Calculation of source terms for NUREG-1150
International Nuclear Information System (INIS)
Breeding, R.J.; Williams, D.C.; Murfin, W.B.; Amos, C.N.; Helton, J.C.
1987-10-01
The source terms estimated for NUREG-1150 are generally based on the Source Term Code Package (STCP), but the actual source term calculations used in computing risk are performed by much smaller codes which are specific to each plant. This was done because the method of estimating the uncertainty in risk for NUREG-1150 requires hundreds of source term calculations for each accident sequence. This is clearly impossible with a large, detailed code like the STCP. The small plant-specific codes are based on simple algorithms and utilize adjustable parameters. The values of the parameters appearing in these codes are derived from the available STCP results. To determine the uncertainty in the estimation of the source terms, these parameters were varied as specified by an expert review group. This method was used to account for the uncertainties in the STCP results and the uncertainties in phenomena not considered by the STCP
Subsurface Shielding Source Term Specification Calculation
International Nuclear Information System (INIS)
S.Su
2001-01-01
The purpose of this calculation is to establish appropriate and defensible waste-package radiation source terms for use in repository subsurface shielding design. This calculation supports the shielding design for the waste emplacement and retrieval system, and subsurface facility system. The objective is to identify the limiting waste package and specify its associated source terms including source strengths and energy spectra. Consistent with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M and O 2001, p. 15), the scope of work includes the following: (1) Review source terms generated by the Waste Package Department (WPD) for various waste forms and waste package types, and compile them for shielding-specific applications. (2) Determine acceptable waste package specific source terms for use in subsurface shielding design, using a reasonable and defensible methodology that is not unduly conservative. This calculation is associated with the engineering and design activity for the waste emplacement and retrieval system, and subsurface facility system. The technical work plan for this calculation is provided in CRWMS M and O 2001. Development and performance of this calculation conforms to the procedure, AP-3.12Q, Calculations
Source term calculations - Ringhals 2 PWR
International Nuclear Information System (INIS)
Johansson, L.L.
1998-02-01
This project was performed within the fifth and final phase of sub-project RAK-2.1 of the Nordic Co-operative Reactor Safety Program, NKS.RAK-2.1 has also included studies of reflooding of degraded core, recriticality and late phase melt progression. Earlier source term calculations for Swedish nuclear power plants are based on the integral code MAAP. A need was recognised to compare these calculations with calculations done with mechanistic codes. In the present work SCDAP/RELAP5 and CONTAIN were used. Only limited results could be obtained within the frame of RAK-2.1, since many problems were encountered using the SCDAP/RELAP5 code. The main obstacle was the extremely long execution times of the MOD3.1 version, but also some dubious fission product calculations. However, some interesting results were obtained for the studied sequence, a total loss of AC power. The report describes the modelling approach for SCDAP/RELAP5 and CONTAIN, and discusses results for the transient including the event of a surge line creep rupture. The study will probably be completed later, providing that an improved SCDAP/RELAP5 code version becomes available. (au) becomes available. (au)
Selection of models to calculate the LLW source term
International Nuclear Information System (INIS)
Sullivan, T.M.
1991-10-01
Performance assessment of a LLW disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the source term). The focus of this work is to develop a methodology for calculating the source term. In general, the source term is influenced by the radionuclide inventory, the wasteforms and containers used to dispose of the inventory, and the physical processes that lead to release from the facility (fluid flow, container degradation, wasteform leaching, and radionuclide transport). In turn, many of these physical processes are influenced by the design of the disposal facility (e.g., infiltration of water). The complexity of the problem and the absence of appropriate data prevent development of an entirely mechanistic representation of radionuclide release from a disposal facility. Typically, a number of assumptions, based on knowledge of the disposal system, are used to simplify the problem. This document provides a brief overview of disposal practices and reviews existing source term models as background for selecting appropriate models for estimating the source term. The selection rationale and the mathematical details of the models are presented. Finally, guidance is presented for combining the inventory data with appropriate mechanisms describing release from the disposal facility. 44 refs., 6 figs., 1 tab
Verification test calculations for the Source Term Code Package
International Nuclear Information System (INIS)
Denning, R.S.; Wooton, R.O.; Alexander, C.A.; Curtis, L.A.; Cybulskis, P.; Gieseke, J.A.; Jordan, H.; Lee, K.W.; Nicolosi, S.L.
1986-07-01
The purpose of this report is to demonstrate the reasonableness of the Source Term Code Package (STCP) results. Hand calculations have been performed spanning a wide variety of phenomena within the context of a single accident sequence, a loss of all ac power with late containment failure, in the Peach Bottom (BWR) plant, and compared with STCP results. The report identifies some of the limitations of the hand calculation effort. The processes involved in a core meltdown accident are complex and coupled. Hand calculations by their nature must deal with gross simplifications of these processes. Their greatest strength is as an indicator that a computer code contains an error, for example that it doesn't satisfy basic conservation laws, rather than in showing the analysis accurately represents reality. Hand calculations are an important element of verification but they do not satisfy the need for code validation. The code validation program for the STCP is a separate effort. In general the hand calculation results show that models used in the STCP codes (e.g., MARCH, TRAP-MELT, VANESA) obey basic conservation laws and produce reasonable results. The degree of agreement and significance of the comparisons differ among the models evaluated. 20 figs., 26 tabs
Source term calculations - Ringhals 2 PWR. Interim report
Energy Technology Data Exchange (ETDEWEB)
Johansson, Lise-Lotte
1998-03-01
This project was performed within the fifth and final phase of sub-project RAK-2.1 of the Nordic Co-operative Reactor Safety Program, NKS. RAK-2.1 has also included studies of reflooding of degraded core, recriticality and late phase melt progression. Earlier source term calculations for Swedish nuclear power plants are based on the integral code MAAP. A need was recognised to compare these calculations with calculations done with mechanistic codes. In the present work SCDAP/RELAP5 and CONTAIN were used. Only limited results could be obtained within the frame of RAK-2.1, since many problems were encountered using the SCDAP/RELAP5 code. The main obstacle was the extremely long execution times of the MOD3.1 version, but also some dubious fission product calculations. However, some interesting results were obtained for the studied sequence, a total loss of AC power. The report describes the modelling approach for SCDAP/RELAP5 and CONTAIN, and discusses results for the transient including the event of a surge line creep rupture. The study will probably be completed later, providing that an improved SCDAP/RELAP5 code version becomes available 8 refs, 16 figs, 5 tabs
ANL calculational methodologies for determining spent nuclear fuel source term
International Nuclear Information System (INIS)
McKnight, R. D.
2000-01-01
Over the last decade Argonne National Laboratory has developed reactor depletion methods and models to determine radionuclide inventories of irradiated EBR-II fuels. Predicted masses based on these calculational methodologies have been validated using available data from destructive measurements--first from measurements of lead EBR-II experimental test assemblies and later using data obtained from processing irradiated EBR-II fuel assemblies in the Fuel Conditioning Facility. Details of these generic methodologies are described herein. Validation results demonstrate these methods meet the FCF operations and material control and accountancy requirements
International Nuclear Information System (INIS)
Stoker, C.C.; Ball, G.
2000-01-01
The ever increasing expansion of the irradiation product portfolio of the SAFARI-1 reactor leads to the need to routinely calculate the radio-isotope concentrations and source terms for the materials irradiated in the reactor accurately. In addition to this, the required shielding for the transportation and processing of these irradiation products needs to be determined. In this paper the calculational methodology applied is described with special attention given to the spectrum dependence of the one-group cross sections of selected SAFARI-1 irradiation materials and the consequent effect on the determination of the isotope concentrations and source terms. Comparisons of the calculated isotopic concentrations and dose rates with experimental analysis and measurements provide confidence in the calculational methodologies and data used. (author)
International Nuclear Information System (INIS)
Heeb, C.M.
1991-03-01
The ORIGEN2 computer code is the primary calculational tool for computing isotopic source terms for the Hanford Environmental Dose Reconstruction (HEDR) Project. The ORIGEN2 code computes the amounts of radionuclides that are created or remain in spent nuclear fuel after neutron irradiation and radioactive decay have occurred as a result of nuclear reactor operation. ORIGEN2 was chosen as the primary code for these calculations because it is widely used and accepted by the nuclear industry, both in the United States and the rest of the world. Its comprehensive library of over 1,600 nuclides includes any possible isotope of interest to the HEDR Project. It is important to evaluate the uncertainties expected from use of ORIGEN2 in the HEDR Project because these uncertainties may have a pivotal impact on the final accuracy and credibility of the results of the project. There are three primary sources of uncertainty in an ORIGEN2 calculation: basic nuclear data uncertainty in neutron cross sections, radioactive decay constants, energy per fission, and fission product yields; calculational uncertainty due to input data; and code uncertainties (i.e., numerical approximations, and neutron spectrum-averaged cross-section values from the code library). 15 refs., 5 figs., 5 tabs
A source term and risk calculations using level 2+PSA methodology
International Nuclear Information System (INIS)
Park, S. I.; Jea, M. S.; Jeon, K. D.
2002-01-01
The scope of Level 2+ PSA includes the assessment of dose risk which is associated with the exposures of the radioactive nuclides escaping from nuclear power plants during severe accidents. The establishment of data base for the exposure dose in Korea nuclear power plants may contribute to preparing the accident management programs and periodic safety reviews. In this study the ORIGEN, MELCOR and MACCS code were employed to produce a integrated framework to assess the radiation source term risk. The framework was applied to a reference plant. Using IPE results, the dose rate for the reference plant was calculated quantitatively
International Nuclear Information System (INIS)
Grabaskas, David; Bucknor, Matthew; Jerden, James; Brunett, Acacia J.
2016-01-01
The overall objective of the SFR Regulatory Technology Development Plan (RTDP) effort is to identify and address potential impediments to the SFR regulatory licensing process. In FY14, an analysis by Argonne identified the development of an SFR-specific MST methodology as an existing licensing gap with high regulatory importance and a potentially long lead-time to closure. This work was followed by an initial examination of the current state-of-knowledge regarding SFR source term development (ANLART-3), which reported several potential gaps. Among these were the potential inadequacies of current computational tools to properly model and assess the transport and retention of radionuclides during a metal fuel pool-type SFR core damage incident. The objective of the current work is to determine the adequacy of existing computational tools, and the associated knowledge database, for the calculation of an SFR MST. To accomplish this task, a trial MST calculation will be performed using available computational tools to establish their limitations with regard to relevant radionuclide release/retention/transport phenomena. The application of existing modeling tools will provide a definitive test to assess their suitability for an SFR MST calculation, while also identifying potential gaps in the current knowledge base and providing insight into open issues regarding regulatory criteria/requirements. The findings of this analysis will assist in determining future research and development needs.
A Mechanistic Source Term Calculation for a Metal Fuel Sodium Fast Reactor
Energy Technology Data Exchange (ETDEWEB)
Grabaskas, David; Bucknor, Matthew; Jerden, James
2017-06-26
A mechanistic source term (MST) calculation attempts to realistically assess the transport and release of radionuclides from a reactor system to the environment during a specific accident sequence. The U.S. Nuclear Regulatory Commission (NRC) has repeatedly stated its expectation that advanced reactor vendors will utilize an MST during the U.S. reactor licensing process. As part of a project to examine possible impediments to sodium fast reactor (SFR) licensing in the U.S., an analysis was conducted regarding the current capabilities to perform an MST for a metal fuel SFR. The purpose of the project was to identify and prioritize any gaps in current computational tools, and the associated database, for the accurate assessment of an MST. The results of the study demonstrate that an SFR MST is possible with current tools and data, but several gaps exist that may lead to possibly unacceptable levels of uncertainty, depending on the goals of the MST analysis.
Calculation of source term in spent PWR fuel assemblies for dry storage and shipping cask design
International Nuclear Information System (INIS)
Fernandez, J. L.; Lopez, J.
1986-01-01
Using the ORIGEN-2 Coda, the decay heat and neutron and photon sources for an irradiated PWR fuel element have been calculated. Also, parametric studies on the behaviour of the magnitudes with the burn-up, linear heat power and irradiation and cooling times were performed. Finally, a comparison between our results and other design calculations shows a good agreement and confirms the validity of the used method. (Author) 6 refs
Energy Technology Data Exchange (ETDEWEB)
Konheiser, Joerg [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety; Ferrari, A. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Radiation Physics; Magin, A. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Naumann, B. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Dept. of Radiation Protection and Safety; Mueller, S.E.
2017-06-01
The neutron source terms for a proton beam hitting an {sup 18}O-enriched water target were calculated with the radiation transport programs MCNP6 and FLUKA and were compared to source terms for exclusive {sup 18}O(p,n){sup 18}F production. To validate the radiation fields obtained in the simulations, an experimental program has been started using activation samples originally used in reactor dosimetry.
Model description for calculating the source term of the Angra 1 environmental control system
International Nuclear Information System (INIS)
Oliveira, L.F.S. de; Amaral Neto, J.D.; Salles, M.R.
1988-01-01
This work presents the model used for evaluation of source term released from Angra 1 Nuclear Power Plant in case of an accident. After that, an application of the model for the case of a Fuel Assembly Drop Accident Inside the Fuel Handling Building during reactor refueling is presented. (author) [pt
International Nuclear Information System (INIS)
Grabaskas, David
2016-01-01
The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is not without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.
Energy Technology Data Exchange (ETDEWEB)
Grabaskas, David [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Brunett, Acacia J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Denman, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Engineering Division; Clark, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Engineering Division; Denning, Richard S. [Consultant, Columbus, OH (United States)
2016-10-01
The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is not without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.
Calculation of the source term for a S1B-sequence at a VVER-1000 type reactor. Part 1
International Nuclear Information System (INIS)
Sdouz, G.
1990-10-01
The behaviour of the source term in a VVER-1000 type reactor is calculated using the 'Source Term Code Package' (STCP). The input data are based on the russian plant Zaporozhye-5. The selected accident sequence is a small break LOCA in the hot leg followed by loss offsite and onsite electric power (S 1 B-sequence). According to the course of the calculation the results are presented and analyzed for each program. Except for the noble gases all release fractions are lower than 10 -4 . 18 refs., 10 tabs. (Author)
International Nuclear Information System (INIS)
Bae, Young Jig; Nam, Ki Mun; Lee, Yu Jong; Chung, Chan Young
2003-01-01
Source terms presented in TID-14844 and Regulatory Guide 1.4 have been used for radiological analysis of design basis accidents for licensing existing pressurized water reactor (PWR). However, more realistic and physically-based source term based on results of study and experiments for about 30 years after the publication of TID-14844 was developed and presented in NUREG-1465 published by U.S NRC in 1995. In addition, ICRP has revised dose concepts and criteria through the publication of ICRP-9, 26, 60 and recommended effective dose concepts rather than critical organ concept since the publication of ICRP-26. Accordingly, multipurpose computer program called DBADOSE incorporating alternative source terms in NUREG-1465 and effective dose concepts in ICRP-60 was developed. Comparison of results of DBADOSE with those of POSTDBA and STARDOSE was performed and verified and no significant difference and inaccuracy were found. DBADOSE will be used to evaluate accidental doses for licensing application according to the domestic laws that are expected to be revised in the near future
International Nuclear Information System (INIS)
Park, Hong Sik; Kim, Min; Park, Seong Chan; Seo, Jong Tae; Kim, Eun Kee
2005-01-01
The SHIELD code has been used to calculate the source terms of NSSS Auxiliary System (comprising CVCS, SIS, and SCS) components of the OPR1000. Because the code had been developed based upon the SYSTEM80 design and the APR1400 NSSS Auxiliary System design is considerably changed from that of SYSTEM80 or OPR1000, the SHIELD code cannot be used directly for APR1400 radiation design. Thus the hand-calculation is needed for the portion of design changes using the results of the SHIELD code calculation. In this study, the SHIELD code is modified to incorporate the APR1400 design changes and the source term calculation is performed for the APR1400 NSSS Auxiliary System components
International Nuclear Information System (INIS)
Lima Filho, R.M.; Oliveira, L.F.S. de
1984-01-01
A general method for the calculation of the time evolution of source terms related to irradiated fuel is presented. Some applications are discussed which indicated that the method can provide important informations for the engineering design and safety analysis of a temporary storage facility of irradiated fuel elements. (Author) [pt
Source and replica calculations
International Nuclear Information System (INIS)
Whalen, P.P.
1994-01-01
The starting point of the Hiroshima-Nagasaki Dose Reevaluation Program is the energy and directional distributions of the prompt neutron and gamma-ray radiation emitted from the exploding bombs. A brief introduction to the neutron source calculations is presented. The development of our current understanding of the source problem is outlined. It is recommended that adjoint calculations be used to modify source spectra to resolve the neutron discrepancy problem
Comparison of source-term calculations using the AREST and SYVAC-Vault models: [Final report
International Nuclear Information System (INIS)
Apted, M.J.; Engel, D.W.; Garisto, N.C.; LeNeveu, D.M.
1988-07-01
A comparison of the calculated radionuclide release from a waste package in a geologic repository has been performed using the verified SYVAC-Vault Model and AREST Model. the purpose of this comparison is to further establish the credibility of these codes for predictive performance assessment and to identify improvements that may be required. A reference case for a Canadian conceptual design with spent fuel as the waste form was chosen to make an initial comparison. The results from the two models were in good agreement, including peak release rates, time to reach peak release, and long term release rates. Differences in results from the two models are attributed to differences in computational approaches. Studies of the effects of sorption, convective flow, distributed containment failure, and precipitation are identified as key areas for further comparisons and are currently in progress. 11 refs., 3 figs., 5 tabs
Release modes and processes relevant to source-term calculations at Yucca Mountain
International Nuclear Information System (INIS)
Apted, M.J.
1994-01-01
The feasibility of permanent disposal of radioactive high-level waste (HLW) in repositories located in deep geologic formations is being studied world-wide. The most credible release pathway is interaction between groundwater and nuclear waste forms, followed by migration of radionuclide-bearing groundwater to the accessible environment. Under hydrologically unsaturated conditions, vapor transport of volatile radionuclides is also possible. The near-field encompasses the waste packages composed of engineered barriers (e.g. man-made materials, such as vitrified waste forms, corrosion-resistant containers), while the far-field includes the natural barriers (e.g. host rock, hydrologic setting). Taken together, these two subsystems define a series of multiple, redundant barriers that act to assure the safe isolation of nuclear waste. In the U.S., the Department of energy (DOE) is investigating the feasibility of safe, long-term disposal of high-level nuclear waste at the Yucca Mountain site in Nevada. The proposed repository horizon is located in non-welded tuffs within the unsaturated zone (i.e. above the water table) at Yucca Mountain. The purpose of this paper is to describe the source-term models for radionuclide release from waste packages at Yucca Mountain site. The first section describes the conceptual release modes that are relevant for this site and waste package design, based on a consideration of the performance of currently proposed engineered barriers under expected and unexpected conditions. No attempt is made to asses the reasonableness nor probability of occurrence for any specific release mode. The following section reviews the waste-form characteristics that are required to model and constrain the release of radionuclides from the waste package. The next section present mathematical models for the conceptual release modes, selected from those that have been implemented into a probabilistic total system assessment code developed for the Electric Power
Study on the calculation method of source term from fission products
International Nuclear Information System (INIS)
Zhou Jing; Gong Quan; Qiu Haifeng
2014-01-01
As a major part of radioactive nuclides, fission products play an important role in nuclear power plant design. The paper analyzes the calculation model of core activity inventory, the model of fission products releasing from the pellets to RCS, the balance model of fission products in RCS, and then proves them by calculation of the typical pressurized water reactor. The model is proved applicable for calculating fission products of pressurized water reactors. (authors)
Calculation and analysis of the source term of the reactor core based on different data libraries
International Nuclear Information System (INIS)
Chen Haiying; Zhang Chunming; Wang Shaowei; Lan Bing; Liu Qiaofeng; Han Jingru
2014-01-01
The nuclear fuel in reactor core produces large amount of radioactive nuclides in the fission process. ORIGEN-S can calculate the accumulation and decay of radioactive nuclides in the core by using various forms of data libraries, including card-image library, binary library and ORIGEN-S cross section library generated by ARP through interpolation method. In this paper, the information of each data library was described, and the reactor core inventory was calculated by using Card-image library and ARP library. The radioactivity concentration of typical nuclides with the change of fuel burnup was analyzed. The results showed that the influence of data libraries on the calculation of nuclide radioactivity was various. Compared to Card-image library, the radioactivity of a small part of nuclides calculated by ARP library were larger and the radioactivity of "1"3"4Cs, "1"3"6Cs were calculated smaller by about 15%. For some typical nuclides, with the deepening of fuel burnup, the difference of nuclide radioactivity calculated by the two libraries increased. However, the changes of the ratio of nuclide radioactivity were different. (authors)
Energy Technology Data Exchange (ETDEWEB)
Gauntt, Randall O.; Powers, Dana Auburn; Ashbaugh, Scott G.; Leonard, Mark Thomas; Longmire, Pamela
2010-04-01
In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs2MoO4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU
Energy Technology Data Exchange (ETDEWEB)
Gauntt, Randall O.; Goldmann, Andrew; Kalinich, Donald A.; Powers, Dana A.
2016-12-01
In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs 2 MoO 4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU
International Nuclear Information System (INIS)
Lorenz, R.A.
1981-01-01
This presentation consists of a review of fission-product source terms for light water reactor (LWR) fuel. A source term is the quantity of fission products released under specified conditions that can be used to calculate the consequences of the release. The source term usually defines release from breached fuel-rod cladding but could also describe release from the primary coolant system, the reactor containment shell, or the site boundary. The source term would be different for each locality, and the chemical and physical forms of the fission products could also differ
International Nuclear Information System (INIS)
Sandoval V, S.; Mendoza R, M. E.; Tijerina S, F.; Garcia C, T.
2016-09-01
A nuclear power plant is operated at all times within the design criteria of structures, systems and components, and according to the operation technical specifications. For different areas of work of a nuclear power plant is necessary to carry out practices in which is useful to have the prediction of the thermo-hydraulic and radiological progression of scenarios that imply exceeding that design bases, even reaching the damage of the fuel in different degree. During the exercises and drills of the External Plan of Emergency Response, the projection of doses is done to exercise the different tasks of the plan. To make the projection of doses is required to have the radiological source term of the scenario on which is practiced. Because of this, was identified the convenience of having a catalog of scenarios for which the radiological source term was calculated. In 2004, a first version of the catalog was produced for a power of 2027 MW, and in 2011 the catalog was updated for extended power conditions, 2317 MW. Both versions were made using the severe accident simulator MAAP-3B. That catalog consists of a form and an optical storage device. The form contains tables and figures in which the characteristics of the scenario to be practiced are searched and the electronic files of the corresponding radiological source term are located in the storage device. Due to the recent development of the graphical console for analysis of severe accidents, visualization of OEs, NAEs and calculation of the source term for the nuclear power plant of Laguna Verde (NPP-LV) CoGrAAS, the catalog printed was replaced by an electronic catalog for the CoGrAAS. The new catalog retains the philosophy of the previous catalog, constituted by a wide collection of scenarios that involve different circumstances and phenomena, that can be used to practice different tasks during training exercises or simulacrums, and combined with the following advantages: the scenario selection is made from an
International Nuclear Information System (INIS)
Chikhi, Nourdine; Nguyen, Nam Giang; Fleurot, Joelle
2012-01-01
Highlights: ► Calculation of QUENCH-03 experiment with ASTEC/CATHARE. ► Validation of reflooding model in severe accidents conditions. ► Demonstration of a minimum flow rate for a successful reflood by using a system code. ► Effect of injection flow rate on hydrogen production. ► Effect of initial core temperature on hydrogen production. - Abstract: During a severe accident, one of the main accident management procedure consists of injecting water in the reactor core by means of various safety injection devices. Nevertheless, the success of a core reflood is not guaranteed because of possible negative effects: temperature escalation, enhanced hydrogen production, enhanced release of fission products, core degradation due to thermal shock, shattering, debris and melt formation. The QUENCH-03 experiment was carried out to investigate the behavior on reflooding at high temperature of LWR fuel rods with little oxidation. Posttest calculations with the ASTEC-CATHARE V2 code were made for code assessment and validation of the new reflooding model. This thermal–hydraulic model is used to detect the quench front position and to calculate the heat transfer between fuel and fluid in the transition boiling region. Comparisons between the calculational and experimental results are presented. Emphasis has been placed on clad temperature, hydrogen production and melt relocation. The effects of core state damage (initial temperature at reflooding onset) and the reflood mass flow rate on the hydrogen source term were investigated using the QUENCH-03 test as a base case. Calculations were made by varying both parameters in the input data deck. The results demonstrate (and confirm) the existence of a minimum flow rate for a successful reflood.
SOURCE TERMS FOR HLW GLASS CANISTERS
International Nuclear Information System (INIS)
J.S. Tang
2000-01-01
This calculation is prepared by the Monitored Geologic Repository (MGR) Waste Package Design Section. The objective of this calculation is to determine the source terms that include radionuclide inventory, decay heat, and radiation sources due to gamma rays and neutrons for the high-level radioactive waste (HLW) from the, West Valley Demonstration Project (WVDP), Savannah River Site (SRS), Hanford Site (HS), and Idaho National Engineering and Environmental Laboratory (INEEL). This calculation also determines the source terms of the canister containing the SRS HLW glass and immobilized plutonium. The scope of this calculation is limited to source terms for a time period out to one million years. The results of this calculation may be used to carry out performance assessment of the potential repository and to evaluate radiation environments surrounding the waste packages (WPs). This calculation was performed in accordance with the Development Plan ''Source Terms for HLW Glass Canisters'' (Ref. 7.24)
Chernobyl source term estimation
International Nuclear Information System (INIS)
Gudiksen, P.H.; Harvey, T.F.; Lange, R.
1990-09-01
The Chernobyl source term available for long-range transport was estimated by integration of radiological measurements with atmospheric dispersion modeling and by reactor core radionuclide inventory estimation in conjunction with WASH-1400 release fractions associated with specific chemical groups. The model simulations revealed that the radioactive cloud became segmented during the first day, with the lower section heading toward Scandinavia and the upper part heading in a southeasterly direction with subsequent transport across Asia to Japan, the North Pacific, and the west coast of North America. By optimizing the agreement between the observed cloud arrival times and duration of peak concentrations measured over Europe, Japan, Kuwait, and the US with the model predicted concentrations, it was possible to derive source term estimates for those radionuclides measured in airborne radioactivity. This was extended to radionuclides that were largely unmeasured in the environment by performing a reactor core radionuclide inventory analysis to obtain release fractions for the various chemical transport groups. These analyses indicated that essentially all of the noble gases, 60% of the radioiodines, 40% of the radiocesium, 10% of the tellurium and about 1% or less of the more refractory elements were released. These estimates are in excellent agreement with those obtained on the basis of worldwide deposition measurements. The Chernobyl source term was several orders of magnitude greater than those associated with the Windscale and TMI reactor accidents. However, the 137 Cs from the Chernobyl event is about 6% of that released by the US and USSR atmospheric nuclear weapon tests, while the 131 I and 90 Sr released by the Chernobyl accident was only about 0.1% of that released by the weapon tests. 13 refs., 2 figs., 7 tabs
International Nuclear Information System (INIS)
Sandoval V, S.; Mendoza E, P. R.; Gonzalez C, J. M.; Cecenas F, M.; Tijerina S, F.
2016-09-01
In response to the Fukushima Daiichi nuclear power plant accident, the NRC conducted an analysis and issued recommendations to improve the safety of the nuclear reactors. These include strengthening and integrating emergency response capabilities and emphasizing periodic staff training, the performance of simulation exercises. As a tool to observe these recommendations, the Graphic Console was developed for Analysis of Severe Accidents, Visualization of OEs, NAEs and calculation of the source term for nuclear power plant of Laguna Verde (NPP-LV ; CoGrAAS). The CoGrAAS is a computer system that displays in an integrated, graphic and dynamic way the information of a catalog of previously simulated accident scenarios. Has core mimics, vessel, primary containment and safety systems, trend graph of thermodynamic and radiological variables and the emergency procedures (OEs), chronological list of events, windows with detailed information for the dry-well, among others. The use of CoGrAAS allows that staff to understand and become familiar with the thermo-hydraulic progression of actual scenarios that exceed the design basis including those with core damage as severe accidents. The system enables personnel to develop an integral vision of the scenarios during the exercises and drills by observing and analyzing the evolution of the main reactor, core and primary containment variables, the response of emergency systems and the influence of that progression on OEs and the emergency action levels (NAEs). The CoGrAAS allows o observe the radiological variables and obtain the source term, to make the projection of doses, at any time within the scenario evolution. Thus, not only can the phenomenology of severe accidents be analyzed and understood, it is also possible to exercise, verify and evaluate the performance of critical tasks in the application of procedures, guidelines and emergency management plans. (Author)
Energy Technology Data Exchange (ETDEWEB)
Jenkins, T M [Stanford Linear Accelerator Center, CA (USA)
1979-02-15
Measurements of neutron and photon dose equivalents from a 15 GeV electron beam striking an iron target inside a scale model of a PEP IR hall are described, and compared with analytic-empirical calculations and with the Monte Carlo code, MORSE. The MORSE code is able to predict both absolute neutron and photon dose equivalents for geometries where the shield is relatively thin, but fails as the shield thickness is increased. An intermediate energy source term is postulated for analytic-empirical neutron shielding calculations to go along with the giant resonance and high energy terms, and a new source term due to neutron capture is postulated for analytic-empirical photon shielding calculations. The source strengths for each energy source term, and each type, are given from analysis of the measurements.
International Nuclear Information System (INIS)
Anon.
1982-01-01
ORIGEN-S computes time-dependent concentrations and source terms of a large number of isotopes, which are simultaneously generated or depleted through neutronic transmutation, fission, radioactive decay, input feet rates and physical or chemical removal rates. The calculations may pertain to fuel irradiation within nuclear reactors, or the storage, management, transportation or subsequent chemical processing of removed fuel elements. The matrix exponential expansion model of the ORIGIN code is unaltered in ORIGEN-S. Essentially all features of ORIGEN were retained, expanded or supplemented within new computations. The primary objective of ORIGEN-S, as requested by the Nuclear Regulatory Commission, is that the calculations may utilize the multi-energy group cross sections from any currently processed standardized ENDF/B data base. This purpose has been implemented through the prior execution of codes within either the SCALE System or the AMPX System, developed at the Oak Ridge National Laboratory. These codes compute flux-weighted cross sections, simulating conditions within any given reactor fuel assembly, and convert the data into a library that can be input to ORIGEN-S. Time-dependent libraries may be produced, reflecting fuel composition variations during irradiation. Presented in the document are: detailed and condensed input instructions, model theory, features available, range of applicability, brief subroutine descriptions, sample input, and I/O requirements. Presently the code is operable on IBM 360/370 computers and may be converted for CDC computers. ORIGEN-S is a functional module in the SCALE System and will be one of the modules invoked in the SAS2 Control Module, presently being developed, or may be applied as a stand alone program. It can be used in nuclear reactor and processing plant design studies, radiation safety analyses, and environmental assessments
International Nuclear Information System (INIS)
Krpelanova, M.; Carny, P.
2011-01-01
Inventory of the reactor core and spent fuel storage pool of the reactors at Dai-ichi 1 to Dai-ichi 4 was determined to need a realistic estimate of the source (released into the atmosphere environment) and modelling of radiological impact of the events in Fukushima NPP. Calculations of inventories were carried out by the methodology that is used in systems to support emergency response and crisis management anymore. Calculations were made based on a model that respects knowledge of real fuels and fuel cycles for individual reactors Dai-ichi. Necessary input data for training the model and calculate inventories are obtained from the IAEA PRIS database.
International Nuclear Information System (INIS)
Valdez, G.D.; Williams, D.C.
1986-01-01
In experiments conducted at Sandia National Laboratories large amounts of elemental iodine were produced when CsI-Al 2 O 3 aerosol was exposed to hydrogen/air combustion. To evaluate some of the implications of the iodide conversion (observed to occur with up to 75% efficiency) for the severe accident source term, computational simulations of representative accident sequences were conducted with the CONTAIN code. The following conclusions can be drawn from this preliminary source term assessment: (1) If the containment sprays are inoperative during the accident, or failed by the hydrogen burn, the late-time source term is almost tripled when the iodide is converted to I 2 . (2) With the sprays active, the amount released without conversion of the CsI aerosol is 63% higher than for the case when conversion occurs. (3) For the case where CsI is converted to I 2 continued operation of the sprays reduces the release by a factor of 40, relative to the case in which the sprays fail at the time of the hydrogen burn. When there is no conversion, the reduction factor for continued spray operation is about a factor of 9, relative to the failed spray case
Operational source receptor calculations for large agglomerations
Gauss, Michael; Shamsudheen, Semeena V.; Valdebenito, Alvaro; Pommier, Matthieu; Schulz, Michael
2016-04-01
For Air quality policy an important question is how much of the air pollution within an urbanized region can be attributed to local sources and how much of it is imported through long-range transport. This is critical information for a correct assessment of the effectiveness of potential emission measures. The ratio between indigenous and long-range transported air pollution for a given region depends on its geographic location, the size of its area, the strength and spatial distribution of emission sources, the time of the year, but also - very strongly - on the current meteorological conditions, which change from day to day and thus make it important to provide such calculations in near-real-time to support short-term legislation. Similarly, long-term analysis over longer periods (e.g. one year), or of specific air quality episodes in the past, can help to scientifically underpin multi-regional agreements and long-term legislation. Within the European MACC projects (Monitoring Atmospheric Composition and Climate) and the transition to the operational CAMS service (Copernicus Atmosphere Monitoring Service) the computationally efficient EMEP MSC-W air quality model has been applied with detailed emission data, comprehensive calculations of chemistry and microphysics, driven by high quality meteorological forecast data (up to 96-hour forecasts), to provide source-receptor calculations on a regular basis in forecast mode. In its current state, the product allows the user to choose among different regions and regulatory pollutants (e.g. ozone and PM) to assess the effectiveness of fictive emission reductions in air pollutant emissions that are implemented immediately, either within the agglomeration or outside. The effects are visualized as bar charts, showing resulting changes in air pollution levels within the agglomeration as a function of time (hourly resolution, 0 to 4 days into the future). The bar charts not only allow assessing the effects of emission
Design parameters and source terms: Volume 3, Source terms
International Nuclear Information System (INIS)
1987-10-01
The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report by Stearns Catalytic Corporation (SCC), entitled ''Design Parameters and Source Terms for a Two-Phase Repository in Salt,'' 1985, to the level of the Site Characterization Plan - Conceptual Design Report. The previous unpublished SCC Study identifies the data needs for the Environmental Assessment effort for seven possible Salt Repository sites. 11 refs., 9 tabs
Shielding calculations for the Intense Neutron Source Facility. Final report
International Nuclear Information System (INIS)
Battat, M.E.; Henninger, R.J.; Macdonald, J.L.; Dudziak, D.J.
1978-06-01
Results of shielding calculations for the Intnse Neutron Source (INS) facility are presented. The INS facility is designed to house two sources, each of which will produce D--T neutrons with intensities in the range from 1 to 3 x 10 15 n/s on a continuous basis. Topics covered include the design of the biological shield, use of two-dimensional discrete-ordinates results to specify the source terms for a Monte Carlo skyshine calculation, air activation, and dose rates in the source cell (after shutdown) due to activation of the biological shield
Reevaluation of HFIR source term: Supplement 2
International Nuclear Information System (INIS)
Thomas, W.E.
1986-11-01
The HFIR source term has been reevaluated to assess the impact of the increase in core lifetime from 15 to 24 days. Calculations were made to determine the nuclide activities of the iodines, noble gases, and other fission products. The results show that there is no significant change in off-site dose due to the increased fuel cycle for the release scenario postulated in ORNL-3573
Real time source term and dose assessment
International Nuclear Information System (INIS)
Breznik, B.; Kovac, A.; Mlakar, P.
2001-01-01
The Dose Projection Programme is a tool for decision making in case of nuclear emergency. The essential input data for quick emergency evaluation in the case of hypothetical pressurised water reactor accident are following: source term, core damage assessment, fission product radioactivity, release source term and critical exposure pathways for an early phase of the release. A reduced number of radio-nuclides and simplified calculations can be used in dose calculation algorithm. Simple expert system personal computer programme has been developed for the Krsko Nuclear Power Plant for dose projection within the radius of few kilometers from the pressurised water reactor in early phase of an accident. The input data are instantaneous data of core activity, core damage indicators, release fractions, reduction factor of the release pathways, spray operation, release timing, and dispersion coefficient. Main dose projection steps are: accurate in-core radioactivity determination using reactor power input; core damage and in-containment source term assessment based on quick indications of instrumentation or on activity analysis data; user defines release pathway for typical PWR accident scenarius; dose calculation is performed only for exposure pathway critical for decision about evacuation or sheltering in early phase of an accident.(author)
Pennsylvania Source Term Tracking System
International Nuclear Information System (INIS)
1992-08-01
The Pennsylvania Source Term Tracking System tabulates surveys received from radioactive waste generators in the Commonwealth of radioactive waste is collected each quarter from generators using the Low-Level Radioactive Waste Management Quarterly Report Form (hereafter called the survey) and then entered into the tracking system data base. This personal computer-based tracking system can generate 12 types of tracking reports. The first four sections of this reference manual supply complete instructions for installing and setting up the tracking system on a PC. Section 5 presents instructions for entering quarterly survey data, and Section 6 discusses generating reports. The appendix includes samples of each report
Severe accident source term reassessment
International Nuclear Information System (INIS)
Hazzan, M.J.; Gardner, R.; Warman, E.A.; Jacobs, S.B.
1987-01-01
This paper summarizes the status of the reassessment of severe reactor accident source terms, which are defined as the quantity, type, and timing of fission product releases from such accidents. Concentration is on the major results and conclusions of analyses with modern methods for both pressurized water reactors (PWRs) and boiling water reactors (BWRs), and the special case of containment bypass. Some distinctions are drawn between analyses for PWRs and BWRs. In general, the more the matter is examined, the consequences, or probability of serious consequences, seem to be less. (author)
Calculations of accelerator-based neutron sources characteristics
International Nuclear Information System (INIS)
Tertytchnyi, R.G.; Shorin, V.S.
2000-01-01
Accelerator-based quasi-monoenergetic neutron sources (T(p,n), D(d;n), T(d;n) and Li (p,n)-reactions) are widely used in experiments on measuring the interaction cross-sections of fast neutrons with nuclei. The present work represents the code for calculation of the yields and spectra of neutrons generated in (p, n)- and ( d; n)-reactions on some targets of light nuclei (D, T; 7 Li). The peculiarities of the stopping processes of charged particles (with incident energy up to 15 MeV) in multilayer and multicomponent targets are taken into account. The code version is made in terms of the 'SOURCE,' a subroutine for the well-known MCNP code. Some calculation results for the most popular accelerator- based neutron sources are given. (authors)
Subcriticality calculation in nuclear reactors with external neutron sources
Energy Technology Data Exchange (ETDEWEB)
Silva, Adilson Costa da; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: asilva@con.ufrj.br; aquilino@lmp.ufrj.br; fernando@con.ufrj.br
2007-07-01
The main objective of this paper consists on the development of a methodology to monitor subcriticality. We used the inverse point kinetic equation with 6 precursor groups and external neutron sources for the calculation of reactivity. The input data for the inverse point kinetic equation was adjusted, in order to use the neutron counting rates obtained from the subcritical multiplication (1/M) in a nuclear reactor. In this paper, we assumed that the external neutron sources strength is constant and we define it in terms of a known initial condition. The results obtained from inverse point kinetic equation with external neutron sources were compared with the results obtained with a benchmark calculation, and showed good accuracy (author)
Subcriticality calculation in nuclear reactors with external neutron sources
International Nuclear Information System (INIS)
Silva, Adilson Costa da; Martinez, Aquilino Senra; Silva, Fernando Carvalho da
2007-01-01
The main objective of this paper consists on the development of a methodology to monitor subcriticality. We used the inverse point kinetic equation with 6 precursor groups and external neutron sources for the calculation of reactivity. The input data for the inverse point kinetic equation was adjusted, in order to use the neutron counting rates obtained from the subcritical multiplication (1/M) in a nuclear reactor. In this paper, we assumed that the external neutron sources strength is constant and we define it in terms of a known initial condition. The results obtained from inverse point kinetic equation with external neutron sources were compared with the results obtained with a benchmark calculation, and showed good accuracy (author)
International Nuclear Information System (INIS)
Cooper, P.J.; Underwood, B.Y.; Brearley, I.
1985-01-01
In the first half of the work the source-term characteristics potentially influencing behaviour were identified and examined. It was concluded that a number of source characteristics, in addition to those conventionally provided for consequence assessment, could significantly influence deposition behaviour. Linking with this, a review was undertaken of past reactor-accident risk assessment and more recent source-term studies to pick out information, if any, on the parameters of interest. The second half of the study resulted in a list of processes capable of transforming the released material vis-a-vis deposition characteristics, including processes occurring in the near field associated with the initial release transient and also those occurring over a longer time span as the plume travels downwind. Scoping calculations were performed for some of the processes in the context of idealized accident scenarios, leading to the conclusions that in some circumstances post-release mechanisms could have an important impact on the deposition behaviour of released material. Statistical theory was used to describe the behaviour of a plume both before and after detachment, and the limitations of the theory were discussed. A review of the lateral wind velocity spectra was undertaken so that simplified spectra could be constructed and used to predict the plume behaviour as a function of travel time, stability category and release duration. It was found that commonly used methods of allowing for release duration overpredicted the dependence, in general, upon release duration. For example the adoption of a stability-independent meandering term would lead to the underprediction of threshold effects such as early death and land/crop interdiction. In addition, theory indicated that the 'Y' curves for different stability categories would converge gradually with increasing travel time
Radiological and chemical source terms for Solid Waste Operations Complex
International Nuclear Information System (INIS)
Boothe, G.F.
1994-01-01
The purpose of this document is to describe the radiological and chemical source terms for the major projects of the Solid Waste Operations Complex (SWOC), including Project W-112, Project W-133 and Project W-100 (WRAP 2A). For purposes of this document, the term ''source term'' means the design basis inventory. All of the SWOC source terms involve the estimation of the radiological and chemical contents of various waste packages from different waste streams, and the inventories of these packages within facilities or within a scope of operations. The composition of some of the waste is not known precisely; consequently, conservative assumptions were made to ensure that the source term represents a bounding case (i.e., it is expected that the source term would not be exceeded). As better information is obtained on the radiological and chemical contents of waste packages and more accurate facility specific models are developed, this document should be revised as appropriate. Radiological source terms are needed to perform shielding and external dose calculations, to estimate routine airborne releases, to perform release calculations and dose estimates for safety documentation, to calculate the maximum possible fire loss and specific source terms for individual fire areas, etc. Chemical source terms (i.e., inventories of combustible, flammable, explosive or hazardous chemicals) are used to determine combustible loading, fire protection requirements, personnel exposures to hazardous chemicals from routine and accident conditions, and a wide variety of other safety and environmental requirements
Energy Technology Data Exchange (ETDEWEB)
Fernandez, J L; Lopez, J
1986-07-01
Using the ORIGEN-2 Coda, the decay heat and neutron and photon sources for an irradiated PWR fuel element have been calculated. Also, parametric studies on the behaviour of the magnitudes with the burn-up, linear heat power and irradiation and cooling times were performed. Finally, a comparison between our results and other design calculations shows a good agreement and confirms the validity of the used method. (Author) 6 refs.
9 CFR 124.20 - Patent term extension calculation.
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Patent term extension calculation. 124... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PATENT TERM RESTORATION Regulatory Review Period § 124.20 Patent term extension calculation. (a) As provided in 37 CFR 1...
Some problems in the categorization of source terms
International Nuclear Information System (INIS)
Abbey, F.; Dunbar, I.H.; Hayns, M.R.; Nixon, W.
1985-01-01
In recent years techniques for calculating source terms have been considerably improved. It would be unfortunate if the new information were to be blurred by the use of old schemes for the categorization of source terms. In the past categorization schemes have been devised without the question of the general principles of categorization and the available options being addressed explicitly. In this paper these principles are set out, providing a framework within which categorization schemes used in past probabilistic risk assessments and possible future improvements are discussed. In particular the use of input from scoping consequence calculations in deciding how to group source terms, and the question of how modelling uncertainties may be expressed as uncertainties in a final category source terms are considered
Source term and radiological consequences of the Chernobyl accident
International Nuclear Information System (INIS)
Mourad, R.
1987-09-01
This report presents the results of a study of the source term and radiological consequences of the Chernobyl accident. The results two parts. The first part was performed during the first 2 months following the accident and dealt with the evaluation of the source term and an estimate of individual doses in the European countries outside the Soviet Union. The second part was performed after August 25-29, 1986 when the Soviets presented in a IAEA Conference in Vienna detailed information about the accident, including source term and radiological consequences in the Soviet Union. The second part of the study reconfirms the source term evaluated in the first part and in addition deals with the radiological consequences in the Soviet Union. Source term and individual doses are calculated from measured post-accident data, reported by the Soviet Union and European countries, microcomputer program PEAR (Public Exposure from Accident Releases). 22 refs
Source term analyses under severe accidents for KNGR
Energy Technology Data Exchange (ETDEWEB)
Song, Yong Mann; Park, Soo Yong
2001-03-01
In this study, in-containment source term for LOFW (Loss of Feed Water), which has appeared the most frequent core melt accident, is calculated and compared with NUREG-1465 source term. This study provides not only new source term data using MELCOR1.8.4 and its state-of-the-art models but also evaluating basis of KNGR design and its mitigation capability under severe accidents. As the selected accident is identical with LOFW-S17, which has been analyzed using MAAP by KEPCO with only difference of 2 SITs, mutual comparison of the results is especially expected.
Radioactivity source terms for underground engineering application
Energy Technology Data Exchange (ETDEWEB)
Tewes, H A [Lawrence Radiation Laboratory, Livermore, CA (United States)
1969-07-01
The constraints on nuclide production are usually very similar in any underground engineering application of nuclear explosives. However, in some applications the end product could be contaminated unless the proper nuclear device is used. This fact can be illustrated from two underground engineering experiments-Gasbuggy and Sloop. In the Gasbuggy experiment, appreciable tritium has been shown to be present in the gas currently being produced. However, in future gas stimulation applications (as distinct from experiments), a minimum production of tritium by the explosive is desirable since product contamination by this nuclide may place severe limitations on the use of the tritiated gas. In Sloop, where production of copper is the goal of the experiment, product contamination would not be caused by tritium but could result from other nuclides: Thus, gas stimulation could require the use of fission explosives while the lower cost per kiloton of thermonuclear explosives could make them attractive for ore-crushing applications. Because of this consideration, radionuclide production calculations must be made for both fission and for thermonuclear explosives in the underground environment. Such activation calculations materials of construction are performed in a manner similar to that described in another paper, but radionuclide production in the environment must be computed using both fission neutron and 14-MeV neutron sources in order to treat the 'source term' problem realistically. In making such computations, parameter studies including the effects of environmental temperature, neutron shielding, and rock types have been carried out. Results indicate the importance of carefully evaluating the radionuclide production for each individual underground engineering application. (author)
Radioactivity source terms for underground engineering application
International Nuclear Information System (INIS)
Tewes, H.A.
1969-01-01
The constraints on nuclide production are usually very similar in any underground engineering application of nuclear explosives. However, in some applications the end product could be contaminated unless the proper nuclear device is used. This fact can be illustrated from two underground engineering experiments-Gasbuggy and Sloop. In the Gasbuggy experiment, appreciable tritium has been shown to be present in the gas currently being produced. However, in future gas stimulation applications (as distinct from experiments), a minimum production of tritium by the explosive is desirable since product contamination by this nuclide may place severe limitations on the use of the tritiated gas. In Sloop, where production of copper is the goal of the experiment, product contamination would not be caused by tritium but could result from other nuclides: Thus, gas stimulation could require the use of fission explosives while the lower cost per kiloton of thermonuclear explosives could make them attractive for ore-crushing applications. Because of this consideration, radionuclide production calculations must be made for both fission and for thermonuclear explosives in the underground environment. Such activation calculations materials of construction are performed in a manner similar to that described in another paper, but radionuclide production in the environment must be computed using both fission neutron and 14-MeV neutron sources in order to treat the 'source term' problem realistically. In making such computations, parameter studies including the effects of environmental temperature, neutron shielding, and rock types have been carried out. Results indicate the importance of carefully evaluating the radionuclide production for each individual underground engineering application. (author)
Mechanistic facility safety and source term analysis
International Nuclear Information System (INIS)
PLYS, M.G.
1999-01-01
A PC-based computer program was created for facility safety and source term analysis at Hanford The program has been successfully applied to mechanistic prediction of source terms from chemical reactions in underground storage tanks, hydrogen combustion in double contained receiver tanks, and proccss evaluation including the potential for runaway reactions in spent nuclear fuel processing. Model features include user-defined facility room, flow path geometry, and heat conductors, user-defined non-ideal vapor and aerosol species, pressure- and density-driven gas flows, aerosol transport and deposition, and structure to accommodate facility-specific source terms. Example applications are presented here
Evolution of source term definition and analysis
International Nuclear Information System (INIS)
Lutz, R.J. Jr.
2004-01-01
The objective of this presentation was to provide an overview of the evolution of accident fission product release analysis methodology and the obtained results; and to provide an overview of the source term implementation analysis in regulatory decisions
Source term modelling parameters for Project-90
International Nuclear Information System (INIS)
Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.
1992-04-01
This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)
Revised accident source terms and control room habitability
International Nuclear Information System (INIS)
Lahti, G.P.; Hubner, R.S.; Johnson, W.J.; Schwartz, B.C.
1993-01-01
In April 1992, the NRC staff presented to the Commissioners the draft NUREG open-quotes Revised Accident Source Terms for Light-Water Nuclear Power Plants.close quotes This document is the culmination of more than ten years of NRC-sponsored research and represents the first change in the NRC's position on source terms since TID-14844 was issued in 1962. The purpose of this paper is to investigate the impact of the revised source terms on the current approach to analyzing control room habitability as required by 10 CFR 50. Sample calculations are presented that identify aspects of the model requiring clarification before the implementation of the revised source terms. 6 refs., 4 tabs
The latest results from source term research. Overview and outlook
Energy Technology Data Exchange (ETDEWEB)
Herranz, Luis E. [Centro de Investigaciones Energeticas Medio Ambientales y Tecnologica (CIEMAT), Madrid (Spain); Haste, Tim [Centre d' Etudes de Cadarache, Paul-Lez-Durance (France). Institut de Radioprotection et de Surete Nucleaire (IRSN); Kaerkelae, Teemu [VTT Technical Research Centre of Finland Ltd, Espoo (Finland)
2016-12-15
Source term research has continued internationally for more than 30 years, increasing confidence in calculations of the potential radioactive release to the environment after a severe reactor accident. Important experimental data have been obtained, mainly under international frameworks such as OECD/NEA and EURATOM. Specifically, Phebus FP provides major insights into fission product release and transport. Results are included in severe accident analysis codes. Data from international projects are being interpreted with a view to further improvements in these codes. This paper synthesizes the recent main outcomes from source term research on these topics, and on source term mitigation. It highlights knowledge gaps remaining and discusses ways to proceed. Aside from this further knowledge-driven research, there is consensus on the need to assess the source term predictive ability of current system codes, taking account of scale-up from experiment to reactor conditions.
International Nuclear Information System (INIS)
Yan Guanghua; Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G
2008-01-01
The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity
Energy Technology Data Exchange (ETDEWEB)
Yan Guanghua [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)
2008-04-21
The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity.
Some practical implications of source term reassessment
International Nuclear Information System (INIS)
1988-03-01
This report provides a brief summary of the current knowledge of severe accident source terms and suggests how this knowledge might be applied to a number of specific aspects of reactor safety. In preparing the report, consideration has been restricted to source term issues relating to light water reactors (LWRs). Consideration has also generally been restricted to the consequences of hypothetical severe accidents rather than their probability of occurrence, although it is recognized that, in the practical application of source term research, it is necessary to take account of probability as well as consequences. The specific areas identified were as follows: Exploration of the new insights that are available into the management of severe accidents; Investigating the impact of source term research on emergency planning and response; Assessing the possibilities which exist in present reactor designs for preventing or mitigating the consequences of severe accidents and how these might be used effectively; Exploring the need for backfitting and assessing the implications of source term research for future designs; and Improving the quantification of the radiological consequences of hypothetical severe accidents for probabilistic safety assessments (PSAs) and informing the public about the realistic risks associated with nuclear power plants. 7 refs
Ionization efficiency calculations for cavity thermoionization ion source
International Nuclear Information System (INIS)
Turek, M.; Pyszniak, K.; Drozdziel, A.; Sielanko, J.; Maczka, D.; Yuskevich, Yu.V.; Vaganov, Yu.A.
2009-01-01
The numerical model of ionization in a thermoionization ion source is presented. The review of ion source ionization efficiency calculation results for various kinds of extraction field is given. The dependence of ionization efficiency on working parameters like ionizer length and extraction voltage is discussed. Numerical simulations results are compared to theoretical predictions obtained from a simplified ionization model
Influence of external source location in the reactivity calculation
International Nuclear Information System (INIS)
Silva, Adilson Costa da; Silva, Fernando Carvalho da; Martinez, Aquilino Senra
2011-01-01
We used the neutron diffusion equation with external neutron sources, in cartesian geometry and the two groups of energy, to verify the influence of external neutron source locations in the reactivity calculation. For this, a coarse mesh finite difference method was developed for the adjoint flux calculation and simplifies reactivity calculation in PWR type reactor, which uses the output of the nodal expansion method. The results were obtained for different locations on the two-dimensional plane, as well as for different types of fuel elements in the reactor core. (author)
Influence of external source location in the reactivity calculation
Energy Technology Data Exchange (ETDEWEB)
Silva, Adilson Costa da; Silva, Fernando Carvalho da; Martinez, Aquilino Senra, E-mail: asilva@con.ufrj.b, E-mail: fernando@con.ufrj.b, E-mail: Aquilino@lmp.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear
2011-07-01
We used the neutron diffusion equation with external neutron sources, in cartesian geometry and the two groups of energy, to verify the influence of external neutron source locations in the reactivity calculation. For this, a coarse mesh finite difference method was developed for the adjoint flux calculation and simplifies reactivity calculation in PWR type reactor, which uses the output of the nodal expansion method. The results were obtained for different locations on the two-dimensional plane, as well as for different types of fuel elements in the reactor core. (author)
Dose calculation for iridium-192 sources by a personal computer
International Nuclear Information System (INIS)
Takahashi, Kenichi; Ishigaki, Hideyo; Udagawa, Kimio; Saito, Masami; Yamaguchi, Kyoko
1988-01-01
Recently Ir-192 sources have been used for interstitial radiotherapy instead of Ra-226 needles. One end of Ir-192 (single-pin) is formed with circlet and implanted Ir-192 sources are not always straight line. So the authors have developed a new dose calculation system, in which the authers employed conventional method considering oblique filteration for linear source and multi-point source method for curved source. Conventionally the positions of sources in three dimensions are determined from projections of the implanted sources on orthogonal or stereo radiographs. But it is frequentry impossible to define the end of sources on account of overlap. Then the authers have devised a method to determine the positions of sources from two radiographs which were taken with arbitrary directions. For tongue cancer injuries of mandibula so frequently occur after interstitial radiotherapy that the calculation of gingival dose is necessary. The positions of the gingival line are determined from two directional radiographs too. Further the three dimensional dose distributions can be displayed on the cathod ray tube. These calculations are performed by using a personal computer because of its distinctive features such as superiority in cost performance and flexibility for development and modification of programs. (author)
Calculation of the counting efficiency for extended sources
International Nuclear Information System (INIS)
Korun, M.; Vidmar, T.
2002-01-01
A computer program for calculation of efficiency calibration curves for extended samples counted on gamma- and X ray spectrometers is described. The program calculates efficiency calibration curves for homogeneous cylindrical samples placed coaxially with the symmetry axis of the detector. The method of calculation is based on integration over the sample volume of the efficiencies for point sources measured in free space on an equidistant grid of points. The attenuation of photons within the sample is taken into account using the self-attenuation function calculated with a two-dimensional detector model. (author)
Effective source approach to self-force calculations
International Nuclear Information System (INIS)
Vega, Ian; Wardell, Barry; Diener, Peter
2011-01-01
Numerical evaluation of the self-force on a point particle is made difficult by the use of delta functions as sources. Recent methods for self-force calculations avoid delta functions altogether, using instead a finite and extended 'effective source' for a point particle. We provide a review of the general principles underlying this strategy, using the specific example of a scalar point charge moving in a black hole spacetime. We also report on two new developments: (i) the construction and evaluation of an effective source for a scalar charge moving along a generic orbit of an arbitrary spacetime, and (ii) the successful implementation of hyperboloidal slicing that significantly improves on previous treatments of boundary conditions used for effective-source-based self-force calculations. Finally, we identify some of the key issues related to the effective source approach that will need to be addressed by future work.
Revised accident source terms for light-water reactors
Energy Technology Data Exchange (ETDEWEB)
Soffer, L. [Nuclear Regulatory Commission, Washington, DC (United States)
1995-02-01
This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.
RADSHI: shielding calculation program for different geometries sources
International Nuclear Information System (INIS)
Gelen, A.; Alvarez, I.; Lopez, H.; Manso, M.
1996-01-01
A computer code written in pascal language for IBM/Pc is described. The program calculates the optimum thickness of slab shield for different geometries sources. The Point Kernel Method is employed, which enables the obtention of the ionizing radiation flux density. The calculation takes into account the possibility of self-absorption in the source. The air kerma rate for gamma radiation is determined, and with the concept of attenuation length through the equivalent attenuation length the shield is obtained. The scattering and the exponential attenuation inside the shield material is considered in the program. The shield materials can be: concrete, water, iron or lead. It also calculates the shield for point isotropic neutron source, using as shield materials paraffin, concrete or water. (authors). 13 refs
Scoping calculations of power sources for nuclear electric propulsion
International Nuclear Information System (INIS)
Difilippo, F.C.
1994-05-01
This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis
Calculation of neutron flux in the presence of a source
International Nuclear Information System (INIS)
Planchard, J.
1993-09-01
Neutron sources are introduced into the reactors to initiate the chain reaction. For safety reasons, we have to know the distribution and evolution of the flux throughout the startup phase. The flux is calculated iteratively but convergence of the process can slow down arbitrarily as we approach criticality. A calculation method is presented, with a convergence speed which does not depend on the negative reactivity when it is small. (author). 7 refs
Research on Primary Shielding Calculation Source Generation Codes
Zheng, Zheng; Mei, Qiliang; Li, Hui; Shangguan, Danhua; Zhang, Guangchun
2017-09-01
Primary Shielding Calculation (PSC) plays an important role in reactor shielding design and analysis. In order to facilitate PSC, a source generation code is developed to generate cumulative distribution functions (CDF) for the source particle sample code of the J Monte Carlo Transport (JMCT) code, and a source particle sample code is deveoped to sample source particle directions, types, coordinates, energy and weights from the CDFs. A source generation code is developed to transform three dimensional (3D) power distributions in xyz geometry to source distributions in r θ z geometry for the J Discrete Ordinate Transport (JSNT) code. Validation on PSC model of Qinshan No.1 nuclear power plant (NPP), CAP1400 and CAP1700 reactors are performed. Numerical results show that the theoretical model and the codes are both correct.
A Study on Improvement of Algorithm for Source Term Evaluation
International Nuclear Information System (INIS)
Park, Jeong Ho; Park, Do Hyung; Lee, Jae Hee
2010-03-01
The program developed by KAERI for source term assessment of radwastes from the advanced nuclear fuel cycle consists of spent fuel database analysis module, spent fuel arising projection module, and automatic characterization module for radwastes from pyroprocess. To improve the algorithm adopted the developed program, following items were carried out: - development of an algorithm to decrease analysis time for spent fuel database - development of setup routine for a analysis procedure - improvement of interface for spent fuel arising projection module - optimization of data management algorithm needed for massive calculation to estimate source terms of radwastes from advanced fuel cycle The program developed through this study has a capability to perform source term estimation although several spent fuel assemblies with different fuel design, initial enrichment, irradiation history, discharge burnup, and cooling time are processed at the same time in the pyroprocess. It is expected that this program will be very useful for the design of unit process of pyroprocess and disposal system
Determination of source term for Krsko NPP extended fuel cycle
International Nuclear Information System (INIS)
Nemec, T.; Persic, A.; Zagar, T.; Zefran, B.
2004-01-01
The activity and composition of the potential radioactive releases (source term) is important in the decision making about off-site emergency measures in case of a release into environment. Power uprate of Krsko NPP during modernization in 2000 as well as changing of the fuel type and the core design have influenced the source term value. In 2003 a project of 'Jozef Stefan' Institute and Slovenian nuclear safety administration determined a plantspecific source term for new conditions of fuel type and burnup for extended fuel cycle. Calculations of activity and isotopic composition of the core have been performed with ORIGEN-ARP program. Results showed that the core activity for extended 15 months fuel cycle is slightly lower than for the 12 months cycles, mainly due to larger share of fresh fuel. (author)
Source term estimation for small sized HTRs
International Nuclear Information System (INIS)
Moormann, R.
1992-08-01
Accidents which have to be considered are core heat-up, reactivity transients, water of air ingress and primary circuit depressurization. The main effort of this paper belongs to water/air ingress and depressurization, which requires consideration of fission product plateout under normal operation conditions; for the latter it is clearly shown, that absorption (penetration) mechanisms are much less important than assumed sometimes in the past. Source term estimation procedures for core heat-up events are shortly reviewed; reactivity transients are apparently covered by them. Besides a general literature survey including identification of areas with insufficient knowledge this paper contains some estimations on the thermomechanical behaviour of fission products in water in air ingress accidents. Typical source term examples are also presented. In an appendix, evaluations of the AVR experiments VAMPYR-I and -II with respect to plateout and fission product filter efficiency are outlined and used for a validation step of the new plateout code SPATRA. (orig.)
Hazardous constituent source term. Revision 2
International Nuclear Information System (INIS)
1994-01-01
The Department of Energy (DOE) has several facilities that either generate and/or store transuranic (TRU)-waste from weapons program research and production. Much of this waste also contains hazardous waste constituents as regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). Toxicity characteristic metals in the waste principally include lead, occurring in leaded rubber gloves and shielding. Other RCRA metals may occur as contaminants in pyrochemical salt, soil, debris, and sludge and solidified liquids, as well as in equipment resulting from decontamination and decommissioning activities. Volatile organic compounds (VOCS) contaminate many waste forms as a residue adsorbed on surfaces or occur in sludge and solidified liquids. Due to the presence of these hazardous constituents, applicable disposal regulations include land disposal restrictions established by Hazardous and Solid Waste Amendments (HSWA). The DOE plans to dispose of TRU-mixed waste from the weapons program in the Waste Isolation Pilot Plant (WIPP) by demonstrating no-migration of hazardous constituents. This paper documents the current technical basis for methodologies proposed to develop a post-closure RCRA hazardous constituent source term. For the purposes of demonstrating no-migration, the hazardous constituent source term is defined as the quantities of hazardous constituents that are available for transport after repository closure. Development of the source term is only one of several activities that will be involved in the no-migration demonstration. The demonstration will also include uncertainty and sensitivity analyses of contaminant transport
Spent fuel assembly source term parameters
International Nuclear Information System (INIS)
Barrett, P.R.; Foadian, H.; Rashid, Y.R.; Seager, K.D.; Gianoulakis, S.E.
1993-01-01
Containment of cask contents by a transport cask is a function of the cask body, one or more closure lids, and various bolting hardware, and seals associated with the cavity closure and other containment penetrations. In addition, characteristics of cask contents that impede the ability of radionuclides to move from an origin to the external environment also provide containment. In essence, multiple release barriers exist in series in transport casks, and the magnitude of the releasable activity in the cask is considerably lower than the total activity of its contents. A source term approach accounts for the magnitude of the releasable activity available in the cask by assessing the degree of barrier resistance to release provided by material characteristics and inherent barriers that impede the release of radioactive contents. Standardized methodologies for defining the spent-fuel transport packages with specified regulations have recently been developed. An essential part of applying the source term methodology involves characterizing the response of the spent fuel under regulatory conditions of transport. Thermal and structural models of the cask and fuel are analyzed and used to predict fuel rod failure probabilities. Input to these analyses and failure evaluations cover a wide range of geometrical and material properties. An important issue in the development of these models is the sensitivity of the radioactive source term generated during transport to individual parameters such as temperature and fluence level. This paper provides a summary of sensitivity analyses concentrating on the structural response and failure predictions of the spent fuel assemblies
Literature study of source term research for PWRs
Energy Technology Data Exchange (ETDEWEB)
Sponton, L.L.; NiIsson, Lars
2001-04-01
A literature survey has been carried out in support of ongoing source term calculations with the MELCOR code of some severe accident scenarios for the Swedish Ringhals 2 pressurised water reactor (PWR). The research in the field of severe accidents in power reactors and the source term for subsequent release of radioisotopes was intensified after the Harrisburg accident and has produced a large amount of reports and papers. This survey was therefore limited to research concerning PWR type of reactors and with emphasis on papers related to MELCOR code development. A background is given, relating to some historic documents, and then more recent research after 1990 is reviewed. Of special interest is the ongoing PMbus-programme which is creating new and important results of benefit to the code development and validation of, among others, the MELCOR code. It is concluded that source term calculations involve simulation of many interacting complex physical phenomena, which result in large uncertainties The research has, however, over the years led to considerable improvements Thus has the uncertainty in source term predictions been reduced one to two orders of magnitude from the simpler codes in the early 1980-s to the more realistic codes of today, like MELCOR.
Literature study of source term research for PWRs
International Nuclear Information System (INIS)
Sponton, L.L.; NiIsson, Lars
2001-04-01
A literature survey has been carried out in support of ongoing source term calculations with the MELCOR code of some severe accident scenarios for the Swedish Ringhals 2 pressurised water reactor (PWR). The research in the field of severe accidents in power reactors and the source term for subsequent release of radioisotopes was intensified after the Harrisburg accident and has produced a large amount of reports and papers. This survey was therefore limited to research concerning PWR type of reactors and with emphasis on papers related to MELCOR code development. A background is given, relating to some historic documents, and then more recent research after 1990 is reviewed. Of special interest is the ongoing PMbus-programme which is creating new and important results of benefit to the code development and validation of, among others, the MELCOR code. It is concluded that source term calculations involve simulation of many interacting complex physical phenomena, which result in large uncertainties The research has, however, over the years led to considerable improvements Thus has the uncertainty in source term predictions been reduced one to two orders of magnitude from the simpler codes in the early 1980-s to the more realistic codes of today, like MELCOR
A comparison of world-wide uses of severe reactor accident source terms
International Nuclear Information System (INIS)
Ang, M.L.; Frid, W.; Kersting, E.J.; Friederichs, H.G.; Lee, R.Y.; Meyer-Heine, A.; Powers, D.A.; Soda, K.; Sweet, D.
1994-09-01
The definitions of source terms to reactor containments and source terms to the environment are discussed. A comparison is made between the TID-14844 example source term and the alternative source term described in NUREG-1465. Comparisons of these source terms to the containments and those used in France, Germany, Japan, Sweden, and the United Kingdom are made. Source terms to the environment calculated in NUREG-1500 and WASH-1400 are discussed. Again, these source terms are compared to those now being used in France, Germany, Japan, Sweden, and the United Kingdom. It is concluded that source terms to the containment suggested in NUREG-1465 are not greatly more conservative than those used in other countries. Technical bases for the source terms are similar. The regulatory use of the current understanding of radionuclide behavior varies among countries
Low-level radioactive waste performance assessments: Source term modeling
International Nuclear Information System (INIS)
Icenhour, A.S.; Godbee, H.W.; Miller, L.F.
1995-01-01
Low-level radioactive wastes (LLW) generated by government and commercial operations need to be isolated from the environment for at least 300 to 500 yr. Most existing sites for the storage or disposal of LLW employ the shallow-land burial approach. However, the U.S. Department of Energy currently emphasizes the use of engineered systems (e.g., packaging, concrete and metal barriers, and water collection systems). Future commercial LLW disposal sites may include such systems to mitigate radionuclide transport through the biosphere. Performance assessments must be conducted for LUW disposal facilities. These studies include comprehensive evaluations of radionuclide migration from the waste package, through the vadose zone, and within the water table. Atmospheric transport mechanisms are also studied. Figure I illustrates the performance assessment process. Estimates of the release of radionuclides from the waste packages (i.e., source terms) are used for subsequent hydrogeologic calculations required by a performance assessment. Computer models are typically used to describe the complex interactions of water with LLW and to determine the transport of radionuclides. Several commonly used computer programs for evaluating source terms include GWSCREEN, BLT (Breach-Leach-Transport), DUST (Disposal Unit Source Term), BARRIER (Ref. 5), as well as SOURCE1 and SOURCE2 (which are used in this study). The SOURCE1 and SOURCE2 codes were prepared by Rogers and Associates Engineering Corporation for the Oak Ridge National Laboratory (ORNL). SOURCE1 is designed for tumulus-type facilities, and SOURCE2 is tailored for silo, well-in-silo, and trench-type disposal facilities. This paper focuses on the source term for ORNL disposal facilities, and it describes improved computational methods for determining radionuclide transport from waste packages
A shell-model calculation in terms of correlated subsystems
International Nuclear Information System (INIS)
Boisson, J.P.; Silvestre-Brac, B.
1979-01-01
A method for solving the shell-model equations in terms of a basis which includes correlated subsystems is presented. It is shown that the method allows drastic truncations of the basis to be made. The corresponding calculations are easy to perform and can be carried out rapidly
Development of in-vessel source term analysis code, tracer
International Nuclear Information System (INIS)
Miyagi, K.; Miyahara, S.
1996-01-01
Analyses of radionuclide transport in fuel failure accidents (generally referred to source terms) are considered to be important especially in the severe accident evaluation. The TRACER code has been developed to realistically predict the time dependent behavior of FPs and aerosols within the primary cooling system for wide range of fuel failure events. This paper presents the model description, results of validation study, the recent model advancement status of the code, and results of check out calculations under reactor conditions. (author)
International Nuclear Information System (INIS)
Souto, F.J.
1991-06-01
The main objective of the project was to use the Source Term Code Package (STCP) to obtain a specific source term for those accident sequences deemed dominant as a result of probabilistic safety analyses (PSA) for the Laguna Verde Nuclear Power Plant (CNLV). The following programme has been carried out to meet this objective: (a) implementation of the STCP, (b) acquisition of specific data for CNLV to execute the STCP, and (c) calculations of specific source terms for accident sequences at CNLV. The STCP has been implemented and validated on CDC 170/815 and CDC 180/860 main frames as well as on a Micro VAX 3800 system. In order to get a plant-specific source term, data on the CNLV including initial core inventory, burn-up, primary containment structures, and materials used for the calculations have been obtained. Because STCP does not explicitly model containment failure, dry well failure in the form of a catastrophic rupture has been assumed. One of the most significant sequences from the point of view of possible off-site risk is the loss of off-site power with failure of the diesel generators and simultaneous loss of high pressure core spray and reactor core isolation cooling systems. The probability for that event is approximately 4.5 x 10 -6 . This sequence has been analysed in detail and the release fractions of radioisotope groups are given in the full report. 18 refs, 4 figs, 3 tabs
The calculation of dose rates from rectangular sources
International Nuclear Information System (INIS)
Hartley, B.M.
1998-01-01
A common problem in radiation protection is the calculation of dose rates from extended sources and irregular shapes. Dose rates are proportional to the solid angle subtended by the source at the point of measurement. Simple methods of calculating solid angles would assist in estimating dose rates from large area sources and therefore improve predictive dose estimates when planning work near such sources. The estimation of dose rates is of particular interest to producers of radioactive ores but other users of bulk radioactive materials may have similar interest. The use of spherical trigonometry can assist in determination of solid angles and a simple equation is derived here for the determination of the dose at any distance from a rectangular surface. The solid angle subtended by complex shapes can be determined by modelling the area as a patchwork of rectangular areas and summing the solid angles from each rectangle. The dose rates from bags of thorium bearing ores is of particular interest in Western Australia and measured dose rates from bags and containers of monazite are compared with theoretical estimates based on calculations of solid angle. The agreement is fair but more detailed measurements would be needed to confirm the agreement with theory. (author)
Diffusion theory model for optimization calculations of cold neutron sources
International Nuclear Information System (INIS)
Azmy, Y.Y.
1987-01-01
Cold neutron sources are becoming increasingly important and common experimental facilities made available at many research reactors around the world due to the high utility of cold neutrons in scattering experiments. The authors describe a simple two-group diffusion model of an infinite slab LD 2 cold source. The simplicity of the model permits to obtain an analytical solution from which one can deduce the reason for the optimum thickness based solely on diffusion-type phenomena. Also, a second more sophisticated model is described and the results compared to a deterministic transport calculation. The good (particularly qualitative) agreement between the results suggests that diffusion theory methods can be used in parametric and optimization studies to avoid the generally more expensive transport calculations
Source terms in relation to air cleaning
International Nuclear Information System (INIS)
Bernero, R.M.
1985-01-01
There are two sets of source terms for consideration in air cleaning, those for routine releases and those for accident releases. With about 1000 reactor years of commercial operating experience in the US done, there is an excellent data base for routine and expected transient releases. Specifications for air cleaning can be based on this body of experience with confidence. Specifications for air cleaning in accident situations is another matter. Recent investigations of severe accident behavior are offering a new basis for source terms and air cleaning specifications. Reports by many experts in the field describe an accident environment notably different from previous models. It is an atmosphere heavy with aerosols, both radioactive and inert. Temperatures are sometimes very high; radioiodine is typically in the form of cesium iodide aerosol particles; other nuclides, such as tellurium, are also important aerosols. Some of the present air cleaning requirements may be very important in light of these new accident behavior models. Others may be wasteful or even counterproductive. The use of the new data on accident behavior models to reevaluate requirements promptly is discussed
Perspectives on source terms based on early research and development
International Nuclear Information System (INIS)
Pressesky, A.J.
1985-07-01
This report presents an overview of the key documentation of the research and development programs relevant to the source term issue which were undertaken by the Atomic Energy Commission between 1950 and 1970. The source term is taken to be the amount, composition (physical and chemical), and timing of the projected release of radioactivity to the environment in the hypothetical event of a severe reactor accident in a light water reactor of the type currently being licensed, built and operated. The objective is to illuminate and provide perspectives on (a) the maturity of the technical data base and the analytical methodology, (b) the extent to which remaining conservatisms can be applied to compensate for uncertainties, (c) the purpose for which the technology and methodology will be used, and (d) the need to keep problems and uncertainties in proper perspective. Comments that can provide some context for the difficult programmatic choices to be made are included, and technical considerations that may be inadequately applied or neglected in some current source term calculations were studied. This review has not uncovered any significant technical considerations that have been omitted or are being inadequately treated in current source term analyses, except perhaps the contribution made to in-containment aerosols by coolant comminution upon escape at pressure from the reactor coolant system. 11 refs
Flux and brightness calculations for various synchrotron radiation sources
International Nuclear Information System (INIS)
Weber, J.M.; Hulbert, S.L.
1991-11-01
Synchrotron radiation (SR) storage rings are powerful scientific and technological tools. The first generation of storage rings in the US., e.g., SURF (Washington, D.C.), Tantalus (Wisconsin), SSRL (Stanford), and CHESS (Cornell), revolutionized VUV, soft X-ray, and hard X-ray science. The second (present) generation of storage rings, e.g. the NSLS VUV and XRAY rings and Aladdin (Wisconsin), have sustained the revolution by providing higher stored currents and up to a factor of ten smaller electron beam sizes than the first generation sources. This has made possible a large number of experiments that could not performed using first generation sources. In addition, the NSLS XRAY ring design optimizes the performance of wigglers (high field periodic magnetic insertion devices). The third generation storage rings, e.g. ALS (Berkeley) and APS (Argonne), are being designed to optimize the performance of undulators (low field periodic magnetic insertion devices). These extremely high brightness sources will further revolutionize x-ray science by providing diffraction-limited x-ray beams. The output of undulators and wigglers is distinct from that of bending magnets in magnitude, spectral shape, and in spatial and angular size. Using published equations, we have developed computer programs to calculate the flux, central intensity, and brightness output bending magnets and selected wigglers and undulators of the NSLS VUV and XRAY rings, the Advanced Light Source (ALS), and the Advanced Photon Source (APS). Following is a summary of the equations used, the graphs and data produced, and the computer codes written. These codes, written in the C programming language, can be used to calculate the flux, central intensity, and brightness curves for bending magnets and insertion devices on any storage ring
Automatic fission source convergence criteria for Monte Carlo criticality calculations
International Nuclear Information System (INIS)
Shim, Hyung Jin; Kim, Chang Hyo
2005-01-01
The Monte Carlo criticality calculations for the multiplication factor and the power distribution in a nuclear system require knowledge of stationary or fundamental-mode fission source distribution (FSD) in the system. Because it is a priori unknown, so-called inactive cycle Monte Carlo (MC) runs are performed to determine it. The inactive cycle MC runs should be continued until the FSD converges to the stationary FSD. Obviously, if one stops them prematurely, the MC calculation results may have biases because the followup active cycles may be run with the non-stationary FSD. Conversely, if one performs the inactive cycle MC runs more than necessary, one is apt to waste computing time because inactive cycle MC runs are used to elicit the fundamental-mode FSD only. In the absence of suitable criteria for terminating the inactive cycle MC runs, one cannot but rely on empiricism in deciding how many inactive cycles one should conduct for a given problem. Depending on the problem, this may introduce biases into Monte Carlo estimates of the parameters one tries to calculate. The purpose of this paper is to present new fission source convergence criteria designed for the automatic termination of inactive cycle MC runs
Design parameters and source terms: Volume 2, Source terms: Revision 0
International Nuclear Information System (INIS)
1987-10-01
The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report by Stearns Catalytic Corporation (SCC), entitled ''Design Parameters and Source Terms for a Two-Phase Repository Salt,'' 1985, to the level of the Site Characterization Plan - Conceptual Design Report. The previous unpublished SCC Study identifies the data needs for the Environmental Assessment effort for seven possible Salt Repository sites. 2 tabs
Design parameters and source terms: Volume 2, Source terms: Revision 0
International Nuclear Information System (INIS)
1987-09-01
The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report to the level of the Site Characterization Plan---Conceptual Design Report SCP-CDR. The previous study identifies the data needs for the Environmental Assessment effort for seven possible salt repository sites. Volume 2 contains tables of source terms
Influence of Chemistry on source term assessment
International Nuclear Information System (INIS)
Herranz Puebla, L.E.; Lopez Diez, I.; Rodriguez Maroto, J.J.; Martinez Lopez-Alcorocho, A.
1991-01-01
The major goal of a phenomenology analysis of containment during a severe accident situation can be splitedd into the following ones: to know the containment response to the different loads and to predict accurately the fission product and aerosol behavior. In this report, the main results coming from the study of a hypothetical accident scenario, based on LA-4 experiment of LACE project, are presented. In order to do it, several codes have been coupled: CONTEMPT4/MOD5 (thermalhydraulics), NAUA/MOD5 (aerosol physics) and IODE (iodine chemistry). 12 refs. It has been demonstrated the impossibility of assessing with confidence the Source Term if the chemical conduct of some radionuclides is not taken into account. In particular, the influence on the iodine retention efficiency of the sump of variables such as pH has been proven. (Author). 12 refs
Fast spectral source integration in black hole perturbation calculations
Hopper, Seth; Forseth, Erik; Osburn, Thomas; Evans, Charles R.
2015-08-01
This paper presents a new technique for achieving spectral accuracy and fast computational performance in a class of black hole perturbation and gravitational self-force calculations involving extreme mass ratios and generic orbits. Called spectral source integration (SSI), this method should see widespread future use in problems that entail (i) a point-particle description of the small compact object, (ii) frequency domain decomposition, and (iii) the use of the background eccentric geodesic motion. Frequency domain approaches are widely used in both perturbation theory flux-balance calculations and in local gravitational self-force calculations. Recent self-force calculations in Lorenz gauge, using the frequency domain and method of extended homogeneous solutions, have been able to accurately reach eccentricities as high as e ≃0.7 . We show here SSI successfully applied to Lorenz gauge. In a double precision Lorenz gauge code, SSI enhances the accuracy of results and makes a factor of 3 improvement in the overall speed. The primary initial application of SSI—for us its the raison d'être—is in an arbitrary precision mathematica code that computes perturbations of eccentric orbits in the Regge-Wheeler gauge to extraordinarily high accuracy (e.g., 200 decimal places). These high-accuracy eccentric orbit calculations would not be possible without the exponential convergence of SSI. We believe the method will extend to work for inspirals on Kerr and will be the subject of a later publication. SSI borrows concepts from discrete-time signal processing and is used to calculate the mode normalization coefficients in perturbation theory via sums over modest numbers of points around an orbit. A variant of the idea is used to obtain spectral accuracy in a solution of the geodesic orbital motion.
Energy Technology Data Exchange (ETDEWEB)
Sandoval V, S. [Instituto Nacional de Electricidad y Energias Limpias, Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico); Mendoza R, M. E.; Tijerina S, F.; Garcia C, T., E-mail: manuel.mendoza@cfe.gob.mx [CFE, Central Nucleoelectrica Laguna Verde, Carretera Federal Cardel-Nautla Km 42.5, 91476 Municipio Alto Lucero, Veracruz (Mexico)
2016-09-15
A nuclear power plant is operated at all times within the design criteria of structures, systems and components, and according to the operation technical specifications. For different areas of work of a nuclear power plant is necessary to carry out practices in which is useful to have the prediction of the thermo-hydraulic and radiological progression of scenarios that imply exceeding that design bases, even reaching the damage of the fuel in different degree. During the exercises and drills of the External Plan of Emergency Response, the projection of doses is done to exercise the different tasks of the plan. To make the projection of doses is required to have the radiological source term of the scenario on which is practiced. Because of this, was identified the convenience of having a catalog of scenarios for which the radiological source term was calculated. In 2004, a first version of the catalog was produced for a power of 2027 MW, and in 2011 the catalog was updated for extended power conditions, 2317 MW. Both versions were made using the severe accident simulator MAAP-3B. That catalog consists of a form and an optical storage device. The form contains tables and figures in which the characteristics of the scenario to be practiced are searched and the electronic files of the corresponding radiological source term are located in the storage device. Due to the recent development of the graphical console for analysis of severe accidents, visualization of OEs, NAEs and calculation of the source term for the nuclear power plant of Laguna Verde (NPP-LV) CoGrAAS, the catalog printed was replaced by an electronic catalog for the CoGrAAS. The new catalog retains the philosophy of the previous catalog, constituted by a wide collection of scenarios that involve different circumstances and phenomena, that can be used to practice different tasks during training exercises or simulacrums, and combined with the following advantages: the scenario selection is made from an
Brachytherapy dosimetry parameters calculated for a 131Cs source
International Nuclear Information System (INIS)
Rivard, Mark J.
2007-01-01
A comprehensive analysis of the IsoRay Medical model CS-1 Rev2 131 Cs brachytherapy source was performed. Dose distributions were simulated using Monte Carlo methods (MCNP5) in liquid water, Solid TM , and Virtual Water TM spherical phantoms. From these results, the in-water brachytherapy dosimetry parameters have been determined, and were compared with those of Murphy et al. [Med. Phys. 31, 1529-1538 (2004)] using measurements and simulations. Our results suggest that calculations obtained using erroneous cross-section libraries should be discarded as recommended by the 2004 AAPM TG-43U1 report. Our MC Λ value of 1.046±0.019 cGy h -1 U -1 is within 1.3% of that measured by Chen et al. [Med. Phys. 32, 3279-3285 (2005)] using TLDs and the calculated results of Wittman and Fisher [Med. Phys. 34, 49-54 (2007)] using MCNP5. Using the discretized energy approach of Rivard [Appl. Radiat. Isot. 55, 775-782 (2001)] to ascertain the impact of individual 131 Cs photons on radial dose function and anisotropy functions, there was virtual equivalence of results for 29.461≤E γ ≤34.419 keV and for a mono-energetic 30.384 keV photon source. Comparisons of radial dose function and 2D anisotropy function data are also included, and an analysis of material composition and cross-section libraries was performed
Neutronic calculations for a subcritical system with external source
International Nuclear Information System (INIS)
Cintas, A; Lopasso, E.M; Marquez Damian, J. I
2006-01-01
We present a neutronic study on an A D S, systems capable of transmute minor actinides and fission products in order to reduce their radiotoxicity and mean-life.We compare neutronic parameters obtained with Scale/Tort and M C N P modelling a sub-critical system with source from a N E A Benchmark.Due to lack of nuclear data at the temperature of the system, we perform calculations at available temperature of libraries (300 K); to compensate the reactivity insertion due to the temperature change we reduce the size of the fuel zone in order to get a sub-critical system that allow u s to evaluate neutronic parameters of the system with source.We have found that the numerical results (neutron spectrum, neutron flux distributions and other neutronic parameters) are in agreement with the M C N P and with those of the benchmark participants even though the geometric models used are not exactly the same. We conclude that with the real temperature cross sections, the calculation scheme developed (Scale/Tort and M C N P) will give reliable results in A D S evaluations [es
Source Term Model for Fine Particle Resuspension from Indoor Surfaces
National Research Council Canada - National Science Library
Kim, Yoojeong; Gidwani, Ashok; Sippola, Mark; Sohn, Chang W
2008-01-01
This Phase I effort developed a source term model for particle resuspension from indoor surfaces to be used as a source term boundary condition for CFD simulation of particle transport and dispersion in a building...
COMPASS: A source term code for investigating capillary barrier performance
International Nuclear Information System (INIS)
Zhou, Wei; Apted, J.J.
1996-01-01
A computer code COMPASS based on compartment model approach is developed to calculate the near-field source term of the High-Level-Waste repository under unsaturated conditions. COMPASS is applied to evaluate the expected performance of Richard's (capillary) barriers as backfills to divert infiltrating groundwater at Yucca Mountain. Comparing the release rates of four typical nuclides with and without the Richard's barrier, it is shown that the Richard's barrier significantly decreases the peak release rates from the Engineered-Barrier-System (EBS) into the host rock
10 CFR 50.67 - Accident source term.
2010-01-01
... Conditions of Licenses and Construction Permits § 50.67 Accident source term. (a) Applicability. The... 10 Energy 1 2010-01-01 2010-01-01 false Accident source term. 50.67 Section 50.67 Energy NUCLEAR... to January 10, 1997, who seek to revise the current accident source term used in their design basis...
International Nuclear Information System (INIS)
Etemad, M.A.
1981-04-01
The one dimensional discrete ordinates code ANISN-F was used to calculate the thermal neutron flux distribution in water from a Ra-Be neutron source. The calculations were performed in order to investigate the different possibilities of the code as well as to verify the results of the calculations in terms of comparisons to corresponding experimental data. Two different group cross section libraries were used in the calculations and conclusions were drawn on the adequacy of these libraries for a fixed source type calculation. Furthermore, critically calculations were performed for an infinite homogeneous slab of multiplying material using different angular and spatial approximations. The results of these calculations were then compared to the corresponding results previously obtained at this department by a different method and a different code. (author)
Running the source term code package in Elebra MX-850
International Nuclear Information System (INIS)
Guimaraes, A.C.F.; Goes, A.G.A.
1988-01-01
The source term package (STCP) is one of the main tools applied in calculations of behavior of fission products from nuclear power plants. It is a set of computer codes to assist the calculations of the radioactive materials leaving from the metallic containment of power reactors to the environment during a severe reactor accident. The original version of STCP runs in SDC computer systems, but as it has been written in FORTRAN 77, is possible run it in others systems such as IBM, Burroughs, Elebra, etc. The Elebra MX-8500 version of STCP contains 5 codes:March 3, Trapmelt, Tcca, Vanessa and Nava. The example presented in this report has taken into consideration a small LOCA accident into a PWR type reactor. (M.I.)
A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.
Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens
2017-01-01
To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.
A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.
Directory of Open Access Journals (Sweden)
Obioma Nwankwo
Full Text Available To introduce a new method of deriving a virtual source model (VSM of a linear accelerator photon beam from a phase space file (PSF for Monte Carlo (MC dose calculation.A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses.The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate for the evaluated fields.A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.
International Nuclear Information System (INIS)
Sadeghi, Mahdi; Raisali, Gholamreza; Hosseini, S. Hamed; Shavar, Arzhang
2008-01-01
This article presents a brachytherapy source having 103 Pd adsorbed onto a cylindrical silver rod that has been developed by the Agricultural, Medical, and Industrial Research School for permanent implant applications. Dosimetric characteristics (radial dose function, anisotropy function, and anisotropy factor) of this source were experimentally and theoretically determined in terms of the updated AAPM Task group 43 (TG-43U1) recommendations. Monte Carlo simulations were used to calculate the dose rate constant. Measurements were performed using TLD-GR200A circular chip dosimeters using standard methods employing thermoluminescent dosimeters in a Perspex phantom. Precision machined bores in the phantom located the dosimeters and the source in a reproducible fixed geometry, providing for transverse-axis and angular dose profiles over a range of distances from 0.5 to 5 cm. The Monte Carlo N-particle (MCNP) code, version 4C simulation techniques have been used to evaluate the dose-rate distributions around this model 103 Pd source in water and Perspex phantoms. The Monte Carlo calculated dose rate constant of the IRA- 103 Pd source in water was found to be 0.678 cGy h -1 U -1 with an approximate uncertainty of ±0.1%. The anisotropy function, F(r,θ), and the radial dose function, g(r), of the IRA- 103 Pd source were also measured in a Perspex phantom and calculated in both Perspex and liquid water phantoms
Evaluation Plan on In-vessel Source Term in PGSFR
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Won; Ha, Kwi-Seok; Ahn, Sang June; Lee, Kwi Lim; Jeong, Taekyeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
This strategy requires nuclear plants to have features that prevent radionuclide release and multiple barriers to the escape from the plants of any radionuclides that are released despite preventive measures. Considerations of the ability to prevent and mitigate release of radionuclides arise at numerous places in the safety regulations of nuclear plants. The effectiveness of mitigative capabilities in nuclear plants is subject to quantitative analysis. The radionuclide input to these quantitative analyses of effectiveness is the Source Term (ST). All features of the composition, magnitude, timing, chemical form and physical form of accidental radionuclide release constitute the ST. Also, ST is defined as the release of radionuclides from the fuel and coolant into the containment, and subsequently to the environment. The in-vessel STs of PGSFR will be estimated using the methodology of ANL-ART-38 report in additional to 4S methodology. The in-vessel STs are calculated through several phases: The inventory of each radionuclide is calculated by ORIGEN-2 code using the realistic burnup conditions. ST in the release from the core to primary sodium is calculated by using the assumption of ANL methodology. Lastly, ST in the release from the primary sodium to cover gas space is calculated by using equation and experimental materials.
Evaluation Plan on In-vessel Source Term in PGSFR
International Nuclear Information System (INIS)
Lee, Seung Won; Ha, Kwi-Seok; Ahn, Sang June; Lee, Kwi Lim; Jeong, Taekyeong
2016-01-01
This strategy requires nuclear plants to have features that prevent radionuclide release and multiple barriers to the escape from the plants of any radionuclides that are released despite preventive measures. Considerations of the ability to prevent and mitigate release of radionuclides arise at numerous places in the safety regulations of nuclear plants. The effectiveness of mitigative capabilities in nuclear plants is subject to quantitative analysis. The radionuclide input to these quantitative analyses of effectiveness is the Source Term (ST). All features of the composition, magnitude, timing, chemical form and physical form of accidental radionuclide release constitute the ST. Also, ST is defined as the release of radionuclides from the fuel and coolant into the containment, and subsequently to the environment. The in-vessel STs of PGSFR will be estimated using the methodology of ANL-ART-38 report in additional to 4S methodology. The in-vessel STs are calculated through several phases: The inventory of each radionuclide is calculated by ORIGEN-2 code using the realistic burnup conditions. ST in the release from the core to primary sodium is calculated by using the assumption of ANL methodology. Lastly, ST in the release from the primary sodium to cover gas space is calculated by using equation and experimental materials
Reassessment of the technical bases for estimating source terms. Final report
International Nuclear Information System (INIS)
Silberberg, M.; Mitchell, J.A.; Meyer, R.O.; Ryder, C.P.
1986-07-01
This document describes a major advance in the technology for calculating source terms from postulated accidents at US light-water reactors. The improved technology consists of (1) an extensive data base from severe accident research programs initiated following the TMI accident, (2) a set of coupled and integrated computer codes (the Source Term Code Package), which models key aspects of fission product behavior under severe accident conditions, and (3) a number of detailed mechanistic codes that bridge the gap between the data base and the Source Term Code Package. The improved understanding of severe accident phenonmena has also allowed an identification of significant sources of uncertainty, which should be considered in estimating source terms. These sources of uncertainty are also described in this document. The current technology provides a significant improvement in evaluating source terms over that available at the time of the Reactor Safety Study (WASH-1400) and, because of this significance, the Nuclear Regulatory Commission staff is recommending its use
Design parameters and source terms: Volume 3, Source terms: Revision 0
International Nuclear Information System (INIS)
1987-09-01
The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report to the level of the Site Characterization Plan /endash/ Conceptual Design Report, SCP-CDR. The previous unpublished SCC Study identifies the data needs for the Environmental Assessment effort for seven possible salt repository sites
Probabilistic source term predictions for use with decision support systems
International Nuclear Information System (INIS)
Grindon, E.; Kinniburgh, C.G.
2003-01-01
Probabilistic Inference of Nuclear Power plant Transients (SPRINT), the SPRINT tool takes, as input, observations and trends in key instrument readings from the Nuclear Power Plant (NPP). lt uses these observations to interrogate a database of precalculated source terms, typically compiled from existing NPP analyses performed as Part of a Level 2 PSA study. The basis for this interrogation is a probabilistic logic model, or belief network, of plant behaviour developed by plant experts (using, as a platform, the Netica Bayesian network Software). This is included in the application as a data file. The end points of this logic model are then mapped onto the database of pre-calculated source terms. This process is very rapid (taking only as long as is required to input the responses to a series of questions about the NPP status) and can overcome 'don't know' responses in the question set by resorting to prior probabilities determined by the plant experts who set up the model. The SPRINT application is the combination of the main SPRINT interface containing the user input/output screens and the logic model (dne file) loaded in the Netica application. The conditional probability tables. Beside the network structure itself, the key data in the model are the conditional probabilities that define the strength of influence of a parent node an a daughter node. These values are stored in the model file as network tables, one table per, node, called Conditional Probability Tables (CPTs). However, as detailed documentation of the CPT values is vital during development of reactor specific models, the Net2SS pro.gram was written to take any dne file and output the CPT data as an Excel spreadsheet which can be modified, annotated and loaded back into the dne file via the SPRINT interface. The repository file. The parameters defining the source term data stored in the Excel repository file is determined by the requirement that SPRINT be capable of generating input files for Decision Support
Phase 1 immobilized low-activity waste operational source term
International Nuclear Information System (INIS)
Burbank, D.A.
1998-01-01
This report presents an engineering analysis of the Phase 1 privatization feeds to establish an operational source term for storage and disposal of immobilized low-activity waste packages at the Hanford Site. The source term information is needed to establish a preliminary estimate of the numbers of remote-handled and contact-handled waste packages. A discussion of the uncertainties and their impact on the source term and waste package distribution is also presented. It should be noted that this study is concerned with operational impacts only. Source terms used for accident scenarios would differ due to alpha and beta radiation which were not significant in this study
CDFMC: a program that calculates the fixed neutron source distribution for a BWR using Monte Carlo
International Nuclear Information System (INIS)
Gomez T, A.M.; Xolocostli M, J.V.; Palacios H, J.C.
2006-01-01
The three-dimensional neutron flux calculation using the synthesis method, it requires of the determination of the neutron flux in two two-dimensional configurations as well as in an unidimensional one. Most of the standard guides for the neutron flux calculation or fluences in the vessel of a nuclear reactor, make special emphasis in the appropriate calculation of the fixed neutron source that should be provided to the used transport code, with the purpose of finding sufficiently approximated flux values. The reactor core assemblies configuration is based on X Y geometry, however the considered problem is solved in R θ geometry for what is necessary to make an appropriate mapping to find the source term associated to the R θ intervals starting from a source distribution in rectangular coordinates. To develop the CDFMC computer program (Source Distribution calculation using Monte Carlo), it was necessary to develop a theory of independent mapping to those that have been in the literature. The method of meshes overlapping here used, is based on a technique of random points generation, commonly well-known as Monte Carlo technique. Although the 'randomness' of this technique it implies considering errors in the calculations, it is well known that when increasing the number of points randomly generated to measure an area or some other quantity of interest, the precision of the method increases. In the particular case of the CDFMC computer program, the developed technique reaches a good general behavior when it is used a considerably high number of points (bigger or equal to a hundred thousand), with what makes sure errors in the calculations of the order of 1%. (Author)
Goal based mesh adaptivity for fixed source radiation transport calculations
International Nuclear Information System (INIS)
Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Tollit, B.S.; Goffin, M.A.; Merton, S.R.; Warner, P.
2013-01-01
Highlights: ► Derives an anisotropic goal based error measure for shielding problems. ► Reduces the error in the detector response by optimizing the finite element mesh. ► Anisotropic adaptivity captures material interfaces using fewer elements than AMR. ► A new residual based on the numerical scheme chosen forms the error measure. ► The error measure also combines the forward and adjoint metrics in a novel way. - Abstract: In this paper, the application of goal based error measures for anisotropic adaptivity applied to shielding problems in which a detector is present is explored. Goal based adaptivity is important when the response of a detector is required to ensure that dose limits are adhered to. To achieve this, a dual (adjoint) problem is solved which solves the neutron transport equation in terms of the response variables, in this case the detector response. The methods presented can be applied to general finite element solvers, however, the derivation of the residuals are dependent on the underlying finite element scheme which is also discussed in this paper. Once error metrics for the forward and adjoint solutions have been formed they are combined using a novel approach. The two metrics are combined by forming the minimum ellipsoid that covers both the error metrics rather than taking the maximum ellipsoid that is contained within the metrics. Another novel approach used within this paper is the construction of the residual. The residual, used to form the goal based error metrics, is calculated from the subgrid scale correction which is inherent in the underlying spatial discretisation employed
Calculation of spatial distribution of the EURACOS II converter source
International Nuclear Information System (INIS)
Santo, A.C.F. de
1985-01-01
It is obtained the neutron spatial flux from the EURACOS (Enriched Uranium Converter Source) device, adjusted to experimental measures. The EURACOS device is a converter source which is constituted a circle plate of highly enriched uranium (90%). The converter provides an intense source of fast neutrons which has the energetic spectrum near to the fission spectrum. (M.C.K.) [pt
Analysis of the primary source term for meltdown accidents using MELCOR 1.8.2
International Nuclear Information System (INIS)
Schmuck, P.
1995-01-01
The MELCOR code describing accident phenomena in the core and primary systems was used for source term calculations and - in the context of the MELCOR Cooperative Assessment Programme - for studying two-phase flows through components such as valves and chokes. Results of the latter studies in comparison to experiments gave hints for an improved calculation of momentum transfer between the phases. (orig.)
Calculation of beam source geometry of electron accelerator for radiation technologies
International Nuclear Information System (INIS)
Balalykin, N.I.; Derendyaev, Yu.S.; Dolbilov, G.V.; Karlov, A.A.; Korenev, S.A.; Petrov, V.A.; Smolyakova, T.F.
1994-01-01
ELLIPT and GRAFOR programmes written in FORTRAN language were developed to calculate the geometry of an electron source. The programmes enable calculation of electromagnetic field of the source and electron trajectories in the source under preset boundary and initial conditions. The GRAFOR programme allows to display electric field curves and calculated trajectories of large particles. 4 refs., 1 fig
Monte Carlo calculation of ''skyshine'' neutron dose from ALS [Advanced Light Source
International Nuclear Information System (INIS)
Moin-Vasiri, M.
1990-06-01
This report discusses the following topics on ''skyshine'' neutron dose from ALS: Sources of radiation; ALS modeling for skyshine calculations; MORSE Monte-Carlo; Implementation of MORSE; Results of skyshine calculations from storage ring; and Comparison of MORSE shielding calculations
Environmental radiation safety source term evaluation program
International Nuclear Information System (INIS)
Moss, O.R.; Filipy, R.E.; Cannon, W.C.; Craig, D.K.
1977-04-01
Plutonium-238 is currently used in the form of a pure refractory oxide as a power source on a number of space vehicles that have already been or will be launched during the next few years. Although the sources are designed and built to withstand re-entry into the earth's atmosphere and impact with the earth's surface without releasing any plutonium, the possibility of such an event can never be absolutely excluded. Three separate tasks were undertaken in this study. The interactions between soils and 238 PuO 2 aerosols which might be created in a space launch about environment were examined. Aging of the plutonium-soil mixture under a humid atmosphere showed a trend toward the slow coagulation of two dilute aerosols. Studies on marine animals were conducted to assess the response of 238 PuO 2 pellets to conditions found 60 feet below the ocean surface. Ultrafilterability studies measured the solubility of 238 PuO 2 as a function of time, temperature, suspension concentration and molality of solvent
Accident source terms for boiling water reactors with high burnup cores.
Energy Technology Data Exchange (ETDEWEB)
Gauntt, Randall O.; Powers, Dana Auburn; Leonard, Mark Thomas
2007-11-01
The primary objective of this report is to provide the technical basis for development of recommendations for updates to the NUREG-1465 Source Term for BWRs that will extend its applicability to accidents involving high burnup (HBU) cores. However, a secondary objective is to re-examine the fundamental characteristics of the prescription for fission product release to containment described by NUREG-1465. This secondary objective is motivated by an interest to understand the extent to which research into the release and behaviors of radionuclides under accident conditions has altered best-estimate calculations of the integral response of BWRs to severe core damage sequences and the resulting radiological source terms to containment. This report, therefore, documents specific results of fission product source term analyses that will form the basis for the HBU supplement to NUREG-1465. However, commentary is also provided on observed differences between the composite results of the source term calculations performed here and those reflected NUREG-1465 itself.
Aerosol behavior and light water reactor source terms
International Nuclear Information System (INIS)
Abbey, F.; Schikarski, W.O.
1988-01-01
The major developments in nuclear aerosol modeling following the accident to pressurized water reactor Unit 2 at Three Mile Island are briefly reviewed and the state of the art summarized. The importance and implications of these developments for severe accident source terms for light water reactors are then discussed in general terms. The treatment is not aimed at identifying specific source term values but is intended rather to illustrate trends, to assess the adequacy of the understanding of major aspects of aerosol behavior for source term prediction, and demonstrate in qualitative terms the effect of various aspects of reactor design. Areas where improved understanding of aerosol behavior might lead to further reductions in current source terms predictions are also considered
Impact of source terms on distances to which reactor accident consequences occur
International Nuclear Information System (INIS)
Ostmeyer, R.M.
1982-01-01
Estimates of the distances over which reactor accident consequences might occur are important for development of siting criteria and for emergency response planning. This paper summarizes the results of a series of CRAC2 calculations performed to estimate these distances. Because of the current controversy concerning the magnitude of source terms for severe accidents, the impact of source term reductions upon distance estimates is also examined
International Nuclear Information System (INIS)
Fong, C.; Kalyanam, K.M.; Tanaka, M.R.; Sood, S.; Natalizio, A.; Delisle, M.
1995-02-01
The overall objective of the Early Safety and Environmental Characterization Study (ESECS) is to assess the environmental impact of tritium using appropriate assumptions on a hypothetical site for ITER, having the r eference s ite characteristics as proposed by the JCT. The objective of this work under the above subtask 1-1, NID-5a, is to determine environmental source terms (i.e., process source term x containment release fraction) for the fuel cycle and cooling systems. The work is based on inventories and process source terms (i.e., inventory x mobilization fraction), provided by others (under Task NID 3b). The results of this work form the basis for the determination, by others, of the off-site dose (i.e., environmental source term x dose/release ratio). For the determination of the environmental source terms, the TMAP4 code has been utilized (ref 1). This code is approved by ITER for safety assessment. 6 refs
The Phebus Fission Product and Source Term International Programmes
International Nuclear Information System (INIS)
Clement, B.; Zeyen, R.
2005-01-01
The international Phebus FP programme, initiated in 1988 is one of the major research programmes on light water reactors severe accidents. After a short description of the facility and of the test matrix, the main outcomes and results of the first four integral tests are provided and analysed. Several results were unexpected and some are of importance for safety analyses, particularly concerning fuel degradation, cladding oxidation, chemical form of some fission products, especially iodine, effect of control rod materials on degradation and chemistry, iodine behaviour in the containment. Prediction capabilities of calculation tools have largely been improved as a result of this research effort. However, significant uncertainties remain for a number of phenomena, requiring detailed physical analysis and implementation of improved models in codes, sustained by a number of separate-effect experiments. This is the subject of the new Source Term programme for a better understanding of the phenomenology on important safety issues, in accordance with priorities defined in the EURSAFE project of the 5 th European framework programme aiming at reducing the uncertainties on Source Term analyses. It covers iodine chemistry, impact of boron carbide control rods degradation and oxidation, air ingress situations and fission product release from fuel. Regarding the interpretation of Phebus, an international co-operation has been established since over ten years, particularly helpful for the improvement and common understanding of severe accident phenomena. Few months ago, the Phebus community was happy to welcome representatives of a large number of organisations from the following new European countries: the Czech republic, Hungary, Lithuania, Slovakia, Slovenia and also from Bulgaria and Romania. (author)
Scoping Analysis of Source Term and Functional Containment Attenuation Factors
Energy Technology Data Exchange (ETDEWEB)
Pete Lowry
2012-10-01
In order to meet future regulatory requirements, the Next Generation Nuclear Plant (NGNP) Project must fully establish and validate the mechanistic modular high temperature gas-cooled reactor (HTGR) source term. This is not possible at this stage in the project, as significant uncertainties in the final design remain unresolved. In the interim, however, there is a need to establish an approximate characterization of the source term. The NGNP team developed a simplified parametric model to establish mechanistic source term estimates for a set of proposed HTGR configurations.
Scoping Analysis of Source Term and Functional Containment Attenuation Factors
Energy Technology Data Exchange (ETDEWEB)
Pete Lowry
2012-02-01
In order to meet future regulatory requirements, the Next Generation Nuclear Plant (NGNP) Project must fully establish and validate the mechanistic modular high temperature gas-cooled reactor (HTGR) source term. This is not possible at this stage in the project, as significant uncertainties in the final design remain unresolved. In the interim, however, there is a need to establish an approximate characterization of the source term. The NGNP team developed a simplified parametric model to establish mechanistic source term estimates for a set of proposed HTGR configurations.
Scoping Analysis of Source Term and Functional Containment Attenuation Factors
Energy Technology Data Exchange (ETDEWEB)
Pete Lowry
2012-01-01
In order to meet future regulatory requirements, the Next Generation Nuclear Plant (NGNP) Project must fully establish and validate the mechanistic modular high temperature gas-cooled reactor (HTGR) source term. This is not possible at this stage in the project, as significant uncertainties in the final design remain unresolved. In the interim, however, there is a need to establish an approximate characterization of the source term. The NGNP team developed a simplified parametric model to establish mechanistic source term estimates for a set of proposed HTGR configurations.
Effect of source term composition on offsite doses
International Nuclear Information System (INIS)
Karahalios, P.; Gardner, R.
1985-01-01
The development of new realistic accident source terms has identified the need to establish a basis for comparing the impact of such source terms. This paper attempts to develop a generalized basis of comparison by investigating contributions to offsite acute whole body doses from each group of radionuclides being released to the atmosphere, using CRAC2. The paper also investigates the effect of important parameters such as regional meteorology, sheltering, and duration of release. Finally, the paper focuses on significant changes in the relative importance of individual radionuclide groups in PWR2, SST1, and a revision of the Stone and Webster proposed interim source term
Energy Technology Data Exchange (ETDEWEB)
Sandoval V, S.; Mendoza E, P. R.; Gonzalez C, J. M.; Cecenas F, M. [Instituto Nacional de Electricidad y Energias Limpias, Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico); Tijerina S, F., E-mail: francisco.tijerina@cfe.gob.mx [CFE, Central Nucleoelectrica Laguna Verde, Carretera Federal Cardel-Nautla Km 42.5, 91476 Municipio Alto Lucero, Veracruz (Mexico)
2016-09-15
In response to the Fukushima Daiichi nuclear power plant accident, the NRC conducted an analysis and issued recommendations to improve the safety of the nuclear reactors. These include strengthening and integrating emergency response capabilities and emphasizing periodic staff training, the performance of simulation exercises. As a tool to observe these recommendations, the Graphic Console was developed for Analysis of Severe Accidents, Visualization of OEs, NAEs and calculation of the source term for nuclear power plant of Laguna Verde (NPP-LV ; CoGrAAS). The CoGrAAS is a computer system that displays in an integrated, graphic and dynamic way the information of a catalog of previously simulated accident scenarios. Has core mimics, vessel, primary containment and safety systems, trend graph of thermodynamic and radiological variables and the emergency procedures (OEs), chronological list of events, windows with detailed information for the dry-well, among others. The use of CoGrAAS allows that staff to understand and become familiar with the thermo-hydraulic progression of actual scenarios that exceed the design basis including those with core damage as severe accidents. The system enables personnel to develop an integral vision of the scenarios during the exercises and drills by observing and analyzing the evolution of the main reactor, core and primary containment variables, the response of emergency systems and the influence of that progression on OEs and the emergency action levels (NAEs). The CoGrAAS allows o observe the radiological variables and obtain the source term, to make the projection of doses, at any time within the scenario evolution. Thus, not only can the phenomenology of severe accidents be analyzed and understood, it is also possible to exercise, verify and evaluate the performance of critical tasks in the application of procedures, guidelines and emergency management plans. (Author)
Development of source term PIRT of Fukushima Daiichi NPPs accident
International Nuclear Information System (INIS)
Suehiro, S.; Okamoto, K.
2017-01-01
The severe accident evaluation committee of AESJ (Atomic Energy Society of Japan) developed the thermal hydraulic PIRT (Phenomena Identification and Ranking Table) and the source term PIRT based on findings during the Fukushima Daiichi NPPs accident. These PIRTs aimed to explore the debris distribution and the current condition in the NPPs with high accuracy and to extract higher priority from the aspect of the sophistication of the analytical technology to predict the severe accident phenomena by the code. The source term PIRT was divided into 3 phases for the time domain and 9 categories for the spatial domain. The 68 phenomena were extracted and the importance from viewpoint of the source term was ranked through brainstorming and discussion. This paper describes the developed source term PIRT list and summarized the high ranked phenomena in each phase. (author)
Magnox fuel inventories. Experiment and calculation using a point source model
International Nuclear Information System (INIS)
Nair, S.
1978-08-01
The results of calculations of Magnox fuel inventories using the point source code RICE and associated Magnox reactor data set have been compared with experimental measurements for the actinide isotopes 234 , 235 , 236 , 238 U, 238 , 239 , 240 , 241 , 242 Pu, 241 , 243 Am and 242 , 244 Cm and the fission product isotopes 142 , 143 , 144 , 145 , 146 , 150 Nd, 95 Zr, 134 , 137 Cs, 144 Ce and daughter 144 Pr produced in four samples of spent Magnox fuel spanning the burnup range 3000 to 9000 MWd/Te. The neutron emissions from a further two samples were also measured and compared with RICE predictions. The results of the comparison were such as to justify the use of the code RICE for providing source terms for environmental impact studies, for the isotopes considered in the present work. (author)
Sound source reconstruction using inverse boundary element calculations
DEFF Research Database (Denmark)
Schuhmacher, Andreas; Hald, Jørgen; Rasmussen, Karsten Bo
2003-01-01
Whereas standard boundary element calculations focus on the forward problem of computing the radiated acoustic field from a vibrating structure, the aim in this work is to reverse the process, i.e., to determine vibration from acoustic field data. This inverse problem is brought on a form suited ...... it is demonstrated that the L-curve criterion is robust with respect to the errors in a real measurement situation. In particular, it is shown that the L-curve criterion is superior to the more conventional generalized cross-validation (GCV) approach for the present tire noise studies....
Bayesian source term determination with unknown covariance of measurements
Belal, Alkomiet; Tichý, Ondřej; Šmídl, Václav
2017-04-01
Determination of a source term of release of a hazardous material into the atmosphere is a very important task for emergency response. We are concerned with the problem of estimation of the source term in the conventional linear inverse problem, y = Mx, where the relationship between the vector of observations y is described using the source-receptor-sensitivity (SRS) matrix M and the unknown source term x. Since the system is typically ill-conditioned, the problem is recast as an optimization problem minR,B(y - Mx)TR-1(y - Mx) + xTB-1x. The first term minimizes the error of the measurements with covariance matrix R, and the second term is a regularization of the source term. There are different types of regularization arising for different choices of matrices R and B, for example, Tikhonov regularization assumes covariance matrix B as the identity matrix multiplied by scalar parameter. In this contribution, we adopt a Bayesian approach to make inference on the unknown source term x as well as unknown R and B. We assume prior on x to be a Gaussian with zero mean and unknown diagonal covariance matrix B. The covariance matrix of the likelihood R is also unknown. We consider two potential choices of the structure of the matrix R. First is the diagonal matrix and the second is a locally correlated structure using information on topology of the measuring network. Since the inference of the model is intractable, iterative variational Bayes algorithm is used for simultaneous estimation of all model parameters. The practical usefulness of our contribution is demonstrated on an application of the resulting algorithm to real data from the European Tracer Experiment (ETEX). This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-28477/2014 Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI).
International Nuclear Information System (INIS)
Ozgener, B.; Azgener, H.A.
1991-01-01
In finite element formulations for the solution of the within-group neutron diffusion equation, two different treatments are possible for the group source term: the consistent source approximation (CSA) and the lumped source approximation (LSA). CSA results in intra-group scattering and fission matrices which have the same nondiagonal structure as the global coefficient matrix. This situation might be regarded as a disadvantage, compared to the conventional (i.e. finite difference) methods where the intra-group scattering and fission matrices are diagonal. To overcome this disadvantage, LSA could be used to diagonalize these matrices. LSA is akin to the lumped mass approximation of continuum mechanics. We concentrate on two different aspects of the source approximations. Although it has been reported that LSA does not modify the asymptotic h 2 convergence behaviour for linear elements, the effect of LSA on convergence of higher degree elements has not been investigated. Thus, we would be interested in determining, p, the asymptotic order of convergence, in: Δk |k eff (analytical) -k eff (finite element)| = Ch p (1) for finite element approximations of varying degree (N) with both of the source approximations. Since (1) is valid in the asymptotic limit, we must use ultra-fine meshes and quadruple precision arithmetic. For our order of convergence study, we used infinite cylindrical geometry with azimuthal symmetry. Hence, the effects of singularities remain uninvestigated. The second aspect we dwell on is the performance of LSA in bilinear 3-D finite element calculations, compared to CSA. LSA has been used quite extensively in 1- and 2-D even-parity transport and diffusion calculations. In this work, we will try to assess the relative merits of LSA and CSA in 3-D problems. (author)
Using Bayesian Belief Network (BBN) modelling for Rapid Source Term Prediction. RASTEP Phase 1
International Nuclear Information System (INIS)
Knochenhauer, M.; Swaling, V.H.; Alfheim, P.
2012-09-01
The project is connected to the development of RASTEP, a computerized source term prediction tool aimed at providing a basis for improving off-site emergency management. RASTEP uses Bayesian belief networks (BBN) to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, timing, and pathway of released radio-nuclides). The output is a set of possible source terms with associated probabilities. In the NKS project, a number of complex issues associated with the integration of probabilistic and deterministic analyses are addressed. This includes issues related to the method for estimating source terms, signal validation, and sensitivity analysis. One major task within Phase 1 of the project addressed the problem of how to make the source term module flexible enough to give reliable and valid output throughout the accident scenario. Of the alternatives evaluated, it is recommended that RASTEP is connected to a fast running source term prediction code, e.g., MARS, with a possibility of updating source terms based on real-time observations. (Author)
Using Bayesian Belief Network (BBN) modelling for Rapid Source Term Prediction. RASTEP Phase 1
Energy Technology Data Exchange (ETDEWEB)
Knochenhauer, M.; Swaling, V.H.; Alfheim, P. [Scandpower AB, Sundbyberg (Sweden)
2012-09-15
The project is connected to the development of RASTEP, a computerized source term prediction tool aimed at providing a basis for improving off-site emergency management. RASTEP uses Bayesian belief networks (BBN) to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, timing, and pathway of released radio-nuclides). The output is a set of possible source terms with associated probabilities. In the NKS project, a number of complex issues associated with the integration of probabilistic and deterministic analyses are addressed. This includes issues related to the method for estimating source terms, signal validation, and sensitivity analysis. One major task within Phase 1 of the project addressed the problem of how to make the source term module flexible enough to give reliable and valid output throughout the accident scenario. Of the alternatives evaluated, it is recommended that RASTEP is connected to a fast running source term prediction code, e.g., MARS, with a possibility of updating source terms based on real-time observations. (Author)
CALCULATION OF LONG-TERM FILTRATION IN A POROUS MEDIUM
Directory of Open Access Journals (Sweden)
Ludmila I. Kuzmina
2018-03-01
Full Text Available he filtration problem in a porous medium is an important part of underground hydromechanics. Filtration of suspensions and colloids determines the processes of strengthening the soil and creating waterproof walls in the ground while building the foundations of buildings and underground structures. It is assumed that the formation of a deposit is dominated by the size-exclusion mechanism of pore blocking: solid particles pass freely through large pores and get stuck at the inlet of pores smaller than the diameter of the particles. A one-dimensional mathematical model for the filtration of a monodisperse suspension includes the equation for the mass balance of suspended and retained particles and the kinetic equation for the growth of the deposit. For the blocking filtration coefficient with a double root, the exact solution is given implicitly. The asymptotics of the filtration problem is constructed for large time. The numerical calculation of the problem is carried out by the finite differences method. It is shown that asymptotic approximations rapidly converge to a solution with the increase of the expansion order.
Reassessment of the technical bases for estimating source terms. Draft report for comment
International Nuclear Information System (INIS)
Silberberg, M.; Mitchell, J.A.; Meyer, R.O.; Pasedag, W.F.; Ryder, C.P.; Peabody, C.A.; Jankowski, M.W.
1985-07-01
NUREG-0956 describes the NRC staff and contractor efforts to reassess and update the agency's analytical procedures for estimating accident source terms for nuclear power plants. The effort included development of a new source term analytical procedure - a set of computer codes - that is intended to replace the methodology of the Reactor Safety Study (WASH-1400) and to be used in reassessing the use of TID-14844 assumptions (10 CFR 100). NUREG-0956 describes the development of these codes, the demonstration of the codes to calculate source terms for specific cases, the peer review of this work, some perspectives on the overall impact of new source terms on plant risks, the plans for related research projects, and the conclusions and recommendations resulting from the effort
Energy Technology Data Exchange (ETDEWEB)
Levine, S.; Kaiser, G. D.; Arcieri, W. C.; Firstenberg, H.; Fulford, P. J.; Lam, P. S.; Ritzman, R. L.; Schmidt, E. R.
1982-03-01
The purpose of this document is to assess the state of knowledge and expert opinions that exist about fission product source terms from potential nuclear power plant accidents. This is so that recommendations can be made for research and analyses which have the potential to reduce the uncertainties in these estimated source terms and to derive improved methods for predicting their magnitudes. The main reasons for writing this report are to indicate the major uncertainties involved in defining realistic source terms that could arise from severe reactor accidents, to determine which factors would have the most significant impact on public risks and emergency planning, and to suggest research and analyses that could result in the reduction of these uncertainties. Source terms used in the conventional consequence calculations in the licensing process are not explicitly addressed.
Utility view of the source term and air cleaning
International Nuclear Information System (INIS)
Littlefield, P.S.
1985-01-01
The utility view of the source term and air cleaning is discussed. The source term is made up of: (1) noble gases, which there has been a tendency to ignore in the past because it was thought there was nothing that could be done with them anyway, (2) the halogens, which have been dealt with in Air Cleaning Conferences in the past in terms of charcoal and other systems for removing them, and (3) the solid components of the source term which particulate filters are designed to handle. Air cleaning systems consist of filters, adsorbers, containment sprays, suppression pools in boiling water reactors and ice beds in ice condenser-equipped plants. The feasibility and cost of air cleaning systems are discussed
Rivard, Mark J; Davis, Stephen D; DeWerd, Larry A; Rusch, Thomas W; Axelrod, Steve
2006-11-01
A new x-ray source, the model S700 Axxent X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, S700 Source exhibited depth dose behavior similar to low-energy photon-emitting low dose rate sources 125I and l03Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages.
Review of SFR In-Vessel Radiological Source Term Studies
International Nuclear Information System (INIS)
Suk, Soo Dong; Lee, Yong Bum
2008-10-01
An effort has been made in this study to search for and review the literatures in public domain on the studies of the phenomena related to the release of radionuclides and aerosols to the reactor containment of the sodium fast reactor (SFR) plants (i.e., in-vessel source term), made in Japan and Europe including France, Germany and UK over the last few decades. Review work is focused on the experimental programs to investigate the phenomena related to determining the source terms, with a brief review on supporting analytical models and computer programs. In this report, the research programs conducted to investigate the CDA (core disruptive accident) bubble behavior in the sodium pool for determining 'primary' or 'instantaneous' source term are first introduced. The studies performed to determine 'delayed source term' are then described, including the various stages of phenomena and processes: fission product (FP) release from fuel , evaporation release from the surface of the pool, iodine mass transfer from fission gas bubble, FP deposition , and aerosol release from core-concrete interaction. The research programs to investigate the release and transport of FPs and aerosols in the reactor containment (i.e., in-containment source term) are not described in this report
Actinide Source Term Program, position paper. Revision 1
International Nuclear Information System (INIS)
Novak, C.F.; Papenguth, H.W.; Crafts, C.C.; Dhooge, N.J.
1994-01-01
The Actinide Source Term represents the quantity of actinides that could be mobilized within WIPP brines and could migrate with the brines away from the disposal room vicinity. This document presents the various proposed methods for estimating this source term, with a particular focus on defining these methods and evaluating the defensibility of the models for mobile actinide concentrations. The conclusions reached in this document are: the 92 PA open-quotes expert panelclose quotes model for mobile actinide concentrations is not defensible; and, although it is extremely conservative, the open-quotes inventory limitsclose quotes model is the only existing defensible model for the actinide source term. The model effort in progress, open-quotes chemical modeling of mobile actinide concentrationsclose quotes, supported by a laboratory effort that is also in progress, is designed to provide a reasonable description of the system and be scientifically realistic and supplant the open-quotes Inventory limitsclose quotes model
Directional Unfolded Source Term (DUST) for Compton Cameras.
Energy Technology Data Exchange (ETDEWEB)
Mitchell, Dean J.; Mitchell, Dean J.; Horne, Steven M.; O' Brien, Sean; Thoreson, Gregory G
2018-03-01
A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.
Spallation Neutron Source Accident Terms for Environmental Impact Statement Input
Energy Technology Data Exchange (ETDEWEB)
Devore, J.R.; Harrington, R.M.
1998-08-01
This report is about accidents with the potential to release radioactive materials into the environment surrounding the Spallation Neutron Source (SNS). As shown in Chap. 2, the inventories of radioactivity at the SNS are dominated by the target facility. Source terms for a wide range of target facility accidents, from anticipated events to worst-case beyond-design-basis events, are provided in Chaps. 3 and 4. The most important criterion applied to these accident source terms is that they should not underestimate potential release. Therefore, conservative methodology was employed for the release estimates. Although the source terms are very conservative, excessive conservatism has been avoided by basing the releases on physical principles. Since it is envisioned that the SNS facility may eventually (after about 10 years) be expanded and modified to support a 4-MW proton beam operational capability, the source terms estimated in this report are applicable to a 4-MW operating proton beam power unless otherwise specified. This is bounding with regard to the 1-MW facility that will be built and operated initially. See further discussion below in Sect. 1.2.
Flowsheets and source terms for radioactive waste projections
International Nuclear Information System (INIS)
Forsberg, C.W.
1985-03-01
Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF 6 conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables
International Nuclear Information System (INIS)
Fong, C.; Kalyanam, K.M.; Tanaka, M.R.; Sood, S.; Natalizio, A.; Delisle, M.
1995-02-01
The overall objective of the Early Safety and Environmental Characterization Study (ESECS) is to assess the environmental impact of tritium using appropriate assumptions on a hypothetical site for ITER, having the r eference s ite characteristics as proposed by the JCT. The objective of this work under the above subtask 1-1, NID-5a, is to determine environmental source terms (i.e., process source term x containment release fraction) for the fuel cycle and cooling systems. The work is based on inventories and process source terms (i.e., inventory x mobilization fraction), provided by others (under Task NID 3b). The results of this work form the basis for the determination, by others, of the off-site dose (i.e., environmental source term x dose/release ratio). For the determination of the environmental source terms, the TMAP4 code has been utilized (ref 1). This code is approved by ITER for safety assessment. Volume 3 is a compilation of appendices giving detailed results of the study
International Nuclear Information System (INIS)
Fong, C.; Kalyanam, K.M.; Tanaka, M.R.; Sood, S.; Natalizio, A.; Delisle, M.
1995-02-01
The overall objective of the Early Safety and Environmental Characterization Study (ESECS) is to assess the environmental impact of tritium using appropriate assumptions on a hypothetical site for ITER, having the r eference s ite characteristics as proposed by the JCT. The objective of this work under the above subtask 1-1, NID-5a, is to determine environmental source terms (i.e., process source term x containment release fraction) for the fuel cycle and cooling systems. The work is based on inventories and process source terms (i.e., inventory x mobilization fraction), provided by others (under Task NID 3b). The results of this work form the basis for the determination, by others, of the off-site dose (i.e., environmental source term x dose/release ratio). For the determination of the environmental source terms, the TMAP4 code has been utilized (ref 1). This code is approved by ITER for safety assessment. Volume 2 is a compilation of appendices giving detailed results of the study. 5 figs
First and second collision source for mitigating ray effects in discrete ordinate calculations
International Nuclear Information System (INIS)
Gomes, L.T.; Stevens, P.N.
1991-01-01
This work revisits the problem of ray effects in discrete ordinates calculations that frequently occurs in two- and three-dimensional systems which contain isolated sources within a highly absorbing medium. The effectiveness of using a first collision source or a second collision source are analyzed as possible remedies to mitigate this problem. The first collision and second collision sources are generated by three-dimensional Monte Carlo calculations that enables its application to a variety of source configurations, and the results can be coupled to a two- or three-dimensional discrete ordinates transport code. (author)
Calculation of dose for β point and sphere sources in soft tissue
International Nuclear Information System (INIS)
Sun Fuyin; Yuan Shuyu; Tan Jian
1999-01-01
Objective: To compare the results of the distribution of dose rate calculated by three typical methods for point source and sphere source of β nuclide. Methods: Calculating and comparing the distributions of dose rate from 32 P β point and sphere sources in soft tissue calculated by the three methods published in references, [1]. [2] and [3], respectively. Results: For the point source of 3.7 x 10 7 Bq (1mCi), the variations of the calculation results of the three formulas are within 10% if r≤0.35 g/cm 2 , r being the distance from source, and larger than 10% if r > 0.35 g/cm 2 . For the sphere source whose volume is 50 μl and activity is 3.7 x 10 7 Bq(1 mCi), the variations are within 10% if z≤0.15 g/cm 2 , z being the distance from the surface of the sphere source to a point outside the sphere. Conclusion: The agreement of the distributions of the dose rate calculated by the three methods mentioned above for point and sphere β source are good if the distances from point source or the surface of sphere source to the points observed are small, and poor if they are large
Data assimilation and source term estimation during the early phase of a nuclear accident
Energy Technology Data Exchange (ETDEWEB)
Golubenkov, A.; Borodin, R. [SPA Typhoon, Emergency Centre (Russian Federation); Sohier, A.; Rojas Palma, C. [Centre de l`Etude de l`Energie Nucleaire, Mol (Belgium)
1996-02-01
The mathematical/physical base of possible methods to model the source term during an accidental release of radionuclides is discussed. Knowledge of the source term is important in view of optimizing urgent countermeasures to the population. In most cases however, it will be impossible to assess directly the release dynamics. Therefore methods are under development in which the source term is modelled, based on the comparison of off-site monitoring data and model predictions using an atmospheric dispersion model. The degree of agreement between the measured and calculated characteristics of the radioactive contamination of the air and the ground surface is an important criterion in this process. Due to the inherent complexity, some geometrical transformations taking space-time discrepancies between observed and modelled contamination fields are defined before the source term is adapted. This work describes the developed algorithms which are also tested against data from some tracer experiments performed in the past. This method is also used to reconstruct the dynamics of the Chernobyl source term. Finally this report presents a concept of software to reconstruct a multi-isotopic source term in real-time.
Data assimilation and source term estimation during the early phase of a nuclear accident
International Nuclear Information System (INIS)
Golubenkov, A.; Borodin, R.; Sohier, A.; Rojas Palma, C.
1996-02-01
The mathematical/physical base of possible methods to model the source term during an accidental release of radionuclides is discussed. Knowledge of the source term is important in view of optimizing urgent countermeasures to the population. In most cases however, it will be impossible to assess directly the release dynamics. Therefore methods are under development in which the source term is modelled, based on the comparison of off-site monitoring data and model predictions using an atmospheric dispersion model. The degree of agreement between the measured and calculated characteristics of the radioactive contamination of the air and the ground surface is an important criterion in this process. Due to the inherent complexity, some geometrical transformations taking space-time discrepancies between observed and modelled contamination fields are defined before the source term is adapted. This work describes the developed algorithms which are also tested against data from some tracer experiments performed in the past. This method is also used to reconstruct the dynamics of the Chernobyl source term. Finally this report presents a concept of software to reconstruct a multi-isotopic source term in real-time
The calculation and experiment verification of geometry factors of disk sources and detectors
International Nuclear Information System (INIS)
Shi Zhixia; Minowa, Y.
1993-01-01
In alpha counting the efficiency of counting system is most frequently determined from the counter response to a calibrated source. Whenever this procedure is used, however, question invariably arise as to the integrity of the standard source, or indeed the validity of the primary calibration. As a check, therefore, it is often helped to be able to calculate the disintegration rate from counting rate data. The conclusion are: 1. If the source is thin enough the error E is generally less than 5%. It is acceptable in routine measurement. When the standard source lacks for experiment we can use the geometry factor calculated instead of measured efficiency. 2. The geometry factor calculated can be used to correct the counter system, study the effect of each parameters and identify those parameters needing careful control. 3. The method of overlapping area of the source and the projection of the detector is very believable, simple and convenient for calculating geometry. (5 tabs.)
STACE: Source Term Analyses for Containment Evaluations of transport casks
International Nuclear Information System (INIS)
Seager, K.D.; Gianoulakis, S.E.; Barrett, P.R.; Rashid, Y.R.; Reardon, P.C.
1992-01-01
Following the guidance of ANSI N14.5, the STACE methodology provides a technically defensible means for estimating maximum permissible leakage rates. These containment criteria attempt to reflect the true radiological hazard by performing a detailed examination of the spent fuel, CRUD, and residual contamination contributions to the releasable source term. The evaluation of the spent fuel contribution to the source term has been modeled fairly accurately using the STACE methodology. The structural model predicts the cask drop load history, the mechanical response of the fuel assembly, and the probability of cladding breach. These data are then used to predict the amount of fission gas, volatile species, and fuel fines that are releasable from the cask. There are some areas where data are sparse or lacking (e.g., the quantity and size distribution of fuel rod breaches) in which experimental validation is planned. The CRUD spallation fraction is the major area where no quantitative data has been found; therefore, this also requires experimental validation. In the interim, STACE conservatively assumes a 100% spallation fraction for computing the releasable activity. The source term methodology also conservatively assumes that there is 1 Ci of residual contamination available for release in the transport cask. However, residual contamination is still by far the smallest contributor to the source term activity
Fission product source term research at Oak Ridge National Laboratory
International Nuclear Information System (INIS)
Malinauskas, A.P.
1985-01-01
The purpose of this work is to describe some of the research being performed at ORNL in support of the effort to describe, as realistically as possible, fission product source terms for nuclear reactor accidents. In order to make this presentation manageable, only those studies directly concerned with fission product behavior, as opposed to thermal hydraulics, accident sequence progression, etc., will be discussed
Energy Technology Data Exchange (ETDEWEB)
Strindehag, O; Tollander, B
1968-08-15
Calculated values of the absolute total detection efficiencies of cylindrical scintillation crystals viewing spherical sources of various sizes are presented. The calculation is carried out for 2 x 2 inch and 3 x 3 inch Nal(Tl) crystals and for sources which have the radii 1/4, 1/2, 3/4 and 1 times the crystal radius. Source-detector distances of 5-20 cm and gamma energies in the range 0.1 - 5 MeV are considered. The correction factor for absorption in the sample container wall and in the detector housing is derived and calculated for a practical case.
EDF source term reduction project main outcomes and further developments
International Nuclear Information System (INIS)
Ranchoux, Gilles; Bonnefon, Julien; Benfarah, Moez; Wintergerst Matthieu; Gressier, Frederic; Leclercq, Stephanie
2012-09-01
The dose reduction is a strategic purpose for EDF in link with the stakes of, nuclear acceptability, respect of regulation and productivity gains. This consists not only in improving the reactor shutdown organization (time spent in control area, biological shielding,...) but also in improving the radiological state of the unit and the efficiency of the source term reduction operations. Since 2003, EDF has been running an innovative project called 'Source Term Reduction' federating the different EDF research and engineering centers in order to: - participate to the long term view about Radiological Protection issues (international feedback analyses), - develop contamination prediction tools (OSCAR software) suitable for the industrial needs (operating units and EPR design), - develop scientific models useful for the understanding of contamination mechanisms to support the strategic decision processes, - carry on with updating and analyzing of contamination measurements feedback in corrosion products (EMECC and CZT campaigns), - carry on with the operational support at short or middle term by optimizing startup and shutdown processes, pre-oxidation or and by improving purification efficiency or material characteristics. This paper will show in a first part the main 2011 results in occupational exposure (collective and individual dose, RCS index...). In a second part, an overview of the main EDF outcomes of the last 3 years in the field of source term reduction will be presented. Future developments extended to contamination issues in EDF NPPs will be also pointed out in this paper. (authors)
Energy Technology Data Exchange (ETDEWEB)
Selim, Y S; Abbas, M I; Fawzy, M A [Physics Department, Faculty of Science, Alexandria University, Aleaxndria (Egypt)
1997-12-31
Total efficiency of clad right circular cylindrical Nal(TI) scintillation detector from a coaxial isotropic radiating circular disk source has been calculated by the of rigid mathematical expressions. Results were tabulated for various gamma energies. 2 figs., 5 tabs.
Energy Technology Data Exchange (ETDEWEB)
Shapiro, A; Lin, B I [Cincinnati Univ., Ohio (USA). Dept. of Chemical and Nuclear Engineering; Windham, J P; Kereiakes, J G
1976-07-01
..gamma.. flux density and dose rate distributions have been calculated about implantable californium-252 sources for an infinite tissue medium. Point source flux densities as a function of energy and position were obtained from a discrete-ordinates calculation, and the flux densities were multiplied by their corresponding kerma factors and added to obtain point source dose rates. The point dose rates were integrated over the line source to obtain line dose rates. Container attenuation was accounted for by evaluating the point dose rate as a function of platinum thickness. Both primary and secondary flux densities and dose rates are presented. The agreement with an independent Monte Carlo calculation was excellent. The data presented should be useful for the design of new source configurations.
Advanced Reactor PSA Methodologies for System Reliability Analysis and Source Term Assessment
Energy Technology Data Exchange (ETDEWEB)
Grabaskas, D.; Brunett, A.; Passerini, S.; Grelle, A.; Bucknor, M.
2017-06-26
Beginning in 2015, a project was initiated to update and modernize the probabilistic safety assessment (PSA) of the GE-Hitachi PRISM sodium fast reactor. This project is a collaboration between GE-Hitachi and Argonne National Laboratory (Argonne), and funded in part by the U.S. Department of Energy. Specifically, the role of Argonne is to assess the reliability of passive safety systems, complete a mechanistic source term calculation, and provide component reliability estimates. The assessment of passive system reliability focused on the performance of the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedback mechanisms of the metal fuel core. The mechanistic source term assessment attempted to provide a sequence specific source term evaluation to quantify offsite consequences. Lastly, the reliability assessment focused on components specific to the sodium fast reactor, including electromagnetic pumps, intermediate heat exchangers, the steam generator, and sodium valves and piping.
International Nuclear Information System (INIS)
Rivard, Mark J.; Davis, Stephen D.; DeWerd, Larry A.; Rusch, Thomas W.; Axelrod, Steve
2006-01-01
A new x-ray source, the model S700 Axxent trade mark sign X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, P (5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1 125 I and 103 Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages
A nuclear source term analysis for spacecraft power systems
International Nuclear Information System (INIS)
McCulloch, W.H.
1998-01-01
All US space missions involving on board nuclear material must be approved by the Office of the President. To be approved the mission and the hardware systems must undergo evaluations of the associated nuclear health and safety risk. One part of these evaluations is the characterization of the source terms, i.e., the estimate of the amount, physical form, and location of nuclear material, which might be released into the environment in the event of credible accidents. This paper presents a brief overview of the source term analysis by the Interagency Nuclear Safety Review Panel for the NASA Cassini Space Mission launched in October 1997. Included is a description of the Energy Interaction Model, an innovative approach to the analysis of potential releases from high velocity impacts resulting from launch aborts and reentries
Estimation of Source terms for Emergency Planning and Preparedness
Energy Technology Data Exchange (ETDEWEB)
Yi, Chul Un; Chung, Bag Soon; Ahn, Jae Hyun; Yoon, Duk Ho; Jeong, Chul Young; Lim, Jong Dae [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kang, Sun Gu; Suk, Ho; Park, Sung Kyu; Lim, Hac Kyu; Lee, Kwang Nam [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of)
1997-12-31
In this study the severe accident sequences for each plant of concern, which represent accident sequences with a high core damage frequency and significant accident consequences, were selected based on the results of probabilistic safety assessments and source term and time-histories of various safety parameters under severe accidents. Accidents progression analysis for each selected accident sequence was performed by MAAP code. It was determined that the measured values, dose rate and radioisotope concentration, could provide information to the operators on occurrence and timing of core damage, reactor vessel failure, and containment failure during severe accidents. Radioactive concentration in the containment atmosphere, which may be measured by PASS, was estimated. Radioisotope concentration in emergency planning, evaluation of source term behavior in the containment, estimation of core damage degree, analysis of severe accident phenomena, core damage timing, and the amount of radioisotope released to the environment. (author). 50 refs., 60 figs.
Realistic minimum accident source terms - Evaluation, application, and risk acceptance
International Nuclear Information System (INIS)
Angelo, P. L.
2009-01-01
The evaluation, application, and risk acceptance for realistic minimum accident source terms can represent a complex and arduous undertaking. This effort poses a very high impact to design, construction cost, operations and maintenance, and integrated safety over the expected facility lifetime. At the 2005 Nuclear Criticality Safety Division (NCSD) Meeting in Knoxville Tenn., two papers were presented mat summarized the Y-12 effort that reduced the number of criticality accident alarm system (CAAS) detectors originally designed for the new Highly Enriched Uranium Materials Facility (HEUMF) from 258 to an eventual as-built number of 60. Part of that effort relied on determining a realistic minimum accident source term specific to the facility. Since that time, the rationale for an alternate minimum accident has been strengthened by an evaluation process that incorporates realism. A recent update to the HEUMF CAAS technical basis highlights the concepts presented here. (authors)
Considerations about source term now used aiming to emergency planning
International Nuclear Information System (INIS)
Austregesilo Filho, H.
1987-01-01
The applicability of source terms, in parametric studies for improving external emergengy plan for Angra-I reactor is presented. The source term is defined as, the quantity and radioactive material disposable for releasing to the environment in case of austere accident in a nuclear power plant. The following hypothesis: occuring accident, 100% of the noble gases, 50% of halogens and 1% of solid fission products contained into the reactor core, are released immediately toward the containment building; the radioactivity releasing to the environment is done at a constant rate of 0.1% in mass per day; the actuation of mitigated systems of radioactivity releasing, such as, spray of container or system of air recirculation by filters, is not considered; and the releasing is done at soil level. (M.C.K.) [pt
PFLOTRAN-RepoTREND Source Term Comparison Summary.
Energy Technology Data Exchange (ETDEWEB)
Frederick, Jennifer M
2018-03-01
Code inter-comparison studies are useful exercises to verify and benchmark independently developed software to ensure proper function, especially when the software is used to model high-consequence systems which cannot be physically tested in a fully representative environment. This summary describes the results of the first portion of the code inter-comparison between PFLOTRAN and RepoTREND, which compares the radionuclide source term used in a typical performance assessment.
Fission product source terms and engineered safety features
International Nuclear Information System (INIS)
Malinauskas, A.P.
1984-01-01
The author states that new, technically defensible, methodologies to establish realistic source term values for nuclear reactor accidents will soon be available. Although these methodologies will undoubtedly find widespread use in the development of accident response procedures, the author states that it is less clear that the industry is preparing to employ the newer results to develop a more rational approach to strategies for the mitigation of fission product releases. Questions concerning the performance of existing engineered safety systems are reviewed
Basic repository source term and data sheet report: Lavender Canyon
International Nuclear Information System (INIS)
1988-01-01
This report is one of a series describing studies undertaken in support of the US Department of Energy Civilian Radioactive Waste Management (CRWM) Program. This study contains the derivation of values for environmental source terms and resources consumed for a CRWM repository. Estimates include heavy construction equipment; support equipment; shaft-sinking equipment; transportation equipment; and consumption of fuel, water, electricity, and natural gas. Data are presented for construction and operation at an assumed site in Lavender Canyon, Utah. 3 refs; 6 tabs
Basic repository source term and data sheet report: Davis Canyon
International Nuclear Information System (INIS)
1988-01-01
This report is one of series describing studies undertaken in support of the US Department of Energy Civilian Radioactive Waste Management (CRWM) Program. This study contains the derivation of values for environmental source terms and resources consumed for a CRWM repository. Estimates include heavy construction equipment; support equipment; shaft-sinking equipment; transportation equipment; and consumption of fuel, water electricity, and natural gas. Data are presented for construction and operation at an assumed site in Davis Canyon, Utah. 6 tabs
Source terms for airborne radioactivity arising from uranium mill wastes
International Nuclear Information System (INIS)
O'Riordan, M.C.; Downing, A.L.
1978-01-01
One of the problems in assessing the radiological impact of uranium milling is to determine the rates of release to the air of material from the various sources of radioactivity. Such source terms are required for modelling the transport of radioactive material in the atmosphere. Activity arises from various point and area sources in the mill itself and from the mill tailings. The state of the tailings changes in time from slurry to solid. A layer of water may be maintained over the solids during the life of the mine, and the tailings may be covered with inert material on abandonment. Releases may be both gaseous and particulate. This paper indicates ways in which radon emanation and the suspension of long-lived particulate activity might be quantified, and areas requiring further exploration are identified
Using Bayesian Belief Network (BBN) modelling for rapid source term prediction. Final report
International Nuclear Information System (INIS)
Knochenhauer, M.; Swaling, V.H.; Dedda, F.D.; Hansson, F.; Sjoekvist, S.; Sunnegaerd, K.
2013-10-01
The project presented in this report deals with a number of complex issues related to the development of a tool for rapid source term prediction (RASTEP), based on a plant model represented as a Bayesian belief network (BBN) and a source term module which is used for assigning relevant source terms to BBN end states. Thus, RASTEP uses a BBN to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, composition, timing, and release path of released radio-nuclides). The output is a set of possible source terms with associated probabilities. One major issue has been associated with the integration of probabilistic and deterministic analyses are addressed, dealing with the challenge of making the source term determination flexible enough to give reliable and valid output throughout the accident scenario. The potential for connecting RASTEP to a fast running source term prediction code has been explored, as well as alternative ways of improving the deterministic connections of the tool. As part of the investigation, a comparison of two deterministic severe accident analysis codes has been performed. A second important task has been to develop a general method where experts' beliefs can be included in a systematic way when defining the conditional probability tables (CPTs) in the BBN. The proposed method includes expert judgement in a systematic way when defining the CPTs of a BBN. Using this iterative method results in a reliable BBN even though expert judgements, with their associated uncertainties, have been used. It also simplifies verification and validation of the considerable amounts of quantitative data included in a BBN. (Author)
Using Bayesian Belief Network (BBN) modelling for rapid source term prediction. Final report
Energy Technology Data Exchange (ETDEWEB)
Knochenhauer, M.; Swaling, V.H.; Dedda, F.D.; Hansson, F.; Sjoekvist, S.; Sunnegaerd, K. [Lloyd' s Register Consulting AB, Sundbyberg (Sweden)
2013-10-15
The project presented in this report deals with a number of complex issues related to the development of a tool for rapid source term prediction (RASTEP), based on a plant model represented as a Bayesian belief network (BBN) and a source term module which is used for assigning relevant source terms to BBN end states. Thus, RASTEP uses a BBN to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, composition, timing, and release path of released radio-nuclides). The output is a set of possible source terms with associated probabilities. One major issue has been associated with the integration of probabilistic and deterministic analyses are addressed, dealing with the challenge of making the source term determination flexible enough to give reliable and valid output throughout the accident scenario. The potential for connecting RASTEP to a fast running source term prediction code has been explored, as well as alternative ways of improving the deterministic connections of the tool. As part of the investigation, a comparison of two deterministic severe accident analysis codes has been performed. A second important task has been to develop a general method where experts' beliefs can be included in a systematic way when defining the conditional probability tables (CPTs) in the BBN. The proposed method includes expert judgement in a systematic way when defining the CPTs of a BBN. Using this iterative method results in a reliable BBN even though expert judgements, with their associated uncertainties, have been used. It also simplifies verification and validation of the considerable amounts of quantitative data included in a BBN. (Author)
FreeSASA: An open source C library for solvent accessible surface area calculations.
Mitternacht, Simon
2016-01-01
Calculating solvent accessible surface areas (SASA) is a run-of-the-mill calculation in structural biology. Although there are many programs available for this calculation, there are no free-standing, open-source tools designed for easy tool-chain integration. FreeSASA is an open source C library for SASA calculations that provides both command-line and Python interfaces in addition to its C API. The library implements both Lee and Richards' and Shrake and Rupley's approximations, and is highly configurable to allow the user to control molecular parameters, accuracy and output granularity. It only depends on standard C libraries and should therefore be easy to compile and install on any platform. The library is well-documented, stable and efficient. The command-line interface can easily replace closed source legacy programs, with comparable or better accuracy and speed, and with some added functionality.
Energy Technology Data Exchange (ETDEWEB)
Kays, W M; Hossaini-Hashemi, F [Stanford Univ., Palo Alto, CA (USA). Dept. of Mechanical Engineering; Busch, J S [Kaiser Engineers, Oakland, CA (USA)
1982-02-01
A linearized transient thermal conduction model was developed to economically determine media temperatures in geologic repositories for nuclear wastes. Individual canisters containing either high-level waste or spent fuel assemblies are represented as finite-length line sources in a continuous medium. The combined effects of multiple canisters in a representative storage pattern can be established in the medium at selected point of interest by superposition of the temperature rises calculated for each canister. A mathematical solution of the calculation for each separate source is given in this article, permitting a slow hand calculation. The full report, ONWI-94, contains the details of the computer code FLLSSM and its use, yielding the total solution in one computer output.
Energy Technology Data Exchange (ETDEWEB)
Aguiar, Julio C. [Autoridad Regulatoria Nuclear, Laboratorio de Espectrometria Gamma-CTBTO, Av. Del Libertador 8250, C1429BNP Buenos Aires (Argentina)], E-mail: jaguiar@sede.arn.gov.ar
2008-08-15
An analytical expression for the so-called full-energy peak efficiency {epsilon}(E) for cylindrical source with perpendicular axis to an HPGe detector is derived, using point-source measurements. The formula covers different measuring distances, matrix compositions, densities and gamma-ray energies; the only assumption is that the radioactivity is homogeneously distributed within the source. The term for the photon self-attenuation is included in the calculation. Measurements were made using three different sized cylindrical sources of {sup 241}Am, {sup 57}Co, {sup 137}Cs, {sup 54}Mn, and {sup 60}Co with corresponding peaks of 59.5, 122, 662, 835, 1173, and 1332 keV, respectively, and one measurement of radioactive waste drum for 662, 1173, and 1332 keV.
Modelling and simulation the radioactive source-term of fission products in PWR type reactors
International Nuclear Information System (INIS)
Porfirio, Rogilson Nazare da Silva
1996-01-01
The source-term was defined with the purpose the quantify all radioactive nuclides released the nuclear reactor in the case of accidents. Nowadays the source-term is limited to the coolant of the primary circuit of reactors and may be measured or modelled with computer coders such as the TFP developed in this work. The calculational process is based on the linear chain techniques used in the CINDER-2 code. The TFP code considers forms of fission products release from the fuel pellet: Recoil, Knockout and Migration. The release from the gap to the coolant fluid is determined from the ratio between activity measured in the coolant and calculated activity in the gap. Considered the operational data of SURRY-1 reactor, the TFP code was run to obtain the source=term of this reactor. From the measured activities it was verified the reliability level of the model and the employed computational logic. The accuracy of the calculated quantities were compared to the measured data was considered satisfactory. (author)
Source term analysis for a criticality accident in metal production line glove boxes
International Nuclear Information System (INIS)
Nguyen, D.H.
1991-06-01
A recent development in criticality accident analysis is the deterministic calculations of the transport of fission products and actinides through the barriers of the physical facility. The knowledge of the redistribution of the materials inside the facility will help determine the reentry and clean-up procedures. The amount of radioactive materials released to the environment is the source term for dispersion calculations. We have used an integrated computer model to determine the release of fission products to the environment from a hypothetical criticality event in a glove box of the metal production line (MPL) at the Lawrence Livermore National Laboratory (LLNL)
Monte Carlo calculations and measurements of spectra from a C-14 source
International Nuclear Information System (INIS)
Borg, J.
1996-05-01
To perform Monte Carlo simulations it is necessary to model the physical geometries i.e., the source and detector geometry. However, a complete model of the physical geometry may not be possible or may result in a very low calculation efficiency. Substituting the complete source model with a simplified model is one way of increasing the calculation efficiency. In this report, the study of a simplified model of a 14 C source is described. Results of Monte Carlo calculations with the EGS4 code are compared with measurements with a β spectrometer consisting of two coaxial Si detectors, and a low-energy photon spectrometer being a Si(Li) detector. Calculations and measurements show generally good agreement. However, the difference (a factor of 4) between calculated and measured response to electrons for the Si(Li) detector indicates that this detector has a dead layer about 12 μm thick instead of 0.2 μm as reported by the manufacturer. The efficiency of the calculations is increased by a factor of 10, when the complete source model is replaced by the simplified source model. This reduces the calculation time of detector responses to a few days instead of weeks on the NRC SGI R4400 computers. Good agreement between measured and calculated data also verifies that the MC code EGS4 is a reliable and useful tool for simulating coupled electron and photon transport for particles with energies down to a few keV. (au) 3 tabs., 15 ills., 11 refs
Energy Technology Data Exchange (ETDEWEB)
Rusz, Ján, E-mail: jan.rusz@fysik.uu.se
2017-06-15
Highlights: • New algorithm for calculating double differential scattering cross-section. • Shown good convergence properties. • Outperforms older MATS algorithm, particularly in zone axis calculations. - Abstract: We present a new algorithm for calculating inelastic scattering cross-section for fast electrons. Compared to the previous Modified Automatic Term Selection (MATS) algorithm (Rusz et al. [18]), it has far better convergence properties in zone axis calculations and it allows to identify contributions of individual atoms. One can think of it as a blend of MATS algorithm and a method described by Weickenmeier and Kohl [10].
A systematic examination of a random sampling strategy for source apportionment calculations.
Andersson, August
2011-12-15
Estimating the relative contributions from multiple potential sources of a specific component in a mixed environmental matrix is a general challenge in diverse fields such as atmospheric, environmental and earth sciences. Perhaps the most common strategy for tackling such problems is by setting up a system of linear equations for the fractional influence of different sources. Even though an algebraic solution of this approach is possible for the common situation with N+1 sources and N source markers, such methodology introduces a bias, since it is implicitly assumed that the calculated fractions and the corresponding uncertainties are independent of the variability of the source distributions. Here, a random sampling (RS) strategy for accounting for such statistical bias is examined by investigating rationally designed synthetic data sets. This random sampling methodology is found to be robust and accurate with respect to reproducibility and predictability. This method is also compared to a numerical integration solution for a two-source situation where source variability also is included. A general observation from this examination is that the variability of the source profiles not only affects the calculated precision but also the mean/median source contributions. Copyright © 2011 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Kang, M. Y.; Kim, J. H.; Choi, H. D.; Sun, G. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
To calculate the full energy (FE) absorption peak efficiency for arbitrary volume sample, we developed and verified the Effective Solid Angle (ESA) Code. The procedure for semi-empirical determination of the FE efficiency for the arbitrary volume sources and the calculation principles and processes about ESA code is referred to, and the code was validated with a HPGe detector (relative efficiency 32%, n-type) in previous studies. In this study, we use different type and efficiency of HPGe detectors, in order to verify the performance of the ESA code for the various detectors. We calculated the efficiency curve of voluminous source and compared with experimental data. We will carry out additional validation by measurement of various medium, volume and shape of CRM volume sources with detector of different efficiency and type. And we will reflect the effect of the dead layer of p-type HPGe detector and coincidence summing correction technique in near future.
International Nuclear Information System (INIS)
Loureiro, Cesar Augusto Domingues; Santos, Adimir dos
2009-01-01
In reactor physics tests which are performed at the startup after refueling the commercial PWRs, it is important to monitor subcriticality continuously during criticality approach. Reactivity measurements by the inverse kinetics method are widely used during the operation of a nuclear reactor and it is possible to perform an online reactivity measurement based on the point reactor kinetics equations. This technique is successful applied at sufficiently high power level or to a core without an external neutron source where the neutron source term in point reactor kinetics equations may be neglected. For operation at low power levels, the contribution of the neutron source must be taken into account and this implies the knowledge of a quantity proportional to the source strength, and then it should be determined. Some experiments have been performed in the IPEN/MB-01 Research Reactor for the determination of the Source Term, using the Least Square Inverse Kinetics Method (LSIKM). A digital reactivity meter which neglects the source term is used to calculate the reactivity and then the source term can be determined by the LSIKM. After determining the source term, its value can be added to the algorithm and the reactivity can be determined again, considering the source term. The new digital reactivity meter can be used now to monitor reactivity during the criticality approach and the measured value for the reactivity is more precise than the meter which neglects the source term. (author)
Measurement and calculation of radiation sources in the primary cooling system of JOYO
International Nuclear Information System (INIS)
Suzuki, S.; Iizawa, K.; Ohtani, N.; Kobayashi, T.; Horie, J.; Handa, H.
1987-01-01
Production and transfer of radiation sources in the primary cooling system are important consideration in the LMFBR plant from the viewpoint of radiation protection and shielding design. These items were evaluated with calculations and/or measurements in the Japanese experimental fast reactor JOYO. In this study, calculations were made with the DOT3.5 0 two-dimensional discrete ordinate transport code to determine the neutron flux and production rate distributions of radiation sources in the reactor vessel. Using the DOT results, the behavior in primary coolant sodium of the CP (radioactive corrosion products) which were released from the reactor structural material was also calculationally analyzed with the PSYCHE code developed by PNC. These analytical results were compared with the measured results to get the verification of analysis methods and to estimate the accuracy of calculations
International Nuclear Information System (INIS)
Gritzay, O.; Kalchenko, O.; Klimova, N.; Razbudey, V.; Sanzhur, A.
2006-01-01
Calculation results of an epithermal neutron source which can be created at the Kyiv Research Reactor (KRR) by means of placing of specially selected moderators, filters, collimators, and shielding into the 10-th horizontal experimental tube (so-called thermal column) are presented. The general Monte-Carlo radiation transport code MCNP4C [1], the Oak Ridge isotope generation code ORIGEN2 [2] and the NJOY99 [3] nuclear data processing system have been used for these calculations
Linden, P; Dahl, B; Pázsit, I; Por, G
1999-01-01
We have performed laboratory measurements of the neutron flux and its gradient in a static model experiment, similar to a model problem proposed in Pazsit (Ann. Nucl. Energy 24 (1997) 1257). The experimental system consists of a radioactive neutron source located in a water tank. The measurements are performed using a recently developed very small optical fibre detector. The measured values of the flux and its gradient are then used to test the possibility of localising the source. The results show that it is possible to measure the flux on the circumference of a circle and from this calculate the flux gradient vector. Then, by comparison of the measured quantities with corresponding MCNP calculations, both the direction and the distance to the source are found and thus the position of the source can be determined.
Wave resistance calculation method combining Green functions based on Rankine and Kelvin source
Directory of Open Access Journals (Sweden)
LI Jingyu
2017-12-01
Full Text Available [Ojectives] At present, the Boundary Element Method(BEM of wave-making resistance mostly uses a model in which the velocity distribution near the hull is solved first, and the pressure integral is then calculated using the Bernoulli equation. However,the process of this model of wave-making resistance is complex and has low accuracy.[Methods] To address this problem, the present paper deduces a compound method for the quick calculation of ship wave resistance using the Rankine source Green function to solve the hull surface's source density, and combining the Lagally theorem concerning source point force calculation based on the Kelvin source Green function so as to solve the wave resistance. A case for the Wigley model is given.[Results] The results show that in contrast to the thin ship method of the linear wave resistance theorem, this method has higher precision, and in contrast to the method which completely uses the Kelvin source Green function, this method has better computational efficiency.[Conclusions] In general, the algorithm in this paper provides a compromise between precision and efficiency in wave-making resistance calculation.
Energy Technology Data Exchange (ETDEWEB)
Pappas, Charalampos, E-mail: chpappas@ipta.demokritos.gr; Ikonomopoulos, Andreas; Sfetsos, Athanasios; Andronopoulos, Spyros; Varvayanni, Melpomeni; Catsaros, Nicolas
2014-07-01
Highlights: • Source term derivation of postulated accident sequences in a research reactor. • Various containment ventilation scenarios considered for source term calculations. • Source term parametric analysis performed in case of lack of ventilation. • JRODOS employed for dose calculations under eighteen modeled scenarios. • Estimation of radiological consequences during typical and adverse weather scenarios. - Abstract: The estimated source term, dose results and radiological consequences of selected accident sequences in the Greek Research Reactor – 1 are presented and discussed. A systematic approach has been adopted to perform the necessary calculations in accordance with the latest computational developments and IAEA recommendations. Loss-of-coolant, reactivity insertion and fuel channel blockage accident sequences have been selected to derive the associated source terms under three distinct containment ventilation scenarios. Core damage has been conservatively assessed for each accident sequence while the ventilation has been assumed to function within the efficiency limits defined at the Safety Analysis Report. In case of lack of ventilation a parametric analysis is also performed to examine the dependency of the source term on the containment leakage rate. A typical as well as an adverse meteorological scenario have been defined in the JRODOS computational platform in order to predict the effective, lung and thyroid doses within a region defined by a 15 km radius downwind from the reactor building. The radiological consequences of the eighteen scenarios associated with the accident sequences are presented and discussed.
Development of Reference Source Terms for EU-APR1400
Energy Technology Data Exchange (ETDEWEB)
Kim, ByungIl; Lee, Chonghui; Lee, Dongsu; Ko, Heejin; Kang, Sangho [KEPCO Engineering and Construction Co. Inc., Yongin (Korea, Republic of)
2014-05-15
These source terms are developed for the typical U. S. NPP and do not reflect the design characteristics of EU-APR1400 (1,400 MWe PWR) which will be applied for the EUR certification in European countries. The process of developing the RST for EU-APR1400 is to undergo a similar process that NUREG-1465 had gone through when it came out with its proposed source terms. The purpose of this study is to develop the EU-APR1400 design-specific RST complied with the EUR. The Large LOCA is the reference equence used in the NUREG-1465 evaluation, whereas the EUAPR1400 risk-significant sequences are dominated by small LOCA and non-LOCA sequences. Moreover, when considering the EU-APR1400 has many design features to mitigate the consequences of severe accident phenomena, it is not surprising that the aspects of both release fractions and durations are distinctly different from NUREG-1465. This RST will be continuously updated to reflect to the design features of EU-APR1400, and then, be used as the reference for design purposes such as criteria satisfaction of radioactivity releases, equipment survivability, control room habitability for severe accident, and so on.
Centrifugal Filtration System for Severe Accident Source Term Treatment
Energy Technology Data Exchange (ETDEWEB)
Liu, Shu Chang; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)
2016-05-15
The objective of this paper is to present the conceptual design of a filtration system that can be used to process airborne severe accident source term. Reactor containment may lose its structural integrity due to over-pressurization during a severe accident. This can lead to uncontrolled radioactive releases to the environment. For preventing the dispersion of these uncontrolled radioactive releases to the environment, several ways to capture or mitigate these radioactive source term releases are under investigation at KAIST. Such technologies are based on concepts like a vortex-like air curtain, a chemical spray, and a suction arm. Treatment of the radioactive material captured by these systems would be required, before releasing to environment. For current filtration systems in the nuclear industry, IAEA lists sand, multi-venturi scrubber, high efficiency particulate arresting (HEPA), charcoal and combinations of the above in NS-G-1-10, 4.143. Most if not all of the requirements of the scenario for applying this technology near the containment of an NPP site and the environmental constraints were analyzed for use in the design of the centrifuge filtration system.
Atucha-I source terms for sequences initiated by transients
International Nuclear Information System (INIS)
Baron, J.; Bastianelli, B.
1997-01-01
The present work is part of an expected source terms study in the Atucha I nuclear power plant during severe accidents. From the accident sequences with a significant probability to produce core damage, those initiated by operational transients have been identified as the most relevant. These sequences have some common characteristics, in the sense that all of them resume in the opening of the primary system safety valves, and leave this path open for the coolant loss. In the case these sequences continue as severe accidents, the same path will be used for the release of the radionuclides, from the core, through the primary system and to the containment. Later in the severe accident sequence, the failure of the pressure vessel will occur, and the corium will fall inside the reactor cavity, interacting with the concrete. During these processes, more radioactive products will be released inside the containment. In the present work the severe accident simulation initiated by a blackout is performed, from the point of view of the phenomenology of the behavior of the radioactive products, as they are transported in the piping, during the core-concrete interactions, and inside the containment buildings until it failure. The final result is the source term into the atmosphere. (author) [es
NRC source term assessment for incident response dose projections
International Nuclear Information System (INIS)
Easley, P.; Pasedag, W.
1984-01-01
The NRC provides advice and assistance to licensees and State and local authorities in responding to accidents. The TACT code supports this function by providing source term projections for two situations during early (15 to 60 minutes) accident response: (1) Core/containment damage is indicated, but there are no measured releases. Quantification of a predicted release permits emergency response before people are exposed. With TACT, response personnel can estimate releases based on fuel and cladding conditions, coolant boundary and containment integrity, and mitigative systems operability. For this type of estimate, TACT is intermediate between default assumptions and time-consuming mechanistic codes. (2) A combination of plant status and limited release data are available. For this situation, iterations between predictions based on known conditions which are compared to measured releases gives reasonable confidence in supplemental source term information otherwise unavailable: nuclide mix, releases not monitored, and trending or abrupt changes. The assumptions and models used in TACT, and examples of its use, are given in this paper
Chernobyl source term, atmospheric dispersion, and dose estimation
International Nuclear Information System (INIS)
Gudiksen, P.H.; Harvey, T.F.; Lange, R.
1988-02-01
The Chernobyl source term available for long-range transport was estimated by integration of radiological measurements with atmospheric dispersion modeling, and by reactor core radionuclide inventory estimation in conjunction with WASH-1400 release fractions associated with specific chemical groups. These analyses indicated that essentially all of the noble gases, 80% of the radioiodines, 40% of the radiocesium, 10% of the tellurium, and about 1% or less of the more refractory elements were released. Atmospheric dispersion modeling of the radioactive cloud over the Northern Hemisphere revealed that the cloud became segmented during the first day, with the lower section heading toward Scandinavia and the uppper part heading in a southeasterly direction with subsequent transport across Asia to Japan, the North Pacific, and the west coast of North America. The inhalation doses due to direct cloud exposure were estimated to exceed 10 mGy near the Chernobyl area, to range between 0.1 and 0.001 mGy within most of Europe, and to be generally less than 0.00001 mGy within the US. The Chernobyl source term was several orders of magnitude greater than those associated with the Windscale and TMI reactor accidents, while the 137 Cs from the Chernobyl event is about 6% of that released by the US and USSR atmospheric nuclear weapon tests. 9 refs., 3 figs., 6 tabs
Analysis of the source term in the Chernobyl-4 accident
International Nuclear Information System (INIS)
Alonso, A.; Lopez Montero, J.V.; Pinedo Garrido, P.
1990-01-01
The report presents the analysis of the Chernobyl accident and of the phenomena with major influence on the source term, including the chemical effects of materials dumped over the reactor, carried out by the Chair of Nuclear Technology at Madrid University under a contract with the CEC. It also includes the comparison of the ratio (Cs-137/Cs-134) between measurements performed by Soviet authorities and countries belonging to the Community and OECD area. Chapter II contains a summary of both isotope measurements (Cs-134 and Cs-137), and their ratios, in samples of air, water, soil and agricultural and animal products collected by the Soviets in their report presented in Vienna (1986). Chapter III reports on the inventories of cesium isotopes in the core, while Chapter IV analyses the transient, especially the fuel temperature reached, as a way to deduce the mechanisms which took place in the cesium escape. The cesium source term is analyzed in Chapter V. Normal conditions have been considered, as well as the transient and the post-accidental period, including the effects of deposited materials. The conclusion of this study is that Chernobyl accidental sequence is specific of the RBMK type of reactors, and that in the Western world, basic research on fuel behaviour for reactivity transients has already been carried out
Time-Dependent S{sub N} Calculations Describing Pulsed Source Experiments at the FRO Reactor
Energy Technology Data Exchange (ETDEWEB)
Bergstrom, A.; Kockum, J.; Soderberg, S. [Research Institute of National Defence, Stockholm (Sweden)
1968-04-15
In view of the difficulties in describing pulsed source experiments quantitatively in assemblies consisting of a fast core and a light reflector, a time-dependent S{sub N} code has been applied to this type of assembly. The code, written for the IBM 7090 computer, divides time into short intervals and computes the flux in spherical geometry for each interval using the Carlson S{sub N} scheme. The source term is obtained by extrapolation from two earlier time-intervals. Several problems in connection with the discretization of the time, space and energy dimensions are discussed. For the sub-critical assembly studied the treatment of the lower energy-groups is decisive for the numerical stability. A 22-group cross-section set with a low energy cut-off at 0.04 eV obtained with the SPENG programme has been used. The time intervals are varied continuously and are set proportional to the inverse of the maximum logarithmic time-derivative of the space and energy-dependent flux with the further restriction that they are not allowed to increase above a predetermined value. In a typical case, the intervals vary between 10{sup -9} and 10{sup -8} sec. The memory of the computer is fully exploited when 22 energy groups and 46 radial points are used. The computing time for each time-interval is about 6 sec. The code has been applied to a 3.5% sub-critical assembly consisting of a 20% enriched, spherical uranium metal core with a thick copper reflector and the calculations have been compared to experiments with good agreement. The calculations show that spectral equilibrium below 10 keV is not reached until times long compared to the usual measuring times and that the exponential decay finally reached is entirely determined by reflector properties at almost thermal energies. It is also shown that the simple one- and two-region models are inadequate in this case and that no time-independent prompt neutron life-time can be obtained from the measurements. (author)
International Nuclear Information System (INIS)
Yamamoto, Toshihiro; Miyoshi, Yoshinori
2004-01-01
A new algorithm of Monte Carlo criticality calculations for implementing Wielandt's method, which is one of acceleration techniques for deterministic source iteration methods, is developed, and the algorithm can be successfully implemented into MCNP code. In this algorithm, part of fission neutrons emitted during random walk processes are tracked within the current cycle, and thus a fission source distribution used in the next cycle spread more widely. Applying this method intensifies a neutron interaction effect even in a loosely-coupled array where conventional Monte Carlo criticality methods have difficulties, and a converged fission source distribution can be obtained with fewer cycles. Computing time spent for one cycle, however, increases because of tracking fission neutrons within the current cycle, which eventually results in an increase of total computing time up to convergence. In addition, statistical fluctuations of a fission source distribution in a cycle are worsened by applying Wielandt's method to Monte Carlo criticality calculations. However, since a fission source convergence is attained with fewer source iterations, a reliable determination of convergence can easily be made even in a system with a slow convergence. This acceleration method is expected to contribute to prevention of incorrect Monte Carlo criticality calculations. (author)
International Nuclear Information System (INIS)
Sadeghi, Mahdi; Hosseini, Hamed; Raisali, Gholamreza
2008-01-01
Full text: The use of 103 Pd seed sources for permanent prostate implantation has become a popular brachytherapy application. As recommended by AAPM the dosimetric characteristics of the new source must be determined using experimental and Monte Carlo simulations, before its use in clinical applications thus The goal of this report is the experimental and theoretical determination of the dosimetric characteristics of this source following the recommendations in the AAPM TG-43U1 protocol. Figure 1 shows the geometry of the IRA- 103 Pd source. The source consists of a cylindrical silver core, 0.3 cm long x 0.05 cm in diameter, onto which 0.5 nm layer of 103 Pd has been uniformly adsorbed. The effective active length of source is 0.3 cm and the silver core encapsulated inside a hollow titanium tube with 0.45 cm long, 0.07 cm and 0.08 inner and outer diameters and two caps. The Monte Carlo N-Particle (MCNP) code, version 4C, was used to determine the relevant dosimetric parameters of the source. The geometry of the Monte Carlo simulation performed in this study consisted of a sphere with 30 cm diameter. Dose distributions around this source were measured in two Perspex phantom using enough TLD chips. For these measurements, slabs of Perspex material were machined to accommodate the source and TLD chips. A value of 0.67± 1% cGy.h -1 .U -1 for, Λ, was calculated as the ratio of d(r 0 ,θ 0 ) and s K , that may be compared with Λ values obtained for 103 Pd sources. Result of calculations and measurements values of dosimetric parameters of the source including radial dose function, g(r), and anisotropy function, F(r,θ), has been shown in separate figures. The radial dose function, g(r), for the IRA- 103 Pd source and other 103 Pd sources is included in Fig. 2. Comparison between measured and Monte Carlo simulated dose function, g(r), and anisotropy function, F(r,θ), of this source demonstrated that they are in good agreement with each other and The value of Λ is
Proposal for implementation of alternative source term in the nuclear power plant of Laguna Verde
International Nuclear Information System (INIS)
Bazan L, A.; Lopez L, M.; Vargas A, A.; Cardenas J, J. B.
2009-10-01
In 2010 the nuclear power plant of Laguna Verde will implement the extended power upbeat in both units of the plant. Agree with methodology of NEDC-33004P-A, (constant pressure power up rate), and the source term of core, for accidents evaluations, were increased in proportion to the ratio of power level. This means that for the case of a design basis accident of loss of coolant an increase of power of 15% originated an increase of 15% in dose to main control room. Using the method of NEDC-33004P-A to extended power upbeat conditions was determined that the dose value to main control room is very near to regulatory limit established by SRP 6.4. By the above and in order to recover the margin, the nuclear power plant of Laguna Verde will calculate an alternative source term following the criteria established in RG 1.183 (alternative radiological source term for evaluating DBA at nuclear power reactor). This approach also have a more realistic dose value using the criterion of 10-CFR-50.67, in addition is predicted to get the benefit of additional operational flexibilities. This paper present the proposal of implementing the alternative source term in Laguna Verde. (Author)
Comparison of different source calculations in two-nucleon channel at large quark mass
Yamazaki, Takeshi; Ishikawa, Ken-ichi; Kuramashi, Yoshinobu
2018-03-01
We investigate a systematic error coming from higher excited state contributions in the energy shift of light nucleus in the two-nucleon channel by comparing two different source calculations with the exponential and wall sources. Since it is hard to obtain a clear signal of the wall source correlation function in a plateau region, we employ a large quark mass as the pion mass is 0.8 GeV in quenched QCD. We discuss the systematic error in the spin-triplet channel of the two-nucleon system, and the volume dependence of the energy shift.
Use of source term uncoupled in radionuclide migration equations
International Nuclear Information System (INIS)
Silveira, Claudia Siqueira da; Lima, Zelmo Rodrigues de; Alvim, Antonio Carlos Marques
2008-01-01
Final repositories of high-level radioactive waste have been considered in deep, low permeability and stable geological formations. A common problem found is the migration modeling of radionuclides in a fractured rock. In this work, the physical system adopted consists of the rock matrix containing a single planar fracture situated in water saturated porous rock. The partial differential equations that describe the radionuclide transport were discretized using finite differences techniques, of which the following methods were adopted: Explicit Euler, Implicit Euler and Crank-Nicholson. For each one of these methods, the advective term was discretized with the following numerical schemes: backward differences, centered differences and forward differences. We make a comparison to determine which temporal and space discretization has the best result in relation to a reference solution. The obtained results show that the Explicit Euler Method with forward discretization in the advective term has a good accuracy. Next, with the objective of improving the answer of the Implicit Euler and Crank-Nicholson Methods it was accomplished a source term uncouplement, the diffusive flux. The obtained results were considered satisfactory by comparison with previous studies. (author)
International Nuclear Information System (INIS)
Perry, R.T.; Wilson, W.B.; Charlton, W.S.
1998-04-01
In many systems, it is imperative to have accurate knowledge of all significant sources of neutrons due to the decay of radionuclides. These sources can include neutrons resulting from the spontaneous fission of actinides, the interaction of actinide decay α-particles in (α,n) reactions with low- or medium-Z nuclides, and/or delayed neutrons from the fission products of actinides. Numerous systems exist in which these neutron sources could be important. These include, but are not limited to, clean and spent nuclear fuel (UO 2 , ThO 2 , MOX, etc.), enrichment plant operations (UF 6 , PuF 4 , etc.), waste tank studies, waste products in borosilicate glass or glass-ceramic mixtures, and weapons-grade plutonium in storage containers. SOURCES-3A is a computer code that determines neutron production rates and spectra from (α,n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides in homogeneous media (i.e., a mixture of α-emitting source material and low-Z target material) and in interface problems (i.e., a slab of α-emitting source material in contact with a slab of low-Z target material). The code is also capable of calculating the neutron production rates due to (α,n) reactions induced by a monoenergetic beam of α-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 43 actinides. The (α,n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 89 nuclide decay α-particle spectra, 24 sets of measured and/or evaluated (α,n) cross sections and product nuclide level branching fractions, and functional α-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron source. It also provides an
Preliminary investigation of processes that affect source term identification
International Nuclear Information System (INIS)
Wickliff, D.S.; Solomon, D.K.; Farrow, N.D.
1991-09-01
Solid Waste Storage Area (SWSA) 5 is known to be a significant source of contaminants, especially tritium ( 3 H), to the White Oak Creek (WOC) watershed. For example, Solomon et al. (1991) estimated the total 3 H discharge in Melton Branch (most of which originates in SWSA 5) for the 1988 water year to be 1210 Ci. A critical issue for making decisions concerning remedial actions at SWSA 5 is knowing whether the annual contaminant discharge is increasing or decreasing. Because (1) the magnitude of the annual contaminant discharge is highly correlated to the amount of annual precipitation (Solomon et al., 1991) and (2) a significant lag may exist between the time of peak contaminant release from primary sources (i.e., waste trenches) and the time of peak discharge into streams, short-term stream monitoring by itself is not sufficient for predicting future contaminant discharges. In this study we use 3 H to examine the link between contaminant release from primary waste sources and contaminant discharge into streams. By understanding and quantifying subsurface transport processes, realistic predictions of future contaminant discharge, along with an evaluation of the effectiveness of remedial action alternatives, will be possible. The objectives of this study are (1) to characterize the subsurface movement of contaminants (primarily 3 H) with an emphasis on the effects of matrix diffusion; (2) to determine the relative strength of primary vs secondary sources; and (3) to establish a methodology capable of determining whether the 3 H discharge from SWSA 5 to streams is increasing or decreasing
Data for absorbed dose calculations for external sources and for emitters within the body
International Nuclear Information System (INIS)
Hep, J.; Valenta, V.
1976-01-01
Tables give data for the calculation of absorbed doses from radioactivity sources accumulated in individual body organs. The tables are arranged in such manner that the gamma energy (J) absorbed in 1 kg of target organ (19 organs and total body) are given for 18 source organs (16 different organs, total doby and surrounding air) resulting from 1 decay event, this for more than 250 radioisotopes evenly distributed in the source organ (1 J/kg=100 rad). Also given are the energies of alpha and beta radiations related to one decay. In tables having the surrounding air as the source it is assumed that the intensity of the external source is 1 decay per 1 m 3 of surrounding air which is constant in the entire half-space. The tables are only elaborated for radioisotopes with a half-life of more than 1 min. (B.S.)
Source term identification in atmospheric modelling via sparse optimization
Adam, Lukas; Branda, Martin; Hamburger, Thomas
2015-04-01
Inverse modelling plays an important role in identifying the amount of harmful substances released into atmosphere during major incidents such as power plant accidents or volcano eruptions. Another possible application of inverse modelling lies in the monitoring the CO2 emission limits where only observations at certain places are available and the task is to estimate the total releases at given locations. This gives rise to minimizing the discrepancy between the observations and the model predictions. There are two standard ways of solving such problems. In the first one, this discrepancy is regularized by adding additional terms. Such terms may include Tikhonov regularization, distance from a priori information or a smoothing term. The resulting, usually quadratic, problem is then solved via standard optimization solvers. The second approach assumes that the error term has a (normal) distribution and makes use of Bayesian modelling to identify the source term. Instead of following the above-mentioned approaches, we utilize techniques from the field of compressive sensing. Such techniques look for a sparsest solution (solution with the smallest number of nonzeros) of a linear system, where a maximal allowed error term may be added to this system. Even though this field is a developed one with many possible solution techniques, most of them do not consider even the simplest constraints which are naturally present in atmospheric modelling. One of such examples is the nonnegativity of release amounts. We believe that the concept of a sparse solution is natural in both problems of identification of the source location and of the time process of the source release. In the first case, it is usually assumed that there are only few release points and the task is to find them. In the second case, the time window is usually much longer than the duration of the actual release. In both cases, the optimal solution should contain a large amount of zeros, giving rise to the
Influence of iodine chemistry on source term assessment
International Nuclear Information System (INIS)
Herranz Puebla, L. E.; Lopez Diez, I.; Rodriguez Maroto, J. J.; Martinez Lopez-Alcorocho, A.
1991-01-01
The major goal of a phenomenology analysis of containment during a severe accident situation can be spitted into the following ones: to know the containment response to the different loads and to predict accurately the fission product and aerosol behavior. In this report, the main results coming from the study of a hypothetical accident scenario, based on LA-4 experiment of LACE project, are presented. In order to do it, several codes have been coupled: CONTEMPT4/MOD5 (thermohydraulics), NAUA/MOD5 (aerosol physics) and IODE (iodine chemistry). It has been demonstrated the impossibility of assessing with confidence the Source Term if the chemical conduct of some radionuclides is not taken into account. In particular, the influence on the iodine retention efficiency of the sump of variables such as pH has been proven. (Author)12 refs
Tank waste source term inventory validation. Volume II. Letter report
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-04-01
This document comprises Volume II of the Letter Report entitled Tank Waste Source Term Inventory Validation. This volume contains Appendix C, Radionuclide Tables, and Appendix D, Chemical Analyte Tables. The sample data for selection of 11 radionuclides and 24 chemical analytes were extracted from six separate sample data sets, were arranged in a tabular format and were plotted on scatter plots for all of the 149 single-shell tanks, the 24 double-shell tanks and the four aging waste tanks. The solid and liquid sample data was placed in separate tables and plots. The sample data and plots were compiled from the following data sets: characterization raw sample data, recent core samples, D. Braun data base, Wastren (Van Vleet) data base, TRAC and HTCE inventories.
Tank waste source term inventory validation. Volume 1. Letter report
International Nuclear Information System (INIS)
Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.
1995-01-01
The sample data for selection of 11 radionuclides and 24 chemical analytes were extracted from six separate sample data sets, were arranged in a tabular format and were plotted on scatter plots for all of the 149 single-shell tanks, the 24 double-shell tanks and the four aging waste tanks. The solid and liquid sample data was placed in separate tables and plots. The sample data and plots were compiled from the following data sets: characterization raw sample data, recent core samples, D. Braun data base, Wastren (Van Vleet) data base, TRAC and HTCE inventories. This document is Volume I of the Letter Report entitled Tank Waste Source Term Inventory Validation
Lysimeter data as input to performance assessment source term codes
International Nuclear Information System (INIS)
McConnell, J.W. Jr.; Rogers, R.D.; Sullivan, T.
1992-01-01
The Field Lysimeter Investigation: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-II c prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. In this paper, radionuclide releases from waste forms in the first seven years of sampling are presented and discussed. Application of lysimeter data to be used in performance assessment source term models is presented. Initial results from use of data in two models are discussed
Tank waste source term inventory validation. Volume II. Letter report
International Nuclear Information System (INIS)
1995-04-01
This document comprises Volume II of the Letter Report entitled Tank Waste Source Term Inventory Validation. This volume contains Appendix C, Radionuclide Tables, and Appendix D, Chemical Analyte Tables. The sample data for selection of 11 radionuclides and 24 chemical analytes were extracted from six separate sample data sets, were arranged in a tabular format and were plotted on scatter plots for all of the 149 single-shell tanks, the 24 double-shell tanks and the four aging waste tanks. The solid and liquid sample data was placed in separate tables and plots. The sample data and plots were compiled from the following data sets: characterization raw sample data, recent core samples, D. Braun data base, Wastren (Van Vleet) data base, TRAC and HTCE inventories
The EC CAST project (carbon-14 source term)
International Nuclear Information System (INIS)
Williams, S. J.
2015-01-01
Carbon-14 is a key radionuclide in the assessment of the safety of underground geological disposal facilities for radioactive wastes. It is possible for carbon-14 to be released from waste packages in a variety of chemical forms, both organic and inorganic, and as dissolved or gaseous species The EC CAST (CArbon-14 Source Term) project aims to develop understanding of the generation and release of carbon-14 from radioactive waste materials under conditions relevant to packaging and disposal. It focuses on the release of carbon-14 from irradiated metals (steels and zirconium alloys), from irradiated graphite and from spent ion-exchange resins. The CAST consortium brings together 33 partners. CAST commenced in October 2013 and this paper describes progress to March 2015. The main activities during this period were reviews of the current status of knowledge, the identification and acquisition of suitable samples and the design of experiments and analytical procedures. (authors)
Source term development for tritium at the Sheffield disposal site
International Nuclear Information System (INIS)
MacKenzie, D.R.; Barletta, R.E.; Smalley, J.F.; Kempf, C.R.; Davis, R.E.
1984-01-01
The Sheffield low-level radioactive waste disposal site, which ceased operation in 1978, has been the focus of modeling efforts by the NRC for the purpose of predicting long-term site behavior. To provide the NRC with the information required for its modeling effort, a study to define the source term for tritium in eight trenches at the Sheffield site has been undertaken. Tritium is of special interest since significant concentrations of the isotope have been found in groundwater samples taken at the site and at locations outside the site boundary. Previous estimates of tritium site inventory at Sheffield are in wide disagreement. In this study, the tritium inventory in the eight trenches was estimated by reviewing the radioactive shipping records (RSRs) for waste buried in these trenches. It has been found that the tritium shipped for burial at the site was probably higher than previously estimated. In the eight trenches surveyed, which amount to roughly one half the total volume and activity buried at Sheffield, approximately 2350 Ci of tritium from non-fuel cycle sources were identified. The review of RSRs also formed the basis for obtaining waste package descriptions and for contacting large waste generators to obtain more detailed information regarding these waste packages. As a result of this review and the selected generator contacts, the non-fuel cycle tritium waste was categorized. The tritium releases from each of these waste categories were modeled. The results of this modeling effort are presented for each of the eight trenches selected. 3 references, 2 figures
Energy Technology Data Exchange (ETDEWEB)
Avila Moreno, R.; Barrdahl, R.; Haegg, C.
1995-05-01
The main objective of the present study was to carry out a screening and a sensitivity analysis of the SSI TOOLBOX source term model SOSIM. This model is a part of the SSI TOOLBOX for radiological impact assessment of the Swedish disposal concept for high-level waste KBS-3. The outputs of interest for this purpose were: the total released fraction, the time of total release, the time and value of maximum release rate, the dose rates after direct releases of the biosphere. The source term equations were derived and simple equations and methods were proposed for calculation of these. A literature survey has been performed in order to determine a characteristic variation range and a nominal value for each model parameter. In order to reduce the model uncertainties the authors recommend a change in the initial boundary condition for solution of the diffusion equation for highly soluble nuclides. 13 refs.
Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms
Heidmann, James D.; Hunter, Scott D.
2001-01-01
The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.
Pavlov, V. M.
2017-07-01
The problem of calculating complete synthetic seismograms from a point dipole with an arbitrary seismic moment tensor in a plane parallel medium composed of homogeneous elastic isotropic layers is considered. It is established that the solutions of the system of ordinary differential equations for the motion-stress vector have a reciprocity property, which allows obtaining a compact formula for the derivative of the motion vector with respect to the source depth. The reciprocity theorem for Green's functions with respect to the interchange of the source and receiver is obtained for a medium with cylindrical boundary. The differentiation of Green's functions with respect to the coordinates of the source leads to the same calculation formulas as the algorithm developed in the previous work (Pavlov, 2013). A new algorithm appears when the derivatives with respect to the horizontal coordinates of the source is replaced by the derivatives with respect to the horizontal coordinates of the receiver (with the minus sign). This algorithm is more transparent, compact, and economic than the previous one. It requires calculating the wavenumbers associated with Bessel function's roots of order 0 and order 1, whereas the previous algorithm additionally requires the second order roots.
Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode
Directory of Open Access Journals (Sweden)
P. Seibert
2004-01-01
Full Text Available The possibility to calculate linear-source receptor relationships for the transport of atmospheric trace substances with a Lagrangian particle dispersion model (LPDM running in backward mode is shown and presented with many tests and examples. This mode requires only minor modifications of the forward LPDM. The derivation includes the action of sources and of any first-order processes (transformation with prescribed rates, dry and wet deposition, radioactive decay, etc.. The backward mode is computationally advantageous if the number of receptors is less than the number of sources considered. The combination of an LPDM with the backward (adjoint methodology is especially attractive for the application to point measurements, which can be handled without artificial numerical diffusion. Practical hints are provided for source-receptor calculations with different settings, both in forward and backward mode. The equivalence of forward and backward calculations is shown in simple tests for release and sampling of particles, pure wet deposition, pure convective redistribution and realistic transport over a short distance. Furthermore, an application example explaining measurements of Cs-137 in Stockholm as transport from areas contaminated heavily in the Chernobyl disaster is included.
Inventory and source term evaluation of Russian nuclear power plants for marine applications
International Nuclear Information System (INIS)
Reistad, O.; Oelgaard, P.L.
2006-04-01
This report discusses inventory and source term properties in regard to operation and possible releases due to accidents from Russian marine reactor systems. The first part of the report discusses relevant accidents on the basis of both Russian and western sources. The overview shows that certain vessels were much more accident prone compared to others, in addition, there have been a noteworthy reduction in accidents the last two decades. However, during the last years new types of incidents, such as collisions, has occurred more frequently. The second part of the study considers in detail the most important factors for the source term; reactor operational characteristics and the radionuclide inventory. While Russian icebreakers has been operated on a similar basis as commercial power plants, the submarines has different power cyclograms which results in considerable lower values for fission product inventory. Theoretical values for radionuclide inventory are compared with computed results using the modelling tool HELIOS. Regarding inventory of transuranic elements, the results of the calculations are discussed in detail for selected vessels. Criticality accidents, loss-of-cooling accidents and sinking accidents are considered, bases on actual experiences with these types of accident and on theoretical considerations, and source terms for these accidents are discussed in the last chapter. (au)
Inventory and source term evaluation of Russian nuclear power plants for marine applications
Energy Technology Data Exchange (ETDEWEB)
Reistad, O. [Norwegian Radiation Protection Authority (Norway); Oelgaard, P.L. [Risoe National Lab. (Denmark)
2006-04-15
This report discusses inventory and source term properties in regard to operation and possible releases due to accidents from Russian marine reactor systems. The first part of the report discusses relevant accidents on the basis of both Russian and western sources. The overview shows that certain vessels were much more accident prone compared to others, in addition, there have been a noteworthy reduction in accidents the last two decades. However, during the last years new types of incidents, such as collisions, has occurred more frequently. The second part of the study considers in detail the most important factors for the source term; reactor operational characteristics and the radionuclide inventory. While Russian icebreakers has been operated on a similar basis as commercial power plants, the submarines has different power cyclograms which results in considerable lower values for fission product inventory. Theoretical values for radionuclide inventory are compared with computed results using the modelling tool HELIOS. Regarding inventory of transuranic elements, the results of the calculations are discussed in detail for selected vessels. Criticality accidents, loss-of-cooling accidents and sinking accidents are considered, bases on actual experiences with these types of accident and on theoretical considerations, and source terms for these accidents are discussed in the last chapter. (au)
Accident source terms for Light-Water Nuclear Power Plants. Final report
International Nuclear Information System (INIS)
Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.
1995-02-01
In 1962 tile US Atomic Energy Commission published TID-14844, ''Calculation of Distance Factors for Power and Test Reactors'' which specified a release of fission products from the core to the reactor containment for a postulated accident involving ''substantial meltdown of the core''. This ''source term'', tile basis for tile NRC's Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC's reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ''source term'' release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ''source term'' is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it
Radiation doses from radiation sources of neutrons and photons by different computer calculation
International Nuclear Information System (INIS)
Siciliano, F.; Lippolis, G.; Bruno, S.G.
1995-12-01
In the present paper the calculation technique aspects of dose rate from neutron and photon radiation sources are covered with reference both to the basic theoretical modeling of the MERCURE-4, XSDRNPM-S and MCNP-3A codes and from practical point of view performing safety analyses of irradiation risk of two transportation casks. The input data set of these calculations -regarding the CEN 10/200 HLW container and dry PWR spent fuel assemblies shipping cask- is frequently commented as for as connecting points of input data and understanding theoric background are concerned
Calculating depths to shallow magnetic sources using aeromagnetic data from the Tucson Basin
Casto, Daniel W.
2001-01-01
Using gridded high-resolution aeromagnetic data, the performance of several automated 3-D depth-to-source methods was evaluated over shallow control sources based on how close their depth estimates came to the actual depths to the tops of the sources. For all three control sources, only the simple analytic signal method, the local wavenumber method applied to the vertical integral of the magnetic field, and the horizontal gradient method applied to the pseudo-gravity field provided median depth estimates that were close (-11% to +14% error) to the actual depths. Careful attention to data processing was required in order to calculate a sufficient number of depth estimates and to reduce the occurrence of false depth estimates. For example, to eliminate sampling bias, high-frequency noise and interference from deeper sources, it was necessary to filter the data before calculating derivative grids and subsequent depth estimates. To obtain smooth spatial derivative grids using finite differences, the data had to be gridded at intervals less than one percent of the anomaly wavelength. Before finding peak values in the derived signal grids, it was necessary to remove calculation noise by applying a low-pass filter in the grid-line directions and to re-grid at an interval that enabled the search window to encompass only the peaks of interest. Using the methods that worked best over the control sources, depth estimates over geologic sites of interest suggested the possible occurrence of volcanics nearly 170 meters beneath a city landfill. Also, a throw of around 2 kilometers was determined for a detachment fault that has a displacement of roughly 6 kilometers.
Energy Technology Data Exchange (ETDEWEB)
Davidson, Scott E., E-mail: sedavids@utmb.edu [Radiation Oncology, The University of Texas Medical Branch, Galveston, Texas 77555 (United States); Cui, Jing [Radiation Oncology, University of Southern California, Los Angeles, California 90033 (United States); Kry, Stephen; Ibbott, Geoffrey S.; Followill, David S. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Vicic, Milos [Department of Applied Physics, University of Belgrade, Belgrade 11000 (Serbia); White, R. Allen [Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)
2016-08-15
Purpose: A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who uses these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today’s modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis. Methods: The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source. Results: Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data
Energy Technology Data Exchange (ETDEWEB)
Nishioka, K.; Nakamura, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Nishimura, S. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Lee, H. Y. [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Kobayashi, S.; Mizuuchi, T.; Nagasaki, K.; Okada, H.; Minami, T.; Kado, S.; Yamamoto, S.; Ohshima, S.; Konoshima, S.; Sano, F. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)
2016-03-15
A moment approach to calculate neoclassical transport in non-axisymmetric torus plasmas composed of multiple ion species is extended to include the external parallel momentum sources due to unbalanced tangential neutral beam injections (NBIs). The momentum sources that are included in the parallel momentum balance are calculated from the collision operators of background particles with fast ions. This method is applied for the clarification of the physical mechanism of the neoclassical parallel ion flows and the multi-ion species effect on them in Heliotron J NBI plasmas. It is found that parallel ion flow can be determined by the balance between the parallel viscosity and the external momentum source in the region where the external source is much larger than the thermodynamic force driven source in the collisional plasmas. This is because the friction between C{sup 6+} and D{sup +} prevents a large difference between C{sup 6+} and D{sup +} flow velocities in such plasmas. The C{sup 6+} flow velocities, which are measured by the charge exchange recombination spectroscopy system, are numerically evaluated with this method. It is shown that the experimentally measured C{sup 6+} impurity flow velocities do not contradict clearly with the neoclassical estimations, and the dependence of parallel flow velocities on the magnetic field ripples is consistent in both results.
Benchmarking of Touschek Beam Lifetime Calculations for the Advanced Photon Source
Energy Technology Data Exchange (ETDEWEB)
Xiao, A.; Yang, B.
2017-06-25
Particle loss from Touschek scattering is one of the most significant issues faced by present and future synchrotron light source storage rings. For example, the predicted, Touschek-dominated beam lifetime for the Advanced Photon Source (APS) Upgrade lattice in 48-bunch, 200-mA timing mode is only ~ 2 h. In order to understand the reliability of the predicted lifetime, a series of measurements with various beam parameters was performed on the present APS storage ring. This paper first describes the entire process of beam lifetime measurement, then compares measured lifetime with the calculated one by applying the measured beam parameters. The results show very good agreement.
International Nuclear Information System (INIS)
Wechsler, M.S.; Mansur, L.K.
1996-01-01
Radiation damage in target, container, and window materials for spallation neutron sources is am important factor in the design of target stations for accelerator-driver transmutation technologies. Calculations are described that use the LAHET and SPECTER codes to obtain displacement and helium production rates in tungsten, 316 stainless steel, and Inconel 718, which are major target, container, and window materials, respectively. Results are compared for the three materials, based on neutron spectra for NSNS and ATW spallation neutron sources, where the neutron fluxes are normalized to give the same flux of neutrons of all energies
International Nuclear Information System (INIS)
Dougar-Jabon, V.D.; Umnov, A.M.; Kutner, V.B.
1996-01-01
It is common knowledge that the electrostatic pit in a core plasma of electron cyclotron resonance sources exerts strict control over generation of ions in high charge states. This work is aimed at finding a dependence of the lifetime of ions on their charge states in the core region and to elaborate a numerical model of ion charge dispersion not only for the core plasmas but for extracted beams as well. The calculated data are in good agreement with the experimental results on charge distributions and magnitudes for currents of beams extracted from the 14 GHz DECRIS source. copyright 1996 American Institute of Physics
Ishizawa, Yoshiki; Dobashi, Suguru; Kadoya, Noriyuki; Ito, Kengo; Chiba, Takahito; Takayama, Yoshiki; Sato, Kiyokazu; Takeda, Ken
2018-05-17
An accurate source model of a medical linear accelerator is essential for Monte Carlo (MC) dose calculations. This study aims to propose an analytical photon source model based on particle transport in parameterized accelerator structures, focusing on a more realistic determination of linac photon spectra compared to existing approaches. We designed the primary and secondary photon sources based on the photons attenuated and scattered by a parameterized flattening filter. The primary photons were derived by attenuating bremsstrahlung photons based on the path length in the filter. Conversely, the secondary photons were derived from the decrement of the primary photons in the attenuation process. This design facilitates these sources to share the free parameters of the filter shape and be related to each other through the photon interaction in the filter. We introduced two other parameters of the primary photon source to describe the particle fluence in penumbral regions. All the parameters are optimized based on calculated dose curves in water using the pencil-beam-based algorithm. To verify the modeling accuracy, we compared the proposed model with the phase space data (PSD) of the Varian TrueBeam 6 and 15 MV accelerators in terms of the beam characteristics and the dose distributions. The EGS5 Monte Carlo code was used to calculate the dose distributions associated with the optimized model and reference PSD in a homogeneous water phantom and a heterogeneous lung phantom. We calculated the percentage of points passing 1D and 2D gamma analysis with 1%/1 mm criteria for the dose curves and lateral dose distributions, respectively. The optimized model accurately reproduced the spectral curves of the reference PSD both on- and off-axis. The depth dose and lateral dose profiles of the optimized model also showed good agreement with those of the reference PSD. The passing rates of the 1D gamma analysis with 1%/1 mm criteria between the model and PSD were 100% for 4
Calculations of dosimetric parameter and REM meter response for BE(d, n) source
International Nuclear Information System (INIS)
Chen Changmao
1988-01-01
Based on the recent data about neutron spectra, the average energy, effictive energy and conversion coefficient of fluence to dose equivalent are calculated for some Be (α, n) neutron sources which have differene types and structures. The responses of 2202D and 0075 REM meter for thses spectral neutrons are also estimated. The results indicate that the relationship between average energy and conversion coefficient or REM meter responses can be described by simple functions
A simplified approach to evaluating severe accident source term for PWR
International Nuclear Information System (INIS)
Huang, Gaofeng; Tong, Lili; Cao, Xuewu
2014-01-01
Highlights: • Traditional source term evaluation approaches have been studied. • A simplified approach of source term evaluation for 600 MW PWR is studied. • Five release categories are established. - Abstract: For early design of NPPs, no specific severe accident source term evaluation was considered. Some general source terms have been used for some NPPs. In order to implement a best estimate, a special source term evaluation should be implemented for an NPP. Traditional source term evaluation approaches (mechanism approach and parametric approach) have some difficulties associated with their implementation. The traditional approaches are not consistent with cost-benefit assessment. A simplified approach for evaluating severe accident source term for PWR is studied. For the simplified approach, a simplified containment event tree is established. According to representative cases selection, weighted coefficient evaluation, computation of representative source term cases and weighted computation, five containment release categories are established, including containment bypass, containment isolation failure, containment early failure, containment late failure and intact containment
International Nuclear Information System (INIS)
Johnson, Jeffrey O.; Gallmeier, Franz X.; Popova, Irina
2002-01-01
Determining the bulk shielding requirements for accelerator environments is generally an easy task compared to analyzing the radiation transport through the complex shield configurations and penetrations typically associated with the detailed Title II design efforts of a facility. Shielding calculations for penetrations in the SNS accelerator environment are presented based on hybrid Monte Carlo and discrete ordinates particle transport methods. This methodology relies on coupling tools that map boundary surface leakage information from the Monte Carlo calculations to boundary sources for one-, two-, and three-dimensional discrete ordinates calculations. The paper will briefly introduce the coupling tools for coupling MCNPX to the one-, two-, and three-dimensional discrete ordinates codes in the DOORS code suite. The paper will briefly present typical applications of these tools in the design of complex shield configurations and penetrations in the SNS proton beam transport system
Source term experiments project (STEP): aerosol characterization system
International Nuclear Information System (INIS)
Schlenger, B.J.; Dunn, P.F.
1985-01-01
A series of four experiments has been conducted at Argonne National Laboratory's TREAT Reactor. These experiments, which are sponsored by an international consortium organized by the Electric Power Research Institute, are designed to investigate the source term, i.e., the type, quantity and timing of release of radioactive fission products from a light water reactor to the environment in the event of a severe accident in which the core is insufficiently cooled. The STEP tests have been designed to provide some of the necessary data regarding the magnitude and release rates of volatile fission products from degraded fuel pins, their physical and chemical characteristics, and aerosol formation and transport phenomena of those fission products that condense to form particles in the cooler regions of the reactor beyond the core. These are inpile experiments, whereby the test fuels are heated in a nuclear test reactor by neutron induced fission and subsequent cladding oxidation in steam environments that simulate as closely as practical predicted severe reactor accident conditions. The test sequences cover a range of pressure and fuel heatup rate, and include the effect of Ag/In/Cd control rod material. 1 ref., 8 figs., 1 tab
Optimizing the calculation of point source count-centroid in pixel size measurement
International Nuclear Information System (INIS)
Zhou Luyi; Kuang Anren; Su Xianyu
2004-01-01
Pixel size is an important parameter of gamma camera and SPECT. A number of methods are used for its accurate measurement. In the original count-centroid method, where the image of a point source (PS) is acquired and its count-centroid calculated to represent PS position in the image, background counts are inevitable. Thus the measured count-centroid (X m ) is an approximation of the true count-centroid (X p ) of the PS, i.e. X m =X p + (X b -X p )/(1+R p /R b ), where Rp is the net counting rate of the PS, X b the background count-centroid and Rb the background counting. To get accurate measurement, R p must be very big, which is unpractical, resulting in the variation of measured pixel size. R p -independent calculation of PS count-centroid is desired. Methods: The proposed method attempted to eliminate the effect of the term (X b -X p )/(1 + R p /R b ) by bringing X b closer to X p and by reducing R b . In the acquired PS image, a circular ROI was generated to enclose the PS, the pixel with the maximum count being the center of the ROI. To choose the diameter (D) of the ROI, a Gaussian count distribution was assumed for the PS, accordingly, K=1-(0.5) D/R percent of the total PS counts was in the ROI, R being the full width at half maximum of the PS count distribution. D was set to be 6*R to enclose most (K=98.4%) of the PS counts. The count-centroid of the ROI was calculated to represent X p . The proposed method was tested in measuring the pixel size of a well-tuned SPECT, whose pixel size was estimated to be 3.02 mm according to its mechanical and electronic setting (128 x 128 matrix, 387 mm UFOV, ZOOM=1). For comparison, the original method, which was use in the former versions of some commercial SPECT software, was also tested. 12 PSs were prepared and their image acquired and stored. The net counting rate of the PSs increased from 10 cps to 1183 cps. Results: Using the proposed method, the measured pixel size (in mm) varied only between 3.00 and 3.01 (mean
Optimizing the calculation of point source count-centroid in pixel size measurement
International Nuclear Information System (INIS)
Zhou Luyi; Kuang Anren; Su Xianyu
2004-01-01
Purpose: Pixel size is an important parameter of gamma camera and SPECT. A number of Methods are used for its accurate measurement. In the original count-centroid method, where the image of a point source(PS) is acquired and its count-centroid calculated to represent PS position in the image, background counts are inevitable. Thus the measured count-centroid (Xm) is an approximation of the true count-centroid (Xp) of the PS, i.e. Xm=Xp+(Xb-Xp)/(1+Rp/Rb), where Rp is the net counting rate of the PS, Xb the background count-centroid and Rb the background counting rate. To get accurate measurement, Rp must be very big, which is unpractical, resulting in the variation of measured pixel size. Rp-independent calculation of PS count-centroid is desired. Methods: The proposed method attempted to eliminate the effect of the term (Xb-Xp)/(1+Rp/Rb) by bringing Xb closer to Xp and by reducing Rb. In the acquired PS image, a circular ROI was generated to enclose the PS, the pixel with the maximum count being the center of the ROI. To choose the diameter (D) of the ROI, a Gaussian count distribution was assumed for the PS, accordingly, K=I-(0.5)D/R percent of the total PS counts was in the ROI, R being the full width at half maximum of the PS count distribution. D was set to be 6*R to enclose most (K=98.4%) of the PS counts. The count-centroid of the ROI was calculated to represent Xp. The proposed method was tested in measuring the pixel size of a well-tuned SPECT, whose pixel size was estimated to be 3.02 mm according to its mechanical and electronic setting (128*128 matrix, 387 mm UFOV, ZOOM=1). For comparison, the original method, which was use in the former versions of some commercial SPECT software, was also tested. 12 PSs were prepared and their image acquired and stored. The net counting rate of the PSs increased from 10cps to 1183cps. Results: Using the proposed method, the measured pixel size (in mm) varied only between 3.00 and 3.01( mean= 3.01±0.00) as Rp increased
International Nuclear Information System (INIS)
Santos, William S.; Carvalho Junior, Alberico B. de; Pereira, Ariana J.S.; Santos, Marcos S.; Maia, Ana F.
2011-01-01
In this paper conversion coefficients (CCs) of equivalent dose and effective in terms of kerma in the air were calculated suggested by the ICRP 74. These dose coefficients were calculated considering a plane radiation source and monoenergetic for a spectrum of energy varying from 10 keV to 2 MeV. The CCs were obtained for four geometries of irradiation, anterior-posterior, posterior-anterior, lateral right side and lateral left side. It was used the radiation transport code Visual Monte Carlo (VMC), and a anthropomorphic simulator of sit female voxel. The observed differences in the found values for the CCs at the four irradiation sceneries are direct results of the body organs disposition, and the distance of these organs to the irradiation source. The obtained CCs will be used for estimative more precise of dose in situations that the exposed individual be sit, as the normally the CCs available in the literature were calculated by using simulators always lying or on their feet
A calculation of dose distribution around 32P spherical sources and its clinical application
International Nuclear Information System (INIS)
Ohara, Ken; Tanaka, Yoshiaki; Nishizawa, Kunihide; Maekoshi, Hisashi
1977-01-01
In order to avoid the radiation hazard in radiation therapy of craniopharyngioma by using 32 P, it is helpful to prepare a detailed dose distribution in the vicinity of the source in the tissue. Valley's method is used for calculations. A problem of the method is pointed out and the method itself is refined numerically: it extends a region of xi where an approximate polynomial is available, and it determines an optimum degree of the polynomial as 9. Usefulness of the polynomial is examined by comparing with Berger's scaled absorbed dose distribution F(xi) and the Valley's result. The dose and dose rate distributions around uniformly distributed spherical sources are computed from the termwise integration of our polynomial of degree 9 over the range of xi from 0 to 1.7. The dose distributions calculated from the spherical surface to a point at 0.5 cm outside the source, are given, when the radii of sources are 0.5, 0.6, 0.7, 1.0, and 1.5 cm respectively. The therapeutic dose for a craniopharyngioma which has a spherically shaped cyst, and the absorbed dose to the normal tissue, (oculomotor nerve), are obtained from these dose rate distributions. (auth.)
Test of Effective Solid Angle code for the efficiency calculation of volume source
Energy Technology Data Exchange (ETDEWEB)
Kang, M. Y.; Kim, J. H.; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of); Sun, G. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-10-15
It is hard to determine a full energy (FE) absorption peak efficiency curve for an arbitrary volume source by experiment. That's why the simulation and semi-empirical methods have been preferred so far, and many works have progressed in various ways. Moens et al. determined the concept of effective solid angle by considering an attenuation effect of γ-rays in source, media and detector. This concept is based on a semi-empirical method. An Effective Solid Angle code (ESA code) has been developed for years by the Applied Nuclear Physics Group in Seoul National University. ESA code converts an experimental FE efficiency curve determined by using a standard point source to that for a volume source. To test the performance of ESA Code, we measured the point standard sources and voluminous certified reference material (CRM) sources of γ-ray, and compared with efficiency curves obtained in this study. 200∼1500 KeV energy region is fitted well. NIST X-ray mass attenuation coefficient data is used currently to check for the effect of linear attenuation only. We will use the interaction cross-section data obtained from XCOM code to check the each contributing factor like photoelectric effect, incoherent scattering and coherent scattering in the future. In order to minimize the calculation time and code simplification, optimization of algorithm is needed.
International Nuclear Information System (INIS)
Whitcher, Ralph
2007-01-01
1 - Description of program or function: SACALC2B calculates the average solid angle subtended by a rectangular or circular detector window to a coaxial or non-coaxial rectangular, circular or point source, including where the source and detector planes are not parallel. SACALC C YL calculates the average solid angle subtended by a cylinder to a rectangular or circular source, plane or thick, at any location and orientation. This is needed, for example, in calculating the intrinsic gamma efficiency of a detector such as a GM tube. The program also calculates the number of hits on the cylinder side and on each end, and the average path length through the detector volume (assuming no scattering or absorption). Point sources can be modelled by using a circular source of zero radius. NEA-1688/03: Documentation has been updated (January 2006). 2 - Methods: The program uses a Monte Carlo method to calculate average solid angle for source-detector geometries that are difficult to analyse by analytical methods. The values of solid angle are calculated to accuracies of typically better than 0.1%. The calculated values from the Monte Carlo method agree closely with those produced by polygon approximation and numerical integration by Gardner and Verghese, and others. 3 - Restrictions on the complexity of the problem: The program models a circular or rectangular detector in planes that are not necessarily coaxial, nor parallel. Point sources can be modelled by using a circular source of zero radius. The sources are assumed to be uniformly distributed. NEA-1688/04: In SACALC C YL, to avoid rounding errors, differences less than 1 E-12 are assumed to be zero
Dose assessments for Greifswald and Cadarache with new source terms from ITER NSSR-1
International Nuclear Information System (INIS)
Raskob, W.; Forschungszentrum Karlsruhe GmbH Technik und Umwelt; Hasemann, I.
1997-08-01
Probabilistic dose assessments for accidental atmospheric releases of various ITER source terms which contain tritium and/or activation products were performed for the sites of Greifswald, Germany, and Cadarache, France. No country specific rules were applied and the input parameters were adapted as far as possible to those used within former ITER studies to achieve a better comparability with site independent dose assessments performed in the frame of ITER. The calculations were based on source terms which, at the first time, contain a combination of tritium and activation products. This allowed a better judgement of the contribution of the individual fusion relevant materials to the total dose. The results were compared to site independent dose limits defined in the frame of ITER. Source terms for two different categories, representing 'extremely unlikely events' (CAT-IV) and 'hypothetical sequences' (CAT-V), were investigated. In no cases, the release scenarios of category CAT-IV exceeded the ITER limits. In addition, early doses from the hypothetical scenarios of type CAT-V were still below 50 mSv or 100 mSv, values which are commonly used as lower reference values for evacuation in many potential home countries of ITER. Only the banning of food products was found to be a potential countermeasure which may affect larger areas. (orig.) [de
Calculation of the two-electron Darwin term using explicitly correlated wave functions
International Nuclear Information System (INIS)
Middendorf, Nils; Höfener, Sebastian; Klopper, Wim; Helgaker, Trygve
2012-01-01
Graphical abstract: The two-electron Darwin term is computed analytically at the MP2-F12 level of theory using density fitted integrals. Highlights: ► Two-electron Darwin term computed analytically at the MP2-F12 level. ► Darwin two-electron integrals computed using density fitting techniques. ► Two-electron Darwin term dominated by singlet pair contributions. ► Much improved basis set convergence is achieved with F12 methods. ► Interference correction works well for the two-electron Darwin term. - Abstract: This article is concerned with the calculation of the two-electron Darwin term (D2). At the level of explicitly correlated second-order perturbation theory (MP2-F12), the D2 term is obtained as an analytic energy derivative; at the level of explicitly correlated coupled-cluster theory, it is obtained from finite differences. To avoid the calculation of four-center integrals, a density-fitting approximation is applied to the D2 two-electron integrals without loss of accuracy, even though the absolute value of the D2 term is typically about 0.1 mE h . Explicitly correlated methods provide a qualitatively correct description of the short-range region around the Coulomb hole, even for small orbital basis sets. Therefore, explicitly correlated wave functions remedy the otherwise extremely slow convergence of the D2 contribution with respect to the basis-set size, yielding more accurate results than those obtained by two-point basis-set extrapolation. Moreover, we show that the interference correction of Petersson’s complete-basis-set model chemistry can be used to compute a D2 basis-set correction at the MP2-F12 level to improve standard coupled-cluster singles-and-doubles results.
An appreciation of the events, models and data used for LMFBR radiological source term estimations
International Nuclear Information System (INIS)
Keir, D.; Clough, P.N.
1989-01-01
In this report, the events, models and data currently available for analysis of accident source terms in liquid metal cooled fast neutron reactors are reviewed. The types of hypothetical accidents considered are the low probability, more extreme types of severe accident, involving significant degradation of the core and which may lead to the release of radionuclides. The base case reactor design considered is a commercial scale sodium pool reactor of the CDFR type. The feasibility of an integrated calculational approach to radionuclide transport and speciation (such as is used for LWR accident analysis) is explored. It is concluded that there is no fundamental obstacle, in terms of scientific data or understanding of the phenomena involved, to such an approach. However this must be regarded as a long-term goal because of the large amount of effort still required to advance development to a stage comparable with LWR studies. Particular aspects of LMFBR severe accident phenomenology which require attention are the behaviour of radionuclides during core disruptive accident bubble formation and evolution, and during the less rapid sequences of core melt under sodium. The basic requirement for improved thermal hydraulic modelling of core, coolant and structural materials, in these and other scenarios, is highlighted as fundamental to the accuracy and realism of source term estimations. The coupling of such modelling to that of radionuclide behaviour is seen as the key to future development in this area
Nuclear reaction models - source term estimation for safety design in accelerators
International Nuclear Information System (INIS)
Nandy, Maitreyee
2013-01-01
Accelerator driven subcritical system (ADSS) employs proton induced spallation reaction at a few GeV. Safety design of these systems involves source term estimation in two steps - multiple fragmentation of the target and n+γ emission through a fast process followed by statistical decay of the primary fragments. The prompt radiation field is estimated in the framework of quantum molecular dynamics (QMD) theory, intra-nuclear cascade or Monte Carlo calculations. A few nuclear reaction model codes used for this purpose are QMD, JQMD, Bertini, INCL4, PHITS, followed by statistical decay codes like ABLA, GEM, GEMINI, etc. In the case of electron accelerators photons and photoneutrons dominate the prompt radiation field. High energy photon yield through Bremsstrahlung is estimated in the framework of Born approximation while photoneutron production is calculated using giant dipole resonance and quasi-deuteron formation cross section. In this talk hybrid and exciton PEQ models and QMD formalism will be discussed briefly
The influence of source term release parameters on health effects
International Nuclear Information System (INIS)
Jeong, Jong Tae; Ha, Jae Joo
1998-08-01
In this study, the influence of source term release parameters on the health effects was examined. This is very useful in identifying the relative importance of release parameters and can be an important factor in developing a strategy for reducing offsite risks. The release parameters investigated in this study are release height, heat content, fuel burnup, release time, release duration, and warning time. The health effects affected by the change of release parameters are early fatalities, cancer fatalities, early injuries, cancer injuries, early fatality risk, population weighted early fatality risk, population weighted cancer fatality risk, effective whole body population dose, population exceeding an early acute red bone marrow dose of 1.5 Sv, and distance at which early fatalities are expected to occur. As release height increases, the values of early health effects such as early fatalities and injuries decrease. However, the release height dose not have significant influences on late health effects. The values of both early and late health effects decrease as heat content increases. The increase fuel burnup, i.e., the increase of core inventories increases the late health effects, however, has small influence on the early health effects. But, the number of early injuries increases as the fuel burnup increases. The effects of release time increase shows very similar influence on both the early and late health effects. As the release time increases to 2 hours, the values of health effects increase and then decrease rapidly. As release duration increases, the values of late health effects increase slightly, however, the values of early health effects decrease. As warning time increases to 2 hours, the values of late health effects decrease and then shows no variation. The number of early injuries decreases rapidly as the warning time increases to 2 hours. However, the number of early fatalities and the early fatality risk increase as the warning time increases
Modification to ORIGEN2 for generating N Reactor source terms. Volume 1
International Nuclear Information System (INIS)
Schwarz, R.A.
1997-04-01
This report discusses work that has been done to upgrade the ORIGEN2 code cross sections to be compatible with the WIMS computer code data. Because of the changes in the ORIGEN2 calculations. Details on changes made to the ORIGEN2 computer code and the Radnuc code will be discussed along with additional work that should be done in the future to upgrade both ORIGEN2 and Radnuc. A detailed historical description of how source terms have been generated for N Reactor fuel stored in the K Basins has been generated. The neutron source discussed in this description was generated by the WIMS computer code (Gubbins et al. 1982) because of known shortcomings in the ORIGEN2 (Croff 1980) cross sections. Another document includes a discussion of the ORIGEN2 cross sections
ORIGAMI Automator Primer. Automated ORIGEN Source Terms and Spent Fuel Storage Pool Analysis
Energy Technology Data Exchange (ETDEWEB)
Wieselquist, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thompson, Adam B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Joshua L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-04-01
Source terms and spent nuclear fuel (SNF) storage pool decay heat load analyses for operating nuclear power plants require a large number of Oak Ridge Isotope Generation and Depletion (ORIGEN) calculations. SNF source term calculations also require a significant amount of bookkeeping to track quantities such as core and assembly operating histories, spent fuel pool (SFP) residence times, heavy metal masses, and enrichments. The ORIGEN Assembly Isotopics (ORIGAMI) module in the SCALE code system provides a simple scheme for entering these data. However, given the large scope of the analysis, extensive scripting is necessary to convert formats and process data to create thousands of ORIGAMI input files (one per assembly) and to process the results into formats readily usable by follow-on analysis tools. This primer describes a project within the SCALE Fulcrum graphical user interface (GUI) called ORIGAMI Automator that was developed to automate the scripting and bookkeeping in large-scale source term analyses. The ORIGAMI Automator enables the analyst to (1) easily create, view, and edit the reactor site and assembly information, (2) automatically create and run ORIGAMI inputs, and (3) analyze the results from ORIGAMI. ORIGAMI Automator uses the standard ORIGEN binary concentrations files produced by ORIGAMI, with concentrations available at all time points in each assembly’s life. The GUI plots results such as mass, concentration, activity, and decay heat using a powerful new ORIGEN Post-Processing Utility for SCALE (OPUS) GUI component. This document includes a description and user guide for the GUI, a step-by-step tutorial for a simplified scenario, and appendices that document the file structures used.
International Nuclear Information System (INIS)
Zhao, P.; Zavarin, M.
2008-01-01
It has been proposed that unclassified source terms used in the reactive transport modeling investigations at NTS CAUs should be based on yield-weighted source terms calculated using the average source term from Bowen et al. (2001) and the unclassified announced yields reported in DOE/NV-209. This unclassified inventory is likely to be used in unclassified contaminant boundary calculations and is, thus, relevant to compare to the classified inventory. They have examined the classified radionuclide inventory produced by 10 underground nuclear tests conducted in the Frenchman Flat (FF) area of the Nevada Test Site. The goals were to (1) evaluate the variability in classified radiological source terms among the 10 tests and (2) compare that variability and inventory uncertainties to an average unclassified inventory (e.g. Bowen 2001). To evaluate source term variability among the 10 tests, radiological inventories were compared on two relative scales: geometric mean and yield-weighted geometric mean. Furthermore, radiological inventories were either decay corrected to a common date (9/23/1992) or the time zero (t 0 ) of each test. Thus, a total of four data sets were produced. The date of 9/23/1992 was chosen based on the date of the last underground nuclear test at the Nevada Test Site
Techniques for long term conditioning and storage of radium sources
International Nuclear Information System (INIS)
Dogaru, Gheorghe; Dragolici, Felicia; Nicu, Mihaela
2008-01-01
The Horia Hulubei National Institute of Research and Development for Physics and Nuclear Engineering developed its own technology for conditioning the radium spent sealed radioactive sources. The laboratory dedicated to radiological characterization, identification of radium sources as well as the encapsulation of spent sealed radioactive sources was equipped with a local ventilation system, welding devices, tightness test devices as well as radiometric portable devices. Two types of capsules have been designed for conditioning of radium spent sealed radioactive sources. For these kinds of capsules different types of storage packaging were developed. Data on the radium inventory will be presented in the paper. The paper contains the description of the process of conditioning of spent sealed radioactive sources as well as the description of the capsules and packaging. The paper describes the equipment used for the conditioning of the radium spent sealed sources. (authors)
International Nuclear Information System (INIS)
Carluccio, Thiago
2011-01-01
This works had as goal to investigate calculational methodologies on subcritical source driven reactor, such as Accelerator Driven Subcritical Reactor (ADSR) and Fusion Driven Subcritical Reactor (FDSR). Intense R and D has been done about these subcritical concepts, mainly due to Minor Actinides (MA) and Long Lived Fission Products (LLFP) transmutation possibilities. In this work, particular emphasis has been given to: (1) complement and improve calculation methodology with neutronic transmutation and decay capabilities and implement it computationally, (2) utilization of this methodology in the Coordinated Research Project (CRP) of the International Atomic Energy Agency Analytical and Experimental Benchmark Analysis of ADS and in the Collaborative Work on Use of Low Enriched Uranium in ADS, especially in the reproduction of the experimental results of the Yalina Booster subcritical assembly and study of a subcritical core of IPEN / MB-01 reactor, (3) to compare different nuclear data libraries calculation of integral parameters, such as k eff and k src , and differential distributions, such as spectrum and flux, and nuclides inventories and (4) apply the develop methodology in a study that may help future choices about dedicated transmutation system. The following tools have been used in this work: MCNP (Monte Carlo N particle transport code), MCB (enhanced version of MCNP that allows burnup calculation) and NJOY to process nuclear data from evaluated nuclear data files. (author)
Radiation transport calculations for the ANS [Advanced Neutron Source] beam tubes
International Nuclear Information System (INIS)
Engle, W.W. Jr.; Lillie, R.A.; Slater, C.O.
1988-01-01
The Advanced Neutron Source facility (ANS) will incorporate a large number of both radial and no-line-of-sight (NLS) beam tubes to provide very large thermal neutron fluxes to experimental facilities. The purpose of this work was to obtain comparisons for the ANS single- and split-core designs of the thermal and damage neutron and gamma-ray scalar fluxes in these beams tubes. For experimental locations far from the reactor cores, angular flux data are required; however, for close-in experimental locations, the scalar fluxes within each beam tube provide a credible estimate of the various signal to noise ratios. In this paper, the coupled two- and three-dimensional radiation transport calculations employed to estimate the scalar neutron and gamma-ray fluxes will be described and the results from these calculations will be discussed. 6 refs., 2 figs
Dose rates from a C-14 source using extrapolation chamber and MC calculations
International Nuclear Information System (INIS)
Borg, J.
1996-05-01
The extrapolation chamber technique and the Monte Carlo (MC) calculation technique based on the EGS4 system have been studied for application for determination of dose rates in a low-energy β radiation field e.g., that from a 14 C source. The extrapolation chamber measurement method is the basic method for determination of dose rates in β radiation fields. Applying a number of correction factors and the stopping power ratio, tissue to air, the measured dose rate in an air volume surrounded by tissue equivalent material is converted into dose to tissue. Various details of the extrapolation chamber measurement method and evaluation procedure have been studied and further developed, and a complete procedure for the experimental determination of dose rates from a 14 C source is presented. A number of correction factors and other parameters used in the evaluation procedure for the measured data have been obtained by MC calculations. The whole extrapolation chamber measurement procedure was simulated using the MC method. The measured dose rates showed an increasing deviation from the MC calculated dose rates as the absorber thickness increased. This indicates that the EGS4 code may have some limitations for transport of very low-energy electrons. i.e., electrons with estimated energies less than 10 - 20 keV. MC calculations of dose to tissue were performed using two models: a cylindrical tissue phantom and a computer model of the extrapolation chamber. The dose to tissue in the extrapolation chamber model showed an additional buildup dose compared to the dose in the tissue model. (au) 10 tabs., 11 ills., 18 refs
Palmesi, P.; Exl, L.; Bruckner, F.; Abert, C.; Suess, D.
2017-11-01
The long-range magnetic field is the most time-consuming part in micromagnetic simulations. Computational improvements can relieve problems related to this bottleneck. This work presents an efficient implementation of the Fast Multipole Method [FMM] for the magnetic scalar potential as used in micromagnetics. The novelty lies in extending FMM to linearly magnetized tetrahedral sources making it interesting also for other areas of computational physics. We treat the near field directly and in use (exact) numerical integration on the multipole expansion in the far field. This approach tackles important issues like the vectorial and continuous nature of the magnetic field. By using FMM the calculations scale linearly in time and memory.
Radiation field calculation in the vicinity of Russian radioisotope generator sources
Energy Technology Data Exchange (ETDEWEB)
Pretzsch, Gunter; Hummelsheim, Klemens; Bogorinski, Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Kurfuerstendamm 200, 10719 Berlin (Germany)
2005-07-01
Germany supports the Russian Federation in the framework of the G8 Global Partnership programme to secure nuclear and radioactive materials against misuse and proliferation. In this context, GRS, on behalf of the German Foreign Office, is coordinating activities to remove disused radioisotope thermoelectric generators (RITEG) from the Baltic Sea which serve as power supply for marine lighthouses and their replacement by alternative energy sources. Further the planned project includes transportation to an interim storage, the storage equipped with radiation monitoring and physical protection measures, later transportation for reprocessing to the Mayak Production Association, where the RITEG will be dismantled in a hot cell and encapsulated radioactive source will be vitrified and stored as radioactive waste. For the whole project safety analyses are to be performed e.g. to meet radiation protection requirements. In the present paper modelling and calculation of radiation fields in the vicinity of RITEG as a basis for safety analyses is reported. (authors)
Validating criticality calculations for spent fuel with 252Cf-source-driven noise measurements
International Nuclear Information System (INIS)
Mihalczo, J.T.; Krass, A.W.; Valentine, T.E.
1992-01-01
The 252 Cf-Source-driven noise analysis method can be used for measuring the subcritical neutron multiplication factor k of arrays of spent light water reactor (LWR) fuel. This type of measurement provides a parameter that is directly related to the criticality state of arrays of LWR fuel. Measurements of this parameter can verify the criticality safety margins of spent LWR fuel configurations and thus could be a means of obtaining the information to justify burnup credit for spent LWR transportation/storage casks. The practicality of a measurement depends on the ability to install the hardware required to perform the measurement. Source chambers containing the 252 Cf at the required source intensity for this application have been constructed and have operated successfully for ∼10 years and can be fabricated to fit into control rod guide tubes of PWR fuel elements. Fission counters especially developed for spent-fuel measurements are available that would allow measurements of a special 3 x 3 spent fuel array and a typical burnup credit rail cask with spent fuel in unborated water. Adding a moderator around these fission counters would allow measurements with the typical burnup credit rail cask with borated water and the special 3 x 3 array with borated water. The recent work of Ficaro on modifying the KENO Va code to calculate by the Monte Carlo method the time sequences of pulses at two detectors near a fissile assembly from the fission chain multiplication process, initiated by a 252 Cf source in the assembly allows a direct computer calculation of the noise analysis data from this measurement method
Hanford tank residual waste - Contaminant source terms and release models
International Nuclear Information System (INIS)
Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael L.; Jeffery Serne, R.
2011-01-01
Highlights: → Residual waste from five Hanford spent fuel process storage tanks was evaluated. → Gibbsite is a common mineral in tanks with high Al concentrations. → Non-crystalline U-Na-C-O-P ± H phases are common in the U-rich residual. → Iron oxides/hydroxides have been identified in all residual waste samples. → Uranium release is highly dependent on waste and leachant compositions. - Abstract: Residual waste is expected to be left in 177 underground storage tanks after closure at the US Department of Energy's Hanford Site in Washington State, USA. In the long term, the residual wastes may represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt.%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt.%, respectively. Aluminum concentrations are high (8.2-29.1 wt.%) in some tanks (C-103, C-106, and S-112) and relatively low ( 2 -saturated solution, or a CaCO 3 -saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO 3 -saturated solution than with the Ca(OH) 2 -saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH) 2 -saturated solution than by the CaCO 3 -saturated solution. In general, Tc is much less leachable (<10 wt.% of the
Radiological Source Terms for Tank Farms Safety Analysis
Energy Technology Data Exchange (ETDEWEB)
COWLEY, W.L.
2000-06-27
This document provides Unit Liter Dose factors, atmospheric dispersion coefficients, breathing rates and instructions for using and customizing these factors for use in calculating radiological doses for accident analyses in the Hanford Tank Farms.
International Nuclear Information System (INIS)
Gallmeier, F.X.; Glasgow, D.C.; Jerde, E.A.; Johnson, J.O.; Yugo, J.J.
1999-01-01
The Spallation Neutron Source (SNS) will provide an intense source of low-energy neutrons for experimental use. The low-energy neutrons are produced by the interaction of a high-energy (1.0 GeV) proton beam on a mercury (Hg) target and slowed down in liquid hydrogen or light water moderators. Computer codes and computational techniques are being benchmarked against relevant experimental data to validate and verify the tools being used to predict the performance of the SNS. The LAHET Code System (LCS), which includes LAHET, HTAPE ad HMCNP (a modified version of MCNP version 3b), have been applied to the analysis of experiments that were conducted in the Alternating Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory (BNL). In the AGS experiments, foils of various materials were placed around a mercury-filled stainless steel cylinder, which was bombarded with protons at 1.6 GeV. Neutrons created in the mercury target, activated the foils. Activities of the relevant isotopes were accurately measured and compared with calculated predictions. Measurements at BNL were provided in part by collaborating scientists from JAERI as part of the AGS Spallation Target Experiment (ASTE) collaboration. To date, calculations have shown good agreement with measurements
Aboulbanine, Zakaria; El Khayati, Naïma
2018-04-01
The use of phase space in medical linear accelerator Monte Carlo (MC) simulations significantly improves the execution time and leads to results comparable to those obtained from full calculations. The classical representation of phase space stores directly the information of millions of particles, producing bulky files. This paper presents a virtual source model (VSM) based on a reconstruction algorithm, taking as input a compressed file of roughly 800 kb derived from phase space data freely available in the International Atomic Energy Agency (IAEA) database. This VSM includes two main components; primary and scattered particle sources, with a specific reconstruction method developed for each. Energy spectra and other relevant variables were extracted from IAEA phase space and stored in the input description data file for both sources. The VSM was validated for three photon beams: Elekta Precise 6 MV/10 MV and a Varian TrueBeam 6 MV. Extensive calculations in water and comparisons between dose distributions of the VSM and IAEA phase space were performed to estimate the VSM precision. The Geant4 MC toolkit in multi-threaded mode (Geant4-[mt]) was used for fast dose calculations and optimized memory use. Four field configurations were chosen for dose calculation validation to test field size and symmetry effects, , , and for squared fields, and for an asymmetric rectangular field. Good agreement in terms of formalism, for 3%/3 mm and 2%/3 mm criteria, for each evaluated radiation field and photon beam was obtained within a computation time of 60 h on a single WorkStation for a 3 mm voxel matrix. Analyzing the VSM’s precision in high dose gradient regions, using the distance to agreement concept (DTA), showed also satisfactory results. In all investigated cases, the mean DTA was less than 1 mm in build-up and penumbra regions. In regards to calculation efficiency, the event processing speed is six times faster using Geant4-[mt] compared to sequential
Quantification of severe accident source terms of a Westinghouse 3-loop plant
International Nuclear Information System (INIS)
Lee Min; Ko, Y.-C.
2008-01-01
Integrated severe accident analysis codes are used to quantify the source terms of the representative sequences identified in PSA study. The characteristics of these source terms depend on the detail design of the plant and the accident scenario. A historical perspective of radioactive source term is provided. The grouping of radionuclides in different source terms or source term quantification tools based on TID-14844, NUREG-1465, and WASH-1400 is compared. The radionuclides release phenomena and models adopted in the integrated severe accident analysis codes of STCP and MAAP4 are described. In the present study, the severe accident source terms for risk quantification of Maanshan Nuclear Power Plant of Taiwan Power Company are quantified using MAAP 4.0.4 code. A methodology is developed to quantify the source terms of each source term category (STC) identified in the Level II PSA analysis of the plant. The characteristics of source terms obtained are compared with other source terms. The plant analyzed employs a Westinghouse designed 3-loop pressurized water reactor (PWR) with large dry containment
Short-Term Wind Power Forecasting Based on Clustering Pre-Calculated CFD Method
Directory of Open Access Journals (Sweden)
Yimei Wang
2018-04-01
Full Text Available To meet the increasing wind power forecasting (WPF demands of newly built wind farms without historical data, physical WPF methods are widely used. The computational fluid dynamics (CFD pre-calculated flow fields (CPFF-based WPF is a promising physical approach, which can balance well the competing demands of computational efficiency and accuracy. To enhance its adaptability for wind farms in complex terrain, a WPF method combining wind turbine clustering with CPFF is first proposed where the wind turbines in the wind farm are clustered and a forecasting is undertaken for each cluster. K-means, hierarchical agglomerative and spectral analysis methods are used to establish the wind turbine clustering models. The Silhouette Coefficient, Calinski-Harabaz index and within-between index are proposed as criteria to evaluate the effectiveness of the established clustering models. Based on different clustering methods and schemes, various clustering databases are built for clustering pre-calculated CFD (CPCC-based short-term WPF. For the wind farm case studied, clustering evaluation criteria show that hierarchical agglomerative clustering has reasonable results, spectral clustering is better and K-means gives the best performance. The WPF results produced by different clustering databases also prove the effectiveness of the three evaluation criteria in turn. The newly developed CPCC model has a much higher WPF accuracy than the CPFF model without using clustering techniques, both on temporal and spatial scales. The research provides supports for both the development and improvement of short-term physical WPF systems.
Wang, R; Li, X A
2001-02-01
The dose parameters for the beta-particle emitting 90Sr/90Y source for intravascular brachytherapy (IVBT) have been calculated by different investigators. At a distant distance from the source, noticeable differences are seen in these parameters calculated using different Monte Carlo codes. The purpose of this work is to quantify as well as to understand these differences. We have compared a series of calculations using an EGS4, an EGSnrc, and the MCNP Monte Carlo codes. Data calculated and compared include the depth dose curve for a broad parallel beam of electrons, and radial dose distributions for point electron sources (monoenergetic or polyenergetic) and for a real 90Sr/90Y source. For the 90Sr/90Y source, the doses at the reference position (2 mm radial distance) calculated by the three code agree within 2%. However, the differences between the dose calculated by the three codes can be over 20% in the radial distance range interested in IVBT. The difference increases with radial distance from source, and reaches 30% at the tail of dose curve. These differences may be partially attributed to the different multiple scattering theories and Monte Carlo models for electron transport adopted in these three codes. Doses calculated by the EGSnrc code are more accurate than those by the EGS4. The two calculations agree within 5% for radial distance <6 mm.
International Nuclear Information System (INIS)
Mowlavi, A. A.; Binesh, A.; Moslehitabar, H.
2006-01-01
Palladium-103 ( 103 Pd) is a brachytherapy source for cancer treatment. The Monte Carlo codes are usually applied for dose distribution and effect of shieldings. Monte Carlo calculation of dose distribution in water phantom due to a MED3633 103 Pd source is presented in this work. Materials and Methods: The dose distribution around the 10 3Pd Model MED3633 located in the center of 30*30*30 m 3 water phantom cube was calculated using MCNP code by the Monte Carlo method. The percentage depth dose variation along the different axis parallel and perpendicular to the source was also calculated. Then, the isodose curves for 100%, 75%, 50% and 25% percentage depth dose and dosimetry parameters of TG-43 protocol were determined. Results: The results show that the Monte Carlo Method could calculate dose deposition in high gradient region, near the source, accurately. The isodose curves and dosimetric characteristics obtained for MED3633 103 Pd source are in good agreement with published results. Conclusion: The isodose curves of the MED3633 103 Pd source have been derived form dose calculation by MCNP code. The calculated dosimetry parameters for the source agree quite well with their Monte Carlo calculated and experimental measurement values
Faught, Austin M; Davidson, Scott E; Fontenot, Jonas; Kry, Stephen F; Etzel, Carol; Ibbott, Geoffrey S; Followill, David S
2017-09-01
The Imaging and Radiation Oncology Core Houston (IROC-H) (formerly the Radiological Physics Center) has reported varying levels of agreement in their anthropomorphic phantom audits. There is reason to believe one source of error in this observed disagreement is the accuracy of the dose calculation algorithms and heterogeneity corrections used. To audit this component of the radiotherapy treatment process, an independent dose calculation tool is needed. Monte Carlo multiple source models for Elekta 6 MV and 10 MV therapeutic x-ray beams were commissioned based on measurement of central axis depth dose data for a 10 × 10 cm 2 field size and dose profiles for a 40 × 40 cm 2 field size. The models were validated against open field measurements consisting of depth dose data and dose profiles for field sizes ranging from 3 × 3 cm 2 to 30 × 30 cm 2 . The models were then benchmarked against measurements in IROC-H's anthropomorphic head and neck and lung phantoms. Validation results showed 97.9% and 96.8% of depth dose data passed a ±2% Van Dyk criterion for 6 MV and 10 MV models respectively. Dose profile comparisons showed an average agreement using a ±2%/2 mm criterion of 98.0% and 99.0% for 6 MV and 10 MV models respectively. Phantom plan comparisons were evaluated using ±3%/2 mm gamma criterion, and averaged passing rates between Monte Carlo and measurements were 87.4% and 89.9% for 6 MV and 10 MV models respectively. Accurate multiple source models for Elekta 6 MV and 10 MV x-ray beams have been developed for inclusion in an independent dose calculation tool for use in clinical trial audits. © 2017 American Association of Physicists in Medicine.
A simplistic view of the iodine chemistry influence on source term assessment
International Nuclear Information System (INIS)
Herranz, L.E.; Rodriguez, J.J.
1994-01-01
The intrinsic characteristics of iodine make it a relevant concern as to its potential radiobiological impact in case of a hypothetical severe accident in nuclear power plants. This paper summarizes the major results drawn from a very simple but illustrative calculation exercise aimed at weighing how significant could be taking iodine chemistry in containment into account for source term assessments in case of a postulated severe reactor accident. The scenario chosen as representative of expected conditions in containment was LA-4 test of LACE programme. Several approximations and hypothesis concerning the scenario were necessary. Iodine chemistry analyses were performed with IODE code, as long as thermalhydraulic and aerosol behaviour analyses, providing initial and boundary conditions for iodine calculations, were carried out with CONTEMPT4/MOD5 and NAUA/MOD5 codes, respectively. In general, the results obtained agreed qualitatively with the current knowledge on the area; from a quantitative point of view, one of the major results was that iodine chemistry on acidic conditions could provide a substantial increase in the leaked mass from containment under the postulated circumstances. Hence, this study underlines the need of including iodine chemistry in source tenn assessments. (author)
Source Term Characterization for Structural Components in 17 x 17 KOFA Spent Fuel Assembly
Energy Technology Data Exchange (ETDEWEB)
Cho, Dong Keun; Kook, Dong Hak; Choi, Heui Joo; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2010-12-15
Source terms of metal waste comprising a spent fuel assembly are relatively important when the spent fuel is pyroprocessed, because cesium, strontium, and transuranics are not a concern any more in the aspect of source term of permanent disposal. In this study, characteristics of radiation source terms for each structural component in spent fuel assembly was analyzed by using ORIGEN-S with a assumption that 10 metric tons of uranium is pyroprocessed. At first, mass and volume for each structural component of the fuel assembly were calculated in detail. Activation cross section library was generated by using KENO-VI/ORIGEN-S module for top-end piece and bottom-end piece, because those are located at outer core with different neutron spectrum compared to that of inner core. As a result, values of radioactivity, decay heat, and hazard index were reveled to be 1.40 x 10{sup 15} Bequerels, 236 Watts, 4.34 x 10{sup 9} m{sup 3}-water, respectively, at 10 years after discharge. Those values correspond to 0.7 %, 1.1 %, 0.1 %, respectively, compared to that of spent fuel. Inconel 718 grid plate was shown to be the most important component in the all aspects of radioactivity, decay heat, and hazard index although the mass occupies only 1 % of the total. It was also shown that if the Inconel 718 grid plate is managed separately, the radioactivity and hazard index of metal waste could be decreased to 20 {approx} 45 % and 30 {approx} 45 %, respectively. As a whole, decay heat of metal waste was shown to be negligible in the aspect of disposal system design, while the radioactivity and hazard index are important.
Source Term Characteristics Analysis for Structural Components in PWR spent fuel assembly
Energy Technology Data Exchange (ETDEWEB)
Kook, Dong Hak; Choi, Heui Joo; Cho, Dong Keun [KAERI, Daejeon (Korea, Republic of)
2010-12-15
Source terms of metal waste comprising a spent fuel assembly are relatively important when the spent fuel is pyroprocessed, because cesium, strontium, and transuranics are not a concern any more in the aspect of source term of permanent disposal. In this study, characteristics of radiation source terms for each structural component in spent fuel assembly was analyzed by using ORIGEN-S with a assumption that 10 metric tons of uranium is pyroprocessed. At first, mass and volume for each structural component of the fuel assembly were calculated in detail. Activation cross section library was generated by using KENO-VI/ORIGEN-S module for top-end piece and bottom-end piece, because those are located at outer core under different neutron spectrum compared to that of inner core. As a result, values of radioactivity, decay heat, and hazard index were reveled to be 1.32x1015 Bequerels, 238 Watts, 4.32x109 m3 water, respectively, at 10 years after discharge. Those values correspond to 0.6 %, 1.1 %, 0.1 %, respectively, compared to that of spent fuel. Inconel 718 grid plate was shown to be the most important component in the all aspects of radioactivity, decay heat, and hazard index although the mass occupies only 1 % of the total. It was also shown that if the Inconel 718 grid plate is managed separately, the radioactivity and hazard index of metal waste could be decreased to 25{approx}50 % and 35{approx}40 %, respectively. As a whole, decay heat of metal waste was shown to be negligible in the aspect of disposal system design, while the radioactivity and hazard index are important
Source term analysis for a RCRA mixed waste disposal facility
International Nuclear Information System (INIS)
Jordan, D.L.; Blandford, T.N.; MacKinnon, R.J.
1996-01-01
A Monte Carlo transport scheme was used to estimate the source strength resulting from potential releases from a mixed waste disposal facility. Infiltration rates were estimated using the HELP code, and transport through the facility was modeled using the DUST code, linked to a Monte Carlo driver
Source term estimation via monitoring data and its implementation to the RODOS system
International Nuclear Information System (INIS)
Bohunova, J.; Duranova, T.
2000-01-01
A methodology and computer code for interpretation of environmental data, i.e. source term assessment, from on-line environmental monitoring network was developed. The method is based on the conversion of measured dose rates to the source term, i.e. airborne radioactivity release rate, taking into account real meteorological data and location of the monitoring points. The bootstrap estimation methodology and bipivot method to estimate the source term from on-site gamma dose rate monitors is used. The mentioned methods provide an estimate of the mean value of the source term and a confidence interval for it. (author)
International Nuclear Information System (INIS)
Griesheimer, D. P.; Toth, B. E.
2007-01-01
A novel technique for accelerating the convergence rate of the iterative power method for solving eigenvalue problems is presented. Smoothed Residual Acceleration (SRA) is based on a modification to the well known fixed-parameter extrapolation method for power iterations. In SRA the residual vector is passed through a low-pass filter before the extrapolation step. Filtering limits the extrapolation to the lower order Eigenmodes, improving the stability of the method and allowing the use of larger extrapolation parameters. In simple tests SRA demonstrates superior convergence acceleration when compared with an optimal fixed-parameter extrapolation scheme. The primary advantage of SRA is that it can be easily applied to Monte Carlo criticality calculations in order to reduce the number of discard cycles required before a stationary fission source distribution is reached. A simple algorithm for applying SRA to Monte Carlo criticality problems is described. (authors)
International Nuclear Information System (INIS)
Grimstone, M.J.
1978-06-01
The WRS Modular Programming System has been developed as a means by which programmes may be more efficiently constructed, maintained and modified. In this system a module is a self-contained unit typically composed of one or more Fortran routines, and a programme is constructed from a number of such modules. This report describes one WRS module, the function of which is to calculate the source strength of gamma-rays arising from neutron capture in a system represented in one-dimensional geometry. The information given in this manual is of use both to the programmer wishing to incorporate the module in a programme, and to the user of such a programme. (author)
Evaluation on In-vessel Source Term in PGSFR (2015 Results)
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Won; Chang, Won-Pyo; Ha, Kwi-Seok; Ahn, Sang June; Kang, Seok Hun; Choi, Chi-Woong; Lee, Kwi Lim; Jeong, Jae-Ho; Kim, Jin Su; Jeong, Taekyeong [KAERI, Daejeon (Korea, Republic of)
2016-05-15
This strategy requires nuclear plants to have features that prevent radionuclide release and multiple barriers to the escape from the plants of any radionuclides that are released despite preventive measures. Considerations of the ability to prevent and mitigate release of radionuclides arise at numerous places in the safety regulations of nuclear plants. The effectiveness of mitigative capabilities in nuclear plants is subject to quantitative analysis. The radionuclide input to these quantitative analyses of effectiveness is the Source Term (ST). All features of the composition, magnitude, timing, chemical form and physical form of accidental radionuclide release constitute the ST. Also, ST is defined as the release of radionuclides from the fuel and coolant into the containment, and subsequently to the environment. Since the TMI accident in 1979, extensive experimental and analytical information has been accumulated on the accident ST for LWRs. Such mechanistic models and computer codes as the MELCOR and MAAP have been developed. The results of extensive calculations and experiments have been used to formulate an alternative to the simple TID-14844 ST for regulatory purpose. The in-vessel STs are calculated through several phases: The inventory of each radionuclide is calculated by ORIGEN-2 code using the peak burnup conditions. The nominal value of the radiological inventory is multiplied by a factor of 1.1 as an uncertainty margin to give the radiological inventory. ST in the release from the core to primary sodium is calculated by using the assumption of 4S methodology. Lastly, ST in the release from the primary sodium to cover gas space is calculated by using the assumption of 4S methodology.
Benchmarking the New RESRAD-OFFSITE Source Term Model with DUST-MS and GoldSim - 13377
Energy Technology Data Exchange (ETDEWEB)
Cheng, J.J.; Kamboj, S.; Gnanapragasam, E.; Yu, C. [Argonne National Laboratory, Argonne, IL 60439 (United States)
2013-07-01
RESRAD-OFFSITE is a computer code developed by Argonne National Laboratory under the sponsorship of U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC). It is designed on the basis of RESRAD (onsite) code, a computer code designated by DOE and NRC for evaluating soil-contaminated sites for compliance with human health protection requirements pertaining to license termination or environmental remediation. RESRAD-OFFSITE has enhanced capabilities of modeling radionuclide transport to offsite locations and calculating potential radiation exposure to offsite receptors. Recently, a new source term model was incorporated into RESRAD-OFFSITE to enhance its capability further. This new source term model allows simulation of radionuclide releases from different waste forms, in addition to the soil sources originally considered in RESRAD (onsite) and RESRAD-OFFSITE codes. With this new source term model, a variety of applications can be achieved by using RESRAD-OFFSITE, including but not limited to, assessing the performance of radioactive waste disposal facilities. This paper presents the comparison of radionuclide release rates calculated by the new source term model of RESRAD-OFFSITE versus those calculated by DUST-MS and GoldSim, respectively. The focus of comparison is on the release rates of radionuclides from the bottom of the contaminated zone that was assumed to contain radioactive source materials buried in soil. The transport of released contaminants outside of the primary contaminated zone is beyond the scope of this paper. Overall, the agreement between the RESRAD-OFFSITE results and the DUST-MS and GoldSim results is fairly good, with all three codes predicting identical or similar radionuclide release profiles over time. Numerical dispersion in the DUST-MS and GoldSim results was identified as potentially contributing to the disagreement in the release rates. In general, greater discrepancy in the release rates was found for short
Benchmarking the New RESRAD-OFFSITE Source Term Model with DUST-MS and GoldSim - 13377
International Nuclear Information System (INIS)
Cheng, J.J.; Kamboj, S.; Gnanapragasam, E.; Yu, C.
2013-01-01
RESRAD-OFFSITE is a computer code developed by Argonne National Laboratory under the sponsorship of U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC). It is designed on the basis of RESRAD (onsite) code, a computer code designated by DOE and NRC for evaluating soil-contaminated sites for compliance with human health protection requirements pertaining to license termination or environmental remediation. RESRAD-OFFSITE has enhanced capabilities of modeling radionuclide transport to offsite locations and calculating potential radiation exposure to offsite receptors. Recently, a new source term model was incorporated into RESRAD-OFFSITE to enhance its capability further. This new source term model allows simulation of radionuclide releases from different waste forms, in addition to the soil sources originally considered in RESRAD (onsite) and RESRAD-OFFSITE codes. With this new source term model, a variety of applications can be achieved by using RESRAD-OFFSITE, including but not limited to, assessing the performance of radioactive waste disposal facilities. This paper presents the comparison of radionuclide release rates calculated by the new source term model of RESRAD-OFFSITE versus those calculated by DUST-MS and GoldSim, respectively. The focus of comparison is on the release rates of radionuclides from the bottom of the contaminated zone that was assumed to contain radioactive source materials buried in soil. The transport of released contaminants outside of the primary contaminated zone is beyond the scope of this paper. Overall, the agreement between the RESRAD-OFFSITE results and the DUST-MS and GoldSim results is fairly good, with all three codes predicting identical or similar radionuclide release profiles over time. Numerical dispersion in the DUST-MS and GoldSim results was identified as potentially contributing to the disagreement in the release rates. In general, greater discrepancy in the release rates was found for short
Directory of Open Access Journals (Sweden)
А. С. Трякина
2017-10-01
Full Text Available The article describes selection process of sustainable technological process flow chart for water treatment procedure developed on scientifically based calculated indexes of quality indicators for water supplied to water treatment facilities. In accordance with the previously calculated values of the indicators of the source water quality, the main purification facilities are selected. A more sustainable flow chart for the modern water quality of the Seversky Donets-Donbass channel is a two-stage filtering with contact prefilters and high-rate filters. The article proposes a set of measures to reduce such an indicator of water quality as permanganate oxidation. The most suitable for these purposes is sorption purification using granular activated carbon for water filtering. The increased water hardness is also quite topical. The method of ion exchange on sodium cation filters was chosen to reduce the water hardness. We also evaluated the reagents for decontamination of water. As a result, sodium hypochlorite is selected for treatment of water, which has several advantages over chlorine and retains the necessary aftereffect, unlike ozone. A technological flow chart with two-stage purification on contact prefilters and two-layer high-rate filters (granular activated carbon - quartz sand with disinfection of sodium hypochlorite and softening of a part of water on sodium-cation exchangers filters is proposed. This technological flow chart of purification with any fluctuations in the quality of the source water is able to provide purified water that meets the requirements of the current sanitary-hygienic standards. In accordance with the developed flow chart, guidelines and activities for the reconstruction of the existing Makeevka Filtering Station were identified. The recommended flow chart uses more compact and less costly facilities, as well as additional measures to reduce those water quality indicators, the values of which previously were in
The Analytical Repository Source-Term (AREST) model: Description and documentation
International Nuclear Information System (INIS)
Liebetrau, A.M.; Apted, M.J.; Engel, D.W.; Altenhofen, M.K.; Strachan, D.M.; Reid, C.R.; Windisch, C.F.; Erikson, R.L.; Johnson, K.I.
1987-10-01
The geologic repository system consists of several components, one of which is the engineered barrier system. The engineered barrier system interfaces with natural barriers that constitute the setting of the repository. A model that simulates the releases from the engineered barrier system into the natural barriers of the geosphere, called a source-term model, is an important component of any model for assessing the overall performance of the geologic repository system. The Analytical Repository Source-Term (AREST) model being developed is one such model. This report describes the current state of development of the AREST model and the code in which the model is implemented. The AREST model consists of three component models and five process models that describe the post-emplacement environment of a waste package. All of these components are combined within a probabilistic framework. The component models are a waste package containment (WPC) model that simulates the corrosion and degradation processes which eventually result in waste package containment failure; a waste package release (WPR) model that calculates the rates of radionuclide release from the failed waste package; and an engineered system release (ESR) model that controls the flow of information among all AREST components and process models and combines release output from the WPR model with failure times from the WPC model to produce estimates of total release. 167 refs., 40 figs., 12 tabs
Determination of source terms in a degenerate parabolic equation
International Nuclear Information System (INIS)
Cannarsa, P; Tort, J; Yamamoto, M
2010-01-01
In this paper, we prove Lipschitz stability results for inverse source problems relative to parabolic equations. We use the method introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates. What is new here is that we study a class of one-dimensional degenerate parabolic equations. In our model, the diffusion coefficient vanishes at one extreme point of the domain. Instead of the classical Carleman estimates obtained by Fursikov and Imanuvilov for non degenerate equations, we use and extend some recent Carleman estimates for degenerate equations obtained by Cannarsa, Martinez and Vancostenoble. Finally, we obtain Lipschitz stability results in inverse source problems for our class of degenerate parabolic equations both in the case of a boundary observation and in the case of a locally distributed observation
A study on the safety of spent fuel management. Radioactive source term modelling
Energy Technology Data Exchange (ETDEWEB)
Chun, Kwan Sik; Lee, Hoo Keun; Park, Keun Il; Hwoang, Jung Ki; Chung, Choong Hwan [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)
1992-02-01
The types and probabilities of events which may occur during the process of reception, transfer and storage of spent fuels in an away-from-reactor (AFR) spent fuel storage facility were analyzed in order to calculate the amount of radioactive material released to operation area and atmosphere, and the basic model for predicting the radioactive source-term under normal and abnormal operations were developed. Also, oxidation and dissolution of U0{sub 2} pellet was investigated to estimate the amount of radioactive materials released from spent fuel and the release characteristics of radionuclides from defected spent fuel rods was analyzed. Basic information using FIRAC code to analyze the ventilation system during fire accident was prepared and FIRIN was detached from FIRAC modified to simulate the compartment fire by personal computer. (Author).
Rivard, M J; D'Errico, F; Tsai, J S; Ulin, K; Engler, M J
2002-01-01
The sup 2 sup 5 sup 2 Cf neutron air kerma strength conversion factor (S sub K sub N /m sub C sub f) is a parameter needed to convert the radionuclide mass (mu g) provided by Oak Ridge National Laboratory into neutron air kerma strength required by modern clinical brachytherapy dosimetry formalisms indicated by Task Group No. 43 of the American Association of Physicists in Medicine (AAPM). The impact of currently used or proposed encapsulating materials for sup 2 sup 5 sup 2 Cf brachytherapy sources (Pt/Ir-10%, 316L stainless steel, nitinol, and Zircaloy-2) on S sub K sub N /m sub C sub f was calculated and results were fit to linear equations. Only for substantial encapsulation thicknesses, did S sub K sub N /m sub C sub f decrease, while the impact of source encapsulation composition is increasingly negligible as Z increases. These findings are explained on the basis of the non-relativistic kinematics governing the majority of sup 2 sup 5 sup 2 Cf neutron interactions. Neutron kerma and energy spectra resul...
Energy Technology Data Exchange (ETDEWEB)
Schmuck, P.
1995-08-01
The MELCOR code describing accident phenomena in the core and primary systems was used for source term calculations and - in the context of the MELCOR Cooperative Assessment Programme - for studying two-phase flows through components such as valves and chokes. Results of the latter studies in comparison to experiments gave hints for an improved calculation of momentum transfer between the phases. (orig.)
Regulatory impact of nuclear reactor accident source term assumptions. Technical report
International Nuclear Information System (INIS)
Pasedag, W.F.; Blond, R.M.; Jankowski, M.W.
1981-06-01
This report addresses the reactor accident source term implications on accident evaluations, regulations and regulatory requirements, engineered safety features, emergency planning, probabilistic risk assessment, and licensing practice. Assessment of the impact of source term modifications and evaluation of the effects in Design Basis Accident analyses, assuming a change of the chemical form of iodine from elemental to cesium iodide, has been provided. Engineered safety features used in current LWR designs are found to be effective for all postulated combinations of iodine source terms under DBA conditions. In terms of potential accident consequences, it is not expected that the difference in chemical form between elemental iodine and cesium iodide would be significant. In order to account for the current information on source terms, a spectrum of accident scenerios is discussed to realistically estimate the source terms resulting from a range of potential accident conditions
A simple method for estimating potential source term bypass fractions from confinement structures
International Nuclear Information System (INIS)
Kalinich, D.A.; Paddleford, D.F.
1997-01-01
Confinement structures house many of the operating processes at the Savannah River Site (SRS). Under normal operating conditions, a confinement structure in conjunction with its associated ventilation systems prevents the release of radiological material to the environment. However, under potential accident conditions, the performance of the ventilation systems and integrity of the structure may be challenged. In order to calculate the radiological consequences associated with a potential accident (e.g. fires, explosion, spills, etc.), it is necessary to determine the fraction of the source term initially generated by the accident that escapes from the confinement structure to the environment. While it would be desirable to estimate the potential bypass fraction using sophisticated control-volume/flow path computer codes (e.g. CONTAIN, MELCOR, etc.) in order to take as much credit as possible for the mitigative effects of the confinement structure, there are many instances where using such codes is not tractable due to limits on the level-of-effort allotted to perform the analysis. Moreover, the current review environment, with its emphasis on deterministic/bounding-versus probabilistic/best-estimate-analysis discourages using analytical techniques that require the consideration of a large number of parameters. Discussed herein is a simplified control-volume/flow path approach for calculating source term bypass fraction that is amenable to solution in a spreadsheet or with a commercial mathematical solver (e.g. MathCad or Mathematica). It considers the effects of wind and fire pressure gradients on the structure, ventilation system operation, and Halon discharges. Simple models are used to characterize the engineered and non-engineered flow paths. By making judicious choices for the limited set of problem parameters, the results from this approach can be defended as bounding and conservative
Term structure of 4d-electron configurations and calculated spectrum in Sn-isonuclear sequence
International Nuclear Information System (INIS)
Al-Rabban, Moza M.
2006-01-01
Theoretical calculations of term structure are carried out for the ground configurations 4d w , of atomic ions in the Sn isonuclear sequence. Atomic computations are performed to give a detailed account of the transitions in Sn +6 to Sn +13 ions. The spectrum is calculated for the most important excited configurations 4p 5 4d n+1 , 4d n-1 4f 1 , and 4d n-1 5p 1 with respect to the ground configuration 4d n , with n=8-1, respectively. The importance of 4p-4d, 4d-4f, and 4d-5p transitions is stressed, as well as the need for the configuration-interaction CI treatment of the Δn=0 transitions. In the region of importance for extreme ultraviolet (EUV) lithography around 13.4nm, the strongest lines were expected to be 4d n -4p 5 4d n+1 and 4d n -4d n-1 4f 1
International Nuclear Information System (INIS)
Zeng Jiaolong; Yuan Jianmin
2002-01-01
The spectrally resolved radiative opacity and the Rosseland and Planck mean opacities are calculated by using the detailed-term-accounting approximation for aluminum plasmas with varieties of density and temperature. The results are presented along a 40 eV isothermal sequence, a 0.01 g/cm 3 isodense sequence, and a sequence with average ionization degree Z*∼7.13. Particular attention is given to the influence of the detailed treatment of spectral lines on the Rosseland mean opacity under different thermodynamical conditions. The results show that at densities of 0.004 g/cm 3 and higher, the opacities are not very sensitive to the spectral linewidth within a reasonable range. As examples, the Rosseland mean opacity, which is most sensitive to the detailed linewidth, at 40 eV and 0.004 g/cm 3 changes no more than 15%, when we change the electron impact spectral linewidth artificially by reducing it by 50% or increasing it twice, and at 40 eV and 0.1 g/cm 3 it changes less than 5%. For comparison, we also carried out calculations by using an average atom model. For the Rosseland mean opacities, the two models show quite large differences, in particular at low densities, while for the Planck mean opacities the results of the two models are much closer
Akiyama, S.; Kawaji, K.; Fujihara, S.
2013-12-01
Since fault fracturing due to an earthquake can simultaneously cause ground motion and tsunami, it is appropriate to evaluate the ground motion and the tsunami by single fault model. However, several source models are used independently in the ground motion simulation or the tsunami simulation, because of difficulty in evaluating both phenomena simultaneously. Many source models for the 2011 off the Pacific coast of Tohoku Earthquake are proposed from the inversion analyses of seismic observations or from those of tsunami observations. Most of these models show the similar features, which large amount of slip is located at the shallower part of fault area near the Japan Trench. This indicates that the ground motion and the tsunami can be evaluated by the single source model. Therefore, we examine the possibility of the tsunami prediction, using the fault model estimated from seismic observation records. In this study, we try to carry out the tsunami simulation using the displacement field of oceanic crustal movements, which is calculated from the ground motion simulation of the 2011 off the Pacific coast of Tohoku Earthquake. We use two fault models by Yoshida et al. (2011), which are based on both the teleseismic body wave and on the strong ground motion records. Although there is the common feature in those fault models, the amount of slip near the Japan trench is lager in the fault model from the strong ground motion records than in that from the teleseismic body wave. First, the large-scale ground motion simulations applying those fault models used by the voxel type finite element method are performed for the whole eastern Japan. The synthetic waveforms computed from the simulations are generally consistent with the observation records of K-NET (Kinoshita (1998)) and KiK-net stations (Aoi et al. (2000)), deployed by the National Research Institute for Earth Science and Disaster Prevention (NIED). Next, the tsunami simulations are performed by the finite
Revised reactor accident source terms in the U.S. and implementation for light water reactors
International Nuclear Information System (INIS)
Soffer, L.; Lee, J.Y.
1992-01-01
Current NRC reactor accident source terms used for licensing are contained in Regulatory Guides 1.3 and 1.4 and specify that 100 % of the core inventory of noble gases and 25 % of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental (I 2 ) iodine. These assumptions have strongly affected present nuclear plant designs. Severe accident research results have confirmed that although the current source term is very substantial and has resulted in a very high level of plant capability, the present source term is no longer compatible with a realistic understanding of severe accidents. The NRC has issued a proposed revision of the reactor accident source terms as part of several regulatory activities to incorporate severe accident insights for future plants. A revision to 10 CFR 100 is also being proposed to specify site criteria directly and to eliminate source terms and doses for site evaluation. Reactor source terms will continue to be important in evaluating plant designs. Although intended primarily for future plants, existing and evolutionary power plants may voluntarily apply revised accident source term insights as well in licensing. The proposed revised accident source terms are presented in terms of fission product composition, magnitude, timing and iodine chemical form. Some implications for light water reactors are discussed. (author)
Dose assessments for Greifswald and Cadarache with updated source terms from ITER NSSR-2
International Nuclear Information System (INIS)
Raskob, W.; Hasemann, I.
1998-08-01
The International Thermonuclear Experimental Reactor ITER is in its late engineering phase. One of the most important safety aspects - in particular for achieving public acceptance - is to assure that the releases of harzardous material are minimal during normal operation and for accidental events, even if very unlikely. To this purpose probabilistic dose assessments for accidental atmospheric releases of various ITER source terms which contain tritium and/or activation products were performed for the sites of Greifswald, Germany, and Cadarache, France. In addition, routine releases into the atmosphere and hydrosphere have been evaluated. No country specific rules were applied and the input parameters were adapted as far as possible to those used within former studies to achieve a better comparability with site independent dose assessments performed in the frame of ITER. The calculations were based on source terms which, for the first time, contain a combination of tritium and activation products. This allowed a better judgment of the contribution to the total dose of the individual fusion relevant materials. The results were compared to site independent dose limits defined in the frame of ITER. Annual doses from routine releases (CAT-I) are below 0.1 μSv for the aquatic scenarios and are close to 1 μSv for the atmospheric source terms. Source terms for two different categories of accidental releases, representing 'extremely unlikely events' (CAT-IV) and 'hypothetical sequences' (CAT-V), were investigated. In none of these cases, the release scenarios of category CAT-IV exceed the ITER limits. In addition, relevant characteristic quantities of the early dose distribution from the hypothetical scenarios of type CAT-V are still below 50 mSv or 100 mSv, values which are commonly used as lower reference values for evacuation in many potential home countries of ITER. These site specific assessments confirmed that the proposed release limits and thus the derived dose
Effect of Fuel Structure Materials on Radiation Source Term in Reactor Core Meltdown
International Nuclear Information System (INIS)
Jeong, Hae Sun; Ha, Kwang Soon
2014-01-01
The fission product (Radiation Source) releases from the reactor core into the containment is obligatorily evaluated to guarantee the safety of Nuclear Power Plant (NPP) under the hypothetical accident involving a core meltdown. The initial core inventory is used as a starting point of all radiological consequences and effects on the subsequent results of accident assessment. Hence, a proper evaluation for the inventory can be regarded as one of the most important part over the entire procedure of accident analysis. The inventory of fission products is typically evaluated on the basis of the uranium material (e.g., UO2 and USi2) loaded in nuclear fuel assembly, except for the structure materials such as the end fittings, grids, and some kinds of springs. However, the structure materials are continually activated by the neutrons generated from the nuclear fission, and some nuclides of them (e.g., 14 C and 60 Co) can significantly influence on accident assessment. During the severe core accident, the structure components can be also melted with the melting points of temperature relatively lower than uranium material. A series of the calculation were performed by using ORIGEN-S module in SCALE 6.1 package code system. The total activity in each part of structure materials was specifically analyzed from these calculations. The fission product inventory is generally evaluated based on the uranium materials of fuel only, even though the structure components of the assembly are continually activated by the neutrons generated from the nuclear fission. In this study, the activation calculation of the fuel structure materials was performed for the initial source term assessment in the accident of reactor core meltdown. As a result, the lower end fitting and the upper plenum greatly contribute to the total activity except for the cladding material. The nuclides of 56 Mn, '5 1 Cr, 55 Fe, 58 Co, 54 Mn, and 60 Co are analyzed to mainly effect on the activity. This result
Adiabatic energization in the ring current and its relation to other source and loss terms
Liemohn, M. W.; Kozyra, J. U.; Clauer, C. R.; Khazanov, G. V.; Thomsen, M. F.
2002-04-01
The influence of adiabatic energization and deenergization effects, caused by particle drift in radial distance, on ring current growth rates and loss lifetimes is investigated. Growth and loss rates from simulation results of four storms (5 June 1991, 15 May 1997, 19 October 1998, and 25 September 1998) are examined and compared against the y component of the solar wind electric field (Ey,sw). Energy change rates with and without the inclusion of adiabatic energy changes are considered to isolate the influence of this mechanism in governing changes of ring current strength. It is found that the influence of adiabatic drift effects on the energy change rates is very large when energization and deenergization are considered separately as gain and loss mechanisms, often about an order of magnitude larger than all other source or loss terms combined. This is true not only during storm times, when the open drift path configuration of the hot ions dominates the physics of the ring current, but also during quiet times, when the small oscillation in L of the closed trajectories creates a large source and loss of energy each drift orbit. However, the net energy change from adiabatic drift is often smaller than other source and loss processes, especially during quiet times. Energization from adiabatic drift dominates ring current growth only during portions of the main phase of storms. Furthermore, the net-adiabatic energization is often positive, because some particles are lost in the inner magnetosphere before they can adiabatically deenergize. It is shown that the inclusion of only this net-adiabatic drift effect in the total source rate or loss lifetime (depending on the sign of the net-adiabatic energization) best matches the observed source and loss values from empirical Dst predictor methods (that is, for consistency, these values should be compared between the calculation methods). While adiabatic deenergization dominates the loss timescales for all Ey,sw values
International Nuclear Information System (INIS)
Christoforou, S.; Hoogenboom, J. E.
2009-01-01
We have used Boltzmann entropy in order to test whether a zero-variance based scheme can speed up the fission source convergence in a Monte Carlo calculation. It is shown that the choice of the initial source distribution significantly influences the evolution of the source, even leading to cases where the source does not converge at all throughout the calculation. The results from a loosely coupled system based on the NEA/OECD source convergence benchmarks indicate that, when using a biasing scheme such as the one we have developed, there can be significant improvement in the convergence, up to 3 times faster, which coupled with an figure of merit improvement of 1.5 leads to more efficient calculations. (authors)
STACE: source term analyses for containment evaluations of transport casks
International Nuclear Information System (INIS)
Seager, K.D.; Gianoulakis, S.E.; Barrett, P.R.; Rashid, Y.R.; Reardon, P.C.
1993-01-01
STACE evaluates the calculated fuel rod response against failure criteria based on the cladding residual ductility and fracture properties as functions of irradiation and thermal environments. The fuel rod gap inventory contains three forms of releasable RAM: (1) gaseous, e.g., 85 Kr, (2) volatiles, e.g., 134 Cs and 137 Cs, and (3) actinides associated with fuel fines. The quantities of these products are limited to that contained within the fuel-cladding gap region and associated interconnected voids. Cladding pinhole failure will also result in the ejection of about 0.003 percent of the fuel, in the form of fines, into the cask cavity. Significant attenuation of the aerosol concentration in the transport cask can occur, depending upon the residence time of the aerosol in the cask compared with its rate of escape from the cask into the environment. (J.P.N.)
A new approach for calculation of volume confined by ECR surface and its area in ECR ion source
International Nuclear Information System (INIS)
Filippov, A.V.
2007-01-01
The volume confined by the resonance surface and its area are important parameters of the balance equations model for calculation of ion charge-state distribution (CSD) in the electron-cyclotron resonance (ECR) ion source. A new approach for calculation of these parameters is given. This approach allows one to reduce the number of parameters in the balance equations model
Source terms derived from analyses of hypothetical accidents, 1950-1986
International Nuclear Information System (INIS)
Stratton, W.R.
1987-01-01
This paper reviews the history of reactor accident source term assumptions. After the Three Mile Island accident, a number of theoretical and experimental studies re-examined possible accident sequences and source terms. Some of these results are summarized in this paper
International Nuclear Information System (INIS)
Letellier, B.C.; McClure, P.; Restrepo, L.
1999-01-01
The objectives of this work were to evaluate the consequences of a postulated accident to onsite security personnel stationed near the facility during operations of the Godiva IV critical assembly and to identify controls needed to protect these personnel in case of an extreme criticality excursion equivalent to the design-basis accident (DBA). This paper presents the methodology and results of the source-term calculations, building ventilation rates, air concentrations, and consequence calculations that were performed using a multidisciplinary approach with several phenomenology models. Identification of controls needed to mitigate the consequences to near-field receptors is discussed
International Nuclear Information System (INIS)
Benitez-Navarro, J.C.; Salgado-Mojena, M.
2002-01-01
Owing to the considerable development in managing disused sealed radioactive sources (DSRS), the limited availability of disposal practices for them, and the new recommendations for the use of borehole disposal concept, it was felt that a paper reviewing the existing recommendations could be a starting point of discussion on the retrievability of the sources. Even when no international consensus exists as to an acceptable solution for the challenge of disposal of disused sealed sources, the 'Best Available Technology' for managing most of them, recommended for developing countries, included the cementation of the sources. The waste packages prepared in such a way do not allow any flexibility to accommodate possible future disposal requirements. Therefore, the 'Wait and See' approach could be also recommended for managing not only the sources with long-live radionuclides and high activity, but probably for all kind of existing disused sealed sources. The general aim of the current paper is to identify and review the current recommendations for managing disused sealed sources and to meditate on the most convenient management schemes for disused sealed radioactive sources in Member States without disposal capacities (Latin America, Africa). The risk that cemented DSRS could be incompatible with future disposal requirements was taken into account. (author)
DEFF Research Database (Denmark)
Göksu, Ömer; Teodorescu, Remus; Bak-Jensen, Birgitte
2012-01-01
As more renewable energy sources, especially more wind turbines are installed in the power system, analysis of the power system with the renewable energy sources becomes more important. Short-circuit calculation is a well known fault analysis method which is widely used for early stage analysis...
Source term estimation during incident response to severe nuclear power plant accidents. Draft
Energy Technology Data Exchange (ETDEWEB)
McKenna, T J; Giitter, J
1987-07-01
The various methods of estimating radionuclide release to the environment (source terms) as a result of an accident at a nuclear power reactor are discussed. The major factors affecting potential radionuclide releases off site (source terms) as a result of nuclear power plant accidents are described. The quantification of these factors based on plant instrumentation also is discussed. A range of accident conditions from those within the design basis to the most severe accidents possible are included in the text. A method of gross estimation of accident source terms and their consequences off site is presented. The goal is to present a method of source term estimation that reflects the current understanding of source term behavior and that can be used during an event. (author)
Source term estimation during incident response to severe nuclear power plant accidents. Draft
International Nuclear Information System (INIS)
McKenna, T.J.; Giitter, J.
1987-01-01
The various methods of estimating radionuclide release to the environment (source terms) as a result of an accident at a nuclear power reactor are discussed. The major factors affecting potential radionuclide releases off site (source terms) as a result of nuclear power plant accidents are described. The quantification of these factors based on plant instrumentation also is discussed. A range of accident conditions from those within the design basis to the most severe accidents possible are included in the text. A method of gross estimation of accident source terms and their consequences off site is presented. The goal is to present a method of source term estimation that reflects the current understanding of source term behavior and that can be used during an event. (author)
Source term estimation during incident response to severe nuclear power plant accidents
International Nuclear Information System (INIS)
McKenna, T.J.; Glitter, J.G.
1988-10-01
This document presents a method of source term estimation that reflects the current understanding of source term behavior and that can be used during an event. The various methods of estimating radionuclide release to the environment (source terms) as a result of an accident at a nuclear power reactor are discussed. The major factors affecting potential radionuclide releases off site (source terms) as a result of nuclear power plant accidents are described. The quantification of these factors based on plant instrumentation also is discussed. A range of accident conditions from those within the design basis to the most severe accidents possible are included in the text. A method of gross estimation of accident source terms and their consequences off site is presented. 39 refs., 48 figs., 19 tabs
Operator aids for prediction of source term attenuation
International Nuclear Information System (INIS)
Powers, D.A.
2004-01-01
Simplified expressions for the attenuation of radionuclide releases by sprays and by water pools are devised. These expressions are obtained by correlation of the 10th, 50th and 90th percentiles of uncertainty distributions for the water pool decontamination factor and the spray decontamination coefficient. These uncertainty distributions were obtained by Monte Carlo uncertainty analyses using detailed, mechanistic models of the pools and sprays. Uncertainties considered in the analyses include uncertainties in the phenomena and uncertainties in the initial and boundary conditions dictated by the progression of severe accidents. Final results are graphically displayed in terms of the decontamination factor achieved at selected levels of conservatism versus pool depth and water subcooling or, in the case of sprays, versus time. (author)
Conceptual model for deriving the repository source term
International Nuclear Information System (INIS)
Alexander, D.H.; Apted, M.J.; Liebetrau, A.M.; Van Luik, A.E.; Williford, R.E.; Doctor, P.G.; Pacific Northwest Lab., Richland, WA; Roy F. Weston, Inc./Rogers and Assoc. Engineering Corp., Rockville, MD)
1984-01-01
Part of a strategy for evaluating the compliance of geologic repositories with Federal regulations is a modeling approach that would provide realistic release estimates for a particular configuration of the engineered-barrier system. The objective is to avoid worst-case bounding assumptions that are physically impossible or excessively conservative and to obtain probabilitistic estimates of (1) the penetration time for metal barriers and (2) radionuclide-release rates for individually simulated waste packages after penetration has occurred. The conceptual model described in this paper will assume that release rates are explicitly related to such time-dependent processes as mass transfer, dissolution and precipitation, radionuclide decay, and variations in the geochemical environment. The conceptual model will take into account the reduction in the rates of waste-form dissolution and metal corrosion due to a buildup of chemical reaction products. The sorptive properties of the metal-barrier corrosion products in proximity to the waste form surface will also be included. Cumulative released from the engineered-barrier system will be calculated by summing the releases from a probabilistically generated population of individual waste packages. 14 refs., 7 figs
Conceptual model for deriving the repository source term
International Nuclear Information System (INIS)
Alexander, D.H.; Apted, M.J.; Liebetrau, A.M.; Doctor, P.G.; Williford, R.E.; Van Luik, A.E.
1984-11-01
Part of a strategy for evaluating the compliance of geologic repositories with federal regulations is a modeling approach that would provide realistic release estimates for a particular configuration of the engineered-barrier system. The objective is to avoid worst-case bounding assumptions that are physically impossible or excessively conservative and to obtain probabilistic estimates of (1) the penetration time for metal barriers and (2) radionuclide-release rates for individually simulated waste packages after penetration has occurred. The conceptual model described in this paper will assume that release rates are explicitly related to such time-dependent processes as mass transfer, dissolution and precipitation, radionuclide decay, and variations in the geochemical environment. The conceptual model will take into account the reduction in the rates of waste-form dissolution and metal corrosion due to a buildup of chemical reaction products. The sorptive properties of the metal-barrier corrosion products in proximity to the waste form surface will also be included. Cumulative releases from the engineered-barrier system will be calculated by summing the releases from a probabilistically generated population of individual waste packages. 14 refs., 7 figs
Coalescent: an open-source and scalable framework for exact calculations in coalescent theory
2012-01-01
Background Currently, there is no open-source, cross-platform and scalable framework for coalescent analysis in population genetics. There is no scalable GUI based user application either. Such a framework and application would not only drive the creation of more complex and realistic models but also make them truly accessible. Results As a first attempt, we built a framework and user application for the domain of exact calculations in coalescent analysis. The framework provides an API with the concepts of model, data, statistic, phylogeny, gene tree and recursion. Infinite-alleles and infinite-sites models are considered. It defines pluggable computations such as counting and listing all the ancestral configurations and genealogies and computing the exact probability of data. It can visualize a gene tree, trace and visualize the internals of the recursion algorithm for further improvement and attach dynamically a number of output processors. The user application defines jobs in a plug-in like manner so that they can be activated, deactivated, installed or uninstalled on demand. Multiple jobs can be run and their inputs edited. Job inputs are persisted across restarts and running jobs can be cancelled where applicable. Conclusions Coalescent theory plays an increasingly important role in analysing molecular population genetic data. Models involved are mathematically difficult and computationally challenging. An open-source, scalable framework that lets users immediately take advantage of the progress made by others will enable exploration of yet more difficult and realistic models. As models become more complex and mathematically less tractable, the need for an integrated computational approach is obvious. Object oriented designs, though has upfront costs, are practical now and can provide such an integrated approach. PMID:23033878
Coalescent: an open-source and scalable framework for exact calculations in coalescent theory
Directory of Open Access Journals (Sweden)
Tewari Susanta
2012-10-01
Full Text Available Abstract Background Currently, there is no open-source, cross-platform and scalable framework for coalescent analysis in population genetics. There is no scalable GUI based user application either. Such a framework and application would not only drive the creation of more complex and realistic models but also make them truly accessible. Results As a first attempt, we built a framework and user application for the domain of exact calculations in coalescent analysis. The framework provides an API with the concepts of model, data, statistic, phylogeny, gene tree and recursion. Infinite-alleles and infinite-sites models are considered. It defines pluggable computations such as counting and listing all the ancestral configurations and genealogies and computing the exact probability of data. It can visualize a gene tree, trace and visualize the internals of the recursion algorithm for further improvement and attach dynamically a number of output processors. The user application defines jobs in a plug-in like manner so that they can be activated, deactivated, installed or uninstalled on demand. Multiple jobs can be run and their inputs edited. Job inputs are persisted across restarts and running jobs can be cancelled where applicable. Conclusions Coalescent theory plays an increasingly important role in analysing molecular population genetic data. Models involved are mathematically difficult and computationally challenging. An open-source, scalable framework that lets users immediately take advantage of the progress made by others will enable exploration of yet more difficult and realistic models. As models become more complex and mathematically less tractable, the need for an integrated computational approach is obvious. Object oriented designs, though has upfront costs, are practical now and can provide such an integrated approach.
International Nuclear Information System (INIS)
Jha, Shibani K.; Puppala, Harish
2017-01-01
The growing energy demand in progressing civilization governs the exploitation of various renewable sources over the conventional sources. Wind, Solar, Hydro, Biomass, and waste & Bagasse are the various available renewable sources in India. A reliable nonconventional geothermal source is also available in India but it is restricted to direct heat applications. This study archives the status of renewable alternatives in India. The techno economic factors and environmental aspects associated with each of these alternatives are discussed. This study focusses on prioritizing the renewable sources based on a parameter introduced as Energy Index. This index is evaluated using cumulative scores obtained for each of the alternatives. The cumulative score is obtained by evaluating each alternative over a range of eleven environmental and techno economic criteria following Fuzzy Analytical Hierarchy Process. The eleven criteria's considered in the study are Carbon dioxide emissions (CO 2 ), Sulphur dioxide emissions (SO 2 ), Nitrogen oxide emissions (NO x ), Land requirement, Current energy cost, Potential future energy cost, Turnkey investment, Capacity factor, Energy efficiency, Design period and Water consumption. It is concluded from the study that the geothermal source is the most preferable alternative with highest Energy Index. Hydro, Wind, Biomass and Solar sources are subsequently preferred alternatives. - Highlights: • FAH process is used to obtain cumulative score for each renewable alternative. • Cumulative score is normalized by highest score of ideal source. • Energy Index shows how best a renewable alternative is. • Priority order is obtained for alternatives based on Energy Index. • Geothermal is most preferable source followed by Hydro, Wind, Biomass and Solar.
DUSTMS-D: DISPOSAL UNIT SOURCE TERM - MULTIPLE SPECIES - DISTRIBUTED FAILURE DATA INPUT GUIDE.
Energy Technology Data Exchange (ETDEWEB)
SULLIVAN, T.M.
2006-01-01
Performance assessment of a low-level waste (LLW) disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the source term). The focus of this work is to develop a methodology for calculating the source term. In general, the source term is influenced by the radionuclide inventory, the wasteforms and containers used to dispose of the inventory, and the physical processes that lead to release from the facility (fluid flow, container degradation, wasteform leaching, and radionuclide transport). Many of these physical processes are influenced by the design of the disposal facility (e.g., how the engineered barriers control infiltration of water). The complexity of the problem and the absence of appropriate data prevent development of an entirely mechanistic representation of radionuclide release from a disposal facility. Typically, a number of assumptions, based on knowledge of the disposal system, are used to simplify the problem. This has been done and the resulting models have been incorporated into the computer code DUST-MS (Disposal Unit Source Term-Multiple Species). The DUST-MS computer code is designed to model water flow, container degradation, release of contaminants from the wasteform to the contacting solution and transport through the subsurface media. Water flow through the facility over time is modeled using tabular input. Container degradation models include three types of failure rates: (a) instantaneous (all containers in a control volume fail at once), (b) uniformly distributed failures (containers fail at a linear rate between a specified starting and ending time), and (c) gaussian failure rates (containers fail at a rate determined by a mean failure time, standard deviation and gaussian distribution). Wasteform release models include four release mechanisms: (a) rinse with partitioning (inventory is released instantly upon container failure subject to equilibrium partitioning (sorption) with
Directory of Open Access Journals (Sweden)
Simon Mitternacht
2016-02-01
Full Text Available Calculating solvent accessible surface areas (SASA is a run-of-the-mill calculation in structural biology. Although there are many programs available for this calculation, there are no free-standing, open-source tools designed for easy tool-chain integration. FreeSASA is an open source C library for SASA calculations that provides both command-line and Python interfaces in addition to its C API. The library implements both Lee and Richards’ and Shrake and Rupley’s approximations, and is highly configurable to allow the user to control molecular parameters, accuracy and output granularity. It only depends on standard C libraries and should therefore be easy to compile and install on any platform. The library is well-documented, stable and efficient. The command-line interface can easily replace closed source legacy programs, with comparable or better accuracy and speed, and with some added functionality.
Source term reduction at DAEC (including stellite ball recycling)
International Nuclear Information System (INIS)
Smith, R.; Schebler, D.
1995-01-01
The Duane Arnold Energy Center was seeking methods to reduce dose rates from the drywell due to Co-60. Duane Arnold is known in the industry to have one of the highest drywell dose rates from the industry standardized 'BRAC' point survey. A prime method to reduce dose rates due to Co-60 is the accelerated replacement of stellite pins and rollers in control rod blades due to their high stellite (cobalt) content. Usually the cobalt content in alloys of stellite is greater than 60% cobalt by weight. During the RFO-12 refueling outage at Duane Arnold, all of the remaining cobalt bearing control rod blades were replaced and new stellite free control rod blades were installed in the core. This left Duane Arnold with the disposal of highly radioactive stellite pins and rollers. The processing of control rod blades for disposal is a very difficult evolution. First, the velocity limiter (a bottom portion of the component) and the highly radioactive upper stellite control rod blade ins and rollers are separated from the control rod blade. Next, the remainder of the control rod blade is processed (chopped and/or crushed) to aid packaging the waste for disposal. The stellite bearings are then often carefully placed in with the rest of the waste in a burial liner to provide shielding for disposal or more often are left as 'orphans' in the spent fuel pool because their high specific activity create shipping and packaging problems. Further investigation by the utility showed that the stellite balls and pins could be recycled to a source manufacturer rather than disposed of in a low-level burial site. The cost savings to the utility was on the order of $200,000 with a gross savings of $400,000 in savings in burial site charges. A second advantage of the recycling of the stellite pins and rollers was a reduction in control in radioactive waste shipments
International Nuclear Information System (INIS)
Li Chunjuan; Liu Yi'na; Zhang Weihua; Wang Zhiqiang
2014-01-01
The manganese bath method for measuring the neutron emission rate of radionuclide sources requires corrections to be made for emitted neutrons which are not captured by manganese nuclei. The Monte Carlo particle transport code MCNP was used to simulate the manganese bath system of the standards for the measurement of neutron source intensity. The correction factors were calculated and the reliability of the model was demonstrated through the key comparison for the radionuclide neutron source emission rate measurements organized by BIPM. The uncertainties in the calculated values were evaluated by considering the sensitivities to the solution density, the density of the radioactive material, the positioning of the source, the radius of the bath, and the interaction cross-sections. A new method for the evaluation of the uncertainties in Monte Carlo calculation was given. (authors)
Calculation of coupled bunch effects in the synchrotron light source BESSY VSR
Energy Technology Data Exchange (ETDEWEB)
Ruprecht, Martin
2016-02-22
In the scope of this thesis, the strength of coupled bunch instabilities (CBIs) driven by longitudinal monopole higher order modes (HOMs) and transverse dipole and quadrupole HOMs is evaluated for the upgrade project BESSY Variable Pulse Length Storage Ring (BESSY VSR) at Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH (HZB), based on analytic calculations and tracking simulations, and compared to the performance of an active bunch-by-bunch feedback (BBFB). Algorithms for tracking codes are derived, and a semi-empirical formula for the estimation of transverse quadrupole CBIs is presented. CBI studies are an integral part of the benchmarking of the cavity models for BESSY VSR and have been accompanying and influencing their entire design process. Based on the BESSY VSR cavity model with highly advanced HOM damping, beam stability is likely to be reached with a BBFB system, independent of the bunch fill pattern. Additionally, measurements of CBIs have been performed at BESSY II and the Metrology Light Source of the Physikalisch-Technische Bundesanstalt (MLS), where the longitudinal long range impedance was characterized. Transient beam loading is evaluated by means of analytic formulas and new experimentally verified tracking codes. For the baseline bunch fill pattern of BESSY VSR, it is shown that the particular setup of cavity frequencies amplifies the transient effect on the long bunch, limiting its elongation and potentially resulting in increased Touschek losses.
37 CFR 1.776 - Calculation of patent term extension for a food additive or color additive.
2010-07-01
... extension for a food additive or color additive. 1.776 Section 1.776 Patents, Trademarks, and Copyrights... Calculation of patent term extension for a food additive or color additive. (a) If a determination is made pursuant to § 1.750 that a patent for a food additive or color additive is eligible for extension, the term...
Schmitz, Oliver; Soenario, Ivan; Vaartjes, Ilonca; Strak, Maciek; Hoek, Gerard; Brunekreef, Bert; Dijst, Martin; Karssenberg, Derek
2016-04-01
Air pollution is one of the major concerns for human health. Associations between air pollution and health are often calculated using long-term (i.e. years to decades) information on personal exposure for each individual in a cohort. Personal exposure is the air pollution aggregated along the space-time path visited by an individual. As air pollution may vary considerably in space and time, for instance due to motorised traffic, the estimation of the spatio-temporal location of a persons' space-time path is important to identify the personal exposure. However, long term exposure is mostly calculated using the air pollution concentration at the x, y location of someone's home which does not consider that individuals are mobile (commuting, recreation, relocation). This assumption is often made as it is a major challenge to estimate space-time paths for all individuals in large cohorts, mostly because limited information on mobility of individuals is available. We address this issue by evaluating multiple approaches for the calculation of space-time paths, thereby estimating the personal exposure along these space-time paths with hyper resolution air pollution maps at national scale. This allows us to evaluate the effect of the space-time path and resulting personal exposure. Air pollution (e.g. NO2, PM10) was mapped for the entire Netherlands at a resolution of 5×5 m2 using the land use regression models developed in the European Study of Cohorts for Air Pollution Effects (ESCAPE, http://escapeproject.eu/) and the open source software PCRaster (http://www.pcraster.eu). The models use predictor variables like population density, land use, and traffic related data sets, and are able to model spatial variation and within-city variability of annual average concentration values. We approximated space-time paths for all individuals in a cohort using various aggregations, including those representing space-time paths as the outline of a persons' home or associated parcel
Calculation of the magnitude of long term contaminated area with COSYMA and MACCS
International Nuclear Information System (INIS)
Grupa, J.
1996-09-01
A severe nuclear accident will contaminate large areas of land. This paper discusses the output that can be obtained with COSYMA and MACCS to evaluate this contamination. Both codes associate contamination with deposition of given nuclides and the severity of contamination is expressed in terms of the ground concentration (Bq/m 2 ). However, for this analysis we decided to judge the severity of the land contamination by the dose rate (Sv/year) to the local inhabitants. To explain the differences between the COSYMA and MACCS results some details of the results were compared. This revealed that the results depend strongly on the choice of the grid if severe contamination occurs beyond about 50 to 100 km from the source. Another important factor to take into account when judging the severity of land contamination is the duration of the contamination; i.e. the time it takes until the contamination has decreased below a given level. Since we judge the contamination by the dose to the local public, the 'averted dose' concept has been used to evaluate the duration of the contamination. (orig.)
Recent advances in the source term area within the SARNET European severe accident research network
International Nuclear Information System (INIS)
Herranz, L.E.; Haste, T.; Kärkelä, T.
2015-01-01
Highlights: • Main achievements of source term research in SARNET are given. • Emphasis on the radiologically important iodine and ruthenium fission products. • Conclusions on FP release, transport in the RCS and containment behaviour. • Significance of large-scale integral experiments to validate the analyses used. • A thorough list of the most recent references on source term research results. - Abstract: Source Term has been one of the main research areas addressed within the SARNET network during the 7th EC Framework Programme of EURATOM. The entire source term domain was split into three major areas: oxidising impact on source term, iodine chemistry in the reactor coolant system and containment and data and code assessment. The present paper synthesises the main technical outcome stemming from the SARNET FWP7 project in the area of source term and includes an extensive list of references in which deeper insights on specific issues may be found. Besides, based on the analysis of the current state of the art, an outlook of future source term research is outlined, where major changes in research environment are discussed (i.e., the end of the Phébus FP project; the end of the SARNET projects; and the launch of HORIZON 2020). Most probably research projects will be streamlined towards: release and transport under oxidising conditions, containment chemistry, existing and innovative filtered venting systems and others. These will be in addition to a number of projects that have been completed or are ongoing under different national and international frameworks, like VERDON, CHIP and EPICUR started under the International Source Term Programme (ISTP), the OECD/CSNI programmes BIP, BIP2, STEM, THAI and THAI2, and the French national programme MIRE. The experimental PASSAM project under the 7th EC Framework programme, focused on source term mitigation systems, is highlighted as a good example of a project addressing potential enhancement of safety systems
Recent advances in the source term area within the SARNET European severe accident research network
Energy Technology Data Exchange (ETDEWEB)
Herranz, L.E., E-mail: luisen.herranz@ciemat.es [Centro de Investigaciones Energeticas Medio Ambientales y Tecnologica, CIEMAT, Avda. Complutense 40, E-28040 Madrid (Spain); Haste, T. [Institut de Radioprotection et de Sûreté Nucléaire, IRSN, BP 3, F-13115 St Paul lez Durance Cedex (France); Kärkelä, T. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT Espoo (Finland)
2015-07-15
Highlights: • Main achievements of source term research in SARNET are given. • Emphasis on the radiologically important iodine and ruthenium fission products. • Conclusions on FP release, transport in the RCS and containment behaviour. • Significance of large-scale integral experiments to validate the analyses used. • A thorough list of the most recent references on source term research results. - Abstract: Source Term has been one of the main research areas addressed within the SARNET network during the 7th EC Framework Programme of EURATOM. The entire source term domain was split into three major areas: oxidising impact on source term, iodine chemistry in the reactor coolant system and containment and data and code assessment. The present paper synthesises the main technical outcome stemming from the SARNET FWP7 project in the area of source term and includes an extensive list of references in which deeper insights on specific issues may be found. Besides, based on the analysis of the current state of the art, an outlook of future source term research is outlined, where major changes in research environment are discussed (i.e., the end of the Phébus FP project; the end of the SARNET projects; and the launch of HORIZON 2020). Most probably research projects will be streamlined towards: release and transport under oxidising conditions, containment chemistry, existing and innovative filtered venting systems and others. These will be in addition to a number of projects that have been completed or are ongoing under different national and international frameworks, like VERDON, CHIP and EPICUR started under the International Source Term Programme (ISTP), the OECD/CSNI programmes BIP, BIP2, STEM, THAI and THAI2, and the French national programme MIRE. The experimental PASSAM project under the 7th EC Framework programme, focused on source term mitigation systems, is highlighted as a good example of a project addressing potential enhancement of safety systems
InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk
Cheng, Liang; Jiang, Yue; Ju, Hong; Sun, Jie; Peng, Jiajie; Zhou, Meng; Hu, Yang
2018-01-01
Background Since the establishment of the first biomedical ontology Gene Ontology (GO), the number of biomedical ontology has increased dramatically. Nowadays over 300 ontologies have been built including extensively used Disease Ontology (DO) and Human Phenotype Ontology (HPO). Because of the advantage of identifying novel relationships between terms, calculating similarity between ontology terms is one of the major tasks in this research area. Though similarities between terms within each o...
International Nuclear Information System (INIS)
Chen, S.Y.; LePoire, D.; Yu, C.; Schafetz, S.; Mehta, P.
1991-01-01
The SOLID computer model was developed for calculating the effective dose equivalent from external exposure to distributed gamma sources in soil. It is designed to assess external doses under various exposure scenarios that may be encountered in environmental restoration programs. The models four major functional features address (1) dose versus source depth in soil, (2) shielding of clean cover soil, (3) area of contamination, and (4) nonuniform distribution of sources. The model is also capable of adjusting doses when there are variations in soil densities for both source and cover soils. The model is supported by a data base of approximately 500 radionuclides. 4 refs
Source term model evaluations for the low-level waste facility performance assessment
Energy Technology Data Exchange (ETDEWEB)
Yim, M.S.; Su, S.I. [North Carolina State Univ., Raleigh, NC (United States)
1995-12-31
The estimation of release of radionuclides from various waste forms to the bottom boundary of the waste disposal facility (source term) is one of the most important aspects of LLW facility performance assessment. In this work, several currently used source term models are comparatively evaluated for the release of carbon-14 based on a test case problem. The models compared include PRESTO-EPA-CPG, IMPACTS, DUST and NEFTRAN-II. Major differences in assumptions and approaches between the models are described and key parameters are identified through sensitivity analysis. The source term results from different models are compared and other concerns or suggestions are discussed.
Source-term reevaluation for US commercial nuclear power reactors: a status report
International Nuclear Information System (INIS)
Herzenberg, C.L.; Ball, J.R.; Ramaswami, D.
1984-12-01
Only results that had been discussed publicly, had been published in the open literature, or were available in preliminary reports as of September 30, 1984, are included here. More than 20 organizations are participating in source-term programs, which have been undertaken to examine severe accident phenomena in light-water power reactors (including the chemical and physical behavior of fission products under accident conditions), update and reevaluate source terms, and resolve differences between predictions and observations of radiation releases and related phenomena. Results from these source-term activities have been documented in over 100 publications to date
An investigation of the closure problem applied to reactor accident source terms
International Nuclear Information System (INIS)
Brearley, I.R.; Nixon, W.; Hayns, M.R.
1987-01-01
The closure problem, as considered here, focuses attention on the question of when in current research programmes enough has been learned about the source terms for reactor accident releases. Noting that current research is tending to reduce the estimated magnitude of the aerosol component of atmospheric, accidental releases, several possible criteria for closure are suggested. Moreover, using the reactor accident consequence model CRACUK, the effect of gradually reducing the aerosol release fractions of a pressurized water reactor (PWR2) source term (as defined in the WASH-1400 study) is investigated and the implications of applying the suggested criteria to current source term research discussed. (author)
Evaluation of the LMFBR cover gas source term and synthesis of the associated R and D
International Nuclear Information System (INIS)
Balard, F.; Carluec, B.
1996-01-01
At the end of the seventies and the beginning of the eighties, there appeared a pressing need of experimental results to assess the LMFBR's safety level. Because of the urgency, analytical studies were not systematically undertaken and maximum credible cover gas instantaneous source terms (radionuclides core release fraction) were got directly from crude out-of-pile experiment interpretations. Two types of studies and mock-ups were undertaken depending on the timescale of the phenomena: instantaneous source terms (corresponding to an unlikely energetic core disruptive accident CDA), and delayed ones (tens of minutes to some hours). The experiments performed in this frame are reviewed in this presentation: 1) instantaneous source term: - FAUST experiments: I, Cs, UO2 source terms (FzK, Germany), - FAST experiments : pool depth influence on non volatile source term (USA), - CARAVELLE experiments: nonvolatile source term in SPX1 geometry (CEA, France); 2) delayed source term: - NALA experiments: I, Cs, Sr, UO2 source term (FzK, Germany), - PAVE experiments: I source term (CEA, France), - NACOWA experiments: cover gas aerosols enrichment in I and Cs (FzK, Germany) - other French experiments in COPACABANA and GULLIVER facilities. The volatile fission products release is tightly bound to sodium evaporation and a large part of the fission products is dissolved in the liquid sodium aerosols present in the cover gas. Thus the knowledge of the amount of aerosol release to the cover gas is important for the evaluation of the source term. The maximum credible cover gas instantaneous source terms deduced from the experiments have led to conservative source terms to be taken into account in safety analysis. Nevertheless modelling attempts of the observed (in-pile or out-of-pile) physico-chemical phenomena have been undertaken for extrapolation to the reactor case. The main topics of this theoretical research are as follows: fission products evaporation in the cover gas (Fz
Development of source term evaluation method for Korean Next Generation Reactor
Energy Technology Data Exchange (ETDEWEB)
Lee, Keon Jae; Cheong, Jae Hak; Park, Jin Baek; Kim, Guk Gee [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-10-15
This project had investigate several design features of radioactive waste processing system and method to predict nuclide concentration at primary coolant basic concept of next generation reactor and safety goals at the former phase. In this project several prediction methods of source term are evaluated conglomerately and detailed contents of this project are : model evaluation of nuclide concentration at Reactor Coolant System, evaluation of primary and secondary coolant concentration of reference Nuclear Power Plant(NPP), investigation of prediction parameter of source term evaluation, basic parameter of PWR, operational parameter, respectively, radionuclide removal system and adjustment values of reference NPP, suggestion of source term prediction method of next generation NPP.
Development of source term evaluation method for Korean Next Generation Reactor(III)
Energy Technology Data Exchange (ETDEWEB)
Lee, Geon Jae; Park, Jin Baek; Lee, Yeong Il; Song, Min Cheonl; Lee, Ho Jin [Korea Advanced Institue of Science and Technology, Taejon (Korea, Republic of)
1998-06-15
This project had investigated irradiation characteristics of MOX fuel method to predict nuclide concentration at primary and secondary coolant using a core containing 100% of all MOX fuel and development of source term evaluation tool. In this study, several prediction methods of source term are evaluated. Detailed contents of this project are : an evaluation of model for nuclear concentration at Reactor Coolant System, evaluation of primary and secondary coolant concentration of reference Nuclear Power Plant using purely MOX fuel, suggestion of source term prediction method of NPP with a core using MOX fuel.
Energy Technology Data Exchange (ETDEWEB)
Kim, Tae Woon; Han, Seok Jung; Ahn, Kwang Il; Fynan, Douglas; Jung, Yong Hoon [KAERI, Daejeon (Korea, Republic of)
2016-05-15
Since the Three Mile Island (TMI) (1979), Chernobyl (1986), Fukushima Daiichi (2011) accidents, the assessment of radiological source term effects on the environment has been a key concern of nuclear safety. In the Fukushima Daiichi accident, the long-term SBO (station blackout) accident occurs. Using the worst case assumptions like in Fukushima accident on the accident sequences and on the availability of safety systems, the thermal hydraulic behaviors, core relocation and environmental source terms behaviors are estimated for long-term SBO accident for OPR-1000 reactor. MELCOR code version 1.8.6 is used in this analysis. Source term results estimated in this study is compared with other previous studies and estimated results in Fukushima accidents in UNSCEAR-2013 report. This study estimated that 11 % of iodine can be released to environment and 2% of cesium can be released to environment. UNSCEAR-2013 report estimated that 2 - 8 % of iodine have been released to environment and 1 - 3 % of cesium have been released to the environment. They have similar results in the aspect of release fractions of iodine and cesium to environment.
Economical comparison of imported energy sources in terms of long-term production planning
International Nuclear Information System (INIS)
Gungor, Z.
1999-01-01
In this paper, the Turkish energy production sector is studied and power plants fueled by natural gas, imported coal and nuclear power are compared in terms of long-term (1996-2010) production economy. A net present value is used for comparing nuclear, coal and natural gas power plants. A scenario approach is utilized in establishing the effects of different factors, such as inflation rate, unit of investment costs, load factor change, discount rate and fuel price changes. Six different scenarios of interest are developed and discussed. The study ends with conclusions and recommendations based on a study of a reference scenario and alternative scenarios. (author)
International Nuclear Information System (INIS)
Ji Gang; Guo Yong; Luo Yisheng; Zhang Wenzhong
2001-01-01
Objective: To provide useful parameters for neutron radiotherapy, the author presents results of a Monte Carlo simulation study investigating the dosimetric characteristics of linear 252 Cf fission neutron sources. Methods: A 252 Cf fission source and tissue equivalent phantom were modeled. The dose of neutron and gamma radiations were calculated using Monte Carlo Code. Results: The dose of neutron and gamma at several positions for 252 Cf in the phantom made of equivalent materials to water, blood, muscle, skin, bone and lung were calculated. Conclusion: The results by Monte Carlo methods were compared with the data by measurement and references. According to the calculation, the method using water phantom to simulate local tissues such as muscle, blood and skin is reasonable for the calculation and measurements of dose distribution for 252 Cf
International Nuclear Information System (INIS)
Simakov, S.P.; Fischer, U.; Moellendorff, U. von; Schmuck, I.; Konobeev, A.Yu.; Korovin, Yu.A.; Pereslavtsev, P.
2002-01-01
A newly developed computational procedure is presented for the generation of d-Li source neutrons in Monte Carlo transport calculations based on the use of evaluated double-differential d+ 6,7 Li cross section data. A new code M c DeLicious was developed as an extension to MCNP4C to enable neutronics design calculations for the d-Li based IFMIF neutron source making use of the evaluated deuteron data files. The M c DeLicious code was checked against available experimental data and calculation results of M c DeLi and MCNPX, both of which use built-in analytical models for the Li(d, xn) reaction. It is shown that M c DeLicious along with newly evaluated d+ 6,7 Li data is superior in predicting the characteristics of the d-Li neutron source. As this approach makes use of tabulated Li(d, xn) cross sections, the accuracy of the IFMIF d-Li neutron source term can be steadily improved with more advanced and validated data
Simakov, S P; Moellendorff, U V; Schmuck, I; Konobeev, A Y; Korovin, Y A; Pereslavtsev, P
2002-01-01
A newly developed computational procedure is presented for the generation of d-Li source neutrons in Monte Carlo transport calculations based on the use of evaluated double-differential d+ sup 6 sup , sup 7 Li cross section data. A new code M sup c DeLicious was developed as an extension to MCNP4C to enable neutronics design calculations for the d-Li based IFMIF neutron source making use of the evaluated deuteron data files. The M sup c DeLicious code was checked against available experimental data and calculation results of M sup c DeLi and MCNPX, both of which use built-in analytical models for the Li(d, xn) reaction. It is shown that M sup c DeLicious along with newly evaluated d+ sup 6 sup , sup 7 Li data is superior in predicting the characteristics of the d-Li neutron source. As this approach makes use of tabulated Li(d, xn) cross sections, the accuracy of the IFMIF d-Li neutron source term can be steadily improved with more advanced and validated data.
International Nuclear Information System (INIS)
Hagag, O.M.; Nafee, S.S.; Naeem, M.A.; El Khatib, A.M.
2011-01-01
The direct mathematical method has been developed for calculating the total efficiency of many cylindrical gamma detectors, especially HPGe and NaI detector. Different source geometries are considered (point and disk). Further into account is taken of gamma attenuation from detector window or any interfacing absorbing layer. Results are compared with published experimental data to study the validity of the direct mathematical method to calculate total efficiency for any gamma detector size.
Relation between source term and emergency planning for nuclear power plants
International Nuclear Information System (INIS)
Shi Zhongqi; Yang Ling
1992-01-01
Some background information of the severe accidents and source terms related to the nuclear power plant emergency planning are presented. The new source term information in NUREG-0956 and NUREG-1150, and possible changes in emergency planning requirements in U.S.A. are briefly provided. It is suggested that a principle is used in selecting source terms for establishing the emergency planning policy and a method is used in determining the Emergency Planning Zone (EPZ) size in China. Based on the research results of (1) EPZ size of PWR nuclear power plants being built in China, and (2) impact of reactor size and selected source terms on the EPZ size, it is concluded that the suggested principle and the method are suitable and feasible for PWR nuclear power plants in China
Consideration of emergency source terms for pebble-bed high temperature gas-cooled reactor
International Nuclear Information System (INIS)
Tao, Liu; Jun, Zhao; Jiejuan, Tong; Jianzhu, Cao
2009-01-01
Being the last barrier in the nuclear power plant defense-in-depth strategy, emergency planning (EP) is an integrated project. One of the key elements in this process is emergency source terms selection. Emergency Source terms for light water reactor (LWR) nuclear power plant (NPP) have been introduced in many technical documents, and advanced NPP emergency planning is attracting attention recently. Commercial practices of advanced NPP are undergoing in the world, pebble-bed high-temperature gas-cooled reactor (HTGR) power plant is under construction in China which is considered as a representative of advanced NPP. The paper tries to find some pieces of suggestion from our investigation. The discussion of advanced NPP EP will be summarized first, and then the characteristics of pebble-bed HTGR relating to EP will be described. Finally, PSA insights on emergency source terms selection and current pebble-bed HTGR emergency source terms suggestions are proposed
Selected source term topics. Report to CSNI by an OECD/NEA Group of experts
International Nuclear Information System (INIS)
1987-04-01
CSNI Report 136 summarizes the results of the work performed by the Group of Experts on the Source Term and Environmental Consequences (PWG4) during the period extending from 1983 and 1986. This report is complementary to Part 1, 'Technical Status of the Source Term' of CSNI Report 135, 'Report to CSNI on Source Term Assessment, Containment atmosphere control systems, and accident consequences'; it considers in detail a number of very specific issues thought to be important in the source term area. It consists of: an executive summary (prepared by the Chairman of the Group), a section on conclusions and recommendations, and five technical chapters (fission product chemistry in the primary circuit of a LWR during severe accidents; resuspension/re-entrainment of aerosols in LWRs following a meltdown accident; iodine chemistry under severe accident conditions; effects of combustion, steam explosions and pressurized melt ejection on fission product behaviour; radionuclide removal by pool scrubbing), a technical annex and two appendices
Uncertainty analysis methods for quantification of source terms using a large computer code
International Nuclear Information System (INIS)
Han, Seok Jung
1997-02-01
Quantification of uncertainties in the source term estimations by a large computer code, such as MELCOR and MAAP, is an essential process of the current probabilistic safety assessments (PSAs). The main objectives of the present study are (1) to investigate the applicability of a combined procedure of the response surface method (RSM) based on input determined from a statistical design and the Latin hypercube sampling (LHS) technique for the uncertainty analysis of CsI release fractions under a hypothetical severe accident sequence of a station blackout at Young-Gwang nuclear power plant using MAAP3.0B code as a benchmark problem; and (2) to propose a new measure of uncertainty importance based on the distributional sensitivity analysis. On the basis of the results obtained in the present work, the RSM is recommended to be used as a principal tool for an overall uncertainty analysis in source term quantifications, while using the LHS in the calculations of standardized regression coefficients (SRC) and standardized rank regression coefficients (SRRC) to determine the subset of the most important input parameters in the final screening step and to check the cumulative distribution functions (cdfs) obtained by RSM. Verification of the response surface model for its sufficient accuracy is a prerequisite for the reliability of the final results obtained by the combined procedure proposed in the present work. In the present study a new measure has been developed to utilize the metric distance obtained from cumulative distribution functions (cdfs). The measure has been evaluated for three different cases of distributions in order to assess the characteristics of the measure: The first case and the second are when the distribution is known as analytical distributions and the other case is when the distribution is unknown. The first case is given by symmetry analytical distributions. The second case consists of two asymmetry distributions of which the skewness is non zero
Calculation of the effective dose from natural radioactivity sources in soil using MCNP code
International Nuclear Information System (INIS)
Krstic, D.; Nikezic, D.
2008-01-01
Full text: Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this report. Calculations have been done for the most common natural radionuclides in soil as 238 U, 232 Th series and 40 K. A ORNL age-dependent phantom and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs of phantom.The effective dose was calculated according to ICRP74 recommendations. Conversion coefficients of effective dose per air kerma were determined. Results obtained here were compared with other authors
International Nuclear Information System (INIS)
Stecher, Luiza Chourkalo
2014-01-01
There has been an increasing concern about current environmental issues caused by human activity, as the world searches for development. The production of electricity is an extremely relevant factor in this scenario since it is responsible for a large portion of the emissions that cause the greenhouse effect. Due to this fact, a sustainable development with alternative energy sources, which are attractive for such purpose, must be proposed, especially in places that are not supplied by the conventional electricity grid such as many communities in the Northeast Brazil. This work aims to calculate the environmental cost for the alternative sources of energy - solar, wind and biomass - during electricity generation, and to estimate the economic feasibility of those sources in small communities of Northeast Brazil, considering the avoided costs. The externalities must be properly identified and valued so the costs or benefits can be internalized and reflect accurately the economic feasibility or infeasibility of those sources. For this, the method of avoided costs was adopted for the calculation of externalities. This variable was included in the equation developed for all considered alternative energy sources. The calculations of economic feasibility were performed taking the new configurations in consideration, and the new equation was reprogrammed in the Programa de Calculo de Custos de Energias Alternativas, Solar, Eolica e Biomassa (PEASEB). The results demonstrated that the solar photovoltaic energy in isolated systems is the most feasible and broadly applicable source for small communities of Northeast Brazil. (author)
International Nuclear Information System (INIS)
Filippov, A.V.; Shirkov, G.D.; Consoli, F.; Gammino, S.; Ciavola, G.; Celona, L.; Barbarino, S.
2008-01-01
The investigation of the widespread model for the calculation of ion charge-state distributions (CSD) in electron cyclotron-resonance ion source based on the set of balance equations is given. The modification of this model that allows one to describe the confinement and accumulation processes of highly charged ions in ECR plasma for gas mixing case more precisely is discussed. The new approach for the time confinement calculation (ions and electrons) based on the theory of Pastukhov is offered, viz. - calculation of confinement times during two step minimization of special type functionals. The results obtained by this approach have been compared with available experimental data
Directory of Open Access Journals (Sweden)
Khazan A.
2010-10-01
Full Text Available It is shown that only the hyperbolic law of the Periodic Table of Elements allows the exact calculation for the atomic masses. The reference data of Periods 8 and 9 manifest a systematic error in the computer software applied to such a calculation (this systematic error increases with the number of the elements in the Table.
Directory of Open Access Journals (Sweden)
Khazan A.
2010-10-01
Full Text Available It is shown that only the hyperbolic law of the Periodic Table of Elements allows the exact calculation for the atomic masses. The reference data of Periods 8 and 9 manifest a systematic error in the computer software applied to such a calculation (this systematic error increases with the number of the elements in the Table.
DEFF Research Database (Denmark)
Bjerg, Poul Løgstrup; Chambon, Julie Claire Claudia; Troldborg, Mads
2008-01-01
spreads to the low permeability matrix by diffusion. This results in a long term source of contamination due to back-diffusion. Leaching from such sources is further complicated by microbial degradation under anaerobic conditions to sequentially form the daughter products trichloroethylene, cis...
Lin, Hui; Liu, Tianyu; Su, Lin; Bednarz, Bryan; Caracappa, Peter; Xu, X. George
2017-09-01
Monte Carlo (MC) simulation is well recognized as the most accurate method for radiation dose calculations. For radiotherapy applications, accurate modelling of the source term, i.e. the clinical linear accelerator is critical to the simulation. The purpose of this paper is to perform source modelling and examine the accuracy and performance of the models on Intel Many Integrated Core coprocessors (aka Xeon Phi) and Nvidia GPU using ARCHER and explore the potential optimization methods. Phase Space-based source modelling for has been implemented. Good agreements were found in a tomotherapy prostate patient case and a TrueBeam breast case. From the aspect of performance, the whole simulation for prostate plan and breast plan cost about 173s and 73s with 1% statistical error.
Directory of Open Access Journals (Sweden)
Lin Hui
2017-01-01
Full Text Available Monte Carlo (MC simulation is well recognized as the most accurate method for radiation dose calculations. For radiotherapy applications, accurate modelling of the source term, i.e. the clinical linear accelerator is critical to the simulation. The purpose of this paper is to perform source modelling and examine the accuracy and performance of the models on Intel Many Integrated Core coprocessors (aka Xeon Phi and Nvidia GPU using ARCHER and explore the potential optimization methods. Phase Space-based source modelling for has been implemented. Good agreements were found in a tomotherapy prostate patient case and a TrueBeam breast case. From the aspect of performance, the whole simulation for prostate plan and breast plan cost about 173s and 73s with 1% statistical error.
Backup Sourcing Decisions for Coping with Supply Disruptions under Long-Term Horizons
Directory of Open Access Journals (Sweden)
Jing Hou
2016-01-01
Full Text Available This paper studies a buyer’s inventory control problem under a long-term horizon. The buyer has one major supplier that is prone to disruption risks and one backup supplier with higher wholesale price. Two kinds of sourcing methods are available for the buyer: single sourcing with/without contingent supply and dual sourcing. In contingent sourcing, the backup supplier is capacitated and/or has yield uncertainty, whereas in dual sourcing the backup supplier has an incentive to offer output flexibility during disrupted periods. The buyer’s expected cost functions and the optimal base-stock levels using each sourcing method under long-term horizon are obtained, respectively. The effects of three risk parameters, disruption probability, contingent capacity or uncertainty, and backup flexibility, are examined using comparative studies and numerical computations. Four sourcing methods, namely, single sourcing with contingent supply, dual sourcing, and single sourcing from either of the two suppliers, are also compared. These findings can be used as a valuable guideline for companies to select an appropriate sourcing strategy under supply disruption risks.
QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices
DEFF Research Database (Denmark)
Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov
2017-01-01
QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron–electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven...
International Nuclear Information System (INIS)
Petrov, Eh.E.; Fadeev, I.A.
1979-01-01
A possibility to use displaced sampling from a bulk gamma source in calculating the secondary gamma fields by the Monte Carlo method is discussed. The algorithm proposed is based on the concept of conjugate functions alongside the dispersion minimization technique. For the sake of simplicity a plane source is considered. The algorithm has been put into practice on the M-220 computer. The differential gamma current and flux spectra in 21cm-thick lead have been calculated. The source of secondary gamma-quanta was assumed to be a distributed, constant and isotropic one emitting 4 MeV gamma quanta with the rate of 10 9 quanta/cm 3 xs. The calculations have demonstrated that the last 7 cm of lead are responsible for the whole gamma spectral pattern. The spectra practically coincide with the ones calculated by the ROZ computer code. Thus the algorithm proposed can be offectively used in the calculations of secondary gamma radiation transport and reduces the computation time by 2-4 times
Effect of hypoiodous acid volatility on the iodine source term in reactor accidents
International Nuclear Information System (INIS)
Routamo, T.
1996-01-01
A FORTRAN code ACT WATCH has been developed to establish an improved understanding of essential radionuclide behaviour mechanisms, especially related to iodine chemistry, in reactor accidents. The accident scenarios calculated in this paper are based on the Loss of Coolant accident at the Loviisa Nuclear Power Plant. The effect of different airborne species, especially HIO, on the iodine source term has been studied. The main cause of the high HIO release in the system modelled is the increase of I 2 hydrolysis rate along with the temperature increase, which accelerates HIO production. Due to the high radiation level near the reactor core, I 2 is produced from I - very rapidly. High temperature in the reactor coolant causes I 2 to be transformed into HIO and through the boiling of the coolant volatile I 2 and HIO are transferred efficiently into the gas phase. High filtration efficiency for particulate iodine causes I - release to be much lower than those of I 2 and HIO. (author) 15 figs., 1 tab., refs
Effect of hypoiodous acid volatility on the iodine source term in reactor accidents
Energy Technology Data Exchange (ETDEWEB)
Routamo, T [Imatran Voima Oy, Vantaa (Finland)
1996-12-01
A FORTRAN code ACT WATCH has been developed to establish an improved understanding of essential radionuclide behaviour mechanisms, especially related to iodine chemistry, in reactor accidents. The accident scenarios calculated in this paper are based on the Loss of Coolant accident at the Loviisa Nuclear Power Plant. The effect of different airborne species, especially HIO, on the iodine source term has been studied. The main cause of the high HIO release in the system modelled is the increase of I{sub 2} hydrolysis rate along with the temperature increase, which accelerates HIO production. Due to the high radiation level near the reactor core, I{sub 2} is produced from I{sup -}very rapidly. High temperature in the reactor coolant causes I{sub 2} to be transformed into HIO and through the boiling of the coolant volatile I{sub 2} and HIO are transferred efficiently into the gas phase. High filtration efficiency for particulate iodine causes I{sup -} release to be much lower than those of I{sub 2} and HIO. (author) 15 figs., 1 tab., refs.
Calculations of the mean regional dispersion of a radioactive gas emitted from a continuous source
International Nuclear Information System (INIS)
Persson, C.
1974-10-01
The mean dispersion of a radioactive gas over distances of the order of 1000 kilometers is estimated with the aid of a statistical treatment of computed geostrophic trajectories and simplified vertical diffusion calculations based on the eddy diffusivity theory. (author)
International Nuclear Information System (INIS)
Khelifi, R.; Idiri, Z.; Bode, P.
2002-01-01
The CITATION code based on neutron diffusion theory was used for flux calculations inside voluminous samples in prompt gamma activation analysis with an isotopic neutron source (Am-Be). The code uses specific parameters related to the energy spectrum source and irradiation system materials (shielding, reflector). The flux distribution (thermal and fast) was calculated in the three-dimensional geometry for the system: air, polyethylene and water cuboidal sample (50x50x50 cm). Thermal flux was calculated in a series of points inside the sample. The results agreed reasonably well with observed values. The maximum thermal flux was observed at a distance of 3.2 cm while CITATION gave 3.7 cm. Beyond a depth of 7.2 cm, the thermal flux to fast flux ratio increases up to twice and allows us to optimise the detection system position in the scope of in-situ PGAA
Selective application of revised source terms to operating nuclear power plants
International Nuclear Information System (INIS)
Moon, Joo Hyun; Song, Jae Hyuk; Lee, Young Wook; Ko, Hyun Seok; Kang, Chang Sun
2001-01-01
More than 30 years later since 1962 when TID-14844 was promulgated, there has been big change of the US NRC's regulatory position in using accident source terms for radiological assessment following a design basis accident (DBA). To replace the instantaneous source terms of TID-14844, the time-dependent source terms of NUREG-1465 was published in 1995. In the meantime, the radiological acceptance criteria for reactor site evaluation in 10 CFR Part 100 were also revised. In particular, the concept of total effective dose equivalent has been incorporated in accordance with the radiation protection standards set forth in revised 10 CFR Part 20. Subsequently, the publication of Regulatory Guide 1.183 and the revision of Standard Review Plan 15.0.1 followed in 2000, which provided the licensee of operating nuclear power reactor with the acceptable guidance of applying the revised source term. The guidance allowed the holder of an operating license issued prior to January 10, 1997 to voluntarily revise the accident source terms used in the radiological consequence analyses of DBA. Regarding to its type of application, there suggested full and selective applications, Whether it is full or selective, based upon the scope and nature of associated plant modifications being proposed, the actual application of the revised source terms to an operating plant is expected to give a large impact on its facility design basis. Considering scope and cost of the analyses required for licensing, selective application is seemed to be more appealing to an licensee of the operating plant rather than full application. In this paper, hence, the selective application methodology is reviewed and is actally applied to the assessment of offsite radiological consequence following a LOCA at Ulchin Unit 3 and 4, in order to identify and analyze the potential impacts due to application of revised source terms and to assess the considerations taken in each application prior to its actual
Source term determination from subcritical multiplication measurements at Koral-1 reactor
International Nuclear Information System (INIS)
Blazquez, J.B.; Barrado, J.M.
1978-01-01
By using an AmBe neutron source two independent procedures have been settled for the zero-power experimental fast-reactor Coral-1 in order to measure the source term which appears in the point kinetical equations. In the first one, the source term is measured when the reactor is just critical with source by taking advantage of the wide range of the linear approach to critical for Coral-1. In the second one, the measurement is made in subcritical state by making use of the previous calibrated control rods. Several applications are also included such as the measurement of the detector dead time, the determinations of the reactivity of small samples and the shape of the neutron importance of the source. (author)
CHOLESK, Diffusion Calculation with 2-D Source in X-Y or R-Z Geometry
International Nuclear Information System (INIS)
1988-01-01
1 - Description of problem or function: Solution of the diffusion equation with source in two-dimensional geometries x-y or r-z. 2 - Method of solution: The finite-element method of Ritz-Galerkin is applied
International Nuclear Information System (INIS)
Miller, W.F. Jr.
1975-10-01
The coarse-mesh rebalance method, based on neutron conservation, is used in discrete ordinates neutron transport codes to accelerate convergence of the within-group scattering source. Though very powerful for this application, the method is ineffective in accelerating the iteration on the discrete-ordinates-to-spherical-harmonics fictitious sources used for ray-effect elimination. This is largely because this source makes a minimum contribution to the neutron balance equation. The traditional rebalance approach is derived in a variational framework and compared with new rebalance approaches tailored to be compatible with the fictitious source. The new approaches are compared numerically to determine their relative advantages. It is concluded that there is little incentive to use the new methods. (3 tables, 5 figures)
International Nuclear Information System (INIS)
Khattab, K.; Dawahra, S.
2011-01-01
Calculations of the fuel burnup and radionuclide inventory in the Syrian Miniature Neutron Source Reactor (MNSR) after 10 years (the reactor core expected life) of the reactor operation time are presented in this paper using the GETERA code. The code is used to calculate the fuel group constants and the infinite multiplication factor versus the reactor operating time for 10, 20, and 30 kW operating power levels. The amounts of uranium burnup and plutonium produced in the reactor core, the concentrations and radionuclides of the most important fission product and actinide radionuclides accumulated in the reactor core, and the total radioactivity of the reactor core were calculated using the GETERA code as well. It is found that the GETERA code is better than the WIMSD4 code for the fuel burnup calculation in the MNSR reactor since it is newer and has a bigger library of isotopes and more accurate. (author)
Directory of Open Access Journals (Sweden)
Carsten Pohl
2011-02-01
Full Text Available The increase in the birth rate shortfall, at the same time as an increase in life expectancy, will lead to more elderly people living in Germany in future, in both relative and absolute terms. The possible development in the demand for professional long-term carers until 2020 for the individual Federal Länder is illustrated in this essay using model calculations. Because of the differences in demographic change between the Federal Länder, the labour market for long-term care will develop heterogeneously in the federal territory as a whole. The increase in the number of persons in need of long-term care from its current level of 2.25 million to a forecast level of 2.9 million by 2020 will mean that professional long-term care in particular will continue to become more significant in Germany as a whole. The demand for long-term carers (in full-time equivalent posts could increase from its current level of 561,000 to up to 900,000 by 2020. The actual development on the professional labour market will however be heavily dependent on the commitment of care-giving relatives. Additionally, possible productivity advances in the provision of long-term care services will play a role, as can be shown in various scenarios of the model calculations.
Review of radionuclide source terms used for performance-assessment analyses
International Nuclear Information System (INIS)
Barnard, R.W.
1993-06-01
Two aspects of the radionuclide source terms used for total-system performance assessment (TSPA) analyses have been reviewed. First, a detailed radionuclide inventory (i.e., one in which the reactor type, decay, and burnup are specified) is compared with the standard source-term inventory used in prior analyses. The latter assumes a fixed ratio of pressurized-water reactor (PWR) to boiling-water reactor (BWR) spent fuel, at specific amounts of burnup and at 10-year decay. TSPA analyses have been used to compare the simplified source term with the detailed one. The TSPA-91 analyses did not show a significant difference between the source terms. Second, the radionuclides used in source terms for TSPA aqueous-transport analyses have been reviewed to select ones that are representative of the entire inventory. It is recommended that two actinide decay chains be included (the 4n+2 ''uranium'' and 4n+3 ''actinium'' decay series), since these include several radionuclides that have potentially important release and dose characteristics. In addition, several fission products are recommended for the same reason. The choice of radionuclides should be influenced by other parameter assumptions, such as the solubility and retardation of the radionuclides
Study of the source term of radiation of the CDTN GE-PET trace 8 cyclotron with the MCNPX code
Energy Technology Data Exchange (ETDEWEB)
Benavente C, J. A.; Lacerda, M. A. S.; Fonseca, T. C. F.; Da Silva, T. A. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Vega C, H. R., E-mail: jhonnybenavente@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)
2015-10-15
Full text: The knowledge of the neutron spectra in a PET cyclotron is important for the optimization of radiation protection of the workers and individuals of the public. The main objective of this work is to study the source term of radiation of the GE-PET trace 8 cyclotron of the Development Center of Nuclear Technology (CDTN/CNEN) using computer simulation by the Monte Carlo method. The MCNPX version 2.7 code was used to calculate the flux of neutrons produced from the interaction of the primary proton beam with the target body and other cyclotron components, during 18F production. The estimate of the source term and the corresponding radiation field was performed from the bombardment of a H{sub 2}{sup 18}O target with protons of 75 μA current and 16.5 MeV of energy. The values of the simulated fluxes were compared with those reported by the accelerator manufacturer (GE Health care Company). Results showed that the fluxes estimated with the MCNPX codes were about 70% lower than the reported by the manufacturer. The mean energies of the neutrons were also different of that reported by GE Health Care. It is recommended to investigate other cross sections data and the use of physical models of the code itself for a complete characterization of the source term of radiation. (Author)
International Nuclear Information System (INIS)
Grimstone, M.J.
1978-06-01
The WRS Modular Programming System has been developed as a means by which programmes may be more efficiently constructed, maintained and modified. In this system a module is a self-contained unit typically composed of one or more Fortran routines, and a programme is constructed from a number of such modules. This report describes one WRS module, the function of which is to calculate the uncollided flux and first-collision source from a disc source in a slab geometry system, a line source at the centre of a cylindrical system or a point source at the centre of a spherical system. The information given in this manual is of use both to the programmer wishing to incorporate the module in a programme, and to the user of such a programme. (author)
Calculation of spherical models of lead with a source of 14 MeV-neutrons
International Nuclear Information System (INIS)
Markovskij, D.V.; Borisov, A.A.
1989-01-01
Neutron transport calculations for spherical models of lead have been done with the one-dimensional code BLANK realizing the direct Monte Carlo method in the whole range of neutron energies and they are compared with the experimental results. 6 refs, 10 figs, 3 tabs
Maucec, M
2005-01-01
Monte Carlo simulations for nuclear logging applications are considered to be highly demanding transport problems. In this paper, the implementation of weight-window variance reduction schemes in a 'manual' fashion to improve the efficiency of calculations for a neutron logging tool is presented.
Measurement and apportionment of radon source terms for modeling indoor environments
International Nuclear Information System (INIS)
Harley, N.H.
1990-01-01
This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters
Long-term calculation of radionuclides concentration in the ocean by OGCM
International Nuclear Information System (INIS)
Tsumune, Daisuke; Maruyama, Koki; Nakashiki, Norikazu; Aoyama, Michio; Hirose, Katsumi
2000-01-01
The ocean transports of radioactive materials have been carried out from Europe to Japan through the several routes on the world ocean. To sustain the safety of the transport of radioactive materials and to gain the public acceptance, it is necessary evaluate the radionuclide concentration in the ocean at the hypothetical submergence of radioactive materials into the world ocean. The purpose of this study is to develop a new method to evaluate the radionuclides concentration in the world ocean. A method to calculate the concentration of radionuclides in the ocean was developed using an ocean general circulation model (OGCM). The concentration of radionuclides ( 137 Cs, 90 Sr and 239+240 Pu) in the ocean was calculated from 1957 to 1994, on the assumption that these radionuclides were injected into the ocean only as the fallout from the atmospheric weapons tests. The calculated concentrations gave a good agreement with the observed data. The concentration of radionuclides in the ocean was estimated by this method in case of the hypothetical submergence of a package of fresh MOX fuel into the ocean on the routes of ocean transport from Europe to Japan. We calculated the concentration of 6 radionuclides ( 238 Pu, 239 Pu, 240 Pu, 241 Pu, 242 Pu and 241 Am) over 1000 years. It takes 3.5 CPU hours for 1000-year calculation by the supercomputer HITACHI S3800. The concentration in the ocean due to the hypothetical submergence of a package of fresh MOX fuel is estimated to be much smaller than the present background concentration of fallout. (author)
Olsen, Nils; Whaler, Kathryn A.; Finlay, Christopher C.
2014-05-01
Monthly means of the magnetic field measurements taken by ground observatories are a useful data source for studying temporal changes of the core magnetic field and the underlying core flow. However, the usual way of calculating monthly means as the arithmetic mean of all days (geomagnetic quiet as well as disturbed) and all local times (day and night) may result in contributions from external (magnetospheric and ionospheric) origin in the (ordinary, omm) monthly means. Such contamination makes monthly means less favourable for core studies. We calculated revised monthly means (rmm), and their uncertainties, from observatory hourly means using robust means and after removal of external field predictions, using an improved method for characterising the magnetospheric ring current. The utility of the new method for calculating observatory monthly means is demonstrated by inverting their first differences for core surface advective flows. The flow is assumed steady over three consecutive months to ensure uniqueness; the effects of more rapid changes should be attenuated by the weakly conducting mantle. Observatory data are inverted directly for a regularised core flow, rather than deriving it from a secular variation spherical harmonic model. The main field is specified by the CHAOS-4 model. Data from up to 128 observatories between 1997 and 2013 were used to calculate 185 flow models from the omm and rmm, for each possible set of three consecutive months. The full 3x3 (non-diagonal) data covariance matrix was used, and two-norm (least squares) minimisation performed. We are able to fit the data to the target (weighted) misfit of 1, for both omm and rmm inversions, provided we incorporate the full data covariance matrix, and produce consistent, plausible flows. Fits are better for rmm flows. The flows exhibit noticeable changes over timescales of a few months. However, they follow rapid excursions in the omm that we suspect result from external field contamination
ITER safety task NID-5a: ITER tritium environmental source terms - safety analysis basis
International Nuclear Information System (INIS)
Natalizio, A.; Kalyanam, K.M.
1994-09-01
The Canadian Fusion Fuels Technology Project's (CFFTP) is part of the contribution to ITER task NID-5a, Initial Tritium Source Term. This safety analysis basis constitutes the first part of the work for establishing tritium source terms and is intended to solicit comments and obtain agreement. The analysis objective is to provide an early estimate of tritium environmental source terms for the events to be analyzed. Events that would result in the loss of tritium are: a Loss of Coolant Accident (LOCA), a vacuum vessel boundary breach. a torus exhaust line failure, a fuelling machine process boundary failure, a fuel processing system process boundary failure, a water detritiation system process boundary failure and an isotope separation system process boundary failure. 9 figs
Review of the accident source terms for aluminide fuel: Application to the BR2 reactor
International Nuclear Information System (INIS)
Joppen, F.
2005-01-01
A major safety review of the BR2, a material test reactor, is to be conducted for the year 2006. One of the subjects selected for the safety review is the definition of source terms for emergency planning and in particular the development of accident scenarios. For nuclear power plants the behaviour of fuel under accident conditions is a well studied object. In case of non-power reactors this basic knowledge is rather scarce. The usefulness of information from power plant fuels is limited due to the differences in fuel type, power level and thermohydraulical conditions. First investigation indicates that using data from power plant fuel leads to an overestimation of the source terms. Further research on this subject could be very useful for the research reactor community, in order to define more realistic source terms and to improve the emergency preparedness. (author)
International Nuclear Information System (INIS)
Kim, Tae Woon; Choi, Seong Soo; Park, Jin Hee
1999-12-01
Current CARE(Computerized Advisory System for Radiological Emergency) in KINS(Korea Institute of Nuclear Safety) has no STES(Source Term Estimation System) which links between SIDS(Safety Information Display System) and FADAS(Following Accident Dose Assessment System). So in this study, STES is under development. STES system is the system that estimates the source term based on the safety information provided by SIDS. Estimated source term is given to FADAS as an input for estimation of environmental effect of radiation. Through this first year project STES for the Kori 3,4 and Younggwang 1,2 has been developed. Since there is no CARE for Wolsong(PHWR) plants yet, CARE for Wolsong is under construction. The safety parameters are selected and the safety information display screens and the alarm logic for plant status change are developed for Wolsong Unit 2 based on the design documents for CANDU plants
Exposure calculations for the FRG isotopic heat source project environmental assessment
International Nuclear Information System (INIS)
Metcalf, I.L.
1997-01-01
The report documents the maximum exposure for transfer of the Federal Republic of Germany (FRG) Isotopic Heat Sources from the 324 Building and placed in interim storage at the Central Waste Complex (CWC). These results are to be reported in the Environmental Assessment DOE-EA- 1 21 1
Pyradi: an open-source toolkit for infrared calculation and data processing
CSIR Research Space (South Africa)
Willers, CJ
2012-09-01
Full Text Available of such a toolkit facilitates and increases productivity during subsequent tool development: “develop once and use many times”. The concept of an extendible toolkit lends itself naturally to the open-source philosophy, where the toolkit user-base develops...
On the calculation of atmospheric thermal pollution resulted from a flat area source
International Nuclear Information System (INIS)
Perkauskas, D.Ch.; Senuta, K.A.
1984-01-01
A spatial distribution of thermal atmospheric pollution from a flat area source - a great city or a lake-cooler of NPP was investigated. The numerical solution obtained lets to evaluate the horizontal and vertical spreading of the thermal atmospheric pollution by the different wind velocities in dependence of the inhomogeneities in humidity of the earth's surface
Analysis of source term aspects in the experiment Phebus FPT1 with the MELCOR and CFX codes
Energy Technology Data Exchange (ETDEWEB)
Martin-Fuertes, F. [Universidad Politecnica de Madrid, UPM, Nuclear Engineering Department, Jose Gutierrez Abascal 2, 28006 Madrid (Spain)]. E-mail: francisco.martinfuertes@upm.es; Barbero, R. [Universidad Politecnica de Madrid, UPM, Nuclear Engineering Department, Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Martin-Valdepenas, J.M. [Universidad Politecnica de Madrid, UPM, Nuclear Engineering Department, Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Jimenez, M.A. [Universidad Politecnica de Madrid, UPM, Nuclear Engineering Department, Jose Gutierrez Abascal 2, 28006 Madrid (Spain)
2007-03-15
Several aspects related to the source term in the Phebus FPT1 experiment have been analyzed with the help of MELCOR 1.8.5 and CFX 5.7 codes. Integral aspects covering circuit thermalhydraulics, fission product and structural material release, vapours and aerosol retention in the circuit and containment were studied with MELCOR, and the strong and weak points after comparison to experimental results are stated. Then, sensitivity calculations dealing with chemical speciation upon release, vertical line aerosol deposition and steam generator aerosol deposition were performed. Finally, detailed calculations concerning aerosol deposition in the steam generator tube are presented. They were obtained by means of an in-house code application, named COCOA, as well as with CFX computational fluid dynamics code, in which several models for aerosol deposition were implemented and tested, while the models themselves are discussed.
Energy Technology Data Exchange (ETDEWEB)
Moskvin, Vadim [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)]. E-mail: vmoskvin@iupui.edu; DesRosiers, Colleen; Papiez, Lech; Timmerman, Robert; Randall, Marcus; DesRosiers, Paul [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)
2002-06-21
The Monte Carlo code PENELOPE has been used to simulate photon flux from the Leksell Gamma Knife, a precision method for treating intracranial lesions. Radiation from a single {sup 60}Co assembly traversing the collimator system was simulated, and phase space distributions at the output surface of the helmet for photons and electrons were calculated. The characteristics describing the emitted final beam were used to build a two-stage Monte Carlo simulation of irradiation of a target. A dose field inside a standard spherical polystyrene phantom, usually used for Gamma Knife dosimetry, has been computed and compared with experimental results, with calculations performed by other authors with the use of the EGS4 Monte Carlo code, and data provided by the treatment planning system Gamma Plan. Good agreement was found between these data and results of simulations in homogeneous media. Owing to this established accuracy, PENELOPE is suitable for simulating problems relevant to stereotactic radiosurgery. (author)
3-D full core calculations for the long-term behaviour of PWR's
International Nuclear Information System (INIS)
Winter, H.J.; Koebke, K.; Wagner, M.R.
1987-01-01
Presently, the most realistic simulation of a PWR core is by means of three-dimensional (3-D) full core calculations. Only by such 3-D representations can the large scope of axial effects be treated in an accurate and direct way, without the need to perform various auxiliary calculations. Although the computationally efficient burnup-corrected nodal expansion method (NEM-BC) is used, the computing effort for 3-D reactor calculations becomes rather high, e.g. a storage of about 320000 words is required to describe a 1300 MWe PWR. NEM-BC was introduced (1979) into KWU's package of PWR design codes because of its high accuracy and the great reduction of computing time and storage requirements in comparison to other methods. The application of NEM-BC to 3-dimensional PWR design is strongly correlated with the progress achieved in the solution of the homogenization and dehomogenization problem. By means of suitable methods (equivalence theory) the transport-theoretical information of the pinwise power and burnup distribution for the heterogeneous fuel assemblies is transferred in a consistent manner to the full core reactor solution. The new methods and the corresponding code system are explained in some detail. (orig.)
Rocker: Open source, easy-to-use tool for AUC and enrichment calculations and ROC visualization.
Lätti, Sakari; Niinivehmas, Sanna; Pentikäinen, Olli T
2016-01-01
Receiver operating characteristics (ROC) curve with the calculation of area under curve (AUC) is a useful tool to evaluate the performance of biomedical and chemoinformatics data. For example, in virtual drug screening ROC curves are very often used to visualize the efficiency of the used application to separate active ligands from inactive molecules. Unfortunately, most of the available tools for ROC analysis are implemented into commercially available software packages, or are plugins in statistical software, which are not always the easiest to use. Here, we present Rocker, a simple ROC curve visualization tool that can be used for the generation of publication quality images. Rocker also includes an automatic calculation of the AUC for the ROC curve and Boltzmann-enhanced discrimination of ROC (BEDROC). Furthermore, in virtual screening campaigns it is often important to understand the early enrichment of active ligand identification, for this Rocker offers automated calculation routine. To enable further development of Rocker, it is freely available (MIT-GPL license) for use and modifications from our web-site (http://www.jyu.fi/rocker).
Use of source term code package in the ELEBRA MX-850 system
International Nuclear Information System (INIS)
Guimaraes, A.C.F.; Goes, A.G.A.
1988-12-01
The implantation of source term code package in the ELEBRA-MX850 system is presented. The source term is formed when radioactive materials generated in nuclear fuel leakage toward containment and the external environment to reactor containment. The implantated version in the ELEBRA system are composed of five codes: MARCH 3, TRAPMELT 3, THCCA, VANESA and NAVA. The original example case was used. The example consists of a small loca accident in a PWR type reactor. A sensitivity study for the TRAPMELT 3 code was carried out, modifying the 'TIME STEP' to estimate the processing time of CPU for executing the original example case. (M.C.K.) [pt
Source term estimation based on in-situ gamma spectrometry using a high purity germanium detector
International Nuclear Information System (INIS)
Pauly, J.; Rojas-Palma, C.; Sohier, A.
1997-06-01
An alternative method to reconstruct the source term of a nuclear accident is proposed. The technique discussed here involves the use of in-situ gamma spectrometry. The validation of the applied methodology has been possible through the monitoring of routine releases of Ar-41 originating at a Belgian site from an air cooled graphite research reactor. This technique provides a quick nuclide specific decomposition of the source term and therefore will be have an enormous potential if implemented in nuclear emergency preparedness and radiological assessments of nuclear accidents during the early phase
Source-term characterisation and solid speciation of plutonium at the Semipalatinsk NTS, Kazakhstan.
Nápoles, H Jiménez; León Vintró, L; Mitchell, P I; Omarova, A; Burkitbayev, M; Priest, N D; Artemyev, O; Lukashenko, S
2004-01-01
New data on the concentrations of key fission/activation products and transuranium nuclides in samples of soil and water from the Semipalatinsk Nuclear Test Site are presented and interpreted. Sampling was carried out at Ground Zero, Lake Balapan, the Tel'kem craters and reference locations within the test site boundary well removed from localised sources. Radionuclide ratios have been used to characterise the source term(s) at each of these sites. The geochemical partitioning of plutonium has also been examined and it is shown that the bulk of the plutonium contamination at most of the sites examined is in a highly refractory, non-labile form.
Source-term characterisation and solid speciation of plutonium at the Semipalatinsk NTS, Kazakhstan
Energy Technology Data Exchange (ETDEWEB)
Napoles, H.J.H. Jimenez; Leon Vintro, L. E-mail: luis.leon@ucd.ie; Mitchell, P.I.; Omarova, A.; Burkitbayev, M.; Priest, N.D.; Artemyev, O.; Lukashenko, S
2004-09-01
New data on the concentrations of key fission/activation products and transuranium nuclides in samples of soil and water from the Semipalatinsk Nuclear Test Site are presented and interpreted. Sampling was carried out at Ground Zero, Lake Balapan, the Tel'kem craters and reference locations within the test site boundary well removed from localised sources. Radionuclide ratios have been used to characterise the source term(s) at each of these sites. The geochemical partitioning of plutonium has also been examined and it is shown that the bulk of the plutonium contamination at most of the sites examined is in a highly refractory, non-labile form.
The long-term problems of contaminated land: Sources, impacts and countermeasures
Energy Technology Data Exchange (ETDEWEB)
Baes, C.F. III
1986-11-01
This report examines the various sources of radiological land contamination; its extent; its impacts on man, agriculture, and the environment; countermeasures for mitigating exposures; radiological standards; alternatives for achieving land decontamination and cleanup; and possible alternatives for utilizing the land. The major potential sources of extensive long-term land contamination with radionuclides, in order of decreasing extent, are nuclear war, detonation of a single nuclear weapon (e.g., a terrorist act), serious reactor accidents, and nonfission nuclear weapons accidents that disperse the nuclear fuels (termed ''broken arrows'').
The long-term problems of contaminated land: Sources, impacts and countermeasures
International Nuclear Information System (INIS)
Baes, C.F. III.
1986-11-01
This report examines the various sources of radiological land contamination; its extent; its impacts on man, agriculture, and the environment; countermeasures for mitigating exposures; radiological standards; alternatives for achieving land decontamination and cleanup; and possible alternatives for utilizing the land. The major potential sources of extensive long-term land contamination with radionuclides, in order of decreasing extent, are nuclear war, detonation of a single nuclear weapon (e.g., a terrorist act), serious reactor accidents, and nonfission nuclear weapons accidents that disperse the nuclear fuels (termed ''broken arrows'')
Design parameters and source terms: Volume 1, Design parameters: Revision 0
International Nuclear Information System (INIS)
1987-10-01
The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report by Stearns Catalytic Corporation (SCC), entitled ''Design Parameters and Source Terms for a Two-Phase Repository in Salt,'' 1985, to the level of the Site Characterization Plan - Conceptual Design Report. The previous unpublished SCC Study identifies the data needs for the Environmental Assessment effort for seven possible Salt Repository sites
International Nuclear Information System (INIS)
Abbas, Mahmoud I.; Hammoud, Sami; Ibrahim, Tarek; Sakr, Mohamed
2015-01-01
In this article, we introduce a direct analytical mathematical method for calculating the solid angle, Ω, subtended at a point by closed elliptical contours. The solid angle is required in many areas of optical and nuclear physics to estimate the flux of particle beam of radiation and to determine the activity of a radioactive source. The validity of the derived analytical expressions was successfully confirmed by the comparison with some published data (Numerical Method)
International Nuclear Information System (INIS)
Svarny, J.; Mikolas, P.
1999-01-01
The first stage of ATW neutronic benchmark (without an external source), based on the simple modelling of two component concept is presented. The simple model of two component concept of the ATW (graphite + molten salt system) was found. The main purpose of this benchmark is not only to provide the basic characteristics of given ADS but also to test codes in calculations of the rate of transmutation waste and to evaluate basic kinetics parameters and reactivity effects. (author)
International Nuclear Information System (INIS)
Silberstein, M.
1991-01-01
In deriving the electric and magnetic fields in a continuous source region by differentiating the vector potential, Yaghjian (1985) explains that the central obstacle is the dependence of the integration limits on the differentiation variable. Since it is not mathematically rigorous to assume the curl and integral signs are interchangeable, he uses an integration variable substitution to circumvent this problematic dependence. Here, an alternative derivation is presented, which evaluates the curl of the vector potential volume integral directly, retaining the dependence of the limits of integration on the differentiation variable. It involves deriving a three-dimensional version of Leibniz' rule for differentiating an integral with variable limits of integration, and using the generalized rule to find the Maxwellian and cavity fields in the source region. 7 refs
Neutronic Design Calculations on Moderators for the Spallation Neutron Source (SNS)
International Nuclear Information System (INIS)
Murphy, D.B.
1999-01-01
The Spallation Neutron Source (SNS) to be built at the Oak Ridge National Laboratory will provide an intense source of neutrons for a large variety of experiments. It consists of a high-energy (1-GeV) and high-power (∼1-MW) proton accelerator, an accumulator ring, together with a target station and an experimental area. In the target itself, the proton beam will produce neutrons via the spallation process and these will be converted to low-energy ( 2 O moderators. Extensive engineering design work has been conducted on the moderator vessels. For our studies we have produced realistic neutronic representations of these moderators. We report on neutronic studies conducted on these representations of the moderators using Monte Carlo simulation techniques
DEFF Research Database (Denmark)
Olsen, Nils; Whaler, K. A.; Finlay, Chris
2014-01-01
Monthly means of the magnetic field measurements taken by ground observatories are a useful data source for studying temporal changes of the core magnetic field and the underlying core flow. However, the usual way of calculating monthly means as the arithmetic mean of all days (geomagnetic quiet...... as well as disturbed) and all local times (day and night) may result in contributions from external (magnetospheric and ionospheric) origin in the (ordinary, omm) monthly means. Such contamination makes monthly means less favourable for core studies. We calculated revised monthly means (rmm......), and their uncertainties, from observatory hourly means using robust means and after removal of external field predictions, using an improved method for characterising the magnetospheric ring current. The utility of the new method for calculating observatory monthly means is demonstrated by inverting their first...
International Nuclear Information System (INIS)
Mihalczo, J.T.; Valentine, T.E.
1995-01-01
The development of MCNP-DSP, which allows direct calculation of the measured time and frequency analysis parameters from subcritical measurements using the 252 Cf-source-driven noise analysis method, permits the validation of calculational methods for criticality safety with in-plant subcritical measurements. In addition, a method of obtaining the bias in the calculations, which is essential to the criticality safety specialist, is illustrated using the results of measurements with 17.771-cm-diam, enriched (93.15), unreflected, and unmoderated uranium metal cylinders. For these uranium metal cylinders the bias obtained using MCNP-DSP and ENDF/B-V cross-section data increased with subcriticality. For a critical experiment [height (h) = 12.629 cm], it was -0.0061 ± 0.0003. For a 10.16-cm-high cylinder (k ∼ 0.93), it was 0.0060 ± 0.0016, and for a subcritical cylinder (h = 8.13 cm, k ∼ 0.85), the bias was -0.0137 ± 0.0037, more than a factor of 2 larger in magnitude. This method allows the nuclear criticality safety specialist to establish the bias in calculational methods for criticality safety from in-plant subcritical measurements by the 252 Cf-source-driven noise analysis method
InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk.
Cheng, Liang; Jiang, Yue; Ju, Hong; Sun, Jie; Peng, Jiajie; Zhou, Meng; Hu, Yang
2018-01-19
Since the establishment of the first biomedical ontology Gene Ontology (GO), the number of biomedical ontology has increased dramatically. Nowadays over 300 ontologies have been built including extensively used Disease Ontology (DO) and Human Phenotype Ontology (HPO). Because of the advantage of identifying novel relationships between terms, calculating similarity between ontology terms is one of the major tasks in this research area. Though similarities between terms within each ontology have been studied with in silico methods, term similarities across different ontologies were not investigated as deeply. The latest method took advantage of gene functional interaction network (GFIN) to explore such inter-ontology similarities of terms. However, it only used gene interactions and failed to make full use of the connectivity among gene nodes of the network. In addition, all existent methods are particularly designed for GO and their performances on the extended ontology community remain unknown. We proposed a method InfAcrOnt to infer similarities between terms across ontologies utilizing the entire GFIN. InfAcrOnt builds a term-gene-gene network which comprised ontology annotations and GFIN, and acquires similarities between terms across ontologies through modeling the information flow within the network by random walk. In our benchmark experiments on sub-ontologies of GO, InfAcrOnt achieves a high average area under the receiver operating characteristic curve (AUC) (0.9322 and 0.9309) and low standard deviations (1.8746e-6 and 3.0977e-6) in both human and yeast benchmark datasets exhibiting superior performance. Meanwhile, comparisons of InfAcrOnt results and prior knowledge on pair-wise DO-HPO terms and pair-wise DO-GO terms show high correlations. The experiment results show that InfAcrOnt significantly improves the performance of inferring similarities between terms across ontologies in benchmark set.
International Nuclear Information System (INIS)
Heitz, Eric
2017-01-01
We present a geometric method for computing an ellipse that subtends the same solid-angle domain as an arbitrarily positioned ellipsoid. With this method we can extend existing analytical solid-angle calculations of ellipses to ellipsoids. Our idea consists of applying a linear transformation on the ellipsoid such that it is transformed into a sphere from which a disk that covers the same solid-angle domain can be computed. We demonstrate that by applying the inverse linear transformation on this disk we obtain an ellipse that subtends the same solid-angle domain as the ellipsoid. We provide a MATLAB implementation of our algorithm and we validate it numerically.
Energy Technology Data Exchange (ETDEWEB)
Heitz, Eric, E-mail: eheitz.research@gmail.com
2017-04-21
We present a geometric method for computing an ellipse that subtends the same solid-angle domain as an arbitrarily positioned ellipsoid. With this method we can extend existing analytical solid-angle calculations of ellipses to ellipsoids. Our idea consists of applying a linear transformation on the ellipsoid such that it is transformed into a sphere from which a disk that covers the same solid-angle domain can be computed. We demonstrate that by applying the inverse linear transformation on this disk we obtain an ellipse that subtends the same solid-angle domain as the ellipsoid. We provide a MATLAB implementation of our algorithm and we validate it numerically.
Using Reactive Transport Modeling to Evaluate the Source Term at Yucca Mountain
Energy Technology Data Exchange (ETDEWEB)
Y. Chen
2001-12-19
The conventional approach of source-term evaluation for performance assessment of nuclear waste repositories uses speciation-solubility modeling tools and assumes pure phases of radioelements control their solubility. This assumption may not reflect reality, as most radioelements (except for U) may not form their own pure phases. As a result, solubility limits predicted using the conventional approach are several orders of magnitude higher then the concentrations of radioelements measured in spent fuel dissolution experiments. This paper presents the author's attempt of using a non-conventional approach to evaluate source term of radionuclide release for Yucca Mountain. Based on the general reactive-transport code AREST-CT, a model for spent fuel dissolution and secondary phase precipitation has been constructed. The model accounts for both equilibrium and kinetic reactions. Its predictions have been compared against laboratory experiments and natural analogues. It is found that without calibrations, the simulated results match laboratory and field observations very well in many aspects. More important is the fact that no contradictions between them have been found. This provides confidence in the predictive power of the model. Based on the concept of Np incorporated into uranyl minerals, the model not only predicts a lower Np source-term than that given by conventional Np solubility models, but also produces results which are consistent with laboratory measurements and observations. Moreover, two hypotheses, whether Np enters tertiary uranyl minerals or not, have been tested by comparing model predictions against laboratory observations, the results favor the former. It is concluded that this non-conventional approach of source term evaluation not only eliminates over-conservatism in conventional solubility approach to some extent, but also gives a realistic representation of the system of interest, which is a prerequisite for truly understanding the long-term
Using Reactive Transport Modeling to Evaluate the Source Term at Yucca Mountain
International Nuclear Information System (INIS)
Y. Chen
2001-01-01
The conventional approach of source-term evaluation for performance assessment of nuclear waste repositories uses speciation-solubility modeling tools and assumes pure phases of radioelements control their solubility. This assumption may not reflect reality, as most radioelements (except for U) may not form their own pure phases. As a result, solubility limits predicted using the conventional approach are several orders of magnitude higher then the concentrations of radioelements measured in spent fuel dissolution experiments. This paper presents the author's attempt of using a non-conventional approach to evaluate source term of radionuclide release for Yucca Mountain. Based on the general reactive-transport code AREST-CT, a model for spent fuel dissolution and secondary phase precipitation has been constructed. The model accounts for both equilibrium and kinetic reactions. Its predictions have been compared against laboratory experiments and natural analogues. It is found that without calibrations, the simulated results match laboratory and field observations very well in many aspects. More important is the fact that no contradictions between them have been found. This provides confidence in the predictive power of the model. Based on the concept of Np incorporated into uranyl minerals, the model not only predicts a lower Np source-term than that given by conventional Np solubility models, but also produces results which are consistent with laboratory measurements and observations. Moreover, two hypotheses, whether Np enters tertiary uranyl minerals or not, have been tested by comparing model predictions against laboratory observations, the results favor the former. It is concluded that this non-conventional approach of source term evaluation not only eliminates over-conservatism in conventional solubility approach to some extent, but also gives a realistic representation of the system of interest, which is a prerequisite for truly understanding the long-term
Zhang, Xiaole; Efthimiou, George; Wang, Yan; Huang, Meng
2018-04-01
Radiation from the deposited radionuclides is indispensable information for environmental impact assessment of nuclear power plants and emergency management during nuclear accidents. Ground shine estimation is related to multiple physical processes, including atmospheric dispersion, deposition, soil and air radiation shielding. It still remains unclear that whether the normally adopted "infinite plane" source assumption for the ground shine calculation is accurate enough, especially for the area with highly heterogeneous deposition distribution near the release point. In this study, a new ground shine calculation scheme, which accounts for both the spatial deposition distribution and the properties of air and soil layers, is developed based on point kernel method. Two sets of "detector-centered" grids are proposed and optimized for both the deposition and radiation calculations to better simulate the results measured by the detectors, which will be beneficial for the applications such as source term estimation. The evaluation against the available data of Monte Carlo methods in the literature indicates that the errors of the new scheme are within 5% for the key radionuclides in nuclear accidents. The comparisons between the new scheme and "infinite plane" assumption indicate that the assumption is tenable (relative errors within 20%) for the area located 1 km away from the release source. Within 1 km range, the assumption mainly causes errors for wet deposition and the errors are independent of rain intensities. The results suggest that the new scheme should be adopted if the detectors are within 1 km from the source under the stable atmosphere (classes E and F), or the detectors are within 500 m under slightly unstable (class C) or neutral (class D) atmosphere. Otherwise, the infinite plane assumption is reasonable since the relative errors induced by this assumption are within 20%. The results here are only based on theoretical investigations. They should
Directory of Open Access Journals (Sweden)
Koncipko Natal'ja Vladimirovna
2015-08-01
Full Text Available Reindustrialization of the national economy of Russia in the conditions of tightening economic sanctions poses industrial corporations, particularly with state participation, the task of effective and rational use of private sources of funding. Today it is largely depends on the chosen and implemented, in fact, depreciation strategy of the state. In this regard, the main scientific idea of the article is in the economic justification of the amounts of material benefit when implementing different approaches for the calculation of depreciation in real terms of modern tax legislation of the Russian Federation. The object of the study selected the process of formation of own sources of financing of economic activity in conditions of re-industrialization of the domestic industry. The study serve as a methodological approaches used in practice to develop the depreciation policy, including methods and techniques to calculate the material benefits of different scenarios for the replenishment of own sources of financing production. To the main scientific result of the research is proposed by the authors of the financial mechanism of the formation and replenishment of own sources of financing is presented as a multi-level relationship between subjects and objects, principles and methods, including scenarios, tools, and methods of forming the effective depreciation policy (strategy of individual corporations and their groups. The proposed definition of effective depreciation policy under which the table presents the calculation of depreciation using bonus depreciation linear and nonlinear methods, which show the maximization depreciation income and minimize tax exemptions. For example, the economic activities of industrial corporations proved the legality of obtaining the maximum tax values, on the one hand, and economic (material benefits, on the other, and in the current field of modern Russian tax legislation.
International Nuclear Information System (INIS)
Jo, Yu Gwon; Oh, Yoo Min; Park, Hyang Kyu; Park, Kang Soon; Cho, Nam Zin
2016-01-01
In this paper, two issues in the FSS iteration method, i.e., the waiting time for surface source data and the variance biases in local tallies are investigated for the domain decomposed, 3-D continuous-energy whole-core calculation. The fission sources are provided as usual, while the surface sources are provided by banking MC particles crossing local domain boundaries. The surface sources serve as boundary conditions for nonoverlapping local problems, so that each local problem can be solved independently. In this paper, two issues in the FSS iteration are investigated. One is quantifying the waiting time of processors to receive surface source data. By using nonblocking communication, 'time penalty' to wait for the arrival of the surface source data is reduced. The other important issue is underestimation of the sample variance of the tally because of additional inter-iteration correlations in surface sources. From the numerical results on a 3-D whole-core test problem, it is observed that the time penalty is negligible in the FSS iteration method and that the real variances of both pin powers and assembly powers are estimated by the HB method. For those purposes, three cases; Case 1 (1 local domain), Case 2 (4 local domains), Case 3 (16 local domains) are tested. For both Cases 2 and 3, the time penalties for waiting are negligible compared to the source-tracking times. However, for finer divisions of local domains, the loss of parallel efficiency caused by the different number of sources for local domains in symmetric locations becomes larger due to the stochastic errors in source distributions. For all test cases, the HB method very well estimates the real variances of local tallies. However, it is also noted that the real variances of local tallies estimated by the HB method show slightly smaller than the real variances obtained from 30 independent batch runs and the deviations become larger for finer divisions of local domains. The batch size used for the HB
Preliminary Calculation for Plasma Chamber Design of Pulsed Electron Source Based on Plasma
International Nuclear Information System (INIS)
Widdi Usada
2009-01-01
This paper described the characteristics of pulsed electron sources with anode-cathode distance of 5 cm, electrode diameter of 10 cm, driven by capacitor energy of 25 J. The preliminary results showed that if the system is operated with diode resistance is 1.6 Ω, plasma resistance is 0.14 Ω, and β is 0.94, the achieved of plasma voltage is 640 V, its current is 4.395 kA with its pulse width of 0.8 μsecond. According to breakdown voltage based on Paschen empirical formula, with this achieved voltage, this system could be operated for operation pressure of 1 torr. (author)
Evaluation of Long-term Performance of Enhanced Anaerobic Source Zone Bioremediation using mass flux
Haluska, A.; Cho, J.; Hatzinger, P.; Annable, M. D.
2017-12-01
Chlorinated ethene DNAPL source zones in groundwater act as potential long term sources of contamination as they dissolve yielding concentrations well above MCLs, posing an on-going public health risk. Enhanced bioremediation has been applied to treat many source zones with significant promise, but long-term sustainability of this technology has not been thoroughly assessed. This study evaluated the long-term effectiveness of enhanced anaerobic source zone bioremediation at chloroethene contaminated sites to determine if the treatment prevented contaminant rebound and removed NAPL from the source zone. Long-term performance was evaluated based on achieving MCL-based contaminant mass fluxes in parent compound concentrations during different monitoring periods. Groundwater concertation versus time data was compiled for 6-sites and post-remedial contaminant mass flux data was then measured using passive flux meters at wells both within and down-gradient of the source zone. Post-remedial mass flux data was then combined with pre-remedial water quality data to estimate pre-remedial mass flux. This information was used to characterize a DNAPL dissolution source strength function, such as the Power Law Model and the Equilibrium Stream tube model. The six-sites characterized for this study were (1) Former Charleston Air Force Base, Charleston, SC; (2) Dover Air Force Base, Dover, DE; (3) Treasure Island Naval Station, San Francisco, CA; (4) Former Raritan Arsenal, Edison, NJ; (5) Naval Air Station, Jacksonville, FL; and, (6) Former Naval Air Station, Alameda, CA. Contaminant mass fluxes decreased for all the sites by the end of the post-treatment monitoring period and rebound was limited within the source zone. Post remedial source strength function estimates suggest that decreases in contaminant mass flux will continue to occur at these sites, but a mass flux based on MCL levels may never be exceeded. Thus, site clean-up goals should be evaluated as order
Directory of Open Access Journals (Sweden)
Melikhova Tetiana O.
2018-02-01
Full Text Available The article is aimed at suggesting methods for calculating the short-term period of return of costs invested in creation of an economic security service. The article considers approaches to calculation of the period of return of costs, advanced at the level of enterprise, which build the methodical basis for definition of such period. At the level of structural subdivisions of enterprise, which do not produce products, it is suggested to use conditional money flow as a source of financing advanced costs. The calculation of the short-term return on investment at the enterprise level provides for: allocation of expenses for the permanent and the replacement parts during the year; determination of the production of money flow and the money flow accumulated during the year. Annual depreciation payments are the basis of fixed costs. Methods of determination of the gross, net, valid, and specified periods of return of costs, advanced during the year for introduction of an economic security service at enterprise, have been suggested.
Reciprocity relations and the mode conversion-absorption equation with an inhomogeneous source term
International Nuclear Information System (INIS)
Cho, S.; Swanson, D.G.
1990-01-01
The fourth-order mode conversion equation is solved completely via the Green's function to include an inhomogeneous source term. This Green's function itself contains all the plasma responsive effects such as mode conversion and absorption, and can be used to describe the spontaneous emission. In the course of the analysis, the reciprocity relations between coupling parameters are proved
PLOTLIB: a computerized nuclear waste source-term library storage and retrieval system
International Nuclear Information System (INIS)
Marshall, J.R.; Nowicki, J.A.
1978-01-01
The PLOTLIB code was written to provide computer access to the Nuclear Waste Source-Term Library for those users with little previous computer programming experience. The principles of user orientation, quick accessibility, and versatility were extensively employed in the development of the PLOTLIB code to accomplish this goal. The Nuclear Waste Source-Term Library consists of 16 ORIGEN computer runs incorporating a wide variety of differing light water reactor (LWR) fuel cycles and waste streams. The typical isotopic source-term data consist of information on watts, curies, grams, etc., all of which are compiled as a function of time after reactor discharge and unitized on a per metric ton heavy metal basis. The information retrieval code, PLOTLIB, is used to process source-term information requests into computer plots and/or user-specified output tables. This report will serve both as documentation of the current data library and as an operations manual for the PLOTLIB computer code. The accompanying input description, program listing, and sample problems make this code package an easily understood tool for the various nuclear waste studies under way at the Office of Waste Isolation
Short-Term Memory Stages in Sign vs. Speech: The Source of the Serial Span Discrepancy
Hall, Matthew L.; Bavelier, Daphne
2011-01-01
Speakers generally outperform signers when asked to recall a list of unrelated verbal items. This phenomenon is well established, but its source has remained unclear. In this study, we evaluate the relative contribution of the three main processing stages of short-term memory--perception, encoding, and recall--in this effect. The present study…
Radioiodine source term and its potential impact on the use of potassium iodide
International Nuclear Information System (INIS)
Malinauskas, A.P.
1982-01-01
Information is presented concerning chemical forms of fission product iodine in the primary circuit; chemical forms of fission product iodine in the containment building; summary of iodine chemistry in light water reactor accidents; and impact of the radiodine source term on the potassium iodide issue
New source terms: what do they tell us about engineered safety feature performance
International Nuclear Information System (INIS)
Bernero, R.M.
1985-01-01
The accident behavior models which are the basis of engineered safety feature design are generally simple, non-mechanistic and concentrated on volatile radioiodine. Now data from source term studies show that models should be more mechanistic and look at other species than volatile iodine. A complete reevaluation of engineered safety features is needed
Determination of Source Term for an Annual Stack Release of Gas Reactor G.A. Siwabessy
International Nuclear Information System (INIS)
Sudiyati; Syahrir; Unggul Hartoyo; Nugraha Luhur
2008-01-01
Releases of radionuclide from the reactor are noble gases, halogenides and particulates. The measurements were carried out directly on the air monitoring system of the stack. The results of these measurements are compared with the annual Source-Term data from the Safety Analyses report (SAR) of RSG-GAS. The measurement results are smaller than the data reported in SAR document. (author)
RMG An Open Source Electronic Structure Code for Multi-Petaflops Calculations
Briggs, Emil; Lu, Wenchang; Hodak, Miroslav; Bernholc, Jerzy
RMG (Real-space Multigrid) is an open source, density functional theory code for quantum simulations of materials. It solves the Kohn-Sham equations on real-space grids, which allows for natural parallelization via domain decomposition. Either subspace or Davidson diagonalization, coupled with multigrid methods, are used to accelerate convergence. RMG is a cross platform open source package which has been used in the study of a wide range of systems, including semiconductors, biomolecules, and nanoscale electronic devices. It can optionally use GPU accelerators to improve performance on systems where they are available. The recently released versions (>2.0) support multiple GPU's per compute node, have improved performance and scalability, enhanced accuracy and support for additional hardware platforms. New versions of the code are regularly released at http://www.rmgdft.org. The releases include binaries for Linux, Windows and MacIntosh systems, automated builds for clusters using cmake, as well as versions adapted to the major supercomputing installations and platforms. Several recent, large-scale applications of RMG will be discussed.
Effect of seasonal and long-term changes in stress on sources of water to wells
Reilly, Thomas E.; Pollock, David W.
1995-01-01
The source of water to wells is ultimately the location where the water flowing to a well enters the boundary surface of the ground-water system . In ground-water systems that receive most of their water from areal recharge, the location of the water entering the system is at the water table . The area contributing recharge to a discharging well is the surface area that defines the location of the water entering the groundwater system. Water entering the system at the water table flows to the well and is eventually discharged from the well. Many State agencies are currently (1994) developing wellhead-protection programs. The thrust of some of these programs is to protect water supplies by determining the areas contributing recharge to water-supply wells and by specifying regulations to minimize the opportunity for contamination of the recharge water by activities at the land surface. In the analyses of ground-water flow systems, steady-state average conditions are frequently used to simplify the problem and make a solution tractable. Recharge is usually cyclic in nature, however, having seasonal cycles and longer term climatic cycles. A hypothetical system is quantitatively analyzed to show that, in many cases, these cyclic changes in the recharge rates apparently do not significantly affect the location and size of the areas contributing recharge to wells. The ratio of the mean travel time to the length of the cyclic stress period appears to indicate whether the transient effects of the cyclic stress must be explicitly represented in the analysis of contributing areas to wells. For the cases examined, if the ratio of the mean travel time to the period of the cyclic stress was much greater than one, then the transient area contributing recharge to wells was similar to the area calculated using an average steady-state condition. Noncyclic long-term transient changes in water use, however, and cyclic stresses on systems with ratios less than 1 can and do affect the
Loop calculations for the non-commutative U*(1) gauge field model with oscillator term
International Nuclear Information System (INIS)
Blaschke, Daniel N.; Grosse, Harald; Kronberger, Erwin; Schweda, Manfred; Wohlgenannt, Michael
2010-01-01
Motivated by the success of the non-commutative scalar Grosse-Wulkenhaar model, a non-commutative U * (1) gauge field theory including an oscillator-like term in the action has been put forward in (Blaschke et al. in Europhys. Lett. 79:61002, 2007). The aim of the current work is to analyze whether that action can lead to a fully renormalizable gauge model on non-commutative Euclidean space. In a first step, explicit one-loop graph computations are hence presented, and their results as well as necessary modifications of the action are successively discussed. (orig.)
Added Value of uncertainty Estimates of SOurce term and Meteorology (AVESOME)
DEFF Research Database (Denmark)
Sørensen, Jens Havskov; Schönfeldt, Fredrik; Sigg, Robert
In the early phase of a nuclear accident, two large sources of uncertainty exist: one related to the source term and one associated with the meteorological data. Operational methods are being developed in AVESOME for quantitative estimation of uncertainties in atmospheric dispersion prediction.......g. at national meteorological services, the proposed methodology is feasible for real-time use, thereby adding value to decision support. In the recent NKS-B projects MUD, FAUNA and MESO, the implications of meteorological uncertainties for nuclear emergency preparedness and management have been studied...... uncertainty in atmospheric dispersion model forecasting stemming from both the source term and the meteorological data is examined. Ways to implement the uncertainties of forecasting in DSSs, and the impacts on real-time emergency management are described. The proposed methodology allows for efficient real...
International Nuclear Information System (INIS)
Broadhead, B.L.; Locke, H.F.; Avery, A.F.
1994-01-01
The results for Problems 5 and 6 of the NEACRP code comparison as submitted by six participating countries are presented in summary. These problems concentrate on the prediction of the neutron and gamma-ray sources arising in fuel after a specified irradiation, the fuel being uranium oxide for problem 5 and a mixture of uranium and plutonium oxides for problem 6. In both problems the predicted neutron sources are in good agreement for all participants. For gamma rays, however, there are differences, largely due to the omission of bremsstrahlung in some calculations
DNA evolutionary algorithm (DNAEA) for source term identification in convection-diffusion equation
International Nuclear Information System (INIS)
Yang, X-H; Hu, X-X; Shen, Z-Y
2008-01-01
The source identification problem is changed into an optimization problem in this paper. This is a complicated nonlinear optimization problem. It is very intractable with traditional optimization methods. So DNA evolutionary algorithm (DNAEA) is presented to solve the discussed problem. In this algorithm, an initial population is generated by a chaos algorithm. With the shrinking of searching range, DNAEA gradually directs to an optimal result with excellent individuals obtained by DNAEA. The position and intensity of pollution source are well found with DNAEA. Compared with Gray-coded genetic algorithm and pure random search algorithm, DNAEA has rapider convergent speed and higher calculation precision
Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming
2008-09-01
Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.
Low-level radioactive waste source terms for the 1992 integrated data base
International Nuclear Information System (INIS)
Loghry, S.L.; Kibbey, A.H.; Godbee, H.W.; Icenhour, A.S.; DePaoli, S.M.
1995-01-01
This technical manual presents updated generic source terms (i.e., unitized amounts and radionuclide compositions) which have been developed for use in the Integrated Data Base (IDB) Program of the U.S. Department of Energy (DOE). These source terms were used in the IDB annual report, Integrated Data Base for 1992: Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics, DOE/RW-0006, Rev. 8, October 1992. They are useful as a basis for projecting future amounts (volume and radioactivity) of low-level radioactive waste (LLW) shipped for disposal at commercial burial grounds or sent for storage at DOE solid-waste sites. Commercial fuel cycle LLW categories include boiling-water reactor, pressurized-water reactor, fuel fabrication, and uranium hexafluoride (UF 6 ) conversion. Commercial nonfuel cycle LLW includes institutional/industrial (I/I) waste. The LLW from DOE operations is category as uranium/thorium fission product, induced activity, tritium, alpha, and open-quotes otherclose quotes. Fuel cycle commercial LLW source terms are normalized on the basis of net electrical output [MW(e)-year], except for UF 6 conversion, which is normalized on the basis of heavy metal requirement [metric tons of initial heavy metal ]. The nonfuel cycle commercial LLW source term is normalized on the basis of volume (cubic meters) and radioactivity (curies) for each subclass within the I/I category. The DOE LLW is normalized in a manner similar to that for commercial I/I waste. The revised source terms are based on the best available historical data through 1992
Kinetic calculations for miniature neutron source reactor using analytical and numerical techniques
International Nuclear Information System (INIS)
Ampomah-Amoako, E.
2008-06-01
The analytical methods, step change in reactivity and ramp change in reactivity as well as numerical methods, fixed point iteration and Runge Kutta-gill were used to simulate the initial build up of neutrons in a miniature neutron source reactor with and without temperature feedback effect. The methods were modified to include photo neutron concentration. PARET 7.3 was used to simulate the transients behaviour of Ghana Research Reactor-1. The PARET code was capable of simulating the transients for 2.1 mk and 4 mk insertions of reactivity with peak powers of 49.87 kW and 92.34 kW, respectively. PARET code however failed to simulate 6.71 mk of reactivity which was predicted by Akaho et al through TEMPFED. (au)
Directory of Open Access Journals (Sweden)
J. S. de Villiers
2014-10-01
Full Text Available This research focuses on the inversion of geomagnetic variation field measurement to obtain source currents in the ionosphere. During a geomagnetic disturbance, the ionospheric currents create magnetic field variations that induce geoelectric fields, which drive geomagnetically induced currents (GIC in power systems. These GIC may disturb the operation of power systems and cause damage to grounded power transformers. The geoelectric fields at any location of interest can be determined from the source currents in the ionosphere through a solution of the forward problem. Line currents running east–west along given surface position are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground having the magnetic north and down components, and the electric east component. Ionospheric currents are modelled by inverting Fourier integrals (over the wavenumber of elementary geomagnetic fields using the Levenberg–Marquardt technique. The output parameters of the inversion model are the current strength, height and surface position of the ionospheric current system. A ground conductivity structure with five layers from Quebec, Canada, based on the Layered-Earth model is used to obtain the complex skin depth at a given angular frequency. This paper presents preliminary and inversion results based on these structures and simulated geomagnetic fields. The results show some interesting features in the frequency domain. Model parameters obtained through inversion are within 2% of simulated values. This technique has applications for modelling the currents of electrojets at the equator and auroral regions, as well as currents in the magnetosphere.
Energy Technology Data Exchange (ETDEWEB)
Radulovic, Vladimir; Barbot, Loic; Fourmentel, Damien; Villard, Jean-Francois [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Snoj, Luka; Zerovnik, Gasper [Jozef Stefan Institute, Reactor Physics Department, Jamova cesta 39, SI-1000 Ljubljana, (Slovenia); Trkov, Andrej [IAEA, Vienna International Centre, PO Box 100, A-1400 Vienna, (Austria)
2015-07-01
Significant efforts have been made over the last few years in the French Alternative Energies and Atomic Energy Commission (CEA) to adopt multi-step Monte Carlo calculation schemes in the investigation and interpretation of the response of nuclear reactor instrumentation detectors (e.g. miniature ionization chambers - MICs and self-powered neutron or gamma detectors - SPNDs and SPGDs). The first step consists of the calculation of the primary data, i.e. evaluation of the neutron and gamma flux levels and spectra in the environment where the detector is located, using a computational model of the complete nuclear reactor core and its surroundings. These data are subsequently used to define sources for the following calculation steps, in which only a model of the detector under investigation is used. This approach enables calculations with satisfactory statistical uncertainties (of the order of a few %) within regions which are very small in size (the typical volume of which is of the order of 1 mm{sup 3}). The main drawback of a calculation scheme as described above is that perturbation effects on the radiation conditions caused by the detectors themselves are not taken into account. Depending on the detector, the nuclear reactor and the irradiation position, the perturbation in the neutron flux as primary data may reach 10 to 20%. A further issue is whether the model used in the second step calculations yields physically representative results. This is generally not the case, as significant deviations may arise, depending on the source definition. In particular, as presented in the paper, the injudicious use of special options aimed at increasing the computation efficiency (e.g. reflective boundary conditions) may introduce unphysical bias in the calculated flux levels and distortions in the spectral shapes. This paper presents examples of the issues described above related to a case study on the interpretation of the signal from different types of SPNDs, which
ARC: An open-source library for calculating properties of alkali Rydberg atoms
Šibalić, N.; Pritchard, J. D.; Adams, C. S.; Weatherill, K. J.
2017-11-01
We present an object-oriented Python library for the computation of properties of highly-excited Rydberg states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both long and short range for arbitrary placement of the atomic dipoles. The package is cross-referenced to precise measurements of atomic energy levels and features extensive documentation to facilitate rapid upgrade or expansion by users. This library has direct application in the field of quantum information and quantum optics which exploit the strong Rydberg dipolar interactions for two-qubit gates, robust atom-light interfaces and simulating quantum many-body physics, as well as the field of metrology using Rydberg atoms as precise microwave electrometers. Program Files doi:http://dx.doi.org/10.17632/hm5n8w628c.1 Licensing provisions: BSD-3-Clause Programming language: Python 2.7 or 3.5, with C extension External Routines: NumPy [1], SciPy [1], Matplotlib [2] Nature of problem: Calculating atomic properties of alkali atoms including lifetimes, energies, Stark shifts and dipole-dipole interaction strengths using matrix elements evaluated from radial wavefunctions. Solution method: Numerical integration of radial Schrödinger equation to obtain atomic wavefunctions, which are then used to evaluate dipole matrix elements. Properties are calculated using second order perturbation theory or exact diagonalisation of the interaction Hamiltonian, yielding results valid even at large external fields or small interatomic separation. Restrictions: External electric field fixed to be parallel to quantisation axis. Supplementary material: Detailed documentation (.html), and Jupyter notebook with examples and benchmarking runs (.html and .ipynb). [1] T.E. Oliphant
The calculation interest for administration of hydropower in the long-term
International Nuclear Information System (INIS)
2005-01-01
A review of important findings in newer, economic literature on discount rate in the long term is presented. Based on this review, two questions relating to the administration of Norwegian hydropower resources are briefly discussed. Firstly, which discount rate should be used as basis when valuating the existent Norwegian hydropower plants? Secondly, how should the socio-economic discount rate for investments in hydro projects be determined compared relatively to other types of investments in the power sector? The main conclusion is that the existing rate for administration of hydropower need not be substituted. Neither theory nor empiricism provides a conclusive answer. Certain relevant aspects that may be further investigated are put forth (ml)
Barrett, Steven R. H.; Britter, Rex E.
Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial sources are frequently of concern in regulatory and public health contexts. Many emissions are represented geometrically as ground-level line or area sources. Well developed modelling tools such as AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration schemes have been developed. For example, some models decompose area sources into a large number of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Models also employ a time-series approach, which involves computing mean pollutant concentrations for every hour over one or more years of meteorological data. This can give rise to computer runtimes of several days for assessment of a site. While this may be acceptable for assessment of a single industrial complex, airport, etc., this level of computational cost precludes national or international policy assessments at the level of detail available with dispersion modelling. In this paper, we extend previous work [S.R.H. Barrett, R.E. Britter, 2008. Development of algorithms and approximations for rapid operational air quality modelling. Atmospheric Environment 42 (2008) 8105-8111] to line and area sources. We introduce approximations which allow for the development of new analytical solutions for long-term mean dispersion from line and area sources, based on hypergeometric functions. We describe how these solutions can be parameterized from a single point source run from an existing advanced dispersion model, thereby accounting for all processes modelled in the more costly algorithms. The parameterization method combined with the analytical solutions for long-term mean
Measurement and apportionment of radon source terms for modeling indoor environments
International Nuclear Information System (INIS)
Harley, N.H.
1992-01-01
This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters. The dosimetry has been extended to include organs other than the lung
Evaluation of short- and long-term fission product sources at the Fukushima Daiichi NPP
International Nuclear Information System (INIS)
Uchida, Shunsuke; Naitoh, Masanori; Suzuki, Hiroaki; Okada, Hidetoshi; Pellegrini, Marco; Achilli, Andrea; Hanamoto, Yukio; Sasaki, Hiroaki
2014-01-01
Research on fission product (FP) behaviors used to be one of the most important subjects in water chemistry but it is not done nowadays as a consequence of the increased integrity of nuclear fuels and the minimization of FP release into the environment. Evaluation of FP release into the environment is still one of the key issues for severe accident analysis, though. Although there have been a long quiet period in nuclear safety research, how to detect initiation of severe accidents, how to prevent them and how to mitigate them are still important subjects for nuclear engineering, and how to control the severe accidents after their occurrence, especially how to control FP release into the environment, has seldom been discussed in the water chemistry group recently. The paper is intended to address the issue of fewer activities for FP studies. FP sources are divided into two categories, short- and long-term FP sources. Short-term FP source can be evaluated based on the measured data obtained from monitoring posts (MPs), which give us clear evidence on the importance of radioactive iodine and cesium releases into the environment. It used to be considered that during primary containment vessel (PCV) venting, release of each element, e.g., iodine and cesium, was determined by the suppression pool scrubbing efficiency and most of the cesium would likely be removed in the pool due to its large scrubbing efficiency. But as a result of analyzing the MP data at early stage of the Fukushima Daiichi nuclear power plant (NPP) accident, it was confirmed that the releases of both elements were in proportion to their inventories in the reactors and their scrubbing efficiencies were almost the same. The scrubbing efficiency which increased with the pool water temperature became almost the same for iodine and cesium around the pool water boiling temperature. As a result of the mass balance analysis for FPs in the contaminated water accumulated in the Fukushima Daiichi plant site, it
International Nuclear Information System (INIS)
Zeng Yu; Zhou Luyi
2010-01-01
Objectives: To compare the difference of the ratio of thyroid radioiodine ( 131 I) uptake calculated by actually measuring counts of the standard radioactive source(method 1) and by computing counts of the standard radioactive source via physic half life of 131 I (method 2). Methods: Two hundred and nine consecutive patients with Graves' Disease were prospectively recruited. The ratio of thyroid 131 I uptake was calculated by two methods at 4 h and 24 h after administration of 1.48 MBq 131 I, respectively. Paired t-test was used to compare the difference between the two methods. Results: The ratio of thyroid 131 I uptake at 4h was (32±16)% and ( 35±10)% (t=1.98, P=0.20), at 24h (72±19)% and (69±24)% ( t=1.49, P=0.23), respectively, by the two methods. Conclusion: To calculate the ratio of thyroid 131 I uptake via the physic half life of the standard radioactive resource is feasible, and can both reduce the risk of ionizing radiation to technical staff and act as verifying method for quality control of thyroid function equipment. (authors)
International Nuclear Information System (INIS)
Tompson, A B; Maxwell, R M; Carle, S F; Zavarin, M; Pawloski, G A.; Shumaker, D E
2005-01-01
Hydrologic Source Term (HST) calculations completed in 1998 at the CAMBRIC underground nuclear test site were LLNL's first attempt to simulate a hydrologic source term at the NTS by linking groundwater flow and transport modeling with geochemical modeling (Tompson et al., 1999). Significant effort was applied to develop a framework that modeled in detail the flow regime and captured all appropriate chemical processes that occurred over time. However, portions of the calculations were simplified because of data limitations and a perceived need for generalization of the results. For example: (1) Transient effects arising from a 16 years of pumping at the site for a radionuclide migration study were not incorporated. (2) Radionuclide fluxes across the water table, as derived from infiltration from a ditch to which pumping effluent was discharged, were not addressed. (3) Hydrothermal effects arising from residual heat of the test were not considered. (4) Background data on the ambient groundwater flow direction were uncertain and not represented. (5) Unclassified information on the Radiologic Source Term (RST) inventory, as tabulated recently by Bowen et al. (2001), was unavailable; instead, only a limited set of derived data were available (see Tompson et al., 1999). (6) Only a small number of radionuclides and geochemical reactions were incorporated in the work. (7) Data and interpretation of the RNM-2S multiple well aquifer test (MWAT) were not available. As a result, the current Transient CAMBRIC Hydrologic Source Term project was initiated as part of a broader Phase 2 Frenchman Flat CAU flow and transport modeling effort. The source term will be calculated under two scenarios: (1) A more specific representation of the transient flow and radionuclide release behavior at the site, reflecting the influence of the background hydraulic gradient, residual test heat, pumping experiment, and ditch recharge, and taking into account improved data sources and modeling
Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.
2016-11-01
Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.
International Nuclear Information System (INIS)
Smith, L.A.; Gallmeier, F.X.; Gehin, J.C.
1995-05-01
The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are ∼ 13%, while the average differences are < 8%
Energy Technology Data Exchange (ETDEWEB)
Alix, P.; Novat, E.; Hocquet, J.; Bigot, J.P. [Ecole Nationale Superieure des Mines, Centre SPIN, 42 - Saint-Etienne (France)
2001-07-01
In this work, the states law corresponding to flow rate measurements of two-phase flows performed with five different fluid (water, butane, R11, ethyl acetate, methanol) is applied. This allows to show that the critical mass flux (which is used as source term in the scenario of loss of confinement in liquefied gas reservoirs) is a 'universal' function of the reduced initial pressure P{sub 0}{sup *}, which can be used for most of the single-constituent fluids of the processes industry. Thus it is easy to make a relatively precise estimation of the critical mass flux (uncertainty < 20% for P{sub 0}{sup *} < 15%) without the need of any model. It is shown also that no improvement of the models can be expected from the use of the vaporization kinetics. On the contrary, a qualitative consideration indicates that the use of the slip seems more promising. (J.S.)
Hunt, J G; da Silva, F C A; Mauricio, C L P; dos Santos, D S
2004-01-01
The Monte Carlo program 'Visual Monte Carlo-dose calculation' (VMC-dc) uses a voxel phantom to simulate the body organs and tissues, transports photons through this phantom and reports the absorbed dose received by each organ and tissue relevant to the calculation of effective dose as defined in ICRP Publication 60. This paper shows the validation of VMC-dc by comparison with EGSnrc and with a physical phantom containing TLDs. The validation of VMC-dc by comparison with EGSnrc was made for a collimated beam of 0.662 MeV photons irradiating a cube of water. For the validation by comparison with the physical phantom, the case considered was a whole body irradiation with a point 137Cs source placed at a distance of 1 m from the thorax of an Alderson-RANDO phantom. The validation results show good agreement for the doses obtained using VMC-dc and EGSnrc calculations, and from VMC-dc and TLD measurements. The program VMC-dc was then applied to the calculation of doses due to immersion in water containing gamma emitters. The dose conversion coefficients for water immersion are compared with their equivalents in the literature.
International Nuclear Information System (INIS)
Hunt, J. G.; Da Silva, F. C. A.; Mauricio, C. L. P.; Dos Santos, D. S.
2004-01-01
The Monte Carlo program 'Visual Monte Carlo-dose calculation' (VMC-dc) uses a voxel phantom to simulate the body organs and tissues, transports photons through this phantom and reports the absorbed dose received by each organ and tissue relevant to the calculation of effective dose as defined in ICRP Publication 60. This paper shows the validation of VMC-dc by comparison with EGSnrc and with a physical phantom containing TLDs. The validation of VMC-dc by comparison with EGSnrc was made for a collimated beam of 0.662 MeV photons irradiating a cube of water. For the validation by comparison with the physical phantom, the case considered was a whole body irradiation with a point 137 Cs source placed at a distance of 1 m from the thorax of an Alderson-RANDO phantom. The validation results show good agreement for the doses obtained using VMC-dc and EGSnrc calculations, and from VMC-dc and TLD measurements. The program VMC-dc was then applied to the calculation of doses due to immersion in water containing gamma emitters. The dose conversion coefficients for water immersion are compared with their equivalents in the literature. (authors)
A well-balanced scheme for Ten-Moment Gaussian closure equations with source term
Meena, Asha Kumari; Kumar, Harish
2018-02-01
In this article, we consider the Ten-Moment equations with source term, which occurs in many applications related to plasma flows. We present a well-balanced second-order finite volume scheme. The scheme is well-balanced for general equation of state, provided we can write the hydrostatic solution as a function of the space variables. This is achieved by combining hydrostatic reconstruction with contact preserving, consistent numerical flux, and appropriate source discretization. Several numerical experiments are presented to demonstrate the well-balanced property and resulting accuracy of the proposed scheme.
Energy Technology Data Exchange (ETDEWEB)
Majander, E.O.J.; Manninen, M.T. [VTT Energy, Espoo (Finland)
1996-12-31
The flow induced by a pitched blade turbine was simulated using the sliding mesh technique. The detailed geometry of the turbine was modelled in a computational mesh rotating with the turbine and the geometry of the reactor including baffles was modelled in a stationary co-ordinate system. Effects of grid density were investigated. Turbulence was modelled by using the standard k-{epsilon} model. Results were compared to experimental observations. Velocity components were found to be in good agreement with the measured values throughout the tank. Averaged source terms were calculated from the sliding mesh simulations in order to investigate the reliability of the source term approach. The flow field in the tank was then simulated in a simple grid using these source terms. Agreement with the results of the sliding mesh simulations was good. Commercial CFD-code FLUENT was used in all simulations. (author)
Energy Technology Data Exchange (ETDEWEB)
Majander, E O.J.; Manninen, M T [VTT Energy, Espoo (Finland)
1997-12-31
The flow induced by a pitched blade turbine was simulated using the sliding mesh technique. The detailed geometry of the turbine was modelled in a computational mesh rotating with the turbine and the geometry of the reactor including baffles was modelled in a stationary co-ordinate system. Effects of grid density were investigated. Turbulence was modelled by using the standard k-{epsilon} model. Results were compared to experimental observations. Velocity components were found to be in good agreement with the measured values throughout the tank. Averaged source terms were calculated from the sliding mesh simulations in order to investigate the reliability of the source term approach. The flow field in the tank was then simulated in a simple grid using these source terms. Agreement with the results of the sliding mesh simulations was good. Commercial CFD-code FLUENT was used in all simulations. (author)
International Nuclear Information System (INIS)
Butcher, B.M.
1997-08-01
A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values
Energy Technology Data Exchange (ETDEWEB)
Butcher, B.M.
1997-08-01
A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.
International Nuclear Information System (INIS)
Menzel, Francine; Sabundjian, Gaiane; Vanni, Silvia Regina
2009-01-01
This work elaborates a data bank containing information relevant relative to energy sources in Brazil with viability and sustainability, The data bank was elaborated using the computer program Excel, where all the references are linked to the articles and to the correspondent sites. This data bank was the base for the development or the Program for the Calculation of the Economic Viability of the Alternative Energies Solar, Aeolian and Biomass (PEASEB), which results were compared to the energy generated by innovator and compact reactors (IRIS)
International Nuclear Information System (INIS)
Clarke, D.B.; Harben, P.E.; Rock, D.W.; White, J.W.; Piacsek, A.
1997-01-01
In support of the Comprehensive Test Ban, research is under way on the long range propagation of signals from nuclear explosions in deep underwater sound (SOFAR) channel. Initially our work at LLNL on signals in the source region considered explosions in or above deep ocean. We studied the variation of wave properties and source region energy coupling as a function of height or depth of burst. Initial calculations on the CALE hydrodynamics code were linked at a few hundred milliseconds to a version of NRL's weak code, NPE, which solves the nonlinear progressive wave equation. The simulation of the wave propagation was carried down to 5000 m depth and out to 10,000 m range. We have completed ten such simulations at a variety of heights and depths below the ocean surface
Energy Technology Data Exchange (ETDEWEB)
Guida, Mateus Rodrigues; Alves Filho, Hermes; Barros, Ricardo C., E-mail: mguida@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-Graduacao em Modelagem Computacional
2015-07-01
The scattering source iterative (SI) scheme is applied traditionally to converge fine-mesh numerical solutions to fixed-source discrete ordinates (S{sub N}) neutron transport problems with linearly anisotropic scattering. The SI scheme is very simple to implement under a computational viewpoint. However, the SI scheme may show very slow convergence rate, mainly for diffusive media (low absorption) with several mean free paths in extent. In this work we describe two acceleration techniques based on improved initial guesses for the SI scheme, wherein we initialize the scattering source distribution within the slab using the P{sub 1} and P{sub 3} approximations. In order to estimate these initial guesses, we use the coarse-mesh solution of the PN equations with special boundary conditions to account for the classical S{sub N} prescribed boundary conditions, including vacuum boundary conditions. To apply this coarse-mesh P{sub N} solution for the accelerated scheme, we first perform within-node spatial reconstruction, and then we determine the fine-mesh average scalar flux and total current for initializing the linearly anisotropic scattering source terms for the SI scheme. We consider a number of numerical experiments to illustrate the efficiency of the offered P{sub N} synthetic acceleration (P{sub N}SA) technique based on initial guess. (author)
International Nuclear Information System (INIS)
Bradley, D.
1977-01-01
A project is being conducted to develop and illustrate the methods and obtain the data necessary to assess the safety of long-term disposal of high-level radioactive waste in geologic formations. The methods and data will initially focus on generic geologic isolation systems but will ultimately be applied to the long-term safety assessment of specific candidate sites that are selected in the NWTS Program. The activities of waste isolation safety assessment (WISAP) are divided into six tasks: (1) Safety Assessment Concepts and Methods, (2) Disruptive Event Analysis, (3) Source Characterization, (4) Transport Modeling, (5) Transport Data and (6) Societal Acceptance
A Source Term for Wave Attenuation by Sea Ice in WAVEWATCH III (registered trademark): IC4
2017-06-07
blue and 4 locations in the ice: 1, 2, 5, and 10 km. Notice the steepening of the high frequency face and the shift of the peak to slightly lower...Term for Wave Attenuation by Sea Ice in WAVEWATCH III®: IC4 ClarenCe O. COllins iii W. eriCk rOgers Ocean Dynamics and Prediction Branch Oceanography...Wave model Sea ice Ocean surface waves Arctic Ocean WAVEWATCH III Spectral wave modeling Source terms Wave hindcasting 73-N2K2-07-5 Naval Research
Energy Technology Data Exchange (ETDEWEB)
Palma, Daniel Artur Pinheiro [Centro Federal de Educacao Tecnologica de Quimica de Nilopolis, RJ (Brazil)]. E-mails: dpalma@cefeteq.br; Martinez, Aquilino Senra; Goncalves, Alessandro C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mail: agoncalves@con.ufrj.br; aquilino@lmp.ufrj.br
2008-07-01
The calculation of the Doppler broadening function and the interference term are very important in the generation of nuclear data. Recent papers have proposed analytical formulations for both functions and, despite their being simple and precise, they contain the error function with a complex argument. With the intention of simplifying the mathematical treatment two approximations are proposed in this paper. The first one consists of using an expansion in the form of series to treat the error function. The other approximation is based on simplifications in the differential equations that govern the Doppler broadening function. For validation purpose the result obtained is compared to the one obtained in the calculation of the cross sections for isotope {sup 238}U for different resonances. Results obtained have proved satisfactory from the standpoint of accuracy. (author)
International Nuclear Information System (INIS)
Palma, Daniel Artur Pinheiro; Martinez, Aquilino Senra; Goncalves, Alessandro C.
2008-01-01
The calculation of the Doppler broadening function and the interference term are very important in the generation of nuclear data. Recent papers have proposed analytical formulations for both functions and, despite their being simple and precise, they contain the error function with a complex argument. With the intention of simplifying the mathematical treatment two approximations are proposed in this paper. The first one consists of using an expansion in the form of series to treat the error function. The other approximation is based on simplifications in the differential equations that govern the Doppler broadening function. For validation purpose the result obtained is compared to the one obtained in the calculation of the cross sections for isotope 238 U for different resonances. Results obtained have proved satisfactory from the standpoint of accuracy. (author)
International Nuclear Information System (INIS)
Akiko, Furuno; Hideyuki, Kitabata
2003-01-01
Full text: The importance of computer-based decision support systems for local and regional scale accidents has been recognized by many countries with the experiences of accidental atmospheric releases of radionuclides at Chernobyl in 1986 in the former Soviet Union. The recent increase of nuclear power plants in the Asian region also necessitates an emergency response system for Japan to predict the long-range atmospheric dispersion of radionuclides due to overseas accident. On the basis of these backgrounds, WSPEEDI (Worldwide version of System for Prediction of Environmental Emergency Dose Information) at Japan Atomic Energy Research Institute is developed to forecast long-range atmospheric dispersions of radionuclides during nuclear emergency. Although the source condition is critical parameter for accurate prediction, it is rarely that the condition can be acquired in the early stage of overseas accident. Thus, we have been developing a computer-based function to estimate radioactive source term, e.g. the release point, time and amount, as a part of WSPEEDI. This function consists of atmospheric transport simulations and statistical analysis for the prediction and monitoring of air dose rates. Atmospheric transport simulations are carried out for the matrix of possible release points in Eastern Asia and possible release times. The simulation results of air dose rates are compared with monitoring data and the best fitted release condition is defined as source term. This paper describes the source term estimation method and the application to Eastern Asia. The latest version of WSPEEDI accommodates following two models: an atmospheric meteorological model MM5 and a particle random walk model GEARN. MM5 is a non-hydrostatic meteorological model developed by the Pennsylvania State University and the National Center for Atmospheric Research (NCAR). MM5 physically calculates more than 40 meteorological parameters with high resolution in time and space based an
Source terms for analysis of accidents at a high level waste repository
International Nuclear Information System (INIS)
Mubayi, V.; Davis, R.E.; Youngblood, R.
1989-01-01
This paper describes an approach to identifying source terms from possible accidents during the preclosure phase of a high-level nuclear waste repository. A review of the literature on repository safety analyses indicated that source term estimation is in a preliminary stage, largely based on judgement-based scoping analyses. The approach developed here was to partition the accident space into domains defined by certain threshold values of temperature and impact energy density which may arise in potential accidents and specify release fractions of various radionuclides, present in the waste form, in each domain. Along with a more quantitative understanding of accident phenomenology, this approach should help in achieving a clearer perspective on scenarios important to preclosure safety assessments of geologic repositories. 18 refs., 3 tabs
Final report of the inter institutional project ININ-CNSNS 'Source Terms specific for the CNLV'
International Nuclear Information System (INIS)
Anaya M, R.A.
1991-02-01
The purpose of the project inter institutional ININ-CNSNS 'Source Terms Specifies for the CNLV' it is the one of implanting in the computer CYBER (CDC 180-830) of the ININ, the 'Source Term Code Package' (STCP) and to make the operation tests and corresponding operation using the data of the sample problem, for finally to liberate the package, all time that by means of the analysis of the results it is consider appropriate. In this report the results of the are presented simulation of the sequence 'Energy Losses external' (Station blackout) and 'Lost total of CA with failure of the RCIC and success of the HPCS' both with data of the Laguna Verde Central. (Author)
New Source Term Model for the RESRAD-OFFSITE Code Version 3
Energy Technology Data Exchange (ETDEWEB)
Yu, Charley [Argonne National Lab. (ANL), Argonne, IL (United States); Gnanapragasam, Emmanuel [Argonne National Lab. (ANL), Argonne, IL (United States); Cheng, Jing-Jy [Argonne National Lab. (ANL), Argonne, IL (United States); Kamboj, Sunita [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Shih-Yew [Argonne National Lab. (ANL), Argonne, IL (United States)
2013-06-01
This report documents the new source term model developed and implemented in Version 3 of the RESRAD-OFFSITE code. This new source term model includes: (1) "first order release with transport" option, in which the release of the radionuclide is proportional to the inventory in the primary contamination and the user-specified leach rate is the proportionality constant, (2) "equilibrium desorption release" option, in which the user specifies the distribution coefficient which quantifies the partitioning of the radionuclide between the solid and aqueous phases, and (3) "uniform release" option, in which the radionuclides are released from a constant fraction of the initially contaminated material during each time interval and the user specifies the duration over which the radionuclides are released.
On the application of subcell resolution to conservation laws with stiff source terms
International Nuclear Information System (INIS)
Chang, S.
1989-11-01
LeVeque and Yee recently investigated a one-dimensional scalar conservation law with stiff source terms modeling the reacting flow problems and discovered that for the very stiff case most of the current finite difference methods developed for non-reacting flows would produce wrong solutions when there is a propagating discontinuity. A numerical scheme, essentially nonoscillatory/subcell resolution - characteristic direction (ENO/SRCD), is proposed for solving conservation laws with stiff source terms. This scheme is a modification of Harten's ENO scheme with subcell resolution, ENO/SR. The locations of the discontinuities and the characteristic directions are essential in the design. Strang's time-splitting method is used and time evolutions are done by advancing along the characteristics. Numerical experiment using this scheme shows excellent results on the model problem of LeVeque and Yee. Comparisons of the results of ENO, ENO/SR, and ENO/SRCD are also presented
International Nuclear Information System (INIS)
Botchorishvili, Ramaz; Pironneau, Olivier
2003-01-01
We develop here a new class of finite volume schemes on unstructured meshes for scalar conservation laws with stiff source terms. The schemes are of equilibrium type, hence with uniform bounds on approximate solutions, valid in cell entropy inequalities and exact for some equilibrium states. Convergence is investigated in the framework of kinetic schemes. Numerical tests show high computational efficiency and a significant advantage over standard cell centered discretization of source terms. Equilibrium type schemes produce accurate results even on test problems for which the standard approach fails. For some numerical tests they exhibit exponential type convergence rate. In two of our numerical tests an equilibrium type scheme with 441 nodes on a triangular mesh is more accurate than a standard scheme with 5000 2 grid points
International Nuclear Information System (INIS)
Muswema, J.L.; Ekoko, G.B.; Lukanda, V.M.; Lobo, J.K.-K.; Darko, E.O.; Boafo, E.K.
2015-01-01
Highlights: • Atmospheric dispersion modeling for two credible accidents of the TRIGA Mark II research reactor in Kinshasa (TRICO II) was performed. • Radiological safety analysis after the postulated initiating events (PIE) was also carried out. • The Karlsruhe KORIGEN and the HotSpot Health Physics codes were used to achieve the objectives of this study. • All the values of effective dose obtained following the accident scenarios were below the regulatory limits for reactor staff members and the public, respectively. - Abstract: The source term from the 1 MW TRIGA Mark II research reactor core of the Democratic Republic of the Congo was derived in this study. An atmospheric dispersion modeling followed by radiation dose calculation were performed based on two possible postulated accident scenarios. This derivation was made from an inventory of peak radioisotope activities released in the core by using the Karlsruhe version of isotope generation code KORIGEN. The atmospheric dispersion modeling was performed with HotSpot code, and its application yielded to radiation dose profile around the site using meteorological parameters specific to the area under study. The two accident scenarios were picked from possible accident analyses for TRIGA and TRIGA-fueled reactors, involving the case of destruction of the fuel element with highest activity release and a plane crash on the reactor building as the worst case scenario. Deterministic effects of these scenarios are used to update the Safety Analysis Report (SAR) of the reactor, and for its current version, these scenarios are not yet incorporated. Site-specific meteorological conditions were collected from two meteorological stations: one installed within the Atomic Energy Commission and another at the National Meteorological Agency (METTELSAT), which is not far from the site. Results show that in both accident scenarios, radiation doses remain within the limits, far below the recommended maximum effective
Energy Technology Data Exchange (ETDEWEB)
Muswema, J.L., E-mail: jeremie.muswem@unikin.ac.cd [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Ekoko, G.B. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Lukanda, V.M. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Democratic Republic of the Congo' s General Atomic Energy Commission, P.O. Box AE1 (Congo, The Democratic Republic of the); Lobo, J.K.-K. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Darko, E.O. [Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Boafo, E.K. [University of Ontario Institute of Technology, 2000 Simcoe St. North, Oshawa, ONL1 H7K4 (Canada)
2015-01-15
Highlights: • Atmospheric dispersion modeling for two credible accidents of the TRIGA Mark II research reactor in Kinshasa (TRICO II) was performed. • Radiological safety analysis after the postulated initiating events (PIE) was also carried out. • The Karlsruhe KORIGEN and the HotSpot Health Physics codes were used to achieve the objectives of this study. • All the values of effective dose obtained following the accident scenarios were below the regulatory limits for reactor staff members and the public, respectively. - Abstract: The source term from the 1 MW TRIGA Mark II research reactor core of the Democratic Republic of the Congo was derived in this study. An atmospheric dispersion modeling followed by radiation dose calculation were performed based on two possible postulated accident scenarios. This derivation was made from an inventory of peak radioisotope activities released in the core by using the Karlsruhe version of isotope generation code KORIGEN. The atmospheric dispersion modeling was performed with HotSpot code, and its application yielded to radiation dose profile around the site using meteorological parameters specific to the area under study. The two accident scenarios were picked from possible accident analyses for TRIGA and TRIGA-fueled reactors, involving the case of destruction of the fuel element with highest activity release and a plane crash on the reactor building as the worst case scenario. Deterministic effects of these scenarios are used to update the Safety Analysis Report (SAR) of the reactor, and for its current version, these scenarios are not yet incorporated. Site-specific meteorological conditions were collected from two meteorological stations: one installed within the Atomic Energy Commission and another at the National Meteorological Agency (METTELSAT), which is not far from the site. Results show that in both accident scenarios, radiation doses remain within the limits, far below the recommended maximum effective
Estimation of marine source-term following Fukushima Dai-ichi accident
International Nuclear Information System (INIS)
Bailly du Bois, P.; Laguionie, P.; Boust, D.; Korsakissok, I.; Didier, D.; Fiévet, B.
2012-01-01
Contamination of the marine environment following the accident in the Fukushima Dai-ichi nuclear power plant represented the most important artificial radioactive release flux into the sea ever known. The radioactive marine pollution came from atmospheric fallout onto the ocean, direct release of contaminated water from the plant and transport of radioactive pollution from leaching through contaminated soil. In the immediate vicinity of the plant (less than 500 m), the seawater concentrations reached 68 000 Bq.L −1 for 134 Cs and 137 Cs, and exceeded 100 000 Bq.L −1 for 131 I in early April. Due to the accidental context of the releases, it is difficult to estimate the total amount of radionuclides introduced into seawater from data obtained in the plant. An evaluation is proposed here, based on measurements performed in seawater for monitoring purposes. Quantities of 137 Cs in seawater in a 50-km area around the plant were calculated from interpolation of seawater measurements. The environmental halftime of seawater in this area is deduced from the time-evolution of these quantities. This halftime appeared constant at about 7 days for 137 Cs. These data allowed estimation of the amount of principal marine inputs and their evolution in time: a total of 27 PBq (12 PBq–41 PBq) of 137 Cs was estimated up to July 18. Even though this main release may be followed by residual inputs from the plant, river runoff and leakage from deposited sediments, it represents the principal source-term that must be accounted for future studies of the consequences of the accident on marine systems. The 137 Cs from Fukushima will remain detectable for several years throughout the North Pacific, and 137 Cs/ 134 Cs ratio will be a tracer for future studies. Highlights: ► Fukushima Dai-ichi accident is the most important artificial radioactive release flux into the sea. ► Quantities of 137 Cs in seawater are deduced from individual measurements. ► Local concentrations in
International Nuclear Information System (INIS)
Straker, E.A.; Gritzner, M.L.; Harris, L. Jr.
1978-01-01
Calculations of neutron and gamma-ray fluences from 14-MeV neutron and 252 Cf sources in liquid air and liquid nitrogen have been performed. These calculations were made specifically for comparison with experimental data measured at Stohl, Federal Republic of Germany. The discrete-ordinates method was utilized with neutron and gamma-ray cross sections from ENDF/B-IV. One-dimensional calculational models were developed for the sources and tank. Limited comparisons are made with experimental data
Quantification of source-term profiles from near-field geochemical models
International Nuclear Information System (INIS)
McKinley, I.G.
1985-01-01
A geochemical model of the near-field is described which quantitatively treats the processes of engineered barrier degradation, buffering of aqueous chemistry by solid phases, nuclide solubilization and transport through the near-field and release to the far-field. The radionuclide source-terms derived from this model are compared with those from a simpler model used for repository safety analysis. 10 refs., 2 figs., 2 tabs
Short-Term Memory Stages in Sign vs. Speech: The Source of the Serial Span Discrepancy
Hall, Matthew L.
2011-01-01
Speakers generally outperform signers when asked to recall a list of unrelated verbal items. This phenomenon is well established, but its source has remained unclear. In this study, we evaluate the relative contribution of the three main processing stages of short-term memory – perception, encoding, and recall – in this effect. The present study factorially manipulates whether American Sign Language (ASL) or English was used for perception, memory encoding, and recall in hearing ASL-English b...
Short-term memory stages in sign vs. speech: The source of the serial span discrepancy
Hall, Matthew L.; Bavelier, Daphné
2011-01-01
Speakers generally outperform signers when asked to recall a list of unrelated verbal items. This phenomenon is well established, but its source has remained unclear. In this study, we evaluate the relative contribution of the three main processing stages of short-term memory – perception, encoding, and recall – in this effect. The present study factorially manipulates whether American Sign Language (ASL) or English is used for perception, memory encoding, and recall in hearing ASL-English bi...
On the sequence of core-melt accidents: Fission product release, source terms and Chernobyl release
Energy Technology Data Exchange (ETDEWEB)
Albrecht, H
1986-01-01
There is a sketch of our ideas on the course of a core melt-out accident in a PWR. There is then a survey of the most important results on fission product release, which were obtained by experiments on the SASCHA melt-out plant. The 3rd part considers questions which are important for determining source terms for the environment and the last part contains some considerations on radioactivity release from the Chernobyl reactor.
Refined Source Terms in WAVEWATCH III with Wave Breaking and Sea Spray Forecasts
2015-09-30
dissipation and breaking, nonlinear wave-wave interaction, bottom friction, wave-mud interaction, wave-current interaction as well as sea spray flux. These...shallow water outside the surf zone. After careful testing within a comprehensive suite of test bed cases, these refined source terms will be...aim to refine the parameterization of air-sea and upper ocean fluxes, including wind input and sea spray as well as dissipation, and hence improve
Optimization method for identifying the source term in an inverse wave equation
Directory of Open Access Journals (Sweden)
Arumugam Deiveegan
2017-08-01
Full Text Available In this work, we investigate the inverse problem of identifying a space-wise dependent source term of wave equation from the measurement on the boundary. On the basis of the optimal control framework, the inverse problem is transformed into an optimization problem. The existence and necessary condition of the minimizer for the cost functional are obtained. The projected gradient method and two-parameter model function method are applied to the minimization problem and numerical results are illustrated.
Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank
2011-03-01
The goal of this work is to compare D(m,m) (radiation transported in medium; dose scored in medium) and D(w,m) (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether ap plying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: 125I, 103Pd, and 131Cs seeds, as well as an EBS operating at 50 kV. Ratios of D(w,m) over D(m,m) are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using 103Pd) and prostate (using 125I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D90 values are compared for D(w,m) and D(m,m). (1) Differences (D(w,m)/D(m,m)-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D(w,m)/D(m,m) is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D90(w,m) over D90(m,m) for clinical implants matches D(w,m)/D(m,m) at 1 cm from the single point sources, Given
Energy Technology Data Exchange (ETDEWEB)
Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Prolo Filho, Joao Francisco [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica, Estatistica e Fisica; Dias da Cunha, Rudnei; Basso Barichello, Liliane [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica
2014-04-15
In this work a study of two-dimensional fixed-source neutron transport problems, in Cartesian geometry, is reported. The approach reduces the complexity of the multidimensional problem using a combination of nodal schemes and the Analytical Discrete Ordinates Method (ADO). The unknown leakage terms on the boundaries that appear from the use of the derivation of the nodal scheme are incorporated to the problem source term, such as to couple the one-dimensional integrated solutions, made explicit in terms of the x and y spatial variables. The formulation leads to a considerable reduction of the order of the associated eigenvalue problems when combined with the usual symmetric quadratures, thereby providing solutions that have a higher degree of computational efficiency. Reflective-type boundary conditions are introduced to represent the domain on a simpler form than that previously considered in connection with the ADO method. Numerical results obtained with the technique are provided and compared to those present in the literature. (orig.)
Evaluation of applicability of alternative source terms to operating nuclear power plants in Korea
International Nuclear Information System (INIS)
Lim, S. N.; Park, Y. S.; Nam, K. M.; Song, D. B.; Bae, Y. J.; Lee, Y. J.; Jung, C. Y.
2002-01-01
In 1995 and 2000, NRC issued NUREG-1465 and Regulatory Guide 1.183 with respect to Alternative Source Terms(AST) replacing the existing source terms of TID-14844 and Regulatory Guide 1.4, 1.25, and 1.77 for radiological Design Basis Accidents(DBA) analysis. In 1990, ICRP published ICRP Pub. 60 which represents new recommendations on dose criteria and concepts. In Korea, alternative source terms were used for evaluation of effective doses for design basis accidents of Advanced Power Reactor(APR1400) using the computer program developed by an overseas company. Recently, DBADOSE, new computer program for DBA analysis incorporating AST and effective dose concept was developed by KHNP and KOPEC, and reanalysis applying AST to operating nuclear power plants, Kori units 3 and 4 in Korea using DBADOSE has been performed. As the results of this analysis, it was concluded that some conservative variables or operation procedures of operating plants could be mitigated or simplified by virtue of increased safety margin and consequently, economical and operational benefits ensue. In this paper, methodologies and results of Kori 3 and 4 DBA reanalysis and sensitivity analysis for mitigation of main design variables are introduced
Unsplit schemes for hyperbolic conservation laws with source terms in one space dimension
International Nuclear Information System (INIS)
Papalexandris, M.V.; Leonard, A.; Dimotakis, P.E.
1997-01-01
The present work is concerned with an application of the theory of characteristics to conservation laws with source terms in one space dimension, such as the Euler equations for reacting flows. Space-time paths are introduced on which the flow/chemistry equations decouple to a characteristic set of ODE's for the corresponding homogeneous laws, thus allowing the introduction of functions analogous to the Riemann invariants in classical theory. The geometry of these paths depends on the spatial gradients of the solution. This particular decomposition can be used in the design of efficient unsplit algorithms for the numerical integration of the equations. As a first step, these ideas are implemented for the case of a scalar conservation law with a nonlinear source term. The resulting algorithm belongs to the class of MUSCL-type, shock-capturing schemes. Its accuracy and robustness are checked through a series of tests. The stiffness of the source term is also studied. Then, the algorithm is generalized for a system of hyperbolic equations, namely the Euler equations for reacting flows. A numerical study of unstable detonations is performed. 57 refs
The Chernobyl reactor accident source term: development of a consensus view
International Nuclear Information System (INIS)
Devell, L.; Guntay, S.; Powers, D.A.
1995-11-01
Ten years after the reactor accident at Chernobyl, a great deal more data is available concerning the events, phenomena, and processes that took place. The purpose of this document is to examine what is known about the radioactive materials released during the accident, a task that is substantially more difficult than it might first appear to be. The Chernobyl station, like other nuclear power plants, was not instrumented to characterize a disastrous accident. The accident was peculiar in the sense that radioactive materials were released, at least initially, in an exceptionally energetic plume and were transported far from the reactor site. Release of radioactivity from the plant continued for several days. Characterization of the contamination caused by the releases of radioactivity has had a much lower priority than remediation of the contamination. Consequently, an assessment of the Chernobyl accident source term must rely to a significant extent on inferential evidence. The assessment presented here begins with an examination of the core inventories of radioactive materials. In subsequent sections of the report, the magnitude and timing of the releases of radioactivity are described. Then, the composition, chemical forms, and physical forms of the releases are discussed. A number of more recent publications and results from scientists in Russia and elsewhere have significantly improved the understanding of the Chernobyl source term. Because of the special features of the reactor design and the peculiarities of the Chernobyl accident, the source term for the Chernobyl accident is of limited applicability to the safety analysis of other types of reactors
Least-squares finite-element method for shallow-water equations with source terms
Institute of Scientific and Technical Information of China (English)
Shin-Jye Liang; Tai-Wen Hsu
2009-01-01
Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of source terms in momentum equations, such as the bottom slope and friction of bed, compounds the difficulties further. In this paper, a least-squares finite-element method for the space discretization and θ-method for the time integration is developed for the 2D non-conservative SWE including the source terms. Advantages of the method include: the source terms can be approximated easily with interpolation functions, no upwind scheme is needed, as well as the resulting system equations is symmetric and positive-definite, therefore, can be solved efficiently with the conjugate gradient method. The method is applied to steady and unsteady flows, subcritical and transcritical flow over a bump, 1D and 2D circular dam-break, wave past a circular cylinder, as well as wave past a hump. Computed results show good C-property, conservation property and compare well with exact solutions and other numerical results for flows with weak and mild gradient changes, but lead to inaccurate predictions for flows with strong gradient changes and discontinuities.
Quantification of uncertainties in source term estimates for a BWR with Mark I containment
International Nuclear Information System (INIS)
Khatib-Rahbar, M.; Cazzoli, E.; Davis, R.; Ishigami, T.; Lee, M.; Nourbakhsh, H.; Schmidt, E.; Unwin, S.
1988-01-01
A methodology for quantification and uncertainty analysis of source terms for severe accident in light water reactors (QUASAR) has been developed. The objectives of the QUASAR program are (1) to develop a framework for performing an uncertainty evaluation of the input parameters of the phenomenological models used in the Source Term Code Package (STCP), and (2) to quantify the uncertainties in certain phenomenological aspects of source terms (that are not modeled by STCP) using state-of-the-art methods. The QUASAR methodology consists of (1) screening sensitivity analysis, where the most sensitive input variables are selected for detailed uncertainty analysis, (2) uncertainty analysis, where probability density functions (PDFs) are established for the parameters identified by the screening stage and propagated through the codes to obtain PDFs for the outputs (i.e., release fractions to the environment), and (3) distribution sensitivity analysis, which is performed to determine the sensitivity of the output PDFs to the input PDFs. In this paper attention is limited to a single accident progression sequence, namely; a station blackout accident in a BWR with a Mark I containment buildings. Identified as an important accident in the draft NUREG-1150 a station blackout involves loss of both off-site power and DC power resulting in failure of the diesels to start and in the unavailability of the high pressure injection and core isolation coding systems
Source-term model for the SYVAC3-NSURE performance assessment code
International Nuclear Information System (INIS)
Rowat, J.H.; Rattan, D.S.; Dolinar, G.M.
1996-11-01
Radionuclide contaminants in wastes emplaced in disposal facilities will not remain in those facilities indefinitely. Engineered barriers will eventually degrade, allowing radioactivity to escape from the vault. The radionuclide release rate from a low-level radioactive waste (LLRW) disposal facility, the source term, is a key component in the performance assessment of the disposal system. This report describes the source-term model that has been implemented in Ver. 1.03 of the SYVAC3-NSURE (Systems Variability Analysis Code generation 3-Near Surface Repository) code. NSURE is a performance assessment code that evaluates the impact of near-surface disposal of LLRW through the groundwater pathway. The source-term model described here was developed for the Intrusion Resistant Underground Structure (IRUS) disposal facility, which is a vault that is to be located in the unsaturated overburden at AECL's Chalk River Laboratories. The processes included in the vault model are roof and waste package performance, and diffusion, advection and sorption of radionuclides in the vault backfill. The model presented here was developed for the IRUS vault; however, it is applicable to other near-surface disposal facilities. (author). 40 refs., 6 figs
Energy Technology Data Exchange (ETDEWEB)
Lamouroux, C. [CEA Saclay, Nuclear Energy Division /DANS, Department of physico-chemistry, 91191 Gif sur yvette (France); Esnouf, S. [CEA Saclay, DSM/IRAMIS/SIS2M/Radiolysis Laboratory , 91191 Gif sur yvette (France); Cochin, F. [Areva NC,recycling BU, DIRP/RDP tour Areva, 92084 Paris La Defense (France)
2013-07-01
In radioactive waste packages hydrogen is generated, in one hand, from the radiolysis of wastes (mainly organic materials) and, in the other hand, from the radiolysis of water content in the cement matrix. In order to assess hydrogen generation 2 tools based on operational models have been developed. One is dedicated to the determination of the hydrogen source term issues from the radiolysis of the wastes: the STORAGE tool (Simulation Tool Of Emission Radiolysis Gas), the other deals with the hydrogen source term gas, produced by radiolysis of the cement matrices (the Damar tool). The approach used by the STORAGE tool for assessing the production rate of radiolysis gases is divided into five steps: 1) Specification of the data packages, in particular, inventories and radiological materials defined for a package medium; 2) Determination of radiochemical yields for the different constituents and the laws of behavior associated, this determination of radiochemical yields is made from the PRELOG database in which radiochemical yields in different irradiation conditions have been compiled; 3) Definition of hypothesis concerning the composition and the distribution of contamination inside the package to allow assessment of the power absorbed by the constituents; 4) Sum-up of all the contributions; And finally, 5) validation calculations by comparison with a reduced sampling of packages. Comparisons with measured values confirm the conservative character of the methodology and give confidence in the safety margins for safety analysis report.
International Nuclear Information System (INIS)
Ang, M.L.; Grindon, E.; Dutton, L.M.C.; Garcia-Sedano, P.; Santamaria, C.S.; Centner, B.; Auglaire, M.; Routamo, T.; Outa, S.; Jokiniemi, J.; Gustavsson, V.; Wennerstrom, H.; Spanier, L.; Gren, M.; Boschiero, M-H; Droulas, J-L; Friederichs, H-G; Sonnenkalb, M.
2001-01-01
The purpose of this project is to address the key uncertainties associated with a number of fission product release and transport phenomena in a wider context and to assess their relevance to key severe accident sequences. This project is a wide-based analysis involving eight reactor designs that are representative of the reactors currently operating in the European Union (EU). In total, 20 accident sequences covering a wide range of conditions have been chosen to provide the basis for sensitivity studies. The appraisal is achieved through a systematic risk-based framework developed within this project. Specifically, this is a quantitative interpretation of the sensitivity calculations on the basis of 'significance indicators', applied above defined threshold values. These threshold values represent a good surrogate for 'large release', which is defined in a number of EU countries. In addition, the results are placed in the context of in-containment source term limits, for advanced light water reactor designs, as defined by international guidelines. Overall, despite the phenomenological uncertainties, the predicted source terms (both into the containment, and subsequently, into the environment) do not display a high degree of sensitivity to the individual fission product issues addressed in this project. This is due, mainly, to the substantial capacity for the attenuation of airborne fission products by the designed safety provisions and the natural fission product retention mechanisms within the containment
International Nuclear Information System (INIS)
Herranz, Luis E.; Garcia, Monica; Otero, Bernadette
2009-01-01
Level-2 Probabilistic Safety Analysis has demonstrated to be a powerful tool to give insights into multiple aspects concerning severe accidents: phenomena with the greatest potential to lead to containment failure, safety systems performance and, even, to identify any additional accident management that could mitigate the consequences of such an even, etc. A major result of level-2 PSA is iodine content in Source Term since it is the main responsible for the radiological impact during the first few days after a hypothetical severe accident. Iodine chemistry is known to considerably affect iodine behavior and although understanding has improved substantially since the early 90's, a thorough understanding is still missing and most PSA studies do not address it when assessing severe accident scenarios. This paper emphasizes the quantitative and qualitative significance of considering iodine chemistry in level-2 PSA estimates. To do so a cold leg break, low pressure severe accident sequence of an actual pressurized water reactor has been analyzed with the MELCOR 1.8.6 YT code. Two sets of calculations, with and without chemistry, have been carried out and compared. The study shows that iodine chemistry could result in an iodine release to environment about twice higher, most of which would consist of around 60% of iodine in gaseous form. From these results it is concluded that exploratory studies on the potential effect of iodine chemistry on source term estimates should be carried out. (author)
Standardization of iridium-192 coiled source in terms of air kerma output
International Nuclear Information System (INIS)
Shanta, A.; Unnikrishnan, K.; Tripathi, U.B.; Kannan, A.; Iyer, P.S.
1996-01-01
ICRU (1985) recommended that the output of gamma ray brachytherapy sources should be specified in terms of reference air kerma rate, defined as the kerma rate to air in air at a reference distance of 1 meter, perpendicular to the long axis of the source, corrected for air attenuation and scattering. As these measurements are difficult to carry out in the routine clinical use, it is the common practice to calibrate the re-entrant ionization chamber with respect to open air measurements and use the re-entrant chamber for routine measurements. This paper reports on the measurements carried out to correlate the nominal activity and air kerma rate of 192 Ir wire sources supplied by the Board of Radiation and Isotope Technology, Department of Atomic Energy. (author). 3 refs, 1 tab
Standardization of iridium-192 coiled source in terms of air kerma output
Energy Technology Data Exchange (ETDEWEB)
Shanta, A; Unnikrishnan, K; Tripathi, U B; Kannan, A; Iyer, P S [Bhabha Atomic Research Centre, Bombay (India)
1996-08-01
ICRU (1985) recommended that the output of gamma ray brachytherapy sources should be specified in terms of reference air kerma rate, defined as the kerma rate to air in air at a reference distance of 1 meter, perpendicular to the long axis of the source, corrected for air attenuation and scattering. As these measurements are difficult to carry out in the routine clinical use, it is the common practice to calibrate the re-entrant ionization chamber with respect to open air measurements and use the re-entrant chamber for routine measurements. This paper reports on the measurements carried out to correlate the nominal activity and air kerma rate of {sup 192}Ir wire sources supplied by the Board of Radiation and Isotope Technology, Department of Atomic Energy. (author). 3 refs, 1 tab.
Long-term program up to fiscal 1993 of electric power source development
International Nuclear Information System (INIS)
Kawakami, Shin-ichi
1984-01-01
The long-term, ten years, program up to fiscal 1993 of electric power source development, determined by the Government aims at stable power supply and the expansion of utilization of petroleum-substitute energy. The annual growth in the gross national product (GNP) during the ten years was taken as about 4 %. So, the total electric power demand in fiscal 1993 is scheduled to be 731,000 million kwh, about 34 % up from 547,000 million kwh in fiscal 1983. The structure of electric power sources at the end of fiscal 1993 will be hydraulic 19.7 %, thermal 58.3 %, and nuclear 21.9 %. The development of electric power sources to be initiated in fiscal 1984 is hydraulic 500 MW, thermal 2,000 MW, and nuclear 6,000 MW. (Mori, K.)
International Nuclear Information System (INIS)
Stubna, M.; Bujan, A.; Duranova, T.
1997-01-01
A number of severe accident analyses for reactor unit with WWER-440 (213) has been performed in order to evaluate the source term and radiological consequences. As a tool for these analyses the WWER modified version of Source Term Code Package and Real Time Accident Release Consequences codes have been used. A set of emergency procedures - manuals for quick estimation of the source term and countermeasures introduction during early -pre-release phase of severe accident progression has been developed at Nuclear Power Plants Research Institute Trnava, Inc. These manuals are subdivided into three groups: 1.) evaluation of the barriers integrity, 2.) source term estimation and 3.) estimation of the distances for the countermeasures introduction. A methodology and computer module for interpretation of environmental data - source term assessment during post-release phase from on-line environmental network has been developed at Nuclear Power Plants Research Institute Trnava, Inc. The method is based on the conversion of measured dose rates to the source term,i.e. airborne radioactivity release rate, taking into account real meteorological data and location of the measure points. The bootstrap method for the estimation of the mean value of source term Q as integral value of the release and confidence interval of Q has been selected. The methodology of Q distribution into fission product groups according to code Real Time Accident Release Consequences needs is based on known plant status, i.e. on the results of pre calculated accident sequences. The paper describes the methodologies introduced above and the way of their application
Low-level waste disposal performance assessments - Total source-term analysis
Energy Technology Data Exchange (ETDEWEB)
Wilhite, E.L.
1995-12-31
Disposal of low-level radioactive waste at Department of Energy (DOE) facilities is regulated by DOE. DOE Order 5820.2A establishes policies, guidelines, and minimum requirements for managing radioactive waste. Requirements for disposal of low-level waste emplaced after September 1988 include providing reasonable assurance of meeting stated performance objectives by completing a radiological performance assessment. Recently, the Defense Nuclear Facilities Safety Board issued Recommendation 94-2, {open_quotes}Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Sites.{close_quotes} One of the elements of the recommendation is that low-level waste performance assessments do not include the entire source term because low-level waste emplaced prior to September 1988, as well as other DOE sources of radioactivity in the ground, are excluded. DOE has developed and issued guidance for preliminary assessments of the impact of including the total source term in performance assessments. This paper will present issues resulting from the inclusion of all DOE sources of radioactivity in performance assessments of low-level waste disposal facilities.
Calculation of NO2 concentration in air from the point source Tepláreň Košice
Directory of Open Access Journals (Sweden)
Jozef Mačala
2007-06-01
Full Text Available The most threatened part of environment is air and its pollution increases rapidly. In the local rate, the weight of air pollution increases by reason of a more intensive influence on the human population. The problem is significant mostly in urban areas, places with the biggest concentration of peoples, industry and transport. The greatest producers of air pollution are various parts of industry, heat production and traffic. For a complex valuation, the influence of particular parts of industry is needed to know the sources of air pollution in the specific area. Only with a knowledge, it is possible to evaluate a spotted area in terms of air quality.
International Nuclear Information System (INIS)
Kang, M.S.; Kang, P.; Kang, C.S.; Moon, J.H.
2004-01-01
Considering the current trend in applying the revised source term proposed by NUREG-1465 to the nuclear power plants in the U.S., it is expected that the revised source term will be applied to the Korean operating nuclear power plants in the near future, even though the exact time can not be estimated. To meet the future technical demands, it is necessary to prepare the technical system including the related regulatory requirements in advance. In this research, therefore, it is intended to develop the methodology to apply the revised source term to operating nuclear power plants in Korea. Several principles were established to develop the application methodologies. First, it is not necessary to modify the existing regulations about source term (i.e., any back-fitting to operating nuclear plants is not necessary). Second, if the pertinent margin of safety is guaranteed, the revised source term suggested by NUREG-1465 may be useful to full application. Finally, a part of revised source term could be selected to application based on the technical feasibility. As the results of this research, several methodologies to apply the revised source term to the Korean operating nuclear power plants have been developed, which include: 1) the selective (or limited) application to use only some of all the characteristics of the revised source term, such as release timing of fission products and chemical form of radio-iodine and 2) the full application to use all the characteristics of the revised source term. The developed methodologies are actually applied to Ulchin 9 and 4 units and their application feasibilities are reviewed. The results of this research are used as either a manual in establishing the plan and the procedure for applying the revised source term to the domestic nuclear plant from the utility's viewpoint; or a technical basis of revising the related regulations from the regulatory body's viewpoint. The application of revised source term to operating nuclear
Real-time software for multi-isotopic source term estimation
International Nuclear Information System (INIS)
Goloubenkov, A.; Borodin, R.; Sohier, A.
1996-01-01
Consideration is given to development of software for one of crucial components of the RODOS - assessment of the source rate (SR) from indirect measurements. Four components of the software are described in the paper. First component is a GRID system, which allow to prepare stochastic meteorological and radioactivity fields using measured data. Second part is a model of atmospheric transport which can be adapted for emulation of practically any gamma dose/spectrum detectors. The third one is a method which allows space-time and quantitative discrepancies in measured and modelled data to be taken into account simultaneously. It bases on the preference scheme selected by an expert. Last component is a special optimization method for calculation of multi-isotopic SR and its uncertainties. Results of a validation of the software using tracer experiments data and Chernobyl source estimation for main dose-forming isotopes are enclosed in the paper
Jia, Mengyu; Wang, Shuang; Chen, Xueying; Gao, Feng; Zhao, Huijuan
2016-03-01
Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we have reported on an improved explicit model, referred to as "Virtual Source" (VS) diffuse approximation (DA), to inherit the mathematical simplicity of the DA while considerably extend its validity in modeling the near-field photon migration in low-albedo medium. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the nearfield to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. The proposed VS-DA model is validated by comparing with the Monte Carlo simulations, and further introduced in the image reconstruction of the Laminar Optical Tomography system.
Evangeliou, Nikolaos; Hamburger, Thomas; Cozic, Anne; Balkanski, Yves; Stohl, Andreas
2017-07-01
This paper describes the results of an inverse modeling study for the determination of the source term of the radionuclides 134Cs, 137Cs and 131I released after the Chernobyl accident. The accident occurred on 26 April 1986 in the Former Soviet Union and released about 1019 Bq of radioactive materials that were transported as far away as the USA and Japan. Thereafter, several attempts to assess the magnitude of the emissions were made that were based on the knowledge of the core inventory and the levels of the spent fuel. More recently, when modeling tools were further developed, inverse modeling techniques were applied to the Chernobyl case for source term quantification. However, because radioactivity is a sensitive topic for the public and attracts a lot of attention, high-quality measurements, which are essential for inverse modeling, were not made available except for a few sparse activity concentration measurements far from the source and far from the main direction of the radioactive fallout. For the first time, we apply Bayesian inversion of the Chernobyl source term using not only activity concentrations but also deposition measurements from the most recent public data set. These observations refer to a data rescue attempt that started more than 10 years ago, with a final goal to provide available measurements to anyone interested. In regards to our inverse modeling results, emissions of 134Cs were estimated to be 80 PBq or 30-50 % higher than what was previously published. From the released amount of 134Cs, about 70 PBq were deposited all over Europe. Similar to 134Cs, emissions of 137Cs were estimated as 86 PBq, on the same order as previously reported results. Finally, 131I emissions of 1365 PBq were found, which are about 10 % less than the prior total releases. The inversion pushes the injection heights of the three radionuclides to higher altitudes (up to about 3 km) than previously assumed (≈ 2.2 km) in order to better match both concentration
Directory of Open Access Journals (Sweden)
N. Evangeliou
2017-07-01
Full Text Available This paper describes the results of an inverse modeling study for the determination of the source term of the radionuclides 134Cs, 137Cs and 131I released after the Chernobyl accident. The accident occurred on 26 April 1986 in the Former Soviet Union and released about 1019 Bq of radioactive materials that were transported as far away as the USA and Japan. Thereafter, several attempts to assess the magnitude of the emissions were made that were based on the knowledge of the core inventory and the levels of the spent fuel. More recently, when modeling tools were further developed, inverse modeling techniques were applied to the Chernobyl case for source term quantification. However, because radioactivity is a sensitive topic for the public and attracts a lot of attention, high-quality measurements, which are essential for inverse modeling, were not made available except for a few sparse activity concentration measurements far from the source and far from the main direction of the radioactive fallout. For the first time, we apply Bayesian inversion of the Chernobyl source term using not only activity concentrations but also deposition measurements from the most recent public data set. These observations refer to a data rescue attempt that started more than 10 years ago, with a final goal to provide available measurements to anyone interested. In regards to our inverse modeling results, emissions of 134Cs were estimated to be 80 PBq or 30–50 % higher than what was previously published. From the released amount of 134Cs, about 70 PBq were deposited all over Europe. Similar to 134Cs, emissions of 137Cs were estimated as 86 PBq, on the same order as previously reported results. Finally, 131I emissions of 1365 PBq were found, which are about 10 % less than the prior total releases. The inversion pushes the injection heights of the three radionuclides to higher altitudes (up to about 3 km than previously assumed (≈ 2.2 km in order
Energy Technology Data Exchange (ETDEWEB)
Kang, Chang Soon; Mun, Ju Hyun; Yun, Jeong Ick; Cho, Young Hoo; Kim, Chong Uk [Seoul National University, Seoul (Korea, Republic of)
1997-07-15
To quantify the severe accident source term of the parametric model method, the uncertainty of the parameters should be analyzed. Generally, to analyze the uncertainties, the cumulative distribution functions(CDF`S) of the parameters are derived. This report introduces a method of derivation of the CDF`s of the basic parameters, FCOR, FVES and FDCH. The calculation tool of the source term is the MAAP version 4.0. In the MAAP code, there are model parameters to consider an uncertain physical and/or chemical phenomenon. In general, the parameters have not a point value but a range. In this paper, considering this point, the input values of model parameters influencing each parameter are sampled using LHS. Then, the calculation results are shown in the cumulative distribution form. For a case study, the CDF`s of FCOR, FVES and FDCH of KORI unit 1 are derived. The target scenarios for the calculation are the ones whose initial events are large LOCA, small LOCA and transient, respectively. It is found that the distributions of this study are consistent to those of NUREG-1150 and are proven to be adequate in assessing the uncertainties in the severe accident source term of KORI Unit 1. 15 refs., 27 tabs., 4 figs. (author)
International Nuclear Information System (INIS)
Streile, G.P.; Shields, K.D.; Stroh, J.L.; Bagaasen, L.M.; Whelan, G.; McDonald, J.P.; Droppo, J.G.; Buck, J.W.
1996-11-01
This report is one of a series of reports that document the mathematical models in the Multimedia Environmental Pollutant Assessment System (MEPAS). Developed by Pacific Northwest National Laboratory for the US Department of Energy, MEPAS is an integrated impact assessment software implementation of physics-based fate and transport models in air, soil, and water media. Outputs are estimates of exposures and health risk assessments for radioactive and hazardous pollutants. Each of the MEPAS formulation documents covers a major MEPAS component such as source-term, atmospheric, vadose zone/groundwater, surface water, and health exposure/health impact assessment. Other MEPAS documentation reports cover the sensitivity/uncertainty formulations and the database parameter constituent property estimation methods. The pollutant source-term release component is documented in this report. MEPAS simulates the release of contaminants from a source, transport through the air, groundwater, surface water, or overland pathways, and transfer through food chains and exposure pathways to the exposed individual or population. For human health impacts, risks are computed for carcinogens and hazard quotients for noncarcinogens. MEPAS is implemented on a desktop computer with a user-friendly interface that allows the user to define the problem, input the required data, and execute the appropriate models for both deterministic and probabilistic analyses
International Nuclear Information System (INIS)
Fritz, B.; Crovisier, J.L.
1997-01-01
Geochemical models have been intensively developed by researchers since more than twenty five years in order to be able to better understand and/or predict the long term stability/instability of water-rock systems. These geochemical codes were ail built first on a thermodynamic approach deriving from the application of Mass Action Law. The resulting first generation of models allowed to detect or predict the possible mass transfers (thermodynamic models) between aqueous and mineral phases including irreversible dissolutions of primary minerals and/or precipitation near equilibrium of secondary mineral phases. The recent development of models based on combined thermodynamics and kinetics opens the field of Lime dependent reactions prediction. This is crucial if one thinks to combine geochemical and hydrological studies in the so-called coupled models for transport and reaction calculations. All these models are progressively applied to the prediction of long term behavior of mineral phases, and more specifically glasses. In order to succeed in chat specific extension of the models, but also the data bases, there is a great need for additional new data from experimental approaches and from natural analogues. The modelling approach appears than also very useful in order to interpret the results of experimental data and to relate them to long term data extracted from natural analogues. Specific functions for modelling solid solution phases mat' also be used for describing the products of glasses alterations. (authors)
Source term for the bounding assessment of the Canadian nuclear fuel waste disposal concept
International Nuclear Information System (INIS)
Flavelle, P.
1996-02-01
This is the second in a series to derive the bounds of the post-closure hazard of the Canadian nuclear fuel waste disposal concept, based on the premise that it is unnecessary to predict accurately the real hazard if the bounding hazard can be shown to be acceptable. In this report a reference used (Bruce A fuel, 865 GJ/kgU average burnup) is used to derive the source term for contaminant releases from the emplacement canisters. This requires development of a container failure function which defines the age of the fuel when the canister is perforated and flooded. The source term is expressed as the time-dependent fractional release rate from the used fuel or as the time-dependent contaminant concentrations in the canister porewater. It is derived as the superposition of an instant release, comprising the upper bound of the gap and grain boundary inventory in the used fuel, and the long-term dissolution of the used fuel matrix. Several dissolution models (stoichiometric dissolution/preferential leaching) under different conditions (matrix solubility limited/ unlimited; oxidizing/ reducing solubility limits; groundwater flow/ no flow) are evaluated and the one resulting in the highest release rate/ highest porewater concentration is adopted as the bounding case. Comparisons between the models are made on the basis of the potential ingestion hazard of the canister porewater, to account for differences in the hazard of different radionuclides. (author) 20 refs., 4 tabs., 9 figs
International Nuclear Information System (INIS)
Bondarev, A.L.
1993-01-01
The method of covariant calculation of the amplitudes of processes with polarized spin 1/2 particles is suggested. It can be used for calculation of interference terms in cross sections of these processes. As an illustration the expressions for the lowest order amplitudes of electron-electron scattering and for electron current with radiation of two bremsstrahlung photons in ultrarelativistic limit are presented
Long-term storage life of light source modules by temperature cycling accelerated life test
International Nuclear Information System (INIS)
Sun Ningning; Tan Manqing; Li Ping; Jiao Jian; Guo Xiaofeng; Guo Wentao
2014-01-01
Light source modules are the most crucial and fragile devices that affect the life and reliability of the interferometric fiber optic gyroscope (IFOG). While the light emitting chips were stable in most cases, the module packaging proved to be less satisfactory. In long-term storage or the working environment, the ambient temperature changes constantly and thus the packaging and coupling performance of light source modules are more likely to degrade slowly due to different materials with different coefficients of thermal expansion in the bonding interface. A constant temperature accelerated life test cannot evaluate the impact of temperature variation on the performance of a module package, so the temperature cycling accelerated life test was studied. The main failure mechanism affecting light source modules is package failure due to solder fatigue failure including a fiber coupling shift, loss of cooling efficiency and thermal resistor degradation, so the Norris-Landzberg model was used to model solder fatigue life and determine the activation energy related to solder fatigue failure mechanism. By analyzing the test data, activation energy was determined and then the mean life of light source modules in different storage environments with a continuously changing temperature was simulated, which has provided direct reference data for the storage life prediction of IFOG. (semiconductor devices)
International Nuclear Information System (INIS)
Kalyanam, K.M.
1996-06-01
This document represents the final report for the global tritium source term analysis task initiated in 1995. The report presents a room-by-room map/table at the subsystem level for the ITER tritium systems, identifying the major equipment, secondary containments, tritium release sources, duration/frequency of tritium releases and the release pathways. The chronic tritium releases during normal operation, as well as tritium releases due to routine maintenance of the Water Distillation Unit, Isotope Separation System and Primary and Secondary Heat Transport Systems, have been estimated for most of the subsystems, based on the IDR design, the Design Description Documents (April - Jun 1995 issues) and the design updates up to December 1995. The report also outlines the methodology and the key assumptions that are adopted in preparing the tritium release estimates. The design parameters for the ITER Basic Performance Phase (BPP) have been used in estimating the tritium releases shown in the room-by-room map/table. The tritium release calculations and the room-by-room map/table have been prepared in EXCEL, so that the estimates can be refined easily as the design evolves and more detailed information becomes available. (author). 23 refs., tabs
An Organizational-Technical Concept to Deal with Open Source Software License Terms
Directory of Open Access Journals (Sweden)
Sergius Dyck
2016-06-01
Full Text Available Open source software (OSS released under various license terms is widely used as third party libraries in today's software projects. To ensure open source compliance within an organization, a strategic approach to OSS management is needed. As basis for such an approach, we introduce an organizational-technical concept for dealing with the various OSS licenses by using procedural instructions and build automation software. The concept includes the careful consideration of OSS license conditions. The results obtained from this consideration and additional necessary commitments are documented in a so-called license playbook. We introduce procedure instructions enabling a consistent approach for software development using OSS libraries. The procedure instructions are described in a way such that they can be implemented for example for Java projects using the popular build automation tool Apache Maven and the software repository tool Nexus. We give guidance on how to realize such an implementation on basis of automation tools in practice.
QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices
Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov; Leijnse, Martin; Wacker, Andreas
2017-12-01
QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron-electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven by differences in chemical potentials or temperatures between the leads which are tunnel coupled to the quantum dots. The electronic structures of the quantum dots are described by their single-particle states and the Coulomb matrix elements between the states. When transport is treated perturbatively to lowest order in the tunneling couplings, the possible approaches are Pauli (classical), first-order Redfield, and first-order von Neumann master equations, and a particular form of the Lindblad equation. When all processes involving two-particle excitations in the leads are of interest, the second-order von Neumann approach can be applied. All these approaches are implemented in QmeQ. We here give an overview of the basic structure of the package, give examples of transport calculations, and outline the range of applicability of the different approximate approaches.
Basic repository source term and data sheet report: Deaf Smith County
International Nuclear Information System (INIS)
1987-01-01
This report is one of a series describing studies undertaken in support of the US Department of Energy Civilian Radioactive Waste Management (CRWM) Program. This study contains the derivation of values for environmental source terms and resources consumed for a CRWM repository. Estimates include heavy construction equipment; support equipment; shaft-sinking equipment; transportation equipment; and consumption of fuel, water, electricity, and natural gas. Data are presented for construction and operation at an assumed site in Deaf Smith County, Texas. 2 refs., 6 tabs
EXPERIENCES FROM THE SOURCE-TERM ANALYSIS OF A LOW AND INTERMEDIATE LEVEL RADWASTE DISPOSAL FACILITY
International Nuclear Information System (INIS)
Park, Jin Beak; Park, Joo-Wan; Lee, Eun-Young; Kim, Chang-Lak
2003-01-01
Enhancement of a computer code SAGE for evaluation of the Korean concept for a LILW waste disposal facility is discussed. Several features of source term analysis are embedded into SAGE to analyze: (1) effects of degradation mode of an engineered barrier, (2) effects of dispersion phenomena in the unsaturated zone and (3) effects of time dependent sorption coefficient in the unsaturated zone. IAEA's Vault Safety Case (VSC) approach is used to demonstrate the ability of this assessment code. Results of MASCOT are used for comparison purposes. These enhancements of the safety assessment code, SAGE, can contribute to realistic evaluation of the Korean concept of the LILW disposal project in the near future
Description of apparatus for determining radiological source terms of nuclear fuels
International Nuclear Information System (INIS)
Baldwin, D.L.; Woodley, R.E.; Holt, F.E.; Archer, D.V.; Steele, R.T.; Whitkop, P.G.
1985-01-01
New apparatus have been designed, built and are currently being employed to measure the release of volatile fission products from irradiated nuclear fuel. The system is capable of measuring radiological source terms, particularly for cesium-137, cesium-134, iodine-129 and krypton-85, in various atmospheres at temperatures up to 1200 0 C. The design allows a rapid transient heatup from ambient to full temperature, a hold at maximum temperature for a specified period, and rapid cooldown. Released fission products are measured as deposition on a platinum thermal gradient tube or in a filter/charcoal trap. Noble gases pass through to a multi-channel gamma analyzer. 1 ref., 4 figs
International Nuclear Information System (INIS)
Milodowski, A.E.; Pearce, J.M.; Basham, I.R.; Hyslop, E.K.
1991-01-01
The British Geological Survey (BGS) has been conducting a coordinated research programme at the Broubster natural analogue site in Caithness, north Scotland. This work on a natural radioactive geochemical system has been carried out with the aim of improving our confidence in using predictive models of radionuclide migration in the geosphere. This report is one of a series being produced and it concentrates on the mineralogical characterization of the uranium distribution in the limestone unit considered as the 'source-term' in the natural analogue model
The source term and waste optimization of molten salt reactors with processing
International Nuclear Information System (INIS)
Gat, U.; Dodds, H.L.
1993-01-01
The source term of a molten salt reactor (MSR) with fuel processing is reduced by the ratio of processing time to refueling time as compared to solid fuel reactors. The reduction, which can be one to two orders of magnitude, is due to removal of the long-lived fission products. The waste from MSRs can be optimized with respect to its chemical composition, concentration, mixture, shape, and size. The actinides and long-lived isotopes can be separated out and returned to the reactor for transmutation. These features make MSRs more acceptable and simpler in operation and handling
Basic repository source term and data sheet report, Cypress Creek Dome: Draft
International Nuclear Information System (INIS)
1988-01-01
This report is one of a series describing studies undertaken in support of the US Department of Energy Civilian Radioactive Waste Management (CRWM) Program. This study contains the derivation of values for environmental source terms and resources consumed for a CRWM repository. Estimates include heavy construction equipment; support equipment; shaft-sinking equipment; transportation equipment; and consumption of fuel, water, electricity, and natural gas. Data are presented for construction and operation at an assumed site in Cypress Creek Dome, Mississippi. 2 refs., 6 tabs
Design parameters and source terms: Volume 1, Design parameters: Revision 0
International Nuclear Information System (INIS)
1987-09-01
The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report to the level of the Site Characterization Plan - Conceptual Design Report, SCP-CDR. The previous unpublished SCC Study identified the data needs for the Environmental Assessment effort for seven possible salt repository sites
PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources.
Kahanda, Indika; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa
2015-01-01
The human phenotype ontology (HPO) was recently developed as a standardized vocabulary for describing the phenotype abnormalities associated with human diseases. At present, only a small fraction of human protein coding genes have HPO annotations. But, researchers believe that a large portion of currently unannotated genes are related to disease phenotypes. Therefore, it is important to predict gene-HPO term associations using accurate computational methods. In this work we demonstrate the performance advantage of the structured SVM approach which was shown to be highly effective for Gene Ontology term prediction in comparison to several baseline methods. Furthermore, we highlight a collection of informative data sources suitable for the problem of predicting gene-HPO associations, including large scale literature mining data.
Energy Technology Data Exchange (ETDEWEB)
Del Nero, Renata Aline; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Nakandakari, Marcos Vinicius Nakaoka, E-mail: hyoriyaz@ipen.br, E-mail: marcos.sake@gmail.com [Hospital Beneficência Portuguesa de São Paulo, SP (Brazil)
2017-07-01
The Monte Carlo method for radiation transport data has been adapted for medical physics application. More specifically, it has received more attention in clinical treatment planning with the development of more efficient computer simulation techniques. In linear accelerator modeling by the Monte Carlo method, the phase space data file (phsp) is used a lot. However, to obtain precision in the results, it is necessary detailed information about the accelerator's head and commonly the supplier does not provide all the necessary data. An alternative to the phsp is the Virtual Source Model (VSM). This alternative approach presents many advantages for the clinical Monte Carlo application. This is the most efficient method for particle generation and can provide an accuracy similar when the phsp is used. This research propose a VSM simulation with the use of a Virtual Flattening Filter (VFF) for profiles and percent deep doses calculation. Two different sizes of open fields (40 x 40 cm² and 40√2 x 40√2 cm²) were used and two different source to surface distance (SSD) were applied: the standard 100 cm and custom SSD of 370 cm, which is applied in radiotherapy treatments of total body irradiation. The data generated by the simulation was analyzed and compared with experimental data to validate the VSM. This current model is easy to build and test. (author)
Sörgel, Matthias; Trebs, Ivonne; Wu, Dianming; Held, Andreas
2015-04-01
Vertical mixing ratio profiles of nitrous acid (HONO) were measured in a clearing and on the forest floor in a rural forest environment (in the south-east of Germany) by applying a lift system to move the sampling unit of the LOng Path Absorption Photometer (LOPAP) up and down. For the forest floor, HONO was found to be predominantly deposited, whereas net deposition was dominating in the clearing only during nighttime and net emissions were observed during daytime. For selected days, net fluxes of HONO were calculated from the measured profiles using the aerodynamic gradient method. The emission fluxes were in the range of 0.02 to 0.07 nmol m-2 s-1, and, thus were in the lower range of previous observations. These fluxes were compared to the strengths of postulated HONO sources and to the amount of HONO needed to sustain photolysis in the boundary layer. Laboratory measurements of different soil samples from both sites revealed an upper limit for soil biogenic HONO emission fluxes of 0.025 nmol m-2 s-1. HONO formation by light induced NO2 conversion was calculated to be below 0.03 nmol m-2 s-1 for the investigated days, which is comparable to the potential soil fluxes. Due to light saturation at low irradiance, this reaction pathway was largely found to be independent of light intensity, i.e. it was only dependent on ambient NO2. We used three different approaches based on measured leaf nitrate loadings for calculating HONO formation from HNO3 photolysis. While the first two approaches based on empirical HONO formation rates yielded values in the same order of magnitude as the estimated fluxes, the third approach based on available kinetic data of the postulated pathway failed to produce noticeable amounts of HONO. Estimates based on reported cross sections of adsorbed HNO3 indicate that the lifetime of adsorbed HNO3 was only about 15 min, which would imply a substantial renoxification. Although the photolysis of HNO3 was significantly enhanced at the surface, the
SARNET. Severe Accident Research Network - key issues in the area of source term
International Nuclear Information System (INIS)
Giordano, P.; Micaelli, J.C.; Haste, T.; Herranz, L.
2005-01-01
About fifty European organisations integrate in SARNET (Network of Excellence of the EU 6 th Framework Programme) their research capacities in resolve better the most important remaining uncertainties and safety issues concerning existing and future Nuclear Power Plants (NPPs) under hypothetical Severe Accident (SA) conditions. Wishing to maintain a long-lasting cooperation, they conduct three types of activities: integrating activities, spreading of excellence and jointly executed research. This paper summarises the main results obtained by the network after the first year, giving more prominence to those from jointly executed research in the Source Term area. Integrating activities have been performed through different means: the ASTEC integral computer code for severe accident transient modelling, through development of PSA2 methodologies, through the setting of a structure for definition of evolving R and D priorities and through the development of a web-network of data bases that hosts experimental data. Such activities have been facilitated by the development of an Advanced Communication Tool. Concerning spreading of excellence, educational courses covering Severe Accident Analysis Methodology and Level 2 PSA have been set up, to be given in early 2006. A detailed text book on Severe Accident Phenomenology has been designed and agreed amongst SARNET members. A mobility programme for students and young researchers is being developed, some detachments are already completed or in progress, and examples are quoted. Jointly executed research activities concern key issues grouped in the Corium, Containment and Source Term areas. In Source Term, behaviour of the highly radio-toxic ruthenium under oxidising conditions (like air ingress) for HBU and MOX fuel has been investigated. First modelling proposals for ASTEC have been made for oxidation of fuel and of ruthenium. Experiments on transport of highly volatile oxide ruthenium species have been performed. Reactor
Regulatory Technology Development Plan Sodium Fast Reactor. Mechanistic Source Term Development
Energy Technology Data Exchange (ETDEWEB)
Grabaskas, David S. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, Acacia Joann [Argonne National Lab. (ANL), Argonne, IL (United States); Bucknor, Matthew D. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-02-28
Construction and operation of a nuclear power installation in the U.S. requires licensing by the U.S. Nuclear Regulatory Commission (NRC). A vital part of this licensing process and integrated safety assessment entails the analysis of a source term (or source terms) that represents the release of radionuclides during normal operation and accident sequences. Historically, nuclear plant source term analyses have utilized deterministic, bounding assessments of the radionuclides released to the environment. Significant advancements in technical capabilities and the knowledge state have enabled the development of more realistic analyses such that a mechanistic source term (MST) assessment is now expected to be a requirement of advanced reactor licensing. This report focuses on the state of development of an MST for a sodium fast reactor (SFR), with the intent of aiding in the process of MST definition by qualitatively identifying and characterizing the major sources and transport processes of radionuclides. Due to common design characteristics among current U.S. SFR vendor designs, a metal-fuel, pool-type SFR has been selected as the reference design for this work, with all phenomenological discussions geared toward this specific reactor configuration. This works also aims to identify the key gaps and uncertainties in the current knowledge state that must be addressed for SFR MST development. It is anticipated that this knowledge state assessment can enable the coordination of technology and analysis tool development discussions such that any knowledge gaps may be addressed. Sources of radionuclides considered in this report include releases originating both in-vessel and ex-vessel, including in-core fuel, primary sodium and cover gas cleanup systems, and spent fuel movement and handling. Transport phenomena affecting various release groups are identified and qualitatively discussed, including fuel pin and primary coolant retention, and behavior in the cover gas and
Determination of the in-containment source term for a Large-Break Loss of Coolant Accident
International Nuclear Information System (INIS)
2001-04-01
This is the report of a project that focused on one of the most important design basis accidents: the Large Break Loss Of Coolant Accident (LBLOCA) (for pressurised water reactors). The first step in the calculation of the radiological consequences of this accident is the determination of the source term inside the containment. This work deals with this part of the calculation of the LBLOCA radiological consequences for which a previous benchmark (1988) has shown wide variations in the licensing practices adopted by European countries. The calculation of this source term may naturally be split in several steps (see chapter II), corresponding to several physical stages in the release of fission products: fraction of core failure, release from the damaged fuel, airborne part of the release and the release into the reactor coolant system and the sumps, chemical behaviour of iodine in the aqueous and gas phases, natural and spray removal in the containment atmosphere. A chapter is devoted to each of these topics. In addition, two other chapters deal with the basic assumptions to define the accidental sequence and the nuclides to be considered when computing doses associated with the LBLOCA. The report describes where there is agreement between the partner organisations and where there are still differences in approach. For example, there is agreement concerning the percentage of failed fuel which could be used in future licensing assessments (however this subject is still under discussion in France, a lower value is thinkable). For existing plants, AVN (Belgium) wishes to keep the initial licensing assumptions. For the release from damaged fuel, there is not complete agreement: AVN (Belgium) wishes to maintain its present approach. IPSN (France), GRS (Germany) and NNC (UK) prefer to use their own methodologies that result in slightly different values to the proposed values for a common position. There are presently no recommendations of the release of fuel particulates
The Analytical Repository Source-Term (AREST) model: Analysis of spent fuel as a nuclear waste form
International Nuclear Information System (INIS)
Apted, M.J.; Liebetrau, A.M.; Engel, D.W.
1989-02-01
The purpose of this report is to assess the performance of spent fuel as a final waste form. The release of radionuclides from spent nuclear fuel has been simulated for the three repository sites that were nominated for site characterization in accordance with the Nuclear Waste Policy Act of 1982. The simulation is based on waste package designs that were presented in the environmental assessments prepared for each site. Five distinct distributions for containment failure have been considered, and the release for nuclides from the UO 2 matrix, gap (including grain boundary), crud/surface layer, and cladding has been calculated with the Analytic Repository Source-Term (AREST) code. Separate scenarios involving incongruent and congruent release from the UO 2 matrix have also been examined using the AREST code. Congruent release is defined here as the condition in which the relative mass release rates of a given nuclide and uranium from the UO 2 matrix are equal to their mass ratios in the matrix. Incongruent release refers to release of a given nuclide from the UO 2 matrix controlled by its own solubility-limiting solid phase. Release of nuclides from other sources within the spent fuel (e.g., cladding, fuel/cladding gap) is evaluated separately from either incongruent or congruent matrix release. 51 refs., 200 figs., 9 tabs
Chernobyl radiocesium in freshwater fish: Long-term dynamics and sources of variation
Energy Technology Data Exchange (ETDEWEB)
Sundbom, M [Uppsala Univ., Dept. of Limnology, Uppsala (Sweden)
2002-04-01
The aim of this thesis was to investigate both the long-term temporal pattern and sources of individual variation for radiocesium in freshwater fish. The basis for the study is time series of {sup 137}Cs activity concentrations in fish from three lakes in the area North-west of Uppsala, Sweden that received considerable amounts of {sup 137}Cs from Chernobyl in may 1986. The lakes were Lake Ekholmssjoen, Lake Flatsjoen and Lake Siggeforasjoen, all small forest lakes, but with different morphometrical and chemical characteristics. The data were collected regularly, usually several times per year, during 1986-2000, using consistent methods. More than 7600 fish individuals from 7 species covering wide size ranges and feeding habits were analysed for {sup 137}Cs. For each fish was the length, weight, sex, and often the stomach contend recorded. The evaluation on long-term trends were based on data from all three lakes, while the study on sources of variation evaluated data from Lake Flatsjoen only. (au)
The Chernobyl reactor accident source term: Development of a consensus view
International Nuclear Information System (INIS)
Guntay, S.; Powers, D.A.; Devell, L.
1997-01-01
In August 1986, scientists from the former Soviet Union provided the nuclear safety community with an impressively detailed account of what was then known about the Chernobyl accident. This included assessments of the magnitudes, rates, and compositions of radionuclide releases during the ten days following initiation of the accident. A summary report based on the Soviet report, the oral presentations, and the discussions with scientists from various countries was issued by the International Atomic Energy Agency shortly thereafter. Ten years have elapsed since the reactor accident at Chernobyl. A great deal more data is now available concerning the events, phenomena, and processes that took place. The purpose of this document is to examine what is known about the radioactive materials released during the accident. The accident was peculiar in the sense that radioactive materials were released, at least initially, in an exceptionally energetic plume and were transported far from the reactor site. Release of radioactivity from the plant continued for about ten days. A number of more recent publications and results from scientists in Russia and elsewhere have significantly improved our understanding of the Chernobyl source term. Because of the special features of the reactor design and the pecularities of the Chernobyl accident, the source term for the Chernobyl accident is of limited applicability of the safety analysis of other types of reactors
Source terms associated with two severe accident sequences in a 900 MWe PWR
International Nuclear Information System (INIS)
Fermandjian, J.; Evrard, J.M.; Berthion, Y.; Lhiaubet, G.; Lucas, M.
1983-12-01
Hypothetical accidents taken into account in PWR risk assessment result in fission product release from the fuel, transfer through the primary circuit, transfer into the reactor containment building (RCB) and finally release to the environment. The objective of this paper is to define the characteristics of the source term (noble gases, particles and volatile iodine forms) released from the reactor containment building during two dominant core-melt accident sequences: S 2 CD and TLB according to the ''Reactor Safety Study'' terminology. The reactor chosen for this study is a French 900 MWe PWR unit. The reactor building is a prestressed concrete containment with an internal liner. The first core-melt accident sequence is a 2-break loss-of-coolant accident on the cold leg, with failure of both system and the containment spray system. The second one is a transient initiated by a loss of offsite and onsite power supply and auxiliary feedwater system. These two sequences have been chosen because they are representative of risk dominant scenarios. Source terms associated with hypothetical core-melt accidents S 2 CD and TLB in a French PWR -900 MWe- have been performed using French computer codes (in particular, JERICHO Code for containment response analysis and AEROSOLS/31 for aerosol behavior in the containment)
Source term and behavioural parameters for a postulated HIFAR loss-of-coolant accident
International Nuclear Information System (INIS)
May, F.G.
1987-01-01
The fraction of the fission product inventory which might be released into the atmosphere of the HIFAR reactor containment building (RCB) during a postulated loss-of-coolant accident (LOCA) has been evaluated as a function of time, for each classification of airborne radioactivity. This appraisal will be used as the source term for a computer program, which uses realistic attenuation of the fission product aerosol in a single compartment model with a defined leakrate to predict