected water samples from both natural water and wastewater. Results showed similar NDMA formation kinetics for both water sources. However, more contribution of NDMA precursors was found to be from the wastewater due to its higher organic nitrogen content. NDMA formation potential (NDMAFP) of secondary effluent ranged from 264 to 530 ng/L. A correlation study between organic compound characteristics and NDMAFP indicated that the majority of NDMA precursors came from dissolved organic nitrogen (DON) compound with small molecular weight (smaller than 500 Da), with correlation R(2) = 0.898. Although secondary treatment removed more than 90% of NDMA precursors, the remaining precursors in secondary effluent would still pose a challenge for water quality.

  5. Prolonged whole body immersion in cold water: hormonal and metabolic changes.

    Science.gov (United States)

    Smith, D J; Deuster, P A; Ryan, C J; Doubt, T J

    1990-03-01

    To characterize metabolic and hormonal responses during prolonged whole body immersion, 16 divers wearing dry suits completed four immersions in 5 degrees C water during each of two 5-day air saturation dives at 6.1 meters of sea water. One immersion began in the AM (1000 h) and one began in the PM (2200 h) to evaluate diurnal variations. Venous blood samples were obtained before and after completion of each immersion. Cortisol and ACTH levels demonstrated diurnal variation, with larger increases occurring after PM immersions. A greater than three-fold postimmersion increase occurred in norepinephrine (NE). There were significant increases in triiodothyronine (T3) uptake and epinephrine, but no change in T3, thyroxine, thyrotrophic hormone, and dopamine. Postimmersion free fatty acid levels increased 409% from preimmersion levels; glucose levels declined, and lactate increased significantly. Only changes in NE correlated significantly with changes in rectal temperature. In summary, when subjects are immersed in cold water for prolonged periods, with a slow rate of body cooling afforded by thermal protection and intermittent exercise, hormonal and metabolic changes occur that are similar in direction and magnitude to short-duration unprotected exposures. Except for cortisol and ACTH, none of the other measured variables exhibited diurnal alterations.

  6. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    Science.gov (United States)

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Nonpoint source water pollution abatement and the feasibility of voluntary programs

    Science.gov (United States)

    Sawicki, David S.; Judd, Lynne B.

    1983-09-01

    This article details a case study of a voluntary, decentralized institutional arrangement for nonpint source water pollution control used in the Root River watershed in southeastern Wisconsin. This watershed was chosen because of its mix of urban, agricultural, and urbanizing land uses. The project objectives were to monitor and draw conclusions about the effectiveness of a voluntary, decentralized institutional system, to specify deficiencies of the approach and suggest means to correct them, and to use the conclusions to speculate about the need for regulations regarding nonpoint source pollution control or the appropriateness of financial incentives for nonpoint source control. Institutional factors considered include diversity of land uses in the watershed, educational needs, economic conditions, personality, water quality, number of agencies involved, definition of authority, and bureaucratic requirements

  8. Piper-PCA-Fisher Recognition Model of Water Inrush Source: A Case Study of the Jiaozuo Mining Area

    Directory of Open Access Journals (Sweden)

    Pinghua Huang

    2018-01-01

    Full Text Available Source discrimination of mine water plays an important role in guiding mine water prevention in mine water management. To accurately determine water inrush source from a mine in the Jiaozuo mining area, a Piper trilinear diagram based on hydrochemical experimental data of stratified underground water in the area was utilized to determine typical water samples. Additionally, principal component analysis (PCA was used for dimensionality reduction of conventional hydrochemical variables, after which mutually independent variables were extracted. The Piper-PCA-Fisher water inrush source recognition model was established by combining the Piper trilinear diagram and Fisher discrimination theory. Screened typical samples were used to conduct back-discriminate verification of the model. Results showed that 28 typical water samples in different aquifers were determined through the Piper trilinear diagram as a water sample set for training. Before PCA was carried out, the first five factors covered 98.92% of the information quantity of the original data and could effectively represent the data information of the original samples. During the one-by-one rediscrimination process of 28 groups of training samples using the Piper-PCA-Fisher water inrush source model, 100% correct discrimination rate was achieved. During the prediction and discrimination process of 13 samples, one water sample was misdiscriminated; hence, the correct prediscrimination rate was 92.3%. Compared with the traditional Fisher water source recognition model, the Piper-PCA-Fisher water source recognition model established in this study had higher accuracy in both rediscrimination and prediscrimination processes. Thus it had a strong ability to discriminate water inrush sources.

  9. In vitro bioanalysis of drinking water from source to tap.

    Science.gov (United States)

    Rosenmai, Anna Kjerstine; Lundqvist, Johan; le Godec, Théo; Ohlsson, Åsa; Tröger, Rikard; Hellman, Björn; Oskarsson, Agneta

    2018-08-01

    The presence of chemical pollutants in sources of drinking water is a key environmental problem threatening public health. Efficient removal of pollutants in drinking water treatment plants (DWTPs) is needed as well as methods for assessment of the total impact of all present chemicals on water quality. In the present study we have analyzed the bioactivity of water samples from source to tap, including effects of various water treatments in a DWTP, using a battery of cell-based bioassays, covering health-relevant endpoints. Reporter gene assays were used to analyze receptor activity of the aryl hydrocarbon receptor (AhR), estrogen receptor (ER), androgen receptor (AR), peroxisome proliferator-activated receptor alpha (PPARα) and induction of oxidative stress by the nuclear factor erythroid 2-related factor 2 (Nrf2). DNA damage was determined by Comet assay. Grab water samples were concentrated by HLB or ENV solid phase extraction and the water samples assayed at a relative enrichment factor of 50. The enrichment procedure did not induce any bioactivity. No bioactivity was detected in Milli-Q water or drinking water control samples. Induction of AhR, ER and Nrf2 activities was revealed in source to tap water samples. No cytotoxicity, PPARα or AR antagonist activity, or DNA damage were observed in any of the water samples. A low AR agonist activity was detected in a few samples of surface water, but not in the samples from the DWTP. The treatment steps at the DWTP, coagulation, granulated activated carbon filtration, UV disinfection and NH 2 Cl dosing had little or no effect on the AhR, Nrf2 and ER bioactivity. However, nanofiltration and passage through the distribution network drastically decreased AhR activity, while the effect on Nrf2 activity was more modest and no apparent effect was observed on ER activity. The present results suggest that bioassays are useful tools for evaluation of the efficiency of different treatment steps in DWTPs in reducing toxic

  10. Molecular detection of Fasciola hepatica in water sources of District Nowshehra Khyber Pakhtunkhwa Pakistan

    Science.gov (United States)

    Khan, Imran; Khan, Amir Muhammad; Ayaz, Khan, Sanaullah; Anees, Muhammad; Khan, Shaukat Ali

    2012-12-01

    Fascioliasis is spread through contamination of water sources and cause morbidity throughout the world. In the current study 300 water samples were processed by PCR for detection of Fasciola hepatica. The overall prevalence in different water sources was 9.66 % (29/300). Highest prevalence was recorded in drain water16 % (16/100) followed by tube well water 10% (4/40), open well water 8 % (8/100) and the lowest was recorded in tap water 1.66 %(1/60). The significant difference P < 0.05 was recorded during data analysis. The highest prevalence was recorded in summer. It was concluded from the study that cleaning and filtration should be adopted to avoid the health hazards against water borne zoonotic parasites.

  11. Application of water quality index for the assessment of suitability of natural sources of water for drinking in rural areas of east Sikkim, India

    OpenAIRE

    Shubra Poonia; T Shantikumar Singh; Dechen C Tsering

    2015-01-01

    In Sikkim, especially in the rural areas where there is no supply of treated water for drinking and other domestic uses, natural surface water is the only source. The objective was to assess the water quality of natural sources of water in the rural areas of East Sikkim using a water quality index (WQI) for different seasons. A total of 225 samples, that is, 75 in winter, 75 in summer, and 75 in monsoon were collected from different sources for physicochemical analysis, and a WQI was calculat...

  12. Feasibility study of broadband efficient ''water window'' source

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Yugami, Noboru; Otsuka, Takamitsu; Jiang Weihua; Endo, Akira; Li Bowen; Dunne, Padraig; O'Sullivan, Gerry

    2012-01-01

    We demonstrate a table-top broadband emission water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs) in the 2-4 nm region, extending below the carbon K edge (4.37 nm). Arrays resulting from n=4-n=4 transitions are overlaid with n=4-n=5 emission and shift to shorter wavelength with increasing atomic number. An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth plasma UTA source, coupled to multilayer mirror optics.

  13. Anthropogenic water sources and the effects on Sonoran Desert small mammal communities

    OpenAIRE

    Aaron B. Switalski; Heather L. Bateman

    2017-01-01

    Anthropogenic water sources (AWS) are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity metrics near AWS and paired control sites; we sampled vegetation to determine rodent-habitat associations in the Sauceda Mountains of the Sonoran Desert...

  14. Survey of the Occurrence and Human Infective Potential of Giardia duodenalis and Cryptosporidium spp. in Wastewater and Different Surface Water Sources of Western Romania.

    Science.gov (United States)

    Imre, Kálmán; Morar, Adriana; Ilie, Marius S; Plutzer, Judit; Imre, Mirela; Emil, Tîrziu; Herbei, Mihai V; Dărăbuș, Gheorghe

    2017-10-01

    From the group of parasitic protozoa, Giardia and Cryptosporidium are the most common pathogens spread in surface water sources, representing a continuous threat to public health and water authorities. The aim of this survey was to assess the occurrence and human infective potential of these pathogens in treated wastewaters and different surface water sources. A total of 76 western Romanian water bodies in four counties (Arad, Bihor, Caraș-Severin and Timiș) were investigated, including the effluents of wastewater treatment plants (n = 11) and brooks (n = 19), irrigation channels (n = 8), lakes (n = 16), and ponds (n = 22). Water samples were collected through polyester microfiber filtration. Giardia cysts and Cryptosporidium oocysts were isolated using immunomagnetic separation, according to the US EPA 1623 method, followed by their identification and counting by immunofluorescence (IF) microscopy. All samples were screened through PCR-based techniques targeting the gdh gene for Giardia spp. and the 18S rRNA gene for Cryptosporidium spp., followed by sequencing of the positive results. Cryptosporidium-positive samples were subtyped based on sequence analysis of the GP60 gene. Giardia spp. was found in all tested water types with a cumulative detection rate of 90.1% in wastewaters, 26.3% in brooks, 37.5% in irrigation channels, 31.2% in lakes, and 36.4% in ponds. Except for ponds, all monitored water bodies harbored the Giardia duodenalis AII subassemblage with human infective potential. In addition, the ruminant origin assemblage E was widely distributed, and the domestic/wild canid-specific assemblage D was also recorded in a pond. Three (27.3%) wastewater samples were Cryptosporidium positive, and the identified species was the zoonotic Cryptosporidium parvum, with IIaA15G2R1 (n = 2) and IIdA18G1 subtypes. The results highlight that this threat to the public health must be brought to the attention of epidemiologists, health officials

  15. Characterization of the relationship between ceramic pot filter water production and turbidity in source water.

    Science.gov (United States)

    Salvinelli, Carlo; Elmore, A Curt; Reidmeyer, Mary R; Drake, K David; Ahmad, Khaldoun I

    2016-11-01

    Ceramic pot filters represent a common and effective household water treatment technology in developing countries, but factors impacting water production rate are not well-known. Turbidity of source water may be principal indicator in characterizing the filter's lifetime in terms of water production capacity. A flow rate study was conducted by creating four controlled scenarios with different turbidities, and influent and effluent water samples were tested for total suspended solids and particle size distribution. A relationship between average flow rate and turbidity was identified with a negative linear trend of 50 mLh -1 /NTU. Also, a positive linear relationship was found between the initial flow rate of the filters and average flow rate calculated over the 23 day life of the experiment. Therefore, it was possible to establish a method to estimate the average flow rate given the initial flow rate and the turbidity in the influent water source, and to back calculate the maximum average turbidity that would need to be maintained in order to achieve a specific average flow rate. However, long-term investigations should be conducted to assess how these relationships change over the expected CPF lifetime. CPFs rejected fine suspended particles (below 75 μm), especially particles with diameters between 0.375 μm and 10 μm. The results confirmed that ceramic pot filters are able to effectively reduce turbidity, but pretreatment of influent water should be performed to avoid premature failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Water quality and possible sources of nitrate in the Cimarron Terrace Aquifer, Oklahoma, 2003

    Science.gov (United States)

    Masoner, Jason R.; Mashburn, Shana L.

    2004-01-01

    Water from the Cimarron terrace aquifer in northwest Oklahoma commonly has nitrate concentrations that exceed the maximum contaminant level of 10 milligrams per liter of nitrite plus nitrate as nitrogen (referred to as nitrate) set by the U.S. Environmental Protection Agency for public drinking water supplies. Starting in July 2003, the U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, conducted a study in the Cimarron terrace aquifer to assess the water quality and possible sources of nitrate. A qualitative and quantitative approach based on multiple lines of evidence from chemical analysis of nitrate, nitrogen isotopes in nitrate, pesticides (indicative of cropland fertilizer application), and wastewater compounds (indicative of animal or human wastewater) were used to indicate possible sources of nitrate in the Cimarron terrace aquifer. Nitrate was detected in 44 of 45 ground-water samples and had the greatest median concentration (8.03 milligrams per liter) of any nutrient analyzed. Nitrate concentrations ranged from chemicals, 3 compounds were hydrocarbons, 2 compounds were industrial chemicals, 2 compounds were pesticides, 1 compound was of animal source, and 1 compound was a detergent compound. The most frequently detected wastewater compound was phenol, which was detected in 23 wells. N,N-diethyl-meta-toluamide (DEET) was detected in water samples from 5 wells. Benzophenone, ethanol- 2-butoxy-phosphate, and tributylphosphate were detected in water samples from 3 wells. Fertilizer was determined to be the possible source of nitrate in samples from 13 of 45 wells sampled, with a15N values ranging from 0.43 to 3.46 permil. The possible source of nitrate for samples from the greatest number of wells (22 wells) was from mixed sources of nitrate from fertilizer, septic or manure, or natural sources. Mixed nitrate sources had a 15N values ranging from 0.25 to 9.83 permil. Septic or manure was determined as the possible

  17. Prolonged whole-body cold water immersion: fluid and ion shifts.

    Science.gov (United States)

    Deuster, P A; Smith, D J; Smoak, B L; Montgomery, L C; Singh, A; Doubt, T J

    1989-01-01

    To characterize fluid and ion shifts during prolonged whole-body immersion, 16 divers wearing dry suits completed four whole-body immersions in 5 degrees C water during each of two 5-day air saturation dives at 6.1 msw. One immersion was conducted at 1000 (AM) and one at 2200 (PM) so that diurnal variations could be evaluated. Fifty-four hours separated the immersions, which lasted up to 6 h; 9 days separated each air saturation dive. Blood was collected before and after immersion; urine was collected for 12 h before, during, and after immersion for a total of 24 h. Plasma volume decreased significantly and to the same extent (approximately 17%) during both AM and PM immersions. Urine flow increased by 236.1 +/- 38.7 and 296.3 +/- 52.0%, urinary excretion of Na increased by 290.4 +/- 89.0 and 329.5 +/- 77.0%, K by 245.0 +/- 73.4 and 215.5 +/- 44.6%, Ca by 211.0 +/- 31.4 and 241.1 +/- 50.4%, Mg by 201.4 +/- 45.9 and 165.3 +/- 287%, and Zn by 427.8 +/- 93.7 and 301.9 +/- 75.4% during AM and PM immersions, respectively, compared with preimmersion. Urine flow and K excretion were significantly higher during the AM than PM. In summary, when subjects are immersed in cold water for prolonged periods, combined with a slow rate of body cooling afforded by thermal protection and enforced intermittent exercise, there is diuresis, decreased plasma volume, and increased excretions of Na, K, Ca, Mg, and Zn.

  18. A stochastic dynamic model to assess land use change scenarios on the ecological status of fluvial water bodies under the Water Framework Directive

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Samantha Jane, E-mail: shughes@utad.pt [Fluvial Ecology Laboratory, CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real (Portugal); Cabral, João Alexandre, E-mail: jcabral@utad.pt [Laboratory of Applied Ecology, CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real (Portugal); Bastos, Rita, E-mail: ritabastos@utad.pt [Laboratory of Applied Ecology, CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real (Portugal); Cortes, Rui, E-mail: rcortes@utad.pt [Fluvial Ecology Laboratory, CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real (Portugal); Vicente, Joana, E-mail: jsvicente@fc.up.pt [Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO), Faculdade de Ciências, Universidade do Porto, Porto (Portugal); Eitelberg, David, E-mail: d.a.eitelberg@vu.nl [Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); Yu, Huirong, E-mail: h.yu@vu.nl [Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); College of Resources and Environmental Sciences, China Agricultural University, 2 Yuanmingyuan W. Road, Haidian District, Beijing 100193 (China); and others

    2016-09-15

    phosphorus levels. Little or no change in status was driven by Intercalibrated Biological Quality Elements, indicating innate resilience and raising questions concerning uncertainty, the effect of pressures other than land use and metric redundancy and the WFD classification process. - Highlights: • The dynamic model framework tests land change scenario effects on surface water ecological status. • Spatial projection of output from simulations using open source Geographical Information System. • Model provides both temporal and spatial patterns of change in surface water bodies. • The two tested land use scenarios produce difference degrees of response • Dynamic tool suitable for Water Framework Directive planning and extrapolation.

  19. A stochastic dynamic model to assess land use change scenarios on the ecological status of fluvial water bodies under the Water Framework Directive

    International Nuclear Information System (INIS)

    Hughes, Samantha Jane; Cabral, João Alexandre; Bastos, Rita; Cortes, Rui; Vicente, Joana; Eitelberg, David; Yu, Huirong

    2016-01-01

    phosphorus levels. Little or no change in status was driven by Intercalibrated Biological Quality Elements, indicating innate resilience and raising questions concerning uncertainty, the effect of pressures other than land use and metric redundancy and the WFD classification process. - Highlights: • The dynamic model framework tests land change scenario effects on surface water ecological status. • Spatial projection of output from simulations using open source Geographical Information System. • Model provides both temporal and spatial patterns of change in surface water bodies. • The two tested land use scenarios produce difference degrees of response • Dynamic tool suitable for Water Framework Directive planning and extrapolation.

  20. Radionuclide transport in the "sediments - water - plants" system of the water bodies at the Semipalatinsk test site.

    Science.gov (United States)

    Aidarkhanova, A K; Lukashenko, S N; Larionova, N V; Polevik, V V

    2018-04-01

    This paper provides research data on levels and character of radionuclide contamination distribution in the «sediments- water - plants » system of objects of the Semipalatinsk test site (STS). As the research objects there were chosen water bodies of man-made origin which located at the territory of "Experimental Field", "Balapan", "Telkem" and "Sary-Uzen" testing sites. For research the sampling of bottom sediments, water, lakeside and water plants was taken. Collected samples were used to determine concentration of anthropogenic radionuclides 90 Sr, 239+240 Pu, 241 Am, 137 Cs. The distribution coefficient (K d ) was calculated as the ratio of the content of radionuclides in the sediments to the content in water, and the concentration ratio (F V ) was calculated as the ratio of radionuclide content in plants to the content in sediments or soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Monitoring of Cryptosporidium and Giardia in Czech drinking water sources.

    Science.gov (United States)

    Dolejs, P; Ditrich, O; Machula, T; Kalousková, N; Puzová, G

    2000-01-01

    In Czech raw water sources for drinking water supply, Cryptosporidium was found in numbers from 0 to 7400 per 100 liters and Giardia from 0 to 485 per 100 liters. The summer floods of 1997 probably brought the highest numbers of Cryptosporidium oocysts into one of the reservoirs sampled; since then these numbers decreased steadily. A relatively high number of Cryptosporidium oocysts was found in one sample of treated water. Repeated sampling demonstrated that this was a sporadic event. The reason for the presence of Cryptosporidium in a sample of treated drinking-water is unclear and requires further study.

  2. Formation and fates of nitrosamines and their formation potentials from a surface water source to drinking water treatment plants in Southern Taiwan.

    Science.gov (United States)

    Chen, Wei-Hsiang; Wang, Chung-Ya; Huang, Tsung-Hsien

    2016-10-01

    Nitrosamines are toxic and emerging disinfection byproducts. In this study, three drinking water treatment plants (DWTPs) in southern Taiwan treating the same source water in Gaoping River with comparable technologies were selected. The objective was to evaluate the formation and fates of six nitrosamines and their formation potentials (FPs) from a surface water source to drinking water. Albeit decreased further downstream in the river, four nitrosamine-FPs were observed in the source water due to anthropogenic pollution in the upstream areas. In the DWTPs, nitrosamines were formed and NDMA was the main species. While high organic carbon concentrations indicated elevated nitrosamine-FPs in the source water, NDMA formation in the DWTPs was more positively associated with reductions of water parameters that quantify organic matters with double bonded ring structures. Although precursor removal via pre-oxidation is a viable approach to limit nitrosamine formation during post-disinfection, this study clearly indicates that a great portion of NDMA in treated water has been formed in the 1st oxidation step of drinking water treatment. The pre-oxidation simulations in the lab demonstrated the impact of pre-chlorination on nitrosamine formation. Given the limited removal in conventional treatment processes, avoiding nitrosamine-FPs in sources and/or nitrosamine formation during pre-oxidation become important issues to control the threats of nitrosamines in drinking water. Under current circumstance in which pre-oxidation is widely used to optimize the treatment effectiveness in many DWTPs, its adverse effect by forming nitrosamines needs to be carefully minimized and using technologies other than pre-chlorination (e.g., pre-ozonation) may be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Growth hormone and prolactin responses during partial and whole body warm-water immersions.

    Science.gov (United States)

    Koska, J; Rovensky, J; Zimanova, T; Vigas, M

    2003-05-01

    To elucidate the role of core and skin thermoreceptors in the release of growth hormone (GH) and prolactin (PRL), a sequence of two experiments using whole-body (head-out) and partial (one forearm) hot water immersions was performed. Experiment 1: Nine healthy men were exposed to head-out and partial water immersions (25 min, 38-39 degrees C). Head-out immersion increased the core temperature (38.0 +/- 0.1 vs. 36.7 +/- 0.1 degrees C, P immersion the core temperature was slightly elevated (36.8 +/- 0.1 vs. 36.6 +/- 0.1, P immersed one forearm once in 39 degrees C and once in 38 degrees C water. The measurements were performed in 5-min intervals. The GH concentration increased gradually from the beginning of the immersions (min 10; 39 degrees C: 1.9 +/- 1.0 vs. 0.6 +/- 0.3 ng mL(-1), P Immersion in 38 degrees C water did not induce core temperature changes. Peripheral thermoreceptors are involved in GH release when the body is exposed to elevated environmental temperature while a substantial elevation of core temperature is a precondition of PRL release.

  4. Ground water as the source of an outbreak of Salmonella Enteritidis

    Directory of Open Access Journals (Sweden)

    Ana Kovačić

    2017-09-01

    Full Text Available In September 2014, an outbreak of gastroenteritis was reported to the Public Health Institute of Šibenik and Knin County in Croatia. The outbreak occurred in the County center of Šibenik, a town with 50,000 inhabitants, and it lasted for 12 days. An epidemiological investigation suggested a nearby water spring as the source of the outbreak. Due to the temporary closure of the public water supply system, the inhabitants started to use untreated water from a nearby spring. Microbiological analysis revealed that the outbreak was caused by Salmonella enterica subsp. enterica serovar Enteritidis that was isolated from stool samples of the patients and ground water. The isolates were further analysed with pulsed-field gel electrophoresis using XbaI, which revealed an identical macrorestriction profile. Although 68 cases were reported, it was estimated that the actual number of affected persons was more than several hundred. In order to prevent further spread of disease, public advice was released immediately after the first epidemiological indication and a warning sign was placed at the incriminated water source, after microbiological confirmation. It is necessary to regularly monitor microbiological quality of ground water especially in urban areas and provide adequate education and awareness to the inhabitants regarding the risk of using untreated ground water.

  5. Estimation of The Contribution of the Water Sources in The Mixed Waters; Karisim Sularinda Koekensel Katkilarin Belirlenmesi

    Energy Technology Data Exchange (ETDEWEB)

    Kurttas, T [Hacettepe University, Ankara (Turkey)

    2002-07-01

    In many cases simple hydrogeochemical evaluations are sufficient to distinguish different source of the waters in the hydrogeological studies. In this study how hydrochemical data can be used to understand mixing mechanism is explained. Mixing ratios determined by using physically or chemically nonreactive component in hydrogeological studies. For mixing quantity calculations, quantity of the end members that cause to mixing, need to be known. Electrical conductivity is another parameter may be used when lack of hydrochemical data is present or more practical and fast solution is required. Isotope techniques are widely used to describe the hydrogeological conditions, where the conventional methods is not sufficient to understand. Since {sup 18}O ve D are conservative isotopes and do not effected by the hydrochemical processes in the aquifer, they are used to explain recharge quantities of the aquifer, determination of the recharge areas, groundwater-surface water relations, determination of mixing quantities and understanding of recharge-discharge relations in the fractured aquifers. By using stable isotope data, sources of the mixing portions, dissolution of salts, evaporation and isotopic enrichment or fresh water-salt water/fresh water- sea water mixing can be identified easily.

  6. Prevalence and antibiotic susceptibility of Salmonella spp. from water sources in Tamale, Ghana

    Directory of Open Access Journals (Sweden)

    Frederick Adzitey

    2016-09-01

    Full Text Available Aim: This study investigated the prevalence and antibiotic resistance of Salmonella species isolated from drinking water sources in Tamale Metropolis. Materials and Methods: Isolation of Salmonella species from 275 different drinking water samples (25 each from dam, well, rain, and bottle, 35 from tap, 40 from water trough, and 100 from sachet was done using a slightly modified method of the Bacteriological Analytical Manual of the Food and Drugs Administration, USA. 34 Salmonella species isolated from the water samples were examined for their susceptibility to nine different antibiotics using the disc diffusion method. The study was carried out from July 2014 to January 2015. Results: The overall prevalence of Salmonella species was 4.36% (12/275. Dam 16.00% (4/25 and well 16.00% (4/25 water samples were the most contaminated source, followed by rain water (stored 12.00% (3/25 and tap water samples 2.86% (1/35. There were no significant differences among water samples which were positive for Salmonella species (p>0.05; however, dam and well samples that were positive for Salmonella species differ significantly (p<0.05 from bottle water, sachet water, and water trough samples, which were negative for Salmonella species. The 34 Salmonella isolates were highly resistant to erythromycin (E (100% and vancomycin (VA (94.12%. Few isolates exhibited intermediate resistances to ceftriaxone (CRO (17.65%, gentamicin (CN (17.65%, tetracycline (14.71%, chloramphenicol (C (5.88%, ciprofloxacin (CIP (2.94%, and amoxicillin (AMC (2.94%. Salmonella isolates also exhibited six different antibiotic resistant patterns (VA-E, VA-E-AMC, VA-E-CRO, VA-E-C, VA-E-CRO-AMC, and VA-E-AMC-CN. The resistant pattern VA-E (with multiple antibiotic resistance index of 0.22 was the commonest. Conclusion: This study indicated that some drinking water sources for humans and animals in Tamale Metropolis are contaminated with Salmonella species which exhibited varying resistance to

  7. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source.

    Science.gov (United States)

    Rivard, Mark J; Davis, Stephen D; DeWerd, Larry A; Rusch, Thomas W; Axelrod, Steve

    2006-11-01

    A new x-ray source, the model S700 Axxent X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, S700 Source exhibited depth dose behavior similar to low-energy photon-emitting low dose rate sources 125I and l03Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages.

  8. Spatial variation in water quality within the water bodies of a Peak District catchment and the contribution of moorland condition

    Science.gov (United States)

    Crouch, Tia; Walker, Jonathan

    2013-04-01

    Spatial variation in water quality within the water bodies of a Peak District catchment and the contribution of moorland condition Tia Crouch and Jonathan Walker (Moors for the Future Partnership) Upland locations are significant water supply sources providing over 70% of fresh water in Great Britain. However, the peatlands of the Peak District, Southern Pennines are highly contaminated with anthropogenically derived, atmospherically deposited pollutants, such as heavy metals. This is due to their location between the cities of Manchester and Sheffield, the centre of the 19th century English Industrial Revolution. These peatlands are also severely eroded; therefore erosion could be releasing these pollutants into the fluvial system, representing a threat to both aquatic ecosystems and drinking water supplies. These threats are regulated under the Water Framework Directive (WFD) and the Water Supply Regulations respectively. There are two aims of this project. The first aim is to identify spatial and temporal variability of water quality within the Bamford water treatment works (WTW) catchment. This was achieved by fortnightly spot sampling at eight of the tributaries into the reservoir system. The second aim is to assess the contribution of moorland condition to water quality within the Bamford WTW catchment. Similarly, this was achieved by fortnightly spot sampling at eight moorland streams, draining from a variety of peatland conditions (bare peat, restoration, intact and heather burn). Water samples were analysed for carbon (DOC, POC & TOC), pH, hardness and a suite of heavy metals, including copper, iron and zinc. In addition, stream temperature and stage height was recorded. Preliminary results highlight a number of issues within the Bamford WTW catchment: under the WFD streams are not achieving 'good' status for pH, copper and zinc, and under the Drinking Water Standards (DWS) streams are not achieving targets for aluminium, iron and colour. For example, the

  9. Water and the Interior Structure of Terrestrial Planets and Icy Bodies

    Science.gov (United States)

    Monteux, J.; Golabek, G. J.; Rubie, D. C.; Tobie, G.; Young, E. D.

    2018-02-01

    Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. This results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. The internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short-lived 26Al decay may govern the amount of hydrous silicates and leftover rock-ice mixtures available in the late stages of their evolution. In turn, water content may affect the early internal evolution of the planetesimals and in particular metal-silicate separation processes. Moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of Solar System objects. Finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.

  10. Research on wireless remote control scheme for the water source well of a uranium mine

    International Nuclear Information System (INIS)

    Wang Yun; Bao Feng

    2013-01-01

    Traditional wired electrical control method is applicable to simple control for the short-distance industrial equipment, but it is not suitable for the water source well of uranium mines requiring remote control. A kind of wireless remote control system based on high-speed radio modem communication technology was presented for the water source wells of a uranium mine, and the water source wells can be remotely controlled with the system. The component, implementation and characteristics of the control system are introduced. (authors)

  11. Prevalence of Antibiotic-Resistant Escherichia coli in Drinking Water Sources in Hangzhou City

    Directory of Open Access Journals (Sweden)

    Zhaojun Chen

    2017-06-01

    Full Text Available This study investigated the distribution of antibiotic resistant Escherichia coli (E. coli and examined the possible relationship between water quality parameters and antibiotic resistance from two different drinking water sources (the Qiantang River and the Dongtiao Stream in Hangzhou city of China. E. coli isolates were tested for their susceptibility to 18 antibiotics. Most of the isolates were resistant to tetracycline (TE, followed by ampicillin (AM, piperacillin (PIP, trimethoprim/sulfamethoxazole (SXT, and chloramphenicol (C. The antibiotic resistance rate of E. coli isolates from two water sources was similar; For E. coli isolates from the Qiantang River, their antibiotic resistance rates decreased from up- to downstream. Seasonally, the dry and wet season had little impact on antibiotic resistance. Spearman's rank correlation revealed significant correlation between resistance to TE and phenicols or ciprofloxacin (CIP, as well as quinolones (ciprofloxacin and levofloxacin and cephalosporins or gentamicin (GM. Pearson's chi-square tests found certain water parameters such as nutrient concentration were strongly associated with resistance to some of the antibiotics. In addition, tet genes were detected from all 82 TE-resistant E. coli isolates, and most of the isolates (81.87% contained multiple tet genes, which displayed 14 different combinations. Collectively, this study provided baseline data on antibiotic resistance of drinking water sources in Hangzhou city, which indicates drinking water sources could be the reservoir of antibiotic resistance, potentially presenting a public health risk.

  12. Revitalization model of tapioca industry through environmental awareness reinforcement for minimizing water body contamination

    Science.gov (United States)

    Banowati, E.; Indriyanti, D. R.; Juhadi

    2018-03-01

    Tapioca industry in Margoyoso District is a household industry which positively contributes to the growth of the region's economy as it is able to absorb 6,61% of productive age populationor absorb 3,300 workers.On the other hand, the industry impacts contamination of river water in the form of pollutants dissolved materials and particulates into water bodies so that the quality of water decreases even does not work anymore in accordance with the allocation for irrigation or run off of agriculture. The purpose of this research is to: strengthen environmental awareness; calculate the success of the reinforcement action and minimize water body contamination. The research was conducted in two villages of tapioca industry center in Margoyoso district - Pati Regency Administration Area. The determination coefficient of R Square is 0.802 which indicates a successful effort of 80.2%. Regression equation Y = 34.097 + 0.608 X. Industrial entrepreneur's concern increased on 8.45 from total indicator or position to 70.72 so that the gradual effort showed success to minimize water contamination of Suwatu River. The business community of tapioca should build installation of wastewater treatment.

  13. Tapping Into an Ancient Source. Isotope Hydrology Techniques to Help Manage Water Resources

    International Nuclear Information System (INIS)

    Kidambi, Misha

    2011-01-01

    The Water Resources Program at the IAEA uses a powerful tool, isotope hydrology, that aids in coping with water scarcity. IAEA scientists are convinced that if we understand how to manage water efficiently, there will be sufficient renewable and non-renewable water sources for meet global needs

  14. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  15. Relation Decomposing between Urbanization and Consumption of Water-Energy Sources

    Science.gov (United States)

    Wang, Y.; Xiao, W.; Wang, Y.; Zhao, Y.; Wang, J., , Dr; Jiang, D.; Wang, H.

    2017-12-01

    Abstract: Water resources and energy, important subsystems of city, are the basic guarantee for the normal operation of city, which play an important role to brace the urbanization. The interdependence between them are increasing along with the rapid development of China's economy. The relationship between urbanization and consumption of energy and water have become the focal point of the scholars, but the research have more attention to the impact of urbanization on two subsystems separately, and do not reveal the effects of urbanization on the water-energy nexus. Thus, there is little consideration upon the different characteristics of China's several regions in water and energy consumption in urbanization. In this paper, the STIRPAT model is built to reveal the relationship between urbanization and the consumption of water and energy. Also, the influence of urbanization on different main body of water and energy consumption are discussed. The different regional main factors of water and energy in the process of urbanization are identified through water and energy panel data of China's thirty provinces. Finally, through the regression analysis of total water consumption data of agriculture, industry, service industry with total energy consumption data, the relationship of water and energy in the process of urban development are analyzed.

  16. BIOSENSOR TECHNOLOGY EVALUATIONS FOR REAL-TIME/SOURCE WATER PROTECTION

    Science.gov (United States)

    Recent advances in electronics and computer technology have made great strides in the field of remote sensing and biomonitoring. The quality of drinking water sources has come under closer scrutiny in recent years. Issues ranging from ecological to public health and national se...

  17. A study of fecal coliform sources at a coastal site using colored dissolved organic matter (CDOM) as a water source tracer.

    Science.gov (United States)

    Clark, Catherine D; O'Connor, Adam P; Foley, Denise M; de Bruyn, Warren J

    2007-09-01

    Optical properties of colored dissolved organic matter (CDOM) were measured as a tracer of polluted waters in a Southern California surf-zone with consistently high levels of fecal indicator bacteria. Salinity, temperature, fecal coliform, absorbance (200-700nm) and fluorescence (lambda(excitation)=350nm; lambda(emission)=360-650nm) were measured in the creek and surf-zone during a dry and rain event. Fluorescence to absorption ratios for CDOM were used to distinguish water masses, with two distinct CDOM end-members identified as creek (flu/abs=8.7+/-0.8x10(4)) and coastal (flu/abs=2.2+/-0.3x10(4)). Waters containing the same CDOM end-member had highly variable bacterial levels during the dry event, suggesting intermittent sources of bacteria added to a uniform water source, consistent with marine birds. During the rain event, increased levels of the creek end-member and bacteria indicated a second bacteria source from runoff.

  18. Multi-dimensional water quality assessment of an urban drinking water source elucidated by high resolution underwater towed vehicle mapping.

    Science.gov (United States)

    Lock, Alan; Spiers, Graeme; Hostetler, Blair; Ray, James; Wallschläger, Dirk

    2016-04-15

    Spatial surveys of Ramsey Lake, Sudbury, Ontario water quality were conducted using an innovative underwater towed vehicle (UTV) equipped with a multi-parameter probe providing real-time water quality data. The UTV revealed underwater vent sites through high resolution monitoring of different spatial chemical characteristics using common sensors (turbidity, chloride, dissolved oxygen, and oxidation/reduction sensors) that would not be feasible with traditional water sampling methods. Multi-parameter probe vent site identification is supported by elevated alkalinity and silica concentrations at these sites. The identified groundwater vent sites appear to be controlled by bedrock fractures that transport water from different sources with different contaminants of concern. Elevated contaminants, such as, arsenic and nickel and/or nutrient concentrations are evident at the vent sites, illustrating the potential of these sources to degrade water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Investigation Of The Origin Of Various Water Sources In The Vicinity Of Ngancar Dam, Wonogiri Using Natural Isotopes

    International Nuclear Information System (INIS)

    Sidauruk, Paston; Indrojoyo; Wibagoyo; Pratikno, Bungkus; Evarista Ristin, P.I.

    2000-01-01

    The investigation of the origin of various water sources in the vicinity of Ngancar Dam, Wonogiri, using natural isotopes technique has been conducted. The study includes collecting and analyzing water samples from various sources in the vicinity of the dam such as reservoir water, water discharges, springs, local water well, rain water, water from piezometer and observation wells. For this investigation, natural isotopes composition and hydro chemical ions of the samples have been analyzed and interpreted. From the data interpretation, it is concluded that most of the water in various sources originated from water reservoir

  20. Sources and circulation of water and arsenic in the Giant Mine, Yellowknife, NWT, Canada.

    Science.gov (United States)

    Clark, Ian D; Raven, Kenneth G

    2004-06-01

    Recovery of gold from arsenopyrite-hosted ore in the Giant Mine camp, Yellowknife, NWT, Canada, has left a legacy of arsenic contamination that poses challenges for mine closure planning. Seepage from underground chambers storing some 237,000 tonnes of arsenic trioxide dust, has As concentrations exceeding 4000 ppm. Other potential sources and sinks of As also exist. Sources and movement of water and arsenic are traced using the isotopes of water and sulphate. Mine waters (16 ppm As; AsV/AsIII approximately 150) are a mixture of two principal water sources--locally recharged, low As groundwaters (0.5 ppm As) and Great Slave Lake (GSL; 0.004 ppm As) water, formerly used in ore processing and discharged to the northwest tailings impoundment (NWTP). Mass balance with delta18O shows that recirculation of NWTP water to the underground through faults and unsealed drillholes contributes about 60% of the mine water. Sulphate serves to trace direct infiltration to the As2O3 chambers. Sulphate in local, low As groundwaters (0.3-0.6 ppm As; delta34SSO4 approximately 4% and delta18OSO4 approximately -10%) originates from low-temperature aqueous oxidation of sulphide-rich waste rock. The high As waters gain a component of 18O-enriched sulphate derived from roaster gases (delta18OSO4) = + 3.5%), consistent with their arsenic source from the As2O3 chambers. High arsenic in NWTP water (approximately 8 ppm As; delta18OSO4 = -2%) derived from mine water, is attenuated to close to 1 ppm during infiltration back to the underground, probably by oxidation and sorption by ferrihydrite. Copyright 2004 Taylor and Francis Ltd.

  1. Application of classification-tree methods to identify nitrate sources in ground water

    Science.gov (United States)

    Spruill, T.B.; Showers, W.J.; Howe, S.S.

    2002-01-01

    A study was conducted to determine if nitrate sources in ground water (fertilizer on crops, fertilizer on golf courses, irrigation spray from hog (Sus scrofa) wastes, and leachate from poultry litter and septic systems) could be classified with 80% or greater success. Two statistical classification-tree models were devised from 48 water samples containing nitrate from five source categories. Model I was constructed by evaluating 32 variables and selecting four primary predictor variables (??15N, nitrate to ammonia ratio, sodium to potassium ratio, and zinc) to identify nitrate sources. A ??15N value of nitrate plus potassium 18.2 indicated inorganic or soil organic N. A nitrate to ammonia ratio 575 indicated nitrate from golf courses. A sodium to potassium ratio 3.2 indicated spray or poultry wastes. A value for zinc 2.8 indicated poultry wastes. Model 2 was devised by using all variables except ??15N. This model also included four variables (sodium plus potassium, nitrate to ammonia ratio, calcium to magnesium ratio, and sodium to potassium ratio) to distinguish categories. Both models were able to distinguish all five source categories with better than 80% overall success and with 71 to 100% success in individual categories using the learning samples. Seventeen water samples that were not used in model development were tested using Model 2 for three categories, and all were correctly classified. Classification-tree models show great potential in identifying sources of contamination and variables important in the source-identification process.

  2. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system

    Science.gov (United States)

    Agudelo-Vera, Claudia M.; Blokker, Mirjam; de Kater, Henk; Lafort, Rob

    2017-09-01

    The water temperature in the drinking water distribution system and at customers' taps approaches the surrounding soil temperature at a depth of 1 m. Water temperature is an important determinant of water quality. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at customers' taps is not allowed to exceed 25 °C. In recent decades, the urban (sub)surface has been getting more occupied by various types of infrastructures, and some of these can be heat sources. Only recently have the anthropogenic sources and their influence on the underground been studied on coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Routine water quality samples at the tap in urban areas have shown up locations - so-called hotspots - in the city, with relatively high soil temperatures - up to 7 °C warmer - compared to the soil temperatures in the surrounding rural areas. Yet the sources and the locations of these hotspots have not been identified. It is expected that with climate change during a warm summer the soil temperature in the hotspots can be above 25 °C. The objective of this paper is to find a method to identify heat sources and urban characteristics that locally influence the soil temperature. The proposed method combines mapping of urban anthropogenic heat sources, retrospective modelling of the soil temperature, analysis of water temperature measurements at the tap, and extensive soil temperature measurements. This approach provided insight into the typical range of the variation of the urban soil temperature, and it is a first step to identifying areas with potential underground heat stress towards thermal underground management in cities.

  3. Use of the cellular model of body composition to describe changes in body water compartments after total fasting, very low calorie diet and low calorie diet in obese men.

    Science.gov (United States)

    Siervo, M; Faber, P; Gibney, E R; Lobley, G E; Elia, M; Stubbs, R J; Johnstone, A M

    2010-05-01

    The cellular model of body composition divides the body in body cell mass (BCM), extracellular solids and extracellular fluids. This model has been infrequently applied for the evaluation of weight loss (WL) programmes. (1) To assess changes in body compartments in obese men undergoing fasting, very low calorie diet (VLCD) and low calorie diet (LCD); (2) to evaluate two cellular models for the determination of changes in BCM, fat mass (FM) and body fluids. Three groups of six, obese men participated in a total fast (F) for 6 days, a VLCD (2.5 MJ per day) for 3 weeks or an LCD (5.2 MJ per day) for 6 weeks. Body composition was measured at baseline and after small ( approximately 5%) and moderate ( approximately 10%) WL. FM was measured using a four-compartment model. Total body water (TBW) and extracellular water (ECW) were, respectively, measured by deuterium and sodium bromide dilution and intracellular water (ICW) calculated by difference. Two cellular models were used to measure BCM, FM and body fluids distribution. After about 5%WL changes in TBW were F=-3.2+/-1.2 kg (Pfasting (+1.5+/-3.1 kg, n.s.), decreased during the VLCD (-2.0+/-1.5 kg, Pfasting (-4.7+/-3.9 kg, Pfasting group and it was directly associated with changes in ICW. After a 6-day period of fasting we observed more ICW losses and less fat mobilization compared with VLCD and LCD. The cellular model of body composition is suitable for the characterization of changes in body fluids distribution during WL.

  4. Assessment of bacteriological quality of drinking water from various sources in Amritsar district of northern India.

    Science.gov (United States)

    Malhotra, Sita; Sidhu, Shailpreet K; Devi, Pushpa

    2015-08-29

    Safe water is a precondition for health and development and is a basic human right, yet it is still denied to hundreds of millions of people throughout the developing world. Water-related diseases caused by insufficient safe water supplies, coupled with poor sanitation and hygiene, cause 3.4 million deaths a year, mostly in children. The present study was conducted on 1,317 drinking water samples from various water sources in Amritsar district in northern India. All the samples were analyzed to assess bacteriological quality of water for presumptive coliform count by the multiple tube test. A total of 42.9% (565/1,317) samples from various sources were found to be unfit for human consumption. Of the total 565 unsatisfactory samples, 253 were from submersible pumps, 197 were from taps of piped supply (domestic/public), 79 were from hand pumps, and 36 were from various other sources A significantly high level of contamination was observed in samples collected from submersible pumps (47.6%) and water tanks (47.3%), as these sources of water are more exposed and liable to contamination. Despite continuous efforts by the government, civil society, and the international community, over a billion people still do not have access to improved water resources. Bacteriological assessment of all sources of drinking should be planned and conducted on regular basis to prevent waterborne dissemination of diseases.

  5. Study on Utilization of an Artesian Well as a Source of Water Supply at Raw Water Backup System (GBA01)

    International Nuclear Information System (INIS)

    Santosa Pujiarta; Yuyut Suraniyanto; Amril; Setyo Budi Utomo

    2012-01-01

    Raw water supply system (GBA01) is a unit of ponds used as a provider of raw water for secondary cooling system and free mineral water production systems. Source of raw water pond has been supplied from PAM Puspiptek with water conductivity between 126-310 μS / cm and a pH of 6 to 8, and this condition is maintained because there is no other source that is used to supply water to the reactor cooling water supply. This conductivity is always unstable, if during the dry season the conductivity is low trend, but in the rainy season the conductivity will be increase because the water contains a lot of mud. And one more problem that is important is if the PAM Puspiptek failed to supply fresh water to the reactor. So to handling and anticipate these things, necessary to optimize the deep well former Interatom legacy as a backup water supply for raw water supply system of the reactor. With a conductivity of 136 μS / cm, pH 7,4 and total hardness 37 ppm, the water from deep wells can be used as a backup supply of secondary raw water cooling system. (author)

  6. The Variation Characteristic of Sulfides and VOSc in a Source Water Reservoir and Its Control Using a Water-Lifting Aerator

    Directory of Open Access Journals (Sweden)

    Jian-Chao Shi

    2016-04-01

    Full Text Available Sulfides and volatile organic sulfur compounds (VOSc in water are not only malodorous but also toxic to humans and aquatic organisms. They cause serious deterioration in the ecological environment and pollute drinking water sources. In the present study, a source water reservoir—Zhoucun Reservoir in East China—was selected as the study site. Through a combination of field monitoring and in situ release experiments of sulfides, the characteristics of seasonal variation and distribution of sulfides and VOSc in the reservoir were studied, and the cause of the sulfide pollution was explained. The results show that sulfide pollution was quite severe in August and September 2014 in the Zhoucun Reservoir, with up to 1.59 mg·L−1 of sulfides in the lower layer water. The main source of sulfides is endogenous pollution. VOSc concentration correlates very well with that of sulfides during the summer, with a peak VOSc concentration of 44.37 μg·L−1. An installed water-lifting aeration system was shown to directly oxygenate the lower layer water, as well as mix water from the lower and the upper layers. Finally, the principle and results of controlling sulfides and VOSc in reservoirs using water-lifting aerators are clarified. Information about sulfides and VOSc fluctuation and control gained in this study may be applicable to similar reservoirs, and useful in practical water quality improvement and pollution prevention.

  7. Water flux in animals: analysis of potential errors in the tritiated water method

    International Nuclear Information System (INIS)

    Nagy, K.A.; Costa, D.

    1979-03-01

    Laboratory studies indicate that tritiated water measurements of water flux are accurate to within -7 to +4% in mammals, but errors are larger in some reptiles. However, under conditions that can occur in field studies, errors may be much greater. Influx of environmental water vapor via lungs and skin can cause errors exceeding +-50% in some circumstances. If water flux rates in an animal vary through time, errors approach +-15% in extreme situations, but are near +-3% in more typical circumstances. Errors due to fractional evaporation of tritiated water may approach -9%. This error probably varies between species. Use of an inappropriate equation for calculating water flux from isotope data can cause errors exceeding +-100%. The following sources of error are either negligible or avoidable: use of isotope dilution space as a measure of body water volume, loss of nonaqueous tritium bound to excreta, binding of tritium with nonaqueous substances in the body, radiation toxicity effects, and small analytical errors in isotope measurements. Water flux rates measured with tritiated water should be within +-10% of actual flux rates in most situations

  8. Water flux in animals: analysis of potential errors in the tritiated water method

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, K.A.; Costa, D.

    1979-03-01

    Laboratory studies indicate that tritiated water measurements of water flux are accurate to within -7 to +4% in mammals, but errors are larger in some reptiles. However, under conditions that can occur in field studies, errors may be much greater. Influx of environmental water vapor via lungs and skin can cause errors exceeding +-50% in some circumstances. If water flux rates in an animal vary through time, errors approach +-15% in extreme situations, but are near +-3% in more typical circumstances. Errors due to fractional evaporation of tritiated water may approach -9%. This error probably varies between species. Use of an inappropriate equation for calculating water flux from isotope data can cause errors exceeding +-100%. The following sources of error are either negligible or avoidable: use of isotope dilution space as a measure of body water volume, loss of nonaqueous tritium bound to excreta, binding of tritium with nonaqueous substances in the body, radiation toxicity effects, and small analytical errors in isotope measurements. Water flux rates measured with tritiated water should be within +-10% of actual flux rates in most situations.

  9. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    Science.gov (United States)

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  10. The source, discharge, and chemical characteristics of water from Agua Caliente Spring, Palm Springs, California

    Science.gov (United States)

    Contributors: Brandt, Justin; Catchings, Rufus D.; Christensen, Allen H.; Flint, Alan L.; Gandhok, Gini; Goldman, Mark R.; Halford, Keith J.; Langenheim, V.E.; Martin, Peter; Rymer, Michael J.; Schroeder, Roy A.; Smith, Gregory A.; Sneed, Michelle; Martin, Peter

    2011-01-01

    Agua Caliente Spring, in downtown Palm Springs, California, has been used for recreation and medicinal therapy for hundreds of years and currently (2008) is the source of hot water for the Spa Resort owned by the Agua Caliente Band of the Cahuilla Indians. The Agua Caliente Spring is located about 1,500 feet east of the eastern front of the San Jacinto Mountains on the southeast-sloping alluvial plain of the Coachella Valley. The objectives of this study were to (1) define the geologic structure associated with the Agua Caliente Spring; (2) define the source(s), and possibly the age(s), of water discharged by the spring; (3) ascertain the seasonal and longer-term variability of the natural discharge, water temperature, and chemical characteristics of the spring water; (4) evaluate whether water-level declines in the regional aquifer will influence the temperature of the spring discharge; and, (5) estimate the quantity of spring water that leaks out of the water-collector tank at the spring orifice.

  11. STATE OF THE ART TECHNIQUES USED FOR NOISE SOURCE IDENTIFICATION ON COMPLEX BODIES

    Directory of Open Access Journals (Sweden)

    Corneliu STOICA

    2010-03-01

    Full Text Available Over the last few decades, many approaches have been undertaken in order to asses detailed noise source identification on complex bodies, i.e. aircrafts, cars, machinery. Noise source identification implies to accurately obtain the position and frequency of the dominant noise sources. There are cases where traditional testing methods can not be applied at all or their use involves some limitations. Optical systems used for near field analysis require a line of sight that may not be available. The state-of-the-art technology for this purpose is the use of a large number of microphones whose signals are acquired simultaneously, i.e. microphone phased array. Due to the excessive cost of the instruments and the data acquisition system required, the implementation of this technology was restricted to governmental agencies (NASA, DLR and big companies such as Boeing and Airbus. During the past years, this technique was developed in wind tunnels and some universities to perform noise source identification on scale airframes, main landing gear models, and aerodynamic profiles (used on airplanes, helicopter rotors and wind mills.

  12. Assessment of bioavailable fraction of POPS in surface water bodies in Johannesburg City, South Africa, using passive samplers: an initial assessment.

    Science.gov (United States)

    Amdany, Robert; Chimuka, Luke; Cukrowska, Ewa; Kukučka, Petr; Kohoutek, Jiří; Tölgyessy, Peter; Vrana, Branislav

    2014-09-01

    In this study, the semipermeable membrane device (SPMD) passive samplers were used to determine freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in selected water bodies situated in and around Johannesburg City, South Africa. The devices were deployed for 14 days at each sampling site in spring and summer of 2011. Time weighted average (TWA) concentrations of the water-borne contaminants were calculated from the amounts of analytes accumulated in the passive samplers. In the area of interest, concentrations of analytes in water ranged from 33.5 to 126.8 ng l(-1) for PAHs, from 20.9 to 120.9 pg l(-1) for PCBs and from 0.2 to 36.9 ng l(-1) for OCPs. Chlorinated pesticides were mainly composed of hexachlorocyclohexanes (HCHs) (0.15-36.9 ng l(-1)) and dichlorodiphenyltrichloromethane (DDT) with its metabolites (0.03-0.55 ng l(-1)). By applying diagnostic ratios of certain PAHs, identification of possible sources of the contaminants in the various sampling sites was performed. These ratios were generally inclined towards pyrogenic sources of pollution by PAHs in all study sites except in the Centurion River (CR), Centurion Lake (CL) and Airport River (AUP) that indicated petrogenic origins. This study highlights further need to map up the temporal and spatial variations of these POPs using passive samplers.

  13. Risk of gastric cancer by water source: evidence from the Golestan case-control study.

    Directory of Open Access Journals (Sweden)

    Laura Eichelberger

    Full Text Available Gastric cancer (GC is the world's fifth most common cancer, and the third leading cause of cancer-related death. Over 70% of incident cases and deaths occur in developing countries. We explored whether disparities in access to improved drinking water sources were associated with GC risk in the Golestan Gastric Cancer Case Control Study.306 cases and 605 controls were matched on age, gender, and place of residence. We conducted unconditional logistic regression to calculate odds ratios (ORs and 95% confidence intervals (CI, adjusted for age, gender, ethnicity, marital status, education, head of household education, place of birth and residence, homeownership, home size, wealth score, vegetable consumption, and H. pylori seropositivity. Fully-adjusted ORs were 0.23 (95% CI: 0.05-1.04 for chlorinated well water, 4.58 (95% CI: 2.07-10.16 for unchlorinated well water, 4.26 (95% CI: 1.81-10.04 for surface water, 1.11 (95% CI: 0.61-2.03 for water from cisterns, and 1.79 (95% CI: 1.20-2.69 for all unpiped sources, compared to in-home piped water. Comparing unchlorinated water to chlorinated water, we found over a two-fold increased GC risk (OR 2.37, 95% CI: 1.56-3.61.Unpiped and unchlorinated drinking water sources, particularly wells and surface water, were significantly associated with the risk of GC.

  14. Anaerobic treatment as a core technology for energy, nutrients and water from source-separated domestic waste(water)

    NARCIS (Netherlands)

    Zeeman, G.; Kujawa, K.; Mes, de T.Z.D.; Graaff, de M.S.; Abu-Ghunmi, L.N.A.H.; Mels, A.R.; Meulman, B.; Temmink, B.G.; Buisman, C.J.N.; Lier, van J.B.; Lettinga, G.

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas

  15. Estimation of body fluids with bioimpedance spectroscopy: state of the art methods and proposal of novel methods

    International Nuclear Information System (INIS)

    Buendia, R; Seoane, F; Lindecrantz, K; Bosaeus, I; Gil-Pita, R; Johannsson, G; Ellegård, L; Ward, L C

    2015-01-01

    Determination of body fluids is a useful common practice in determination of disease mechanisms and treatments. Bioimpedance spectroscopy (BIS) methods are non-invasive, inexpensive and rapid alternatives to reference methods such as tracer dilution. However, they are indirect and their robustness and validity are unclear. In this article, state of the art methods are reviewed, their drawbacks identified and new methods are proposed. All methods were tested on a clinical database of patients receiving growth hormone replacement therapy. Results indicated that most BIS methods are similarly accurate (e.g.  <  0.5   ±   3.0% mean percentage difference for total body water) for estimation of body fluids. A new model for calculation is proposed that performs equally well for all fluid compartments (total body water, extra- and intracellular water). It is suggested that the main source of error in extracellular water estimation is due to anisotropy, in total body water estimation to the uncertainty associated with intracellular resistivity and in determination of intracellular water a combination of both. (paper)

  16. Report on water quality, sediment and water chemistry data for water and sediment samples collected from source areas to Melton Hill and Watts Bar reservoirs

    International Nuclear Information System (INIS)

    Tomaszewski, T.M.; Bruggink, D.J.; Nunn, D.L.

    1995-01-01

    Contamination of surface water and sediments in the Clinch River and Watts Bar Reservoir (CR/WBR) system as a result of past and present activities by the US Department of Energy (DOE) on the Oak Ridge Reservation (ORR) and also activities by non-ORR facilities are being studied by the Clinch River Environmental Restoration Program (CR-ERP). Previous studies have documented the presence of heavy metals, organics, and radionuclides in the sediments of reservoirs in the vicinity. In support of the CR-ERP, during the summer of 1991, TVA collected and evaluated water and sediment samples from swimming areas and municipal water intakes on Watts Bar Reservoir, Melton Hill Reservoir and Norris Reservoir, which was considered a source of less-contaminated reference or background data. Despite the numerous studies, until the current work documented by this report, relatively few sediment or water samples had been collected by the CR-ERP in the immediate vicinity of contaminant point sources. This work focused on water and sediment samples taken from points immediately downstream from suspected effluent point sources both on and off the ORR. In August and September, 1994, TVA sampled surface water and sediment at twelve locations in melton Hill and Watts Bar Reservoirs

  17. Source tracking Mycobacterium ulcerans infections in the Ashanti region, Ghana.

    Directory of Open Access Journals (Sweden)

    Charles A Narh

    2015-01-01

    Full Text Available Although several studies have associated Mycobacterium ulcerans (MU infection, Buruli ulcer (BU, with slow moving water bodies, there is still no definite mode of transmission. Ecological and transmission studies suggest Variable Number Tandem Repeat (VNTR typing as a useful tool to differentiate MU strains from other Mycolactone Producing Mycobacteria (MPM. Deciphering the genetic relatedness of clinical and environmental isolates is seminal to determining reservoirs, vectors and transmission routes. In this study, we attempted to source-track MU infections to specific water bodies by matching VNTR profiles of MU in human samples to those in the environment. Environmental samples were collected from 10 water bodies in four BU endemic communities in the Ashanti region, Ghana. Four VNTR loci in MU Agy99 genome, were used to genotype environmental MU ecovars, and those from 14 confirmed BU patients within the same study area. Length polymorphism was confirmed with sequencing. MU was present in the 3 different types of water bodies, but significantly higher in biofilm samples. Four MU genotypes, designated W, X, Y and Z, were typed in both human and environmental samples. Other reported genotypes were only found in water bodies. Animal trapping identified 1 mouse with lesion characteristic of BU, which was confirmed as MU infection. Our findings suggest that patients may have been infected from community associated water bodies. Further, we present evidence that small mammals within endemic communities could be susceptible to MU infections. M. ulcerans transmission could involve several routes where humans have contact with risk environments, which may be further compounded by water bodies acting as vehicles for disseminating strains.

  18. The occurrence and distribution of a group of organic micropollutants in Mexico City's water sources.

    Science.gov (United States)

    Félix-Cañedo, Thania E; Durán-Álvarez, Juan C; Jiménez-Cisneros, Blanca

    2013-06-01

    The occurrence and distribution of a group of 17 organic micropollutants in surface and groundwater sources from Mexico City was determined. Water samples were taken from 7 wells, 4 dams and 15 tanks where surface and groundwater are mixed and stored before distribution. Results evidenced the occurrence of seven of the target compounds in groundwater: salicylic acid, diclofenac, di-2-ethylhexylphthalate (DEHP), butylbenzylphthalate (BBP), triclosan, bisphenol A (BPA) and 4-nonylphenol (4-NP). In surface water, 11 target pollutants were detected: same found in groundwater as well as naproxen, ibuprofen, ketoprofen and gemfibrozil. In groundwater, concentration ranges of salicylic acid, 4-NP and DEHP, the most frequently found compounds, were 1-464, 1-47 and 19-232 ng/L, respectively; while in surface water, these ranges were 29-309, 89-655 and 75-2,282 ng/L, respectively. Eleven target compounds were detected in mixed water. Concentrations in mixed water were higher than those determined in groundwater but lower than the detected in surface water. Different to that found in ground and surface water, the pesticide 2,4-D was found in mixed water, indicating that some pollutants can reach areas where they are not originally present in the local water sources. Concentration of the organic micropollutants found in this study showed similar to lower to those reported in water sources from developed countries. This study provides information that enriches the state of the art on the occurrence of organic micropollutants in water sources worldwide, notably in megacities of developing countries. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.; Sutula, Martha; Caron, David A.; Chao, Yi; Farrara, John D.; Frenzel, Hartmut; Jones, Burton; Robertson, George; McLaughlin, Karen; Sengupta, Ashmita

    2014-01-01

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  20. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.

    2014-01-26

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  1. Bromide space, total body water, and sick cell syndrome

    International Nuclear Information System (INIS)

    Schober, O.; Hundeshagen, H.; Lehr, L.

    1982-01-01

    Displacements of the bromide space (Br-82-C, as a marker for the extracellular fluid compartment) are caused by an enhanced anatomical space and/or increased permeability of cells to bromide. The ratio Br-82-C: total body water (TBW) was evaluated to be 0.83 +- 0.17 in critically ill patients (n = 38) compared with the normal value of 0.46 +- 0.04 (n = 10). Because of normal TBW in critically ill patients (TBW = 505 +- 68 ml/kg), an increased bromide penetration into cells seems to be responsible for the enlarged ratio Br-82-C: TBW. Taking into consideration measurements in patients with malabsorption (Br-82-C: TBW = 0.56 +- 0.13; n = 13) and carcinoma of the rectum and colon (Br-82-C: TBW = 0.66 +- 0.24; n = 18) we think that the bromide space is a good measurement of the effective extracellular water. (orig.)

  2. Comparison of Microbial and Chemical Source Tracking Markers To Identify Fecal Contamination Sources in the Humber River (Toronto, Ontario, Canada) and Associated Storm Water Outfalls.

    Science.gov (United States)

    Staley, Zachery R; Grabuski, Josey; Sverko, Ed; Edge, Thomas A

    2016-11-01

    Storm water runoff is a major source of pollution, and understanding the components of storm water discharge is essential to remediation efforts and proper assessment of risks to human and ecosystem health. In this study, culturable Escherichia coli and ampicillin-resistant E. coli levels were quantified and microbial source tracking (MST) markers (including markers for general Bacteroidales spp., human, ruminant/cow, gull, and dog) were detected in storm water outfalls and sites along the Humber River in Toronto, Ontario, Canada, and enumerated via endpoint PCR and quantitative PCR (qPCR). Additionally, chemical source tracking (CST) markers specific for human wastewater (caffeine, carbamazepine, codeine, cotinine, acetaminophen, and acesulfame) were quantified. Human and gull fecal sources were detected at all sites, although concentrations of the human fecal marker were higher, particularly in outfalls (mean outfall concentrations of 4.22 log 10 copies, expressed as copy numbers [CN]/100 milliliters for human and 0.46 log 10 CN/100 milliliters for gull). Higher concentrations of caffeine, acetaminophen, acesulfame, E. coli, and the human fecal marker were indicative of greater raw sewage contamination at several sites (maximum concentrations of 34,800 ng/liter, 5,120 ng/liter, 9,720 ng/liter, 5.26 log 10 CFU/100 ml, and 7.65 log 10 CN/100 ml, respectively). These results indicate pervasive sewage contamination at storm water outfalls and throughout the Humber River, with multiple lines of evidence identifying Black Creek and two storm water outfalls with prominent sewage cross-connection problems requiring remediation. Limited data are available on specific sources of pollution in storm water, though our results indicate the value of using both MST and CST methodologies to more reliably assess sewage contamination in impacted watersheds. Storm water runoff is one of the most prominent non-point sources of biological and chemical contaminants which can

  3. Bioimpedance index for measurement of total body water in severely malnourished children

    DEFF Research Database (Denmark)

    Girma, Tsinuel; Kæstel, Pernille; Workeneh, Netsanet

    2016-01-01

    BACKGROUND & OBJECTIVES: Restoration of body composition indicates successful management of severe acute malnutrition (SAM). Bioimpedance (BI) index (height(2)/resistance) is used to predict total body water (TBW) but its performance in SAM, especially with oedema, requires further investigation....... SUBJECTS/METHODS: Children with SAM (mid-arm circumference ...Hzs. Pre- and post-deuterium dose saliva samples were analysed using isotope-ratio mass spectrometry. TBW was regressed on H(2)/Z. Xc and R were height (H)-indexed, and Xc/H plotted against R/H. RESULTS: Thirty five children (16 non-oedematous and 19 oedematous) with median (interquartile range) age of 42...

  4. Case study on rehabilitation of a polluted urban water body in Yangtze River Basin.

    Science.gov (United States)

    Wu, Juan; Cheng, Shuiping; Li, Zhu; Guo, Weijie; Zhong, Fei; Yin, Daqiang

    2013-10-01

    In the past three decades, the fast development of economy and urbanization has caused increasingly severe pollutions of urban water bodies in China. Consequently, eutrophication and deterioration of aquatic ecosystem, which is especially significant for aquatic vegetation, inevitably became a pervasive problem across the Yangtze River Basin. To rehabilitate the degraded urban water bodies, vegetation replanting is an important issue to improve water quality and to rehabilitate ecosystem. As a case study, a representative polluted urban river, Nanfeihe River, in Hefei City, Anhui Province, was chosen to be a rehabilitation target. In October 2009 and May 2010, 13 species of indigenous and prevalent macrophytes, including seven species emergent, one species floating leaved, and five species submersed macrophytes, were planted along the bank slopes and in the river. Through 1.5 years' replanting practice, the water quality and biodiversity of the river had been improved. The concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4 (+)-N) declined by 46.0, 39.5, and 60.4 %, respectively. The species of macrophytes increased from 14 to 60, and the biodiversity of phytoplankton rose significantly in the river (purban waters restoration in the middle-downstream area of Yangtze River Base.

  5. Water: from the source to the treatment plan

    Science.gov (United States)

    Baude, I.; Marquet, V.

    2012-04-01

    Isabelle BAUDE isa.baude@free.fr Lycee français de Vienne Liechtensteinstrasse 37AVienna As a physics and chemistry teacher, I have worked on water from the source to the treatment plant with 27 pupils between 14 and 15 years old enrolled in the option "Science and laboratory". The objectives of this option are to interest students in science, to introduce them to practical methods of laboratory analyses, and let them use computer technology. Teaching takes place every two weeks and lasts 1.5 hours. The theme of water is a common project with the biology and geology teacher, Mrs. Virginie Marquet. Lesson 1: Introduction: The water in Vienna The pupils have to consider why the water is so important in Vienna (history, economy etc.) and where tap water comes from. Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2: Objectives of the session: What are the differences between mineral waters? Activities: Compare water from different origins (France: Evian, Vittel, Contrex. Austria: Vöslauer, Juvina, Gasteiner and tap water from Vienna) by tasting and finding the main ions they contain. Testing ions: Calcium, magnesium, sulphate, chloride, sodium, and potassium Lesson 3: Objectives of the session: Build a hydrometer Activities: Producing a range of calibration solutions, build and calibrate the hydrometer with different salt-water solutions. Measure the density of the Dead Sea's water and other mineral waters. Lesson 4: Objectives of the session: How does a fountain work? Activities: Construction of a fountain as Heron of Alexandria with simple equipment and try to understand the hydrostatic principles. Lesson 5: Objectives of the session: Study of the physical processes of water treatment (decantation, filtration, screening) Activities: Build a natural filter with sand, stone, carbon, and cotton wool. Retrieve the filtered water to test it during lesson 7. Lesson 6: Visit of the biggest treatment

  6. EFFECTS TO MODIFY THE CALORIC CONTENT OF WATER ON BODY WEIGHT, WATER, FOOD AND CALORIES CONSUMPTION IN RATS

    Directory of Open Access Journals (Sweden)

    ALMA GABRIELA MARTÍNEZ

    2006-05-01

    Full Text Available Six albino rats were divided in two experimental groups and one control. The experiment began withfifteen days of free access; subsequently experimental groups maintained available three concentrationsof glucose: high, middle and low. First group received high-middle-low-high-middle-low sequence andsecond group received low-middle-high-low-middle-high sequence during six days. Control group notreceived glucose concentrations. Caloric concentration of food never changed. Results suggest thatmodification of caloric concentration in water affects feeding behavior. Nevertheless, water with glucoseconsumption did not change body weight.

  7. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: An electronic brachytherapy source

    International Nuclear Information System (INIS)

    Rivard, Mark J.; Davis, Stephen D.; DeWerd, Larry A.; Rusch, Thomas W.; Axelrod, Steve

    2006-01-01

    A new x-ray source, the model S700 Axxent trade mark sign X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, P (5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1 125 I and 103 Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages

  8. Formation of amino acid precursors in the Solar System small bodies using Aluminium-26 as an energy source

    Science.gov (United States)

    Kebukawa, Yoko; Kobayashi, Kensei; Kawai, Jun; Mita, Hajime; Tachibana, Shogo; Yoda, Isao; Misawa, Shusuke

    2016-07-01

    Carbonaceous chondrites contain various organic matter including amino acids that may have played an important role for origin of life on the early Earth. The parent bodies of the chondritic meteorites likely formed from silicate dust grains containing some water ice and organic compounds. These planetesimals are known to contain short-lived radio isotopes such as ^{26}Al, and the heat generated from the decay of ^{26}Al was considered to be used for melting ice. The liquid water, for example, changed anhydrous silicates into hydrous silicates, i.e., aqueous alteration. The liquid water would act also as an ideal reaction medium for various organic chemistry. Cody et al. [1] proposed IOM formation via formose reaction starting with formaldehyde and glycolaldehyde during aqueous activity in the small bodies. Additional hydrothermal experiments showed that ammonia enhanced the yields of IOM like organic solids [2]. Formaldehyde and ammonia are ubiquitous in the Solar System and beyond, e.g., comets contain H _{2}CO : NH _{3} : H _{2}O = 0.4-4 : 0.5-1.5 : 100 [3]. Thus these molecules can be expected to have existed in some Solar System small bodies. We study the liquid phase chemistry of the formaldehyde and ammonia, including formations of amino acid precursor molecules, via hydrothermal experiments at isothermal temperatures of 90 °C to 200 °C. We also evaluate the effects of gamma-ray which is released from the decay of ^{26}Al with gamma-ray irradiation experiments using a ^{60}Co gamma-ray source at Tokyo Institute of Technology. Amino acids were detected mostly after acid hydrolysis of heated or irradiated solutions, indicating that most of the amino acids in the products exist as precursors. Some samples contained 'free' amino acids that were detected without acid hydrolysis, but much lower abundance than after acid hydrolysis. Kendrick mass defect (KMD) analyses of High resolution mass spectra obtained using ESI-MS revealed that various CHO and CHNO

  9. Natural environmental water sources in endemic regions of northeastern Brazil are potential reservoirs of viable Mycobacterium leprae.

    Science.gov (United States)

    Arraes, Maria Luisa Bezerra de Macedo; Holanda, Maísa Viana de; Lima, Luana Nepomuceno Gondim Costa; Sabadia, José Antônio Beltrão; Duarte, Cynthia Romariz; Almeida, Rosa Livia Freitas; Kendall, Carl; Kerr, Ligia Regina Sansigolo; Frota, Cristiane Cunha

    2017-12-01

    The detection of live Mycobacterium leprae in soil and animals other than humans suggests that the environment plays a role in the transmission of leprosy. The objective of this study was to investigate the presence of viable M. leprae in natural water sources used by the local population in five municipalities in the state of Ceará, northeastern Brazil. Samples were collected from 30 different sources. Viable bacilli were identified by reverse transcriptase polymerase chain reaction (PCR) of the M. leprae gyrA gene and sequencing of the PCR products. Physicochemical properties of each water source were also assessed. M. leprae gyrA mRNA was found in 23 (76.7%) of the water sources. No association was found between depth of the water and sample positivity, nor was there any association between the type of water used by the population and sample positivity. An association between viable M. leprae and temperature and pH was found. Georeferencing showed a relation between the residences of leprosy cases and water source containing the bacterium. The finding of viable M. leprae in natural water sources associated with human contact suggests that the environment plays an important role in maintaining endemic leprosy in the study region.

  10. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces.

    Science.gov (United States)

    Chau, N D G; Sebesvari, Z; Amelung, W; Renaud, F G

    2015-06-01

    Pollution of drinking water sources with agrochemicals is often a major threat to human and ecosystem health in some river deltas, where agricultural production must meet the requirements of national food security or export aspirations. This study was performed to survey the use of different drinking water sources and their pollution with pesticides in order to inform on potential exposure sources to pesticides in rural areas of the Mekong River delta, Vietnam. The field work comprised both household surveys and monitoring of 15 frequently used pesticide active ingredients in different water sources used for drinking (surface water, groundwater, water at public pumping stations, surface water chemically treated at household level, harvested rainwater, and bottled water). Our research also considered the surrounding land use systems as well as the cropping seasons. Improper pesticide storage and waste disposal as well as inadequate personal protection during pesticide handling and application were widespread amongst the interviewed households, with little overall risk awareness for human and environmental health. The results show that despite the local differences in the amount and frequency of pesticides applied, pesticide pollution was ubiquitous. Isoprothiolane (max. concentration 8.49 μg L(-1)), fenobucarb (max. 2.32 μg L(-1)), and fipronil (max. 0.41 μg L(-1)) were detected in almost all analyzed water samples (98 % of all surface samples contained isoprothiolane, for instance). Other pesticides quantified comprised butachlor, pretilachlor, propiconazole, hexaconazole, difenoconazole, cypermethrin, fenoxapro-p-ethyl, tebuconazole, trifloxystrobin, azoxystrobin, quinalphos, and thiamethoxam. Among the studied water sources, concentrations were highest in canal waters. Pesticide concentrations varied with cropping season but did not diminish through the year. Even in harvested rainwater or purchased bottled water, up to 12 different pesticides were detected at

  11. Quality of Source Water from Public-Supply Wells in the United States, 1993-2007

    Science.gov (United States)

    Toccalino, Patricia L.; Norman, Julia E.; Hitt, Kerie J.

    2010-01-01

    More than one-third of the Nation's population receives their drinking water from public water systems that use groundwater as their source. The U.S. Geological Survey (USGS) sampled untreated source water from 932 public-supply wells, hereafter referred to as public wells, as part of multiple groundwater assessments conducted across the Nation during 1993-2007. The objectives of this study were to evaluate (1) contaminant occurrence in source water from public wells and the potential significance of contaminant concentrations to human health, (2) national and regional distributions of groundwater quality, and (3) the occurrence and characteristics of contaminant mixtures. Treated finished water was not sampled. The 932 public wells are widely distributed nationally and include wells in selected parts of 41 states and withdraw water from parts of 30 regionally extensive aquifers used for public water supply. These wells are distributed among 629 unique public water systems-less than 1 percent of all groundwater-supplied public water systems in the United States-but the wells were randomly selected within the sampled hydrogeologic settings to represent typical aquifer conditions. Samples from the 629 systems represent source water used by one-quarter of the U.S. population served by groundwater-supplied public water systems, or about 9 percent of the entire U.S. population in 2008. One groundwater sample was collected prior to treatment or blending from each of the 932 public wells and analyzed for as many as six water-quality properties and 215 contaminants. Consistent with the terminology used in the Safe Drinking Water Act (SDWA), all constituents analyzed in water samples in this study are referred to as 'contaminants'. More contaminant groups were assessed in this study than in any previous national study of public wells and included major ions, nutrients, radionuclides, trace elements, pesticide compounds, volatile organic compounds (VOCs), and fecal

  12. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Woo-Jin [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Ryu, Jong-Sik [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Mayer, Bernhard [Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Lee, Kwang-Sik, E-mail: kslee@kbsi.re.kr [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Lee, Sin-Woo [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Department of Geology, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2014-07-01

    Acid mine drainage (AMD) in a watershed provides potential sources of pollutants for surface and subsurface waters that can deteriorate water quality. Between March and early August 2011, water samples were collected from two streams in South Korea, one dominantly draining a watershed with carbonate bedrock affected by coal mines and another draining a watershed with silicate bedrock and a relatively undisturbed catchment area. The objective of the study was to identify the sources and processes controlling water chemistry, which was dependent on bedrock and land use. In the Odae stream (OS), the stream in the silicate-dominated catchment, Ca, Na, and HCO{sub 3} were the dominant ions and total dissolved solids (TDS) was low (26.1–165 mg/L). In the Jijang stream (JS), in the carbonate-dominated watershed, TDS (224–434 mg/L) and ion concentrations were typically higher, and Ca and SO{sub 4} were the dominant ions due to carbonate weathering and oxidation of pyrite exposed at coal mines. Dual isotopic compositions of sulfate (δ{sup 34}S{sub SO4} and δ{sup 18}O{sub SO4}) verified that the SO{sub 4} in JS is derived mainly from sulfide mineral oxidation in coal mines. Cl in JS was highest upstream and decreased progressively downstream, which implies that pollutants from recreational facilities in the uppermost part of the catchment are the major source governing Cl concentrations within the discharge basin. Dual isotopic compositions of nitrate (δ{sup 15}N{sub NO3} and δ{sup 18}O{sub NO3}) indicated that NO{sub 3} in JS is attributable to nitrification of soil organic matter but that NO{sub 3} in OS is derived mostly from manure. Additionally, the contributions of potential anthropogenic sources to the two streams were estimated in more detail by using a plot of δ{sup 34}S{sub SO4} and δ{sup 15}N{sub NO3}. This study suggests that the dual isotope approach for sulfate and nitrate is an excellent additional tool for elucidating the sources and processes

  13. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams

    International Nuclear Information System (INIS)

    Shin, Woo-Jin; Ryu, Jong-Sik; Mayer, Bernhard; Lee, Kwang-Sik; Lee, Sin-Woo

    2014-01-01

    Acid mine drainage (AMD) in a watershed provides potential sources of pollutants for surface and subsurface waters that can deteriorate water quality. Between March and early August 2011, water samples were collected from two streams in South Korea, one dominantly draining a watershed with carbonate bedrock affected by coal mines and another draining a watershed with silicate bedrock and a relatively undisturbed catchment area. The objective of the study was to identify the sources and processes controlling water chemistry, which was dependent on bedrock and land use. In the Odae stream (OS), the stream in the silicate-dominated catchment, Ca, Na, and HCO 3 were the dominant ions and total dissolved solids (TDS) was low (26.1–165 mg/L). In the Jijang stream (JS), in the carbonate-dominated watershed, TDS (224–434 mg/L) and ion concentrations were typically higher, and Ca and SO 4 were the dominant ions due to carbonate weathering and oxidation of pyrite exposed at coal mines. Dual isotopic compositions of sulfate (δ 34 S SO4 and δ 18 O SO4 ) verified that the SO 4 in JS is derived mainly from sulfide mineral oxidation in coal mines. Cl in JS was highest upstream and decreased progressively downstream, which implies that pollutants from recreational facilities in the uppermost part of the catchment are the major source governing Cl concentrations within the discharge basin. Dual isotopic compositions of nitrate (δ 15 N NO3 and δ 18 O NO3 ) indicated that NO 3 in JS is attributable to nitrification of soil organic matter but that NO 3 in OS is derived mostly from manure. Additionally, the contributions of potential anthropogenic sources to the two streams were estimated in more detail by using a plot of δ 34 S SO4 and δ 15 N NO3 . This study suggests that the dual isotope approach for sulfate and nitrate is an excellent additional tool for elucidating the sources and processes controlling the water chemistry of streams draining watersheds having different

  14. Chemical composition of water hyacinth (Eichhronia Crassipes) a comparison indication of heavy metal pollution in egyptian water bodies. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-sabour, M F [Soil pollution unit, Soil and water Department. Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt); Abdel-Haleem, A S [Hot Lab. Center, Atomic Energy Authority, Cairo (Egypt); Zohny, E [Physics Department, Faculty of Science, Cairo University, Beni-Sweif Branch, Cairo (Egypt)

    1996-03-01

    Water hyacinth is tested as an indicator for pollution in egyptian fresh surface waters. Chemical composition of water hyacinth as affected area of collection (water bodies) was studied and the suitability of this plant as a biological indicator for water pollution is discussed. Water hyacinth samples were collected three times per year for two years (1991-1993). Sample sites include one location in the river nile (at Helwan area), one site in Ismaillia canal, (at Mostrod industrial area), and one site in Abo-Zabal drain (at Abo-Zabal city). The concentration of 19 major major and trace elements in plant samples were determined by prompt gamma-ray neutron activation analysis. Results indicated that plant parts as well as location have a significant effect on elements content. Water hyacinth roots showed high affinity for accumulation of trace elements. 5 tabs.

  15. Chemical composition of water hyacinth (Eichhronia Crassipes) a comparison indication of heavy metal pollution in egyptian water bodies. Vol. 4

    International Nuclear Information System (INIS)

    Abdel-sabour, M.F.; Abdel-Haleem, A.S.; Zohny, E.

    1996-01-01

    Water hyacinth is tested as an indicator for pollution in egyptian fresh surface waters. Chemical composition of water hyacinth as affected area of collection (water bodies) was studied and the suitability of this plant as a biological indicator for water pollution is discussed. Water hyacinth samples were collected three times per year for two years (1991-1993). Sample sites include one location in the river nile (at Helwan area), one site in Ismaillia canal, (at Mostrod industrial area), and one site in Abo-Zabal drain (at Abo-Zabal city). The concentration of 19 major major and trace elements in plant samples were determined by prompt gamma-ray neutron activation analysis. Results indicated that plant parts as well as location have a significant effect on elements content. Water hyacinth roots showed high affinity for accumulation of trace elements. 5 tabs

  16. Quantification of proportions of different water sources in a mining operation.

    Science.gov (United States)

    Scheiber, Laura; Ayora, Carlos; Vázquez-Suñé, Enric

    2018-04-01

    The water drained in mining operations (galleries, shafts, open pits) usually comes from different sources. Evaluating the contribution of these sources is very often necessary for water management. To determine mixing ratios, a conventional mass balance is often used. However, the presence of more than two sources creates uncertainties in mass balance applications. Moreover, the composition of the end-members is not commonly known with certainty and/or can vary in space and time. In this paper, we propose a powerful tool for solving such problems and managing groundwater in mining sites based on multivariate statistical analysis. This approach was applied to the Cobre Las Cruces mining complex, the largest copper mine in Europe. There, the open pit water is a mixture of three end-members: runoff (RO), basal Miocene (Mb) and Paleozoic (PZ) groundwater. The volume of water drained from the Miocene base aquifer must be determined and compensated via artificial recharging to comply with current regulations. Through multivariate statistical analysis of samples from a regional field campaign, the compositions of PZ and Mb end-members were firstly estimated, and then used for mixing calculations at the open pit scale. The runoff end-member was directly determined from samples collected in interception trenches inside the open pit. The application of multivariate statistical methods allowed the estimation of mixing ratios for the hydrological years 2014-2015 and 2015-2016. Open pit water proportions have changed from 15% to 7%, 41% to 36%, and 44% to 57% for runoff, Mb and PZ end-members, respectively. An independent estimation of runoff based on the curve method yielded comparable results. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. 40 CFR 141.706 - Reporting source water monitoring results.

    Science.gov (United States)

    2010-07-01

    ... systems serving at least 10,000 people must report the results from the initial source water monitoring... reporting monitoring results that EPA approves. (c) Systems serving fewer than 10,000 people must report.... PWS ID. 2. Facility ID. 3. Sample collection date. 4. Analytical method number. 5. Method type. 6...

  18. Studies of the contributions of nonpoint terrestrial sources to mineral water quality

    International Nuclear Information System (INIS)

    Huff, D.D.

    1977-05-01

    The contributions of nonpoint sources of water quality constituents represent a background loading rate that will not be reduced easily. Consequently, those contributions may have a dominant effect on aquatic ecosystems once point sources have been controlled. Modeling studies conducted at the Tennessee Valley Authority and Oak Ridge National Laboratory represent contrasting approaches that highlight some of the possibilities for predicting nonpoint source inputs to aquatic systems

  19. Distribution and Ecology of Cyanobacteria in the Rocky Littoral of an English Lake District Water Body, Devoke Water

    Directory of Open Access Journals (Sweden)

    Allan Pentecost

    2014-12-01

    Full Text Available Cyanobacteria were sampled along two vertical and two horizontal transects in the littoral of Devoke Water, English Lake District. Profiles of cyanobacterium diversity and abundance showed that both attained a maximum close to the water line, but declined rapidly 20–40 cm above it. The distribution of individual species with height together with species and site ordinations showed that several taxa occurred in well-defined zones. A narrow “black zone” in the supralittoral was colonised mainly by species of Calothrix, Dichothrix and Gloeocapsa with pigmented sheaths. There was no evidence of lateral variation of species around the lake, but the height of the black zone correlated positively with wind exposure. The flora of Devoke Water is that of a base-poor mountain lake with some elements of a lowland, more alkaline water-body.

  20. Water conservation and reuse using the Water Sources Diagram method for batch process: case studies

    Directory of Open Access Journals (Sweden)

    Fernando Luiz Pellegrini Pessoa

    2012-04-01

    Full Text Available The water resources management has been an important factor for the sustainability of industrial processes, since there is a growing need for the development of methodologies aimed at the conservation and rational use of water. The objective of this work was to apply the heuristic-algorithmic method called Water Sources Diagram (WSD, which is used to define the target of minimum water consumption, to batch processes. Scenarios with reuse of streams were generated and evaluated with application of the method from the data of water quantity and concentration of contaminants in the operations. Two case studies aiming to show the reduction of water consumption and wastewater generation, and final treatment costs besides investment in storage tanks, were presented. The scenarios showed great promising, achieving reduction up to 45% in water consumption and wastewater generation, and a reduction of around 37% on cost of storage tanks, without the need to allocate regeneration processes. Thus, the WSD method showed to be a relevant and flexible alternative regarding to systemic tools aimed at minimizing the consumption of water in industrial processes, playing an important role within a program of water resources management.

  1. Performance variations of river water source heat pump system according to heat exchanger capacity variations

    International Nuclear Information System (INIS)

    Park, Seong Ryong; Baik, Young Jin; Lee, Young Soo; Kim, Hee Hwan

    2003-01-01

    The utilization of unused energy is important because it can afford to offer a chance to increase energy efficiency of a heat pump system. One of the promising unused energy sources is river water. It can be used as a heat source in both heating and cooling effectively with its superior features as a secondary working fluids. In this study, the performance of a 5HP heat pump system using river water as a heat source is investigated by both experiment and simulation. According to system simulation results, performance improvement of condenser seems more effective than that of evaporator for better COPH. The serial connection is also preferred among several methods to improve plate type heat exchanger performance. The experimental results show that the hot water of 50∼60 .deg. C can be acquired from water heat source of 5∼9 .deg. C with COPH of 2.7∼3.5

  2. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems

    Science.gov (United States)

    Young, M.B.; McLaughlin, K.; Kendall, C.; Stringfellow, W.; Rollog, M.; Elsbury, K.; Donald, E.; Paytan, A.

    2009-01-01

    The oxygen isotopic composition of dissolved inorganic phosphate (δ18Op) in many aquatic ecosystems is not in isotopic equilibrium with ambient water and, therefore, may reflect the source δ18Op. Identification of phosphate sources to water bodies is critical for designing best management practices for phosphate load reduction to control eutrophication. In order for δ18O p to be a useful tool for source tracking, the δ18Op of phosphate sources must be distinguishable from one another; however, the δ18Op of potential sources has not been well characterized. We measured the δ18O p of a variety of known phosphate sources, including fertilizers, semiprocessed phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of δ18Op values (from +8.4 to +24.9‰) for the various sources, and statistically significant differences were found between several of the source types. δ18Op measured in three different fresh water systems was generally not in equilibrium with ambient water. Although there is overlap in δ18Op values among the groups of samples, our results indicate that some sources are isotopically distinct and δ18Op can be used for identifying phosphate sources to aquatic systems.

  3. Source to point of use drinking water changes and knowledge, attitude and practices in Katsina State, Northern Nigeria

    Science.gov (United States)

    Onabolu, B.; Jimoh, O. D.; Igboro, S. B.; Sridhar, M. K. C.; Onyilo, G.; Gege, A.; Ilya, R.

    In many Sub-Saharan countries such as Nigeria, inadequate access to safe drinking water is a serious problem with 37% in the region and 58% of rural Nigeria using unimproved sources. The global challenge to measuring household water quality as a determinant of safety is further compounded in Nigeria by the possibility of deterioration from source to point of use. This is associated with the use of decentralised water supply systems in rural areas which are not fully reticulated to the household taps, creating a need for an integrated water quality monitoring system. As an initial step towards establishing the system in the north west and north central zones of Nigeria, The Katsina State Rural Water and Sanitation Agency, responsible for ensuring access to safe water and adequate sanitation to about 6 million people carried out a three pronged study with the support of UNICEF Nigeria. Part 1 was an assessment of the legislative and policy framework, institutional arrangements and capacity for drinking water quality monitoring through desk top reviews and Key Informant Interviews (KII) to ascertain the institutional capacity requirements for developing the water quality monitoring system. Part II was a water quality study in 700 households of 23 communities in four local government areas. The objectives were to assess the safety of drinking water, compare the safety at source and household level and assess the possible contributory role of end users’ Knowledge Attitudes and Practices. These were achieved through water analysis, household water quality tracking, KII and questionnaires. Part III was the production of a visual documentary as an advocacy tool to increase awareness of the policy makers of the linkages between source management, treatment and end user water quality. The results indicate that except for pH, conductivity and manganese, the improved water sources were safe at source. However there was a deterioration in water quality between source and

  4. Nitrate Measurment in Water Source of Karaj City and Zonning it Geographic Information Systems (GIS)

    OpenAIRE

    A.R. Shakib; J. Rahimi; M. Noori Sepehr; M. Zarrabi

    2015-01-01

    Background & Objectives: Nitrate is one of drinking water pollutant which is introduced to water body from municipal wastewater. Information on nitrate concentration and its distribution in water resource is necessary in safe drinking water supply. For that reason, the present work was done for investigation of nitrate in Karaj water supply resource and its zonning with Geographic Information Systems (GIS). Materials and Methods: In this work, the nitrate concentration in 200 wells of Karaj w...

  5. Loading functions for assessment of water pollution from nonpoint sources. Final report

    International Nuclear Information System (INIS)

    McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W.

    1976-05-01

    Methods for evaluating the quantity of water pollutants generated from nonpoint sources including agriculture, silviculture, construction, mining, runoff from urban areas and rural roads, and terrestrial disposal are developed and compiled for use in water quality planning. The loading functions, plus in some instances emission values, permit calculation of nonpoint source pollutants from available data and information. Natural background was considered to be a source and loading functions were presented to estimate natural or background loads of pollutants. Loading functions/values are presented for average conditions, i.e., annual average loads expressed as metric tons/hectare/year (tons/acre/year). Procedures for estimating seasonal or 30-day maximum and minimum loads are also presented. In addition, a wide variety of required data inputs to loading functions, and delineation of sources of additional information are included in the report. The report also presents an evaluation of limitations and constraints of various methodologies which will enable the user to employ the functions realistically

  6. Presence of the β-triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters.

    Science.gov (United States)

    Kamata, Motoyuki; Asami, Mari; Matsui, Yoshihiko

    2017-07-01

    Triketone herbicides are becoming popular because of their herbicidal activity against sulfonylurea-resistant weeds. Among these herbicides, tefuryltrione (TFT) is the first registered herbicide for rice farming, and recently its distribution has grown dramatically. In this study, we developed analytical methods for TFT and its degradation product 2-chloro-4-methylsulfonyl-3-[(tetrahydrofuran-2-yl-methoxy) methyl] benzoic acid (CMTBA). TFT was found frequently in surface waters in rice production areas at concentrations as high as 1.9 μg/L. The maximum observed concentration was lower than but close to 2 μg/L, which is the Japanese reference concentration of ambient water quality for pesticides. However, TFT was not found in any drinking waters even though the source waters were purified by conventional coagulation and filtration processes; this was due to chlorination, which transforms TFT to CMTBA. The conversion rate of TFT to CMBA on chlorination was almost 100%, and CMTBA was stable in the presence of chlorine. Moreover, CMTBA was found in drinking waters sampled from household water taps at a similar concentration to that of TFT in the source water of the water purification plant. Although the acceptable daily intake and the reference concentration of CMTBA are unknown, the highest concentration in drinking water exceeded 0.1 μg/L, which is the maximum allowable concentration for any individual pesticide and its relevant metabolites in the European Union Drinking Directive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Irrigation water as a source of drinking water: is safe use possible?

    Science.gov (United States)

    van der Hoek, W; Konradsen, F; Ensink, J H; Mudasser, M; Jensen, P K

    2001-01-01

    In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water reservoirs is to use the water that has seeped from the irrigation canals and irrigated fields and that has formed a small layer of fresh water on top of the brackish groundwater. The objective of this study was to assess whether use of irrigation seepage water for drinking results in less diarrhoea than direct use of irrigation water and how irrigation water management would impact on health. The study was undertaken in an irrigated area in the southern Punjab, Pakistan. Over a one-year period, drinking water sources used and diarrhoea episodes were recorded each day for all individuals of 200 households in 10 villages. Separate surveys were undertaken to collect information on hygiene behaviour, sanitary facilities, and socio-economic status. Seepage water was of much better quality than surface water, but this did not translate into less diarrhoea. This could only be partially explained by the generally poor quality of water in the in-house storage vessels, reflecting considerable in-house contamination of drinking water. Risk factors for diarrhoea were absence of a water connection and water storage facility, lack of a toilet, low standard of hygiene, and low socio-economic status. The association between water quality and diarrhoea varied by the level of water availability and the presence or absence of a toilet. Among people having a high quantity of water available and a toilet, the incidence rate of diarrhoea was higher when surface water was used for drinking than when seepage water was used (relative risk 1.68; 95% CI 1.31-2.15). For people with less water available the direction of the association between water quality and diarrhoea was different (relative risk 0.80; 95% CI 0

  8. Drinking Water Quality Status and Contamination in Pakistan

    Directory of Open Access Journals (Sweden)

    M. K. Daud

    2017-01-01

    Full Text Available Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan.

  9. Drinking Water Quality Status and Contamination in Pakistan

    Science.gov (United States)

    Nafees, Muhammad; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan. PMID:28884130

  10. Use of multiple water surface flow constructed wetlands for non-point source water pollution control.

    Science.gov (United States)

    Li, Dan; Zheng, Binghui; Liu, Yan; Chu, Zhaosheng; He, Yan; Huang, Minsheng

    2018-05-02

    Multiple free water surface flow constructed wetlands (multi-FWS CWs) are a variety of conventional water treatment plants for the interception of pollutants. This review encapsulated the characteristics and applications in the field of ecological non-point source water pollution control technology. The roles of in-series design and operation parameters (hydraulic residence time, hydraulic load rate, water depth and aspect ratio, composition of influent, and plant species) for performance intensification were also analyzed, which were crucial to achieve sustainable and effective contaminants removal, especially the retention of nutrient. The mechanism study of design and operation parameters for the removal of nitrogen and phosphorus was also highlighted. Conducive perspectives for further research on optimizing its design/operation parameters and advanced technologies of ecological restoration were illustrated to possibly interpret the functions of multi-FWS CWs.

  11. Inferring the source of evaporated waters using stable H and O isotopes

    Science.gov (United States)

    Stable isotope ratios of H and O are widely used to identify the source of water, e.g., in aquifers, river runoff, soils, plant xylem, and plant-based beverages. In situations where the sampled water is partially evaporated, its isotope values will have evolved along an evaporati...

  12. On the mineralization model of 'three sources--heat, water and uranium'

    International Nuclear Information System (INIS)

    Li Xueli

    1992-01-01

    In response to the relations between geological and geothermal settings, geothermal water and uranium mineralizations in the Southeastern China, the model of uranium mineralization in discharge area (depressurization area) of fossil geothermal systems in Mesozoic-Cenozoic Volcanic-magmatic active areas has been put forward and expounded in the view of mineral-formation by the 'three sources'-heat, water and uranium

  13. Relationship between drinking water and toenail arsenic concentrations among a cohort of Nova Scotians.

    Science.gov (United States)

    Yu, Zhijie M; Dummer, Trevor J B; Adams, Aimee; Murimboh, John D; Parker, Louise

    2014-01-01

    Consumption of arsenic-contaminated drinking water is associated with increased cancer risk. The relationship between arsenic body burden, such as concentrations in human toenails, and arsenic in drinking water is not fully understood. We evaluated the relationship between arsenic concentrations in drinking water and toenail clippings among a cohort of Nova Scotians. A total of 960 men and women aged 35 to 69 years provided home drinking water and toenail clipping samples. Information on water source and treatment use and covariables was collected through questionnaires. Arsenic concentrations in drinking water and toenail clippings and anthropometric indices were measured. Private drilled water wells had higher arsenic concentrations compared with other dug wells and municipal drinking water sources (Pwater arsenic levels ≥1 μg/l, there was a significant relationship between drinking water and toenail arsenic concentrations (r=0.46, Pwater, obese individuals had significantly lower concentrations of arsenic in toenails compared with those with a normal weight. Private drilled water wells were an important source of arsenic exposure in the study population. Body weight modifies the relationship between drinking water arsenic exposure and toenail arsenic concentrations.

  14. The effects of floor heating on body temperature, water consumption, stress response and immune competence around parturition in loose-housed sows

    DEFF Research Database (Denmark)

    Damgaard, B M; Malmkvist, J; Pedersen, L J

    2009-01-01

    The aim of the present study was to study whether floor heating from 12 h after onset of nest building until 48 h after birth of the first piglet had any effect on measures related to body temperature, water consumption, stress response and immune competence in loose-housed sows (n = 23......). In conclusion, the present results indicate that floor heating for a limited period around parturition did not compromise physiological and immunological parameters, water intake and body temperature in loose-housed sows. The water intake peaked the day before parturition and the body temperature peaked...

  15. Variation of Body Size in Rice Water Weevil (Coleoptera: Curculionidae) and Its Associations with Population Biology

    OpenAIRE

    Huang, Yunshan; Ao, Yan; Jiang, Mingxing; Way, Michael O

    2018-01-01

    Abstract Life history characteristics help us to determine the ability of invasive species to establish and thrive in an exotic environment. However, so far, there have been very few reports concerning geographic variation in the body size of invasive insects and the associations between body size variation and population biology. In this study, we surveyed the geographic variation in body size of an invasive agricultural pest, the rice water weevil Lissorhoptrus oryzophilus Kuschel (Coleopte...

  16. Farm water as a possible source of fungal infections

    Directory of Open Access Journals (Sweden)

    Stojanov Igor M.

    2017-01-01

    Full Text Available The quality of drinking water depends on the water sources, but also on the quality of the water distribution system which supplies the water on to the final user. In addition, the possibility of contamination of water used for watering animals in the farm buildings depends on the hygienic conditions on farms. Microbiological quality of water on farms in Serbia has not been one of the main focuses of animal breeders, although according to the Food Safety Law water is considered as food. As feed safety for the animals, which includes microbiological analyses, is an important concern of breeder farmers, it is also important to control the water safety in order not to become a cause of the animal health problems. Change of the water quality is not important only from the sanitary epidemiological point of view, but the presence of different microorganisms, especially fungi, can cause changes in taste and smell, as organoleptic properties of water. According to legal regulations, there is no difference between the quality requirements for drinking water relative to the water supply intended for animals. For the aforementioned reasons, the subject of this study is microbiological control of water samples from the drinkers for animals at farms. The aim of the work is to examine which fungi are possibly present in the water and what their number is. In total, 35 samples of water from pig and poultry farms were tested. The method of direct seeding and filtration was used. The presence of different types of mold (Aspergillus sp., Penicillium sp., Alternaria sp., Mucor sp. and Rhizopus sp., and Candida sp. was determined. The results indicate the necessity of microbiological control of water for watering of farm animals, which implies the analysis for the presence of molds. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR31071

  17. Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage

    Science.gov (United States)

    Li, Wenting; Xiong, Binglin; Wang, Shiwen; Deng, Xiping; Yin, Lina; Li, Hongbing

    2016-01-01

    The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg−1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield. PMID:26752657

  18. Social.Water--Open Source Citizen Science Software for CrowdHydrology

    Science.gov (United States)

    Fienen, M. N.; Lowry, C.

    2013-12-01

    CrowdHydrology is a crowd-sourced citizen science project in which passersby near streams are encouraged to read a gage and send an SMS (text) message with the water level to a number indicated on a sign. The project was initially started using free services such as Google Voice, Gmail, and Google Maps to acquire and present the data on the internet. Social.Water is open-source software, using Python and JavaScript, that automates the acquisition, categorization, and presentation of the data. Open-source objectives pervade both the project and the software as the code is hosted at Github, only free scripting codes are used, and any person or organization can install a gage and join the CrowdHydrology network. In the first year, 10 sites were deployed in upstate New York, USA. In the second year, expansion to 44 sites throughout the upper Midwest USA was achieved. Comparison with official USGS and academic measurements have shown low error rates. Citizen participation varies greatly from site to site, so surveys or other social information is sought for insight into why some sites experience higher rates of participation than others.

  19. Pollution source control by water utilities – characterisation and implications for water management: research results from England and Wales

    NARCIS (Netherlands)

    Spiller, M.; McIntosh, B.S.; Seaton, R.A.F.; Jeffrey, P.

    2013-01-01

    The treatment of agriculturally polluted water to potable standards is costly for water companies. Changes in agricultural practice can reduce these costs while also meeting the objectives of European Union (EU) environmental legislation. In this paper, the uptake of source control interventions

  20. Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis.

    Science.gov (United States)

    Voltas, Jordi; Lucabaugh, Devon; Chambel, Maria Regina; Ferrio, Juan Pedro

    2015-12-01

    The relevance of interspecific variation in the use of plant water sources has been recognized in drought-prone environments. By contrast, the characterization of intraspecific differences in water uptake patterns remains elusive, although preferential access to particular soil layers may be an important adaptive response for species along aridity gradients. Stable water isotopes were analysed in soil and xylem samples of 56 populations of the drought-avoidant conifer Pinus halepensis grown in a common garden test. We found that most populations reverted to deep soil layers as the main plant water source during seasonal summer droughts. More specifically, we detected a clear geographical differentiation among populations in water uptake patterns even under relatively mild drought conditions (early autumn), with populations originating from more arid regions taking up more water from deep soil layers. However, the preferential access to deep soil water was largely independent of aboveground growth. Our findings highlight the high plasticity and adaptive relevance of the differential access to soil water pools among Aleppo pine populations. The observed ecotypic patterns point to the adaptive relevance of resource investment in deep roots as a strategy towards securing a source of water in dry environments for P. halepensis. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Isotope hydrogeochemical characteristics of water bodies in Munigou, Sichuan

    International Nuclear Information System (INIS)

    Li Hongye; Yin Guan; Yang Junyi; Fan Xiao

    2003-01-01

    Munigou is a part of Huanglong -Jiuzhaigou national scenic in northern Sichuan province. By using isotope geochemistry technique of natural water to analyze the data of δ D, δ 18 O, tritium contents, deuterium excess parameters (d-excess) and element chemical analyses, we discusses the recharge, runoff, discharge and hydraulic relationship between the precipitation, terrain surface water, groundwater and main spring in the Munigou area. Pearl spring and Jadeite spring are major spring resources in this spot. Pearl spring is a hot spring that recharged by the precipitation that sourced from an elevation of more than 3700 m. The part of precipitation infiltrate underground and return the earth's surface after it exchanged quantity of heat with deep hot fluid. So the Pearl spring can be exploited as hot spring; The Jadeite spring is typical acidic karst water cold spring. The velocity of flow of the water in the Jadeite spring's aquifer is slower than the Pearl spring's and the water has long detained time. The spring water has a good quality and important economical value for natural mineral water; Most of runoff in Munigou recharged by precipitation and shallow groundwater. This recharge have seasonal variation and important for scenic spot. These discussed problems in article have far-reaching meaning on evaluation the exploited potential of the Pearl spring and Jadeite spring and is important to protecting and developing the precious natural resource in Munigou area. And provides reference for the similar researches too. (authors)

  2. Efficient 'water window' soft x-ray high-Z plasma source

    International Nuclear Information System (INIS)

    Higashiguchi, T; Otsuka, T; Jiang, W; Endo, A; Li, B; Dunne, P; O'Sullivan, G

    2013-01-01

    Unresolved transition array (UTA) is scalable to shorter wavelengths, and we demonstrate a table-top broadband emission 'water window' soft x-ray source based on laser-produced plasmas. Resonance emission from multiply charged ions merges to produce intense UTAs in the 2 to 4 nm region, extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth (Bi) plasma UTA source, coupled to multilayer mirror optics

  3. Water Quality Protection from Nutrient Pollution: Case ...

    Science.gov (United States)

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.

  4. Investigating the Source of Water and/or Hydroxyl on Asteroid (16) Psyche

    Science.gov (United States)

    Takir, D.; Reddy, V.; Sanchez, J. A.; Shepard, M. K.; Emery, J. P.

    2017-12-01

    Asteroid (16) Psyche will be visited by the Psyche mission, which was selected by NASA and will be launched in 2022 as the 14th Discovery mission. Psyche is thought to be one of the most massive exposed metallic core in the asteroid belt. The high radar albedos, thermal inertia, and density of Psyche revealed that this asteroid is composed of almost entirely of Fe-Ni metal. Psyche is also characterized by moderately red spectra and the presence of weak features (attributed to silicates) in the visible and near-infrared (NIR) region (0.3-2.5 µm). Recent NIR observations also showed rotational spectral variations indicating a possible change in the metal/silicate ratio on the surface of this asteroid. Additionally, we observed Psyche in the 3-µm spectral region using the long-wavelength cross-dispersed (LXD: 1.9-4.2 µm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility (IRTF). Our observations revealed that Psyche exhibits a 3-µm feature, more likely attributed to water- and/or hydroxyl molecules. While the source of water and/or hydroxyl on Psyche remains unclear, we proposed a few possible mechanisms for their formation: (1) the water/hydroxyl-rich materials detected on Psyche might have been delivered to its surface by carbonaceous impactors (like on Vesta), (2) Psyche may not be entirely exposed metallic, instead, its surface has a core-mantle boundary of a differentiated body that was disrupted by impacts (e.g., Pallasite-like), or (3) the water/hydroxyl-rich materials detected on Psyche is produced by Solar wind implantation (like on the Moon). In this talk we will discuss these three possible mechanisms and hypotheses and how they can be tested prior to the launch of the Psyche spacecraft using predictive laboratory measurements and modeling, and during the spacecraft encounter with the asteroid using the mission main instruments that will include the multispectral imagers, the gamma-ray and neutron spectrometer, and the dual

  5. A Tiered Approach to Evaluating Salinity Sources in Water at Oil and Gas Production Sites.

    Science.gov (United States)

    Paquette, Shawn M; Molofsky, Lisa J; Connor, John A; Walker, Kenneth L; Hopkins, Harley; Chakraborty, Ayan

    2017-09-01

    A suspected increase in the salinity of fresh water resources can trigger a site investigation to identify the source(s) of salinity and the extent of any impacts. These investigations can be complicated by the presence of naturally elevated total dissolved solids or chlorides concentrations, multiple potential sources of salinity, and incomplete data and information on both naturally occurring conditions and the characteristics of potential sources. As a result, data evaluation techniques that are effective at one site may not be effective at another. In order to match the complexity of the evaluation effort to the complexity of the specific site, this paper presents a strategic tiered approach that utilizes established techniques for evaluating and identifying the source(s) of salinity in an efficient step-by-step manner. The tiered approach includes: (1) a simple screening process to evaluate whether an impact has occurred and if the source is readily apparent; (2) basic geochemical characterization of the impacted water resource(s) and potential salinity sources coupled with simple visual and statistical data evaluation methods to determine the source(s); and (3) advanced laboratory analyses (e.g., isotopes) and data evaluation methods to identify the source(s) and the extent of salinity impacts where it was not otherwise conclusive. A case study from the U.S. Gulf Coast is presented to illustrate the application of this tiered approach. © 2017, National Ground Water Association.

  6. Preliminary study on the radiological and physicochemical quality of the Umgeni Water catchments and drinking water sources in KwaZulu-Natal, South Africa

    International Nuclear Information System (INIS)

    Manickum, T.; John, W.; Terry, S.; Hodgson, K.

    2014-01-01

    Raw and potable water sample sources, from the Umgeni Water catchment areas (rivers, dams, boreholes) in central KwaZulu-Natal (South Africa), were screened for Uranium concentration and alpha and beta radioactivity. Test methods used were gas flow proportional counting for alpha-beta radioactivity, and kinetic phosphorescence analysis (KPA), for Uranium. The uranium levels (median = 0.525 μg/L, range = <0.050–5.010) were well below the international World Health Organization (WHO) (2011) guideline for drinking-water quality (≤15 μg/L). The corresponding alpha and beta radioactivity was ≤0.5 Bq/L (median = 0.084, Interquartile Range (IR) = 0.038, range = 0.018–0.094), and ≤1.0 Bq/L (median = 0.114, IR = 0.096, range = 0.024–0.734), respectively, in compliance with the international WHO limits. For uranium radionuclide, the average dose level, at uranium level of ±0.525 μg/L, was 0.06 μSv/a, which complies with the WHO reference dose level for drinking water (<0.1 mSv/a). There was a distinct trend of cluster of relatively higher Uranium levels of some sources that were found to be associated with the geology/geography and groundwater sources. Overall, the radiological water quality classification, with respect to WHO, is “Blue” – ideal; additional physicochemical analyses indicated good water quality. The analytical test methods employed were found to be suitable for preliminary screening for potential radioactive “hot spots”. The observed Uranium levels, and the alpha/beta radioactivity, indicate contribution largely from Naturally Occurring Radioactive Material (NORM), with no significant health risk to humans, or to the environment. - Highlights: • Radiological and physicochemical quality of raw and drinking water sources. • Suitability of kinetic phosphorescence analysis for Uranium analysis of water. • Suitability of gas flow proportional counting for determining radioactivity of water. • The Effective

  7. The sources of trace element pollution of dry depositions nearby a drinking water source.

    Science.gov (United States)

    Guo, Xinyue; Ji, Hongbing; Li, Cai; Gao, Yang; Ding, Huaijian; Tang, Lei; Feng, Jinguo

    2017-02-01

    Miyun Reservoir is one of the most important drinking water sources for Beijing. Thirteen atmospheric PM sampling sites were established around this reservoir to analyze the mineral composition, morphological characteristics, element concentration, and sources of atmospheric PM pollution, using transmission electron microscope, X-ray diffraction, and inductively coupled plasma mass spectrometry analyses. The average monthly dry deposition flux of aerosols was 15.18 g/m 2 , with a range of 5.78-47.56 g/m 2 . The maximum flux season was winter, followed by summer, autumn, and spring. Zn and Pb pollution in this area was serious, and some of the sample sites had Cr, Co, Ni, and Cu pollution. Deposition fluxes of Zn/Pb in winter and summer reached 99.77/143.63 and 17.04/33.23 g/(hm 2 month), respectively. Principal component analysis showed two main components in the dry deposition; the first was Cr, Co, Ni, Cu, and Zn, and the other was Pb and Cd. Principal sources of the trace elements were iron mining and other anthropogenic activities in the surrounding areas and mountainous area north of the reservoir. Mineralogy analysis and microscopic conformation results showed many iron minerals and some unweathered minerals in dry deposition and atmospheric particulate matter, which came from an iron ore yard in the northern mountainous area of Miyun County. There was possible iron-rich dry deposition into Miyun Reservoir, affecting its water quality and harming the health of people living in areas around the reservoir and Beijing.

  8. Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-02-01

    Full Text Available Water pollution has become one of the leading causes of human health problems. Low molecular weight pollutants, even at trace concentrations in water sources, have aroused global attention due to their toxicity after long-time exposure. There is an increased demand for appropriate methods to detect these pollutants in aquatic systems. Aptamers, single-stranded DNA or RNA, have high affinity and specificity to each of their target molecule, similar to antigen-antibody interaction. Aptamers can be selected using a method called Systematic Evolution of Ligands by EXponential enrichment (SELEX. Recent years we have witnessed great progress in developing aptamer selection and aptamer-based sensors for low molecular weight pollutants in water sources, such as tap water, seawater, lake water, river water, as well as wastewater and its effluents. This review provides an overview of aptamer-based methods as a novel approach for detecting low molecular weight pollutants in water sources.

  9. Assessment of air, water and land-based sources of pollution in the ...

    African Journals Online (AJOL)

    A quantitative assessment of air, water and land-based sources of pollution to the coastal zone of the Accra-Tema Metropolitan Area of Ghana was conducted by making an emission inventory from information on industrial, commercial and domestic activities. Three sources of air pollution were analysed, viz, emission from ...

  10. Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment.

    Science.gov (United States)

    Treydte, Kerstin; Boda, Sonja; Graf Pannatier, Elisabeth; Fonti, Patrick; Frank, David; Ullrich, Bastian; Saurer, Matthias; Siegwolf, Rolf; Battipaglia, Giovanna; Werner, Willy; Gessler, Arthur

    2014-05-01

    For accurate interpretation of oxygen isotopes in tree rings (δ(18) O), it is necessary to disentangle the mechanisms underlying the variations in the tree's internal water cycle and to understand the transfer of source versus leaf water δ(18) O to phloem sugars and stem wood. We studied the seasonal transfer of oxygen isotopes from precipitation and soil water through the xylem, needles and phloem to the tree rings of Larix decidua at two alpine sites in the Lötschental (Switzerland). Weekly resolved δ(18) O records of precipitation, soil water, xylem and needle water, phloem organic matter and tree rings were developed. Week-to-week variations in needle-water (18) O enrichment were strongly controlled by weather conditions during the growing season. These short-term variations were, however, not significantly fingerprinted in tree-ring δ(18) O. Instead, seasonal trends in tree-ring δ(18) O predominantly mirrored trends in the source water, including recent precipitation and soil water pools. Modelling results support these findings: seasonal tree-ring δ(18) O variations are captured best when the week-to-week variations of the leaf water signal are suppressed. Our results suggest that climate signals in tree-ring δ(18) O variations should be strongest at temperate sites with humid conditions and precipitation maxima during the growing season. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  11. Microbial processes in the Kanda Bay, a meromictic water body artifically separated from the White Sea.

    Science.gov (United States)

    Savvichev, A S; Demidenko, N A; Krasnova, E D; Kalmatskaya, O V; Kharcheva, A N; Ivanov, M V

    2017-05-01

    Sings of meromixis are found by means of microbiological and biogeochemical investigations in the southernn part of the Kanda Bay, an artificial water body separated front the White Sea with a railway dam. The concentration of oxygen in the bottom layer attained 1.9 mmol/L, intensity of the process of microbial sulfate reduction, 3.0 μmol of sulfur/(L day). The concentration of dissolved methane, 3.7 μmol/L. Isotopic composition of carbon in methane (δ 13 C (CH 4 ) =-79.2‰) indicates to its microbial genesis. At present, Kanda Bay is a sole in Russia man-made marine water body for which there are data on the rate of microbial processes responsible for formation of bottom water layer containing hydrogen sulfide and methane.

  12. Nanofiltration Membranes for Removal of Color and Pathogens in Small Public Drinking Water Sources

    Science.gov (United States)

    Small public water supplies that use surface water as a source for drinking water are frequently faced with elevated levels of color and natural organic matter (NOM) that are precursors for chlorinated disinfection byproduct (DBP) formation. Nanofiltration (NF) systems can preve...

  13. Water-equivalent solid sources prepared by means of two distinct methods

    International Nuclear Information System (INIS)

    Koskinas, Marina F.; Yamazaki, Ione M.; Potiens Junior, Ademar

    2014-01-01

    The Nuclear Metrology Laboratory at IPEN is involved in developing radioactive water-equivalent solid sources prepared from an aqueous solution of acrylamide using two distinct methods for polymerization. One of them is the polymerization by high dose of 60 Co irradiation; in the other method the solid matrix-polyacrylamide is obtained from an aqueous solution composed by acrylamide, catalyzers and an aliquot of a radionuclide. The sources have been prepared in cylindrical geometry. In this paper, the study of the distribution of radioactive material in the solid sources prepared by both methods is presented. (author)

  14. Environmental evaluation of high-value agricultural produce with diverse water sources: case study from Southern California

    Science.gov (United States)

    Bell, Eric M.; Stokes-Draut, Jennifer R.; Horvath, Arpad

    2018-02-01

    Meeting agricultural demand in the face of a changing climate will be one of the major challenges of the 21st century. California is the single largest agricultural producer in the United States but is prone to extreme hydrologic events, including multi-year droughts. Ventura County is one of California’s most productive growing regions but faces water shortages and deteriorating water quality. The future of California’s agriculture is dependent on our ability to identify and implement alternative irrigation water sources and technologies. Two such alternative water sources are recycled and desalinated water. The proximity of high-value crops in Ventura County to both dense population centers and the Pacific Ocean makes it a prime candidate for alternative water sources. This study uses highly localized spatial and temporal data to assess life-cycle energy use, life-cycle greenhouse gas emissions, operational costs, applied water demand, and on-farm labor requirements for four high-value crops. A complete switch from conventional irrigation with groundwater and surface water to recycled water would increase the life-cycle greenhouse gas emissions associated with strawberry, lemon, celery, and avocado production by approximately 14%, 7%, 59%, and 9%, respectively. Switching from groundwater and surface water to desalinated water would increase life-cycle greenhouse gas emissions by 33%, 210%, 140%, and 270%, respectively. The use of recycled or desalinated water for irrigation is most financially tenable for strawberries due to their relatively high value and close proximity to water treatment facilities. However, changing strawberry packaging has a greater potential impact on life-cycle energy use and greenhouse gas emissions than switching the water source. While this analysis does not consider the impact of water quality on crop yields, previous studies suggest that switching to recycled water could result in significant yield increases due to its lower

  15. Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspe...

  16. Energy saving analysis on mine-water source heat pump in a residential district of Henan province, central China

    Science.gov (United States)

    Wang, Hong; Duan, Huanlin; Chen, Aidong

    2018-02-01

    In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.

  17. Determination of sources and analysis of micro-pollutants in drinking water

    International Nuclear Information System (INIS)

    Md Pauzi Abdullah; Soh Shiau Chian

    2005-01-01

    The objectives of the study are to develop and validate selected analytical methods for the analysis of micro organics and metals in water; to identify, monitor and assess the levels of micro organics and metals in drinking water supplies; to evaluate the relevancy of the guidelines set in the National Standard of Drinking Water Quality 2001; and to identify the sources of pollution and to carryout risk assessment of exposure to drinking water. The presentation discussed the progress of the work include determination of VOCs (Volatile organic compounds) in drinking water using SPME (Solid phase micro-extraction) extraction techniques, analysis of heavy metals in drinking water, determination of Cr(VI) with ICPES (Inductively coupled plasma emission spectrometry) and the presence of halogenated volatile organic compounds (HVOCs), which is heavily used by agricultural sector, in trace concentrations in waters

  18. Sensitivity to Disgust and Perceptions of Natural Bodies of Water and Watercraft Activities

    Science.gov (United States)

    Robert D. Bixler; Gwynn Powell

    2003-01-01

    A written 7-item self-report scale on sensitivity to disgust and participation in watercraft activities was administered to 450 seasonal park employees. Correlations indicate that nonparticipation in seven different watercraft sports was weakly related with reactions of disgust to contact with natural bodies of water (rpbis...

  19. The economics of supplying the supplementary heat in a closed loop water source heat pump system

    International Nuclear Information System (INIS)

    Johnson, R.P.; Bartkus, V.E.; Singh, J.B.

    1993-01-01

    The paper describes the details of a research and demonstration project that will be completed in August 1992 at a healthcare facility in northeastern Pennsylvania. The purpose of the project is to compare the economics of several methods of supplying the supplementary heating in a facility served by a closed loop water source heat pump system. The systems being tested include a storage hot water tank with electric resistance heaters and three air source heat pumps that have the ability to supply the same heat during on-peak hours as well as off-peak hours. The paper compares the projected operating costs of the following: (1) Gas boiler supplying the supplementary heat. (2) Stored hot water supplying the supplementary heat which is generated and stored during off-peak hours using resistance heat on PP ampersand L's offpeak rate. (3) Stored hot water supplying the supplementary heat generated during off-peak hours using the air source heat pumps on PP ampersand L's off-peak rate. (4) Hot water generated by the air source heat pumps supplying the supplementary loop heating on PP ampersand L's general service and time-of-day electric rates. It is generally known in the HVAC industry that a closed loop water source heat pump system can provide one of the most efficient means of space conditioning to a building with high internal gains by transferring the excess heat available in one part of the building to another part of the building where it may be needed for heating. The following flow diagram depicts the relationship of the air source heat pumps with the storage tanks and the building closed water loop

  20. Occurrence and Removal Characteristics of Phthalate Esters from Typical Water Sources in Northeast China

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2013-01-01

    Full Text Available The presence of phthalate esters (PAEs in the environment has gained a considerable attention due to their potential impacts on public health. This study reports the first data on the occurrence of 15 PAEs in the water near the Mopanshan Reservoir—the new and important water source of Harbin city in Northeast China. As drinking water is a major source for human exposure to PAEs, the fate of target PAEs in the two waterworks (Mopanshan Waterworks and Seven Waterworks was also analyzed. The results demonstrated that the total concentrations of 15 PAEs in the water near the Mopanshan Reservoir were relatively moderate, ranging from 355.8 to 9226.5 ng/L, with the mean value of 2943.1 ng/L. DBP and DEHP dominated the PAE concentrations, which ranged from 52.5 to 4498.2 ng/L and 128.9 to 6570.9 ng/L, respectively. The occurrence and concentrations of these compounds were heavily spatially dependent. Meanwhile, the results on the waterworks samples suggested no significant differences in PAE levels with the input of the raw waters. Without effective and stable removal of PAEs after the conventional drinking water treatment in the waterworks (25.8% to 76.5%, the risks posed by PAEs through drinking water ingestion were still existing, which should be paid special attention to the source control in the Mopanshan Reservoir and some advanced treatment processes for drinking water supplies.

  1. Revised accident source terms for light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Soffer, L. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  2. Dataset for Testing Contamination Source Identification Methods for Water Distribution Networks

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes the results of a simulation study using the source inversion techniques available in the Water Security Toolkit. The data was created to test...

  3. Effect of Nordic Walking and Water Aerobics Training on Body Composition and the Blood Flow in Lower Extremities in Elderly Women

    Directory of Open Access Journals (Sweden)

    Jasiński Ryszard

    2015-03-01

    Full Text Available Nordic walking and water aerobics are very popular forms of physical activity in the elderly population. The aim of the study was to evaluate the influence of regular health training on the venous blood flow in lower extremities and body composition in women over 50 years old. Twenty-four women of mean age 57.9 (± 3.43 years, randomly divided into three groups (Nordic walking, water aerobics, and non-training, participated in the study. The training lasted 8 weeks, with one-hour sessions twice a week. Dietary habits were not changed. Before and after training vein refilling time and the function of the venous pump of the lower extremities were measured by photoplethysmography. Body composition was determined by bioelectrical impedance. Eight weeks of Nordic walking training improved the venous blood flow in lower extremities and normalized body composition in the direction of reducing chronic venous disorder risk factors. The average values of the refilling time variable (p = 0.04, p = 0.02, respectively decreased in both the right and the left leg. After training a statistically significant increase in the venous pump function index was found only in the right leg (p = 0.04. A significant increase in fat-free mass, body cell mass and total body water was observed (p = 0.01, whereas body mass, the body mass index, and body fat decreased (p < 0.03. With regard to water aerobic training, no similar changes in the functions of the venous system or body composition were observed.

  4. A preliminary nationwide survey of the presence of emerging contaminants in drinking and source waters in Brazil.

    Science.gov (United States)

    Machado, Kelly C; Grassi, Marco Tadeu; Vidal, Cristiane; Pescara, Igor C; Jardim, Wilson F; Fernandes, Andreia N; Sodré, Fernando F; Almeida, Fernanda V; Santana, Joyce S; Canela, Maria Cristina; Nunes, Camila R O; Bichinho, Kátia M; Severo, Flaviana J R

    2016-12-01

    This is the first nationwide survey of emerging contaminants in Brazilian waters. One hundred drinking water samples were investigated in 22 Brazilian state capitals. In addition, seven source water samples from two of the most populous regions of the country were evaluated. Samples were collected from June to September of 2011 and again during the same period in 2012. The study covered emerging contaminants of different classes, including hormones, plasticizers, herbicides, triclosan and caffeine. The analytical method for the determination of the compounds was based on solid-phase extraction followed by analysis via liquid chromatography electrospray triple-quadrupole mass spectrometry (LC-MS/MS). Caffeine, triclosan, atrazine, phenolphthalein and bisphenol A were found in at least one of the samples collected in the two sampling campaigns. Caffeine and atrazine were the most frequently detected substances in both drinking and source water. Caffeine concentrations in drinking water ranged from 1.8ngL -1 to values above 2.0μgL -1 while source-water concentrations varied from 40ngL -1 to about 19μgL -1 . For atrazine, concentrations were found in the range from 2.0 to 6.0ngL -1 in drinking water and at concentrations of up to 15ngL -1 in source water. The widespread presence of caffeine in samples of treated water is an indication of the presence of domestic sewage in the source water, considering that caffeine is a compound of anthropogenic origin. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Human body may produce bacteria.

    Science.gov (United States)

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bacteriological quality of creeks and marine water bodies in North Goa: Ecosystem upkeep perspectives for tourism-related activities

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Sadhasivan, A.; Iyer, S.R.

    and other hygienic purposes). However, it may be used for gardening and flushing water closets. Keeping 100 colifarms per litre as the maximum permissible limit for 'using' natural water bodies, it becomes imperative to refer to Kazi and Nairy (2002... be needless to emphasize that increased amenities of sewage treatment plants, sanitation, and hygiene will not only reduce current levels of sewage discharge but also safeguard natural aquatic bodies, both surficial and underground. Social, economic, and 227...

  7. Modeled de facto reuse and contaminants of emerging concern in drinking water source waters

    Science.gov (United States)

    Nguyen, Thuy; Westerhoff, Paul; Furlong, Edward T.; Kolpin, Dana W.; Batt, Angela L.; Mash, Heath E.; Schenck, Kathleen M.; Boone, J. Scott; Rice, Jacelyn; Glassmeyer, Susan T.

    2018-01-01

    De facto reuse is the percentage of drinking water treatment plant (DWTP) intake potentially composed of effluent discharged from upstream wastewater treatment plants (WWTPs). Results from grab samples and a De Facto Reuse in our Nation's Consumable Supply (DRINCS) geospatial watershed model were used to quantify contaminants of emerging concern (CECs) concentrations at DWTP intakes to qualitatively compare exposure risks obtained by the two approaches. Between nine and 71 CECs were detected in grab samples. The number of upstream WWTP discharges ranged from 0 to >1,000; comparative de facto reuse results from DRINCS ranged from 80% during lower streamflows. Correlation between chemicals detected and DRINCS modeling results were observed, particularly DWTPs withdrawing from midsize water bodies. This comparison advances the utility of DRINCS to identify locations of DWTPs for future CEC sampling and treatment technology testing.

  8. Alternative high-level radiation sources for sewage and waste-water treatment

    International Nuclear Information System (INIS)

    Ballantine, D.S.

    1975-01-01

    The choice of an energy source for the radiation treatment of waste-water or sludge is between an electron accelerator or a gamma-ray source of radioactive cobalt or caesium. A number of factors will affect the ultimate choice and the potential future adoption of radiation as a treatment technique. The present and future availability of radioactive sources of cobalt and caesium is closely linked to the rate of nuclear power development and the assumption by uranium fuel reprocessors of a role as radioactive caesium suppliers. Accelerators are industrial machines which could be readily produced to meet any conceivable market demand. For energy sources in the 20-30 kW range, electron accelerators appear to have an initial capital cost advantage of about seven and an operating cost advantage of two. While radioisotope sources are inherently more reliable, accelerators at voltages to 3 MeV have achieved a reliability level adequate to meet the demands of essentially continuous operations with moderate maintenance requirements. The application of either energy source to waste-water treatment will be significantly influenced by considerations of the relative penetration capability, energy density and physical geometrical constraints of each option. The greater range of the gamma rays and the lower energy density of the isotopic sources permit irradiation of a variety of target geometrics. The low penetration of electrons and the high-energy density of accelerators limit application of the latter to targets presented as thin films of several centimetres thickness. Any potential use of radiation must proceed from a clear definition of process objectives and critical comparison of the radiation energy options for that specific objective. (Author)

  9. Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.

    Science.gov (United States)

    Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R

    2015-01-01

    When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Heavy metal concentrations in water, sediments and body tissues of red worm (Tubifex spp.) collected from natural habitats in Mumbai, India.

    Science.gov (United States)

    Singh, Ravendra Kumar; Chavan, Sugandha L; Sapkale, Pravin H

    2007-06-01

    Live feeds, especially Tubifex spp., which are collected from a wide variety of polluted habitats, are used by aquarium fish keepers in India. These habitats receive domestic sewage and industrial wastes from nearby residential and industrial areas. Reports of morbidity and mortality from aquarium fish culturists in and around Mumbai led to the present investigations on the ecology of these habitats with a view to assess the water quality, presence of heavy metals in the environment and their bioaccumulation in Tubifex worms, and to examine whether these habitats could be exploited to meet the demand of the industry. Six natural red worm (Tubifex spp.) collection centres in Mumbai and Thane districts of Maharashtra state in India constituting a major source of live Tubifex supply to aquarium fish industry were evaluated for pollution, heavy metal concentration in water, sediments and in the body tissues of Tubifex. Data revealed the presence of heavy metals in water and sediments at collection sites and bioaccumulation of cadmium, iron, lead, zinc and copper in body tissues of Tubifex worms. Cadmium ranged from 2.38 to 7.21 mg/kg, iron 671.9 to 5738 mg/kg, lead 14.95 to 33.49 mg/kg, zinc 60.20 to 166.60 mg/kg and copper 29.38 to 108.90 mg/kg of dry Tubifex worms. The study suggests that all the six collection sites are polluted and the red worms contaminated with heavy metals and hence, unfit for use in aquaria or feeding any variety of fish or crustaceans in the hatcheries.

  11. Identification of perfluoroalkyl acid sources in Swiss surface waters with the help of the artificial sweetener acesulfame

    International Nuclear Information System (INIS)

    Mueller, Claudia E.; Gerecke, Andreas C.; Alder, Alfredo C.; Scheringer, Martin; Hungerbuehler, Konrad

    2011-01-01

    Anthropogenic perfluorinated compounds (PFCs), especially the perfluoroalkyl acids (PFAAs) are ubiquitously found in surface waters around the globe. Emissions from households, industries and also atmospheric transport/deposition are discussed as the possible sources. In this study, these sources are evaluated using Switzerland as the study area. Forty-four surface water locations in different rivers and an Alpine lake were investigated for 14 PFAAs, four precursors and acesulfame, an artificial sweetener used as a population marker. Concentrations of individual PFAAs were generally low, between 0.02 and 10 ng/L. Correlation analysis showed that some PFAAs concentrations correlated well with population and less with catchment area, indicating that emissions from population, i.e., from consumer products, is the most important source to surface waters in Switzerland. The correlation with the population marker acesulfame confirmed this observation but highlighted also a few elevated PFAA levels, some of which could be attributed to industrial emissions. - Highlights: → Consumer products are the most important source of PFAAs in Swiss surface waters. → Acesulfame proofs to be a good population marker in surface waters. → PFAA pattern analyses reveal specific industrial emissions. - The analysis of correlations between surface water concentrations of perfluorinated compounds (PFCs) and source parameters revealed that consumer products are the most important source for PFCs in Switzerland, whereas industry and atmospheric deposition make a minor contribution.

  12. Identification of perfluoroalkyl acid sources in Swiss surface waters with the help of the artificial sweetener acesulfame

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Claudia E., E-mail: claudia.mueller@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Uberlandstrasse 129, 8600 Duebendorf (Switzerland); Institute for Chemical and Bioengineering, ETH Zuerich, Wolfgang-Pauli-Strasse 10, 8093 Zuerich (Switzerland); Gerecke, Andreas C. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Uberlandstrasse 129, 8600 Duebendorf (Switzerland); Alder, Alfredo C. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlanstrasse 133, 8600 Duebendorf (Switzerland); Scheringer, Martin; Hungerbuehler, Konrad [Institute for Chemical and Bioengineering, ETH Zuerich, Wolfgang-Pauli-Strasse 10, 8093 Zuerich (Switzerland)

    2011-05-15

    Anthropogenic perfluorinated compounds (PFCs), especially the perfluoroalkyl acids (PFAAs) are ubiquitously found in surface waters around the globe. Emissions from households, industries and also atmospheric transport/deposition are discussed as the possible sources. In this study, these sources are evaluated using Switzerland as the study area. Forty-four surface water locations in different rivers and an Alpine lake were investigated for 14 PFAAs, four precursors and acesulfame, an artificial sweetener used as a population marker. Concentrations of individual PFAAs were generally low, between 0.02 and 10 ng/L. Correlation analysis showed that some PFAAs concentrations correlated well with population and less with catchment area, indicating that emissions from population, i.e., from consumer products, is the most important source to surface waters in Switzerland. The correlation with the population marker acesulfame confirmed this observation but highlighted also a few elevated PFAA levels, some of which could be attributed to industrial emissions. - Highlights: > Consumer products are the most important source of PFAAs in Swiss surface waters. > Acesulfame proofs to be a good population marker in surface waters. > PFAA pattern analyses reveal specific industrial emissions. - The analysis of correlations between surface water concentrations of perfluorinated compounds (PFCs) and source parameters revealed that consumer products are the most important source for PFCs in Switzerland, whereas industry and atmospheric deposition make a minor contribution.

  13. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  14. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S.

    2007-04-01

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method

  15. Analysis of the natural factors of biological productivity of water bodies in the different landscapes of Karelia

    Directory of Open Access Journals (Sweden)

    Tekanova Elena Valentinovna

    2017-06-01

    Full Text Available Abiotic environmental factors of biological productivity were studied in seven lakes with low water exchange and a few inflows in different landscapes of Karelia (Russia. Lakes are not exposed to human impact. An indicator of the biological productivity is the phytoplankton photosynthesis rate calculated on the concentration of phosphorus in water. The water bodies vary from oligotrophic to mesotrophic according to their trophic level. Cluster and component analysis of chemicals was carried out, hydrological, morphometric and landscape characteristics of the lakes were also determined. It was shown that in the absence of anthropogenic influence the availability of phosphorus and trophic level of the studied lakes in the humid zone are determined by the water exchange, effluent per unit of water column, color of water and landscape features. The most productive water bodies are located on the fluvioglacial and moraine plains dominated by podsolic soils, which have a good flashing regime and soluble humus substances. These lakes are distinguished by a larger inflow of phosphorus forming a part of humus substances originated from the water-collecting area per unit of water column. Oligotrophic lakes are located in moraine and selga landscapes dominated by podbours and brown soils with a lot of humus slightly transformed. These lakes are characterized by less water exchange and drainage factor, and, accordingly, low values of phosphorus input and water color.

  16. Correlation of drinking water nutritional element levels with body composition of women aged 55-70 years living in Batman province

    Directory of Open Access Journals (Sweden)

    İhsan Çetin

    2017-03-01

    Full Text Available Objective: A growing interest in cellular targets of nutritional minerals and biochemical mechanisms has attracted the attentions of researchers towards their role in formation of obesity. However, there is no study investigating the effects of nutritional element levels of drinking water on body composition of the elderly. Therefore, we aimed to examine the effects of nutritional element levels in drinking water on body composition of women aged 55-70. Methods: The study population consisted of 80 participants in total, and was divided into three groups as overweight, obese and control women aged between 55-70. The bioelectric impedance device was used for measurements of body composition of the participants. Iron (Fe, copper (Cu, cobalt (Co, zinc (Zn, manganese (Mn and selenium (Se levels of drinking water were measured via plasma mass spectrometry coupled inductively. Results: It was found that Se mineral content in drinking water correlated with the body mass index of the individuals living in Batman, Turkey. Moreover, it was found that Fe, Cu, Co, Zn, Mn and Se levels of drinking water significantly correlated with the abdominal adiposity of women of 55-70. Conclusion: It may be suggested that the obesity risk may be higher in women who are between 55-70 and consume drinking water with high levels of Fe, Cu, Co, Zn, Mn and especially Se.

  17. Effects of whole body cryotherapy and cold water immersion on knee skin temperature.

    Science.gov (United States)

    Costello, J T; Donnelly, A E; Karki, A; Selfe, J

    2014-01-01

    This study sought to (a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of -110 °C whole body cryotherapy and 8 °C cold water immersion, on knee skin temperature and (b) establish whether either protocol was capable of achieving a skin temperature (cryotherapy (19.0±0.9 °C) compared to cold water immersion (20.5±0.6 °C). However, from 10 to 60 min post, the average, minimum and maximum skin temperatures were lower (p<0.05) following the cold water treatment. Finally, neither protocol achieved a skin temperature believed to be required to elicit an analgesic effect. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Revisiting a many-body model for water based on a single polarizable site: from gas phase clusters to liquid and air/liquid water systems.

    Science.gov (United States)

    Réal, Florent; Vallet, Valérie; Flament, Jean-Pierre; Masella, Michel

    2013-09-21

    We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.

  19. 77 FR 29167 - Effluent Limitations Guidelines and New Source Performance Standards for the Airport Deicing...

    Science.gov (United States)

    2012-05-16

    ... of drinking water sources (both surface and groundwater), creation of noxious odors and discolored... individual water bodies as the guidelines are developed; see Statement of Senator Muskie (October 4, 1972... biological process is contained in a sealed reactor, odors are eliminated. Based on EPA sampling results, the...

  20. Effects of whole body cryotherapy and cold water immersion on knee skin temperature

    OpenAIRE

    Costello, J. T.; Donnelly, A. E.; Karki, A.; Selfe, J.

    2014-01-01

    This study sought to a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of −110°C whole body cryotherapy and 8°C cold water immersion, on knee skin temperature and b) establish whether either protocol was capable of achieving a skin temperature (