WorldWideScience

Sample records for source size-scaling experiment

  1. Size scaling of negative hydrogen ion sources for fusion

    Science.gov (United States)

    Fantz, U.; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-04-01

    The RF-driven negative hydrogen ion source (H-, D-) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.

  2. Size scaling of negative hydrogen ion sources for fusion

    International Nuclear Information System (INIS)

    Fantz, U.; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-01-01

    The RF-driven negative hydrogen ion source (H − , D − ) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size

  3. The Design of a Fire Source in Scale-Model Experiments with Smoke Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Brohus, Henrik; la Cour-Harbo, H.

    2004-01-01

    The paper describes the design of a fire and a smoke source for scale-model experiments with smoke ventilation. It is only possible to work with scale-model experiments where the Reynolds number is reduced compared to full scale, and it is demonstrated that special attention to the fire source...... (heat and smoke source) may improve the possibility of obtaining Reynolds number independent solutions with a fully developed flow. The paper shows scale-model experiments for the Ofenegg tunnel case. Design of a fire source for experiments with smoke ventilation in a large room and smoke movement...

  4. Particle generation methods applied in large-scale experiments on aerosol behaviour and source term studies

    International Nuclear Information System (INIS)

    Swiderska-Kowalczyk, M.; Gomez, F.J.; Martin, M.

    1997-01-01

    In aerosol research aerosols of known size, shape, and density are highly desirable because most aerosols properties depend strongly on particle size. However, such constant and reproducible generation of those aerosol particles whose size and concentration can be easily controlled, can be achieved only in laboratory-scale tests. In large scale experiments, different generation methods for various elements and compounds have been applied. This work presents, in a brief from, a review of applications of these methods used in large scale experiments on aerosol behaviour and source term. Description of generation method and generated aerosol transport conditions is followed by properties of obtained aerosol, aerosol instrumentation used, and the scheme of aerosol generation system-wherever it was available. An information concerning aerosol generation particular purposes and reference number(s) is given at the end of a particular case. These methods reviewed are: evaporation-condensation, using a furnace heating and using a plasma torch; atomization of liquid, using compressed air nebulizers, ultrasonic nebulizers and atomization of liquid suspension; and dispersion of powders. Among the projects included in this worked are: ACE, LACE, GE Experiments, EPRI Experiments, LACE-Spain. UKAEA Experiments, BNWL Experiments, ORNL Experiments, MARVIKEN, SPARTA and DEMONA. The aim chemical compounds studied are: Ba, Cs, CsOH, CsI, Ni, Cr, NaI, TeO 2 , UO 2 Al 2 O 3 , Al 2 SiO 5 , B 2 O 3 , Cd, CdO, Fe 2 O 3 , MnO, SiO 2 , AgO, SnO 2 , Te, U 3 O 8 , BaO, CsCl, CsNO 3 , Urania, RuO 2 , TiO 2 , Al(OH) 3 , BaSO 4 , Eu 2 O 3 and Sn. (Author)

  5. Scaling the drop size in coflow experiments

    International Nuclear Information System (INIS)

    Castro-Hernandez, E; Gordillo, J M; Gundabala, V; Fernandez-Nieves, A

    2009-01-01

    We perform extensive experiments with coflowing liquids in microfluidic devices and provide a closed expression for the drop size as a function of measurable parameters in the jetting regime that accounts for the experimental observations; this expression works irrespective of how the jets are produced, providing a powerful design tool for this type of experiments.

  6. Scaling the drop size in coflow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Hernandez, E; Gordillo, J M [Area de Mecanica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n, 41092 Sevilla (Spain); Gundabala, V; Fernandez-Nieves, A [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)], E-mail: jgordill@us.es

    2009-07-15

    We perform extensive experiments with coflowing liquids in microfluidic devices and provide a closed expression for the drop size as a function of measurable parameters in the jetting regime that accounts for the experimental observations; this expression works irrespective of how the jets are produced, providing a powerful design tool for this type of experiments.

  7. Allometric Scaling and Central Source Systems

    International Nuclear Information System (INIS)

    Dreyer, Olaf

    2001-01-01

    Allometric scaling relations abound in nature. Examples include the power law relating the metabolic rate of animals and plants to their masses and the power law describing the dependence of the size of the drainage basin of a river on the total amount of water contained in that river. The exponent is of the form D/D+1 , where D is the dimension of the system. We show that this scaling exponent is simply a consequence of the source distribution of the systems considered and requires no further assumptions. To demonstrate the wide range of validity of the result we present a simple experiment that shows the predicted behavior in one dimension

  8. Visuomotor Dissociation in Cerebral Scaling of Size

    NARCIS (Netherlands)

    Potgieser, Adriaan R. E.; de Jong, Bauke M.

    2016-01-01

    Estimating size and distance is crucial in effective visuomotor control. The concept of an internal coordinate system implies that visual and motor size parameters are scaled onto a common template. To dissociate perceptual and motor components in such scaling, we performed an fMRI experiment in

  9. SIZE SCALING RELATIONSHIPS IN FRACTURE NETWORKS

    International Nuclear Information System (INIS)

    Wilson, Thomas H.

    2000-01-01

    The research conducted under DOE grant DE-FG26-98FT40385 provides a detailed assessment of size scaling issues in natural fracture and active fault networks that extend over scales from several tens of kilometers to less than a tenth of a meter. This study incorporates analysis of data obtained from several sources, including: natural fracture patterns photographed in the Appalachian field area, natural fracture patterns presented by other workers in the published literature, patterns of active faulting in Japan mapping at a scale of 1:100,000, and lineament patterns interpreted from satellite-based radar imagery obtained over the Appalachian field area. The complexity of these patterns is always found to vary with scale. In general,but not always, patterns become less complex with scale. This tendency may reverse as can be inferred from the complexity of high-resolution radar images (8 meter pixel size) which are characterized by patterns that are less complex than those observed over smaller areas on the ground surface. Model studies reveal that changes in the complexity of a fracture pattern can be associated with dominant spacings between the fractures comprising the pattern or roughly to the rock areas bounded by fractures of a certain scale. While the results do not offer a magic number (the fractal dimension) to characterize fracture networks at all scales, the modeling and analysis provide results that can be interpreted directly in terms of the physical properties of the natural fracture or active fault complex. These breaks roughly define the size of fracture bounded regions at different scales. The larger more extensive sets of fractures will intersect and enclose regions of a certain size, whereas smaller less extensive sets will do the same--i.e. subdivide the rock into even smaller regions. The interpretation varies depending on the number of sets that are present, but the scale breaks in the logN/logr plots serve as a guide to interpreting the

  10. Perception of acoustic scale and size in musical instrument sounds.

    Science.gov (United States)

    van Dinther, Ralph; Patterson, Roy D

    2006-10-01

    There is size information in natural sounds. For example, as humans grow in height, their vocal tracts increase in length, producing a predictable decrease in the formant frequencies of speech sounds. Recent studies have shown that listeners can make fine discriminations about which of two speakers has the longer vocal tract, supporting the view that the auditory system discriminates changes on the acoustic-scale dimension. Listeners can also recognize vowels scaled well beyond the range of vocal tracts normally experienced, indicating that perception is robust to changes in acoustic scale. This paper reports two perceptual experiments designed to extend research on acoustic scale and size perception to the domain of musical sounds: The first study shows that listeners can discriminate the scale of musical instrument sounds reliably, although not quite as well as for voices. The second experiment shows that listeners can recognize the family of an instrument sound which has been modified in pitch and scale beyond the range of normal experience. We conclude that processing of acoustic scale in music perception is very similar to processing of acoustic scale in speech perception.

  11. Finite-size scaling in two-dimensional superfluids

    International Nuclear Information System (INIS)

    Schultka, N.; Manousakis, E.

    1994-01-01

    Using the x-y model and a nonlocal updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two-dimensional superfluid on large-size square lattices LxL up to 400x400. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of L values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization-group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson renormalization group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments

  12. Visuomotor Dissociation in Cerebral Scaling of Size.

    Science.gov (United States)

    Potgieser, Adriaan R E; de Jong, Bauke M

    2016-01-01

    Estimating size and distance is crucial in effective visuomotor control. The concept of an internal coordinate system implies that visual and motor size parameters are scaled onto a common template. To dissociate perceptual and motor components in such scaling, we performed an fMRI experiment in which 16 right-handed subjects copied geometric figures while the result of drawing remained out of sight. Either the size of the example figure varied while maintaining a constant size of drawing (visual incongruity) or the size of the examples remained constant while subjects were instructed to make changes in size (motor incongruity). These incongruent were compared to congruent conditions. Statistical Parametric Mapping (SPM8) revealed brain activations related to size incongruity in the dorsolateral prefrontal and inferior parietal cortex, pre-SMA / anterior cingulate and anterior insula, dominant in the right hemisphere. This pattern represented simultaneous use of a 'resized' virtual template and actual picture information requiring spatial working memory, early-stage attention shifting and inhibitory control. Activations were strongest in motor incongruity while right pre-dorsal premotor activation specifically occurred in this condition. Visual incongruity additionally relied on a ventral visual pathway. Left ventral premotor activation occurred in all variably sized drawing while constant visuomotor size, compared to congruent size variation, uniquely activated the lateral occipital cortex additional to superior parietal regions. These results highlight size as a fundamental parameter in both general hand movement and movement guided by objects perceived in the context of surrounding 3D space.

  13. FR-type radio sources in COSMOS: relation of radio structure to size, accretion modes and large-scale environment

    Science.gov (United States)

    Vardoulaki, Eleni; Faustino Jimenez Andrade, Eric; Delvecchio, Ivan; Karim, Alexander; Smolčić, Vernesa; Magnelli, Benjamin; Bertoldi, Frank; Schinnener, Eva; Sargent, Mark; Finoguenov, Alexis; VLA COSMOS Team

    2018-01-01

    The radio sources associated with active galactic nuclei (AGN) can exhibit a variety of radio structures, from simple to more complex, giving rise to a variety of classification schemes. The question which still remains open, given deeper surveys revealing new populations of radio sources, is whether this plethora of radio structures can be attributed to the physical properties of the host or to the environment. Here we present an analysis on the radio structure of radio-selected AGN from the VLA-COSMOS Large Project at 3 GHz (JVLA-COSMOS; Smolčić et al.) in relation to: 1) their linear projected size, 2) the Eddington ratio, and 3) the environment their hosts lie within. We classify these as FRI (jet-like) and FRII (lobe-like) based on the FR-type classification scheme, and compare them to a sample of jet-less radio AGN in JVLA-COSMOS. We measure their linear projected sizes using a semi-automatic machine learning technique. Their Eddington ratios are calculated from X-ray data available for COSMOS. As environmental probes we take the X-ray groups (hundreds kpc) and the density fields (~Mpc-scale) in COSMOS. We find that FRII radio sources are on average larger than FRIs, which agrees with literature. But contrary to past studies, we find no dichotomy in FR objects in JVLA-COSMOS given their Eddington ratios, as on average they exhibit similar values. Furthermore our results show that the large-scale environment does not explain the observed dichotomy in lobe- and jet-like FR-type objects as both types are found on similar environments, but it does affect the shape of the radio structure introducing bents for objects closer to the centre of an X-ray group.

  14. Visuomotor Dissociation in Cerebral Scaling of Size.

    Directory of Open Access Journals (Sweden)

    Adriaan R E Potgieser

    Full Text Available Estimating size and distance is crucial in effective visuomotor control. The concept of an internal coordinate system implies that visual and motor size parameters are scaled onto a common template. To dissociate perceptual and motor components in such scaling, we performed an fMRI experiment in which 16 right-handed subjects copied geometric figures while the result of drawing remained out of sight. Either the size of the example figure varied while maintaining a constant size of drawing (visual incongruity or the size of the examples remained constant while subjects were instructed to make changes in size (motor incongruity. These incongruent were compared to congruent conditions. Statistical Parametric Mapping (SPM8 revealed brain activations related to size incongruity in the dorsolateral prefrontal and inferior parietal cortex, pre-SMA / anterior cingulate and anterior insula, dominant in the right hemisphere. This pattern represented simultaneous use of a 'resized' virtual template and actual picture information requiring spatial working memory, early-stage attention shifting and inhibitory control. Activations were strongest in motor incongruity while right pre-dorsal premotor activation specifically occurred in this condition. Visual incongruity additionally relied on a ventral visual pathway. Left ventral premotor activation occurred in all variably sized drawing while constant visuomotor size, compared to congruent size variation, uniquely activated the lateral occipital cortex additional to superior parietal regions. These results highlight size as a fundamental parameter in both general hand movement and movement guided by objects perceived in the context of surrounding 3D space.

  15. ILSE-ESQ injector scaled experiment

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.; Yu, S.; Grote, D.

    1993-01-01

    A 2 MeV, 800 mA, K + injector for the Heavy Ion Fusion Induction Linac Systems Experiments (ISLE) is under development at LBL. It consists of a 500keV-1MeV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ). One of the key issues for the ESQ centers around the control of beam aberrations due to the open-quotes energy effectclose quotes: in a strong electrostatic quadrupole field, ions at beam edge will have energies very different from those on the axis. The resulting kinematic distortions lead to S-shaped phase spaces, which, if uncorrected, will lead eventually to emittance growth. These beam aberrations can be minimized by increasing the injection energy and/or strengthening the beam focusing. It may also be possible to compensate for the open-quotes energy effectclose quotes by proper shaping of the quadrupoles electrodes. In order to check the physics of the open-quotes energy effectclose quotes of the ESQ design a scaled experiment has been designed that will accommodate the parameters of the source, as well as the voltage limitations, of the Single Beam Transport Experiment (SBTE). Since the 500 KeV pre-injector delivers a 4 cm converging beam, a quarter-scale experiment will fit the 1 cm converging beam of the SBTE source. Also, a 10 mA beam in SBTE, and the requirement of equal perveance in both systems, forces all the voltages to scale down by a factor 0.054. Results from this experiment and corresponding 3D PIC simulations will be presented

  16. ILSE-ESQ injector scaled experiment

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.; Yu, S.; Grote, D.

    1993-05-01

    A 2 MeV, 800 mA, K + injector for the Heavy Ion Fusion Induction Linac Systems Experiments (ISLE) is under development at LBL. It consists of a 500 keV-1MeV diode preinjector followed by an electrostatic quadrupole accelerator (ESQ). One of the key issues for the ESQ centers around the control of beam aberrations due to the ''energy effect'': in a strong electrostatic quadrupole field, ions at beam edge will have energies very different from those on the axis. The resulting kinematic distortions lead to S-shaped phase spaces, which, if uncorrected, will lead eventually to emittance growth. These beam aberrations can be minimized by increasing the injection energy and/or strengthening the beam focusing. It may also be possible to compensate for the ''energy effect'' by proper shaping of the quadrupoles electrodes. In order to check the physics of the ''energy effect'' of the ESQ design a scaled experiment has been designed that will accommodate the parameters of the source, as well as the voltage limitations, of the Single Beam Transport Experiment (SBTE). Since the 500 keV pre-injector delivers a 4 cm converging beam, a quarter-scale experiment will fit the 1 cm converging beam of the SBTE source. Also, a 10 mA beam in SBTE, and the requirement of equal perveance in both systems, forces all the voltages to scale down by a factor 0.054. Results from this experiment and corresponding 3D PIC simulations will be presented

  17. Beliefs about penis size: validation of a scale for men ashamed about their penis size.

    Science.gov (United States)

    Veale, David; Eshkevari, Ertimiss; Read, Julie; Miles, Sarah; Troglia, Andrea; Phillips, Rachael; Echeverria, Lina Maria Carmona; Fiorito, Chiara; Wylie, Kevan; Muir, Gordon

    2014-01-01

    No measures are available for understanding beliefs in men who experience shame about the perceived size of their penis. Such a measure might be helpful for treatment planning, and measuring outcome after any psychological or physical intervention. Our aim was to validate a newly developed measure called the Beliefs about Penis Size Scale (BAPS). One hundred seventy-three male participants completed a new questionnaire consisting of 18 items to be validated and developed into the BAPS, as well as various other standardized measures. A urologist also measured actual penis size. The BAPS was validated against six psychosexual self-report questionnaires as well as penile size measurements. Exploratory factor analysis reduced the number of items in the BAPS from 18 to 10, which was best explained by one factor. The 10-item BAPS had good internal consistency and correlated significantly with measures of depression, anxiety, body image quality of life, social anxiety, erectile function, overall satisfaction, and the importance attached to penis size. The BAPS was not found to correlate with actual penis size. It was able to discriminate between those who had concerns or were dissatisfied about their penis size and those who were not. This is the first study to develop a scale for measurement of beliefs about penis size. It may be used as part of an assessment for men who experience shame about the perceived size of their penis and as an outcome measure after treatment. The BAPS measures various manifestations of masculinity and shame about their perceived penis size including internal self-evaluative beliefs; negative evaluation by others; anticipated consequences of a perceived small penis, and extreme self-consciousness. © 2013 International Society for Sexual Medicine.

  18. Tipping the scales: Evolution of the allometric slope independent of average trait size.

    Science.gov (United States)

    Stillwell, R Craig; Shingleton, Alexander W; Dworkin, Ian; Frankino, W Anthony

    2016-02-01

    The scaling of body parts is central to the expression of morphology across body sizes and to the generation of morphological diversity within and among species. Although patterns of scaling-relationship evolution have been well documented for over one hundred years, little is known regarding how selection acts to generate these patterns. In part, this is because it is unclear the extent to which the elements of log-linear scaling relationships-the intercept or mean trait size and the slope-can evolve independently. Here, using the wing-body size scaling relationship in Drosophila melanogaster as an empirical model, we use artificial selection to demonstrate that the slope of a morphological scaling relationship between an organ (the wing) and body size can evolve independently of mean organ or body size. We discuss our findings in the context of how selection likely operates on morphological scaling relationships in nature, the developmental basis for evolved changes in scaling, and the general approach of using individual-based selection experiments to study the expression and evolution of morphological scaling. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  19. Monte Carlo modelling of large scale NORM sources using MCNP.

    Science.gov (United States)

    Wallace, J D

    2013-12-01

    The representative Monte Carlo modelling of large scale planar sources (for comparison to external environmental radiation fields) is undertaken using substantial diameter and thin profile planar cylindrical sources. The relative impact of source extent, soil thickness and sky-shine are investigated to guide decisions relating to representative geometries. In addition, the impact of source to detector distance on the nature of the detector response, for a range of source sizes, has been investigated. These investigations, using an MCNP based model, indicate a soil cylinder of greater than 20 m diameter and of no less than 50 cm depth/height, combined with a 20 m deep sky section above the soil cylinder, are needed to representatively model the semi-infinite plane of uniformly distributed NORM sources. Initial investigation of the effect of detector placement indicate that smaller source sizes may be used to achieve a representative response at shorter source to detector distances. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  20. Verification of Gyrokinetic Particle of Turbulent Simulation of Device Size Scaling Transport

    Institute of Scientific and Technical Information of China (English)

    LIN Zhihong; S. ETHIER; T. S. HAHM; W. M. TANG

    2012-01-01

    Verification and historical perspective are presented on the gyrokinetic particle simulations that discovered the device size scaling of turbulent transport and indentified the geometry model as the source of the long-standing disagreement between gyrokinetic particle and continuum simulations.

  1. Household Size and the Decision to Purchase Health Insurance in Cambodia: Results of a Discrete-Choice Experiment with Scale Adjustment.

    Science.gov (United States)

    Ozawa, Sachiko; Grewal, Simrun; Bridges, John F P

    2016-04-01

    Community-based health insurance (CBHI) schemes have been introduced in low- and middle-income countries to increase health service utilization and provide financial protection from high healthcare expenditures. We assess the impact of household size on decisions to enroll in CBHI and demonstrate how to correct for group disparity in scale (i.e. variance differences). A discrete choice experiment was conducted across five CBHI attributes. Preferences were elicited through forced-choice paired comparison choice tasks designed based on D-efficiency. Differences in preferences were examined between small (1-4 family members) and large (5-12 members) households using conditional logistic regression. Swait and Louviere test was used to identify and correct for differences in scale. One-hundred and sixty households were surveyed in Northwest Cambodia. Increased insurance premium was associated with disutility [odds ratio (OR) 0.61, p decisions regardless of household size. Understanding how community members make decisions about health insurance can inform low- and middle-income countries' paths towards universal health coverage.

  2. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments.

    Science.gov (United States)

    Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H

    2012-10-01

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.

  3. Investigations of grain size dependent sediment transport phenomena on multiple scales

    Science.gov (United States)

    Thaxton, Christopher S.

    Sediment transport processes in coastal and fluvial environments resulting from disturbances such as urbanization, mining, agriculture, military operations, and climatic change have significant impact on local, regional, and global environments. Primarily, these impacts include the erosion and deposition of sediment, channel network modification, reduction in downstream water quality, and the delivery of chemical contaminants. The scale and spatial distribution of these effects are largely attributable to the size distribution of the sediment grains that become eligible for transport. An improved understanding of advective and diffusive grain-size dependent sediment transport phenomena will lead to the development of more accurate predictive models and more effective control measures. To this end, three studies were performed that investigated grain-size dependent sediment transport on three different scales. Discrete particle computer simulations of sheet flow bedload transport on the scale of 0.1--100 millimeters were performed on a heterogeneous population of grains of various grain sizes. The relative transport rates and diffusivities of grains under both oscillatory and uniform, steady flow conditions were quantified. These findings suggest that boundary layer formalisms should describe surface roughness through a representative grain size that is functionally dependent on the applied flow parameters. On the scale of 1--10m, experiments were performed to quantify the hydrodynamics and sediment capture efficiency of various baffles installed in a sediment retention pond, a commonly used sedimentation control measure in watershed applications. Analysis indicates that an optimum sediment capture effectiveness may be achieved based on baffle permeability, pond geometry and flow rate. Finally, on the scale of 10--1,000m, a distributed, bivariate watershed terain evolution module was developed within GRASS GIS. Simulation results for variable grain sizes and for

  4. In-situ particle sizing at millimeter scale from electrochemical noise: simulation and experiments

    International Nuclear Information System (INIS)

    Yakdi, N.; Huet, F.; Ngo, K.

    2015-01-01

    Over the last few years, particle sizing techniques in multiphase flows based on optical technologies emerged as standard tools but the main disadvantage of these techniques is their dependence on the visibility of the measurement volume and on the focal distance. Thus, it is important to promote alternative techniques for particle sizing, and, moreover, able to work in hostile environment. This paper presents a single-particle sizing technique at a millimeter scale based on the measurement of the variation of the electrolyte resistance (ER) due to the passage of an insulating sphere between two electrodes immerged in a conductive solution. A theoretical model was proposed to determine the influence of the electrode size, the interelectrode distance, the size and the position of the sphere, on the electrolyte resistance. Experimental variations of ER due to the passage of spheres and measured by using a home-made electronic device are also presented in this paper. The excellent agreement obtained between the theoretical and experimental results allows validation of both model and experimental measurements. In addition, the technique was shown to be able to perform accurate measurements of the velocity of a ball falling in a liquid.

  5. Trait Sources of Spirituality Scale: Assessing Trait Spirituality More Inclusively

    Science.gov (United States)

    Westbrook, Charles J.; Davis, Don E.; McElroy, Stacey E.; Brubaker, Kacy; Choe, Elise; Karaga, Sara; Dooley, Matt; O'Bryant, Brittany L.; Van Tongeren, Daryl R.; Hook, Joshua

    2018-01-01

    We develop the Trait Sources of Spirituality Scale (TSSS), which assesses experiences of closeness to the sacred, within and outside a religious tradition. After using factor analysis to finalize the scale, we examine evidence of construct validity, including latent profile analysis that reveals 5 patterns of how spirituality is experienced.

  6. Finite size scaling theory

    International Nuclear Information System (INIS)

    Rittenberg, V.

    1983-01-01

    Fischer's finite-size scaling describes the cross over from the singular behaviour of thermodynamic quantities at the critical point to the analytic behaviour of the finite system. Recent extensions of the method--transfer matrix technique, and the Hamiltonian formalism--are discussed in this paper. The method is presented, with equations deriving scaling function, critical temperature, and exponent v. As an application of the method, a 3-states Hamiltonian with Z 3 global symmetry is studied. Diagonalization of the Hamiltonian for finite chains allows one to estimate the critical exponents, and also to discover new phase transitions at lower temperatures. The critical points lambda, and indices v estimated for finite-scaling are given

  7. Engineering-scale dust control experiments

    International Nuclear Information System (INIS)

    Winberg, M.R.; Pawelko, R.J.; Jacobs, N.C.; Thompson, D.N.

    1990-12-01

    This report presents the results of engineering scale dust-control experiments relating to contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of misting systems, soil fixatives, and dust suppression agents. The Dryfog Ultrasonic Misting Head, manufactured by Sonics, Incorporated, and ENTAC, an organic resin derived from tree sap manufactured by ENTAC Corporation, were tested. The results of the experiments include product performance and recommended application methods. 19 figs., 7 refs., 6 tabs

  8. Scaling of laser-plasma interactions with laser wavelength and plasma size

    International Nuclear Information System (INIS)

    Max, C.E.; Campbell, E.M.; Mead, W.C.; Kruer, W.L.; Phillion, D.W.; Turner, R.E.; Lasinski, B.F.; Estabrook, K.G.

    1983-01-01

    Plasma size is an important parameter in wavelength-scaling experiments because it determines both the threshold and potential gain for a variety of laser-plasma instabilities. Most experiments to date have of necessity produced relatively small plasmas, due to laser energy and pulse-length limitations. We have discussed in detail three recent Livermore experiments which had large enough plasmas that some instability thresholds were exceeded or approached. Our evidence for Raman scatter, filamentation, and the two-plasmon decay instability needs to be confirmed in experiments which measure several instability signatures simultaneously, and which produce more quantitative information about the local density and temperature profiles than we have today

  9. Scaling of laser-plasma interactions with laser wavelength and plasma size

    Energy Technology Data Exchange (ETDEWEB)

    Max, C.E.; Campbell, E.M.; Mead, W.C.; Kruer, W.L.; Phillion, D.W.; Turner, R.E.; Lasinski, B.F.; Estabrook, K.G.

    1983-01-25

    Plasma size is an important parameter in wavelength-scaling experiments because it determines both the threshold and potential gain for a variety of laser-plasma instabilities. Most experiments to date have of necessity produced relatively small plasmas, due to laser energy and pulse-length limitations. We have discussed in detail three recent Livermore experiments which had large enough plasmas that some instability thresholds were exceeded or approached. Our evidence for Raman scatter, filamentation, and the two-plasmon decay instability needs to be confirmed in experiments which measure several instability signatures simultaneously, and which produce more quantitative information about the local density and temperature profiles than we have today.

  10. Detail design of the beam source for the SPIDER experiment

    International Nuclear Information System (INIS)

    Marcuzzi, D.; Agostinetti, P.; Dalla Palma, M.; Degli Agostini, F.; Pavei, M.; Rizzolo, A.; Tollin, M.; Trevisan, L.

    2010-01-01

    The ITER Neutral Beam Test Facility (PRIMA-Padova Research on Injector Megavolt Accelerated) is planned to be built at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: a full size plasma source with low voltage extraction called SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and a full size neutral beam injector at full beam power called MITICA (Megavolt ITER Injector Concept Advancement). SPIDER is the first experimental device to be built and operated, aiming at testing the extraction of a negative ion beam (made of H - and in a later stage D - ions) from an ITER size ion source. The main requirements of this experiment are a H - /D - current of approximately 70 A/50 A and an energy of 100 keV. This paper presents an overview of the SPIDER beam source design, with a particular focus on the main design choices, aiming at reaching the best compromise between physics, optics, thermo-mechanical, cooling, assembly and electrical requirements.

  11. Design of the 'half-size' ITER neutral beam source for the test facility ELISE

    International Nuclear Information System (INIS)

    Heinemann, B.; Falter, H.; Fantz, U.; Franzen, P.; Froeschle, M.; Gutser, R.; Kraus, W.; Nocentini, R.; Riedl, R.; Speth, E.; Staebler, A.; Wuenderlich, D.; Agostinetti, P.; Jiang, T.

    2009-01-01

    In 2007 the radio frequency driven negative hydrogen ion source developed at IPP in Garching was chosen by the ITER board as the new reference source for the ITER neutral beam system. In order to support the design and the commissioning and operating phases of the ITER test facilities ISTF and NBTF in Padua, IPP is presently constructing a new test facility ELISE (Extraction from a Large Ion Source Experiment). ELISE will be operated with the so-called 'half-size ITER source' which is an intermediate step between the present small IPP RF sources (1/8 ITER size) and the full size ITER source. The source will have approximately the width but only half the height of the ITER source. The modular concept with 4 drivers will allow an easy extrapolation to the full ITER size with 8 drivers. Pulsed beam extraction and acceleration up to 60 kV (corresponding to pre-acceleration voltage of SINGAP) is foreseen. The aim of the design of the ELISE source and extraction system was to be as close as possible to the ITER design; it has however some modifications allowing a better diagnostic access as well as more flexibility for exploring open questions. Therefore one major difference compared to the source of ITER, NBTF or ISTF is the possible operation in air. Specific requirements for RF sources as found on IPP test facilities BATMAN and MANITU are implemented [A. Staebler, et al., Development of a RF-driven ion source for the ITER NBI system, SOFT Conference 2008, Fusion Engineering and Design, 84 (2009) 265-268].

  12. Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized drift compression experiments

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2008-07-01

    Full Text Available Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX. The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and

  13. Extreme value statistics and finite-size scaling at the ecological extinction/laminar-turbulence transition

    Science.gov (United States)

    Shih, Hong-Yan; Goldenfeld, Nigel

    Experiments on transitional turbulence in pipe flow seem to show that turbulence is a transient metastable state since the measured mean lifetime of turbulence puffs does not diverge asymptotically at a critical Reynolds number. Yet measurements reveal that the lifetime scales with Reynolds number in a super-exponential way reminiscent of extreme value statistics, and simulations and experiments in Couette and channel flow exhibit directed percolation type scaling phenomena near a well-defined transition. This universality class arises from the interplay between small-scale turbulence and a large-scale collective zonal flow, which exhibit predator-prey behavior. Why is asymptotically divergent behavior not observed? Using directed percolation and a stochastic individual level model of predator-prey dynamics related to transitional turbulence, we investigate the relation between extreme value statistics and power law critical behavior, and show that the paradox is resolved by carefully defining what is measured in the experiments. We theoretically derive the super-exponential scaling law, and using finite-size scaling, show how the same data can give both super-exponential behavior and power-law critical scaling.

  14. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L.; Sato, K.

    1994-01-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam-mixtures to undergo detonations and, equally important, to support design of the larger-scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperature between 300K and 650K at a fixed pressure of 0.1 MPa. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K to 650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments. Experiments were conducted to measure the rate of hydrogen oxidation in the absence of ignition sources at temperatures of 500K and 650K, for hydrogen-air mixtures of 15% and 50%, and for a mixture of equimolar hydrogen-air and 30% steam at 650K. The rate of hydrogen oxidation was found to be significant at 650K. Reduction of hydrogen concentration by chemical reaction from 50 to 44% hydrogen, and from 15 to 11% hydrogen, were observed on a time frame of minutes. The DeSoete rate equation predicts the 50% experiment very well, but greatly underestimates the reaction rate of the lean mixtures

  15. Using a Virtual Experiment to Analyze Infiltration Process from Point to Grid-cell Size Scale

    Science.gov (United States)

    Barrios, M. I.

    2013-12-01

    The hydrological science requires the emergence of a consistent theoretical corpus driving the relationships between dominant physical processes at different spatial and temporal scales. However, the strong spatial heterogeneities and non-linearities of these processes make difficult the development of multiscale conceptualizations. Therefore, scaling understanding is a key issue to advance this science. This work is focused on the use of virtual experiments to address the scaling of vertical infiltration from a physically based model at point scale to a simplified physically meaningful modeling approach at grid-cell scale. Numerical simulations have the advantage of deal with a wide range of boundary and initial conditions against field experimentation. The aim of the work was to show the utility of numerical simulations to discover relationships between the hydrological parameters at both scales, and to use this synthetic experience as a media to teach the complex nature of this hydrological process. The Green-Ampt model was used to represent vertical infiltration at point scale; and a conceptual storage model was employed to simulate the infiltration process at the grid-cell scale. Lognormal and beta probability distribution functions were assumed to represent the heterogeneity of soil hydraulic parameters at point scale. The linkages between point scale parameters and the grid-cell scale parameters were established by inverse simulations based on the mass balance equation and the averaging of the flow at the point scale. Results have shown numerical stability issues for particular conditions and have revealed the complex nature of the non-linear relationships between models' parameters at both scales and indicate that the parameterization of point scale processes at the coarser scale is governed by the amplification of non-linear effects. The findings of these simulations have been used by the students to identify potential research questions on scale issues

  16. Coagulation of aerosols population in external mixture: modeling and experiments/Modelling of a population of aerosol multi-sources and research for contributions of every source in the urban scale with the model of dispersion CHIMERE

    International Nuclear Information System (INIS)

    Dergaoui, Hilel

    2012-01-01

    This thesis has been launched at the instigation of INERIS in order to bring some answers to several issues about environmental and health impact of the particle pollution. Indeed, the growing concern of public exposure at urban scale to atmospheric particles and the gradual setting-up of emission reduction policies (particles and their gaseous precursors) make more and more necessary to apportion the various sources contributing to ambient particle concentrations and to quantify these contributions. Due to the highly complex relationships between emissions and measured concentrations, chemical transport models which simulate advection, diffusion and the physico-chemical transformations undergone by pollutants in atmosphere, have to be used. Particles are still a hard modeling task, due to their multiple sizes, chemical compositions and emission sources (including their gaseous precursors). Most chemical transport models uses a simplified mathematical representation for atmospheric aerosols. Their size distribution is either represented by several log-normal distributions, or discretized in several sections, whose mean diameters span from a few nanometers to tens of micrometers. Within each size class, particles are usually assumed to be well mixed, i.e. they all have the same composition, which is named internal mixing. However, in reality and close to emission sources, the particle population may have several distinct chemical compositions for one given size class, due to the fact that sources emit particles with very different chemical compositions (e.g. traffic, heating, industries, vegetation), which refers to external mixing. Thus, the internal mixing assumption comes to neglect the mixing time between particles of different sources, which may entail significant errors in the computation of exposure and of their physico-chemical properties, some of whom, like radiative effect, are precisely above all sensitive to chemical composition. In this framework, the

  17. Low scale gravity as the source of neutrino masses?

    International Nuclear Information System (INIS)

    Berezinsky, Veniamin; Narayan, Mohan; Vissani, Francesco

    2005-01-01

    We address the question whether low-scale gravity alone can generate the neutrino mass matrix needed to accommodate the observed phenomenology. In low-scale gravity the neutrino mass matrix in the flavor basis is characterized by one parameter (the gravity scale M X ) and by an exact or approximate flavor blindness (namely, all elements of the mass matrix are of comparable size). Neutrino masses and mixings are consistent with the observational data for certain values of the matrix elements, but only when the spectrum of mass is inverted or degenerate. For the latter type of spectra the parameter M ee probed in double beta experiments and the mass parameter probed by cosmology are close to existing upper limits

  18. Large scale FCI experiments in subassembly geometry. Test facility and model experiments

    International Nuclear Information System (INIS)

    Beutel, H.; Gast, K.

    A program is outlined for the study of fuel/coolant interaction under SNR conditions. The program consists of a) under water explosion experiments with full size models of the SNR-core, in which the fuel/coolant system is simulated by a pyrotechnic mixture. b) large scale fuel/coolant interaction experiments with up to 5kg of molten UO 2 interacting with liquid sodium at 300 deg C to 600 deg C in a highly instrumented test facility simulating an SNR subassembly. The experimental results will be compared to theoretical models under development at Karlsruhe. Commencement of the experiments is expected for the beginning of 1975

  19. The Phoenix series large scale LNG pool fire experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  20. Field-scale colloid migration experiments in a granite fracture

    International Nuclear Information System (INIS)

    Vilks, P.; Frost, L.H.; Bachinski, D.B.

    1997-01-01

    An understanding of particle migration in fractured rock, required to assess the potential for colloid-facilitated transport of radionuclides, can best be evaluated when the results of laboratory experiments are demonstrated in the field. Field-scale migration experiments with silica colloids were carried out at AECL's Underground Research Laboratory (URL), located in southern Manitoba, to develop the methodology for large-scale migration experiments and to determine whether colloid transport is possible over distances up to 17 m. In addition, these experiments were designed to evaluate the effects of flow rate and flow path geometry, and to determine whether colloid tracers could be used to provide additional information on subsurface transport to that provided by conservative tracers alone. The colloid migration studies were carried out as part of AECL's Transport Properties in Highly Fractured Rock Experiment, the objective of which was to develop and demonstrate methods for evaluating the solute transport characteristics of zones of highly fractured rock. The experiments were carried out within fracture zone 2 as two-well recirculating, two-well non-recirculating, and convergent flow tests, using injection rates of 5 and 101 min -1 . Silica colloids with a 20 nm size were used because they are potentially mobile due to their stability, small size and negative surface charge. The shapes of elution profiles for colloids and conservative tracers were similar, demonstrating that colloids can migrate over distances of 17 m. The local region of drawdown towards the URL shaft affected colloid migration and, to a lesser extent, conservative tracer migration within the flow field established by the two-well tracer tests. These results indicate that stable colloids, with sizes as small as 20 nm, have different migration properties from dissolved conservative tracers. (author)

  1. Confined discharge plasma sources for Z-pinch experiments

    International Nuclear Information System (INIS)

    Hinshelwood, D.D.; Goodrich, P.J.; Mehlman, G.; Scherrer, V.E.; Stephanakis, S.J.; Young, F.C.

    1989-01-01

    The authors report their investigation Z-pinch implosions on the NRL Gamble II generator using metallic sources of sodium and aluminum, and non-metallic source of sodium (NaF), magnesium (MgF 2 ), and aluminum (Al 2 0 3 ). For 1 MA driving currents, peak Κ-shell radiated powers of about 100 GW and energies of about 1.5 kj have been obtained with both pure aluminum and NaF implosions. The aluminum results are comparable to those in previous Gamble II experiments with aluminum wire arrays. Confined discharge sources have been used to generate tens of GW in the Na Heα pump line and flourescence of the neon has been observed. The effects of nozzle shape and size, chamber diameter, amount of fuse material, and confined discharge current have been investigated in Gamble II implosion experiments. These studies indicate that confined discharge sources are capable of supplying significantly more material than required for implosions at the 1 MA level, so that this technique could be extended to higher current generators

  2. Low scale gravity as the source of neutrino masses?

    Energy Technology Data Exchange (ETDEWEB)

    Berezinsky, Veniamin [INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, AQ (Italy); Narayan, Mohan [INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, AQ (Italy); Vissani, Francesco [INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, AQ (Italy)

    2005-04-01

    We address the question whether low-scale gravity alone can generate the neutrino mass matrix needed to accommodate the observed phenomenology. In low-scale gravity the neutrino mass matrix in the flavor basis is characterized by one parameter (the gravity scale M{sub X}) and by an exact or approximate flavor blindness (namely, all elements of the mass matrix are of comparable size). Neutrino masses and mixings are consistent with the observational data for certain values of the matrix elements, but only when the spectrum of mass is inverted or degenerate. For the latter type of spectra the parameter M{sub ee} probed in double beta experiments and the mass parameter probed by cosmology are close to existing upper limits.

  3. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto; Watson, James R.; Jö nsson, Bror; Gasol, Josep M.; Salazar, Guillem; Acinas, Silvia G.; Estrada, Marta; Massana, Ramó n; Logares, Ramiro; Giner, Caterina R.; Pernice, Massimo C.; Olivar, M. Pilar; Citores, Leire; Corell, Jon; Rodrí guez-Ezpeleta, Naiara; Acuñ a, José Luis; Molina-Ramí rez, Axayacatl; Gonzá lez-Gordillo, J. Ignacio; Có zar, André s; Martí , Elisa; Cuesta, José A.; Agusti, Susana; Fraile-Nuez, Eugenio; Duarte, Carlos M.; Irigoien, Xabier; Chust, Guillem

    2018-01-01

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  4. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto

    2018-01-04

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  5. Decreased attention to object size information in scale errors performers.

    Science.gov (United States)

    Grzyb, Beata J; Cangelosi, Angelo; Cattani, Allegra; Floccia, Caroline

    2017-05-01

    Young children sometimes make serious attempts to perform impossible actions on miniature objects as if they were full-size objects. The existing explanations of these curious action errors assume (but never explicitly tested) children's decreased attention to object size information. This study investigated the attention to object size information in scale errors performers. Two groups of children aged 18-25 months (N=52) and 48-60 months (N=23) were tested in two consecutive tasks: an action task that replicated the original scale errors elicitation situation, and a looking task that involved watching on a computer screen actions performed with adequate to inadequate size object. Our key finding - that children performing scale errors in the action task subsequently pay less attention to size changes than non-scale errors performers in the looking task - suggests that the origins of scale errors in childhood operate already at the perceptual level, and not at the action level. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Performance of the full size nGEM detector for the SPIDER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Muraro, A., E-mail: muraro@ifp.cnr.it [Istituto di Fisica del Plasma “P. Caldirola” – CNR, Milan (Italy); Dipartimento di Fisica “G. Occhialini”, University of Milano-Bicocca (Italy); Croci, G. [Istituto di Fisica del Plasma “P. Caldirola” – CNR, Milan (Italy); Dipartimento di Fisica “G. Occhialini”, University of Milano-Bicocca (Italy); Sez. INFN Milano-Bicocca, Milano (Italy); Albani, G. [Dipartimento di Fisica “G. Occhialini”, University of Milano-Bicocca (Italy); Claps, G. [Laboratori Nazionali di Frascati – INFN, Frascati (Italy); Cavenago, M. [Laboratori Nazionali di Legnaro – INFN, Legnaro (Italy); Cazzaniga, C. [Dipartimento di Fisica “G. Occhialini”, University of Milano-Bicocca (Italy); Dalla Palma, M. [Consorzio RFX, Padova (Italy); Grosso, G. [Istituto di Fisica del Plasma “P. Caldirola” – CNR, Milan (Italy); Murtas, F. [Laboratori Nazionali di Frascati – INFN, Frascati (Italy); Pasqualotto, R. [Consorzio RFX, Padova (Italy); Perelli Cippo, E. [Istituto di Fisica del Plasma “P. Caldirola” – CNR, Milan (Italy); Rebai, M. [Dipartimento di Fisica “G. Occhialini”, University of Milano-Bicocca (Italy); Tardocchi, M.; Tollin, M. [Istituto di Fisica del Plasma “P. Caldirola” – CNR, Milan (Italy); Gorini, G. [Dipartimento di Fisica “G. Occhialini”, University of Milano-Bicocca (Italy); Sez. INFN Milano-Bicocca, Milano (Italy)

    2016-03-21

    The ITER neutral beam test facility under construction in Padova will host two experimental devices: SPIDER, a 100 kV negative H/D RF beam source, and MITICA, a full scale, 1 MeV deuterium beam injector. SPIDER will start operations in 2016 while MITICA is expected to start during 2019. Both devices feature a beam dump used to stop the produced deuteron beam. Detection of fusion neutrons produced between beam-deuterons and dump-implanted deuterons will be used as a means to resolve the horizontal beam intensity profile. The neutron detection system will be placed right behind the beam dump, as close to the neutron emitting surface as possible thus providing the map of the neutron emission on the beam dump surface. The system uses nGEM neutron detectors. These are Gas Electron Multiplier detectors equipped with a cathode that also serves as neutron–proton converter foil. The cathode is designed to ensure that most of the detected neutrons at a point of the nGEM surface are emitted from the corresponding beamlet footprint (with dimensions of about 40×22 mm{sup 2}) on the dump front surface. The size of the nGEM detector for SPIDER is 352 mm×200 mm. Several smaller size prototypes have been successfully made in the last years and the experience gained on these detectors has led to the production of the full size detector for SPIDER during 2014. This nGEM has a read-out board made of 256 pads (arranged in a 16×16 matrix) each with a dimension of 22 mm×13 mm. This paper describes the production of this detector and its tests (in terms of beam profile reconstruction capability, uniformity over the active area, gamma rejection capability and time stability) performed on the ROTAX beam-line at the ISIS spallation source (Didcot-UK).

  7. Performance of the full size nGEM detector for the SPIDER experiment

    International Nuclear Information System (INIS)

    Muraro, A.; Croci, G.; Albani, G.; Claps, G.; Cavenago, M.; Cazzaniga, C.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.

    2016-01-01

    The ITER neutral beam test facility under construction in Padova will host two experimental devices: SPIDER, a 100 kV negative H/D RF beam source, and MITICA, a full scale, 1 MeV deuterium beam injector. SPIDER will start operations in 2016 while MITICA is expected to start during 2019. Both devices feature a beam dump used to stop the produced deuteron beam. Detection of fusion neutrons produced between beam-deuterons and dump-implanted deuterons will be used as a means to resolve the horizontal beam intensity profile. The neutron detection system will be placed right behind the beam dump, as close to the neutron emitting surface as possible thus providing the map of the neutron emission on the beam dump surface. The system uses nGEM neutron detectors. These are Gas Electron Multiplier detectors equipped with a cathode that also serves as neutron–proton converter foil. The cathode is designed to ensure that most of the detected neutrons at a point of the nGEM surface are emitted from the corresponding beamlet footprint (with dimensions of about 40×22 mm"2) on the dump front surface. The size of the nGEM detector for SPIDER is 352 mm×200 mm. Several smaller size prototypes have been successfully made in the last years and the experience gained on these detectors has led to the production of the full size detector for SPIDER during 2014. This nGEM has a read-out board made of 256 pads (arranged in a 16×16 matrix) each with a dimension of 22 mm×13 mm. This paper describes the production of this detector and its tests (in terms of beam profile reconstruction capability, uniformity over the active area, gamma rejection capability and time stability) performed on the ROTAX beam-line at the ISIS spallation source (Didcot-UK).

  8. Cosmology from angular size counts of extragalactic radio sources

    International Nuclear Information System (INIS)

    Kapahi, V.K.

    1975-01-01

    The cosmological implications of the observed angular sizes of extragalactic radio sources are investigated using (i) the log N-log theta relation, where N is the number of sources with an angular size greater than a value theta, for the complete sample of 3CR sources, and (ii) the thetasub(median) vs flux density (S) relation derived from the 3CR, the All-sky, and the Ooty occulation surveys, spanning a flux density range of about 300:1. The method of estimating the expected N(theta) and thetasub(m)(S) relations for a uniform distribution of sources in space is outlined. Since values of theta>approximately 100second arc in the 3C sample arise from sources of small z, the slope of the N(theta) relation in this range is practically independent of the world model and the distribution of source sizes, but depends strongly on the radio luminosity function (RLF). From the observed slope the RLF is derived in the luminosity range of about 10 23 178 26 W Hz -1 sr -1 to be of the form rho(P)dP proportional to Psup(-2.1)dP. It is shown that the angular size data provide independent evidence of evolution in source properties with epoch. It is difficult to explain the data with the simple steady-state theory even if identified QSOs are excluded from ths source samples and a local deficiency of strong source is postulated. The simplest evolutionary scheme that fits the data in the Einstein-de Sitter cosmology indicates that (a) the local RLF steepens considerably at high luminosities, (b) the comoving density of high luminosity sources increases with z in a manner similar to that implied by the log N-log S data and by the V/Vsub(m) test for QSOs, and (c) the mean physical sizes of radio sources evolve with z approximately as (1+z) -1 . Similar evolutionary effects appear to be present for QSOs as well as radio galaxies. (author)

  9. Size scaling of static friction.

    Science.gov (United States)

    Braun, O M; Manini, Nicola; Tosatti, Erio

    2013-02-22

    Sliding friction across a thin soft lubricant film typically occurs by stick slip, the lubricant fully solidifying at stick, yielding and flowing at slip. The static friction force per unit area preceding slip is known from molecular dynamics (MD) simulations to decrease with increasing contact area. That makes the large-size fate of stick slip unclear and unknown; its possible vanishing is important as it would herald smooth sliding with a dramatic drop of kinetic friction at large size. Here we formulate a scaling law of the static friction force, which for a soft lubricant is predicted to decrease as f(m)+Δf/A(γ) for increasing contact area A, with γ>0. Our main finding is that the value of f(m), controlling the survival of stick slip at large size, can be evaluated by simulations of comparably small size. MD simulations of soft lubricant sliding are presented, which verify this theory.

  10. Does source population size affect performance in new environments?

    Science.gov (United States)

    Yates, Matthew C; Fraser, Dylan J

    2014-01-01

    Small populations are predicted to perform poorly relative to large populations when experiencing environmental change. To explore this prediction in nature, data from reciprocal transplant, common garden, and translocation studies were compared meta-analytically. We contrasted changes in performance resulting from transplantation to new environments among individuals originating from different sized source populations from plants and salmonids. We then evaluated the effect of source population size on performance in natural common garden environments and the relationship between population size and habitat quality. In ‘home-away’ contrasts, large populations exhibited reduced performance in new environments. In common gardens, the effect of source population size on performance was inconsistent across life-history stages (LHS) and environments. When transplanted to the same set of new environments, small populations either performed equally well or better than large populations, depending on life stage. Conversely, large populations outperformed small populations within native environments, but only at later life stages. Population size was not associated with habitat quality. Several factors might explain the negative association between source population size and performance in new environments: (i) stronger local adaptation in large populations and antagonistic pleiotropy, (ii) the maintenance of genetic variation in small populations, and (iii) potential environmental differences between large and small populations. PMID:25469166

  11. Spatial patterns of correlated scale size and scale color in relation to color pattern elements in butterfly wings.

    Science.gov (United States)

    Iwata, Masaki; Otaki, Joji M

    2016-02-01

    Complex butterfly wing color patterns are coordinated throughout a wing by unknown mechanisms that provide undifferentiated immature scale cells with positional information for scale color. Because there is a reasonable level of correspondence between the color pattern element and scale size at least in Junonia orithya and Junonia oenone, a single morphogenic signal may contain positional information for both color and size. However, this color-size relationship has not been demonstrated in other species of the family Nymphalidae. Here, we investigated the distribution patterns of scale size in relation to color pattern elements on the hindwings of the peacock pansy butterfly Junonia almana, together with other nymphalid butterflies, Vanessa indica and Danaus chrysippus. In these species, we observed a general decrease in scale size from the basal to the distal areas, although the size gradient was small in D. chrysippus. Scales of dark color in color pattern elements, including eyespot black rings, parafocal elements, and submarginal bands, were larger than those of their surroundings. Within an eyespot, the largest scales were found at the focal white area, although there were exceptional cases. Similarly, ectopic eyespots that were induced by physical damage on the J. almana background area had larger scales than in the surrounding area. These results are consistent with the previous finding that scale color and size coordinate to form color pattern elements. We propose a ploidy hypothesis to explain the color-size relationship in which the putative morphogenic signal induces the polyploidization (genome amplification) of immature scale cells and that the degrees of ploidy (gene dosage) determine scale color and scale size simultaneously in butterfly wings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Monitoring of the energy scale in the KATRIN neutrino experiment

    CERN Document Server

    AUTHOR|(CDS)2083282

    The question of the absolute mass scale of neutrinos is of particular interest for particle physics, astrophysics, and cosmology. The KATRIN experiment (KArlsruhe TRItium Neutrino experiment) aims to address the effective electron antineutrino mass from the shape of the tritium $\\beta$-spectrum with an unprecedented sensitivity of 0.2 eV/c$^2$. One of the major systematic effects concerns the experimental energy scale, which has to be stable at the level of only a few parts in a million. For its calibration and monitoring the monoenergetic electrons emitted in the internal conversion of $\\gamma$-transition of the metastable isotope $^{83\\mathrm{m}}$Kr will be extensively applied. The aim of this thesis is to address the problem of KATRIN energy scale distortions and its monitoring in detail. The source of electrons based on $^{83\\mathrm{m}}$Kr embedded in a solid as well as the source based on gaseous $^{83\\mathrm{m}}$Kr are studied. Based on the experimental results an approach for the continuous stability m...

  13. Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment

    CERN Document Server

    Zboril, M.; Beck, M.; Bonn, J.; Dragoun, O.; Jakubek, J.; Johnston, K.; Kovalik, A.; Otten, E.W.; Schlösser, K.; Slezak, M.; Spalek, A.; Thümmler, T.; Venos, D.; Zemlicka, J.; Weinheimer, C.

    2013-01-01

    The KATRIN experiment aims at the direct model-independent determination of the average electron neutrino mass via the measurement of the endpoint region of the tritium beta decay spectrum. The electron spectrometer of the MAC-E filter type is used, requiring very high stability of the electric filtering potential. This work proves the feasibility of implanted 83Rb/83mKr calibration electron sources which will be utilised in the additional monitor spectrometer sharing the high voltage with the main spectrometer of KATRIN. The source employs conversion electrons of 83mKr which is continuously generated by 83Rb. The K-32 conversion line (kinetic energy of 17.8 keV, natural line width of 2.7 eV) is shown to fulfill the KATRIN requirement of the relative energy stability of +/-1.6 ppm/month. The sources will serve as a standard tool for continuous monitoring of KATRIN's energy scale stability with sub-ppm precision. They may also be used in other applications where the precise conversion lines can be separated fr...

  14. Compact wire array sources: power scaling and implosion physics.

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Jason Dimitri; Chuvatin, Alexander S. (Laboratoire du Centre National de la Recherche Scientifique Ecole Polytechnique, Palaiseau, France); Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V. (University of Nevada - Reno, Reno, NV); Esaulov, Andrey A. (University of Nevada - Reno, Reno, NV); Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich (University of Nevada - Reno, Reno, NV); Coverdale, Christine Anne; Rudakov, L. I. (Icarus Research, Bethesda, MD); Jones, Brent Manley; Safronova, Alla S. (University of Nevada - Reno, Reno, NV); Vigil, Marcelino Patricio

    2008-09-01

    A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we

  15. Data scaling and temperature calibration in time-resolved photocrystallographic experiments

    DEFF Research Database (Denmark)

    Schmøkel, Mette Stokkebro; Kaminski, Radoslaw; Benedict, Jason B.

    2010-01-01

    -steady-state experiments conducted at conventional sources, but not negligible in synchrotron studies in which very short laser exposures may be adequate. The relative scaling of the light-ON and light-OFF data and the correction for temperature differences between the two sets are discussed....

  16. Scaling criteria for rock dynamic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Barbara K [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    A set of necessary conditions for performing scaled rock dynamics experiments is derived from the conservation equations of continuum mechanics. Performing scaled experiments in two different materials is virtually impossible because of the scaling restrictions imposed by two equations of state. However, performing dynamically scaled experiments in the same material is possible if time and distance use the same scaling factor and if the effects of gravity are insignificant. When gravity becomes significant, dynamic scaling is no longer possible. To illustrate these results, example calculations of megaton and kiloton experiments are considered. (author00.

  17. Size effects in foams : Experiments and modeling

    NARCIS (Netherlands)

    Tekoglu, C.; Gibson, L. J.; Pardoen, T.; Onck, P. R.

    Mechanical properties of cellular solids depend on the ratio of the sample size to the cell size at length scales where the two are of the same order of magnitude. Considering that the cell size of many cellular solids used in engineering applications is between 1 and 10 mm, it is not uncommon to

  18. Scale economies and optimal size in the Swiss gas distribution sector

    International Nuclear Information System (INIS)

    Alaeifar, Mozhgan; Farsi, Mehdi; Filippini, Massimo

    2014-01-01

    This paper studies the cost structure of Swiss gas distribution utilities. Several econometric models are applied to a panel of 26 companies over 1996–2000. Our main objective is to estimate the optimal size and scale economies of the industry and to study their possible variation with respect to network characteristics. The results indicate the presence of unexploited scale economies. However, very large companies in the sample and companies with a disproportionate mixture of output and density present an exception. Furthermore, the estimated optimal size for majority of companies in the sample has shown a value far greater than the actual size, suggesting remarkable efficiency gains by reorganization of the industry. The results also highlight the effect of customer density on optimal size. Networks with higher density or greater complexity have a lower optimal size. - highlights: • Presence of unexploited scale economies for small and medium sized companies. • Scale economies vary considerably with customer density. • Higher density or greater complexity is associated with lower optimal size. • Optimal size varies across the companies through unobserved heterogeneity. • Firms with low density can gain more from expanding firm size

  19. Flash X-Ray (FXR) Accelerator Optimization Electronic Time-Resolved Measurement of X-Ray Source Size

    International Nuclear Information System (INIS)

    Jacob, J; Ong, M; Wargo, P

    2005-01-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating various approaches to minimize the x-ray source size on the Flash X-Ray (FXR) linear induction accelerator in order to improve x-ray flux and increase resolution for hydrodynamic radiography experiments. In order to effectively gauge improvements to final x-ray source size, a fast, robust, and accurate system for measuring the spot size is required. Timely feedback on x-ray source size allows new and improved accelerator tunes to be deployed and optimized within the limited run-time constraints of a production facility with a busy experimental schedule; in addition, time-resolved measurement capability allows the investigation of not only the time-averaged source size, but also the evolution of the source size, centroid position, and x-ray dose throughout the 70 ns beam pulse. Combined with time-resolved measurements of electron beam parameters such as emittance, energy, and current, key limiting factors can be identified, modeled, and optimized for the best possible spot size. Roll-bar techniques are a widely used method for x-ray source size measurement, and have been the method of choice at FXR for many years. A thick bar of tungsten or other dense metal with a sharp edge is inserted into the path of the x-ray beam so as to heavily attenuate the lower half of the beam, resulting in a half-light, half-dark image as seen downstream of the roll-bar; by measuring the width of the transition from light to dark across the edge of the roll-bar, the source size can be deduced. For many years, film has been the imaging medium of choice for roll-bar measurements thanks to its high resolution, linear response, and excellent contrast ratio. Film measurements, however, are fairly cumbersome and require considerable setup and analysis time; moreover, with the continuing trend towards all-electronic measurement systems, film is becoming increasingly difficult and expensive to procure. Here, we shall

  20. The Importance of a Thermal Manikin as Source and Obstacle in Full-Scale Experiments

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The thermal manikin is normally introduced at indoor environmental measurements to obtain detailed information on thermal comfort and air quality around a person. This paper deals with the opposite situation where manikins are introduced as sources and obstacles in order to obtain reasonable...... boundary conditions in experiments with the indoor environment. In other words, how will people influence the surroundings instead of how will the surroundings influence people? The use of thermal manikins in an experiment will of course take both situations into account, however, in some experiments...

  1. Potential Size of and Value Proposition for H2@Scale Concept

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jadun, Paige [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pivovar, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgowainy, Amgad [Argonne National Laboratory

    2017-11-09

    The H2@Scale concept is focused on developing hydrogen as an energy carrier and using hydrogen's properties to improve the national energy system. Specifically hydrogen has the abilities to (1) supply a clean energy source for industry and transportation and (2) increase the profitability of variable renewable electricity generators such as wind turbines and solar photovoltaic (PV) farms by providing value for otherwise potentially-curtailed electricity. Thus the concept also has the potential to reduce oil dependency by providing a low-carbon fuel for fuel cell electric vehicles (FCEVs), reduce emissions of carbon dioxide and pollutants such as NOx, and support domestic energy production, manufacturing, and U.S. economic competitiveness. The analysis reported here focuses on the potential market size and value proposition for the H2@Scale concept. It involves three analysis phases: 1. Initial phase estimating the technical potential for hydrogen markets and the resources required to meet them; 2. National-scale analysis of the economic potential for hydrogen and the interactions between willingness to pay by hydrogen users and the cost to produce hydrogen from various sources; and 3. In-depth analysis of spatial and economic issues impacting hydrogen production and utilization and the markets. Preliminary analysis of the technical potential indicates that the technical potential for hydrogen use is approximately 60 million metric tons (MMT) annually for light duty FCEVs, heavy duty vehicles, ammonia production, oil refining, biofuel hydrotreating, metals refining, and injection into the natural gas system. The technical potential of utility-scale PV and wind generation independently are much greater than that necessary to produce 60 MMT / year hydrogen. Uranium, natural gas, and coal reserves are each sufficient to produce 60 MMT / year hydrogen in addition to their current uses for decades to centuries. National estimates of the economic potential of

  2. Progress Toward Source-to-Target Simulation

    International Nuclear Information System (INIS)

    Grote, D.P.; Friedman, A.; Craig, G.D.; Sharp, W.M.; Haber, I.

    2000-01-01

    Source-to-target simulation of an accelerator provides a thorough check on the consistency of the design as well as a detailed understanding of the beam behavior. Issues such as envelope mis-match and emittance growth can be examined in a self-consistent manner, including the details of accelerator transitions, long-term transport, and longitudinal compression. The large range in scales, from centimeter-scale transverse beam size and applied field scale-length, to meter-scale beam length, to kilometer-scale accelerator length, poses a significant computational challenge. The ever-increasing computational power that is becoming available through massively parallel computers is making such simulation realizable. This paper discusses the progress toward source-to-target simulation using the WARP particle-in-cell code. Representative examples are shown, including 3-D, along-term transport simulations of Integrated Research Experiment (IRE) scale accelerators

  3. Validating Bayesian truth serum in large-scale online human experiments.

    Science.gov (United States)

    Frank, Morgan R; Cebrian, Manuel; Pickard, Galen; Rahwan, Iyad

    2017-01-01

    Bayesian truth serum (BTS) is an exciting new method for improving honesty and information quality in multiple-choice survey, but, despite the method's mathematical reliance on large sample sizes, existing literature about BTS only focuses on small experiments. Combined with the prevalence of online survey platforms, such as Amazon's Mechanical Turk, which facilitate surveys with hundreds or thousands of participants, BTS must be effective in large-scale experiments for BTS to become a readily accepted tool in real-world applications. We demonstrate that BTS quantifiably improves honesty in large-scale online surveys where the "honest" distribution of answers is known in expectation on aggregate. Furthermore, we explore a marketing application where "honest" answers cannot be known, but find that BTS treatment impacts the resulting distributions of answers.

  4. Study of source size in p bar p collisions at √s =1.8 TeV using pion interferometry

    International Nuclear Information System (INIS)

    Alexopoulos, T.; Allen, C.; Anderson, E.W.; Balamurali, V.; Banerjee, S.; Beery, P.D.; Bhat, P.; Bishop, J.M.; Biswas, N.N.; Bujak, A.; Carmony, D.D.; Carter, T.; Choi, Y.; Cole, P.; DeBonte, R.; DeCarlo, V.; Erwin, A.R.; Findeisen, C.; Goshaw, A.T.; Gutay, L.J.; Hirsch, A.S.; Hojvat, C.; Jennings, J.R.; Kenney, V.P.; Lindsey, C.S.; Loomis, C.; LoSecco, J.M.; McMahon, T.; McManus, A.P.; Morgan, N.K.; Nelson, K.; Oh, S.H.; Porile, N.T.; Reeves, D.; Rimai, A.; Robertson, W.R.; Scharenberg, R.P.; Stampke, S.R.; Stringfellow, B.C.; Thompson, M.A.; Turkot, F.; Walker, W.D.; Wang, C.H.; Warchol, J.; Wesson, D.K.; Zhan, Y.H.

    1993-01-01

    Experiment E735 collected data for ∼10 7 interactions at the C0 intersection of the Fermilab p bar p collider with √s =1.8 TeV. The Bose-Einstein correlations between pairs of identical pions were measured in a limited aperture spectrometer and used to estimate the size and lifetime of the source. The aperture shape limited the sensitivity primarily to the source dimension R along the incident p bar p direction. Both this dimension and the lifetime appear to depend strongly on pion multiplicity. Efforts were also made to obtain some information on the transverse source size, energy density, and the dependence of source size and strength on dipion momentum. Fits to the entire data sample yielded a value R=1.06±0.07 fm for the average source dimension and a value τ=0.74±0.06 fm for the average source lifetime with left-angle dN c /dη right-angle=14.4

  5. Inverse size scaling of the nucleolus by a concentration-dependent phase transition.

    Science.gov (United States)

    Weber, Stephanie C; Brangwynne, Clifford P

    2015-03-02

    Just as organ size typically increases with body size, the size of intracellular structures changes as cells grow and divide. Indeed, many organelles, such as the nucleus [1, 2], mitochondria [3], mitotic spindle [4, 5], and centrosome [6], exhibit size scaling, a phenomenon in which organelle size depends linearly on cell size. However, the mechanisms of organelle size scaling remain unclear. Here, we show that the size of the nucleolus, a membraneless organelle important for cell-size homeostasis [7], is coupled to cell size by an intracellular phase transition. We find that nucleolar size directly scales with cell size in early C. elegans embryos. Surprisingly, however, when embryo size is altered, we observe inverse scaling: nucleolar size increases in small cells and decreases in large cells. We demonstrate that this seemingly contradictory result arises from maternal loading of a fixed number rather than a fixed concentration of nucleolar components, which condense into nucleoli only above a threshold concentration. Our results suggest that the physics of phase transitions can dictate whether an organelle assembles, and, if so, its size, providing a mechanistic link between organelle assembly and cell size. Since the nucleolus is known to play a key role in cell growth, this biophysical readout of cell size could provide a novel feedback mechanism for growth control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. College Experience Scale (EExU

    Directory of Open Access Journals (Sweden)

    Angélica Juárez

    2017-07-01

    Full Text Available The experience of being a university student (University Experiences had been poorly studied so far. However, research in this field can provide valuable information about the quality of academic life, wellbeing or stress in this population. There is a lack of psychological tests that explore this theoretical construct. The aim of this study was to develop and validate a scale for measuring Univeristy Experiences, for that reason 314 college students were invited to participate for the validation. This students coursed different careers and reported 20 years old as average age. The University Experiences Scale (EExU has adequate psychometric properties. It has a structure of four factors: experience satisfaction, support perception, experience perception and life style adjustment. This factors explain 43.1% of the variance. The grouping of the factors of the College Experience Scale concurs with data reported in the literature about such concept, however this is the first questionnaire designed for measuring it. We anticipate that future studies will seek to verify the performance of the scale in different populations of students and analyze its psychometric properties and its possible association with other psychological variables that affect college students and their health.

  7. Sizing and scaling requirements of a large-scale physical model for code validation

    International Nuclear Information System (INIS)

    Khaleel, R.; Legore, T.

    1990-01-01

    Model validation is an important consideration in application of a code for performance assessment and therefore in assessing the long-term behavior of the engineered and natural barriers of a geologic repository. Scaling considerations relevant to porous media flow are reviewed. An analysis approach is presented for determining the sizing requirements of a large-scale, hydrology physical model. The physical model will be used to validate performance assessment codes that evaluate the long-term behavior of the repository isolation system. Numerical simulation results for sizing requirements are presented for a porous medium model in which the media properties are spatially uncorrelated

  8. Finite size scaling and phenomenological renormalization

    International Nuclear Information System (INIS)

    Derrida, B.; Seze, L. de; Vannimenus, J.

    1981-05-01

    The basic equations of the phenomenological renormalization method are recalled. A simple derivation using finite-size scaling is presented. The convergence of the method is studied analytically for the Ising model. Using this method we give predictions for the 2d bond percolation. Finally we discuss how the method can be applied to random systems

  9. X-ray intensity and source size characterizations for the 25 kV upgraded Manson source at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Loisel, G., E-mail: gploise@sandia.gov; Lake, P.; Gard, P.; Dunham, G.; Nielsen-Weber, L.; Wu, M. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Norris, E. [Missouri University of Science and Technology, Rolla, Missouri 65409 (United States)

    2016-11-15

    At Sandia National Laboratories, the x-ray generator Manson source model 5 was upgraded from 10 to 25 kV. The purpose of the upgrade is to drive higher characteristics photon energies with higher throughput. In this work we present characterization studies for the source size and the x-ray intensity when varying the source voltage for a series of K-, L-, and M-shell lines emitted from Al, Y, and Au elements composing the anode. We used a 2-pinhole camera to measure the source size and an energy dispersive detector to monitor the spectral content and intensity of the x-ray source. As the voltage increases, the source size is significantly reduced and line intensity is increased for the three materials. We can take advantage of the smaller source size and higher source throughput to effectively calibrate the suite of Z Pulsed Power Facility crystal spectrometers.

  10. X-ray intensity and source size characterizations for the 25 kV upgraded Manson source at Sandia National Laboratories.

    Science.gov (United States)

    Loisel, G; Lake, P; Gard, P; Dunham, G; Nielsen-Weber, L; Wu, M; Norris, E

    2016-11-01

    At Sandia National Laboratories, the x-ray generator Manson source model 5 was upgraded from 10 to 25 kV. The purpose of the upgrade is to drive higher characteristics photon energies with higher throughput. In this work we present characterization studies for the source size and the x-ray intensity when varying the source voltage for a series of K-, L-, and M-shell lines emitted from Al, Y, and Au elements composing the anode. We used a 2-pinhole camera to measure the source size and an energy dispersive detector to monitor the spectral content and intensity of the x-ray source. As the voltage increases, the source size is significantly reduced and line intensity is increased for the three materials. We can take advantage of the smaller source size and higher source throughput to effectively calibrate the suite of Z Pulsed Power Facility crystal spectrometers.

  11. Quantification of uncertainty in photon source spot size inference during laser-driven radiography experiments at TRIDENT

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, Benjamin John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaniyappan, Sasikumar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautier, Donald Cort [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mendez, Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burris-Mog, Trevor John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Huang, Chengkun K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hunter, James F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Espy, Michelle E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schmidt, Derek William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Ronald Owen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sefkow, Adam [Univ. of Rochester, NY (United States); Shimada, Tsutomu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Randall Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-24

    Images of the R2DTO resolution target were obtained during laser-driven-radiography experiments performed at the TRIDENT laser facility, and analysis of these images using the Bayesian Inference Engine (BIE) determines a most probable full-width half maximum (FWHM) spot size of 78 μm. However, significant uncertainty prevails due to variation in the measured detector blur. Propagating this uncertainty in detector blur through the forward model results in an interval of probabilistic ambiguity spanning approximately 35-195 μm when the laser energy impinges on a thick (1 mm) tantalum target. In other phases of the experiment, laser energy is deposited on a thin (~100 nm) aluminum target placed 250 μm ahead of the tantalum converter. When the energetic electron beam is generated in this manner, upstream from the bremsstrahlung converter, the inferred spot size shifts to a range of much larger values, approximately 270-600 μm FWHM. This report discusses methods applied to obtain these intervals as well as concepts necessary for interpreting the result within a context of probabilistic quantitative inference.

  12. Scaled Eagle Nebula Experiments on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Pound, Marc W. [Univ. of Maryland, College Park, MD (United States)

    2017-03-28

    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubble Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.

  13. Scaling of the burning efficiency for multicomponent fuel pool fires

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Farahani, Hamed Farmahini; Rangwala, Ali S.

    In order to improve the validity of small scale crude oil burning experiments, which seem to underestimate the burning efficiency obtained in larger scales, the gasification mechanism of crude oil was studied. Gasification models obtained from literature were used to make a set of predictions for...... an external heat source to simulate the larger fire size are currently in process....

  14. Finite size scaling and lattice gauge theory

    International Nuclear Information System (INIS)

    Berg, B.A.

    1986-01-01

    Finite size (Fisher) scaling is investigated for four dimensional SU(2) and SU(3) lattice gauge theories without quarks. It allows to disentangle violations of (asymptotic) scaling and finite volume corrections. Mass spectrum, string tension, deconfinement temperature and lattice β-function are considered. For appropriate volumes, Monte Carlo investigations seem to be able to control the finite volume continuum limit. Contact is made with Luescher's small volume expansion and possibly also with the asymptotic large volume behavior. 41 refs., 19 figs

  15. Size structure, not metabolic scaling rules, determines fisheries reference points

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Beyer, Jan

    2015-01-01

    Impact assessments of fishing on a stock require parameterization of vital rates: growth, mortality and recruitment. For 'data-poor' stocks, vital rates may be estimated from empirical size-based relationships or from life-history invariants. However, a theoretical framework to synthesize...... these empirical relations is lacking. Here, we combine life-history invariants, metabolic scaling and size-spectrum theory to develop a general size- and trait-based theory for demography and recruitment of exploited fish stocks. Important concepts are physiological or metabolic scaled mortalities and flux...... is that larger species have a higher egg production per recruit than small species. This means that density dependence is stronger for large than for small species and has the consequence that fisheries reference points that incorporate recruitment do not obey metabolic scaling rules. This result implies...

  16. Development and psychometric evaluation of the breast size satisfaction scale.

    Science.gov (United States)

    Pahlevan Sharif, Saeed

    2017-10-09

    Purpose The purpose of this paper is to develop and evaluate psychometrically an instrument named the Breast Size Satisfaction Scale (BSSS) to assess breast size satisfaction. Design/methodology/approach The present scale was developed using a set of 16 computer-generated 3D images of breasts to overcome some of the limitations of existing instruments. The images were presented to participants and they were asked to select the figure that most accurately depicted their actual breast size and the figure that most closely represented their ideal breast size. Breast size satisfaction was computed by subtracting the absolute value of the difference between ideal and actual perceived size from 16, such that higher values indicate greater breast size satisfaction. Findings Study 1 ( n=65 female undergraduate students) showed good test-retest reliability and study 2 ( n=1,000 Iranian women, aged 18 years and above) provided support for convergent validity using a nomological network approach. Originality/value The BSSS demonstrated good psychometric properties and thus can be used in future studies to assess breast size satisfaction among women.

  17. Full-scale and time-scale heating experiments at Stripa: preliminary results

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Hood, Michael; California Univ., Berkeley

    1978-01-01

    Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground

  18. Deconfinement phase transition and finite-size scaling in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Mogilevskij, O.A.

    1988-01-01

    Calculation technique for deconfinement phase transition parameters based on application of finite-size scaling theory is suggested. The essence of the technique lies in plotting of universal scaling function on the basis of numerical data obtained at different-size final lattices and discrimination of phase transition parameters for infinite lattice system. Finite-size scaling technique was developed as applied to spin system theory. β critical index for Polyakov loop and SU(2) deconfinement temperature of lattice gauge theory are calculated on the basis of finite-size scaling technique. The obtained value agrees with critical index of magnetization in Ising three-dimensional model

  19. Finite-size scaling a collection of reprints

    CERN Document Server

    1988-01-01

    Over the past few years, finite-size scaling has become an increasingly important tool in studies of critical systems. This is partly due to an increased understanding of finite-size effects by analytical means, and partly due to our ability to treat larger systems with large computers. The aim of this volume was to collect those papers which have been important for this progress and which illustrate novel applications of the method. The emphasis has been placed on relatively recent developments, including the use of the &egr;-expansion and of conformal methods.

  20. A general model for the scaling of offspring size and adult size.

    Science.gov (United States)

    Falster, Daniel S; Moles, Angela T; Westoby, Mark

    2008-09-01

    Understanding evolutionary coordination among different life-history traits is a key challenge for ecology and evolution. Here we develop a general quantitative model predicting how offspring size should scale with adult size by combining a simple model for life-history evolution with a frequency-dependent survivorship model. The key innovation is that larger offspring are afforded three different advantages during ontogeny: higher survivorship per time, a shortened juvenile phase, and advantage during size-competitive growth. In this model, it turns out that size-asymmetric advantage during competition is the factor driving evolution toward larger offspring sizes. For simplified and limiting cases, the model is shown to produce the same predictions as the previously existing theory on which it is founded. The explicit treatment of different survival advantages has biologically important new effects, mainly through an interaction between total maternal investment in reproduction and the duration of competitive growth. This goes on to explain alternative allometries between log offspring size and log adult size, as observed in mammals (slope = 0.95) and plants (slope = 0.54). Further, it suggests how these differences relate quantitatively to specific biological processes during recruitment. In these ways, the model generalizes across previous theory and provides explanations for some differences between major taxa.

  1. Source of finance, growth and firm size: Evidence from China

    OpenAIRE

    Du, Jun; Girma, Sourafel

    2009-01-01

    Using a comprehensive firm-level dataset spanning the period 1998-2005, this paper provides a thorough investigation of the relationship between firm size, total factor productivity growth and financial structure in China, controlling for the endogeneity of the latter. Generally, it finds financing source matters for firms of different size, and the extent to which financing source matters for firm growth is greater for small firms than big firms. Self-raised finance appears to be most effect...

  2. Finite size scaling and spectral density studies

    International Nuclear Information System (INIS)

    Berg, B.A.

    1991-01-01

    Finite size scaling (FSS) and spectral density (SD) studies are reported for the deconfining phase transition. This talk concentrates on Monte Carlo (MC) results for pure SU(3) gauge theory, obtained in collaboration with Alves and Sanielevici, but the methods are expected to be useful for full QCD as well. (orig.)

  3. Validating Bayesian truth serum in large-scale online human experiments

    OpenAIRE

    Pickard, Galen; Frank, Morgan Ryan; Cebrian, Manuel; Rahwan, Iyad

    2016-01-01

    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Bayesian truth serum (BTS) is an exciting new method for improving honesty and information quality in multiple-choice survey, but, despite the method's mathematical reliance on large sample sizes, existing literature about BTS only focuses on small experiments....

  4. Estimating Most Productive Scale Size in Data Envelopment Analysis with Integer Value Data

    Science.gov (United States)

    Dwi Sari, Yunita; Angria S, Layla; Efendi, Syahril; Zarlis, Muhammad

    2018-01-01

    The most productive scale size (MPSS) is a measurement that states how resources should be organized and utilized to achieve optimal results. The most productive scale size (MPSS) can be used as a benchmark for the success of an industry or company in producing goods or services. To estimate the most productive scale size (MPSS), each decision making unit (DMU) should pay attention the level of input-output efficiency, by data envelopment analysis (DEA) method decision making unit (DMU) can identify units used as references that can help to find the cause and solution from inefficiencies can optimize productivity that main advantage in managerial applications. Therefore, data envelopment analysis (DEA) is chosen to estimating most productive scale size (MPSS) that will focus on the input of integer value data with the CCR model and the BCC model. The purpose of this research is to find the best solution for estimating most productive scale size (MPSS) with input of integer value data in data envelopment analysis (DEA) method.

  5. Evolution in linear sizes and the Faraday effects in radio sources

    International Nuclear Information System (INIS)

    Anene, G.; Ugwoke, A.C.

    2001-05-01

    It is still a matter of conjecture whether the observed depolarization in radio sources originate from an external Faraday screen lying in our line of sight, or is largely due to internal processes occurring within these sources. This paper argues for an external origin. By applying recent evidences from the evolution of linear sizes while allowing for selection effects, it is shown that the density parameters within radio sources do not depend on redshift, implying that the observed depolarizations is epoch independent and may therefore, be largely external in origin. We also show that the observed low correlation between λ 1/2 and linear size(D) cannot be improved much even when allowance is made for evolution in D. (author)

  6. Scaling of cratering experiments: an analytical and heuristic approach to the phenomenology

    International Nuclear Information System (INIS)

    Killian, B.G.; Germain, L.S.

    1977-01-01

    The phenomenology of cratering can be thought of as consisting of two phases. The first phase, where the effects of gravity are negligible, consists of the energy source dynamically imparting its energy to the surroundings, rock and air. As illustrated in this paper, the first phase can be scaled if: radiation effects are negligible, experiments are conducted in the same rock material, time and distance use the same scaling factor, and distances scale as the cube root of the energy. The second phase of cratering consists of the rock, with its already developed velocity field, being thrown out. It is governed by the ballistics equation, and gravity is of primary importance. This second phase of cratering is examined heuristically by examples of the ballistics equation which illustrate the basic phenomena in crater formation. When gravity becomes significant, in addition to the conditions for scaling imposed in the first phase, distances must scale inversely as the ratio of gravities. A qualitative relationship for crater radius is derived and compared with calculations and experimental data over a wide range of energy sources and gravities

  7. Aging, source memory, and the experience of "remembering".

    Science.gov (United States)

    Kuhlmann, Beatrice G; Boywitt, C Dennis

    2016-07-01

    In a previous study, we found source memory for perceptual features to differentiate between younger but not older adults' reports of recollective ("remember"; R) and "know" (K) experiences. In two experiments with younger (17-30 years) and older (64-81 years) participants, we examined whether memory for meaningful speaker sources would accompany older adults' recollective experience. Indeed, memory for male and female speakers (but not partial memory for gender; Experiment 1) as well as bound memory for speakers and their facial expressions (Experiment 2) distinguished between both younger and older adults' RK reports. Thus, memory for some sources forms a common basis for younger and older adults' retrieval experience. Nonetheless, older adults still showed lower objective source memory and lower subjective source-attribution confidence than younger adults when reporting recollective experiences, suggesting that source memory is less relevant to their retrieval experience than for younger adults.

  8. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    Science.gov (United States)

    Dednam, W.; Botha, A. E.

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  9. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    International Nuclear Information System (INIS)

    Dednam, W; Botha, A E

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  10. Development of the Sources of Spirituality Scale.

    Science.gov (United States)

    Davis, Don E; Rice, Kenneth; Hook, Joshua N; Van Tongeren, Daryl R; DeBlaere, Cirleen; Choe, Elise; Worthington, Everett L

    2015-07-01

    Most measures of spirituality privilege religious spirituality, but people may experience spirituality in a variety of ways, including a sense of closeness, oneness, or connection with a theistic being, the transcendent (i.e., something outside space and time), oneself, humanity, or nature. The overall purpose of the present 4 studies was to develop the Sources of Spirituality (SOS) Scale to measure these different elements of spirituality. In Study 1, we created items, had them reviewed by experts, and used data from a sample of undergraduates (N = 218) to evaluate factor structure and inform initial measurement revisions. The factor structure replicated well in another sample of undergraduates (N = 200; Study 2), and in a sample of community adults (N = 140; Study 3). In a sample of undergraduates (N = 200; Study 4), we then evaluated evidence of construct validity by examining associations between SOS Scale scores and religious commitment, positive attitudes toward the Sacred, and dispositional connection with nature. Moreover, based on latent profile analyses results, we found 5 distinct patterns of spirituality based on SOS subscales. We consider implications for therapy and relevance of the findings for models of spirituality and future research. (c) 2015 APA, all rights reserved).

  11. Size-scaling of tensile failure stress in boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Kirkland, Timothy Philip [ORNL; Strong, Kevin T [ORNL; Jadaan, Osama M. [University of Wisconsin, Platteville; Thompson, G. A. [U.S. Army Dental and Trauma Research Detachment, Greak Lakes

    2010-01-01

    Weibull strength-size-scaling in a rotary-ground, hot-pressed boron carbide is described when strength test coupons sampled effective areas from the very small (~ 0.001 square millimeters) to the very large (~ 40,000 square millimeters). Equibiaxial flexure and Hertzian testing were used for the strength testing. Characteristic strengths for several different specimen geometries are analyzed as a function of effective area. Characteristic strength was found to substantially increase with decreased effective area, and exhibited a bilinear relationship. Machining damage limited strength as measured with equibiaxial flexure testing for effective areas greater than ~ 1 mm2 and microstructural-scale flaws limited strength for effective areas less than 0.1 mm2 for the Hertzian testing. The selections of a ceramic strength to account for ballistically-induced tile deflection and to account for expanding cavity modeling are considered in context with the measured strength-size-scaling.

  12. Size-density scaling in protists and the links between consumer-resource interaction parameters.

    Science.gov (United States)

    DeLong, John P; Vasseur, David A

    2012-11-01

    Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are

  13. Particle size reduction in debris flows: Laboratory experiments compared with field data from Inyo Creek, California

    Science.gov (United States)

    Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.

    2014-12-01

    Rock particles in debris flows are reduced in size through abrasion and fracture. Wear of coarse sediments results in production of finer particles, which alter the bulk material rheology and influence flow dynamics and runout distance. Particle wear also affects the size distribution of coarse particles, transforming the initial sediment size distribution produced on hillslopes into that delivered to the fluvial channel network. A better understanding of the controls on particle wear in debris flows would aid in the inferring flow conditions from debris flow deposits, in estimating the initial size of sediments entrained in the flow, and in modeling debris flow dynamics and mapping hazards. The rate of particle size reduction with distance traveled should depend on the intensity of particle interactions with other particles and the flow boundary, and on rock resistance to wear. We seek a geomorphic transport law to predict rate of particle wear with debris flow travel distance as a function of particle size distribution, flow depth, channel slope, fluid composition and rock strength. Here we use four rotating drums to create laboratory debris flows across a range of scales. Drum diameters range from 0.2 to 4.0 m, with the largest drum able to accommodate up to 2 Mg of material, including boulders. Each drum has vanes along the boundary to prevent sliding. Initial experiments use angular clasts of durable granodiorite; later experiments will use less resistant rock types. Shear rate is varied by changing drum rotational velocity. We begin experiments with well-sorted coarse particle size distributions, which are allowed to evolve through particle wear. The fluid is initially clear water, which rapidly acquires fine-grained wear products. After each travel increment all coarse particles (mass > 0.4 g) are weighed individually. We quantify particle wear rates using statistics of size and mass distributions, and by fitting various comminution functions to the data

  14. Effects of chlorpyrifos on soil carboxylesterase activity at an aggregate-size scale.

    Science.gov (United States)

    Sanchez-Hernandez, Juan C; Sandoval, Marco

    2017-08-01

    The impact of pesticides on extracellular enzyme activity has been mostly studied on the bulk soil scale, and our understanding of the impact on an aggregate-size scale remains limited. Because microbial processes, and their extracellular enzyme production, are dependent on the size of soil aggregates, we hypothesized that the effect of pesticides on enzyme activities is aggregate-size specific. We performed three experiments using an Andisol to test the interaction between carboxylesterase (CbE) activity and the organophosphorus (OP) chlorpyrifos. First, we compared esterase activity among aggregates of different size spiked with chlorpyrifos (10mgkg -1 wet soil). Next, we examined the inhibition of CbE activity by chlorpyrifos and its metabolite chlorpyrifos-oxon in vitro to explore the aggregate size-dependent affinity of the pesticides for the active site of the enzyme. Lastly, we assessed the capability of CbEs to alleviate chlorpyrifos toxicity upon soil microorganisms. Our principal findings were: 1) CbE activity was significantly inhibited (30-67% of controls) in the microaggregates (1.0mm) compared with the corresponding controls (i.e., pesticide-free aggregates), 2) chlorpyrifos-oxon was a more potent CbE inhibitor than chlorpyrifos; however, no significant differences in the CbE inhibition were found between micro- and macroaggregates, and 3) dose-response relationships between CbE activity and chlorpyrifos concentrations revealed the capability of the enzyme to bind chlorpyrifos-oxon, which was dependent on the time of exposure. This chemical interaction resulted in a safeguarding mechanism against chlorpyrifos-oxon toxicity on soil microbial activity, as evidenced by the unchanged activity of dehydrogenase and related extracellular enzymes in the pesticide-treated aggregates. Taken together, these results suggest that environmental risk assessments of OP-polluted soils should consider the fractionation of soil in aggregates of different size to measure

  15. The scaling of human interactions with city size.

    Science.gov (United States)

    Schläpfer, Markus; Bettencourt, Luís M A; Grauwin, Sébastian; Raschke, Mathias; Claxton, Rob; Smoreda, Zbigniew; West, Geoffrey B; Ratti, Carlo

    2014-09-06

    The size of cities is known to play a fundamental role in social and economic life. Yet, its relation to the structure of the underlying network of human interactions has not been investigated empirically in detail. In this paper, we map society-wide communication networks to the urban areas of two European countries. We show that both the total number of contacts and the total communication activity grow superlinearly with city population size, according to well-defined scaling relations and resulting from a multiplicative increase that affects most citizens. Perhaps surprisingly, however, the probability that an individual's contacts are also connected with each other remains largely unaffected. These empirical results predict a systematic and scale-invariant acceleration of interaction-based spreading phenomena as cities get bigger, which is numerically confirmed by applying epidemiological models to the studied networks. Our findings should provide a microscopic basis towards understanding the superlinear increase of different socioeconomic quantities with city size, that applies to almost all urban systems and includes, for instance, the creation of new inventions or the prevalence of certain contagious diseases. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. The utility of satellite observations for constraining fine-scale and transient methane sources

    Science.gov (United States)

    Turner, A. J.; Jacob, D.; Benmergui, J. S.; Brandman, J.; White, L.; Randles, C. A.

    2017-12-01

    Resolving differences between top-down and bottom-up emissions of methane from the oil and gas industry is difficult due, in part, to their fine-scale and often transient nature. There is considerable interest in using atmospheric observations to detect these sources. Satellite-based instruments are an attractive tool for this purpose and, more generally, for quantifying methane emissions on fine scales. A number of instruments are planned for launch in the coming years from both low earth and geostationary orbit, but the extent to which they can provide fine-scale information on sources has yet to be explored. Here we present an observation system simulation experiment (OSSE) exploring the tradeoffs between pixel resolution, measurement frequency, and instrument precision on the fine-scale information content of a space-borne instrument measuring methane. We use the WRF-STILT Lagrangian transport model to generate more than 200,000 column footprints at 1.3×1.3 km2 spatial resolution and hourly temporal resolution over the Barnett Shale in Texas. We sub-sample these footprints to match the observing characteristics of the planned TROPOMI and GeoCARB instruments as well as different hypothetical observing configurations. The information content of the various observing systems is evaluated using the Fisher information matrix and its singular values. We draw conclusions on the capabilities of the planned satellite instruments and how these capabilities could be improved for fine-scale source detection.

  17. Home brew technetium : clinical scale desktop plasma fusion neutron source to produce Tc99m as an alternative to industrial scale fission reactor sources

    International Nuclear Information System (INIS)

    Bosi, S.G.; Khachan, J.; Oborn, B.M.

    2011-01-01

    Full text: Tc-99m (decay product of Mo-99) accounts for ∼ 90% of world's production of radiopharmaceuticals. Recent unexpected shutdowns of two fission reactors and routine maintenance closures .e created a global shortage of Tc-99m, hence the large global effort to find alternative sources. This project aims to design and produce a novel prototype Mo-99/Tc-99m source. An operational desktop neutron source is available at the University of Sydney, employing a deuterium fusion-plasma to create 2.45 MeV neutrons. These neutrons will be used to activate Mo-98 thin an activation vessel. In one embodiment, the activation vessel contains an aqueous slurry or gel containing Mo-98 which converts to 0-99 upon activation. The decay product Tc-99m could then be milked, similar to existing Tc-99m generators. Monte Carlo will be :ed to assess yield versus size and geometry for various vessel designs. The neutron source filled with deuterium operating at 250 W, produces 3 x 106 neutrons continuously. The neutron flux can be increased ∼ 100-fold if the fill gas is 50% tritium and by another ∼ 100-1000-fold by increasing the power. This is being designed for local use, perhaps on the scale f one or a few hospitals, so the yield would not need to be industrial ;ale as with fission reactor sources. This device is low cost <$300 K) compared with cyclotrons and fission reactors.

  18. Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Kamili, K.; Merkel, M.; Müller, T.; Wiedensohler, A.; Eckhardt, S.; Stohl, A.; Sarda-Estève, R.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J. C.

    2012-02-01

    An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150-1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65-0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data

  19. Intriguing centrality dependence of the Au-Au source size at the AGS

    International Nuclear Information System (INIS)

    Baker, M.D.

    1996-01-01

    One of the main goals of high energy heavy ion physics is to establish the existence of a deconfined phase of nuclear matter--the quark-gluon plasma--at high temperatures or densities. One possible signature of such a phase transition, especially if it were first order, would be a larger source size or lifetime than a similar hadronic system. At current AGS energies, we attempt to form a quark- gluon plasma by achieving a high baryon density for a period of time in the center of the collision region. For a given density threshold, the size of this high density region should be a strong function of the impact parameter: the more central the event, the larger the high density region. Therefore, one possible signature of a quark-gluon plasma would be a sudden change in system lifetime or size as a function of the centrality of the collision. In this talk we present an intriguing effect which was not predicted for simple hadronic systems: a rapid increase of the HBT-measured source radius parameter for pion pairs with increasing centrality for Au-Au collisions at a beam momentum of 11.45 A GeV/c on a fixed target. Experience has shown, however, that we must be cautious in our interpretation. A complete understanding of the collision dynamics at a given energy must be built up from several measurements and new, but conventional, hadronic explanations must be considered for such unexpected effects. More study is needed, therefore, before any strong conclusions can be reached

  20. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    Science.gov (United States)

    Tian, S. L.; Pan, Y. P.; Wang, Y. S.

    2015-03-01

    More size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood, but this information remains unavailable in most regions of China due to a paucity of measurement data. In this study, we report a one-year observation of various chemical species in size-segregated particle samples collected in urban Beijing, a mega city that experiences severe haze episodes. In addition to fine particles, the measured particle size distributions showed high concentrations of coarse particles during the haze periods. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contribution of the organic matter to the mass decreased from 37.9 to 33.1%, whereas the total contribution of SO42-, NO3- and NH4+ increased from 19.1 to 32.3% on non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peaks in the size distributions of organic carbon, SO42-, NO3-, NH4+, Cl-, K+ and Cu shifted from 0.43-0.65 μm on non-haze days to 0.65-1.1 μm on haze days. Although the size distributions are similar for the heavy metals Pb, Cd and Tl during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We found that NH4+ with a size range of 0.43-0.65 μm, SO42- and NO3- with a size range of 0.65-1.1 μm and Ca2+ with a size range of 5.8-9 μm as well as the meteorological factors of relative humidity and wind speed were responsible for the haze pollution when the visibility was less than 15 km. Source apportionment using positive matrix factorization identified six common sources: secondary inorganic aerosols (26.1% for fine particles vs. 9.5% for coarse particles), coal combustion (19 vs. 23.6%), primary emissions from vehicles (5.9 vs. 8.0%), biomass burning (8.5 vs. 2

  1. Trap-size scaling in confined-particle systems at quantum transitions

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore

    2010-01-01

    We develop a trap-size scaling theory for trapped particle systems at quantum transitions. As a theoretical laboratory, we consider a quantum XY chain in an external transverse field acting as a trap for the spinless fermions of its quadratic Hamiltonian representation. We discuss trap-size scaling at the Mott insulator to superfluid transition in the Bose-Hubbard model. We present exact and accurate numerical results for the XY chain and for the low-density Mott transition in the hard-core limit of the one-dimensional Bose-Hubbard model. Our results are relevant for systems of cold atomic gases in optical lattices.

  2. Percolation through voids around overlapping spheres: A dynamically based finite-size scaling analysis

    Science.gov (United States)

    Priour, D. J.

    2014-01-01

    The percolation threshold for flow or conduction through voids surrounding randomly placed spheres is calculated. With large-scale Monte Carlo simulations, we give a rigorous continuum treatment to the geometry of the impenetrable spheres and the spaces between them. To properly exploit finite-size scaling, we examine multiple systems of differing sizes, with suitable averaging over disorder, and extrapolate to the thermodynamic limit. An order parameter based on the statistical sampling of stochastically driven dynamical excursions and amenable to finite-size scaling analysis is defined, calculated for various system sizes, and used to determine the critical volume fraction ϕc=0.0317±0.0004 and the correlation length exponent ν =0.92±0.05.

  3. Experience with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Krinsky, S.

    1987-01-01

    The development of synchrotron radiation sources is discussed, emphasizing characteristics important for x-ray microscopy. Bending magnets, wigglers and undulators are considered as sources of radiation. Operating experience at the national Synchrotron Light Source on the VUV and XRAY storage rings is reviewed, with particular consideration given to achieved current and lifetime, transverse bunch dimensions, and orbit stability. 6 refs., 3 figs

  4. Manufacturing of the full size prototype of the ion source for the ITER neutral beam injector – The SPIDER beam source

    Energy Technology Data Exchange (ETDEWEB)

    Pavei, Mauro, E-mail: mauro.pavei@igi.cnr.it [Consorzio RFX, C.so Stati Uniti 4, I-35127, Padova (Italy); Boilson, Deirdre [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Bonicelli, Tullio [Fusion for Energy, C/Joseph Pla 2, 08019 Barcelona (Spain); Boury, Jacques [Thales Electron Devices, Velizy Villacoublay (France); Bush, Michael [Galvano-T GmbH, T, Raiffeisenstraße 8, 51570 Windeck (Germany); Ceracchi, Andrea; Faso, Diego [CECOM S.r.l., Via Tiburtina – Guidonia Montecelio, Roma (Italy); Graceffa, Joseph [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Heinemann, Bernd [Max-Planck-Institut für Plasmaphysik, D-85740 Garching (Germany); Hemsworth, Ronald [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Lievin, Christophe [Thales Electron Devices, Velizy Villacoublay (France); Marcuzzi, Diego [Consorzio RFX, C.so Stati Uniti 4, I-35127, Padova (Italy); Masiello, Antonio [Fusion for Energy, C/Joseph Pla 2, 08019 Barcelona (Spain); Sczepaniak, Bernd [Galvano-T GmbH, T, Raiffeisenstraße 8, 51570 Windeck (Germany); Singh, Mahendrajit [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Toigo, Vanni; Zaccaria, Pierluigi [Consorzio RFX, C.so Stati Uniti 4, I-35127, Padova (Italy)

    2015-10-15

    Highlights: • Negative ion sources are key components of neutral beam injectors for nuclear fusion. • The SPIDER experiment aims to optimize the negative ion source of MITICA and HNB. • The SPIDER Beam Source manufacturing is currently on-going. • Manufacturing and assembling technological issues encountered are presented. - Abstract: In ITER, each heating neutral beam injector (HNB) will deliver about 16.5 MW heating power by accelerating a 40 A deuterium negative ion beam up to the energy of 1 MeV. The ions are generated inside a caesiated negative ion source, where the injected H{sub 2}/D{sub 2} is ionized by a radio frequency electromagnetic field. The SPIDER test bed, currently being manufactured, is going to be the ion source test facility for the full size ion source of the HNBs and of the diagnostic neutral beam injector of ITER. The SPIDER beam source comprises an ion source with 8 radio-frequency drivers and a three-grid system, providing an overall acceleration up to energies of about 100 keV [1]. SPIDER represents a substantial step forward between the half ITER size ion source, which is currently being tested at the ELISE test bed in IPP-Garching, and the negative ion sources to be used on ITER, in terms of layout, dimensions and operating parameters. The SPIDER beam source will be housed inside a vacuum vessel which will be equipped with a beam dump and a graphite diagnostic calorimeter. The manufacturing design of the main parts of the SPIDER beam source has been completed and many of the tests on the prototypes have been successfully passed. The most complex parts, from the manufacturing point of view, of the ion source and the accelerator, developed by galvanic deposition of copper are being manufactured. The manufacturing phase will be completed within 2015, when the assembly of the device will start at the PRIMA site, in Padova (I). The paper describes the status of the procurement, the adaptations operated on the design of the beam

  5. Large Scale Experiments on Spacecraft Fire Safety

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  6. Comparison of residual NAPL source removal techniques in 3D metric scale experiments

    Science.gov (United States)

    Atteia, O.; Jousse, F.; Cohen, G.; Höhener, P.

    2017-07-01

    This study compared four treatment techniques for the removal of a toluene/n-decane as NAPL (Non Aqueous Phase Liquid) phase mixture in identical 1 cubic meter tanks filled with different kind of sand. These four treatment techniques were: oxidation with persulfate, surfactant washing with Tween80®, sparging with air followed by ozone, and thermal treatment at 80 °C. The sources were made with three lenses of 26 × 26 × 6.5 cm, one having a hydraulic conductivity similar to the whole tank and the two others a value 10 times smaller. The four techniques were studied after conditioning the tanks with tap water during approximately 80 days. The persulfate treatment tests showed average removal of the contaminants but significant flux decrease if density effects are considered. Surfactant flushing did not show a highly significant increase of the flux of toluene but allowed an increased removal rate that could lead to an almost complete removal with longer treatment time. Sparging removed a significant amount but suggests that air was passing through localized gas channels and that the removal was stagnating after removing half of the contamination. Thermal treatment reached 100% removal after the target temperature of 80 °C was kept during more than 10 d. The experiments emphasized the generation of a high-spatial heterogeneity in NAPL content. For all the treatments the overall removal was similar for both n-decane and toluene, suggesting that toluene was removed rapidly and n-decane more slowly in some zones, while no removal existed in other zones. The oxidation and surfactant results were also analyzed for the relation between contaminant fluxes at the outlet and mass removal. For the first time, this approach clearly allowed the differentiation of the treatments. As a conclusion, experiments showed that the most important differences between the tested treatment techniques were not the global mass removal rates but the time required to reach 99% decrease in

  7. The neural processing of musical instrument size information in the brain investigated by magnetoencephalography

    Science.gov (United States)

    Rupp, Andre; van Dinther, Ralph; Patterson, Roy D.

    2005-04-01

    The specific cortical representation of size was investigated by recording auditory evoked fields (AEFs) elicited by changes of instrument size and pitch. In Experiment 1, a French horn and one scaled to double the size played a three note melody around F3 or its octave, F4. Many copies of these four melodies were played in random order and the AEF was measured continuously. A similar procedure was applied to saxophone sounds in a separate run. In Experiment 2, the size and type of instrument (French horn and saxophone) were varied without changing the octave. AEFs were recorded in five subjects using magnetoencephalography and evaluated by spatio-temporal source analysis with one equivalent dipole in each hemisphere. The morphology of the source waveforms revealed that each note within the melody elicits a well-defined P1-N1-P2 AEF-complex with adaptation for the 2nd and 3rd note. At the transition of size, pitch, or both, a larger AEF-complex was evoked. However, size changes elicited a stronger N1 than pitch changes. Furthermore, this size-related N1 enhancement was larger for French horn than saxophone. The results indicate that the N1 plays an important role in the specific representation of instrument size.

  8. Effective source size as related to 252Cf neutron radiography

    International Nuclear Information System (INIS)

    Wada, Nobuo; Enomoto, Shigemasa; Tachikawa, Noboru; Nojiri, Toshiaki.

    1977-01-01

    The effective source size in 252 Cf thermal neutron radiography, relating to its geometrical unsharpness in image formation, is experimentally studied. A neutron radiographic system consists of a 160 μg 252 Cf neutron source, water moderator and divergent cadmium lined collimator. Thermal neutron image detection is performed with using a LiF scintillator and a high speed X-ray film to employ direct exposure method. The modulation transfer function, used for describing image quality, is derived from radiographic image corresponding to a cadmium plate with sharp edge. The modulation transfer function for the system is expressed by the product of the function for both geometrical and inherent unsharpness, and allows isolation of geometrical unsharpness as related to the effective size of the thermal neutron source. It is found to be 80 -- 90% of the collimator inlet diameter. (auth.)

  9. Measuring experience of hospitality : scale development and validation

    NARCIS (Netherlands)

    Pijls-Hoekstra, Ruth; Groen, Brenda H.; Galetzka, Mirjam; Pruyn, Adriaan T.H.

    This paper describes the development of the Experience of Hospitality Scale (EH-Scale) for assessing hospitality in service environments from a guest point of view. In contrast to other scales, which focus specifically on staff behaviour, the present scale focuses on the experience of hospitality

  10. DESIGN OF LABORATORY EXPERIMENTS TO STUDY PHOTOIONIZATION FRONTS DRIVEN BY THERMAL SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Drake, R. P.; Keiter, P. A.; Davis, J. S.; Patterson, C. R [Climate and Space Science, University of Michigan, Ann Arbor, MI 48109 (United States); Hazak, G. [Physics Department, Nuclear Research Center-Negev (Israel); Frank, A.; Blackman, E. G. [Physics and Astronomy, University of Rochester, Rochester, NY 14611 (United States); Busquet, Michel, E-mail: rpdrake@umich.edu [ARTEP Incorporated, Ellicot City, MD 21042 (United States)

    2016-12-20

    This paper analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an X-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a source temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.

  11. DESIGN OF LABORATORY EXPERIMENTS TO STUDY PHOTOIONIZATION FRONTS DRIVEN BY THERMAL SOURCES

    International Nuclear Information System (INIS)

    Drake, R. P.; Keiter, P. A.; Davis, J. S.; Patterson, C. R; Hazak, G.; Frank, A.; Blackman, E. G.; Busquet, Michel

    2016-01-01

    This paper analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an X-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a source temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.

  12. Does water transport scale universally with tree size?

    Science.gov (United States)

    F.C. Meinzer; B.J. Bond; J.M. Warren; D.R. Woodruff

    2005-01-01

    1. We employed standardized measurement techniques and protocols to describe the size dependence of whole-tree water use and cross-sectional area of conducting xylem (sapwood) among several species of angiosperms and conifers. 2. The results were not inconsistent with previously proposed 314-power scaling of water transport with estimated above-...

  13. Postaccident heat removal: large-scale molten-fuel-sodium interaction experiments

    International Nuclear Information System (INIS)

    Johnson, T.R.; Pavlik, J.R.; Baker, L. Jr.

    1975-02-01

    Kilogram-scale interactions between molten UO 2 and sodium were performed in an unrestrained geometry to study the resulting energetics and fragmentation. The molten UO 2 was producted by the exothrmic reaction between uranium and MoO 3 powders. Under the conditions of the experiments completed to date, the short-rise-time pressure pulses created in the liquid phase had negligible work potential, and their magnitude did not increase with the amount of molten fuel. No significant gas-phase shock pressures were generated. The largest potential for mechanical work was the sodium vapor generated over a period of roughly 1 sec. About 20 percent of the heat was effective in generating vapor. The ex- perimental results show a marked tendency of molten UO 2 to form particulate after passage through only a few inches of sodium. Particle size distributions obtained under the conditions of the experiments were not significantly different from those obtained in prior small-scale tests and in TREAT tests. Also, the results indicate that the metallic component of the molten mixture formed larger particles than the oxide component. (U.S.)

  14. On the relationships between electron spot size, focal spot size, and virtual source position in Monte Carlo simulations

    International Nuclear Information System (INIS)

    Sterpin, E.; Chen, Y.; Lu, W.; Mackie, T. R.; Olivera, G. H.; Vynckier, S.

    2011-01-01

    Purpose: Every year, new radiotherapy techniques including stereotactic radiosurgery using linear accelerators give rise to new applications of Monte Carlo (MC) modeling. Accurate modeling requires knowing the size of the electron spot, one of the few parameters to tune in MC models. The resolution of integrated megavoltage imaging systems, such as the tomotherapy system, strongly depends on the photon spot size which is closely related to the electron spot. The aim of this article is to clarify the relationship between the electron spot size and the photon spot size (i.e., the focal spot size) for typical incident electron beam energies and target thicknesses. Methods: Three electron energies (3, 5.5, and 18 MeV), four electron spot sizes (FWHM=0, 0.5, 1, and 1.5 mm), and two tungsten target thicknesses (0.15 and 1 cm) were considered. The formation of the photon beam within the target was analyzed through electron energy deposition with depth, as well as photon production at several phase-space planes placed perpendicular to the beam axis, where only photons recorded for the first time were accounted for. Photon production was considered for ''newborn'' photons intersecting a 45x45 cm 2 plane at the isocenter (85 cm from source). Finally, virtual source position and ''effective'' focal spot size were computed by backprojecting all the photons from the bottom of the target intersecting a 45x45 cm 2 plane. The virtual source position and focal spot size were estimated at the plane position where the latter is minimal. Results: In the relevant case of considering only photons intersecting the 45x45 cm 2 plane, the results unambiguously showed that the effective photon spot is created within the first 0.25 mm of the target and that electron and focal spots may be assumed to be equal within 3-4%. Conclusions: In a good approximation photon spot size equals electron spot size for high energy X-ray treatments delivered by linear accelerators.

  15. An Open-Source, Low-Cost Robot for Performing Reactive Liquid Handling Experiments

    DEFF Research Database (Denmark)

    Nejatimoharrami, Farzad; Faina, Andres; Støy, Kasper

    vessels in the middle, and 3) a camera as the sensing system at the bottom, providing a view of the experiment. From the raw camera image experiment specific data such as droplet size, position, speed, number, color, and shape are calculated. The computer vision system has an accuracy of 4% for droplet......Bot's application domain is extendable owing to a modular design of hardware, and open source software. Evobot's modular design enables support for different modules, e.g. syringe modules for liquid handling, grippers to reposition reaction vessels or dispose of them, sensor modules including temperature, pH, etc...

  16. Finite-size scaling of survival probability in branching processes

    OpenAIRE

    Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Alvaro

    2014-01-01

    Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We reveal the finite-size scaling law of the survival probability for a given branching process ruled by a probability distribution of the number of offspring per element whose standard deviation is finite, obtaining the exact scaling function as well as the critical exponents. Our findings prove the universal behavi...

  17. Earthquake source scaling and self-similarity estimation from stacking P and S spectra

    Science.gov (United States)

    Prieto, GermáN. A.; Shearer, Peter M.; Vernon, Frank L.; Kilb, Debi

    2004-08-01

    We study the scaling relationships of source parameters and the self-similarity of earthquake spectra by analyzing a cluster of over 400 small earthquakes (ML = 0.5 to 3.4) recorded by the Anza seismic network in southern California. We compute P, S, and preevent noise spectra from each seismogram using a multitaper technique and approximate source and receiver terms by iteratively stacking the spectra. To estimate scaling relationships, we average the spectra in size bins based on their relative moment. We correct for attenuation by using the smallest moment bin as an empirical Green's function (EGF) for the stacked spectra in the larger moment bins. The shapes of the log spectra agree within their estimated uncertainties after shifting along the ω-3 line expected for self-similarity of the source spectra. We also estimate corner frequencies and radiated energy from the relative source spectra using a simple source model. The ratio between radiated seismic energy and seismic moment (proportional to apparent stress) is nearly constant with increasing moment over the magnitude range of our EGF-corrected data (ML = 1.8 to 3.4). Corner frequencies vary inversely as the cube root of moment, as expected from the observed self-similarity in the spectra. The ratio between P and S corner frequencies is observed to be 1.6 ± 0.2. We obtain values for absolute moment and energy by calibrating our results to local magnitudes for these earthquakes. This yields a S to P energy ratio of 9 ± 1.5 and a value of apparent stress of about 1 MPa.

  18. A tunable, linac based, intense, broad-band THz source forpump-probe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schmerge, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Adolphsen, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corbett, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Durr, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fazio, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fisher, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Frisch, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gaffney, K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Guehr, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hettel, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hoffmann, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hogan, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kirchmann, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Limborg, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lindenberg, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Loos, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Maxwell, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nilsson, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Raubenheimer, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Reis, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ross, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Z. -X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stupakov, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tian, K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Xiang, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yakimenko, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-02

    We propose an intense THz source with tunable frequency and bandwidth that can directly interact with the degrees of freedom that determine the properties of materials and thus provides a new tool for controlling and directing these ultrafast processes as well as aiding synthesis of new materials with new functional properties. This THz source will broadly impact our understanding of dynamical processes in matter at the atomic-scale and in real time. Established optical pumping schemes using femtosecond visible frequency laser pulses for excitation are extended into the THz frequency regime thereby enabling resonant excitation of bonds in correlated solid state materials (phonon pumping), to drive low energy electronic excitations, to trigger surface chemistry reactions, and to all-optically bias a material with ultrashort electric fields or magnetic fields. A linac-based THz source can supply stand-alone experiments with peak intensities two orders of magnitude stronger than existing laser-based sources, but when coupled with atomic-scale sensitive femtosecond x-ray probes it opens a new frontier in ultrafast science with broad applications to correlated materials, interfacial and liquid phase chemistry, and materials in extreme conditions.

  19. Cosmogenic activation of germanium used for tonne-scale rare event search experiments

    Science.gov (United States)

    Wei, W.-Z.; Mei, D.-M.; Zhang, C.

    2017-11-01

    We report a comprehensive study of cosmogenic activation of germanium used for tonne-scale rare event search experiments. The germanium exposure to cosmic rays on the Earth's surface are simulated with and without a shielding container using Geant4 for a given cosmic muon, neutron, and proton energy spectrum. The production rates of various radioactive isotopes are obtained for different sources separately. We find that fast neutron induced interactions dominate the production rate of cosmogenic activation. Geant4-based simulation results are compared with the calculation of ACTIVIA and the available experimental data. A reasonable agreement between Geant4 simulations and several experimental data sets is presented. We predict that cosmogenic activation of germanium can set limits to the sensitivity of the next generation of tonne-scale experiments.

  20. Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2012-02-01

    Full Text Available An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150–1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS and Multi-Angle Absorption Photometer (MAAP mass concentration measurements of organic carbon (OC, inorganic ions and black carbon (BC (R2 = 0.91. Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC particles into four classes: (i EC attributed to biomass burning (ECbiomass, (ii EC attributed to traffic (ECtraffic, (iii EC internally mixed with OC and ammonium sulfate (ECOCSOx, and (iv EC internally mixed with OC and ammonium nitrate (ECOCNOx. Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65–0.68 respectively, n = 552. The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568. Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle

  1. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks.

    Science.gov (United States)

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-07-09

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.

  2. Finite-size scaling of survival probability in branching processes.

    Science.gov (United States)

    Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Álvaro

    2015-04-01

    Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G(y)=2ye(y)/(e(y)-1), with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.

  3. Observations of the auroral width spectrum at kilometre-scale size

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2010-03-01

    Full Text Available This study examines auroral colour camera data from the Canadian Dense Array Imaging SYstem (DAISY. The Dense Array consists of three imagers with different narrow (compared to all-sky view field-of-view optics. The main scientific motivation arises from an earlier study by Knudsen et al. (2001 who used All-Sky Imager (ASI combined with even earlier TV camera observations (Maggs and Davis, 1968 to suggest that there is a gap in the distribution of auroral arc widths at around 1 km. With DAISY observations we are able to show that the gap is an instrument artifact and due to limited spatial resolution and coverage of commonly used instrumentation, namely ASIs and TV cameras. If the auroral scale size spectrum is indeed continuous, the mechanisms forming these structures should be able to produce all of the different scale sizes. So far, such a single process has not been proposed in the literature and very few models are designed to interact with each other even though the range of their favourable conditions do overlap. All scale-sizes should be considered in the future studies of auroral forms and electron acceleration regions, both in observational and theoretical approaches.

  4. A small-scale modular reactor for electric source for remote places

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Use of a small-scale modular reactor (SMR) as an electric source for remote places is one of scenarios for actual use of SMR parallel to alternative source of present nuclear power stations and co-generation source at urban suburbs, there is not only an actual experience to construct and operate for power source for military use in U.S.A. on 1950s to 1960s, but also four nuclear reactors (LWGR, 12 MW) in Vilyvino Nuclear Power Station in far northern district in Russia are under operation. Recently, Department of Energy in U.S.A. prepared the 'Report to Congress on Small Modular Nuclear Reactors' evaluating on feasibility of SMR as a power source for remote places according to requirement of the Congress. This report evaluated a feasibility study on nine SMRs in the world with 10 to 50 MW of output as electric source for remote places on economical efficiency and so on, together with analysis of their design concepts, to conclude that 'they could perform beginning of operations on 2000s because of no large technical problems and keeping a level capable of competing with power generation cost at remote place on its present economical efficiency'. Here was introduced on outlines of this report. (G.K.)

  5. New generation of light sources: Present and future

    International Nuclear Information System (INIS)

    Couprie, M.E.

    2014-01-01

    Spectroscopy and imaging in the VUV–X-ray domain are very sensitive tools for the investigation of the properties of matter [1–3]. Time-resolved studies enable to follow the movies of ultra-fast reactions. More than fifty years after the laser discovery [4], VUVX light sources are actively developed around the world. Among them, high order harmonics generated in gas, X-ray lasers, synchrotron radiation, free electron lasers are providing a wide offer, from laboratory size sources to large scale facilities, with various features, suitable for different types of experiments. The properties of these sources are here reviewed. Quest of new performances and flexibility is also discussed

  6. Experiment on search for neutron-antineutron oscillations using a projected UCN source at the WWR-M reactor

    Science.gov (United States)

    Fomin, A. K.; Serebrov, A. P.; Zherebtsov, O. M.; Leonova, E. N.; Chaikovskii, M. E.

    2017-01-01

    We propose an experiment on search for neutron-antineutron oscillations based on the storage of ultracold neutrons (UCN) in a material trap. The sensitivity of the experiment mostly depends on the trap size and the amount of UCN in it. In Petersburg Nuclear Physics Institute (PNPI) a high-intensity UCN source is projected at the WWR-M reactor, which must provide UCN density 2-3 orders of magnitude higher than existing sources. The results of simulations of the designed experimental scheme show that the sensitivity can be increased by ˜ 10-40 times compared to sensitivity of previous experiment depending on the model of neutron reflection from walls.

  7. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier

    2012-01-01

    -based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame......Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due...... to the complexity, cost and risk associ-ated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground...

  8. Effects of different nitrogen sources on the biogas production - a lab-scale investigation.

    Science.gov (United States)

    Wagner, Andreas Otto; Hohlbrugger, Peter; Lins, Philipp; Illmer, Paul

    2012-12-20

    For anaerobic digestion processes nitrogen sources are poorly investigated although they are known as possible process limiting factors (in the hydrolysis phase) but also as a source for fermentations for subsequent methane production by methanogenic archaea. In the present study different complex and defined nitrogen sources were investigated in a lab-scale experiment in order to study their potential to build up methane. The outcome of the study can be summarised as follows: from complex nitrogen sources yeast extract and casamino acids showed the highest methane production with approximately 600 ml methane per mole of nitrogen, whereas by the use of skim milk no methane production could be observed. From defined nitrogen sources L-arginine showed the highest methane production with almost 1400 ml methane per mole of nitrogen. Moreover it could be demonstrated that the carbon content and therefore C/N-ratio has only minor influence for the methane production from the used substrates. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild

    Science.gov (United States)

    Broell, Franziska; Taggart, Christopher T.

    2015-01-01

    This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming ‘efficiently’, is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time) in the wild. PMID:26673777

  10. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild.

    Directory of Open Access Journals (Sweden)

    Franziska Broell

    Full Text Available This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming 'efficiently', is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40, and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time in the wild.

  11. Measuring the experience of hospitality : Scale development and validation

    NARCIS (Netherlands)

    Pijls-Hoekstra, Ruth; Groen, Brenda H.; Galetzka, Mirjam; Pruyn, Adriaan T.H.

    2017-01-01

    This paper identifies what customers experience as hospitality and subsequently presents a novel and compact assessment scale for measuring customers’ experience of hospitality at any kind of service organization. The Experience of Hospitality Scale (EH-Scale) takes a broader perspective compared to

  12. Preliminary studies of adaptation of Self- efficacy Scale for Sources of Mathematics

    Directory of Open Access Journals (Sweden)

    Ramírez Flores, Celia María

    2011-07-01

    Full Text Available In the field of educational psychologically the construct of self-efficacy has received special attention. It has been shown that those students who trust in their own abilities get better academic performance. However, few studies analyze the sources of self-efficacy. Self-efficacy believes are developed according to how people interpret information coming from four different sources: experience skills, vicarious learning, social persuasion, and physiological states. Recently, Usher & Pajares (2009 developed an instrument to assess sources of self-efficacy in Math. The goal of the present work was to evaluate psychometric properties of this scale in a local sample of adolescents from 13 to 15 years old. Preliminary results supported the use of this measure as an adequate alternative to assess self-efficacy in Math. However, more studies are needed in order to obtain a measure more contextualized to the educational system of local students.

  13. Power Scaling of Petroleum Field Sizes and Movie Box Office Earnings.

    Science.gov (United States)

    Haley, J. A.; Barton, C. C.

    2017-12-01

    The size-cumulative frequency distribution of petroleum fields has long been shown to be power scaling, Mandelbrot, 1963, and Barton and Scholz, 1995. The scaling exponents for petroleum field volumes range from 0.8 to 1.08 worldwide and are used to assess the size and number of undiscovered fields. The size-cumulative frequency distribution of movie box office earnings also exhibits a power scaling distribution for domestic, overseas, and worldwide gross box office earnings for the top 668 earning movies released between 1939 and 2016 (http://www.boxofficemojo.com/alltime/). Box office earnings were reported in the dollars-of-the-day and were converted to 2015 U.S. dollars using the U.S. consumer price index (CPI) for domestic and overseas earnings. Because overseas earnings are not reported by country and there is no single inflation index appropriate for all overseas countries. Adjusting the box office earnings using the CPI index has two effects on the power functions fit. The first is that the scaling exponent has a narrow range (2.3 - 2.5) between the three data sets; and second, the scatter of the data points fit by the power function is reduced. The scaling exponents for the adjusted value are; 2.3 for domestic box office earnings, 2.5 for overseas box office earnings, and 2.5 worldwide box office earnings. The smaller the scaling exponent the greater the proportion of all earnings is contributed by a smaller proportion of all the movies: where E = P (a-2)/(a-1) where E is the percentage of earnings, P is the percentage of all movies in the data set. The scaling exponents for box office earnings (2.3 - 2.5) means that approximately 20% of the top earning movies contribute 70-55% of all the earnings for domestic, worldwide earnings respectively.

  14. Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines

    Science.gov (United States)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2015-03-01

    Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  15. Gas explosion characterization, wave propagation (small-scale experiments)

    International Nuclear Information System (INIS)

    Larsen, G.C.

    1985-01-01

    A number of experiments have been performed with blast waves arising from the ignition of homogeneous and well defined mixtures of methane, oxygen and nitrogen, contained within spherical balloons with controlled initial dimensions. In the initial small scale experiments pressure characteristics, ground reflection phenomena and pressure distribution on box like obstacles were studied. Both configurations with one box and two closely spaced boxes have been considered, and a wave-wave interaction phenomenom was observed in the case of closely spaced obstacles. Main emphasis has been placed on the half scale field experiments. In these, the maximum flame speed has been of the order of 100 m/s, resulting in positive peak pressures of 50-100.10 2 Pa in 5 - 10 m distance from the source. The explosion process was found to be reasonable symmetric. The attenuation of the blast wave due to vegetation and the influence of obstacles as banks, walls and houses on the pressure field have been investigated. The presence of the bank and the house was felt in a zone with a length corresponding to a typical dimension of the obstacles, whereas the overall pressure field is shown to be unaffected by the type of obstacles and vegetation investigated. For the wall and house, reflection factors have been established, and some variation over the surface has been measured. The scatter of the pressure measurements is estimated for stable, neutral and unstable atmospheric conditions, and an attempt to determine the ground reflection factor has been performed. Finally the accelerations of a house exposed to the blast wave have been examined

  16. Dynamically Scaled Model Experiment of a Mooring Cable

    Directory of Open Access Journals (Sweden)

    Lars Bergdahl

    2016-01-01

    Full Text Available The dynamic response of mooring cables for marine structures is scale-dependent, and perfect dynamic similitude between full-scale prototypes and small-scale physical model tests is difficult to achieve. The best possible scaling is here sought by means of a specific set of dimensionless parameters, and the model accuracy is also evaluated by two alternative sets of dimensionless parameters. A special feature of the presented experiment is that a chain was scaled to have correct propagation celerity for longitudinal elastic waves, thus providing perfect geometrical and dynamic scaling in vacuum, which is unique. The scaling error due to incorrect Reynolds number seemed to be of minor importance. The 33 m experimental chain could then be considered a scaled 76 mm stud chain with the length 1240 m, i.e., at the length scale of 1:37.6. Due to the correct elastic scale, the physical model was able to reproduce the effect of snatch loads giving rise to tensional shock waves propagating along the cable. The results from the experiment were used to validate the newly developed cable-dynamics code, MooDy, which utilises a discontinuous Galerkin FEM formulation. The validation of MooDy proved to be successful for the presented experiments. The experimental data is made available here for validation of other numerical codes by publishing digitised time series of two of the experiments.

  17. Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization

    Science.gov (United States)

    Newman, J. P.; Dandy, G. C.; Maier, H. R.

    2014-10-01

    In many regions, conventional water supplies are unable to meet projected consumer demand. Consequently, interest has arisen in integrated urban water systems, which involve the reclamation or harvesting of alternative, localized water sources. However, this makes the planning and design of water infrastructure more difficult, as multiple objectives need to be considered, water sources need to be selected from a number of alternatives, and end uses of these sources need to be specified. In addition, the scale at which each treatment, collection, and distribution network should operate needs to be investigated. In order to deal with this complexity, a framework for planning and designing water infrastructure taking into account integrated urban water management principles is presented in this paper and applied to a rural greenfield development. Various options for water supply, and the scale at which they operate were investigated in order to determine the life-cycle trade-offs between water savings, cost, and GHG emissions as calculated from models calibrated using Australian data. The decision space includes the choice of water sources, storage tanks, treatment facilities, and pipes for water conveyance. For each water system analyzed, infrastructure components were sized using multiobjective genetic algorithms. The results indicate that local water sources are competitive in terms of cost and GHG emissions, and can reduce demand on the potable system by as much as 54%. Economies of scale in treatment dominated the diseconomies of scale in collection and distribution of water. Therefore, water systems that connect large clusters of households tend to be more cost efficient and have lower GHG emissions. In addition, water systems that recycle wastewater tended to perform better than systems that captured roof-runoff. Through these results, the framework was shown to be effective at identifying near optimal trade-offs between competing objectives, thereby enabling

  18. PhysioSpace: relating gene expression experiments from heterogeneous sources using shared physiological processes.

    Directory of Open Access Journals (Sweden)

    Michael Lenz

    Full Text Available Relating expression signatures from different sources such as cell lines, in vitro cultures from primary cells and biopsy material is an important task in drug development and translational medicine as well as for tracking of cell fate and disease progression. Especially the comparison of large scale gene expression changes to tissue or cell type specific signatures is of high interest for the tracking of cell fate in (trans- differentiation experiments and for cancer research, which increasingly focuses on shared processes and the involvement of the microenvironment. These signature relation approaches require robust statistical methods to account for the high biological heterogeneity in clinical data and must cope with small sample sizes in lab experiments and common patterns of co-expression in ubiquitous cellular processes. We describe a novel method, called PhysioSpace, to position dynamics of time series data derived from cellular differentiation and disease progression in a genome-wide expression space. The PhysioSpace is defined by a compendium of publicly available gene expression signatures representing a large set of biological phenotypes. The mapping of gene expression changes onto the PhysioSpace leads to a robust ranking of physiologically relevant signatures, as rigorously evaluated via sample-label permutations. A spherical transformation of the data improves the performance, leading to stable results even in case of small sample sizes. Using PhysioSpace with clinical cancer datasets reveals that such data exhibits large heterogeneity in the number of significant signature associations. This behavior was closely associated with the classification endpoint and cancer type under consideration, indicating shared biological functionalities in disease associated processes. Even though the time series data of cell line differentiation exhibited responses in larger clusters covering several biologically related patterns, top scoring

  19. The Relationship of Body Size and Adiposity to Source of Self-Esteem in College Women

    Science.gov (United States)

    Moncur, Breckann; Bailey, Bruce W.; Lockhart, Barbara D.; LeCheminant, James D.; Perkins, Annette E.

    2013-01-01

    Background: Studies looking at self-esteem and body size or adiposity generally demonstrate a negative relationship. However, the relationship between the source of self-esteem and body size has not been examined in college women. Purpose: The purpose of this study was to evaluate the relationship of body size and adiposity to source of…

  20. Equilibrium and off-equilibrium trap-size scaling in one-dimensional ultracold bosonic gases

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore

    2010-01-01

    We study some aspects of equilibrium and off-equilibrium quantum dynamics of dilute bosonic gases in the presence of a trapping potential. We consider systems with a fixed number of particles and study their scaling behavior with increasing the trap size. We focus on one-dimensional bosonic systems, such as gases described by the Lieb-Liniger model and its Tonks-Girardeau limit of impenetrable bosons, and gases constrained in optical lattices as described by the Bose-Hubbard model. We study their quantum (zero-temperature) behavior at equilibrium and off equilibrium during the unitary time evolution arising from changes of the trapping potential, which may be instantaneous or described by a power-law time dependence, starting from the equilibrium ground state for an initial trap size. Renormalization-group scaling arguments and analytical and numerical calculations show that the trap-size dependence of the equilibrium and off-equilibrium dynamics can be cast in the form of a trap-size scaling in the low-density regime, characterized by universal power laws of the trap size, in dilute gases with repulsive contact interactions and lattice systems described by the Bose-Hubbard model. The scaling functions corresponding to several physically interesting observables are computed. Our results are of experimental relevance for systems of cold atomic gases trapped by tunable confining potentials.

  1. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    Directory of Open Access Journals (Sweden)

    S. L. Tian

    2016-01-01

    Full Text Available Additional size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood; however, this information remains unavailable in most regions of China due to lacking measurement data. In this study, we report observations of various chemical species in size-segregated particle samples that were collected over 1 year in the urban area of Beijing, a megacity that experiences severe haze episodes. In addition to fine particles, high concentrations of coarse particles were measured during the periods of haze. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contributions of organic matter to the particle mass decreased from 37.9 to 31.2 %, and the total contribution of sulfate, nitrate and ammonium increased from 19.1 to 33.9 % between non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peak concentrations of the organic carbon, cadmium and sulfate, nitrate, ammonium, chloride and potassium shifted from 0.43 to 0.65 µm on non-haze days to 0.65–1.1 µm on haze days. Although the size distributions of lead and thallium were similar during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We observed that sulfate and ammonium, which have a size range of 0.43–0.65 µm, sulfate and nitrate, which have a size range of 0.65–1.1 µm, calcium, which has a size range of 5.8–9 µm, and the meteorological factors of relative humidity and wind speed were responsible for haze pollution when the visibility was less than 10 km. Source apportionment using Positive Matrix Factorization showed six PM2.1 sources and seven PM2.1–9 common sources: secondary inorganic aerosol (25.1 % for fine particles vs. 9.8

  2. Synchronization in scale-free networks: The role of finite-size effects

    Science.gov (United States)

    Torres, D.; Di Muro, M. A.; La Rocca, C. E.; Braunstein, L. A.

    2015-06-01

    Synchronization problems in complex networks are very often studied by researchers due to their many applications to various fields such as neurobiology, e-commerce and completion of tasks. In particular, scale-free networks with degree distribution P(k)∼ k-λ , are widely used in research since they are ubiquitous in Nature and other real systems. In this paper we focus on the surface relaxation growth model in scale-free networks with 2.5< λ <3 , and study the scaling behavior of the fluctuations, in the steady state, with the system size N. We find a novel behavior of the fluctuations characterized by a crossover between two regimes at a value of N=N* that depends on λ: a logarithmic regime, found in previous research, and a constant regime. We propose a function that describes this crossover, which is in very good agreement with the simulations. We also find that, for a system size above N* , the fluctuations decrease with λ, which means that the synchronization of the system improves as λ increases. We explain this crossover analyzing the role of the network's heterogeneity produced by the system size N and the exponent of the degree distribution.

  3. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks †

    Science.gov (United States)

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-01-01

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616

  4. A study of energy-size relationship and wear rate in a lab-scale high pressure grinding rolls unit

    Science.gov (United States)

    Rashidi Dashtbayaz, Samira

    This study is focused on two independent topics of energy-size relationship and wear-rate measurements on a lab-scale high pressure grinding rolls (HPGR). The first part of this study has been aimed to investigate the influence of the operating parameters and the feed characteristics on the particle-bed breakage using four different ore samples in a 200 mm x 100 mm lab-scale HPGR. Additionally, multistage grinding, scale-up from a lab-scale HPGR, and prediction of the particle size distributions have been studied in detail. The results obtained from energy-size relationship studies help with better understanding of the factors contributing to more energy-efficient grinding. It will be shown that the energy efficiency of the two configurations of locked-cycle and open multipass is completely dependent on the ore properties. A test procedure to produce the scale-up data is presented. The comparison of the scale-up factors between the data obtained on the University of Utah lab-scale HPGR and the industrial machine at the Newmont Boddington plant confirmed the applicability of lab-scale machines for trade-off studies. The population balance model for the simulation of product size distributions has shown to work well with the breakage function estimated through tests performed on the HPGR at high rotational speed. Selection function has been estimated by back calculation of population balance model with the help of the experimental data. This is considered to be a major step towards advancing current research on the simulation of particle size distribution by using the HPGR machine for determining the breakage function. Developing a technique/setup to measure the wear rate of the HPGR rolls' surface is the objective of the second topic of this dissertation. A mockup was initially designed to assess the application of the linear displacement sensors for measuring the rolls' weight loss. Upon the analysis of that technique and considering the corresponding sources of

  5. The mechanical design and simulation of a scaled H⁻ Penning ion source.

    Science.gov (United States)

    Rutter, T; Faircloth, D; Turner, D; Lawrie, S

    2016-02-01

    The existing ISIS Penning H(-) source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  6. The mechanical design and simulation of a scaled H- Penning ion source

    Science.gov (United States)

    Rutter, T.; Faircloth, D.; Turner, D.; Lawrie, S.

    2016-02-01

    The existing ISIS Penning H- source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  7. Contest experience and body size affect different types of contest decisions.

    Science.gov (United States)

    Chen, Yu-Ju; Hsu, Yuying

    2016-11-01

    This study examined the relative importance of contest experience and size differences to behavioral decisions over the course of contests. Using a mangrove rivulus fish, Kryptolebias marmoratus, we showed that although contest experience and size differences jointly determined contest outcomes, they affected contestants' interactions at different stages of contests. Contest experience affected behavioral decisions at earlier stages of contests, including the tendency and latency to launch attacks, the tendency to escalate contests into mutual attacks and the outcome of non-escalated contests. Once contests were escalated into mutual attacks, the degree of size difference affected the fish's persistence in escalation and chance of winning, but contest experience did not. These results support the hypothesis that contest experience modifies individuals' estimation of their fighting ability rather than their actual strength. Furthermore, (1) in contests between two naïve contestants, more than 60 % of fish that were 2-3 mm smaller than their opponent escalated the contest to physical fights, even though their larger opponents eventually won 92 % of escalated fights and (2) fish with a losing experience were very likely to retreat in the face of an opponent 2-3 mm smaller than them without escalating. The result that a 2-3 mm size advantage could not offset the influence of a losing experience on the tendency to escalate suggests that, as well as depending on body size, the fish's physical strength is influenced by other factors which require further investigation.

  8. Large-Scale Spacecraft Fire Safety Experiments in ISS Resupply Vehicles

    Science.gov (United States)

    Ruff, Gary A.; Urban, David

    2013-01-01

    Our understanding of the fire safety risk in manned spacecraft has been limited by the small scale of the testing we have been able to conduct in low-gravity. Fire growth and spread cannot be expected to scale linearly with sample size so we cannot make accurate predictions of the behavior of realistic scale fires in spacecraft based on the limited low-g testing to date. As a result, spacecraft fire safety protocols are necessarily very conservative and costly. Future crewed missions are expected to be longer in duration than previous exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this concern, a spacecraft fire safety research project is underway to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. This project is supported by the NASA Advanced Exploration Systems Program Office in the Human Exploration and Operations Mission Directorate. The activity of this project is supported by an international topical team of fire experts from other space agencies to maximize the utility of the data and to ensure the widest possible scrutiny of the concept. The large-scale space flight experiment will be conducted on three missions; each in an Orbital Sciences Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew allows the fire products to be released into the cabin. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the

  9. Control and data acquisition of the ITER full-scale ion source for the neutral beam test facility

    International Nuclear Information System (INIS)

    Luchetta, Adriano; Manduchi, Gabriele; Taliercio, Cesare; Paolucci, Francesco; Sartori, Filippo; Svensson, Lennart; Labate, Carmelo Vincenzo; Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Simionato, Paola; Zampiva, Enrico; Barbato, Paolo; Polato, Sandro

    2015-01-01

    Highlights: • This paper describes the requirements and architecture of the control and data acquisition system of the ITER full-ion source experiment in the neutral beam test facility. • The system architecture integrates various popular software frameworks. • Slow control is based on the EPICS (Experimental Physics and Industrial Control System) framework. • Fast control is based on the MARTe (Multi-threaded Application Real-Time executor) framework. • Data acquisition is based on the MDSplus framework. - Abstract: The neutral beam test facility, which is under construction in Padova, Italy, is developing the ITER full-scale ion source for the ITER heating neutral beam injectors, referred to as the SPIDER experiment, and the full-size prototype injector, referred to as MITICA. The SPIDER control and data acquisition system (CODAS) has been developed and its construction will start in 2014. Slow control and data acquisition will be based on the ITER CODAC core system software suite that has been designed to facilitate the integration of ITER plant systems with CODAC. Fast control and data acquisition will use solutions specific to the test facility, as the corresponding concepts are not ready-to-use in the ITER design. The ITER hardware catalog for fast control has been taken into consideration. The software development will be based on the integration of MDSplus and MARTe, two framework software packages that are well known in the fusion community, targeting data organization and fast real-time control, respectively. The paper revises the system requirements and the system design and shows the results already achieved in terms of system integration. In addition, the paper will report the experience in the usage of different cooperating software frameworks and in the integration of industrial procured plant systems.

  10. Control and data acquisition of the ITER full-scale ion source for the neutral beam test facility

    Energy Technology Data Exchange (ETDEWEB)

    Luchetta, Adriano, E-mail: adriano.luchetta@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Padova (Italy); Manduchi, Gabriele; Taliercio, Cesare [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Padova (Italy); Paolucci, Francesco; Sartori, Filippo [Fusion for Energy, Barcelona (Spain); Svensson, Lennart [ITER Organization, Route de Vinon-sur-Verdon, CS 90046 St. Paul Lez Durance (France); Labate, Carmelo Vincenzo [Association ENEA-CREATE, Department of Engineering, University of Naples “Parthenope” (Italy); Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Simionato, Paola; Zampiva, Enrico; Barbato, Paolo; Polato, Sandro [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Padova (Italy)

    2015-10-15

    Highlights: • This paper describes the requirements and architecture of the control and data acquisition system of the ITER full-ion source experiment in the neutral beam test facility. • The system architecture integrates various popular software frameworks. • Slow control is based on the EPICS (Experimental Physics and Industrial Control System) framework. • Fast control is based on the MARTe (Multi-threaded Application Real-Time executor) framework. • Data acquisition is based on the MDSplus framework. - Abstract: The neutral beam test facility, which is under construction in Padova, Italy, is developing the ITER full-scale ion source for the ITER heating neutral beam injectors, referred to as the SPIDER experiment, and the full-size prototype injector, referred to as MITICA. The SPIDER control and data acquisition system (CODAS) has been developed and its construction will start in 2014. Slow control and data acquisition will be based on the ITER CODAC core system software suite that has been designed to facilitate the integration of ITER plant systems with CODAC. Fast control and data acquisition will use solutions specific to the test facility, as the corresponding concepts are not ready-to-use in the ITER design. The ITER hardware catalog for fast control has been taken into consideration. The software development will be based on the integration of MDSplus and MARTe, two framework software packages that are well known in the fusion community, targeting data organization and fast real-time control, respectively. The paper revises the system requirements and the system design and shows the results already achieved in terms of system integration. In addition, the paper will report the experience in the usage of different cooperating software frameworks and in the integration of industrial procured plant systems.

  11. A Comparison between Predicted and Observed Atmospheric States and their Effects on Infrasonic Source Time Function Inversion at Source Physics Experiment 6

    Science.gov (United States)

    Aur, K. A.; Poppeliers, C.; Preston, L. A.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of underground chemical explosions at the Nevada National Security Site (NNSS) designed to gain an improved understanding of the generation and propagation of physical signals in the near and far field. Characterizing the acoustic and infrasound source mechanism from underground explosions is of great importance to underground explosion monitoring. To this end we perform full waveform source inversion of infrasound data collected from the SPE-6 experiment at distances from 300 m to 6 km and frequencies up to 20 Hz. Our method requires estimating the state of the atmosphere at the time of each experiment, computing Green's functions through these atmospheric models, and subsequently inverting the observed data in the frequency domain to obtain a source time function. To estimate the state of the atmosphere at the time of the experiment, we utilize the Weather Research and Forecasting - Data Assimilation (WRF-DA) modeling system to derive a unified atmospheric state model by combining Global Energy and Water Cycle Experiment (GEWEX) Continental-scale International Project (GCIP) data and locally obtained sonde and surface weather observations collected at the time of the experiment. We synthesize Green's functions through these atmospheric models using Sandia's moving media acoustic propagation simulation suite (TDAAPS). These models include 3-D variations in topography, temperature, pressure, and wind. We compare inversion results using the atmospheric models derived from the unified weather models versus previous modeling results and discuss how these differences affect computed source waveforms with respect to observed waveforms at various distances. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear

  12. FRX-C/T large source modification

    International Nuclear Information System (INIS)

    Tuszewski, M.; Chrien, R.E.; Yavornik, E.J.; Armstrong, W.T.; Hugrass, W.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Siemon, R.E.

    1986-01-01

    FRC experiments on FRX-C/T during the past two years have been devoted to translation studies and, more recently, to formation studies in situ. The interest in the latter became stronger as FRX-D was proposed. It is intended that, in summer 1985, FRX-C/T be modified with a larger coil that would be essentially a half-scale prototype of FRX-D. This would allow studies of flux trapping with increased size and with the associated enhanced axial dynamics. The results from these formation studies, with and without some improved formation techniques, may influence the design of the FRX-D source in a major way. In addition, this FRX-C/T Large Source Modification may allow the study of FRC's with somewhat increased values of anti s, in the range 2-3. This may be sufficient to reach a new stability regime where the predicted internal tilt mode may occur. Finally, the larger coil size should yield improved FRC confinement times by about 50%, and may allow with a minimum of plasma decompression the study of FRC's with x/sub s/ in the range 0.6-0.7 in possible future translation experiments

  13. Investigating the dynamics of Vulcanian explosions: scaled laboratory experiments of particle-laden puffs

    Science.gov (United States)

    Clarke, A. B.; Phillips, J. C.; Chojnicki, K. N.

    2006-12-01

    Scaled laboratory experiments analogous to Vulcanian eruptions were conducted, producing particle-laden jets and plumes. A reservoir of a mixture of water and isopropanol plus solid particles (kaolin or Ballotini glass spheres) was pressurized and suddenly released via a rapid-release valve into a 2 ft by 2 ft by 4 ft plexiglass tank containing fresh water. The duration of the subsequent flow was limited by the potential energy associated with the pressurized fluid rather than by the available volume of fluid or by the duration of the valve opening. Particle size (4 &45 microns) and concentration (0 to 10 vol%) were varied in order to change particle settling characteristics and control bulk mixture density (960 kg m-3 to 1060 kg m-3). Water and isopropanol in varying proportions created a light interstitial fluid to simulate buoyant volcanic gases in erupted mixtures. Variations in reservoir pressure and vent size allowed exploration of controlling source parameters; total momentum injected (M) and total buoyancy injected (B). Mass flux at the vent was measured by an in-line Coriolis flowmeter sampling at 100 Hz, allowing rapidly varying M and B to be recorded. The velocity-height relationship of each experiment was measured from high-speed video footage, permitting classification into the following groups: long continuously accelerating jets; accelerating jets transitioning to plumes; and collapsing fountains which generated density currents. Field-documented Vulcanian explosions exhibit this same wide range of behavior, demonstrating that regimes obtained in the laboratory are relevant to natural systems. A generalized framework of results was defined as follows. Increasing M/B for small particles (4 microns; settling time>>experiment duration) pushes the system from collapsing fountains to low-energy plumes to high-energy, continuously accelerating jets; increasing M/B for large particles (45 microns; settling time non-dimensional groups were combined to

  14. Cybele: a large size ion source of module construction for Tore-Supra injector

    International Nuclear Information System (INIS)

    Simonin, A.; Garibaldi, P.

    2005-01-01

    A 70 keV 40 A hydrogen beam injector has been developed at Cadarache for plasma diagnostic purpose (MSE diagnostic and Charge exchange) on the Tore-Supra Tokamak. This injector daily operates with a large size ions source (called Pagoda) which does not completely fulfill all the requirements necessary for the present experiment. As a consequence, the development of a new ion source (called Cybele) has been underway whose objective is to meet high proton rate (>80%), current density of 160 mA/cm 2 within 5% of uniformity on the whole extraction surface for long shot operation (from 1 to 100 s). Moreover, the main particularity of Cybele is the module construction concept: it is composed of five source modules vertically juxtaposed, with a special orientation which fits the curved extraction surface of the injector; this curvature ensures a geometrical focalization of the neutral beam 7 m downstream in the Tore-Supra chamber. Cybele will be tested first in positive ion production for the Tore-Supra injector, and afterward in negative ion production mode; its modular concept could be advantageous to ensure plasma uniformity on the large extraction surface (about 1 m 2 ) of the ITER neutral beam injector. A module prototype (called the Drift Source) has already been developed in the past and optimized in the laboratory both for positive and negative ion production, where it has met the ITER ion source requirements in terms of D-current density (200 A/m 2 ), source pressure (0.3 Pa), uniformity and arc efficiency (0.015 A D-/kW). (authors)

  15. Top-spray fluid bed coating: Scale-up in terms of relative droplet size and drying force

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn

    2008-01-01

    in terms of particle size fractions larger than 425 mu m determined by sieve analysis. Results indicated that the particle size distribution may be reproduced across scale with statistical valid precision by keeping the drying force and the relative droplet size constant across scale. It is also shown...

  16. Integrated laboratory scale demonstration experiment of the hybrid sulphur cycle and preliminary scale-up

    International Nuclear Information System (INIS)

    Leybros, J.; Rivalier, P.; Saturnin, A.; Charton, S.

    2010-01-01

    The hybrid sulphur cycle is today one of the most promising processes to produce hydrogen on a massive scale within the scope of high temperature nuclear reactors development. Thus, the Fuel Cycle Technology Department at CEA Marcoule is involved in studying the hybrid sulphur process from a technical and economical performance standpoint. Based on mass and energy balance calculations, a ProsimPlus TM flow sheet and a commercial plant design were prepared. This work includes a study on sizing of the main equipment. The capital cost has been estimated using the major characteristics of main equipment based upon formulae and charts published in literature. A specific approach has been developed for electrolysers. Operational costs are also proposed for a plant producing 1000 mol/s H 2 . Bench scale and pilot experiments must focus on the electrochemical step due to limited experimental data. Thus, a pilot plant with a hydrogen capacity of 100 NL/h was built with the aim of acquiring technical and technological data for electrolysis. This pilot plant was designed to cover a wide range of operating conditions: sulphuric acid concentrations up to 60 wt.%, temperatures up to 100 deg. C and pressures up to 10 bar. New materials and structures recently developed for fuel cells, which are expected to yield significant performance improvements when applied to classical electrochemical processes, will be tested. All experiments will be coupled with phenomenological simulation tools developed jointly with the experimental programme. (authors)

  17. Development of compact size penning ion source for compact neutron generator.

    Science.gov (United States)

    Das, Basanta Kumar; Shyam, Anurag

    2008-12-01

    For long-life operation, easy to mount and compact in size penning type ion sources are widely used in different fields of research such as neutron generators, material research, and surface etching. One penning type ion source has been developed in our laboratory. Applying high voltage of 2 kV between two oppositely biased electrodes and using permanent magnet of 500 gauss magnetic field along the axis, we had produced the glow discharge in the plasma region. The performance of this source was investigated using nitrogen gas. Deuterium ions were produced and extracted on the basis of chosen electrodes and the angle of extraction. Using a single aperture plasma electrode, the beam was extracted along the axial direction. The geometry of plasma electrode is an important factor for the efficient extraction of the ions from the plasma ion source. The extracted ion current depends upon the shape of the plasma meniscus. A concave shaped plasma meniscus produces converged ion beam. The convergence of extracted ions is related to the extraction electrode angle. The greater the angle, the more the beam converges. We had studied experimentally this effect with a compact size penning ion source. The detailed comparison among the different extraction geometry and different electrode angle are discussed in this paper.

  18. On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments

    NARCIS (Netherlands)

    Scarano, F.; Ghaemi, S.; Alp Caridi, G.C.; Bosbach, J.; Dierksheide, U.; Sciacchitano, A.

    2015-01-01

    The flow-tracing fidelity of sub-millimetre diameter helium-filled soap bubbles (HFSB) for low-speed aerodynamics is studied. The main interest of using HFSB in relation to micron-size droplets is the large amount of scattered light, enabling larger-scale three-dimensional experiments by tomographic

  19. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers

    Science.gov (United States)

    Austin, Kemen G.; González-Roglich, Mariano; Schaffer-Smith, Danica; Schwantes, Amanda M.; Swenson, Jennifer J.

    2017-05-01

    Deforestation continues across the tropics at alarming rates, with repercussions for ecosystem processes, carbon storage and long term sustainability. Taking advantage of recent fine-scale measurement of deforestation, this analysis aims to improve our understanding of the scale of deforestation drivers in the tropics. We examined trends in forest clearings of different sizes from 2000-2012 by country, region and development level. As tropical deforestation increased from approximately 6900 kha yr-1 in the first half of the study period, to >7900 kha yr-1 in the second half of the study period, >50% of this increase was attributable to the proliferation of medium and large clearings (>10 ha). This trend was most pronounced in Southeast Asia and in South America. Outside of Brazil >60% of the observed increase in deforestation in South America was due to an upsurge in medium- and large-scale clearings; Brazil had a divergent trend of decreasing deforestation, >90% of which was attributable to a reduction in medium and large clearings. The emerging prominence of large-scale drivers of forest loss in many regions and countries suggests the growing need for policy interventions which target industrial-scale agricultural commodity producers. The experience in Brazil suggests that there are promising policy solutions to mitigate large-scale deforestation, but that these policy initiatives do not adequately address small-scale drivers. By providing up-to-date and spatially explicit information on the scale of deforestation, and the trends in these patterns over time, this study contributes valuable information for monitoring, and designing effective interventions to address deforestation.

  20. Scale and size effects in dynamic fracture of concretes and rocks

    Directory of Open Access Journals (Sweden)

    Petrov Y.

    2015-01-01

    Full Text Available Structural-temporal approach based on the notion of incubation time is used for interpretation of strain-rate effects in the fracture process of concretes and rocks. It is established that temporal dependences of concretes and rocks are calculated by the incubation time criterion. Experimentally observed different relations between ultimate stresses of concrete and mortar in static and dynamic conditions are explained. It is obtained that compressive strength of mortar at a low strain rate is greater than that of concrete, but at a high strain rate the opposite is true. Influence of confinement pressure on the mechanism of dynamic strength for concretes and rocks is discussed. Both size effect and scale effect for concrete and rocks samples subjected to impact loading are analyzed. Statistical nature of a size effect contrasts to a scale effect that is related to the definition of a spatio-temporal representative volume determining the fracture event on the given scale level.

  1. How acoustic signals scale with individual body size: common trends across diverse taxa

    OpenAIRE

    Rafael L. Rodríguez; Marcelo Araya-Salas; David A. Gray; Michael S. Reichert; Laurel B. Symes; Matthew R. Wilkins; Rebecca J. Safran; Gerlinde Höbel

    2015-01-01

    We use allometric analysis to explore how acoustic signals scale on individual body size and to test hypotheses about the factors shaping relationships between signals and body size. Across case studies spanning birds, crickets, tree crickets, and tree frogs, we find that most signal traits had low coefficients of variation, shallow allometric scalings, and little dispersion around the allometric function. We relate variation in these measures to the shape of mate preferences and the level of...

  2. Materials performance experience at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    There is a growing, but not yet substantial, data base for materials performance at spallation neutron sources. Specially designed experiments using medium energy protons (650 MeV) have been conducted at the Proton Irradiation Experiment (PIREX) facility at the Swiss Nuclear Institute accelerator (SIN). Specially designed experiments using 760-800 MeV copper target have been completed at the Los Alamos Spallation Radiation Effects Facility (LASREF) at Los Alamos Meson Physics Facility (LAMPF). An extensive material testing program was initiated at LASREF in support of the German spallation neutron source (SNQ) project, before it terminated in 1985.

  3. Preliminary experiments with a cusp-field ion source

    International Nuclear Information System (INIS)

    Bickes, R.W. Jr.; O'Hagan, J.B.

    1980-12-01

    Preliminary experiments with a cusp field ion source have been completed. Measurements were made of the total ion current and mass and energy distributions as a function of source operating conditions and cusp field geometry. These experiments have indicated that a cusp field source may be used in the Sandia Neutron Generator for Cancer Therapy and may permit the incorporation of a simplified unpumped accelerator design. Suggestions for future work are briefly outlined

  4. Intertidal Sandbar Welding as a Primary Source of Sediment for Dune Growth: Evidence from a Large Scale Field Experiment

    Science.gov (United States)

    Cohn, N.; Ruggiero, P.; de Vries, S.

    2016-12-01

    Dunes provide the first line of defense from elevated water levels in low-lying coastal systems, limiting potentially major flooding, economic damages, and loss of livelihood. Despite the well documented importance of healthy dunes, our predictive ability of dune growth, particularly following erosive storm events, remains poor - resulting in part from traditionally studying the wet and dry beach as separate entities. In fact, however, dune recovery and growth is closely tied to the subtidal morphology and the nearshore hydrodynamic conditions, necessitating treating the entire coastal zone from the shoreface to the backshore as an integrated system. In this context, to further improve our understanding of the physical processes allowing for beach and dune growth during fair weather conditions, a large field experiment, the Sandbar-aEolian Dune EXchange EXperiment, was performed in summer 2016 in southwestern Washington, USA. Measurements of nearshore and atmospheric hydrodynamics, in-situ sediment transport, and morphology change provide insight into the time and space scales of nearshore-beach-dune exchanges along a rapidly prograding stretch of coast over a 6 week period. As part of this experiment, the hypothesis that dune growth is limited by the welding of intertidal sandbars to the shoreline (Houser, 2009) was tested. Using laser particle counters, bed elevation sensors (sonar altimeters and Microsoft Kinect), continuously logging sediment traps, RGB and IR cameras, and repeat morphology surveys (terrestrial lidar, kite based structure from motion, and RTK GPS), spatial and temporal trends in aeolian sediment transport were assessed in relation to the synoptic onshore migration and welding of intertidal sandbars. Observations from this experiment demonstrate that (1) the intertidal zone is the primary source of sediment to the dunes during non-storm conditions, (2) rates of saltation increase during later stages of bar welding but equivalent wind conditions

  5. Designing and developing portable large-scale JavaScript web applications within the Experiment Dashboard framework

    Science.gov (United States)

    Andreeva, J.; Dzhunov, I.; Karavakis, E.; Kokoszkiewicz, L.; Nowotka, M.; Saiz, P.; Tuckett, D.

    2012-12-01

    Improvements in web browser performance and web standards compliance, as well as the availability of comprehensive JavaScript libraries, provides an opportunity to develop functionally rich yet intuitive web applications that allow users to access, render and analyse data in novel ways. However, the development of such large-scale JavaScript web applications presents new challenges, in particular with regard to code sustainability and team-based work. We present an approach that meets the challenges of large-scale JavaScript web application design and development, including client-side model-view-controller architecture, design patterns, and JavaScript libraries. Furthermore, we show how the approach leads naturally to the encapsulation of the data source as a web API, allowing applications to be easily ported to new data sources. The Experiment Dashboard framework is used for the development of applications for monitoring the distributed computing activities of virtual organisations on the Worldwide LHC Computing Grid. We demonstrate the benefits of the approach for large-scale JavaScript web applications in this context by examining the design of several Experiment Dashboard applications for data processing, data transfer and site status monitoring, and by showing how they have been ported for different virtual organisations and technologies.

  6. Designing and developing portable large-scale JavaScript web applications within the Experiment Dashboard framework

    International Nuclear Information System (INIS)

    Andreeva, J; Dzhunov, I; Karavakis, E; Kokoszkiewicz, L; Nowotka, M; Saiz, P; Tuckett, D

    2012-01-01

    Improvements in web browser performance and web standards compliance, as well as the availability of comprehensive JavaScript libraries, provides an opportunity to develop functionally rich yet intuitive web applications that allow users to access, render and analyse data in novel ways. However, the development of such large-scale JavaScript web applications presents new challenges, in particular with regard to code sustainability and team-based work. We present an approach that meets the challenges of large-scale JavaScript web application design and development, including client-side model-view-controller architecture, design patterns, and JavaScript libraries. Furthermore, we show how the approach leads naturally to the encapsulation of the data source as a web API, allowing applications to be easily ported to new data sources. The Experiment Dashboard framework is used for the development of applications for monitoring the distributed computing activities of virtual organisations on the Worldwide LHC Computing Grid. We demonstrate the benefits of the approach for large-scale JavaScript web applications in this context by examining the design of several Experiment Dashboard applications for data processing, data transfer and site status monitoring, and by showing how they have been ported for different virtual organisations and technologies.

  7. Scale-Dependent Habitat Selection and Size-Based Dominance in Adult Male American Alligators.

    Directory of Open Access Journals (Sweden)

    Bradley A Strickland

    Full Text Available Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17 on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their

  8. Scale-dependent habitat selection and size-based dominance in adult male American alligators

    Science.gov (United States)

    Strickland, Bradley A.; Vilella, Francisco; Belant, Jerrold L.

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance

  9. Size, but not experience, affects the ontogeny of constriction performance in ball pythons (Python regius).

    Science.gov (United States)

    Penning, David A; Dartez, Schuyler F

    2016-03-01

    Constriction is a prey-immobilization technique used by many snakes and is hypothesized to have been important to the evolution and diversification of snakes. However, very few studies have examined the factors that affect constriction performance. We investigated constriction performance in ball pythons (Python regius) by evaluating how peak constriction pressure is affected by snake size, sex, and experience. In one experiment, we tested the ontogenetic scaling of constriction performance and found that snake diameter was the only significant factor determining peak constriction pressure. The number of loops applied in a coil and its interaction with snake diameter did not significantly affect constriction performance. Constriction performance in ball pythons scaled differently than in other snakes that have been studied, and medium to large ball pythons are capable of exerting significantly higher pressures than those shown to cause circulatory arrest in prey. In a second experiment, we tested the effects of experience on constriction performance in hatchling ball pythons over 10 feeding events. By allowing snakes in one test group to gain constriction experience, and manually feeding snakes under sedation in another test group, we showed that experience did not affect constriction performance. During their final (10th) feedings, all pythons constricted similarly and with sufficiently high pressures to kill prey rapidly. At the end of the 10 feeding trials, snakes that were allowed to constrict were significantly smaller than their non-constricting counterparts. © 2016 Wiley Periodicals, Inc.

  10. Developing the Cyber Victimization Experiences and Cyberbullying Behaviors Scales.

    Science.gov (United States)

    Betts, Lucy R; Spenser, Karin A

    2017-01-01

    The reported prevalence rates of cyber victimization experiences and cyberbullying behaviors vary. Part of this variation is likely due to the diverse definitions and operationalizations of the constructs adopted in previous research and the lack of psychometrically robust measures. Through 2 studies, the authors developed (Study 1) and evaluated (Study 2) the cyber victimization experiences and cyberbullying behaviors scales. Participants in Study 1 were 393 (122 boys, 171 girls) and in Study 2 were 345 (153 boys, 192 girls) 11-15-year-olds who completed measures of cyber victimization experiences, cyberbullying behaviors, face-to-face victimization experiences, face-to-face bullying behaviors, and social desirability. The 3-factor cyber victimization experiences scale comprised threat, shared images, and personal attack. The 3-factor cyberbullying behaviors scale comprised sharing images, gossip, and personal attack. Both scales demonstrated acceptable internal consistency and convergent validity.

  11. Full-scale and time-scale heating experiments at Stripa: preliminary results. Technical project report No. 11

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Hood, M.

    1978-12-01

    Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground

  12. The first synchrotron infrared beamlines at the Advanced Light Source: Microspectroscopy and fast timing

    International Nuclear Information System (INIS)

    Martin, M.C.; McKinney, W.R.

    1998-05-01

    A set of new infrared (IR) beamlines on the 1.4 bending magnet port at the Advanced Light Source, LBNL, are described. Using a synchrotron as an IR source provides considerable brightness advantages, which manifests itself most beneficially when performing spectroscopy on a microscopic length scale. Beamline (BL) 1.4.3 is a dedicated microspectroscopy beamline, where the much smaller focused spot size using the synchrotron source is utilized. This enables an entirely new set of experiments to be performed where spectroscopy on a truly microscopic scale is now possible. BL 1.4.2 consists of a vacuum FTIR bench with a wide spectral range and step-scan capabilities. The fast timing is demonstrated by observing the synchrotron electron storage pattern at the ALS

  13. Is the number and size of scales in Liolaemus lizards driven by climate?

    Science.gov (United States)

    José Tulli, María; Cruz, Félix B

    2018-05-03

    Ectothermic vertebrates are sensitive to thermal fluctuations in the environments where they occur. To buffer these fluctuations, ectotherms use different strategies, including the integument, which is a barrier that minimizes temperature exchange between the inner body and the surrounding air. In lizards, this barrier is constituted by keratinized scales of variable size, shape and texture, and its main function is protection, water loss avoidance and thermoregulation. The size of scales in lizards has been proposed to vary in relation to climatic gradients; however, it has also been observed that in some groups of Iguanian lizards could be related to phylogeny. Thus, here, we studied the area and number of scales (dorsal and ventral) of 61 species of Liolaemus lizards distributed in a broad latitudinal and altitudinal gradient to determine the nature of the variation of the scales with climate, and found that the number and size of scales are related to climatic variables, such as temperature and geographical variables as altitude. The evolutionary process that better explained how these morphological variables evolved was the Ornstein-Uhlenbeck model. The number of scales seemed to be related to common ancestry, whereas dorsal and ventral scale areas seemed to vary as a consequence of ecological traits. In fact, the ventral area is less exposed to climate conditions such as ultraviolet radiation or wind and is thus under less pressure to change in response to alterations in external conditions. It is possible that scale ornamentation such as keels and granulosity may bring some more information in this regard. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Source and Size of Social Support Network on Sedentary Behavior Among Older Adults.

    Science.gov (United States)

    Loprinzi, Paul D; Crush, Elizabeth A

    2018-01-01

    To examine the association of source of social support and size of social support network on sedentary behavior among older adults. Cross-sectional. National Health and Nutrition Examination Survey 2003 to 2006. 2519 older adults (60+ years). Sedentary behavior was assessed via accelerometry over a 7-day period. Social support was assessed via self-report. Sources evaluated include spouse, son, daughter, sibling, neighbor, church member, and friend. Regarding size of social network, participants were asked, "In general, how many close friends do you have?" Multivariable linear regression. After adjustment, there was no evidence of an association between the size of social support network and sedentary behavior. With regard to specific sources of social support, spousal social support was associated with less sedentary behavior (β = -11.6; 95% confidence interval: -20.7 to -2.5), with evidence to suggest that this was only true for men. Further, an inverse association was observed between household size and sedentary behavior, with those having a greater number of individuals in the house having lower levels of sedentary behavior. These associations occurred independent of moderate-to-vigorous physical activity, age, gender, race-ethnicity, measured body mass index, total cholesterol, self-reported smoking status, and physician diagnosis of congestive heart failure, coronary artery disease, stroke, cancer, hypertension, or diabetes. Spouse-specific emotion-related social support (particularly for men) and household size were associated with less sedentary behavior.

  15. The square lattice Ising model on the rectangle II: finite-size scaling limit

    Science.gov (United States)

    Hucht, Alfred

    2017-06-01

    Based on the results published recently (Hucht 2017 J. Phys. A: Math. Theor. 50 065201), the universal finite-size contributions to the free energy of the square lattice Ising model on the L× M rectangle, with open boundary conditions in both directions, are calculated exactly in the finite-size scaling limit L, M\\to∞ , T\\to Tc , with fixed temperature scaling variable x\\propto(T/Tc-1)M and fixed aspect ratio ρ\\propto L/M . We derive exponentially fast converging series for the related Casimir potential and Casimir force scaling functions. At the critical point T=Tc we confirm predictions from conformal field theory (Cardy and Peschel 1988 Nucl. Phys. B 300 377, Kleban and Vassileva 1991 J. Phys. A: Math. Gen. 24 3407). The presence of corners and the related corner free energy has dramatic impact on the Casimir scaling functions and leads to a logarithmic divergence of the Casimir potential scaling function at criticality.

  16. The scaling of experiments on volcanic systems

    Directory of Open Access Journals (Sweden)

    Olivier eMERLE

    2015-06-01

    Full Text Available In this article, the basic principles of the scaling procedure are first reviewed by a presentation of scale factors. Then, taking an idealized example of a brittle volcanic cone intruded by a viscous magma, the way to choose appropriate analogue materials for both the brittle and ductile parts of the cone is explained by the use of model ratios. Lines of similarity are described to show that an experiment simulates a range of physical processes instead of a unique natural case. The pi theorem is presented as an alternative scaling procedure and discussed through the same idealized example to make the comparison with the model ratio procedure. The appropriateness of the use of gelatin as analogue material for simulating dyke formation is investigated. Finally, the scaling of some particular experiments such as pyroclastic flows or volcanic explosions is briefly presented to show the diversity of scaling procedures in volcanology.

  17. Iso-scaling in a microcanonical multifragmentation model

    International Nuclear Information System (INIS)

    Raduta, R.; Raduta, H.

    2003-01-01

    A microcanonical multifragmentation model is used to investigate iso-scaling over a broad range of excitation energies, for several values of freeze-out volume and equilibrated sources with masses between 40 and 200 in both primary and asymptotic stages of the decay. It was found that the values of the slope parameters α and β depend on the size and excitation energy of the source and are affected by the secondary decay of primary fragments. It was evidenced that iso-scaling is affected by finite size effects. The evolution of the differences of neutron and proton chemical potentials corresponding to two equilibrated nuclear sources having the same size and different isospin values with temperature and freeze-out volume is presented. (authors)

  18. Characterization and source estimation of size-segregated aerosols during 2008-2012 in an urban environment in Beijing

    International Nuclear Information System (INIS)

    Yu, Lingda; Wang, Guangfu; Zhang, Renjiang

    2013-01-01

    Full text: During 2008-2012, size-segregated aerosol samples were collected using an eight-stage cascade impactor at Beijing Normal University (BNU) Site, China. These samples were analyzed using particle induced X-ray emission (PIXE) analysis for concentrations of 21 elements consisting of Mg, AI, Si, P, S, CI, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Ba and Pb. The size-resolved data sets were then analyzed using the positive matrix factorization (PMF) technique in order to identify possible sources and estimate their contribution to particulate matter mass. Nine sources were resolved in eight size ranges (025 ∼ 16μm) and included secondary sulphur, motor vehicles, coal combustion; oil combustion, road dust, biomass burning, soil dust, diesel vehicles and metal processing. PMF analysis of size-resolved source contributions showed that natural sources represented by soil dust and road dust contributed about 57% to the predicted primary particulate matter (PM) mass in the coarse size range(>2μm). On the other hand, anthropogenic sources such as secondary sulphur, coal and oil combustion, biomass burning and motor vehicle contributed about 73% in the fine size range <2μm). The diesel vehicles and secondary sulphur source contributed the most in the ultra-fine size range (<0.25μm) and was responsible for about 52% of the primary PM mass. (author)

  19. Characterization and source estimation of size-segregated aerosols during 2008-2012 in an urban environment in Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingda [Key Laboratory of Beam Technology and Materiais Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing (China); Wang, Guangfu, E-mail: guangfuw@bnu.edu.cn [Beijing Radiation Center, Beijing (China); Zhang, Renjiang [Key Laboratory of Regional Climate-Environment Research for Temperate Eas tAsia (RCE-TEA), Institute of Atmospheric Physics, Chinese Academy of Science, Beijing (China)

    2013-07-01

    Full text: During 2008-2012, size-segregated aerosol samples were collected using an eight-stage cascade impactor at Beijing Normal University (BNU) Site, China. These samples were analyzed using particle induced X-ray emission (PIXE) analysis for concentrations of 21 elements consisting of Mg, AI, Si, P, S, CI, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Ba and Pb. The size-resolved data sets were then analyzed using the positive matrix factorization (PMF) technique in order to identify possible sources and estimate their contribution to particulate matter mass. Nine sources were resolved in eight size ranges (025 ∼ 16μm) and included secondary sulphur, motor vehicles, coal combustion; oil combustion, road dust, biomass burning, soil dust, diesel vehicles and metal processing. PMF analysis of size-resolved source contributions showed that natural sources represented by soil dust and road dust contributed about 57% to the predicted primary particulate matter (PM) mass in the coarse size range(>2μm). On the other hand, anthropogenic sources such as secondary sulphur, coal and oil combustion, biomass burning and motor vehicle contributed about 73% in the fine size range <2μm). The diesel vehicles and secondary sulphur source contributed the most in the ultra-fine size range (<0.25μm) and was responsible for about 52% of the primary PM mass. (author)

  20. Final assessment of vibro-acoustic source strength descriptors of helicopter gearboxes

    DEFF Research Database (Denmark)

    Ohlrich, Mogens; Rasmussen, Ulrik Møller

    1996-01-01

    Two novel measurement techniques have been developed for quantifying the vibro-aqcoustic source strength of lightweight helicopter gearboxes. The accuracy, robustness and implementation of these methods have been examined by a comprehensive investigation, including theoretical studies of simple...... multi-modal beam systems and extensive experiments with more realistic small scale models and with large, detailed 3/4-scale test structures of a medium-size helicopter. In addition, partial verification tests have been conducted with the Eurocopter BK 117 helicopter and its main rotor gearbox....... The results of this work are essential as input for any prediction code of the internal noise in a helicopter cabin, because the prediction requires knowledge of the major sources, that is, the rotors, engines and gearboxes....

  1. Scaling range sizes to threats for robust predictions of risks to biodiversity.

    Science.gov (United States)

    Keith, David A; Akçakaya, H Resit; Murray, Nicholas J

    2018-04-01

    Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range-size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red-list assessments for decades, appropriate spatial scales of AOO for predicting risks of species' extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale-sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1-1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer-scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid-measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape-scale threats to species and ecosystems. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  2. Scaling HEP to Web size with RESTful protocols: The frontier example

    International Nuclear Information System (INIS)

    Dykstra, Dave

    2011-01-01

    The World-Wide-Web has scaled to an enormous size. The largest single contributor to its scalability is the HTTP protocol, particularly when used in conformity to REST (REpresentational State Transfer) principles. High Energy Physics (HEP) computing also has to scale to an enormous size, so it makes sense to base much of it on RESTful protocols. Frontier, which reads databases with an HTTP-based RESTful protocol, has successfully scaled to deliver production detector conditions data from both the CMS and ATLAS LHC detectors to hundreds of thousands of computer cores worldwide. Frontier is also able to re-use a large amount of standard software that runs the Web: on the clients, caches, and servers. I discuss the specific ways in which HTTP and REST enable high scalability for Frontier. I also briefly discuss another protocol used in HEP computing that is HTTP-based and RESTful, and another protocol that could benefit from it. My goal is to encourage HEP protocol designers to consider HTTP and REST whenever the same information is needed in many places.

  3. E-line: A new crystal collimator beam line for source size measurements at CHESS

    International Nuclear Information System (INIS)

    White, Jeffrey A.; Revesz, Peter; Finkelstein, Ken

    2007-01-01

    A new X-ray beam line has been constructed at cornell high energy synchrotron source (CHESS) to measure the vertical and horizontal source size of the positron particle beam. The cornell laboratory of elementary particle physics (LEPP) operates the storage ring (CESR) for X-ray generation for the CHESS user community by circulating electrons and their antimatter counterpart positrons in counter-rotating beams. As the laboratory reduces the emittances of particle beams to increase X-ray brilliance, there has been an increasing need for diagnostic tools to measure and monitor source size. A beam line front end that accesses the positron synchrotron light has been fitted with an experimental chamber and apparatus of compact design capable of horizontal and vertical source size measurement using the 'crystal collimator' technique, and an additional setup for vertical beam position monitoring using a luminescence-based X-ray video beam position monitoring system. The crystal collimators each consist of two Si(2 2 0) crystals in a dispersive (+,+) arrangement that diffract X-rays to a fluorescent material coated on a view port observed with a CCD camera. Measurements of the positron vertical beam size using the crystal collimation method at E-line are compared with measurements of visible synchrotron light at a remotely located dedicated port on the storage ring

  4. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsburg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L.; Sato, K.; Kinoshita, M.

    1994-08-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments

  5. Biodegradation of creosote compounds: Comparison of experiments at different scales

    DEFF Research Database (Denmark)

    Broholm, K.; Arvin, Erik

    2001-01-01

    of the pyrroles on the biodegradation of benzene, and the biodegradation of benzothiophene occurs only in the presence of a primary substrate. The experiments show that some biodegradation processes of organic compounds may be common to different microorganisms.......This paper compares the results of biodegradation experiments with creosote compounds performed at different scales. The experiments include field observations, field experiments, large-scale intact laboratory column experiments, model fracture experiments, and batch experiments. Most...... of the experiments were conducted with till or ground water from the field site at Ringe on the island of Funen. Although the experiments were conducted on different scales, they revealed that some phenomena-e.g., an extensive biodegradation potential of several of the creosote compounds, the inhibitory influence...

  6. Empirical evidence for multi-scaled controls on wildfire size distributions in California

    Science.gov (United States)

    Povak, N.; Hessburg, P. F., Sr.; Salter, R. B.

    2014-12-01

    Ecological theory asserts that regional wildfire size distributions are examples of self-organized critical (SOC) systems. Controls on SOC event-size distributions by virtue are purely endogenous to the system and include the (1) frequency and pattern of ignitions, (2) distribution and size of prior fires, and (3) lagged successional patterns after fires. However, recent work has shown that the largest wildfires often result from extreme climatic events, and that patterns of vegetation and topography may help constrain local fire spread, calling into question the SOC model's simplicity. Using an atlas of >12,000 California wildfires (1950-2012) and maximum likelihood estimation (MLE), we fit four different power-law models and broken-stick regressions to fire-size distributions across 16 Bailey's ecoregions. Comparisons among empirical fire size distributions across ecoregions indicated that most ecoregion's fire-size distributions were significantly different, suggesting that broad-scale top-down controls differed among ecoregions. One-parameter power-law models consistently fit a middle range of fire sizes (~100 to 10000 ha) across most ecoregions, but did not fit to larger and smaller fire sizes. We fit the same four power-law models to patch size distributions of aspect, slope, and curvature topographies and found that the power-law models fit to a similar middle range of topography patch sizes. These results suggested that empirical evidence may exist for topographic controls on fire sizes. To test this, we used neutral landscape modeling techniques to determine if observed fire edges corresponded with aspect breaks more often than expected by random. We found significant differences between the empirical and neutral models for some ecoregions, particularly within the middle range of fire sizes. Our results, combined with other recent work, suggest that controls on ecoregional fire size distributions are multi-scaled and likely are not purely SOC. California

  7. Size estimates of nobel gas clusters by Rayleigh scattering experiments

    Institute of Scientific and Technical Information of China (English)

    Pinpin Zhu (朱频频); Guoquan Ni (倪国权); Zhizhan Xu (徐至展)

    2003-01-01

    Noble gases (argon, krypton, and xenon) are puffed into vacuum through a nozzle to produce clusters for studying laser-cluster interactions. Good estimates of the average size of the argon, krypton and xenon clusters are made by carrying out a series of Rayleigh scattering experiments. In the experiments, we have found that the scattered signal intensity varied greatly with the opening area of the pulsed valve. A new method is put forward to choose the appropriate scattered signal and measure the size of Kr cluster.

  8. Simulating Small-Scale Experiments of In-Tunnel Airblast Using STUN and ALE3D

    Energy Technology Data Exchange (ETDEWEB)

    Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, Lewis [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schebler, Gregory [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McMichael, Larry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glascoe, Lee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-09-12

    This report details continuing validation efforts for the Sphere and Tunnel (STUN) and ALE3D codes. STUN has been validated previously for blast propagation through tunnels using several sets of experimental data with varying charge sizes and tunnel configurations, including the MARVEL nuclear driven shock tube experiment (Glenn, 2001). The DHS-funded STUNTool version is compared to experimental data and the LLNL ALE3D hydrocode. In this particular study, we compare the performance of the STUN and ALE3D codes in modeling an in-tunnel airblast to experimental results obtained by Lunderman and Ohrt in a series of small-scale high explosive experiments (1997).

  9. From damselflies to pterosaurs: how burst and sustainable flight performance scale with size.

    Science.gov (United States)

    Marden, J H

    1994-04-01

    Recent empirical data for short-burst lift and power production of flying animals indicate that mass-specific lift and power output scale independently (lift) or slightly positively (power) with increasing size. These results contradict previous theory, as well as simple observation, which argues for degradation of flight performance with increasing size. Here, empirical measures of lift and power during short-burst exertion are combined with empirically based estimates of maximum muscle power output in order to predict how burst and sustainable performance scale with body size. The resulting model is used to estimate performance of the largest extant flying birds and insects, along with the largest flying animals known from fossils. These estimates indicate that burst flight performance capacities of even the largest extinct fliers (estimated mass 250 kg) would allow takeoff from the ground; however, limitations on sustainable power output should constrain capacity for continuous flight at body sizes exceeding 0.003-1.0 kg, depending on relative wing length and flight muscle mass.

  10. Vascularity and grey-scale sonographic features of normal cervical lymph nodes: variations with nodal size

    International Nuclear Information System (INIS)

    Ying, Michael; Ahuja, Anil; Brook, Fiona; Metreweli, Constantine

    2001-01-01

    AIM: This study was undertaken to investigate variations in the vascularity and grey-scale sonographic features of cervical lymph nodes with their size. MATERIALS AND METHODS: High resolution grey-scale sonography and power Doppler sonography were performed in 1133 cervical nodes in 109 volunteers who had a sonographic examination of the neck. Standardized parameters were used in power Doppler sonography. RESULTS: About 90% of lymph nodes with a maximum transverse diameter greater than 5 mm showed vascularity and an echogenic hilus. Smaller nodes were less likely to show vascularity and an echogenic hilus. As the size of the lymph nodes increased, the intranodal blood flow velocity increased significantly (P 0.05). CONCLUSIONS: The findings provide a baseline for grey-scale and power Doppler sonography of normal cervical lymph nodes. Sonologists will find varying vascularity and grey-scale appearances when encountering nodes of different sizes. Ying, M. et al. (2001)

  11. A versatile automated platform for micro-scale cell stimulation experiments.

    Science.gov (United States)

    Sinha, Anupama; Jebrail, Mais J; Kim, Hanyoup; Patel, Kamlesh D; Branda, Steven S

    2013-08-06

    Study of cells in culture (in vitro analysis) has provided important insight into complex biological systems. Conventional methods and equipment for in vitro analysis are well suited to study of large numbers of cells (≥ 10(5)) in milliliter-scale volumes (≥ 0.1 ml). However, there are many instances in which it is necessary or desirable to scale down culture size to reduce consumption of the cells of interest and/or reagents required for their culture, stimulation, or processing. Unfortunately, conventional approaches do not support precise and reproducible manipulation of micro-scale cultures, and the microfluidics-based automated systems currently available are too complex and specialized for routine use by most laboratories. To address this problem, we have developed a simple and versatile technology platform for automated culture, stimulation, and recovery of small populations of cells (100-2,000 cells) in micro-scale volumes (1-20 μl). The platform consists of a set of fibronectin-coated microcapillaries ("cell perfusion chambers"), within which micro-scale cultures are established, maintained, and stimulated; a digital microfluidics (DMF) device outfitted with "transfer" microcapillaries ("central hub"), which routes cells and reagents to and from the perfusion chambers; a high-precision syringe pump, which powers transport of materials between the perfusion chambers and the central hub; and an electronic interface that provides control over transport of materials, which is coordinated and automated via pre-determined scripts. As an example, we used the platform to facilitate study of transcriptional responses elicited in immune cells upon challenge with bacteria. Use of the platform enabled us to reduce consumption of cells and reagents, minimize experiment-to-experiment variability, and re-direct hands-on labor. Given the advantages that it confers, as well as its accessibility and versatility, our platform should find use in a wide variety of

  12. Optimal sizing of a multi-source energy plant for power heat and cooling generation

    International Nuclear Information System (INIS)

    Barbieri, E.S.; Dai, Y.J.; Morini, M.; Pinelli, M.; Spina, P.R.; Sun, P.; Wang, R.Z.

    2014-01-01

    Multi-source systems for the fulfilment of electric, thermal and cooling demand of a building can be based on different technologies (e.g. solar photovoltaic, solar heating, cogeneration, heat pump, absorption chiller) which use renewable, partially renewable and fossil energy sources. Therefore, one of the main issues of these kinds of multi-source systems is to find the appropriate size of each technology. Moreover, building energy demands depend on the climate in which the building is located and on the characteristics of the building envelope, which also influence the optimal sizing. This paper presents an analysis of the effect of different climatic scenarios on the multi-source energy plant sizing. For this purpose a model has been developed and has been implemented in the Matlab ® environment. The model takes into consideration the load profiles for electricity, heating and cooling for a whole year. The performance of the energy systems are modelled through a systemic approach. The optimal sizing of the different technologies composing the multi-source energy plant is investigated by using a genetic algorithm, with the goal of minimizing the primary energy consumption only, since the cost of technologies and, in particular, the actual tariff and incentive scenarios depend on the specific country. Moreover economic considerations may lead to inadequate solutions in terms of primary energy consumption. As a case study, the Sino-Italian Green Energy Laboratory of the Shanghai Jiao Tong University has been hypothetically located in five cities in different climatic zones. The load profiles are calculated by means of a TRNSYS ® model. Results show that the optimal load allocation and component sizing are strictly related to climatic data (e.g. external air temperature and solar radiation)

  13. Size-Tuned Plastic Flow Localization in Irradiated Materials at the Submicron Scale

    Science.gov (United States)

    Cui, Yinan; Po, Giacomo; Ghoniem, Nasr

    2018-05-01

    Three-dimensional discrete dislocation dynamics (3D-DDD) simulations reveal that, with reduction of sample size in the submicron regime, the mechanism of plastic flow localization in irradiated materials transitions from irradiation-controlled to an intrinsic dislocation source controlled. Furthermore, the spatial correlation of plastic deformation decreases due to weaker dislocation interactions and less frequent cross slip as the system size decreases, thus manifesting itself in thinner dislocation channels. A simple model of discrete dislocation source activation coupled with cross slip channel widening is developed to reproduce and physically explain this transition. In order to quantify the phenomenon of plastic flow localization, we introduce a "deformation localization index," with implications to the design of radiation-resistant materials.

  14. QuickEval: a web application for psychometric scaling experiments

    Science.gov (United States)

    Van Ngo, Khai; Storvik, Jehans J.; Dokkeberg, Christopher A.; Farup, Ivar; Pedersen, Marius

    2015-01-01

    QuickEval is a web application for carrying out psychometric scaling experiments. It offers the possibility of running controlled experiments in a laboratory, or large scale experiment over the web for people all over the world. It is a unique one of a kind web application, and it is a software needed in the image quality field. It is also, to the best of knowledge, the first software that supports the three most common scaling methods; paired comparison, rank order, and category judgement. It is also the first software to support rank order. Hopefully, a side effect of this newly created software is that it will lower the threshold to perform psychometric experiments, improve the quality of the experiments being carried out, make it easier to reproduce experiments, and increase research on image quality both in academia and industry. The web application is available at www.colourlab.no/quickeval.

  15. Scaling of lifting forces in relation to object size in whole body lifting

    NARCIS (Netherlands)

    Kingma, I.; van Dieen, J.H.; Toussaint, H.M.

    2005-01-01

    Subjects prepare for a whole body lifting movement by adjusting their posture and scaling their lifting forces to the expected object weight. The expectancy is based on visual and haptic size cues. This study aimed to find out whether lifting force overshoots related to object size cues disappear or

  16. Finite-size scaling of clique percolation on two-dimensional Moore lattices

    Science.gov (United States)

    Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong

    2018-05-01

    Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.

  17. Stabilization of microgrid with intermittent renewable energy sources by SMES with optimal coil size

    International Nuclear Information System (INIS)

    Saejia, M.; Ngamroo, I.

    2011-01-01

    A controller design of a superconducting magnetic energy storage unit is proposed. The structure of a power controller is the practical proportional-integral (PI). The PI parameters and coil size are tuned by a particle swarm optimization. The proposed method is able to effectively alleviate power fluctuations. It is well known that the superconducting coil is the vital part of a superconducting magnetic energy storage (SMES) unit. This paper deals with the power controller design of a SMES unit with an optimal coil size for stabilization of an isolated microgrid. The study microgrid consists of renewable energy sources with intermittent power outputs i.e., wind and photovoltaic. Since power generations from such renewable sources are unpredictable and variable, these result in power fluctuations in a microgrid. To stabilize power fluctuations, a SMES unit with a fast control of active and reactive power can be applied. The structure of a power controller is the practical proportional-integral (PI). Based on the minimization of the variance of power fluctuations from renewable sources as well as the initial stored energy of SMES, the optimal PI parameters and coil size are automatically and simultaneously tuned by a particle swarm optimization. Simulation studies show that the proposed SMES controller with an optimal coil size is able to effectively alleviate power fluctuations under various power patterns from intermittent renewable sources.

  18. E-line: A new crystal collimator beam line for source size measurements at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    White, Jeffrey A. [CHESS, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14850-8001 (United States)], E-mail: jaw7@cornell.edu; Revesz, Peter; Finkelstein, Ken [CHESS, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14850-8001 (United States)

    2007-11-11

    A new X-ray beam line has been constructed at cornell high energy synchrotron source (CHESS) to measure the vertical and horizontal source size of the positron particle beam. The cornell laboratory of elementary particle physics (LEPP) operates the storage ring (CESR) for X-ray generation for the CHESS user community by circulating electrons and their antimatter counterpart positrons in counter-rotating beams. As the laboratory reduces the emittances of particle beams to increase X-ray brilliance, there has been an increasing need for diagnostic tools to measure and monitor source size. A beam line front end that accesses the positron synchrotron light has been fitted with an experimental chamber and apparatus of compact design capable of horizontal and vertical source size measurement using the 'crystal collimator' technique, and an additional setup for vertical beam position monitoring using a luminescence-based X-ray video beam position monitoring system. The crystal collimators each consist of two Si(2 2 0) crystals in a dispersive (+,+) arrangement that diffract X-rays to a fluorescent material coated on a view port observed with a CCD camera. Measurements of the positron vertical beam size using the crystal collimation method at E-line are compared with measurements of visible synchrotron light at a remotely located dedicated port on the storage ring.

  19. Stabilization of microgrid with intermittent renewable energy sources by SMES with optimal coil size

    Energy Technology Data Exchange (ETDEWEB)

    Saejia, M., E-mail: samongkol@gmail.com [School of Electrical Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Ngamroo, I. [School of Electrical Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2011-11-15

    A controller design of a superconducting magnetic energy storage unit is proposed. The structure of a power controller is the practical proportional-integral (PI). The PI parameters and coil size are tuned by a particle swarm optimization. The proposed method is able to effectively alleviate power fluctuations. It is well known that the superconducting coil is the vital part of a superconducting magnetic energy storage (SMES) unit. This paper deals with the power controller design of a SMES unit with an optimal coil size for stabilization of an isolated microgrid. The study microgrid consists of renewable energy sources with intermittent power outputs i.e., wind and photovoltaic. Since power generations from such renewable sources are unpredictable and variable, these result in power fluctuations in a microgrid. To stabilize power fluctuations, a SMES unit with a fast control of active and reactive power can be applied. The structure of a power controller is the practical proportional-integral (PI). Based on the minimization of the variance of power fluctuations from renewable sources as well as the initial stored energy of SMES, the optimal PI parameters and coil size are automatically and simultaneously tuned by a particle swarm optimization. Simulation studies show that the proposed SMES controller with an optimal coil size is able to effectively alleviate power fluctuations under various power patterns from intermittent renewable sources.

  20. Fuel plate stability experiments and analysis for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Luttrell, C.R.; Yahr, G.T.

    1992-01-01

    The planned Advanced Neutron Source (ANS) and several existing reactors use closely spaced arrays of involute shaped fuel-plates which are cooled by water flowing through the channels between the plates. There is concern that at certain coolant flow velocities adjacent plates may deflect and touch, with resulting failure of the plates. Experiments have been conducted at the Oak Ridge National Laboratory to examine this potential phenomenon. Results of the experiments and comparison with analytical predictions are reported in this paper. The tests were conducted using full scale epoxy plate models of the aluminum/uranium silicide ANS involute shaped fuel plates. Use of epoxy plates and model theory allowed lower flow velocities and pressures to explore the potential failure mechanism. Plate deflections and channel pressures as function of the flow velocity are examined. Comparisons with mathematical models are noted. 12 refs

  1. Fuel plate stability experiments and analysis for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Luttrell, C.R.; Yahr, G.T.

    1993-05-01

    The planned reactor for the Advanced Neutron Source (ANS) will use closely spaced arrays of involute-shaped fuel plates that will be cooled by water flowing through the channels between the plates. There is concern that at certain coolant flow velocities, adjacent plates may deflect and touch, with resulting failure of the plates. Experiments have been conducted at the Oak Ridge National Laboratory to examine this potential phenomenon. Results of the experiments and comparison with analytical predictions are reported. The tests were conducted using full-scale epoxy plate models of the aluminum/uranium silicide ANS involute-shaped fuel plates. Use of epoxy plates and model theory allowed lower flow velocities and pressures to explore the potential failure mechanism. Plate deflections and channel pressures as functions of the flow velocity are examined. Comparisons with mathematical models are noted

  2. ORNL Pre-test Analyses of A Large-scale Experiment in STYLE

    International Nuclear Information System (INIS)

    Williams, Paul T.; Yin, Shengjun; Klasky, Hilda B.; Bass, Bennett Richard

    2011-01-01

    Oak Ridge National Laboratory (ORNL) is conducting a series of numerical analyses to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management non-RPV Components (STYLE). STYLE is a European cooperative effort to assess the structural integrity of (non-reactor pressure vessel) reactor coolant pressure boundary components relevant to ageing and life-time management and to integrate the knowledge created in the project into mainstream nuclear industry assessment codes. ORNL contributes work-in-kind support to STYLE Work Package 2 (Numerical Analysis/Advanced Tools) and Work Package 3 (Engineering Assessment Methods/LBB Analyses). This paper summarizes the current status of ORNL analyses of the STYLE Mock-Up3 large-scale experiment to simulate and evaluate crack growth in a cladded ferritic pipe. The analyses are being performed in two parts. In the first part, advanced fracture mechanics models are being developed and performed to evaluate several experiment designs taking into account the capabilities of the test facility while satisfying the test objectives. Then these advanced fracture mechanics models will be utilized to simulate the crack growth in the large scale mock-up test. For the second part, the recently developed ORNL SIAM-PFM open-source, cross-platform, probabilistic computational tool will be used to generate an alternative assessment for comparison with the advanced fracture mechanics model results. The SIAM-PFM probabilistic analysis of the Mock-Up3 experiment will utilize fracture modules that are installed into a general probabilistic framework. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those results generated using the deterministic 3D nonlinear finite-element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite

  3. Reactive flow modeling of small scale detonation failure experiments for a baseline non-ideal explosive

    Energy Technology Data Exchange (ETDEWEB)

    Kittell, David E.; Cummock, Nick R.; Son, Steven F. [School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-08-14

    Small scale characterization experiments using only 1–5 g of a baseline ammonium nitrate plus fuel oil (ANFO) explosive are discussed and simulated using an ignition and growth reactive flow model. There exists a strong need for the small scale characterization of non-ideal explosives in order to adequately survey the wide parameter space in sample composition, density, and microstructure of these materials. However, it is largely unknown in the scientific community whether any useful or meaningful result may be obtained from detonation failure, and whether a minimum sample size or level of confinement exists for the experiments. In this work, it is shown that the parameters of an ignition and growth rate law may be calibrated using the small scale data, which is obtained from a 35 GHz microwave interferometer. Calibration is feasible when the samples are heavily confined and overdriven; this conclusion is supported with detailed simulation output, including pressure and reaction contours inside the ANFO samples. The resulting shock wave velocity is most likely a combined chemical-mechanical response, and simulations of these experiments require an accurate unreacted equation of state (EOS) in addition to the calibrated reaction rate. Other experiments are proposed to gain further insight into the detonation failure data, as well as to help discriminate between the role of the EOS and reaction rate in predicting the measured outcome.

  4. Theory of critical phenomena in finite-size systems scaling and quantum effects

    CERN Document Server

    Brankov, Jordan G; Tonchev, Nicholai S

    2000-01-01

    The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals

  5. Scale-model Experiment of Magnetoplasma Sail for Future Deep Space Missions

    International Nuclear Information System (INIS)

    Funaki, Ikkoh; Yamakawa, Hiroshi; Ueno, Kazuma; Kimura, Toshiyuki; Ayabe, Tomohiro; Horisawa, Hideyuki

    2008-01-01

    When Magnetic sail (MagSail) spacecraft is operated in space, the supersonic solar wind plasma flow is blocked by an artificially produced magnetic cavity to accelerate the spacecraft in the direction leaving the Sun. To evaluate the momentum transferring process from the solar wind to the coil onboard the MagSail spacecraft, we arranged a laboratory experiment of MagSail spacecraft. Based on scaling considerations, a solenoidal coil was immersed into the plasma flow from a magnetoplasmadynamic arcjet in a quasi-steady mode of about 1 ms duration. In this setup, it is confirmed that a magnetic cavity, which is similar to that of the geomagnetic field, was formed around the coil to produce thrust in the ion Larmor scale interaction. Also, the controllability of magnetic cavity size by a plasma jet from inside the coil of MagSail is demonstrated, although the thrust characteristic of the MagSail with plasma jet, which is so called plasma sail, is to be clarified in our next step

  6. Application of Network Scale Up Method in the Estimation of Population Size for Men Who Have Sex with Men in Shanghai, China.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available Men who have sex with men (MSM are at high risk of HIV infection. For developing proper interventions, it is important to know the size of MSM population. However, size estimation of MSM populations is still a significant public health challenge due to high cost, hard to reach and stigma associated with the population.We aimed to estimate the social network size (c value in general population and the size of MSM population in Shanghai, China by using the net work scale-up method.A multistage random sampling was used to recruit participants aged from 18 to 60 years who had lived in Shanghai for at least 6 months. The "known population method" with adjustment of backward estimation and regression model was applied to estimate the c value. And the MSM population size was further estimated using an adjusted c value taking into account for the transmission effect through social respect level towards MSM.A total of 4017 participants were contacted for an interview, and 3907 participants met the inclusion criterion. The social network size (c value of participants was 236 after adjustment. The estimated size of MSM was 36354 (95% CI: 28489-44219 for the male Shanghaies aged 18 to 60 years, and the proportion of MSM among the total male population aged 18 to 60 years in Shanghai was 0.28%.We employed the network scale-up method and used a wide range of data sources to estimate the size of MSM population in Shanghai, which is useful for HIV prevention and intervention among the target population.

  7. Metre-wavelength fine structure in 30 extragalactic radio sources with sizes of a few arcsec

    International Nuclear Information System (INIS)

    Banhatti, D.G.; Ananthakrishnan, S.; Pramesh Rao, A.

    1983-01-01

    Interplanetary scintillation (IPS) observations at 327 MHz of an unbiased sample of 30 extragalactic radio sources having overall sizes between 1 and 4 arcsec, and flux densities greater than 1 Jy at 327 MHz are reported. From VLBI observations, these sources have been reported to contain compact components of sizes < approx.= to 0.02 arcsec contributing on an average about 25 per cent of the total emission at 5 HGz. The IPS observations show that about 45 per cent of the total emission at 327 MHz arises from structures of sizes between 0.05 and 0.5 arcsec (corresponding typically to 0.5 to 5 kpc). A comparison of the VLBI and IPS results indicates that the VLBI and IPS components probably refer to the same physical features in these sources. (author)

  8. Vertebral scale system to measure canine heart size in radiographs

    International Nuclear Information System (INIS)

    Buchanan, J.W.; Bucheler, J.

    1995-01-01

    A method for measuring canine heart size in radiographs was developed on the basis that there is a good correlation between heart size and body length regardless of the conformation of the thorax. The lengths of the long and short axes of the heart of 100 clinically normal dogs were determined with calipers, and the dimensions were scaled against the length of vertebrae dorsal to the heart beginning with T4. The sum of the long and short axes of the heart expressed as vertebral heart size was 9.7 +/- 0.5 vertebrae. The differences between dogs with a wide or deep thorax, males and females, and right or left lateral recumbency were not significant. The caudal vena cava was 0.75 vertebrae +/- 0.13 in comparison to the length of the vertebra over the tracheal bifurcation

  9. Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in East Asia

    Directory of Open Access Journals (Sweden)

    J. S. Han

    2006-01-01

    Full Text Available Size- and time-resolved aerosol samples were collected using an eight-stage Davis rotating unit for monitoring (DRUM sampler from 29 March to 29 May in 2002 at Gosan, Jeju Island, Korea, which is one of the representative background sites in East Asia. These samples were analyzed using synchrotron X-ray fluorescence for 3-h average concentrations of 19 elements consisting of S, Si, Al, Fe, Ca, Cl, Cu, Zn, Ti, K, Mn, Pb, Ni, V, Se, As, Rb, Cr, Br. The size-resolved data sets were then analyzed using the positive matrix factorization (PMF technique in order to identify possible sources and estimate their contribution to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Fifteen sources were resolved in eight size ranges (0.07~12 μm and included continental soil, local soil, sea salt, biomass/biofuel burning, coal combustion, oil heating furnace, residual oil fired boiler, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, copper smelter and volcanic emission. PMF analysis of size-resolved source contributions showed that natural sources represented by local soil, sea salt and continental soil contributed about 79% to the predicted primary particulate matter (PM mass in the coarse size range (1.15~12 μm. On the other hand, anthropogenic sources such as coal combustion and biomass/biofuel burning contributed about 60% in the fine size range (0.56~2.5 μm. The diesel vehicle source contributed the most in the ultra-fine size range (0.07~0.56 μm and was responsible for about 52% of the primary PM mass.

  10. A FLUX SCALE FOR SOUTHERN HEMISPHERE 21 cm EPOCH OF REIONIZATION EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Daniel C.; Bowman, Judd [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Parsons, Aaron R.; Ali, Zaki; Pober, Jonathan C. [Astronomy Department, University of California, Berkeley, CA (United States); Aguirre, James E.; Moore, David F. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Observatory, Socorro, NM (United States); DeBoer, David R.; Dexter, Matthew R.; MacMahon, Dave H. E. [Radio Astronomy Lab., University of California, Berkeley, CA (United States); Gugliucci, Nicole E.; Klima, Pat [National Radio Astronomy Observatory, Charlottesville, VA (United States); Manley, Jason R.; Walbrugh, William P. [Square Kilometer Array, South Africa Project, Cape Town (South Africa); Stefan, Irina I. [Cavendish Laboratory, Cambridge (United Kingdom)

    2013-10-20

    We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease our reliance on an accurate beam calibration, we focus on calibrating sources in a narrow declination range from –46° to –40°. Since sources at similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations; 90% are found to confirm and refine a power-law model for flux density. Of particular importance is the new Pictor A flux model, which is accurate to 1.4% and shows that between 100 MHz and 2 GHz, in contrast with previous models, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382 ± 5.4 Jy and a spectral index of –0.76 ± 0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor A's spectrum make it an excellent calibrator in a band important for experiments seeking to measure 21 cm emission from the epoch of reionization.

  11. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.; Sutula, Martha; Caron, David A.; Chao, Yi; Farrara, John D.; Frenzel, Hartmut; Jones, Burton; Robertson, George; McLaughlin, Karen; Sengupta, Ashmita

    2014-01-01

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  12. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.

    2014-01-26

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  13. An evaluation of the Positive Emotional Experiences Scale: A preliminary analysis

    Directory of Open Access Journals (Sweden)

    Rene van Wyk

    2016-11-01

    Full Text Available Orientation: The positive organisational behaviour movement emphasises the advantages of psychological strengths in business. The psychological virtues of positive emotional experiences can potentially promote human strengths to the advantages of business functioning and the management of work conditions. This is supported by Fredrickson’s broaden-and-build theory that emphasises the broadening of reactive thought patterns through experiences of positive emotions. Research purpose: A preliminary psychometric evaluation of a positive measurement of dimensions of emotional experiences in the workplace, by rephrasing the Kiefer and Barclay Toxic Emotional Experiences Scale. Motivation for the study: This quantitative Exploratory Factor Analysis investigates the factorial structure and reliability of the Positive Emotional Experiences Scale, a positive rephrased version of the Toxic Emotional Experiences Scale. Research approach, design and method: This Exploratory Factor Analysis indicates an acceptable three-factor model for the Positive Emotional Experiences Scale. These three factors are: (1 psychological recurrent positive state, (2 social connectedness and (3 physical refreshed energy, with strong Cronbach’s alphas of 0.91, 0.91 and 0.94, respectively. Main findings: The three-factor model of the Positive Emotional Experiences Scale provides a valid measure in support of Fredrickson’s theory of social, physical and psychological endured personal resources that build positive emotions. Practical/Managerial implications: Knowledge gained on positive versus negative emotional experiences could be applied by management to promote endured personal resources that strengthen positive emotional experiences. Contribution/value-add: The contribution of this rephrased Positive Emotional Experiences Scale provides a reliable measure of assessment of the social, physical and endured psychological and personal resources identified in Fredrickson

  14. Studying time of flight imaging through scattering media across multiple size scales (Conference Presentation)

    Science.gov (United States)

    Velten, Andreas

    2017-05-01

    Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.

  15. Energy scaling of terahertz-wave parametric sources.

    Science.gov (United States)

    Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun

    2015-02-23

    Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.

  16. The mechanical design and simulation of a scaled H{sup −} Penning ion source

    Energy Technology Data Exchange (ETDEWEB)

    Rutter, T., E-mail: theo.rutter@stfc.ac.uk; Faircloth, D.; Turner, D.; Lawrie, S. [Rutherford Appleton Laboratory, Didcot OX110QX (United Kingdom)

    2016-02-15

    The existing ISIS Penning H{sup −} source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  17. Finite-size scaling for quantum chains with an oscillatory energy gap

    International Nuclear Information System (INIS)

    Hoeger, C.; Gehlen, G. von; Rittenberg, V.

    1984-07-01

    We show that the existence of zeroes of the energy gap for finite quantum chains is related to a nonvanishing wavevector. Finite-size scaling ansaetze are formulated for incommensurable and oscillatory structures. The ansaetze are verified in the one-dimensional XY model in a transverse field. (orig.)

  18. The gaseous haloes of evolving galaxies: a probe using the linear sizes of radio sources

    International Nuclear Information System (INIS)

    Subramanian, K.; Swarup, G.

    1990-01-01

    As galaxies form and evolve, their gaseous haloes are expected to undergo corresponding evolution. We examine here whether observations of the linear sizes of radio sources can be used to probe such evolution. For this purpose we first represent the gas density at various stages of galaxy formation and evolution by means of simple model density profiles, and then work out the expected linear sizes (l) of radio sources in these models. (author)

  19. Settlement-Size Scaling among Prehistoric Hunter-Gatherer Settlement Systems in the New World.

    Directory of Open Access Journals (Sweden)

    W Randall Haas

    Full Text Available Settlement size predicts extreme variation in the rates and magnitudes of many social and ecological processes in human societies. Yet, the factors that drive human settlement-size variation remain poorly understood. Size variation among economically integrated settlements tends to be heavy tailed such that the smallest settlements are extremely common and the largest settlements extremely large and rare. The upper tail of this size distribution is often formalized mathematically as a power-law function. Explanations for this scaling structure in human settlement systems tend to emphasize complex socioeconomic processes including agriculture, manufacturing, and warfare-behaviors that tend to differentially nucleate and disperse populations hierarchically among settlements. But, the degree to which heavy-tailed settlement-size variation requires such complex behaviors remains unclear. By examining the settlement patterns of eight prehistoric New World hunter-gatherer settlement systems spanning three distinct environmental contexts, this analysis explores the degree to which heavy-tailed settlement-size scaling depends on the aforementioned socioeconomic complexities. Surprisingly, the analysis finds that power-law models offer plausible and parsimonious statistical descriptions of prehistoric hunter-gatherer settlement-size variation. This finding reveals that incipient forms of hierarchical settlement structure may have preceded socioeconomic complexity in human societies and points to a need for additional research to explicate how mobile foragers came to exhibit settlement patterns that are more commonly associated with hierarchical organization. We propose that hunter-gatherer mobility with preferential attachment to previously occupied locations may account for the observed structure in site-size variation.

  20. Size of nuclear sources from measurements of proton-proton correlations at small relative momentum

    International Nuclear Information System (INIS)

    Rebreyend, D.; Kox, S.; Merchez, F.; Noren, B.; Perrin, C.; Khelfaoui, B.; Gondrand, J.C.; Bondorf, J.P.

    1990-01-01

    This contribution will present recent measurements performed on light heavy ion reactions at intermediate energies. Nuclear source sizes were determined by measuring the correlation at small relative momentum, between two protons detected in the EMRIC set-up. This technique allows the determination of the extent of the emitting source by constructing a correlation function for the coincident protons and analyzing it in the framework of a final state interaction model. We found the apparent source size to be large compared to the dimension of the studied system and low sensitivity of the extracted radii as a function of the target mass and detection angle. We will show that simulations may be needed to fully estimate the correlation induced by detectors with small angular acceptance

  1. Size-dependent giant-magnetoresistance in millimeter scale GaAs/AlGaAs 2D electron devices

    Science.gov (United States)

    Mani, R. G.

    2013-01-01

    Large changes in the electrical resistance induced by the application of a small magnetic field are potentially useful for device-applications. Such Giant Magneto-Resistance (GMR) effects also provide new insights into the physical phenomena involved in the associated electronic transport. This study examines a “bell-shape” negative GMR that grows in magnitude with decreasing temperatures in mm-wide devices fabricated from the high-mobility GaAs/AlGaAs 2-Dimensional Electron System (2DES). Experiments show that the span of this magnetoresistance on the magnetic-field-axis increases with decreasing device width, W, while there is no concurrent Hall resistance, Rxy, correction. A multi-conduction model, including negative diagonal-conductivity, and non-vanishing off-diagonal conductivity, reproduces experimental observations. The results suggest that a size effect in the mm-wide 2DES with mm-scale electron mean-free-paths is responsible for the observed “non-ohmic” size-dependent negative GMR. PMID:24067264

  2. Large-scale hydrogen combustion experiments: Volume 2, Data plots: Final report

    International Nuclear Information System (INIS)

    Thompson, R.T.; Torok, R.C.; Randall, D.S.; Sullivan, J.S.; Thompson, L.B.; Haugh, J.J.

    1988-10-01

    Forty large-scale experiments to investigate the combustion behavior of hydrogen during postulated degraded core accidents were conducted in a 16 m (52 ft) diameter sphere. The performance of safety related equipment and cable also was examined. Combustion was initiated by thermal igniters in both premixed hydrogen air-steam atmospheres and during the continuous injection of hydrogen and steam. The effects of steam, igniter location, water sprays, fans and injection rates were studied. Measurements were made of gas concentrations, combustion pressures, temperatures and heat fluxes. Burn fractions and flame speeds also were determined. Near-infrared seeing cameras permitted direct observation of the hydrogen burns. Combustion pressures and temperatures in premixed atmospheres with hydrogen concentrations up to 13 vol% (steam saturated) were less than the theoretical maximum values. Multiple deflagrations were not encountered during continuous hydrogen injection with pre-activated igniters. Moderate pressure rises resulted from diffusion flames. These flames generally were found above the source. Combustion results have been compared to smaller scale experiments. Several safety related equipment items exhibited degraded performance after a number of tests. Most cable samples passed their electrical checks at the end of the test series. These experiments confirm the effectiveness of the deliberate ignition approach to controlling hydrogen. They also provide data for validating computer codes used to predict hydrogen combustion during degraded core accidents, and for assessing the performance of safety related equipment in such environments

  3. Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions.

    Science.gov (United States)

    Pan, Yuepeng; Tian, Shili; Li, Xingru; Sun, Ying; Li, Yi; Wentworth, Gregory R; Wang, Yuesi

    2015-12-15

    Public concerns over airborne trace elements (TEs) in metropolitan areas are increasing, but long-term and multi-site observations of size-resolved aerosol TEs in China are still lacking. Here, we identify highly elevated levels of atmospheric TEs in megacities and industrial sites in a Beijing-Tianjin-Hebei urban agglomeration relative to background areas, with the annual mean values of As, Pb, Ni, Cd and Mn exceeding the acceptable limits of the World Health Organization. Despite the spatial variability in concentrations, the size distribution pattern of each trace element was quite similar across the region. Crustal elements of Al and Fe were mainly found in coarse particles (2.1-9 μm), whereas the main fraction of toxic metals, such as Cu, Zn, As, Se, Cd and Pb, was found in submicron particles (metals were enriched by over 100-fold relative to the Earth's crust. The size distributions of Na, Mg, K, Ca, V, Cr, Mn, Ni, Mo and Ba were bimodal, with two peaks at 0.43-0.65 μm and 4.7-5.8 μm. The combination of the size distribution information, principal component analysis and air mass back trajectory model offered a robust technique for distinguishing the main sources for airborne TEs, e.g., soil dust, fossil fuel combustion and industrial emissions, at different sites. In addition, higher elemental concentrations coincided with westerly flow, indicating that polluted soil and fugitive dust were major sources of TEs on the regional scale. However, the contribution of coal burning, iron industry/oil combustion and non-ferrous smelters to atmospheric metal pollution in Northern China should be given more attention. Considering that the concentrations of heavy metals associated with fine particles in the target region were significantly higher than those in other Asian sites, the implementations of strict environmental standards in China are required to reduce the amounts of these hazardous pollutants released into the atmosphere. Copyright © 2015 Elsevier B

  4. Status and plans for the development of a RF negative ion source for ITER NBI

    International Nuclear Information System (INIS)

    Franzen, P.; Falter, H.D.; Speth, E.; Kraus, W.; Bandyopadhyay, M.; Encheva, A.; Fantz, U.; Franke, Th.; Heinemann, B.; Holtum, D.; Martens, C.; McNeely, P.; Riedl, R.; Tanga, A.; Wilhelm, R.

    2005-01-01

    IPP Garching is currently developing a RF driven negative ion source for the ITER neutral beam injection system as an alternative to the present design with filamented sources. This paper reports an overview on the present status and the further prospects of the RF source development. Current densities of 26 mA/cm 2 and 15 mA/cm 2 have been achieved for hydrogen and deuterium, respectively, at a pressure of less than 0.5 Pa and an electron/ion ratio of 1. Size scaling experiments indicate a maximum extraction area which can be illuminated by a driver without losses of beam quality and uniformity. The preparation of a test facility for pulse lengths of up to 3600 s is proceeding; commissioning is expected end of 2004. As an intermediate step tests of a large source with the half size of the ITER source are foreseen to be commissioned in 2005

  5. Source term estimation for small sized HTRs

    International Nuclear Information System (INIS)

    Moormann, R.

    1992-08-01

    Accidents which have to be considered are core heat-up, reactivity transients, water of air ingress and primary circuit depressurization. The main effort of this paper belongs to water/air ingress and depressurization, which requires consideration of fission product plateout under normal operation conditions; for the latter it is clearly shown, that absorption (penetration) mechanisms are much less important than assumed sometimes in the past. Source term estimation procedures for core heat-up events are shortly reviewed; reactivity transients are apparently covered by them. Besides a general literature survey including identification of areas with insufficient knowledge this paper contains some estimations on the thermomechanical behaviour of fission products in water in air ingress accidents. Typical source term examples are also presented. In an appendix, evaluations of the AVR experiments VAMPYR-I and -II with respect to plateout and fission product filter efficiency are outlined and used for a validation step of the new plateout code SPATRA. (orig.)

  6. Turbulent Concentration of MM-Size Particles in the Protoplanetary Nebula: Scaled-Dependent Multiplier Functions

    Science.gov (United States)

    Cuzzi, Jeffrey N.; Hartlep, Thomas; Weston, B.; Estremera, Shariff Kareem

    2014-01-01

    The initial accretion of primitive bodies (asteroids and TNOs) from freely-floating nebula particles remains problematic. Here we focus on the asteroids where constituent particle (read "chondrule") sizes are observationally known; similar arguments will hold for TNOs, but the constituent particles in those regions will be smaller, or will be fluffy aggregates, and are unobserved. Traditional growth-bysticking models encounter a formidable "meter-size barrier" [1] (or even a mm-cm-size barrier [2]) in turbulent nebulae, while nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids [3]. Even if growth by sticking could somehow breach the meter size barrier, other obstacles are encountered through the 1-10km size range [4]. Another clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids [5]; scenarios leading directly from independent nebula particulates to this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios [6-8]. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. The typical sizes of planetesimals and the rate of their formation [7,8] are determined by a statistical model with properties inferred from large numerical simulations of turbulence [9]. Nebula turbulence can be described by its Reynolds number Re = L/eta sup(4/3), where L = ETA alpha sup (1/2) the largest eddy scale, H is the nebula gas vertical scale height, and a the nebula turbulent viscosity parameter, and ? is the Kolmogorov or smallest scale in turbulence (typically about 1km), with eddy turnover time t?. In the nebula, Re is far larger than any numerical simulation can

  7. A new approach to designing reduced scale thermal-hydraulic experiments

    International Nuclear Information System (INIS)

    Lapa, Celso M.F.; Sampaio, Paulo A.B. de; Pereira, Claudio M.N.A.

    2004-01-01

    Reduced scale experiments are often employed in engineering because they are much cheaper than real scale testing. Unfortunately, though, it is difficult to design a thermal-hydraulic circuit or equipment in reduced scale capable of reproducing, both accurately and simultaneously, all the physical phenomena that occur in real scale and operating conditions. This paper presents a methodology to designing thermal-hydraulic experiments in reduced scale based on setting up a constrained optimization problem that is solved using genetic algorithms (GAs). In order to demonstrate the application of the methodology proposed, we performed some investigations in the design of a heater aimed to simulate the transport of heat and momentum in the core of a pressurized water reactor (PWR) at 100% of nominal power and non-accident operating conditions. The results obtained show that the proposed methodology is a promising approach for designing reduced scale experiments

  8. Positional dependence of scale size and shape in butterfly wings: wing-wide phenotypic coordination of color-pattern elements and background.

    Science.gov (United States)

    Kusaba, Kiseki; Otaki, Joji M

    2009-02-01

    Butterfly wing color-patterns are a phenotypically coordinated array of scales whose color is determined as cellular interpretation outputs for morphogenic signals. Here we investigated distribution patterns of scale shape and size in relation to position and coloration on the hindwings of a nymphalid butterfly Junonia orithya. Most scales had a smooth edge but scales at and near the natural and ectopic eyespot foci and in the postbasal area were jagged. Scale size decreased regularly from the postbasal to distal areas, and eyespots occasionally had larger scales than the background. Reasonable correlations were obtained between the eyespot size and focal scale size in females. Histological and real-time individual observations of the color-pattern developmental sequence showed that the background brown and blue colors expanded from the postbasal to distal areas independently from the color-pattern elements such as eyespots. These data suggest that morphogenic signals for coloration directly or indirectly influence the scale shape and size and that the blue "background" is organized by a long-range signal from an unidentified organizing center in J. orithya.

  9. Very high energy emission sources beyond the Galaxy

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Active Galactic Nuclei (AGN are considered as potential extragalactic sources of very and ultra high energy cosmic rays. According to theoretical predictions cosmic ray acceleration can take place at the shock created by the expanding cocoons around active galactic nuclei as well as at AGN jets. The measurements of AGN TeV spectra, the variability time scale of TeV emission can provide essential information on the dynamics of AGN jets, the localization of acceleration region and an estimation of its size. SHALON observations yielded data on extragalactic sources of different AGN types in the energy range of 800 GeV–100 TeV. The data from SHALON observations are compared with those from other experiments at high and very high energies.

  10. Predicting the size and elevation of future mountain forests: Scaling macroclimate to microclimate

    Science.gov (United States)

    Cory, S. T.; Smith, W. K.

    2017-12-01

    Global climate change is predicted to alter continental scale macroclimate and regional mesoclimate. Yet, it is at the microclimate scale that organisms interact with their physiochemical environments. Thus, to predict future changes in the biota such as biodiversity and distribution patterns, a quantitative coupling between macro-, meso-, and microclimatic parameters must be developed. We are evaluating the impact of climate change on the size and elevational distribution of conifer mountain forests by determining the microclimate necessary for new seedling survival at the elevational boundaries of the forest. This initial life stage, only a few centimeters away from the soil surface, appears to be the bottleneck to treeline migration and the expansion or contraction of a conifer mountain forest. For example, survival at the alpine treeline is extremely rare and appears to be limited to facilitated microsites with low sky exposure. Yet, abundant mesoclimate data from standard weather stations have rarely been scaled to the microclimate level. Our research is focusing on an empirical downscaling approach linking microclimate measurements at favorable seedling microsites to the meso- and macro-climate levels. Specifically, mesoclimate values of air temperature, relative humidity, incident sunlight, and wind speed from NOAA NCEI weather stations can be extrapolated to the microsite level that is physiologically relevant for seedling survival. Data will be presented showing a strong correlation between incident sunlight measured at 2-m and seedling microclimate, despite large differences from seedling/microsite temperatures. Our downscaling approach will ultimately enable predictions of microclimate from the much more abundant mesoclimate data available from a variety of sources. Thus, scaling from macro- to meso- to microclimate will be possible, enabling predictions of climate change models to be translated to the microsite level. This linkage between measurement

  11. Radioactive source simulation for half-life experiment

    International Nuclear Information System (INIS)

    Wanitsuksombut, Warapon; Decthyothin, Chanti

    1999-01-01

    A simulation of radioactivity decay by using programmable light source with a few minutes half-life is suggested. A photodiode with digital meter label in cps is use instead of radiation detector. Both light source and photodiode are installed in a black box to avoid surrounding room light. The simulation set can also demonstrate Inverse Square Law experiment of radiation penetration. (author)

  12. Medium-scale melt-sodium fragmentation experiments

    International Nuclear Information System (INIS)

    Chu, T.Y.; Beattie, A.G.; Drotning, W.D.; Powers, D.A.

    1979-01-01

    The results of a series of fragmentation experiments involving up to 20 Kg of thermitically produced high temperature melts and 23 Kg of sodium are presented. Except for one experiment where some centimeter size particles are observed, the fragment distributions seem to be in the range of previous data. Spatial distribution of the fragments in the debris bed appears to be stratified. Scanning electron micrographs of fragments indicate fragmentation to be occurring in the molten state for the more intense interactions observed. Interaction data obtained show quiescent periods of 0.5 to 1.5 second between pressure pulses. The force impulse values per unit mass of melt seems to be in the same range as previous experiments

  13. Time scales of foam stability in shallow conduits: Insights from analogue experiments

    Science.gov (United States)

    Spina, L.; Scheu, B.; Cimarelli, C.; Arciniega-Ceballos, A.; Dingwell, D. B.

    2016-10-01

    Volcanic systems can exhibit periodical trends in degassing activity, characterized by a wide range of time scales. Understanding the dynamics that control such periodic behavior can provide a picture of the processes occurring in the feeding system. Toward this end, we analyzed the periodicity of outgassing in a series of decompression experiments performed on analogue material (argon-saturated silicone oil plus glass beads/fibers) scaled to serve as models of basaltic magma. To define the effects of liquid viscosity and crystal content on the time scale of outgassing, we investigated both: (1) pure liquid systems, at differing viscosities (100 and 1000 Pa s), and (2) particle-bearing suspensions (diluted and semidiluted). The results indicate that under dynamic conditions (e.g., decompressive bubble growth and fluid ascent within the conduit), the periodicity of foam disruption may be up to several orders of magnitude less than estimates based on the analysis of static conditions. This difference in foam disruption time scale is inferred to result from the contribution of bubble shear and bubble growth to inter-bubble film thinning. The presence of particles in the semidiluted regime is further linked to shorter bubble bursting times, likely resulting from contributions of the presence of a solid network and coalescence processes to the relative increase in bubble breakup rates. Finally, it is argued that these experiments represent a good analogue of gas-piston activity (i.e., the periodical rise-and-fall of a basaltic lava lake surface), implying a dominant role for shallow foam accumulation as a source process for these phenomena.

  14. Chemical Explosion Experiments to Improve Nuclear Test Monitoring - Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    International Nuclear Information System (INIS)

    Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; Mellors, Robert J.; Patton, Howard J.; Sussman, Aviva J.; Townsend, Margaret J.; Walter, William R.

    2013-01-01

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy's National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poor performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth

  15. Anisotropic modulus stabilisation. Strings at LHC scales with micron-sized extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Burgess, C.P. [McMaster Univ., Hamilton (Canada). Dept. of Physics and Astronomy; Perimeter Institute for Theoretical Physics, Waterloo (Canada); Quevedo, F. [Cambridge Univ. (United Kingdom). DAMTP/CMS; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2011-04-15

    We construct flux-stabilised Type IIB string compactifications whose extra dimensions have very different sizes, and use these to describe several types of vacua with a TeV string scale. Because we can access regimes where two dimensions are hierarchically larger than the other four, we find examples where two dimensions are micron-sized while the other four are at the weak scale in addition to more standard examples with all six extra dimensions equally large. Besides providing ultraviolet completeness, the phenomenology of these models is richer than vanilla large-dimensional models in several generic ways: (i) they are supersymmetric, with supersymmetry broken at sub-eV scales in the bulk but only nonlinearly realised in the Standard Model sector, leading to no MSSM superpartners for ordinary particles and many more bulk missing-energy channels, as in supersymmetric large extra dimensions (SLED); (ii) small cycles in the more complicated extra-dimensional geometry allow some KK states to reside at TeV scales even if all six extra dimensions are nominally much larger; (iii) a rich spectrum of string and KK states at TeV scales; and (iv) an equally rich spectrum of very light moduli exist having unusually small (but technically natural) masses, with potentially interesting implications for cosmology and astrophysics that nonetheless evade new-force constraints. The hierarchy problem is solved in these models because the extra-dimensional volume is naturally stabilised at exponentially large values: the extra dimensions are Calabi-Yau geometries with a 4D K3-fibration over a 2D base, with moduli stabilised within the well-established LARGE-Volume scenario. The new technical step is the use of poly-instanton corrections to the superpotential (which, unlike for simpler models, are present on K3-fibered Calabi-Yau compactifications) to obtain a large hierarchy between the sizes of different dimensions. For several scenarios we identify the low-energy spectrum and

  16. Anisotropic modulus stabilisation. Strings at LHC scales with micron-sized extra dimensions

    International Nuclear Information System (INIS)

    Cicoli, M.; Burgess, C.P.; Quevedo, F.

    2011-04-01

    We construct flux-stabilised Type IIB string compactifications whose extra dimensions have very different sizes, and use these to describe several types of vacua with a TeV string scale. Because we can access regimes where two dimensions are hierarchically larger than the other four, we find examples where two dimensions are micron-sized while the other four are at the weak scale in addition to more standard examples with all six extra dimensions equally large. Besides providing ultraviolet completeness, the phenomenology of these models is richer than vanilla large-dimensional models in several generic ways: (i) they are supersymmetric, with supersymmetry broken at sub-eV scales in the bulk but only nonlinearly realised in the Standard Model sector, leading to no MSSM superpartners for ordinary particles and many more bulk missing-energy channels, as in supersymmetric large extra dimensions (SLED); (ii) small cycles in the more complicated extra-dimensional geometry allow some KK states to reside at TeV scales even if all six extra dimensions are nominally much larger; (iii) a rich spectrum of string and KK states at TeV scales; and (iv) an equally rich spectrum of very light moduli exist having unusually small (but technically natural) masses, with potentially interesting implications for cosmology and astrophysics that nonetheless evade new-force constraints. The hierarchy problem is solved in these models because the extra-dimensional volume is naturally stabilised at exponentially large values: the extra dimensions are Calabi-Yau geometries with a 4D K3-fibration over a 2D base, with moduli stabilised within the well-established LARGE-Volume scenario. The new technical step is the use of poly-instanton corrections to the superpotential (which, unlike for simpler models, are present on K3-fibered Calabi-Yau compactifications) to obtain a large hierarchy between the sizes of different dimensions. For several scenarios we identify the low-energy spectrum and

  17. Annotated bibliography on the impacts of size and scale of silvopasture in the Southeastern U.S.A

    Science.gov (United States)

    Gregory E. Frey; Marcus M. Comer

    2018-01-01

    Silvopasture, the integration of trees and pasture for livestock, has numerous potential benefits for producers. However, size or scale of the operation may affect those benefits. A review of relevant research on the scale and size economies of silvopasture, general forestry, and livestock agriculture was undertaken to better understand potential silvopasture...

  18. First results from the Los Alamos plasma source ion implantation experiment

    International Nuclear Information System (INIS)

    Rej, D.J.; Faehl, R.J.; Gribble, R.J.; Henins, I.; Kodali, P.; Nastasi, M.; Reass, W.A.; Tesmer, J.; Walter, K.C.; Wood, B.P.; Conrad, J.R.; Horswill, N.; Shamim, M.; Sridharan, K.

    1993-01-01

    A new facility is operational at Los Alamos to examine plasma source ion implantation on a large scale. Large workpieces can be treated in a 1.5-m-diameter, 4.6-m-long plasma vacuum chamber. Primary emphasis is directed towards improving tribological properties of metal surfaces. First experiments have been performed at 40 kV with nitrogen plasmas. Both coupons and manufactured components, with surface areas up to 4 m 2 , have been processed. Composition and surface hardness of implanted materials are evaluated. Implant conformality and dose uniformity into practical geometries are estimated with multidimensional particle-in-cell computations of plasma electron and ion dynamics, and Monte Carlo simulations of ion transport in solids

  19. Development of a Dynamic Spot Size Diagnostic for Flash Radiographic X-Ray Sources

    International Nuclear Information System (INIS)

    Droemer, D. W.; Lutz, S.; Devore, D.; Rovang, D.; Portillo, S.; Maenchen, J.

    2003-01-01

    There has been considerable work in recent years in the development of high-brightness, high-dose flash x-ray radiographic sources. Spot size is one of several parameters that helps characterize source performance and provides a figure of merit to assess the suitability of various sources to specific experimental requirements. Time-integrated spot-size measurements using radiographic film and a high-Z rolled-edge object have been used for several years with great success. The Advanced Radiographic Technologies program thrust to improve diode performance requires extending both modeling and experimental measurements into the transient time domain. A new Time Resolved Spot Detector (TRSD) is under development to provide this information. In this paper we report the initial results of the performance of a 148-element scintillating fiber array that is fiber-optically coupled to a gated streak camera. Spatial and temporal resolution results are discussed and the data obtained FR-om the Sand ia National Laboratories (SNL) RITS-3 (Radiographic Integrated Test Stand) accelerator are presented

  20. Scaling and critical behaviour in nuclear fragmentation

    International Nuclear Information System (INIS)

    Campi, X.

    1990-09-01

    These notes review recent results on nuclear fragmentation. An analysis of experimental data from exclusive experiments is made in the framework of modern theories of fragmentation of finite size objects. We discuss the existence of a critical regime of fragmentation and the relevance of scaling and finite size scaling

  1. Size effects in fcc crystals during the high rate compression test

    International Nuclear Information System (INIS)

    Yaghoobi, Mohammadreza; Voyiadjis, George Z.

    2016-01-01

    The present work studies the different mechanisms of size effects in fcc metallic samples of confined volumes during high rate compression tests using large scale atomistic simulation. Different mechanisms of size effects, including the dislocation starvation, source exhaustion, and dislocation source length effect are investigated for pillars with different sizes. The results show that the controlling mechanisms of size effects depend only on the pillar size and not on the value of applied strain. Dislocation starvation is the governing mechanism for very small pillars, i.e. pillars with diameters less than 30 nm. Increasing the pillar size, the dislocation exhaustion mechanism becomes active and there is no more source-limited activations. Next, the average dislocation source length is obtained and compared for pillars with different sizes. The results show that in the case of high rate deformations, the source length does not depend on the sample size, and the related size effects mechanisms are not active anymore. Also, in the case of high rate deformations, there are no size effects for pristine pillars with the diameters larger than 135 nm. In other words, increasing the strain rate decreases the pillar size at which there is no more size effects in the absence of strain gradient. The governing mechanisms of plastic deformation at high strain rate experiments are also different from those of the quasi-static tests. First, the diameter in which the dislocation nucleation at the free surface becomes the dominant mechanism changes from around 200 nm–30 nm. Next, in the case of the pillars with larger diameters, the plastic deformation is governed by the cross-slip instead of the operation of truncated dislocation sources, which is dominant at slower rates of deformation. In order to study the effects of pillar initial structure on the controlling mechanism of size effects, an initial loading and unloading procedure is conducted on some samples prior to the

  2. Pre-test simulations of laboratory-scale heater experiments in tuff. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Ho, Clifford K.

    1995-09-01

    Laboratory-scale heater experiments are Proposed to observe thermohydrologic Processes in tuffaceous rock using existing equipment and x-ray imaging techniques. The purpose of the experiments is to gain understanding of the near-field behavior and thermodynamic environment surrounding a heat source. As a prelude to these experiments, numerical simulations are performed to determine design-related parameters such as optimal heating power and heating duration. In addition, the simulations aid in identifying and understanding thermal processes and mechanisms that may occur under a variety of experimental conditions. Results of the simulations show that convection may play an important role in the heat transfer and thermodynamic environment of the heater if the Rayleigh-Darcy number exceeds a critical value (= 10 for the laboratory experiments) depending on the type of backfill material within the annulus (or drift)

  3. The physics of musical scales: Theory and experiment

    Science.gov (United States)

    Durfee, Dallin S.; Colton, John S.

    2015-10-01

    The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.

  4. The development of the radio frequency driven negative ion source for neutral beam injectors (invited)

    International Nuclear Information System (INIS)

    Kraus, W.; Fantz, U.; Franzen, P.; Froeschle, M.; Heinemann, B.; Riedl, R.; Wuenderlich, D.

    2012-01-01

    Large and powerful negative hydrogen ion sources are required for the neutral beam injection (NBI) systems of future fusion devices. Simplicity and maintenance-free operation favors RF sources, which are developed intensively at the Max-Planck-Institut fuer Plasmaphysik (IPP) since many years. The negative hydrogen ions are generated by caesium-enhanced surface conversion of atoms and positive ions on the plasma grid surface. With a small scale prototype the required high ion current density and the low fraction of co-extracted electrons at low pressure as well as stable pulses up to 1 h could be demonstrated. The modular design allows extension to large source dimensions. This has led to the decision to choose RF sources for the NBI of the international fusion reactor, ITER. As an intermediate step towards the full size ITER source at IPP, the development will be continued with a half-size source on the new ELISE testbed. This will enable to gain experience for the first time with negative hydrogen ion beams from RF sources of these dimensions.

  5. Evaluation of a micro-scale wind model's performance over realistic building clusters using wind tunnel experiments

    Science.gov (United States)

    Zhang, Ning; Du, Yunsong; Miao, Shiguang; Fang, Xiaoyi

    2016-08-01

    The simulation performance over complex building clusters of a wind simulation model (Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system (Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL (Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data (Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier-Stokes equations, and can produce very high-resolution (1-5 m) wind fields of a complex neighborhood scale urban building canopy (~ 1 km ×1 km) in less than 3 min when run on a personal computer.

  6. Corruption in schools? The scale and sources of corruption perceptions in Poland

    Directory of Open Access Journals (Sweden)

    Ilona Wysmułek

    2017-11-01

    Full Text Available This paper analyses the scale and sources of views on the prevalence of corruption in the education sector in Poland. Through the use of public opinion surveys, I answer questions on how the corruption level in Polish educational institutions has changed over time and how it compares to other public institutions (such as the health care sector and police and to the situation in other European countries. My goal is to investigate the effect of individual-level predictors of perceiving schools as corrupt in Poland, with special attention given to structural determinants and previous bribe-giving experiences of respondents. The results reveal that in Poland relatively few respondents have experienced recent acts of giving bribes in schools or perceive educational institutions as corrupt. However, there is a structural pattern behind the sources of negative opinions. The effect of socio-economic determinants on views relating to corruption in Polish schools is strongly pronounced and trends in the opposite direction compared to the effects reported in other European countries.

  7. Many ways to be small: different environmental regulators of size generate distinct scaling relationships in Drosophila melanogaster

    OpenAIRE

    Shingleton, Alexander W.; Estep, Chad M.; Driscoll, Michael V.; Dworkin, Ian

    2009-01-01

    Static allometries, the scaling relationship between body and trait size, describe the shape of animals in a population or species, and are generated in response to variation in genetic or environmental regulators of size. In principle, allometries may vary with the different size regulators that generate them, which can be problematic since allometric differences are also used to infer patterns of selection on morphology. We test this hypothesis by examining the patterns of scaling in Drosop...

  8. Designing and developing portable large-scale JavaScript web applications within the Experiment Dashboard framework

    CERN Document Server

    Andreeva, J; Karavakis, E; Kokoszkiewicz, L; Nowotka, M; Saiz, P; Tuckett, D

    2012-01-01

    Improvements in web browser performance and web standards compliance, as well as the availability of comprehensive JavaScript libraries, provides an opportunity to develop functionally rich yet intuitive web applications that allow users to access, render and analyse data in novel ways. However, the development of such large-scale JavaScript web applications presents new challenges, in particular with regard to code sustainability and team-based work. We present an approach that meets the challenges of large-scale JavaScript web application design and development, including client-side model-view-controller architecture, design patterns, and JavaScript libraries. Furthermore, we show how the approach leads naturally to the encapsulation of the data source as a web API, allowing applications to be easily ported to new data sources. The Experiment Dashboard framework is used for the development of applications for monitoring the distributed computing activities of virtual organisations on the Worldwide LHC Comp...

  9. Designing and developing portable large-scale JavaScript web applications within the Experiment Dashboard framework

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Improvements in web browser performance and web standards compliance, as well as the availability of comprehensive JavaScript libraries, provides an opportunity to develop functionally rich yet intuitive web applications that allow users to access, render and analyse data in novel ways. However, the development of such large-scale JavaScript web applications presents new challenges, in particular with regard to code sustainability and team-based work. We present an approach that meets the challenges of large-scale JavaScript web application design and development, including client-side model-view-controller architecture, design patterns, and JavaScript libraries. Furthermore, we show how the approach leads naturally to the encapsulation of the data source as a web API, allowing applications to be easily ported to new data sources. The Experiment Dashboard framework is used for the development of applications for monitoring the distributed computing activities of virtual organisations on the Worldwide LHC Co...

  10. Nonstandard scaling law of fluctuations in finite-size systems of globally coupled oscillators.

    Science.gov (United States)

    Nishikawa, Isao; Tanaka, Gouhei; Aihara, Kazuyuki

    2013-08-01

    Universal scaling laws form one of the central issues in physics. A nonstandard scaling law or a breakdown of a standard scaling law, on the other hand, can often lead to the finding of a new universality class in physical systems. Recently, we found that a statistical quantity related to fluctuations follows a nonstandard scaling law with respect to the system size in a synchronized state of globally coupled nonidentical phase oscillators [I. Nishikawa et al., Chaos 22, 013133 (2012)]. However, it is still unclear how widely this nonstandard scaling law is observed. In the present paper, we discuss the conditions required for the unusual scaling law in globally coupled oscillator systems and validate the conditions by numerical simulations of several different models.

  11. INPUT DATA OF BURNING WOOD FOR CFD MODELLING USING SMALL-SCALE EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Petr Hejtmánek

    2017-12-01

    Full Text Available The paper presents an option how to acquire simplified input data for modelling of burning wood in CFD programmes. The option lies in combination of data from small- and molecular-scale experiments in order to describe the material as a one-reaction material property. Such virtual material would spread fire, develop the fire according to surrounding environment and it could be extinguished without using complex reaction molecular description. Series of experiments including elemental analysis, thermogravimetric analysis and difference thermal analysis, and combustion analysis were performed. Then the FDS model of burning pine wood in a cone calorimeter was built. In the model where those values were used. The model was validated to HRR (Heat Release Rate from the real cone calorimeter experiment. The results show that for the purpose of CFD modelling the effective heat of combustion, which is one of the basic material property for fire modelling affecting the total intensity of burning, should be used. Using the net heat of combustion in the model leads to higher values of HRR in comparison to the real experiment data. Considering all the results shown in this paper, it was shown that it is possible to simulate burning of wood using the extrapolated data obtained in small-size experiments.

  12. [Inaccurate information about the size of the penis in the Democratic Republic of the Congo: about 21 information sources].

    Science.gov (United States)

    Mulenga, Philippe Cilundika; Kazadi, Alex Bukasa

    2016-01-01

    Penis size is a huge topic of anxiety for a lot of men. Some of them are unhappy with their penis size as shown in the study conducted by Tiggemann in 2008. There are relatively few studies on erect penis size. This may reflect cultural taboos of researchers or doctors interacting with men who are in a state of sexual arousal. On the other hand, it is important for people who announce details on penis size to give the average penis size first and then sizes suggested by the researchers. We performed a cross-sectional survey in the two major urban centres of the Democratic Republic of Congo namely Kinshasa and Lubumbashi over a period of two years from May 2014 to May 2016. A total of 21 information sources constituted our sample, 8 in Kinshasa and 13 in Lubumbashi. We found it sufficient because in our culture discussing about sexual matter is rare. The parameters studied were: the nature of the source, the accuracy of the measurement method, the presence of bibliographical reference, the announced penis size. The majority of information sources used were radio or television broadcastings (23,8%); this can be explained by the fact that there are an increasing number of radio and television stations in our country and especially in large cities. With regard to accuracy of information about penis measurement method when sharing the message about penis size, our study showed that the majority of information sources did not indicate it when they announced penis size to the public (85,7%). Several sources did not report bibliographical references (57,1%). Announced data analysis on penis size showed that the average penis size was: 14 cm (28,6%), 15 cm (23,8%) and 15-20 cm (19%). All these results are intended to offer a warning to all players responsible for diffusing information on sexual health (penis size): scientific rigor consists in seeking information from reliable sources.

  13. Air scaling and modeling studies for the 1/5-scale mark I boiling water reactor pressure suppression experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lai, W.; McCauley, E.W.

    1978-01-04

    Results of table-top model experiments performed to investigate pool dynamics effects due to a postulated loss-of-coolant accident (LOCA) for the Peach Bottom Mark I boiling water reactor containment system guided subsequent conduct of the 1/5-scale torus experiment and provided new insight into the vertical load function (VLF). Pool dynamics results were qualitatively correct. Experiments with a 1/64-scale fully modeled drywell and torus showed that a 90/sup 0/ torus sector was adequate to reveal three-dimensional effects; the 1/5-scale torus experiment confirmed this.

  14. Air scaling and modeling studies for the 1/5-scale mark I boiling water reactor pressure suppression experiment

    International Nuclear Information System (INIS)

    Lai, W.; McCauley, E.W.

    1978-01-01

    Results of table-top model experiments performed to investigate pool dynamics effects due to a postulated loss-of-coolant accident (LOCA) for the Peach Bottom Mark I boiling water reactor containment system guided subsequent conduct of the 1/5-scale torus experiment and provided new insight into the vertical load function (VLF). Pool dynamics results were qualitatively correct. Experiments with a 1/64-scale fully modeled drywell and torus showed that a 90 0 torus sector was adequate to reveal three-dimensional effects; the 1/5-scale torus experiment confirmed this

  15. Weighing Photons Using Bathroom Scales: A Thought Experiment

    Science.gov (United States)

    Huggins, Elisha

    2010-01-01

    Jay Orear, in his introductory physics text, defined the weight of a person as the reading one gets when standing on a (properly calibrated) bathroom scale. Here we will use Jay's definition of weight in a thought experiment to measure the weight of a photon. The thought experiment uses the results of the Pound-Rebka-Snider experiments, Compton…

  16. Conventional sources of fast neutrons in 'cold fusion' experiments

    International Nuclear Information System (INIS)

    Cribier, M.; Spiro, M.; Favier, J.

    1989-04-01

    In 'cold fusion' experiments with heavy water a source of neutrons is the dissociation of deuterium induced by alpha particles emitted by natural occurring radioisotopes. We evaluate the rate of fast neutron emission as a function of the concentration of U, Th, Rn in contact with deuterium and discuss the possibility that the neutrons claimed to have been observed in 'cold fusion' experiments could be due to this conventional source

  17. Steady-state numerical modeling of size effects in micron scale wire drawing

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2017-01-01

    Wire drawing processes at the micron scale have received increased interest as micro wires are increasingly required in electrical components. It is well-established that size effects due to large strain gradient effects play an important role at this scale and the present study aims to quantify...... these effects for the wire drawing process. Focus will be on investigating the impact of size effects on the most favourable tool geometry (in terms of minimizing the drawing force) for various conditions between the wire/tool interface. The numerical analysis is based on a steady-state framework that enables...... convergence without dealing with the transient regime, but still fully accounts for the history dependence as-well as the elastic unloading. Thus, it forms the basis for a comprehensive parameter study. During the deformation process in wire drawing, large plastic strain gradients evolve in the contact region...

  18. Towards modeling intergranular stress corrosion cracks on grain size scales

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2012-01-01

    Highlights: ► Simulating the onset and propagation of intergranular cracking. ► Model based on the as-measured geometry and crystallographic orientations. ► Feasibility, performance of the proposed computational approach demonstrated. - Abstract: Development of advanced models at the grain size scales has so far been mostly limited to simulated geometry structures such as for example 3D Voronoi tessellations. The difficulty came from a lack of non-destructive techniques for measuring the microstructures. In this work a novel grain-size scale approach for modelling intergranular stress corrosion cracking based on as-measured 3D grain structure of a 400 μm stainless steel wire is presented. Grain topologies and crystallographic orientations are obtained using a diffraction contrast tomography, reconstructed within a detailed finite element model and coupled with advanced constitutive models for grains and grain boundaries. The wire is composed of 362 grains and over 1600 grain boundaries. Grain boundary damage initialization and early development is then explored for a number of cases, ranging from isotropic elasticity up to crystal plasticity constitutive laws for the bulk grain material. In all cases the grain boundaries are modeled using the cohesive zone approach. The feasibility of the approach is explored.

  19. Earthquake source properties from instrumented laboratory stick-slip

    Science.gov (United States)

    Kilgore, Brian D.; McGarr, Arthur F.; Beeler, Nicholas M.; Lockner, David A.; Thomas, Marion Y.; Mitchell, Thomas M.; Bhat, Harsha S.

    2017-01-01

    Stick-slip experiments were performed to determine the influence of the testing apparatus on source properties, develop methods to relate stick-slip to natural earthquakes and examine the hypothesis of McGarr [2012] that the product of stiffness, k, and slip duration, Δt, is scale-independent and the same order as for earthquakes. The experiments use the double-direct shear geometry, Sierra White granite at 2 MPa normal stress and a remote slip rate of 0.2 µm/sec. To determine apparatus effects, disc springs were added to the loading column to vary k. Duration, slip, slip rate, and stress drop decrease with increasing k, consistent with a spring-block slider model. However, neither for the data nor model is kΔt constant; this results from varying stiffness at fixed scale.In contrast, additional analysis of laboratory stick-slip studies from a range of standard testing apparatuses is consistent with McGarr's hypothesis. kΔt is scale-independent, similar to that of earthquakes, equivalent to the ratio of static stress drop to average slip velocity, and similar to the ratio of shear modulus to wavespeed of rock. These properties result from conducting experiments over a range of sample sizes, using rock samples with the same elastic properties as the Earth, and scale-independent design practices.

  20. Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations

    Science.gov (United States)

    Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele

    2016-12-01

    Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.

  1. The scaling of urban surface water abundance and impairment with city size

    Science.gov (United States)

    Steele, M. K.

    2018-03-01

    Urbanization alters surface water compared to nonurban landscapes, yet little is known regarding how basic aquatic ecosystem characteristics, such as the abundance and impairment of surface water, differ with population size or regional context. This study examined the abundance, scaling, and impairment of surface water by quantifying the stream length, water body area, and impaired stream length for 3520 cities in the United States with populations from 2500 to 18 million. Stream length, water body area, and impaired stream length were quantified using the National Hydrography Dataset and the EPA's 303(d) list. These metrics were scaled with population and city area using single and piecewise power-law models and related to biophysical factors (precipitation, topography) and land cover. Results show that abundance of stream length and water body area in cities actually increases with city area; however, the per person abundance decreases with population size. Relative to population, impaired stream length did not increase until city populations were > 25,000 people, then scaled linearly with population. Some variation in abundance and impairment was explained by biophysical context and land cover. Development intensity correlated with stream density and impairment; however, those relationships depended on the orientation of the land covers. When high intensity development occupied the local elevation highs (+ 15 m) and undeveloped land the elevation lows, the percentage of impaired streams was less than the opposite land cover orientation (- 15 m) or very flat land. These results show that surface water abundance and impairment across contiguous US cities are influenced by city size and by biophysical setting interacting with land cover intensity.

  2. Analysis of point source size on measurement accuracy of lateral point-spread function of confocal Raman microscopy

    Science.gov (United States)

    Fu, Shihang; Zhang, Li; Hu, Yao; Ding, Xiang

    2018-01-01

    Confocal Raman Microscopy (CRM) has matured to become one of the most powerful instruments in analytical science because of its molecular sensitivity and high spatial resolution. Compared with conventional Raman Microscopy, CRM can perform three dimensions mapping of tiny samples and has the advantage of high spatial resolution thanking to the unique pinhole. With the wide application of the instrument, there is a growing requirement for the evaluation of the imaging performance of the system. Point-spread function (PSF) is an important approach to the evaluation of imaging capability of an optical instrument. Among a variety of measurement methods of PSF, the point source method has been widely used because it is easy to operate and the measurement results are approximate to the true PSF. In the point source method, the point source size has a significant impact on the final measurement accuracy. In this paper, the influence of the point source sizes on the measurement accuracy of PSF is analyzed and verified experimentally. A theoretical model of the lateral PSF for CRM is established and the effect of point source size on full-width at half maximum of lateral PSF is simulated. For long-term preservation and measurement convenience, PSF measurement phantom using polydimethylsiloxane resin, doped with different sizes of polystyrene microspheres is designed. The PSF of CRM with different sizes of microspheres are measured and the results are compared with the simulation results. The results provide a guide for measuring the PSF of the CRM.

  3. Winter-time size distribution and source apportionment of total suspended particulate matter and associated metals in Delhi

    Science.gov (United States)

    Srivastava, Arun; Gupta, Sandeep; Jain, V. K.

    2009-03-01

    A study of the winter time size distribution and source apportionment of total suspended particulate matter (TSPM) and associated heavy metal concentrations have been carried out for the city of Delhi. This study is important from the point of view of implementation of compressed natural gas (CNG) as alternate of diesel fuel in the public transport system in 2001 to reduce the pollution level. TSPM were collected using a five-stage cascade impactor at six sites in the winters of 2005-06. The results of size distribution indicate that a major portion (~ 40%) of TSPM concentration is in the form of PM0.7 (heavy metals associated with various size fractions of TSPM. A very good correlation between coarse and fine size fraction of TSPM was observed. It was also observed that the metals associated with coarse particles have more chances of correlation with other metals; rather they are associated with fine particles. Source apportionment was carried out separately in coarse and fine size modes of TSPM by Chemical Mass Balance Receptor Model (CMB8) as well as by Principle Component Analysis (PCA) of SPSS. Source apportionment by PCA reveals that there are two major sources (possibly vehicular and crustal re-suspension) in both coarse and fine size fractions. Results obtained by CMB8 show the dominance of vehicular pollutants and crustal dust in fine and coarse size mode respectively. Noticeably the dominance of vehicular pollutants are now confined to fine size only whilst during pre CNG era it dominated both coarse and fine size mode. An increase of 42.5, 44.4, 48.2, 38.6 and 38.9% in the concentrations of TSPM, PM10.9, coarse particles, fine particles and lead respectively was observed during pre (2001) to post CNG (2005-06) period.

  4. Scaled Facility Design Approach for Pool-Type Lead-Bismuth Eutectic Cooled Small Modular Reactor Utilizing Natural Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangrok; Shin, Yong-Hoon; Lee, Jueun; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    In low carbon era, nuclear energy is the most prominent energy source of electricity. For steady ecofriendly nuclear energy supply, Generation IV reactors which are future nuclear reactor require safety, sustainability, economics and non-proliferation as four criteria. Lead cooled fast reactor (LFR) is one of these reactor type and Generation IV international forum (GIF) adapted three reference LFR systems which are a small and movable systems with long life without refueling, intermediate size and huge electricity generation system for power grid. NUTRECK (Nuclear Transmutation Energy Center of Korea) has been designed reactor called URANUS (Ubiquitous, Rugged, Accident-forgiving, Non-proliferating, and Ultra-lasting Sustainer) which is small modular reactor and using lead-bismuth eutectic coolant. To prove natural circulation capability of URANUS and analyze design based accidents, scaling mock-up experiment facility will be constructed. In this paper, simple specifications of URANUS will be presented. Then based on this feature, scaling law and scaled facility design results are presented. To validate safety feature and thermodynamics characteristic of URANUS, scaled mockup facility of URANUS is designed based on the scaling law. This mockup adapts two area scale factors, core and lower parts of mock-up are scaled for 3D flow experiment. Upper parts are scaled different size to reduce electricity power and LBE tonnage. This hybrid scaling method could distort some thermal-hydraulic parameters, however, key parameters for experiment will be matched for up-scaling. Detailed design of mock-up will be determined through iteration for design optimization.

  5. Replica scale modelling of long rod tank penetrators

    NARCIS (Netherlands)

    Diederen, A.M.; Hoeneveld, J.C.

    2001-01-01

    Experiments and simulations have been conducted using scale size tungsten alloy penetrators at ordnance velocity against an oblique plate array consisting of an inert sandwich and a base armour. The penetrators are made from 2 types of tungsten alloy with different tensile strength. Two scale sizes

  6. Small-Scale Experiments.10-gallon drum experiment summary

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, David M.

    2015-02-05

    A series of sub-scale (10-gallon) drum experiments were conducted to characterize the reactivity, heat generation, and gas generation of mixtures of chemicals believed to be present in the drum (68660) known to have breached in association with the radiation release event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014, at a scale expected to be large enough to replicate the environment in that drum but small enough to be practical, safe, and cost effective. These tests were not intended to replicate all the properties of drum 68660 or the event that led to its breach, or to validate a particular hypothesis of the release event. They were intended to observe, in a controlled environment and with suitable diagnostics, the behavior of simple mixtures of chemicals in order to determine if they could support reactivity that could result in ignition or if some other ingredient or event would be necessary. There is a significant amount of uncertainty into the exact composition of the barrel; a limited sub-set of known components was identified, reviewed with Technical Assessment Team (TAT) members, and used in these tests. This set of experiments was intended to provide a framework to postulate realistic, data-supported hypotheses for processes that occur in a “68660-like” configuration, not definitively prove what actually occurred in 68660.

  7. Memory sources of dreams: the incorporation of autobiographical rather than episodic experiences.

    Science.gov (United States)

    Malinowski, Josie E; Horton, Caroline L

    2014-08-01

    The present study aimed to explore autobiographical memories (long-lasting memories about the self) and episodic memories (memories about discrete episodes or events) within dream content. We adapted earlier episodic memory study paradigms and reinvestigated the incorporation of episodic memory sources into dreams, operationalizing episodic memory as featuring autonoetic consciousness, which is the feeling of truly re-experiencing or reliving a past event. Participants (n = 32) recorded daily diaries and dream diaries, and reported on wake-dream relations for 2 weeks. Using a new scale, dreams were rated for their episodic richness, which categorized memory sources of dreams as being truly episodic (featuring autonoetic consciousness), autobiographical (containing segregated features of experiences that pertained to waking life) or otherwise. Only one dream (0.5%) was found to contain an episodic memory. However, the majority of dreams (>80%) were found to contain low to moderate incorporations of autobiographical memory features. These findings demonstrate the inactivity of intact episodic memories, and emphasize the activity of autobiographical memory and processing within dreams. Taken together, this suggests that memories for personal experiences are experienced fragmentarily and selectively during dreaming, perhaps in order to assimilate these memories into the autobiographical memory schema. © 2014 European Sleep Research Society.

  8. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    Science.gov (United States)

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  9. Turbulent Concentration of mm-Size Particles in the Protoplanetary Nebula: Scale-Dependent Cascades

    Science.gov (United States)

    Cuzzi, J. N.; Hartlep, T.

    2015-01-01

    The initial accretion of primitive bodies (here, asteroids in particular) from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" (or even a mm-to-cm-size barrier) in turbulent nebulae, making the preconditions for so-called "streaming instabilities" difficult to achieve even for so-called "lucky" particles. Even if growth by sticking could somehow breach the meter size barrier, turbulent nebulae present further obstacles through the 1-10km size range. On the other hand, nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids. Theoretical understanding of nebula turbulence is itself in flux; recent models of MRI (magnetically-driven) turbulence favor low-or- no-turbulence environments, but purely hydrodynamic turbulence is making a comeback, with two recently discovered mechanisms generating robust turbulence which do not rely on magnetic fields at all. An important clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids; scenarios leading directly from independent nebula particulates to large objects of this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles. Thus, while they are arcane, turbulent concentration models acting directly on chondrule size particles are worthy of deeper study. The typical sizes of planetesimals and the rate of their formation can be

  10. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states

    Science.gov (United States)

    de Oliveira, M. M.; da Luz, M. G. E.; Fiore, C. E.

    2015-12-01

    Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions—to single and infinitely many absorbing states—are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems.

  11. Latent hardening size effect in small-scale plasticity

    Science.gov (United States)

    Bardella, Lorenzo; Segurado, Javier; Panteghini, Andrea; Llorca, Javier

    2013-07-01

    We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.

  12. Latent hardening size effect in small-scale plasticity

    International Nuclear Information System (INIS)

    Bardella, Lorenzo; Panteghini, Andrea; Segurado, Javier; Llorca, Javier

    2013-01-01

    We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view. (paper)

  13. Scaling of heavy ion beam probes for reactor-size devices

    International Nuclear Information System (INIS)

    Hickok, R.L.; Jennings, W.C.; Connor, K.A.; Schoch, P.M.

    1984-01-01

    Heavy ion beam probes for reactor-size plasma devices will require beam energies of approximately 10 MeV. Although accelerator technology appears to be available, beam deflection systems and parallel plate energy analyzers present severe difficulties if existing technology is scaled in a straightforward manner. We propose a different operating mode which will use a fixed beam trajectory and multiple cylindrical energy analyzers. Development effort will still be necessary, but we believe the basic technology is available

  14. Large-Scale Structure of the Carina Nebula.

    Science.gov (United States)

    Smith; Egan; Carey; Price; Morse; Price

    2000-04-01

    Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of approximately 100 pc, the thermal infrared emission from the giant H ii region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H ii region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.

  15. Finite size scaling of the Higgs-Yukawa model near the Gaussian fixed point

    Energy Technology Data Exchange (ETDEWEB)

    Chu, David Y.J.; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu, Taiwan (China); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [HISKP, Bonn (Germany); Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Univ. Berlin (Germany)

    2016-12-15

    We study the scaling properties of Higgs-Yukawa models. Using the technique of Finite-Size Scaling, we are able to derive scaling functions that describe the observables of the model in the vicinity of a Gaussian fixed point. A feasibility study of our strategy is performed for the pure scalar theory in the weak-coupling regime. Choosing the on-shell renormalisation scheme gives us an advantage to fit the scaling functions against lattice data with only a small number of fit parameters. These formulae can be used to determine the universality of the observed phase transitions, and thus play an essential role in future investigations of Higgs-Yukawa models, in particular in the strong Yukawa coupling region.

  16. Magnetic susceptibility of road deposited sediments at a national scale – Relation to population size and urban pollution

    International Nuclear Information System (INIS)

    Jordanova, Diana; Jordanova, Neli; Petrov, Petar

    2014-01-01

    Magnetic properties of road dusts from 26 urban sites in Bulgaria are studied. Temporal variations of magnetic susceptibility (χ) during eighteen months monitoring account for approximately 1/3rd of the mean annual values. Analysis of heavy metal contents and magnetic parameters for the fraction d  2  = −0.84) is observed between the ratio ARM/χ and Pb content. It suggests that Pb is related to brake/tyre wear emissions, releasing larger particles and higher Pb during slow driving – braking. Bulk χ values of road dusts per city show significant correlation with population size and mean annual NO 2 concentration on a log-normal scale. The results demonstrate the applicability of magnetic measurements of road dusts for estimation of mean NO 2 levels at high spatial density, which is important for pollution modelling and health risk assessment. - Highlights: • temporal variations of road dust magnetic susceptibility comprise 1/3 of the signal. • high negative correlation between Pb content and magnetic ratio ARM/χ is obtained. • brake- and tyre ware emissions are the main pollution sources of the road dusts. • road dust magnetic susceptibility rises parallel with logarithm of population size. • linear correlation is found between mean NO 2 concentrations and susceptibility. - Magnetic susceptibility of road dusts on a national scale increases proportionally to the population size and mean NO 2 concentrations due to the effect of traffic related pollution

  17. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron G.R., E-mail: cgrgeddes@lbl.gov; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  18. A finite size scaling test of an SU(2) gauge-spin system

    International Nuclear Information System (INIS)

    Tomiya, M.; Hattori, T.

    1984-01-01

    We calculate the correlation functions in the SU(2) gauge-spin system with spins in the fundamental representation. We analyze the result making use of finite size scaling. There is a possibility that there are no second order phase transition lines in this model, contrary to previous assertions. (orig.)

  19. Size, Composition, and Source Profiles of Inhalable Bioaerosols from Colorado Dairies

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, Joshua W; Reynolds, Stephen; Magzamen, Sheryl; VanDyke, Amanda; Gottel, Neil R.; Gilbert, Jack A.; Owens, Sarah M.; Hampton-Marcell, Jarrad; Volckens, John

    2017-06-06

    Particulate matter emissions from agricultural livestock operations contain both chemical and biological constituents that represent a potential human health hazard. The size and composition of these dusts, however, have not been well described. We evaluated the full size distribution (from 0 to 100 μm in aerodynamic diameter) and chemical/biological composition of inhalable dusts inside several Colorado dairy parlors. Four aerodynamic size fractions (<3, 3-10, 10-30, and >30 μm) were collected and analyzed using a combination of physiochemical techniques to understand the structure of bacterial communities and chemical constituents. Airborne particulate mass followed a bimodal size distribution (one mode at 3 μm and a second above 30 μm), which also correlated with the relative concentrations of the following microbiological markers: bacterial endotoxin, 3-hydroxy fatty acids, and muramic acid. Sequencing of the 16S- rRNA components of this aerosol revealed a microbiome derived predominantly from animal sources. Bacterial genera included Staphlyococcus, Pseudomonas, and Streptococcus, all of which have proinflammatory and pathogenic capacity. Our results suggest that the size distribution of bioaerosols emitted by dairy operations extends well above 10 μm in diameter and contains a diverse mixture of potentially hazardous constituents and opportunistic pathogens. These findings should inform the development of more effective emissions control strategies.

  20. Note: A versatile radio-frequency source for cold atom experiments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Na; Wu, Yu-Ping; Min, Hao; Yang, Tao; Jiang, Xiao, E-mail: jiangx@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-08-15

    A radio-frequency (RF) source designed for cold atom experiments is presented. The source uses AD9858, a direct digital synthesizer, to generate the sine wave directly, up to 400 MHz, with sub-Hz resolution. An amplitude control circuit consisting of wideband variable gain amplifier and high speed digital to analog converter is integrated into the source, capable of 70 dB off isolation and 4 ns on-off keying. A field programmable gate array is used to implement a versatile frequency and amplitude co-sweep logic. Owing to modular design, the RF sources have been used on many cold atom experiments to generate various complicated RF sequences, enriching the operation schemes of cold atoms, which cannot be done by standard RF source instruments.

  1. Asymmetric fluid criticality. II. Finite-size scaling for simulations.

    Science.gov (United States)

    Kim, Young C; Fisher, Michael E

    2003-10-01

    The vapor-liquid critical behavior of intrinsically asymmetric fluids is studied in finite systems of linear dimensions L focusing on periodic boundary conditions, as appropriate for simulations. The recently propounded "complete" thermodynamic (L--> infinity) scaling theory incorporating pressure mixing in the scaling fields as well as corrections to scaling [Phys. Rev. E 67, 061506 (2003)] is extended to finite L, initially in a grand canonical representation. The theory allows for a Yang-Yang anomaly in which, when L--> infinity, the second temperature derivative (d2musigma/dT2) of the chemical potential along the phase boundary musigmaT diverges when T-->Tc-. The finite-size behavior of various special critical loci in the temperature-density or (T,rho) plane, in particular, the k-inflection susceptibility loci and the Q-maximal loci--derived from QL(T,L) is identical with 2L/L where m is identical with rho-L--is carefully elucidated and shown to be of value in estimating Tc and rhoc. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model electrolyte including an estimate of the correlation exponent nu that confirms Ising-type character. The treatment is extended to the canonical representation where further complications appear.

  2. Neutron calibration sources in the Daya Bay experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J., E-mail: jianglai.liu@sjtu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai (China); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Carr, R. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Dwyer, D.A. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gu, W.Q. [Department of Physics, Shanghai Jiao Tong University, Shanghai (China); Li, G.S., E-mail: lgs1029@sjtu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai (China); McKeown, R.D. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Department of Physics, College of William and Mary, Williamsburg, VA (United States); Qian, X. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Brookhaven National Laboratory, Upton, NY (United States); Tsang, R.H.M. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Wu, F.F. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Zhang, C. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Brookhaven National Laboratory, Upton, NY (United States)

    2015-10-11

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. The design characteristics have been validated in the Daya Bay anti-neutrino detector.

  3. Neutron calibration sources in the Daya Bay experiment

    International Nuclear Information System (INIS)

    Liu, J.; Carr, R.; Dwyer, D.A.; Gu, W.Q.; Li, G.S.; McKeown, R.D.; Qian, X.; Tsang, R.H.M.; Wu, F.F.; Zhang, C.

    2015-01-01

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. The design characteristics have been validated in the Daya Bay anti-neutrino detector

  4. Operating experience in processing of differently sourced deeply depleted uranium oxide and production of deeply depleted uranium metal ingots

    International Nuclear Information System (INIS)

    Manna, S.; Ladola, Y.S.; Sharma, S.; Chowdhury, S.; Satpati, S.K.; Roy, S.B.

    2009-01-01

    Uranium Metal Plant (UMP) of BARC had first time experience on production of three Depleted Uranium Metal (DUM) ingots of 76kg, 152kg and 163kg during March 1991. These ingots were produced by processing depleted uranyl nitrate solution produced at Plutonium Plant (PP), Trombay. In recent past Uranium Metal Plant (UMP), Uranium Extraction Division (UED), has been assigned to produce tonnage quantity of Deeply DUM (DDUM) from its oxide obtained from PP, PREFRE and RMP, BARC. This is required for shielding the high radioactive source of BHABHATRON Tele-cobalt machine, which is used for cancer therapy. The experience obtained in processing of various DDU oxides is being utilized for design of large scale DDU-metal plant under XIth plan project. The physico- chemical characteristics like morphology, density, flowability, reactivity, particle size distribution, which are having direct effect on reactivity of the powders of the DDU oxide powder, were studied and the shop-floor operational experience in processing of different oxide powder were obtained and recorded. During campaign trials utmost care was taken to standardized all operating conditions using the same equipment which are in use for natural uranium materials processing including safety aspects both with respect to radiological safety and industrial safety. Necessary attention and close monitoring were specially arranged and maintained for the safety aspects during the trial period. In-house developed pneumatic transport system was used for powder transfer and suitable dust arresting system was used for reduction of powder carry over

  5. Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy)

    International Nuclear Information System (INIS)

    Contini, D.; Cesari, D.; Genga, A.; Siciliano, M.; Ielpo, P.; Guascito, M.R.; Conte, M.

    2014-01-01

    Atmospheric aerosols have potential effects on human health, on the radiation balance, on climate, and on visibility. The understanding of these effects requires detailed knowledge of aerosol composition and size distributions and of how the different sources contribute to particles of different sizes. In this work, aerosol samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI). Measurements were taken between February and October 2011 in an urban background site near Lecce (Apulia region, southeast of Italy). Samples were analysed to evaluate the concentrations of water-soluble ions (SO 4 2− , NO 3 − , NH 4 + , Cl − , Na + , K + , Mg 2+ and Ca 2+ ) and of water-soluble organic and inorganic carbon. The aerosols were characterised by two modes, an accumulation mode having a mass median diameter (MMD) of 0.35 ± 0.02 μm, representing 51 ± 4% of the aerosols and a coarse mode (MMD = 4.5 ± 0.4 μm), representing 49 ± 4% of the aerosols. The data were used to estimate the losses in the impactor by comparison with a low-volume sampler. The average loss in the MOUDI-collected aerosol was 19 ± 2%, and the largest loss was observed for NO 3 − (35 ± 10%). Significant losses were observed for Ca 2+ (16 ± 5%), SO 4 2− (19 ± 5%) and K + (10 ± 4%), whereas the losses for Na + and Mg 2+ were negligible. Size-segregated source apportionment was performed using Positive Matrix Factorization (PMF), which was applied separately to the coarse (size interval 1–18 μm) and accumulation (size interval 0.056–1 μm) modes. The PMF model was able to reasonably reconstruct the concentration in each size-range. The uncertainties in the source apportionment due to impactor losses were evaluated. In the accumulation mode, it was not possible to distinguish the traffic contribution from other combustion sources. In the coarse mode, it was not possible to efficiently separate nitrate from the contribution of crustal/resuspension origin

  6. Characteristic length scale of input data in distributed models: implications for modeling grid size

    Science.gov (United States)

    Artan, G. A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  7. Characteristic length scale of input data in distributed models: implications for modeling grain size

    Science.gov (United States)

    Artan, Guleid A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  8. THE POSSIBILITY OF USING INTERNATIONAL EXPERIENCE IN MICRO-CREDIT FOR SMALL AND MEDIUM-SIZED INDUSTRIAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    I. N. Klyukin

    2016-01-01

    Full Text Available Purpose of the study. Increasing the availability of funding for small and medium-sized enterprises of the industrial sector put among the most important tasks of economic development as the leading developed countries, and developing countries. In connection with the above, the purpose of this article is to study the micro-credit as an efficient mechanism to stimulate the development of small and medium-sized industrial enterprises and analyzing the possibility of using foreign experience in improving the process of micro-credit to stimulate their development.Research Methodology. The study was conducted on the material of publications on various aspects of the microcredit industry small and medium businesses, including international experience in micro-credit for small and medium-sized industrial enterprises.The article analyzes the functioning of the various models and micro-technologies, disclosed interoperability of commercial banks and microfinance institutions (MFIs in the framework of country-specific microcredit models, and formulated the immediate tasks and activities of the government and regulatory authorities of the Russian Federation aimed at improving the financing of small and medium-sized industrial enterprises.Sounding the findings suggest that the funds to support small and medium-sized industrial enterprises should be more actively attract private investment in the implementation of industrial and innovative development of their projects. In this case, the intensification of financial-credit and investment support to small and medium-sized industrial enterprises, integration and optimization of the different sources of financial resources create favorable conditions for their access to financial and credit resources, and improvement of financial and credit support mechanisms will enhance their responsibility for use granted resources and contribute to their development. At the same time, the main focus of the use of public

  9. Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Mohammed, Yasser; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Davignon, Olivier; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Bell, Alan James; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Trippkewitz, Karim Damun; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schwandt, Joern; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Mal, Prolay; Mandal, Koushik; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Jain, Sandhya; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukherjee, Swagata; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Maron, Gaetano; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zanetti, Marco; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Zanetti, Anna; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Song, Sanghyeon; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Leonardo, Nuno; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; De Castro Manzano, Pablo; Duarte Campderros, Jordi; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Castello, Roberto; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Piparo, Danilo; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Yu, Shin-Shan; Kumar, Arun; Bartek, Rachel; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Yetkin, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Gastler, Daniel; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Cutts, David; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Sinthuprasith, Tutanon; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Paneva, Mirena Ivova; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; To, Wing; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Jung, Andreas Werner; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Di Giovanni, Gian Piero; Field, Richard D; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Roskes, Jeffrey; Cocoros, Alice; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Sanders, Stephen; Stringer, Robert; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Niu, Xinmei; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Dahmes, Bryan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Brinkerhoff, Andrew; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Kotov, Khristian; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Malik, Sudhir; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Petrillo, Gianluca; Verzetti, Mauro; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Nash, Kevin; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Ni, Hong; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Gomber, Bhawna; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2017-02-22

    Improved jet energy scale corrections, based on a data sample corresponding to an integrated luminosity of 19.7 fb$^{-1}$ collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 8 TeV, are presented. The corrections as a function of pseudorapidity $\\eta$ and transverse momentum $p_{\\mathrm{T}}$ are extracted from data and simulated events combining several channels and methods. They account successively for the effects of pileup, uniformity of the detector response, and residual data-simulation jet energy scale differences. Further corrections, depending on the jet flavor and distance parameter (jet size) $R$, are also presented. The jet energy resolution is measured in data and simulated events and is studied as a function of pileup, jet size, and jet flavor. Typical jet energy resolutions at the central rapidities are 15-20% at 30 GeV, about 10% at 100 GeV, and 5% at 1 TeV. The studies exploit events with dijet topology, as well as photon+jet, Z+jet and multijet events. Sev...

  10. Equilibrium of the kink source experiment

    International Nuclear Information System (INIS)

    Marklin, G.

    1985-01-01

    The kink source experiment (KSX) was conceived of as a method of injecting helicity into a spheromak making special use of the m = 1 helical Taylor state. It has a Z pinch as a helicity generating source, connected to a flux conserver through an entrance region. Since the entrance region is a long (length > diameter) cyclinder, the magnetic field should be close to the helical Taylor state, which is the minimum energy configuration of a magnetized plasma in an infinite cylinder with no net flux. This paper will be concerned with modeling the actual fields in the entrance region of the KSX using zero-beta ideal MHD equilibrium theory

  11. Solid electron sources for the energy scale monitoring in the KATRIN experiment

    CERN Document Server

    Zbořil, Miroslav; Vénos, D

    The KArlsruhe TRItium Neutrino (KATRIN) experiment represents a next-generation tritium $\\beta$-decay experiment designed to perform a high precision direct measurement of the electron anti-neutrino mass m($\

  12. Primary sources of selected POPs: regional and global scale emission inventories

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M

    2004-03-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale.

  13. Primary sources of selected POPs: regional and global scale emission inventories

    International Nuclear Information System (INIS)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M.

    2004-01-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale

  14. Design of water-repellant coating using dual scale size of hybrid silica nanoparticles on polymer surface

    Science.gov (United States)

    Conti, J.; De Coninck, J.; Ghazzal, M. N.

    2018-04-01

    The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.

  15. Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry

    Science.gov (United States)

    Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.

    2001-10-01

    The linear Reconnection Scaling Experiment (RSX) at LANL is a new experiment that can create MHD relevant plasmas to look at the physics of magnetic reconnection. This experiment can scale many relevant parameters because the guns that generate the plasma and current channels do not depend on equilibrium or force balance for startup. We describe the experiment and initial electrostatic and magnetic probe data. Two parallel current channels sweep down a long plasma column and probe data accumulated over many shots gives 3D movies of magnetic reconnection. Our first data tries to define an operating regime free from kink instabilities that might otherwise confuse the data and shot repeatability. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.

  16. Source characterization of Purnima Neutron Generator (PNG)

    International Nuclear Information System (INIS)

    Bishnoi, Saroj; Patel, T.; Paul, Ram K.; Sarkar, P.S.; Adhikari, P.S.; Sinha, Amar

    2011-01-01

    The use of 14.1 MeV neutron generators for the applications such as elemental analysis, Accelerated Driven System (ADS) study, fast neutron radiography requires the characterization of neutron source i.e neutron yield (emission rate in n/sec), neutron dose, beam spot size and energy spectrum. In this paper, a series of experiments carried out to characterize this neutron source. The neutron source has been quantified with neutron emission rate, neutron dose at various source strength and beam spot size at target position

  17. Scale effects between body size and limb design in quadrupedal mammals.

    Science.gov (United States)

    Kilbourne, Brandon M; Hoffman, Louwrens C

    2013-01-01

    Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties--limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency--were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass(0.40)); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass(1.0)), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry.

  18. Classroom-sized geophysical experiments: magnetic surveying using modern smartphone devices

    Science.gov (United States)

    Tronicke, Jens; Trauth, Martin H.

    2018-05-01

    Modern mobile devices (i.e. smartphones and tablet computers) are widespread, everyday tools, which are equipped with a variety of sensors including three-axis magnetometers. Here, we investigate the feasibility and the potential of using such mobile devices to mimic geophysical experiments in the classroom in a table-top setup. We focus on magnetic surveying and present a basic setup of a table-top experiment for collecting three-component magnetic data across well-defined source bodies and structures. Our results demonstrate that the quality of the recorded data is sufficient to address a number of important basic concepts in the magnetic method. The shown examples cover the analysis of magnetic data recorded across different kinds of dipole sources, thus illustrating the complexity of magnetic anomalies. In addition, we analyze the horizontal resolution capabilities using a pair of dipole sources placed at different horizontal distances to each other. Furthermore, we demonstrate that magnetic data recorded with a mobile device can even be used to introduce filtering, transformation, and inversion approaches as they are typically used when processing magnetic data sets recorded for real-world field applications. Thus, we conclude that such table-top experiments represent an easy-to-implement experimental procedure (as student exercise or classroom demonstration) and can provide first hands-on experience in the basic principles of magnetic surveying including the fundamentals of data acquisition, analysis and processing, as well as data evaluation and interpretation.

  19. Frictional sliding in layered rock: laboratory-scale experiments

    International Nuclear Information System (INIS)

    Buescher, B.J.; Perry, K.E. Jr.; Epstein, J.S.

    1996-09-01

    The work is part of the rock mechanics effort for the Yucca Mountain Site Characterization Program. The laboratory-scale experiments are intended to provide high quality data on the mechanical behavior of jointed structures that can be used to validate complex numerical models for rock-mass behavior. Frictional sliding between simulated rock joints was studied using phase shifting moire interferometry. A model, constructed from stacks of machined and sandblasted granite plates, contained a central hole bore normal to the place so that frictional slip would be induced between the plates near the hole under compressive loading. Results show a clear evolution of slip with increasing load. Since the rock was not cycled through loading- unloading, the quantitative differences between the three data sets are probably due to a ''wearing-in'' effect. The highly variable spatial frequency of the data is probably due to the large grain size of the granite and the stochastic frictional processes. An unusual feature of the evolution of slip with increasing load is that as the load gets larger, some plates seem to return to a null position. Figs, 6 refs

  20. Enabling systematic, harmonised and large-scale biofilms data computation: the Biofilms Experiment Workbench.

    Science.gov (United States)

    Pérez-Rodríguez, Gael; Glez-Peña, Daniel; Azevedo, Nuno F; Pereira, Maria Olívia; Fdez-Riverola, Florentino; Lourenço, Anália

    2015-03-01

    Biofilms are receiving increasing attention from the biomedical community. Biofilm-like growth within human body is considered one of the key microbial strategies to augment resistance and persistence during infectious processes. The Biofilms Experiment Workbench is a novel software workbench for the operation and analysis of biofilms experimental data. The goal is to promote the interchange and comparison of data among laboratories, providing systematic, harmonised and large-scale data computation. The workbench was developed with AIBench, an open-source Java desktop application framework for scientific software development in the domain of translational biomedicine. Implementation favours free and open-source third-parties, such as the R statistical package, and reaches for the Web services of the BiofOmics database to enable public experiment deposition. First, we summarise the novel, free, open, XML-based interchange format for encoding biofilms experimental data. Then, we describe the execution of common scenarios of operation with the new workbench, such as the creation of new experiments, the importation of data from Excel spreadsheets, the computation of analytical results, the on-demand and highly customised construction of Web publishable reports, and the comparison of results between laboratories. A considerable and varied amount of biofilms data is being generated, and there is a critical need to develop bioinformatics tools that expedite the interchange and comparison of microbiological and clinical results among laboratories. We propose a simple, open-source software infrastructure which is effective, extensible and easy to understand. The workbench is freely available for non-commercial use at http://sing.ei.uvigo.es/bew under LGPL license. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Insight into subdecimeter fracturing processes during hydraulic fracture experiment in Äspö hard rock laboratory, Sweden

    Science.gov (United States)

    Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Plenkers, Katrin; Leonhardt, Maria; Zang, Arno; Dresen, Georg; Bohnhoff, Marco

    2017-04-01

    We analyze the nano- and picoseismicity recorded during a hydraulic fracturing in-situ experiment performed in Äspö Hard Rock Laboratory, Sweden. The fracturing experiment included six fracture stages driven by three different water injection schemes (continuous, progressive and pulse pressurization) and was performed inside a 28 m long, horizontal borehole located at 410 m depth. The fracturing process was monitored with two different seismic networks covering a wide frequency band between 0.01 Hz and 100000 Hz and included broadband seismometers, geophones, high-frequency accelerometers and acoustic emission sensors. The combined seismic network allowed for detection and detailed analysis of seismicity with moment magnitudes MW<-4 (source sizes approx. on cm scale) that occurred solely during the hydraulic fracturing and refracturing stages. We relocated the seismicity catalog using the double-difference technique and calculated the source parameters (seismic moment, source size, stress drop, focal mechanism and seismic moment tensors). The physical characteristics of induced seismicity are compared to the stimulation parameters and to the formation parameters of the site. The seismic activity varies significantly depending on stimulation strategy with conventional, continuous stimulation being the most seismogenic. We find a systematic spatio-temporal migration of microseismic events (propagation away and towards wellbore injection interval) and temporal transitions in source mechanisms (opening - shearing - collapse) both being controlled by changes in fluid injection pressure. The derived focal mechanism parameters are in accordance with the local stress field orientation, and signify the reactivation of pre-existing rock flaws. The seismicity follows statistical and source scaling relations observed at different scales elsewhere, however, at an extremely low level of seismic efficiency.

  2. Size-selective sorting in bubble streaming flows: Particle migration on fast time scales

    Science.gov (United States)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2015-11-01

    Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  3. Pore-scale simulations of drainage in granular materials: Finite size effects and the representative elementary volume

    Science.gov (United States)

    Yuan, Chao; Chareyre, Bruno; Darve, Félix

    2016-09-01

    A pore-scale model is introduced for two-phase flow in dense packings of polydisperse spheres. The model is developed as a component of a more general hydromechanical coupling framework based on the discrete element method, which will be elaborated in future papers and will apply to various processes of interest in soil science, in geomechanics and in oil and gas production. Here the emphasis is on the generation of a network of pores mapping the void space between spherical grains, and the definition of local criteria governing the primary drainage process. The pore space is decomposed by Regular Triangulation, from which a set of pores connected by throats are identified. A local entry capillary pressure is evaluated for each throat, based on the balance of capillary pressure and surface tension at equilibrium. The model reflects the possible entrapment of disconnected patches of the receding wetting phase. It is validated by a comparison with drainage experiments. In the last part of the paper, a series of simulations are reported to illustrate size and boundary effects, key questions when studying small samples made of spherical particles be it in simulations or experiments. Repeated tests on samples of different sizes give evolution of water content which are not only scattered but also strongly biased for small sample sizes. More than 20,000 spheres are needed to reduce the bias on saturation below 0.02. Additional statistics are generated by subsampling a large sample of 64,000 spheres. They suggest that the minimal sampling volume for evaluating saturation is one hundred times greater that the sampling volume needed for measuring porosity with the same accuracy. This requirement in terms of sample size induces a need for efficient computer codes. The method described herein has a low algorithmic complexity in order to satisfy this requirement. It will be well suited to further developments toward coupled flow-deformation problems in which evolution of the

  4. Advancing Explosion Source Theory through Experimentation: Results from Seismic Experiments Since the Moratorium on Nuclear Testing

    Science.gov (United States)

    Bonner, J. L.; Stump, B. W.

    2011-12-01

    On 23 September 1992, the United States conducted the nuclear explosion DIVIDER at the Nevada Test Site (NTS). It would become the last US nuclear test when a moratorium ended testing the following month. Many of the theoretical explosion seismic models used today were developed from observations of hundreds of nuclear tests at NTS and around the world. Since the moratorium, researchers have turned to chemical explosions as a possible surrogate for continued nuclear explosion research. This talk reviews experiments since the moratorium that have used chemical explosions to advance explosion source models. The 1993 Non-Proliferation Experiment examined single-point, fully contained chemical-nuclear equivalence by detonating over a kiloton of chemical explosive at NTS in close proximity to previous nuclear explosion tests. When compared with data from these nearby nuclear explosions, the regional and near-source seismic data were found to be essentially identical after accounting for different yield scaling factors for chemical and nuclear explosions. The relationship between contained chemical explosions and large production mining shots was studied at the Black Thunder coal mine in Wyoming in 1995. The research led to an improved source model for delay-fired mining explosions and a better understanding of mining explosion detection by the International Monitoring System (IMS). The effect of depth was examined in a 1997 Kazakhstan Depth of Burial experiment. Researchers used local and regional seismic observations to conclude that the dominant mechanism for enhanced regional shear waves was local Rg scattering. Travel-time calibration for the IMS was the focus of the 1999 Dead Sea Experiment where a 10-ton shot was recorded as far away as 5000 km. The Arizona Source Phenomenology Experiments provided a comparison of fully- and partially-contained chemical shots with mining explosions, thus quantifying the reduction in seismic amplitudes associated with partial

  5. Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area

    Science.gov (United States)

    Gao, Yuan; Lee, Shun-Cheng; Huang, Yu; Chow, Judith C.; Watson, John G.

    2016-03-01

    Size-resolved particulate matter (PM) samples were collected with a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI) at a sub-urban site (Tung Chung) in Hong Kong for four non-consecutive months representing four seasons from 2011 to 2012. Major chemical components were water-soluble anions (i.e., Cl-, NO3-, and SO42 -), cations (i.e., NH4+, Na+, K+, and Ca2 +), organic and elemental carbon and elements. Both chemical mass closure and positive matrix factorization (PMF) were employed to understand the chemical composition, resolve particle size modes, and evaluate the PM sources. Tri-modal size distributions were found for PM mass and major chemical components (e.g., SO42 -, NH4+, and OC). Mass median aerodynamic diameters (MMADs) with similar standard deviations (1.32 burning. Secondary SO42 - is also the most dominant component in the droplet mode, accounting for 23% of PM mass, followed by an industrial source (19%). Engine exhaust, secondary NO3-, and sea salt each accounted for 13-15% of PM mass. Sea salt and soil are the dominated sources in the coarse mode, accounting for 80% of coarse mass.

  6. Evaluation of Surface Runoff Generation Processes Using a Rainfall Simulator: A Small Scale Laboratory Experiment

    Science.gov (United States)

    Danáčová, Michaela; Valent, Peter; Výleta, Roman

    2017-12-01

    Nowadays, rainfall simulators are being used by many researchers in field or laboratory experiments. The main objective of most of these experiments is to better understand the underlying runoff generation processes, and to use the results in the process of calibration and validation of hydrological models. Many research groups have assembled their own rainfall simulators, which comply with their understanding of rainfall processes, and the requirements of their experiments. Most often, the existing rainfall simulators differ mainly in the size of the irrigated area, and the way they generate rain drops. They can be characterized by the accuracy, with which they produce a rainfall of a given intensity, the size of the irrigated area, and the rain drop generating mechanism. Rainfall simulation experiments can provide valuable information about the genesis of surface runoff, infiltration of water into soil and rainfall erodibility. Apart from the impact of physical properties of soil, its moisture and compaction on the generation of surface runoff and the amount of eroded particles, some studies also investigate the impact of vegetation cover of the whole area of interest. In this study, the rainfall simulator was used to simulate the impact of the slope gradient of the irrigated area on the amount of generated runoff and sediment yield. In order to eliminate the impact of external factors and to improve the reproducibility of the initial conditions, the experiments were conducted in laboratory conditions. The laboratory experiments were carried out using a commercial rainfall simulator, which was connected to an external peristaltic pump. The pump maintained a constant and adjustable inflow of water, which enabled to overcome the maximum volume of simulated precipitation of 2.3 l, given by the construction of the rainfall simulator, while maintaining constant characteristics of the simulated precipitation. In this study a 12-minute rainfall with a constant intensity

  7. A large scale field experiment in the Amazon Basin (Lambada/Bateristca)

    Energy Technology Data Exchange (ETDEWEB)

    Dolman, A.J.; Kabat, P.; Gash, J.H.C.; Noilhan, J.; Jochum, A.M.; Nobre, C. [Winand Staring Centre, Wageningen (Netherlands)

    1994-12-31

    A description is given of a large scale field experiment planned in the Amazon Basin, aiming to assess the large scale balances of energy, water and CO{sub 2}. The background for this experiment, the embedding in global change programmes of IGBP/BAHC and WCRP/GEWEX is described. A proposal by four European groups aimed at designing the experiment with the help of mesoscale models is described and a possible European input to this experiment is suggested. 24 refs., 1 app.

  8. Chem-Prep PZT 95/5 for Neutron Generator Applications: Particle Size Distribution Comparison of Development and Production-Scale Powders

    International Nuclear Information System (INIS)

    SIPOLA, DIANA L.; VOIGT, JAMES A.; LOCKWOOD, STEVEN J.; RODMAN-GONZALES, EMILY D.

    2002-01-01

    The Materials Chemistry Department 1846 has developed a lab-scale chem-prep process for the synthesis of PNZT 95/5, a ferroelectric material that is used in neutron generator power supplies. This process (Sandia Process, or SP) has been successfully transferred to and scaled by Department 14192 (Ceramics and Glass Department), (Transferred Sandia Process, or TSP), to meet the future supply needs of Sandia for its neutron generator production responsibilities. In going from the development-size SP batch (1.6 kg/batch) to the production-scale TSP powder batch size (10 kg/batch), it was important that it be determined if the scaling process caused any ''performance-critical'' changes in the PNZT 95/5 being produced. One area where a difference was found was in the particle size distributions of the calcined PNZT powders. Documented in this SAND report are the results of an experimental study to determine the origin of the differences in the particle size distribution of the SP and TSP powders

  9. Neutron source characterization for materials experiments

    International Nuclear Information System (INIS)

    Greenwood, L.R.

    1982-01-01

    Data are presented from HFIR-CTR32, EBRII-X287, and the Omega West Reactor. An important new source of damage in nickel arises from the 340 keV 56 Fe recoil from the 59 Ni(n,α) reaction used to produce high helium levels in materials irradiations in a thermal spectrum. The status of all other experiments is summarized

  10. Energy harvesting: small scale energy production from ambient sources

    Science.gov (United States)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  11. A large scale field experiment in the Amazon basin (LAMBADA/BATERISTA)

    NARCIS (Netherlands)

    Dolman, A.J.; Kabat, P.; Gash, J.H.C.; Noilhan, J.; Jochum, A.M.; Nobre, C.

    1995-01-01

    A description is given of a large-scale field experiment planned in the Amazon basin, aimed at assessing the large-scale balances of energy, water and carbon dioxide. The embedding of this experiment in global change programmes is described, viz. the Biospheric Aspects of the Hydrological Cycle

  12. Fractal and multifractal approaches for the analysis of crack-size dependent scaling laws in fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Paggi, Marco [Politecnico di Torino, Department of Structural Engineering and Geotechnics, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)], E-mail: marco.paggi@polito.it; Carpinteri, Alberto [Politecnico di Torino, Department of Structural Engineering and Geotechnics, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2009-05-15

    The enhanced ability to detect and measure very short cracks, along with a great interest in applying fracture mechanics formulae to smaller and smaller crack sizes, has pointed out the so-called anomalous behavior of short cracks with respect to their longer counterparts. The crack-size dependencies of both the fatigue threshold and the Paris' constant C are only two notable examples of these anomalous scaling laws. In this framework, a unified theoretical model seems to be missing and the behavior of short cracks can still be considered as an open problem. In this paper, we propose a critical reexamination of the fractal models for the analysis of crack-size effects in fatigue. The limitations of each model are put into evidence and removed. At the end, a new generalized theory based on fractal geometry is proposed, which permits to consistently interpret the short crack-related anomalous scaling laws within a unified theoretical formulation. Finally, this approach is herein used to interpret relevant experimental data related to the crack-size dependence of the fatigue threshold in metals.

  13. Fractal and multifractal approaches for the analysis of crack-size dependent scaling laws in fatigue

    International Nuclear Information System (INIS)

    Paggi, Marco; Carpinteri, Alberto

    2009-01-01

    The enhanced ability to detect and measure very short cracks, along with a great interest in applying fracture mechanics formulae to smaller and smaller crack sizes, has pointed out the so-called anomalous behavior of short cracks with respect to their longer counterparts. The crack-size dependencies of both the fatigue threshold and the Paris' constant C are only two notable examples of these anomalous scaling laws. In this framework, a unified theoretical model seems to be missing and the behavior of short cracks can still be considered as an open problem. In this paper, we propose a critical reexamination of the fractal models for the analysis of crack-size effects in fatigue. The limitations of each model are put into evidence and removed. At the end, a new generalized theory based on fractal geometry is proposed, which permits to consistently interpret the short crack-related anomalous scaling laws within a unified theoretical formulation. Finally, this approach is herein used to interpret relevant experimental data related to the crack-size dependence of the fatigue threshold in metals.

  14. Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Contini, D., E-mail: d.contini@isac.cnr.it [Istituto di Scienze dell' Atmosfera e del Clima, ISAC-CNR, Lecce (Italy); Cesari, D. [Istituto di Scienze dell' Atmosfera e del Clima, ISAC-CNR, Lecce (Italy); Genga, A.; Siciliano, M. [Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce (Italy); Ielpo, P. [Istituto di Scienze dell' Atmosfera e del Clima, ISAC-CNR, Lecce (Italy); Istituto di Ricerca Sulle Acque, IRSA-CNR, Bari (Italy); Guascito, M.R. [Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce (Italy); Conte, M. [Istituto di Scienze dell' Atmosfera e del Clima, ISAC-CNR, Lecce (Italy)

    2014-02-01

    Atmospheric aerosols have potential effects on human health, on the radiation balance, on climate, and on visibility. The understanding of these effects requires detailed knowledge of aerosol composition and size distributions and of how the different sources contribute to particles of different sizes. In this work, aerosol samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI). Measurements were taken between February and October 2011 in an urban background site near Lecce (Apulia region, southeast of Italy). Samples were analysed to evaluate the concentrations of water-soluble ions (SO{sub 4}{sup 2−}, NO{sub 3}{sup −}, NH{sub 4}{sup +}, Cl{sup −}, Na{sup +}, K{sup +}, Mg{sup 2+} and Ca{sup 2+}) and of water-soluble organic and inorganic carbon. The aerosols were characterised by two modes, an accumulation mode having a mass median diameter (MMD) of 0.35 ± 0.02 μm, representing 51 ± 4% of the aerosols and a coarse mode (MMD = 4.5 ± 0.4 μm), representing 49 ± 4% of the aerosols. The data were used to estimate the losses in the impactor by comparison with a low-volume sampler. The average loss in the MOUDI-collected aerosol was 19 ± 2%, and the largest loss was observed for NO{sub 3}{sup −} (35 ± 10%). Significant losses were observed for Ca{sup 2+} (16 ± 5%), SO{sub 4}{sup 2−} (19 ± 5%) and K{sup +} (10 ± 4%), whereas the losses for Na{sup +} and Mg{sup 2+} were negligible. Size-segregated source apportionment was performed using Positive Matrix Factorization (PMF), which was applied separately to the coarse (size interval 1–18 μm) and accumulation (size interval 0.056–1 μm) modes. The PMF model was able to reasonably reconstruct the concentration in each size-range. The uncertainties in the source apportionment due to impactor losses were evaluated. In the accumulation mode, it was not possible to distinguish the traffic contribution from other combustion sources. In the coarse mode, it was not possible to

  15. The Relationships among Sources of Teacher Pedagogical Beliefs, Teaching Experiences, and Student Outcomes

    Directory of Open Access Journals (Sweden)

    Morteza Mellati

    2015-03-01

    Full Text Available Teachers’ beliefs are derived from various sources such as experiences and personality (Kennedy, 1997; Donaghue, 2003; Ellis, 2008, childhood learning experiences (Rokeach, 1968, teaching experiences (Zeichner and Tabachnick, 1981, and folk pedagogy (Bruner, 1996. The relationship of these sources and learners’ outcomes are under question; therefore, this study investigated the relationships among sources of teacher pedagogical beliefs, teaching experiences, and student outcomes. The researchers classified these sources into two categories “Experienced Pedagogical Beliefs” and “Educational Pedagogical Beliefs”. To conduct this study, 150 Iranian ELT instructors had been chosen randomly. Their students’ scores were also used in data analysis. A beliefs’ questionnaire and interview were employed to elicit instructors’ sources of pedagogical beliefs. The results suggested that a significant proportion of the total variations in learners’ outcomes were predicted by teachers’ sources of pedagogical beliefs and teachers’ teaching experiences. The implications for improving the quality of teacher education programs were also discussed.

  16. Insulin/IGF-regulated size scaling of neuroendocrine cells expressing the bHLH transcription factor Dimmed in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jiangnan Luo

    Full Text Available Neurons and other cells display a large variation in size in an organism. Thus, a fundamental question is how growth of individual cells and their organelles is regulated. Is size scaling of individual neurons regulated post-mitotically, independent of growth of the entire CNS? Although the role of insulin/IGF-signaling (IIS in growth of tissues and whole organisms is well established, it is not known whether it regulates the size of individual neurons. We therefore studied the role of IIS in the size scaling of neurons in the Drosophila CNS. By targeted genetic manipulations of insulin receptor (dInR expression in a variety of neuron types we demonstrate that the cell size is affected only in neuroendocrine cells specified by the bHLH transcription factor DIMMED (DIMM. Several populations of DIMM-positive neurons tested displayed enlarged cell bodies after overexpression of the dInR, as well as PI3 kinase and Akt1 (protein kinase B, whereas DIMM-negative neurons did not respond to dInR manipulations. Knockdown of these components produce the opposite phenotype. Increased growth can also be induced by targeted overexpression of nutrient-dependent TOR (target of rapamycin signaling components, such as Rheb (small GTPase, TOR and S6K (S6 kinase. After Dimm-knockdown in neuroendocrine cells manipulations of dInR expression have significantly less effects on cell size. We also show that dInR expression in neuroendocrine cells can be altered by up or down-regulation of Dimm. This novel dInR-regulated size scaling is seen during postembryonic development, continues in the aging adult and is diet dependent. The increase in cell size includes cell body, axon terminations, nucleus and Golgi apparatus. We suggest that the dInR-mediated scaling of neuroendocrine cells is part of a plasticity that adapts the secretory capacity to changing physiological conditions and nutrient-dependent organismal growth.

  17. Variations in the small-scale galactic magnetic field and short time-scale intensity variations of extragalactic radio sources

    International Nuclear Information System (INIS)

    Simonetti, J.H.

    1985-01-01

    Structure functions of the Faraday rotation measures (RMs) of extragalactic radio sources are used to investigate variations in the interstellar magnetic field on length scales of approx.0.01 to 100 pc. Model structure functions derived assuming a power-law power spectrum of irregularities in n/sub e/B, are compared with those observed. The results indicate an outer angular scale for RM variations of approximately less than or equal to 5 0 and evidence for RM variations on scales as small as 1'. Differences in the variance of n/sub e/B fluctuations for various lines of sight through the Galaxy are found. Comparison of pulsar scintillations in right- and left-circular polarizations yield an upper limit to the variations in n/sub e/ on a length scale of approx.10 11 cm. RMs were determined through high-velocity molecular flows in galactic star-formation regions, with the goal of constraining magnetic fields in and near the flows. RMs of 7 extragalactic sources with a approx.20 arcmin wide area seen through Cep A, fall in two groups separated by approx.150 rad m -2 - large given our knowledge of RM variations on small angular scales and possibly a result of the anisotropy of the high-velocity material

  18. Welcome to wonderland: the influence of the size and shape of a virtual hand on the perceived size and shape of virtual objects.

    Science.gov (United States)

    Linkenauger, Sally A; Leyrer, Markus; Bülthoff, Heinrich H; Mohler, Betty J

    2013-01-01

    The notion of body-based scaling suggests that our body and its action capabilities are used to scale the spatial layout of the environment. Here we present four studies supporting this perspective by showing that the hand acts as a metric which individuals use to scale the apparent sizes of objects in the environment. However to test this, one must be able to manipulate the size and/or dimensions of the perceiver's hand which is difficult in the real world due to impliability of hand dimensions. To overcome this limitation, we used virtual reality to manipulate dimensions of participants' fully-tracked, virtual hands to investigate its influence on the perceived size and shape of virtual objects. In a series of experiments, using several measures, we show that individuals' estimations of the sizes of virtual objects differ depending on the size of their virtual hand in the direction consistent with the body-based scaling hypothesis. Additionally, we found that these effects were specific to participants' virtual hands rather than another avatar's hands or a salient familiar-sized object. While these studies provide support for a body-based approach to the scaling of the spatial layout, they also demonstrate the influence of virtual bodies on perception of virtual environments.

  19. Welcome to wonderland: the influence of the size and shape of a virtual hand on the perceived size and shape of virtual objects.

    Directory of Open Access Journals (Sweden)

    Sally A Linkenauger

    Full Text Available The notion of body-based scaling suggests that our body and its action capabilities are used to scale the spatial layout of the environment. Here we present four studies supporting this perspective by showing that the hand acts as a metric which individuals use to scale the apparent sizes of objects in the environment. However to test this, one must be able to manipulate the size and/or dimensions of the perceiver's hand which is difficult in the real world due to impliability of hand dimensions. To overcome this limitation, we used virtual reality to manipulate dimensions of participants' fully-tracked, virtual hands to investigate its influence on the perceived size and shape of virtual objects. In a series of experiments, using several measures, we show that individuals' estimations of the sizes of virtual objects differ depending on the size of their virtual hand in the direction consistent with the body-based scaling hypothesis. Additionally, we found that these effects were specific to participants' virtual hands rather than another avatar's hands or a salient familiar-sized object. While these studies provide support for a body-based approach to the scaling of the spatial layout, they also demonstrate the influence of virtual bodies on perception of virtual environments.

  20. Economies of scale and firm size optimum in rural water supply

    Science.gov (United States)

    Sauer, Johannes

    2005-11-01

    This article is focused on modeling and analyzing the cost structure of water-supplying companies. A cross-sectional data set was collected with respect to water firms in rural areas of former East and West Germany. The empirical data are analyzed by applying a symmetric generalized McFadden (SGM) functional form. This flexible functional form allows for testing the concavity required by microeconomic theory as well as the global imposition of such curvature restrictions without any loss of flexibility. The original specification of the SGM cost function is modified to incorporate fixed factors of water production and supply as, for example, groundwater intake or the number of connections supplied. The estimated flexible and global curvature correct cost function is then used to derive scale elasticities as well as the optimal firm size. The results show that no water supplier in the sample produces at constant returns to scale. The optimal firm size was found to be on average about three times larger than the existing one. These findings deliver evidence for the hypothesis that the legally set supplying areas, oriented at public administrative criteria as well as local characteristics of water resources, are economically inefficient. Hence structural inefficiency in the rural water sector is confirmed to be policy induced.

  1. Disentangling the major source areas for an intense aerosol advection in the Central Mediterranean on the basis of Potential Source Contribution Function modeling of chemical and size distribution measurements

    Science.gov (United States)

    Petroselli, Chiara; Crocchianti, Stefano; Moroni, Beatrice; Castellini, Silvia; Selvaggi, Roberta; Nava, Silvia; Calzolai, Giulia; Lucarelli, Franco; Cappelletti, David

    2018-05-01

    In this paper, we combined a Potential Source Contribution Function (PSCF) analysis of daily chemical aerosol composition data with hourly aerosol size distributions with the aim to disentangle the major source areas during a complex and fast modulating advection event impacting on Central Italy in 2013. Chemical data include an ample set of metals obtained by Proton Induced X-ray Emission (PIXE), main soluble ions from ionic chromatography and elemental and organic carbon (EC, OC) obtained by thermo-optical measurements. Size distributions have been recorded with an optical particle counter for eight calibrated size classes in the 0.27-10 μm range. We demonstrated the usefulness of the approach by the positive identification of two very different source areas impacting during the transport event. In particular, biomass burning from Eastern Europe and desert dust from Sahara sources have been discriminated based on both chemistry and size distribution time evolution. Hourly BT provided the best results in comparison to 6 h or 24 h based calculations.

  2. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Ohsuka, Shinji, E-mail: ohsuka@crl.hpk.co.jp [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202 (Japan); Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Nakano, Tomoyasu [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Ray-Focus Co. Ltd., 6009 Shinpara, Hamakita-ku, Hamamatsu-City, 434-0003 (Japan); Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  3. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    Science.gov (United States)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  4. Determination of in-situ thermal properties of Stripa granite from temperature measurements in the full-scale heater experiments: method and preliminary results. Technical information report No. 24

    International Nuclear Information System (INIS)

    Jeffry, J.A.; Chan, T.; Cook, N.G.W.; Witherspoon, P.A.

    1979-05-01

    The in-situ thermal conductivity and thermal diffusivity of a granite rock mass at the Stripa mine, Sweden, have been extracted from the first 70 days of temperature data for the 5 kW full-scale heater experiment by means of least-squares fit to a finite-line source solution. Thermal conductivity and thermal diffusivity have been determined to be 3.69 W/(m- 0 C) and 1.84 x 10 -6 m 2 /s, respectively, at an average rock temperature of 23 0 C (the average value of the actual temperature data used). These values are only slightly higher than the corresponding laboratory values, i.e., there is no significant size effect in the thermal properties of this rock mass. Since the size and shape of the heater canister used are similar to those considered for nuclear waste canisters and a substantial volume of rock is heated, the thermal properties obtained in this study are representative of in-situ rock mass properties under actual nuclear repository operating conditions

  5. Experiments on a 14.5 GHz ECR source

    International Nuclear Information System (INIS)

    Hill, C.E.; Langbein, K.

    1996-01-01

    The 14.5 GHz ECR4 source supplied to CERN in the framework of the Heavy Ion Facility collaboration provided Pb 27+ operational beams to a new custom built linac in 1994. This source, which operates in the pulsed 'afterglow' mode, quickly met its design specification of 80 eμA and now provides currents >100 eμA regularly. Early source tests showed the existence of extremely stable modes of operation. In the search for higher intensities a number of experiments have been performed on plasma gas composition, RF power matching, extraction, beam pulse compression and a biased dynode. The results of these tests will be presented along with further ideas to improve source performance. (author)

  6. FIRM SIZE EFFECTS ON TRANSACTION COSTS

    NARCIS (Netherlands)

    NOOTEBOOM, B

    1993-01-01

    Associated with effects of scale, scope, experience and learning there are effects of firm size on transaction costs; in the stages of contact, contract and control. These effects are due to ''threshold costs'' in setting up contacts, contracts and governance schemes, and to differences with respect

  7. Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ; Tang, Y.; Liu, H.; Yoon, Hongkyu; Kang, Qinjun; Joekar Niasar, Vahid; Balhoff, Matthew; Dewers, T.; Tartakovsky, Guzel D.; Leist, Emily AE; Hess, Nancy J.; Perkins, William A.; Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.; Werth, Charles J.; Valocchi, Albert J.; Wietsma, Thomas W.; Zhang, Changyong

    2016-08-01

    Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing. Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.

  8. Experiment-Based Sensitivity Analysis of Scaled Carbon-Fiber-Reinforced Elastomeric Isolators in Bonded Applications

    Directory of Open Access Journals (Sweden)

    Farshad Hedayati Dezfuli

    2016-01-01

    Full Text Available Fiber-reinforced elastomeric isolators (FREIs are a new type of elastomeric base isolation systems. Producing FREIs in the form of long laminated pads and cutting them to the required size significantly reduces the time and cost of the manufacturing process. Due to the lack of adequate information on the performance of FREIs in bonded applications, the goal of this study is to assess the performance sensitivity of 1/4-scale carbon-FREIs based on the experimental tests. The scaled carbon-FREIs are manufactured using a fast cold-vulcanization process. The effect of several factors including the vertical pressure, the lateral cyclic rate, the number of rubber layers, and the thickness of carbon fiber-reinforced layers are explored on the cyclic behavior of rubber bearings. Results show that the effect of vertical pressure on the lateral response of base isolators is negligible. However, decreasing the cyclic loading rate increases the lateral flexibility and the damping capacity. Additionally, carbon fiber-reinforced layers can be considered as a minor source of energy dissipation.

  9. Strength and sources of self-efficacy beliefs by physical education student teachers

    Directory of Open Access Journals (Sweden)

    Roberto Tadeu Iaochite

    2014-06-01

    Full Text Available In the teaching domain, self-efficacy (SE is related to teachers' judgment about their own ability to achieve learning outcomes and student engagement. SE is formed by four sources of information: mastery experiences, vicarious experiences, social persuasion, and psychophysiological states. We measured and analyzed SE and its sources for teaching physical education. Student teachers (n = 114 from three universities responded to two Likert scales - Physical Education Teacher Self-Efficacy Scale and Teacher Self-Efficacy Scale Sources - and a social demographic questionnaire. SE for teaching was classified as moderate, and vicarious experiences and social persuasion were the main sources of information. Results were discussed for future researches related to teaching practices in undergraduate programs as well as in-service teacher training.

  10. Estimation and applicability of attenuation characteristics for source parameters and scaling relations in the Garhwal Kumaun Himalaya region, India

    Science.gov (United States)

    Singh, Rakesh; Paul, Ajay; Kumar, Arjun; Kumar, Parveen; Sundriyal, Y. P.

    2018-06-01

    Source parameters of the small to moderate earthquakes are significant for understanding the dynamic rupture process, the scaling relations of the earthquakes and for assessment of seismic hazard potential of a region. In this study, the source parameters were determined for 58 small to moderate size earthquakes (3.0 ≤ Mw ≤ 5.0) occurred during 2007-2015 in the Garhwal-Kumaun region. The estimated shear wave quality factor (Qβ(f)) values for each station at different frequencies have been applied to eliminate any bias in the determination of source parameters. The Qβ(f) values have been estimated by using coda wave normalization method in the frequency range 1.5-16 Hz. A frequency-dependent S wave quality factor relation is obtained as Qβ(f) = (152.9 ± 7) f(0.82±0.005) by fitting a power-law frequency dependence model for the estimated values over the whole study region. The spectral (low-frequency spectral level and corner frequency) and source (static stress drop, seismic moment, apparent stress and radiated energy) parameters are obtained assuming ω-2 source model. The displacement spectra are corrected for estimated frequency-dependent attenuation, site effect using spectral decay parameter "Kappa". The frequency resolution limit was resolved by quantifying the bias in corner frequencies, stress drop and radiated energy estimates due to finite-bandwidth effect. The data of the region shows shallow focused earthquakes with low stress drop. The estimation of Zúñiga parameter (ε) suggests the partial stress drop mechanism in the region. The observed low stress drop and apparent stress can be explained by partial stress drop and low effective stress model. Presence of subsurface fluid at seismogenic depth certainly manipulates the dynamics of the region. However, the limited event selection may strongly bias the scaling relation even after taking as much as possible precaution in considering effects of finite bandwidth, attenuation and site corrections

  11. An induction linac injector for scaled experiments

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Faltens, A.; Pike, C.; Brodzik, D.; Johnson, R.M.; Vanecek, D.; Hewett, D.W.

    1991-04-01

    An injector is being developed at LBL that would serve as the front end of a scaled induction linac accelerator technology experiment for heavy ion fusion. The ion mass being used is in the range 10--18. It is a multi-beam device intended to accelerate up to 2 MeV with 500 mA in each beam. The first half of the accelerating column has been built and experiments with one carbon beam are underway at the 1 MeV level. 5 refs., 1 fig

  12. Fate of pharmaceuticals in full-scale source separated sanitation system

    NARCIS (Netherlands)

    Butkovskyi, A.; Hernandez Leal, L.; Rijnaarts, H.H.M.; Zeeman, G.

    2015-01-01

    Removal of 14 pharmaceuticals and 3 of their transformation products was studied in a full-scale source separated sanitation system with separate collection and treatment of black water and grey water. Black water is treated in an up-flow anaerobic sludge blanket (UASB) reactor followed by

  13. Demonstration of the self-magnetic-pinch diode as an X-ray source for flash core-punch radiography

    International Nuclear Information System (INIS)

    Cordova, Steve Ray; Rovang, Dean Curtis; Portillo, Salvador; Oliver, Bryan Velten; Bruner, Nichelle Lee; Ziska, Derek Raymond

    2007-01-01

    Minimization of the radiographic spot size and maximization of the radiation dose is a continuing long-range goal for development of electron beam driven X-ray radiography sources. In collaboration with members of the Atomic Weapons Establishment(AWE), Aldermaston UK, the Advanced Radiographic Technologies Dept. 1645 is conducting research on the development of X-ray sources for flash core-punch radiography. The Hydrodynamics Dept. at AWE has defined a near term radiographic source requirement for scaled core-punch experiments to be 250 rads(at)m with a 2.75 mm source spot-size. As part of this collaborative effort, Dept. 1645 is investigating the potential of the Self-Magnetic-Pinched (SMP) diode as a source for core-punch radiography. Recent experiments conducted on the RITS-6 accelerator [1,2] demonstrated the potential of the SMP diode by meeting and exceeding the near term radiographic requirements established by AWE. During the demonstration experiments, RITS-6 was configured with a low-impedance (40 (Omega)) Magnetically Insulated Transmission Line (MITL), which provided a 75-ns, 180-kA, 7.5-MeV forward going electrical pulse to the diode. The use of a low-impedance MITL enabled greater power coupling to the SMP diode and thus allowed for increased radiation output. In addition to reconfiguring the driver (accelerator), geometric changes to the diode were also performed which allowed for an increase in dose production without sacrificing the time integrated spot characteristics. The combination of changes to both the pulsed power driver and the diode significantly increased the source x-ray intensity

  14. INCREASING RETURNS TO SCALE, DYNAMICS OF INDUSTRIAL STRUCTURE AND SIZE DISTRIBUTION OF FIRMS

    Institute of Scientific and Technical Information of China (English)

    Ying FAN; Menghui LI; Zengru DI

    2006-01-01

    A multi-agent model is presented to discuss the market dynamics and the size distribution of firms.The model emphasizes the effects of increasing returns to scale and gives the description of the born and death of adaptive producers. The evolution of market structure and its behavior under the technological shocks are investigated. Its dynamical results are in good agreement with some empirical "stylized facts" of industrial evolution. With the diversity of demand and adaptive growth strategies of firms, the firm size in the generalized model obeys the power-law distribution. Three factors mainly determine the competitive dynamics and the skewed size distributions of firms: 1. Self-reinforcing mechanism; 2. Adaptive firm growing strategies; 3. Demand diversity or widespread heterogeneity in the technological capabilities of firms.

  15. Source identification and metallic profiles of size-segregated particulate matters at various sites in Delhi.

    Science.gov (United States)

    Hazarika, Naba; Jain, V K; Srivastava, Arun

    2015-09-01

    A study of elemental composition in the ambient air of Delhi was carried out in the monsoon, winter and summer seasons at four different sites from August 2012 to April 2013 in the size ranges 10 μm using "Dekati PM10" impactor. At each site, three samples were collected and were analyzed by energy-dispersive X-ray fluorescence (EDXRF). The presence of elements was found to be very common and highly concentrated in aerosol particles at all the sites, which are Na, Al, Si, K, Ca, Zn and Ba. Total suspended particulate matters (TSPMs) of fine particles were found high in comparison to coarse particles at all seasons. The TSPM of fine particles was found to be varied in the range from 303.6 to 416.2 μg/m(3). Similarly, the range of coarse TSPM was observed from 162.9 to 262.8 μg/m(3). Correlation matrices were observed between fine (size ranges 10 μm) size particles for all elements with seasons. Source apportionments of elements were carried out using MS Excel 2010 through XLSTAT software. The source apportionments between fine and coarse particles were carried out through factor analysis and dominated sources found to be crustal re-suspension and industrial activities.

  16. Economies of scale and trends in the size of southern forest industries

    Science.gov (United States)

    James E. Granskog

    1978-01-01

    In each of the major southern forest industries, the trend has been toward achieving economies of scale, that is, to build larger production units to reduce unit costs. Current minimum efficient plant size estimated by survivor analysis is 1,000 tons per day capacity for sulfate pulping, 100 million square feet (3/8- inch basis) annual capacity for softwood plywood,...

  17. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale

    International Nuclear Information System (INIS)

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-01-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. - Highlights: • Ensemble models including stochastic gradient boosting and random forest are used. • The models were verified by cross-validation and SGB performed better than RF. • Heavy metal pollution sources on a local scale are identified and apportioned. • Models illustrate good suitability in assessing sources in local-scale agricultural soils. • Anthropogenic sources contributed most to soil Pb and Cd pollution in our case. - Multi-source and multi-phase pollution by heavy metals in agricultural soils on a local scale were identified and apportioned.

  18. Development of a pilot size of electrochemical flushing equipment for radioactive soil and concrete

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Moon, Jei Kwon; Choi, Wang Kyu; Yang, Byeong Il; Shon, Jong Sik; Hong, Dae Seok

    2010-01-01

    A pilot size of electrochemical flushing equipment will be manufactured suitable to the contamination characteristics of radioactive soil and concrete stored in KAERI radioactive waste storage. An optimal reagent and an optimal decontamination conditions should be decided through many experiments. - Contamination characterises analysis of TRIGA radioactive soil and concrete - Manufacture of pilot-scale electrochemical flushing equipment - Manufacture and improvement of suitable electrochemical flushing equipment for contamination characteristics in pilot size - Decontamination experiments of electrochemical flushing equipment in a pilot scale

  19. Probing the frontiers of particle physics with tabletop-scale experiments.

    Science.gov (United States)

    DeMille, David; Doyle, John M; Sushkov, Alexander O

    2017-09-08

    The field of particle physics is in a peculiar state. The standard model of particle theory successfully describes every fundamental particle and force observed in laboratories, yet fails to explain properties of the universe such as the existence of dark matter, the amount of dark energy, and the preponderance of matter over antimatter. Huge experiments, of increasing scale and cost, continue to search for new particles and forces that might explain these phenomena. However, these frontiers also are explored in certain smaller, laboratory-scale "tabletop" experiments. This approach uses precision measurement techniques and devices from atomic, quantum, and condensed-matter physics to detect tiny signals due to new particles or forces. Discoveries in fundamental physics may well come first from small-scale experiments of this type. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow

    Science.gov (United States)

    Balouchi, Ashkan; Browne, Dana

    2015-03-01

    The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.

  1. Progress in heavy ion driven inertial fusion energy: From scaled experiments to the integrated research experiment

    International Nuclear Information System (INIS)

    Barnard, J.J.; Ahle, L.E.; Baca, D.; Bangerter, R.O.; Bieniosek, F.M.; Celata, C.M.; Chacon-Golcher, E.; Davidson, R.C.; Faltens, A.; Friedman, A.; Franks, R.M.; Grote, D.P.; Haber, I.; Henestroza, E.; Hoon, M.J.L. de; Kaganovich, I.; Karpenko, V.P.; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Logan, B.G.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.; Prost, L.R.; Qin, H.; Rose, D.; Sabbi, G.-L.; Sangster, T.C.; Seidl, P.A.; Sharp, W.M.; Shuman, D.; Vay, J.-L.; Waldron, W.L.; Welch, D.; Yu, S.S.

    2001-01-01

    The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents (∼100's Amperes/beam) and ion energies (∼1-10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tune depressions, and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now being constructed at LBNL. The mission of the HCX will be to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned. The step which bridges the gap between the IBX and an engineering test facility for fusion has been designated the Integrated Research Experiment (IRE). The IRE (like the IBX) will provide an

  2. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    Science.gov (United States)

    Richard, A.; Gianini, M. F. D.; Mohr, C.; Furger, M.; Bukowiecki, N.; Minguillón, M. C.; Lienemann, P.; Flechsig, U.; Appel, K.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Baltensperger, U.; Prévôt, A. S. H.

    2011-09-01

    Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI) and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter Switzerland. Eight different sources were identified for the three examined size ranges (PM1-0.1, PM2.5-1 and PM10-2.5): secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS), assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate), hydrocarbon-like organic aerosol (HOA, related to road traffic) and biomass burning organic aerosol (BBOA), explaining 60 %, 22 % and 17 % of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  3. Size, Composition, and Sources of Health Relevant Particulate Matter in the San Joaquin Valley

    Science.gov (United States)

    Ham, Walter Allan

    Particulate Matter (PM) is an environment contaminant that has been associated with adverse health effects in epidemiological and toxicological studies. Atmospheric PM is made up of a diverse array of chemical species that are emitted from multiple sources across a range of aerodynamic diameters spanning several orders of magnitude. The focus of the present work was the characterization of ambient PM with aerodynamic diameters below 1.8 mum (PM1.8) in 6 size sub-fractions including PM0.1. Chemical species measured included organic carbon, elemental carbon, water soluble ions, trace metals, and organic molecular markers in urban and rural environments in the San Joaquin Valley. These measurements were used to determine differences in relative diurnal size distributions during a severe winter stagnation event, seasonal changes in PM size and composition, and the source origin of carbonaceous PM. This size-resolved information was used to calculate lung deposition patterns of health relevant PM species to evaluate seasonal differences in PM dose. By accurately calculating PM dose, researchers are able to more directly link ambient PM characterization data with biological endpoints. All of these results are used to support ongoing toxicological health effects studies. These types of analyses are important as this type of information may assist regulators with developing control strategies to reduce health effects caused by particulate air pollution.

  4. Experimental validation of the intrinsic spatial efficiency method over a wide range of sizes for cylindrical sources

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Ramŕez, Pablo, E-mail: rapeitor@ug.uchile.cl; Larroquette, Philippe [Departamento de Física, Facultad de Ciencias, Universidad de Chile (Chile); Camilla, S. [Departamento de Física, Universidad Tecnológica Metropolitana (Chile)

    2016-07-07

    The intrinsic spatial efficiency method is a new absolute method to determine the efficiency of a gamma spectroscopy system for any extended source. In the original work the method was experimentally demonstrated and validated for homogeneous cylindrical sources containing {sup 137}Cs, whose sizes varied over a small range (29.5 mm radius and 15.0 to 25.9 mm height). In this work we present an extension of the validation over a wide range of sizes. The dimensions of the cylindrical sources vary between 10 to 40 mm height and 8 to 30 mm radius. The cylindrical sources were prepared using the reference material IAEA-372, which had a specific activity of 11320 Bq/kg at july 2006. The obtained results were better for the sources with 29 mm radius showing relative bias lesser than 5% and for the sources with 10 mm height showing relative bias lesser than 6%. In comparison with the obtained results in the work where we present the method, the majority of these results show an excellent agreement.

  5. Brittle fracture in structural steels: perspectives at different size-scales.

    Science.gov (United States)

    Knott, John

    2015-03-28

    This paper describes characteristics of transgranular cleavage fracture in structural steel, viewed at different size-scales. Initially, consideration is given to structures and the service duty to which they are exposed at the macroscale, highlighting failure by plastic collapse and failure by brittle fracture. This is followed by sections describing the use of fracture mechanics and materials testing in carrying-out assessments of structural integrity. Attention then focuses on the microscale, explaining how values of the local fracture stress in notched bars or of fracture toughness in pre-cracked test-pieces are related to features of the microstructure: carbide thicknesses in wrought material; the sizes of oxide/silicate inclusions in weld metals. Effects of a microstructure that is 'heterogeneous' at the mesoscale are treated briefly, with respect to the extraction of test-pieces from thick sections and to extrapolations of data to low failure probabilities. The values of local fracture stress may be used to infer a local 'work-of-fracture' that is found experimentally to be a few times greater than that of two free surfaces. Reasons for this are discussed in the conclusion section on nano-scale events. It is suggested that, ahead of a sharp crack, it is necessary to increase the compliance by a cooperative movement of atoms (involving extra work) to allow the crack-tip bond to displace sufficiently for the energy of attraction between the atoms to reduce to zero. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Hard X-Ray Flare Source Sizes Measured with the Ramaty High Energy Solar Spectroscopic Imager

    Science.gov (United States)

    Dennis, Brian R.; Pernak, Rick L.

    2009-01-01

    Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of 18 double hard X-ray sources seen at energies above 25 keV are analyzed to determine the spatial extent of the most compact structures evident in each case. The following four image reconstruction algorithms were used: Clean, Pixon, and two routines using visibilities maximum entropy and forward fit (VFF). All have been adapted for this study to optimize their ability to provide reliable estimates of the sizes of the more compact sources. The source fluxes, sizes, and morphologies obtained with each method are cross-correlated and the similarities and disagreements are discussed. The full width at half-maximum (FWHM) of the major axes of the sources with assumed elliptical Gaussian shapes are generally well correlated between the four image reconstruction routines and vary between the RHESSI resolution limit of approximately 2" up to approximately 20" with most below 10". The FWHM of the minor axes are generally at or just above the RHESSI limit and hence should be considered as unresolved in most cases. The orientation angles of the elliptical sources are also well correlated. These results suggest that the elongated sources are generally aligned along a flare ribbon with the minor axis perpendicular to the ribbon. This is verified for the one flare in our list with coincident Transition Region and Coronal Explorer (TRACE) images. There is evidence for significant extra flux in many of the flares in addition to the two identified compact sources, thus rendering the VFF assumption of just two Gaussians inadequate. A more realistic approximation in many cases would be of two line sources with unresolved widths. Recommendations are given for optimizing the RHESSI imaging reconstruction process to ensure that the finest possible details of the source morphology become evident and that reliable estimates can be made of the source dimensions.

  7. Non-dimensional scaling of impact fast ignition experiments

    International Nuclear Information System (INIS)

    Farley, D R; Shigemori, K; Murakami, M; Azechi, H

    2008-01-01

    Recent experiments at the Osaka University Institute for Laser Engineering (ILE) showed that 'Impact Fast Ignition' (IFI) could increase the neutron yield of inertial fusion targets by two orders of magnitude [1]. IFI utilizes the thermal and kinetic energy of a laser-accelerated disk to impact an imploded fusion target. ILE researchers estimate a disk velocity of 10 8 cm/sec is needed to ignite the fusion target [2]. To be able to study the IFI concept using lasers different from that at ILE, appropriate non-dimensionalization of the flow should be done. Analysis of the rocket equation gives parameters needed for producing similar IFI results with different lasers. This analysis shows that a variety of laboratory-scale commercial lasers could produce results useful to full-scale ILE experiments

  8. Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote Sensing Observations

    Science.gov (United States)

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding

  9. Finite-size-scaling analysis of subsystem data in the dilute Ising model

    International Nuclear Information System (INIS)

    Hennecke, M.

    1993-01-01

    Monte Carlo simulation results for the magnetization of subsystems of finite lattices are used to determine the critical temperature and a critical exponent of the simple-cubic Ising model with quenched site dilution, at a concentration of p=40%. Particular attention is paid to the effect of the finite size of the systems from which the subsystem results are obtained. This finiteness of the lattices involved is shown to be a source of large deviations of critical temperatures and exponents estimated from subsystem data from their values in the thermodynamic limit. By the use of different lattice sizes, the results T c (40%)=1.209±0.002 and ν(40%)=0.78±0.01 could be extrapolated

  10. Size effects in olivine control strength in low-temperature plasticity regime

    Science.gov (United States)

    Kumamoto, K. M.; Thom, C.; Wallis, D.; Hansen, L. N.; Armstrong, D. E. J.; Goldsby, D. L.; Warren, J. M.; Wilkinson, A. J.

    2017-12-01

    The strength of the lithospheric mantle during deformation by low-temperature plasticity controls a range of geological phenomena, including lithospheric-scale strain localization, the evolution of friction on deep seismogenic faults, and the flexure of tectonic plates. However, constraints on the strength of olivine in this deformation regime are difficult to obtain from conventional rock-deformation experiments, and previous results vary considerably. We demonstrate via nanoindentation that the strength of olivine in the low-temperature plasticity regime is dependent on the length-scale of the test, with experiments on smaller volumes of material exhibiting larger yield stresses. This "size effect" has previously been explained in engineering materials as a result of the role of strain gradients and associated geometrically necessary dislocations in modifying plastic behavior. The Hall-Petch effect, in which a material with a small grain size exhibits a higher strength than one with a large grain size, is thought to arise from the same mechanism. The presence of a size effect resolves discrepancies among previous experimental measurements of olivine, which were either conducted using indentation methods or were conducted on polycrystalline samples with small grain sizes. An analysis of different low-temperature plasticity flow laws extrapolated to room temperature reveals a power-law relationship between length-scale (grain size for polycrystalline deformation and contact radius for indentation tests) and yield strength. This suggests that data from samples with large inherent length scales best represent the plastic strength of the coarse-grained lithospheric mantle. Additionally, the plastic deformation of nanometer- to micrometer-sized asperities on fault surfaces may control the evolution of fault roughness due to their size-dependent strength.

  11. A large-scale soil-structure interaction experiment: Design and construction

    International Nuclear Information System (INIS)

    Tang, H.T.; Tang, Y.K.; Stepp, J.C.; Wall, I.B.; Lin, E.; Cheng, S.C.; Lee, S.K.

    1989-01-01

    This paper describes the design and construction phase of the Large-Scale Soil-Structure Interaction Experiment project jointly sponsored by EPRI and Taipower. The project has two objectives: 1. to obtain an earthquake database which can be used to substantiate soil-structure interaction (SSI) models and analysis methods; and 2. to quantify nuclear power plant reactor containment and internal components seismic margin based on earthquake experience data. These objectives were accomplished by recording and analyzing data from two instrumented, scaled down, reinforced concrete containment structures during seismic events. The two model structures are sited in a high seismic region in Taiwan (SMART-1). A strong-motion seismic array network is located at the site. The containment models (1/4- and 1/12-scale) were constructed and instrumented specially for this experiment. Construction was completed and data recording began in September 1985. By November 1986, 18 strong motion earthquakes ranging from Richter magnitude 4.5 to 7.0 were recorded. (orig./HP)

  12. Using Relational Reasoning to Learn about Scientific Phenomena at Unfamiliar Scales

    Science.gov (United States)

    Resnick, Ilyse; Davatzes, Alexandra; Newcombe, Nora S.; Shipley, Thomas F.

    2017-01-01

    Many scientific theories and discoveries involve reasoning about extreme scales, removed from human experience, such as time in geology and size in nanoscience. Thus, understanding scale is central to science, technology, engineering, and mathematics. Unfortunately, novices have trouble understanding and comparing sizes of unfamiliar large and…

  13. Atmospheric Transport Modeling with 3D Lagrangian Dispersion Codes Compared with SF6 Tracer Experiments at Regional Scale

    Directory of Open Access Journals (Sweden)

    François Van Dorpe

    2007-01-01

    Full Text Available The results of four gas tracer experiments of atmospheric dispersion on a regional scale are used for the benchmarking of two atmospheric dispersion modeling codes, MINERVE-SPRAY (CEA, and NOSTRADAMUS (IBRAE. The main topic of this comparison is to estimate the Lagrangian code capability to predict the radionuclide atmospheric transfer on a large field, in the case of risk assessment of nuclear power plant for example. For the four experiments, the results of calculations show a rather good agreement between the two codes, and the order of magnitude of the concentrations measured on the soil is predicted. Simulation is best for sampling points located ten kilometers from the source, while we note a divergence for more distant points results (difference in concentrations by a factor 2 to 5. This divergence may be explained by the fact that, for these four experiments, only one weather station (near the point source was used on a field of 10 000 km2, generating the simulation of a uniform wind field throughout the calculation domain.

  14. Performance of a high-precision calorimeter for the measurement of the antineutrino-source strength in the SOX experiment

    Energy Technology Data Exchange (ETDEWEB)

    Altenmueller, Konrad [Technische Universitaet Muenchen (Germany); Collaboration: BOREXINO-Collaboration

    2016-07-01

    A calorimeter was developed to measure the thermal power and thus the antineutrino-generation rate of a {sup 144}Ce - {sup 144}Pr antineutrino-source with < 1% overall accuracy for the SOX experiment. SOX is searching for neutrino oscillations at short baselines with the Borexino detector to investigate the existence of eV-scale sterile neutrinos. The calorimeter design is based on a copper heat exchanger with integrated water lines for the heat extraction, mounted around the source. A high precision measurement is possible thanks to an elaborate thermal insulation. In this talk, the design of the calorimeter is reviewed and results of calibration measurements are presented. The thermal insulation of the system was examined and heat losses were quantified. The methods to reconstruct the source power and the decay rate from measurements are described.

  15. Disintegration of excess activated sludge--evaluation and experience of full-scale applications.

    Science.gov (United States)

    Zábranská, J; Dohányos, M; Jenícek, P; Kutil, J

    2006-01-01

    Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15-26%, organic matter in digested sludge significantly decreased to 48-49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.

  16. Parameter Scaling for Epidemic Size in a Spatial Epidemic Model with Mobile Individuals.

    Directory of Open Access Journals (Sweden)

    Chiyori T Urabe

    Full Text Available In recent years, serious infectious diseases tend to transcend national borders and widely spread in a global scale. The incidence and prevalence of epidemics are highly influenced not only by pathogen-dependent disease characteristics such as the force of infection, the latent period, and the infectious period, but also by human mobility and contact patterns. However, the effect of heterogeneous mobility of individuals on epidemic outcomes is not fully understood. Here, we aim to elucidate how spatial mobility of individuals contributes to the final epidemic size in a spatial susceptible-exposed-infectious-recovered (SEIR model with mobile individuals in a square lattice. After illustrating the interplay between the mobility parameters and the other parameters on the spatial epidemic spreading, we propose an index as a function of system parameters, which largely governs the final epidemic size. The main contribution of this study is to show that the proposed index is useful for estimating how parameter scaling affects the final epidemic size. To demonstrate the effectiveness of the proposed index, we show that there is a positive correlation between the proposed index computed with the real data of human airline travels and the actual number of positive incident cases of influenza B in the entire world, implying that the growing incidence of influenza B is attributed to increased human mobility.

  17. Size-segregated aerosol in a hot-spot pollution urban area: Chemical composition and three-way source apportionment.

    Science.gov (United States)

    Bernardoni, V; Elser, M; Valli, G; Valentini, S; Bigi, A; Fermo, P; Piazzalunga, A; Vecchi, R

    2017-12-01

    In this work, a comprehensive characterisation and source apportionment of size-segregated aerosol collected using a multistage cascade impactor was performed. The samples were collected during wintertime in Milan (Italy), which is located in the Po Valley, one of the main pollution hot-spot areas in Europe. For every sampling, size-segregated mass concentration, elemental and ionic composition, and levoglucosan concentration were determined. Size-segregated data were inverted using the program MICRON to identify and quantify modal contributions of all the measured components. The detailed chemical characterisation allowed the application of a three-way (3-D) receptor model (implemented using Multilinear Engine) for size-segregated source apportionment and chemical profiles identification. It is noteworthy that - as far as we know - this is the first time that three-way source apportionment is attempted using data of aerosol collected by traditional cascade impactors. Seven factors were identified: wood burning, industry, resuspended dust, regional aerosol, construction works, traffic 1, and traffic 2. Further insights into size-segregated factor profiles suggested that the traffic 1 factor can be associated to diesel vehicles and traffic 2 to gasoline vehicles. The regional aerosol factor resulted to be the main contributor (nearly 50%) to the droplet mode (accumulation sub-mode with modal diameter in the range 0.5-1 μm), whereas the overall contribution from the two factors related to traffic was the most important one in the other size modes (34-41%). The results showed that applying a 3-D receptor model to size-segregated samples allows identifying factors of local and regional origin while receptor modelling on integrated PM fractions usually singles out factors characterised by primary (e.g. industry, traffic, soil dust) and secondary (e.g. ammonium sulphate and nitrate) origin. Furthermore, the results suggested that the information on size

  18. A scandium calibration source for the SNO+ experiment

    Energy Technology Data Exchange (ETDEWEB)

    Boeltzig, Axel; Barros, Nuno; Krueger, Felix; Krosigk, Belina von; Lozza, Valentina; Neumann, Laura; Petzoldt, Johannes; Soerensen, Arnd; Zuber, Kai [TU Dresden (Germany)

    2013-07-01

    The SNO+ experiment is the successor of SNO (Sudbury Neutrino Observatory), for which the detector will be filled with liquid scintillator. Located 2 km underground (equivalent to a shielding of about 6 km of water) in a mine near Sudbury, Canada, SNO+ will be a low-background experiment studying different aspects of neutrinos. The SNO+ detector calibration is scheduled to begin in mid-2013 with a water-filled detector and in 2014 filled with liquid scintillator. One of the sources designated for this calibration will use the γ rays following the beta decay of {sup 48}Sc. The sum of their energies is 3.333 MeV for the main decay branch, which is close to Q=3.371 MeV for the neutrino-less double beta decay of {sup 150}Nd that SNO+ plans to investigate. Due to the {sup 48}Sc half-life of 43.67 h, the source has to be produced shortly before the calibration via (n,p) reactions on {sup 48}Ti. Safety, radiopurity and cleanliness are further important issues for its application. The current status of the source development will be presented.

  19. Power Scaling of the Size Distribution of Economic Loss and Fatalities due to Hurricanes, Earthquakes, Tornadoes, and Floods in the USA

    Science.gov (United States)

    Tebbens, S. F.; Barton, C. C.; Scott, B. E.

    2016-12-01

    Traditionally, the size of natural disaster events such as hurricanes, earthquakes, tornadoes, and floods is measured in terms of wind speed (m/sec), energy released (ergs), or discharge (m3/sec) rather than by economic loss or fatalities. Economic loss and fatalities from natural disasters result from the intersection of the human infrastructure and population with the size of the natural event. This study investigates the size versus cumulative number distribution of individual natural disaster events for several disaster types in the United States. Economic losses are adjusted for inflation to 2014 USD. The cumulative number divided by the time over which the data ranges for each disaster type is the basis for making probabilistic forecasts in terms of the number of events greater than a given size per year and, its inverse, return time. Such forecasts are of interest to insurers/re-insurers, meteorologists, seismologists, government planners, and response agencies. Plots of size versus cumulative number distributions per year for economic loss and fatalities are well fit by power scaling functions of the form p(x) = Cx-β; where, p(x) is the cumulative number of events with size equal to and greater than size x, C is a constant, the activity level, x is the event size, and β is the scaling exponent. Economic loss and fatalities due to hurricanes, earthquakes, tornadoes, and floods are well fit by power functions over one to five orders of magnitude in size. Economic losses for hurricanes and tornadoes have greater scaling exponents, β = 1.1 and 0.9 respectively, whereas earthquakes and floods have smaller scaling exponents, β = 0.4 and 0.6 respectively. Fatalities for tornadoes and floods have greater scaling exponents, β = 1.5 and 1.7 respectively, whereas hurricanes and earthquakes have smaller scaling exponents, β = 0.4 and 0.7 respectively. The scaling exponents can be used to make probabilistic forecasts for time windows ranging from 1 to 1000 years

  20. VLA and low-frequency VLBI observations of the radio source 0503 + 467 - Austere constraints on interstellar scattering in two media

    International Nuclear Information System (INIS)

    Spangler, S.R.; Fey, A.L.; Cordes, J.M.; Cornell Univ., Ithaca, NY)

    1987-01-01

    The radio source 0503 + 467 lies near the Galactic plane (l = 161.0 deg, b = 3.7 deg) and at the edge of the supernova remnant (SNR) HB 9. The VLA observations show that it has a spectrum typical of a compact extragalactic radio source. The resultant small angular size of the source makes it an excellent probe of turbulence in two media: the diffuse, or type A, component of interstellar turbulence and a hypothesized region of hydromagnetic turbulence upstream of the supernova remnant. An eight-station VLBI experiment at 326 MHz indicates that the source is less than about 20 milliarcseconds (mas) in angular diameter. A value of 16 mas is most appropriate as an upper limit to the interstellar scattering contribution to the measured angular size. The implications of this upper limit are twofold. First, the galactocentric radial scale to the type-A turbulence is probably less than or equal to about 6 kpc. Second, no evidence is seen for shock-associated turbulence upstream of HB 9. The measurements make it possible to constrain a parameter which is a function of the rms density fluctuation in the upstream region, the outer scale to the density turbulence, and the thickness of SNR foreshock region. 14 references

  1. Ion Sources and Injectors for HIF Induction Linacs

    International Nuclear Information System (INIS)

    Kwan, J.W.; Ahle, L.; Beck, D.N.; Bieniosek, F. M.; Faltens, A.; Grote, D.P.; Halaxa, E.; Henestroza, E.; Herrmannsfeldt, W.B.; Karpenko, V.; Sangster, T.C.

    2000-01-01

    Ion source and injector development is one of the major parts of the HIF program in the USA. Our challenge is to design a cost effective driver-scale injector and to build a multiple beam module within the next couple of years. In this paper, several current-voltage scaling laws are summarized for guiding the injector design. Following the traditional way of building injectors for HIF induction linac, we have produced a preliminary design for a multiple beam driver-scale injector. We also developed an alternate option for a high current density injector that is much smaller in size. One of the changes following this new option is the possibility of using other kinds of ion sources than the surface ionization sources. So far, we are still looking for an ideal ion source candidate that can readily meet all the essential requirements

  2. Phased Array Noise Source Localization Measurements of an F404 Nozzle Plume at Both Full and Model Scale

    Science.gov (United States)

    Podboy, Gary G.; Bridges, James E.; Henderson, Brenda S.

    2010-01-01

    A 48-microphone planar phased array system was used to acquire jet noise source localization data on both a full-scale F404-GE-F400 engine and on a 1/4th scale model of a F400 series nozzle. The full-scale engine test data show the location of the dominant noise sources in the jet plume as a function of frequency for the engine in both baseline (no chevron) and chevron configurations. Data are presented for the engine operating both with and without afterburners. Based on lessons learned during this test, a set of recommendations are provided regarding how the phased array measurement system could be modified in order to obtain more useful acoustic source localization data on high-performance military engines in the future. The data obtained on the 1/4th scale F400 series nozzle provide useful insights regarding the full-scale engine jet noise source mechanisms, and document some of the differences associated with testing at model-scale versus fullscale.

  3. A triple-scale crystal plasticity modeling and simulation on size effect due to fine-graining

    International Nuclear Information System (INIS)

    Kurosawa, Eisuke; Aoyagi, Yoshiteru; Tadano, Yuichi; Shizawa, Kazuyuki

    2010-01-01

    In this paper, a triple-scale crystal plasticity model bridging three hierarchical material structures, i.e., dislocation structure, grain aggregate and practical macroscopic structure is developed. Geometrically necessary (GN) dislocation density and GN incompatibility are employed so as to describe isolated dislocations and dislocation pairs in a grain, respectively. Then the homogenization method is introduced into the GN dislocation-crystal plasticity model for derivation of the governing equation of macroscopic structure with the mathematical and physical consistencies. Using the present model, a triple-scale FE simulation bridging the above three hierarchical structures is carried out for f.c.c. polycrystals with different mean grain size. It is shown that the present model can qualitatively reproduce size effects of macroscopic specimen with ultrafine-grain, i.e., the increase of initial yield stress, the decrease of hardening ratio after reaching tensile strength and the reduction of tensile ductility with decrease of its grain size. Moreover, the relationship between macroscopic yielding of specimen and microscopic grain yielding is discussed and the mechanism of the poor tensile ductility due to fine-graining is clarified. (author)

  4. Virtual neutron scattering experiments - Training and preparing students for large-scale facility experiments

    Directory of Open Access Journals (Sweden)

    Julie Hougaard Overgaard

    2016-11-01

    Full Text Available Dansk Vi beskriver, hvordan virtuelle eksperimenter kan udnyttes i et læringsdesign ved at forberede de studerende til hands-on-eksperimenter ved storskalafaciliteter. Vi illustrerer designet ved at vise, hvordan virtuelle eksperimenter bruges på Niels Bohr Institutets kandidatkursus om neutronspredning. I den sidste uge af kurset, rejser studerende til et storskala neutronspredningsfacilitet for at udføre neutronspredningseksperimenter. Vi bruger studerendes udsagn om deres oplevelser til at argumentere for, at arbejdet med virtuelle experimenter forbereder de studerende til at engagere sig mere frugtbart med eksperimenter ved at lade dem fokusere på fysikken og relevante data i stedet for instrumenternes funktion. Vi hævder, at det er, fordi de kan overføre deres erfaringer med virtuelle eksperimenter til rigtige eksperimenter. Vi finder dog, at læring stadig er situeret i den forstand, at kun kendskab til bestemte eksperimenter overføres. Vi afslutter med at diskutere de muligheder, som virtuelle eksperimenter giver. English We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering. In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred. We proceed to

  5. Size distribution, directional source contributions and pollution status of PM from Chengdu, China during a long-term sampling campaign.

    Science.gov (United States)

    Shi, Guo-Liang; Tian, Ying-Ze; Ma, Tong; Song, Dan-Lin; Zhou, Lai-Dong; Han, Bo; Feng, Yin-Chang; Russell, Armistead G

    2017-06-01

    Long-term and synchronous monitoring of PM 10 and PM 2.5 was conducted in Chengdu in China from 2007 to 2013. The levels, variations, compositions and size distributions were investigated. The sources were quantified by two-way and three-way receptor models (PMF2, ME2-2way and ME2-3way). Consistent results were found: the primary source categories contributed 63.4% (PMF2), 64.8% (ME2-2way) and 66.8% (ME2-3way) to PM 10 , and contributed 60.9% (PMF2), 65.5% (ME2-2way) and 61.0% (ME2-3way) to PM 2.5 . Secondary sources contributed 31.8% (PMF2), 32.9% (ME2-2way) and 31.7% (ME2-3way) to PM 10 , and 35.0% (PMF2), 33.8% (ME2-2way) and 36.0% (ME2-3way) to PM 2.5 . The size distribution of source categories was estimated better by the ME2-3way method. The three-way model can simultaneously consider chemical species, temporal variability and PM sizes, while a two-way model independently computes datasets of different sizes. A method called source directional apportionment (SDA) was employed to quantify the contributions from various directions for each source category. Crustal dust from east-north-east (ENE) contributed the highest to both PM 10 (12.7%) and PM 2.5 (9.7%) in Chengdu, followed by the crustal dust from south-east (SE) for PM 10 (9.8%) and secondary nitrate & secondary organic carbon from ENE for PM 2.5 (9.6%). Source contributions from different directions are associated with meteorological conditions, source locations and emission patterns during the sampling period. These findings and methods provide useful tools to better understand PM pollution status and to develop effective pollution control strategies. Copyright © 2016. Published by Elsevier B.V.

  6. Population size estimation of men who have sex with men through the network scale-up method in Japan.

    Directory of Open Access Journals (Sweden)

    Satoshi Ezoe

    Full Text Available BACKGROUND: Men who have sex with men (MSM are one of the groups most at risk for HIV infection in Japan. However, size estimates of MSM populations have not been conducted with sufficient frequency and rigor because of the difficulty, high cost and stigma associated with reaching such populations. This study examined an innovative and simple method for estimating the size of the MSM population in Japan. We combined an internet survey with the network scale-up method, a social network method for estimating the size of hard-to-reach populations, for the first time in Japan. METHODS AND FINDINGS: An internet survey was conducted among 1,500 internet users who registered with a nationwide internet-research agency. The survey participants were asked how many members of particular groups with known population sizes (firepersons, police officers, and military personnel they knew as acquaintances. The participants were also asked to identify the number of their acquaintances whom they understood to be MSM. Using these survey results with the network scale-up method, the personal network size and MSM population size were estimated. The personal network size was estimated to be 363.5 regardless of the sex of the acquaintances and 174.0 for only male acquaintances. The estimated MSM prevalence among the total male population in Japan was 0.0402% without adjustment, and 2.87% after adjusting for the transmission error of MSM. CONCLUSIONS: The estimated personal network size and MSM prevalence seen in this study were comparable to those from previous survey results based on the direct-estimation method. Estimating population sizes through combining an internet survey with the network scale-up method appeared to be an effective method from the perspectives of rapidity, simplicity, and low cost as compared with more-conventional methods.

  7. Monte Carlo modeling of small photon fields: Quantifying the impact of focal spot size on source occlusion and output factors, and exploring miniphantom design for small-field measurements

    International Nuclear Information System (INIS)

    Scott, Alison J. D.; Nahum, Alan E.; Fenwick, John D.

    2009-01-01

    The accuracy with which Monte Carlo models of photon beams generated by linear accelerators (linacs) can describe small-field dose distributions depends on the modeled width of the electron beam profile incident on the linac target. It is known that the electron focal spot width affects penumbra and cross-field profiles; here, the authors explore the extent to which source occlusion reduces linac output for smaller fields and larger spot sizes. A BEAMnrc Monte Carlo linac model has been used to investigate the variation in penumbra widths and small-field output factors with electron spot size. A formalism is developed separating head scatter factors into source occlusion and flattening filter factors. Differences between head scatter factors defined in terms of in-air energy fluence, collision kerma, and terma are explored using Monte Carlo calculations. Estimates of changes in kerma-based source occlusion and flattening filter factors with field size and focal spot width are obtained by calculating doses deposited in a narrow 2 mm wide virtual ''milliphantom'' geometry. The impact of focal spot size on phantom scatter is also explored. Modeled electron spot sizes of 0.4-0.7 mm FWHM generate acceptable matches to measured penumbra widths. However the 0.5 cm field output factor is quite sensitive to electron spot width, the measured output only being matched by calculations for a 0.7 mm spot width. Because the spectra of the unscattered primary (Ψ Π ) and head-scattered (Ψ Σ ) photon energy fluences differ, miniphantom-based collision kerma measurements do not scale precisely with total in-air energy fluence Ψ=(Ψ Π +Ψ Σ ) but with (Ψ Π +1.2Ψ Σ ). For most field sizes, on-axis collision kerma is independent of the focal spot size; but for a 0.5 cm field size and 1.0 mm spot width, it is reduced by around 7% mostly due to source occlusion. The phantom scatter factor of the 0.5 cm field also shows some spot size dependence, decreasing by 6% (relative) as

  8. Examining perceptions of academic stress and its sources among university students: The Perception of Academic Stress Scale

    Directory of Open Access Journals (Sweden)

    Dalia Bedewy

    2015-07-01

    Full Text Available The development of a scale to measure perceived sources of academic stress among university students. Based on empirical evidence and recent literature review, we developed an 18-item scale to measure perceptions of academic stress and its sources. Experts ( n  = 12 participated in the content validation process of the instrument before it was administered to ( n  = 100 students. The developed instrument has internal consistency reliability of 0.7 (Cronbach’s alpha, there was evidence for content validity, and factor analysis resulted in four correlated and theoretically meaningful factors. We developed and tested a scale to measure academic stress and its sources. This scale takes 5 minutes to complete.

  9. DARHT Axis-I Diode Simulations II: Geometrical Scaling

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. Jr. [Los Alamos National Laboratory

    2012-06-14

    Flash radiography of large hydrodynamic experiments driven by high explosives is a venerable diagnostic technique in use at many laboratories. Many of the largest hydrodynamic experiments study mockups of nuclear weapons, and are often called hydrotests for short. The dual-axis radiography for hydrodynamic testing (DARHT) facility uses two electron linear-induction accelerators (LIA) to produce the radiographic source spots for perpendicular views of a hydrotest. The first of these LIAs produces a single pulse, with a fixed {approx}60-ns pulsewidth. The second axis LIA produces as many as four pulses within 1.6-{micro}s, with variable pulsewidths and separation. There are a wide variety of hydrotest geometries, each with a unique radiographic requirement, so there is a need to adjust the radiographic dose for the best images. This can be accomplished on the second axis by simply adjusting the pulsewidths, but is more problematic on the first axis. Changing the beam energy or introducing radiation attenuation also changes the spectrum, which is undesirable. Moreover, using radiation attenuation introduces significant blur, increasing the effective spot size. The dose can also be adjusted by changing the beam kinetic energy. This is a very sensitive method, because the dose scales as the {approx}2.8 power of the energy, but it would require retuning the accelerator. This leaves manipulating the beam current as the best means for adjusting the dose, and one way to do this is to change the size of the cathode. This method has been proposed, and is being tested. This article describes simulations undertaken to develop scaling laws for use as design tools in changing the Axis-1 beam current by changing the cathode size.

  10. Assessing the removal of turbidity and coliform transport through canal-bed sediment at lab-scale: column experiments

    International Nuclear Information System (INIS)

    Kandhar, I.; Sahito, A.R.

    2017-01-01

    This study was conducted at lab scale to determine the performance of the canal-bed for the removal of turbidity and microorganisms TC (Total Coliforms) from surface water. The canal-bed sediments were collected and analyzed for the characteristics of sediments for grain size distribution, hydraulic conductivity and the POM (Particulate Organic Matter) percent. Canal-bed sediments were containing fine particles<0.075mm in the range of 40-58%, with hydraulic conductivity averaged 7ft/day, and the POM 2.75%. The water samples collected from the canal-water have shown average POM 3.6%. Theremoval-reduction in turbidity and TC were determined through the column experiments on the canal-bed sediments. Three columns were prepared at lab-scale by using prepared canal-bed sediment as a filter-bed in the columns for the filtration of raw water samples. Fine particles of the canal-bed grain size D10 0.2 and D10 0.1mm were selected for the filter-bed formation. The prepared concentrated and diluted influent water samples containing turbidity and TC were passed through the washed filter-bed into the columns for 8-weeks filter run. The frequency of sampling and analysis were followedafter the interval of one-week run, the influent (raw water) and effluent (filtered) water samples were collected and analyzed for the turbidity and TC concentrations. The performance of the grain size D10 0.1mm have shown 95-99.95% reduction in turbidity and TC compared to the larger grain size having D10 0.2mm particles. (author)

  11. Nasonia Parasitic Wasps Escape from Haller's Rule by Diphasic, Partially Isometric Brain-Body Size Scaling and Selective Neuropil Adaptations

    NARCIS (Netherlands)

    Groothuis, Jitte; Smid, Hans M.

    2017-01-01

    Haller's rule states that brains scale allometrically with body size in all animals, meaning that relative brain size increases with decreasing body size. This rule applies both on inter- and intraspecific comparisons. Only 1 species, the extremely small parasitic wasp Trichogramma evanescens, is

  12. EPOS-WP16 : A coherent and collaborative network of Solid Earth Multi-scale laboratories

    NARCIS (Netherlands)

    Calignano, E.; Rosenau, Matthias; Lange, Otto; Spiers, C.J.; Willingshofer, E.; Drury, M.R.; van Kan, M.; Elger, Kirsten; Ulbricht, Damian; Funiciello, F.; Trippanera, Daniele; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; winkler, Aldo

    2017-01-01

    infrastructures range from the nano- and micrometre levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetres-sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. The aim of WP16 is to provide two

  13. Development of the bullying and health experiences scale.

    Science.gov (United States)

    Beran, Tanya; Stanton, Lauren; Hetherington, Ross; Mishna, Faye; Shariff, Shaheen

    2012-11-09

    Until recently, researchers have studied forms of bullying separately. For 40 years, research has looked at the traditional forms of bullying, including physical (eg, hitting), verbal (eg, threats), and social (eg, exclusion). Attention focused on cyberbullying in the early 2000s. Although accumulating research suggests that bullying has multiple negative effects for children who are targeted, these effects excluded cyberbullying from the definition of bullying. This paper responds to the need for a multidimensional measure of the impact of various forms of bullying. We used a comprehensive definition of bullying, which includes all of its forms, to identify children who had been targeted or who had participated in bullying. We then examined various ways in which they were impacted. We used an online method to administer 37 impact items to 377 (277 female, 100 male) children and youth, to develop and test the Bullying and Health Experience Scale. A principal components analysis of the bullying impact items with varimax rotation resulted in 8 factors with eigenvalues greater than one, explaining 68.0% of the variance. These scales include risk, relationships, anger, physical injury, drug use, anxiety, self-esteem, and eating problems, which represent many of the cognitive, psychological, and behavioral consequences of bullying. The Cronbach alpha coefficients for the 8 scales range from .73 to .90, indicating good inter-item consistency. Comparisons between the groups showed that children involved in bullying had significantly higher negative outcomes on all scales than children not involved in bullying. The high Cronbach alpha values indicate that the 8 impact scales provide reliable scores. In addition, comparisons between the groups indicate that the 8 scales provide accurate scores, with more negative outcomes reported by children involved in bullying compared to those who are not involved in bullying. This evidence of reliability and validity indicates that

  14. Updating Geospatial Data from Large Scale Data Sources

    Science.gov (United States)

    Zhao, R.; Chen, J.; Wang, D.; Shang, Y.; Wang, Z.; Li, X.; Ai, T.

    2011-08-01

    In the past decades, many geospatial databases have been established at national, regional and municipal levels over the world. Nowadays, it has been widely recognized that how to update these established geo-spatial database and keep them up to date is most critical for the value of geo-spatial database. So, more and more efforts have been devoted to the continuous updating of these geospatial databases. Currently, there exist two main types of methods for Geo-spatial database updating: directly updating with remote sensing images or field surveying materials, and indirectly updating with other updated data result such as larger scale newly updated data. The former method is the basis because the update data sources in the two methods finally root from field surveying and remote sensing. The later method is often more economical and faster than the former. Therefore, after the larger scale database is updated, the smaller scale database should be updated correspondingly in order to keep the consistency of multi-scale geo-spatial database. In this situation, it is very reasonable to apply map generalization technology into the process of geo-spatial database updating. The latter is recognized as one of most promising methods of geo-spatial database updating, especially in collaborative updating environment in terms of map scale, i.e , different scale database are produced and maintained separately by different level organizations such as in China. This paper is focused on applying digital map generalization into the updating of geo-spatial database from large scale in the collaborative updating environment for SDI. The requirements of the application of map generalization into spatial database updating are analyzed firstly. A brief review on geospatial data updating based digital map generalization is then given. Based on the requirements analysis and review, we analyze the key factors for implementing updating geospatial data from large scale including technical

  15. Mining the Mind Research Network: A Novel Framework for Exploring Large Scale, Heterogeneous Translational Neuroscience Research Data Sources

    Science.gov (United States)

    Bockholt, Henry J.; Scully, Mark; Courtney, William; Rachakonda, Srinivas; Scott, Adam; Caprihan, Arvind; Fries, Jill; Kalyanam, Ravi; Segall, Judith M.; de la Garza, Raul; Lane, Susan; Calhoun, Vince D.

    2009-01-01

    A neuroinformatics (NI) system is critical to brain imaging research in order to shorten the time between study conception and results. Such a NI system is required to scale well when large numbers of subjects are studied. Further, when multiple sites participate in research projects organizational issues become increasingly difficult. Optimized NI applications mitigate these problems. Additionally, NI software enables coordination across multiple studies, leveraging advantages potentially leading to exponential research discoveries. The web-based, Mind Research Network (MRN), database system has been designed and improved through our experience with 200 research studies and 250 researchers from seven different institutions. The MRN tools permit the collection, management, reporting and efficient use of large scale, heterogeneous data sources, e.g., multiple institutions, multiple principal investigators, multiple research programs and studies, and multimodal acquisitions. We have collected and analyzed data sets on thousands of research participants and have set up a framework to automatically analyze the data, thereby making efficient, practical data mining of this vast resource possible. This paper presents a comprehensive framework for capturing and analyzing heterogeneous neuroscience research data sources that has been fully optimized for end-users to perform novel data mining. PMID:20461147

  16. Mining the mind research network: a novel framework for exploring large scale, heterogeneous translational neuroscience research data sources.

    Directory of Open Access Journals (Sweden)

    Henry Jeremy Bockholt

    2010-04-01

    Full Text Available A neuroinformatics (NI system is critical to brain imaging research in order to shorten the time between study conception and results. Such a NI system is required to scale well when large numbers of subjects are studied. Further, when multiple sites participate in research projects organizational issues become increasingly difficult. Optimized NI applications mitigate these problems. Additionally, NI software enables coordination across multiple studies, leveraging advantages potentially leading to exponential research discoveries. The web-based, Mind Research Network (MRN, database system has been designed and improved through our experience with 200 research studies and 250 researchers from 7 different institutions. The MRN tools permit the collection, management, reporting and efficient use of large scale, heterogeneous data sources, e.g., multiple institutions, multiple principal investigators, multiple research programs and studies, and multimodal acquisitions. We have collected and analyzed data sets on thousands of research participants and have set up a framework to automatically analyze the data, thereby making efficient, practical data mining of this vast resource possible. This paper presents a comprehensive framework for capturing and analyzing heterogeneous neuroscience research data sources that has been fully optimized for end-users to perform novel data mining.

  17. Forced sound transmission through a finite-sized single leaf panel subject to a point source excitation.

    Science.gov (United States)

    Wang, Chong

    2018-03-01

    In the case of a point source in front of a panel, the wavefront of the incident wave is spherical. This paper discusses spherical sound waves transmitting through a finite sized panel. The forced sound transmission performance that predominates in the frequency range below the coincidence frequency is the focus. Given the point source located along the centerline of the panel, forced sound transmission coefficient is derived through introducing the sound radiation impedance for spherical incident waves. It is found that in addition to the panel mass, forced sound transmission loss also depends on the distance from the source to the panel as determined by the radiation impedance. Unlike the case of plane incident waves, sound transmission performance of a finite sized panel does not necessarily converge to that of an infinite panel, especially when the source is away from the panel. For practical applications, the normal incidence sound transmission loss expression of plane incident waves can be used if the distance between the source and panel d and the panel surface area S satisfy d/S>0.5. When d/S ≈0.1, the diffuse field sound transmission loss expression may be a good approximation. An empirical expression for d/S=0  is also given.

  18. Fully predictive simulation of real-scale cable tray fire based on small-scale laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Beji, Tarek; Merci, Bart [Ghent Univ. (Belgium). Dept. of Flow, Heat and Combustion Mechanics; Bonte, Frederick [Bel V, Brussels (Belgium)

    2015-12-15

    This paper presents a computational fluid dynamics (CFD)-based modelling strategy for real-scale cable tray fires. The challenge was to perform fully predictive simulations (that could be called 'blind' simulations) using solely information from laboratory-scale experiments, in addition to the geometrical arrangement of the cables. The results of the latter experiments were used (1) to construct the fuel molecule and the chemical reaction for combustion, and (2) to estimate the overall pyrolysis and burning behaviour. More particularly, the strategy regarding the second point consists of adopting a surface-based pyrolysis model. Since the burning behaviour of each cable could not be tracked individually (due to computational constraints), 'groups' of cables were modelled with an overall cable surface area equal to the actual value. The results obtained for one large-scale test (a stack of five horizontal trays) are quite encouraging, especially for the peak Heat Release Rate (HRR) that was predicted with a relative deviation of 3 %. The time to reach the peak is however overestimated by 4.7 min (i.e. 94 %). Also, the fire duration is overestimated by 5 min (i.e. 24 %). These discrepancies are mainly attributed to differences in the HRRPUA (heat release rate per unit area) profiles between the small-scale and large-scale. The latter was calculated by estimating the burning area of cables using video fire analysis (VFA).

  19. Scaling options for integral experiments for molten salt fluid mechanics and heat transfer

    International Nuclear Information System (INIS)

    Philippe Bardet; Per F Peterson

    2005-01-01

    Full text of publication follows: Molten fluoride salts have potentially large benefits for use in high-temperature heat transport in fission and fusion energy systems, due to their very very low vapor pressures at high temperatures. Molten salts have high volumetric heat capacity compared to high-pressure helium and liquid metals, and have desirable safety characteristics due to their chemical inertness and low pressure. Therefore molten salts have been studied extensively for use in fusion blankets, as an intermediate heat transfer fluid for thermochemical hydrogen production in the Next Generation Nuclear Plant, as a primary coolant for the Advanced High Temperature Reactor, and as a solvent for fuel in the Molten Salt Reactor. This paper presents recent progress in the design and analysis of scaled thermal hydraulics experiments for molten salt systems. We have identified a category of light mineral oils that can be used for scaled experiments. By adjusting the length, velocity, average temperature, and temperature difference scales of the experiment, we show that it is possible to simultaneously match the Reynolds (Re), Froude (Fr), Prandtl (Pr) and Rayleigh (Ra) numbers in the scaled experiments. For example, the light mineral oil Penreco Drakesol 260 AT can be used to simulate the molten salt flibe (Li 2 BeF 4 ). At 110 deg. C, the oil Pr matches 600 deg. C flibe, and at 165 deg. C, the oil Pr matches 900 deg. C flibe. Re, Fr, and Ra can then be matched at a length scale of Ls/Lp = 0.40, velocity scale of U s /U p = 0.63, and temperature difference scale of ΔT s /ΔT p = 0.29. The Weber number is then matched within a factor of two, We s /We p = 0.7. Mechanical pumping power scales as Qp s /Qp p = 0.016, while heat inputs scale as Qh s /Qh p = 0.010, showing that power inputs to scaled experiments are very small compared to the prototype system. The scaled system has accelerated time, t s /t p = 0.64. When Re, Fr, Pr and Ra are matched, geometrically scaled

  20. THE Q/U IMAGING EXPERIMENT: POLARIZATION MEASUREMENTS OF RADIO SOURCES AT 43 AND 95 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Huffenberger, K. M. [Department of Physics, Florida State University, P.O. Box 3064350, Tallahassee, FL 32306-4350 (United States); Araujo, D.; Zwart, J. T. L. [Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Bischoff, C.; Buder, I. [Kavli Institute for Cosmological Physics, Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States); Chinone, Y.; Hasegawa, M. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Cleary, K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E. California Blvd M/C 249-17, Pasadena, CA 91125 (United States); Kusaka, A. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Monsalve, R. [School of Earth and Space Exploration, Arizona State University, 781 E. Terrace Road, Tempe, AZ 85287 (United States); Næss, S. K. [Department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Newburgh, L. B. [Dunlap Institute, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Reeves, R. [CePIA, Departamento de Astronomía, Universidad de Concepción (Chile); Ruud, T. M.; Eriksen, H. K. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Wehus, I. K.; Gaier, T. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Dickinson, C. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Gundersen, J. O., E-mail: huffenbe@physics.fsu.edu [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Collaboration: QUIET Collaboration; and others

    2015-06-10

    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ∼480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30–40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%–20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.

  1. Effective source size, yield and beam profile from multi-layered bremsstrahlung targets

    International Nuclear Information System (INIS)

    Svensson, R.; Brahme, A.

    1996-01-01

    Modern conformal radiotherapy benefits from heterogeneous dose delivery using scanned narrow bremsstrahlung beams of high energy in combination with dynamic double focused multi-leaf collimation and purging magnets. When using a purging magnet to remove electrons and positrons the target space is limited and unorthodox thin multi-layered targets are needed. A computational technique has therefore been developed to determine the forward yield and the angular distributions of the bremsstrahlung beam as well as the size and location of the effective and the virtual photon point source for arbitrary multi-layer bremsstrahlung targets. The Gaussian approximation of the diffusion equation for the electrons has been used and convolved with the bremsstrahlung production process. For electrons with arbitrary emittance impinging on targets of any multi-layer and atomic number combination, the model is well applicable, at least for energies in the range 1-100 MeV. The intrinsic bremsstrahlung photon profile has been determined accurately by deconvolving the electron multiple scattering process from thin experimental beryllium target profiles. For electron pencil beams incident on a target of high density and atomic number such as tungsten, the size of the effective photon source stays at around a tenth of a millimetre. The effective photon source for low-Z materials such as Be, C and Al is located at depths from 3-7 mm in the target, decreasing with increasing atomic number. The effective photon source at off-axis positions then moves out considerably from the central axis, which should be considered when aligning collimators. For high-Z materials such as tungsten, the location of the effective photon source is at a few tenths of a millimetre deep. The virtual photon point source is located only a few tenths of a millimetre upstream of the effective photon source both for high- and low-Z materials. For 50 MeV electrons incident on multi-layered full range targets the radial

  2. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing

    International Nuclear Information System (INIS)

    Uchic, Michael D.; Dimiduk, Dennis M.

    2005-01-01

    A methodology for performing uniaxial compression tests on samples having micron-size dimensions is presented. Sample fabrication is accomplished using focused ion beam milling to create cylindrical samples of uniform cross-section that remain attached to the bulk substrate at one end. Once fabricated, samples are tested in uniaxial compression using a nanoindentation device outfitted with a flat tip, and a stress-strain curve is obtained. The methodology can be used to examine the plastic response of samples of different sizes that are from the same bulk material. In this manner, dimensional size effects at the micron scale can be explored for single crystals, using a readily interpretable test that minimizes imposed stretch and bending gradients. The methodology was applied to a single-crystal Ni superalloy and a transition from bulk-like to size-affected behavior was observed for samples 5 μm in diameter and smaller

  3. Open Source Software Development with Your Mother Language : Intercultural Collaboration Experiment 2002

    DEFF Research Database (Denmark)

    Nomura, Saeko; Ishida, Saeko; Jensen, Mika Yasuoka

    2002-01-01

    ”Open Source Software Development with Your Mother Language: Intercultural Collaboration Experiment 2002,” 10th International Conference on Human – Computer Interaction (HCII2003), June 2003, Crete, Greece.......”Open Source Software Development with Your Mother Language: Intercultural Collaboration Experiment 2002,” 10th International Conference on Human – Computer Interaction (HCII2003), June 2003, Crete, Greece....

  4. Aerosol-Cloud Interactions During Puijo Cloud Experiments - The effects of weather and local sources

    Science.gov (United States)

    Komppula, Mika; Portin, Harri; Leskinen, Ari; Romakkaniemi, Sami; Brus, David; Neitola, Kimmo; Hyvärinen, Antti-Pekka; Kortelainen, Aki; Hao, Liqing; Miettinen, Pasi; Jaatinen, Antti; Ahmad, Irshad; Lihavainen, Heikki; Laaksonen, Ari; Lehtinen, Kari E. J.

    2013-04-01

    The Puijo measurement station has provided continuous data on aerosol-cloud interactions since 2006. The station is located on top of the Puijo observation tower (306 m a.s.l, 224 m above the surrounding lake level) in Kuopio, Finland. The top of the tower is covered by cloud about 15 % of the time, offering perfect conditions for studying aerosol-cloud interactions. With a twin-inlet setup (total and interstitial inlets) we are able to separate the activated particles from the interstitial (non-activated) particles. The continuous twin-inlet measurements include aerosol size distribution, scattering and absorption. In addition cloud droplet number and size distribution are measured continuously with weather parameters. During the campaigns the twin-inlet system was additionally equipped with aerosol mass spectrometer (AMS) and Single Particle Soot Photometer (SP-2). This way we were able to define the differences in chemical composition of the activated and non-activated particles. Potential cloud condensation nuclei (CCN) in different supersaturations were measured with two CCN counters (CCNC). The other CCNC was operated with a Differential Mobility Analyzer (DMA) to obtain size selected CCN spectra. Other additional measurements included Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) for particle hygroscopicity. Additionally the valuable vertical wind profiles (updraft velocities) are available from Halo Doppler lidar during the 2011 campaign. Cloud properties (droplet number and effective radius) from MODIS instrument onboard Terra and Aqua satellites were retrieved and compared with the measured values. This work summarizes the two latest intensive campaigns, Puijo Cloud Experiments (PuCE) 2010 & 2011. We study especially the effect of the local sources on the cloud activation behaviour of the aerosol particles. The main local sources include a paper mill, a heating plant, traffic and residential areas. The sources can be categorized and identified

  5. Diffusion Experiments in Opalinus Clay: Laboratory, Large-Scale Diffusion Experiments and Microscale Analysis by RBS.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gutierrez, M.; Alonso de los Rios, U.; Missana, T.; Cormenzana, J.L.; Mingarro, M.; Morejon, J.; Gil, P.

    2008-08-06

    The Opalinus Clay (OPA) formation in the Zurcher Weiland (Switzerland) is a potential host rock for a repository for high-level radioactive waste. Samples collected in the Mont Terri Underground Rock Laboratory (URL), where the OPA formation is located at a depth between -200 and -300 m below the surface, were used to study the radionuclide diffusion in clay materials. Classical laboratory essays and a novel experimental set-up for large-scale diffusion experiments were performed together to a novel application of the nuclear ion beam technique Rutherford Backscattering Spectrometry (RBS), to understand the transport properties of the OPA and to enhance the methodologies used for in situ diffusion experiments. Through-Diffusion and In-Diffusion conventional laboratory diffusion experiments were carried out with HTO, 36{sup C}l-, I-, 22{sup N}a, 75{sup S}e, 85{sup S}r, 233{sup U}, 137{sup C}s, 60{sup C}o and 152{sup E}u. Large-scale diffusion experiments were performed with HTO, 36{sup C}l, and 85{sup S}r, and new experiments with 60{sup C}o, 137{sup C}s and 152{sup E}u are ongoing. Diffusion experiments with RBS technique were done with Sr, Re, U and Eu. (Author) 38 refs.

  6. Validation Study for an Atmospheric Dispersion Model, Using Effective Source Heights Determined from Wind Tunnel Experiments in Nuclear Safety Analysis

    Directory of Open Access Journals (Sweden)

    Masamichi Oura

    2018-03-01

    Full Text Available For more than fifty years, atmospheric dispersion predictions based on the joint use of a Gaussian plume model and wind tunnel experiments have been applied in both Japan and the U.K. for the evaluation of public radiation exposure in nuclear safety analysis. The effective source height used in the Gaussian model is determined from ground-level concentration data obtained by a wind tunnel experiment using a scaled terrain and site model. In the present paper, the concentrations calculated by this method are compared with data observed over complex terrain in the field, under a number of meteorological conditions. Good agreement was confirmed in near-neutral and unstable stabilities. However, it was found to be necessary to reduce the effective source height by 50% in order to achieve a conservative estimation of the field observations in a stable atmosphere.

  7. Coarse and fine root plants affect pore size distributions differently

    OpenAIRE

    Bodner, G.; Leitner, D.; Kaul, H.-P.

    2014-01-01

    Aims Small scale root-pore interactions require validation of their impact on effective hydraulic processes at the field scale. Our objective was to develop an interpretative framework linking root effects on macroscopic pore parameters with knowledge at the rhizosphere scale. Methods A field experiment with twelve species from different families was conducted. Parameters of Kosugi?s pore size distribution (PSD) model were determined inversely from tension infiltrometer data. Measured root tr...

  8. Diffraction-based analysis of tunnel size for a scaled external occulter testbed

    Science.gov (United States)

    Sirbu, Dan; Kasdin, N. Jeremy; Vanderbei, Robert J.

    2016-07-01

    For performance verification of an external occulter mask (also called a starshade), scaled testbeds have been developed to measure the suppression of the occulter shadow in the pupil plane and contrast in the image plane. For occulter experiments the scaling is typically performed by maintaining an equivalent Fresnel number. The original Princeton occulter testbed was oversized with respect to both input beam and shadow propagation to limit any diffraction effects due to finite testbed enclosure edges; however, to operate at realistic space-mission equivalent Fresnel numbers an extended testbed is currently under construction. With the longer propagation distances involved, diffraction effects due to the edge of the tunnel must now be considered in the experiment design. Here, we present a diffraction-based model of two separate tunnel effects. First, we consider the effect of tunnel-edge induced diffraction ringing upstream from the occulter mask. Second, we consider the diffraction effect due to clipping of the output shadow by the tunnel downstream from the occulter mask. These calculations are performed for a representative point design relevant to the new Princeton occulter experiment, but we also present an analytical relation that can be used for other propagation distances.

  9. Nanometer scale materials - characterization and fabrication

    International Nuclear Information System (INIS)

    Murday, J.S.; Colton, R.J.; Rath, B.B.

    1993-01-01

    Materials and solid state scientists have made excellent progress in understanding material behavior in length scales from microns to meters. Below a micron, the lack of analytical prowess has been a deterrent. At the atomic scale, chemistry and atomic/molecular physics have also contributed significant understanding of matter. The maturity of these three communities, materials, solid state physics, atomic/molecular physics/chemistry, coupled with the development of analytical capability for nanometer-sized structures, promises to broaden our grasp of materials behavior into the last realm of unexplored size scales-nanometer. The motivation for this effort is driven both by the expectation of novel properties as well as by the potential solution to long standing technological issues. Critical scale lengths for many material properties fall in the nanometer range, examples include superconductor coherence lengths, electron inelastic mean free paths, electron wavelengths in solids, critical lengths for dislocation generation. Structures of nanometer size will undoubtedly show behavior unexpected from experience at the larger and smaller scales. Many technological problems such as adhesion, friction, corrosion, elasticity and fracture are believed to depend critically on nanometer scale phenomena. The millennia-old efforts to improve materials behavior have undoubtedly been slowed by our inability to 'observe' in this size range. (orig.)

  10. Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.

    Science.gov (United States)

    Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A

    2010-03-01

    The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.

  11. GYRO-ORBIT SIZE, BRIGHTNESS TEMPERATURE LIMIT, AND IMPLAUSIBILITY OF COHERENT EMISSION BY BUNCHING IN SYNCHROTRON RADIO SOURCES

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2012-01-01

    We show that an upper limit on the maximum brightness temperature for a self-absorbed incoherent synchrotron radio source is obtained from the size of its gyro orbits, which in turn must lie well within the confines of the total source extent. These temperature limits are obtained without recourse to inverse Compton effects or the condition of equipartition of energy between magnetic fields and relativistic particles. For radio variables, the intra-day variability implies brightness temperatures ∼10 19 K in the comoving rest frame of the source. This, if interpreted purely due to an incoherent synchrotron emission, would imply gyroradii >10 28 cm, the size of the universe, while from the causality arguments the inferred maximum size of the source in such a case is ∼ 15 cm. Such high brightness temperatures are sometimes modeled in the literature as some coherent emission process where bunches of non-thermal particles are somehow formed that radiate in phase. We show that, unlike in the case of curvature radiation models proposed in pulsars, in the synchrotron radiation mechanism the oppositely charged particles would contribute together to the coherent phenomenon without the need to form separate bunches of the opposite charges. At the same time we show that bunches would disperse over dimensions larger than a wavelength in time shorter than the gyro orbital period (∼< 0.1 s). Therefore, a coherent emission by bunches cannot be a plausible explanation of the high brightness temperatures inferred in extragalactic radio sources showing variability over a few hours or longer.

  12. Critical threshold size for overwintering sandeels (Ammodytes marinus)

    DEFF Research Database (Denmark)

    Deurs, Mikael van; Hartvig, Martin; Steffensen, John Fleng

    2011-01-01

    scales with body size and increases with temperature, and the two factors together determine a critical threshold size for passive overwintering below which the organism is unlikely to survive without feeding. This is because the energetic cost of metabolism exceeds maximum energy reserves...... independent long-term overwintering experiments. Maximum attainable energy reserves were estimated from published data on A. marinus in the North Sea. The critical threshold size in terms of length (Lth) for A. marinus in the North Sea was estimated to be 9.5 cm. We then investigated two general predictions...

  13. Mechanistically-Based Field-Scale Models of Uranium Biogeochemistry from Upscaling Pore-Scale Experiments and Models

    International Nuclear Information System (INIS)

    Tim Scheibe; Alexandre Tartakovsky; Brian Wood; Joe Seymour

    2007-01-01

    Effective environmental management of DOE sites requires reliable prediction of reactive transport phenomena. A central issue in prediction of subsurface reactive transport is the impact of multiscale physical, chemical, and biological heterogeneity. Heterogeneity manifests itself through incomplete mixing of reactants at scales below those at which concentrations are explicitly defined (i.e., the numerical grid scale). This results in a mismatch between simulated reaction processes (formulated in terms of average concentrations) and actual processes (controlled by local concentrations). At the field scale, this results in apparent scale-dependence of model parameters and inability to utilize laboratory parameters in field models. Accordingly, most field modeling efforts are restricted to empirical estimation of model parameters by fitting to field observations, which renders extrapolation of model predictions beyond fitted conditions unreliable. The objective of this project is to develop a theoretical and computational framework for (1) connecting models of coupled reactive transport from pore-scale processes to field-scale bioremediation through a hierarchy of models that maintain crucial information from the smaller scales at the larger scales; and (2) quantifying the uncertainty that is introduced by both the upscaling process and uncertainty in physical parameters. One of the challenges of addressing scale-dependent effects of coupled processes in heterogeneous porous media is the problem-specificity of solutions. Much effort has been aimed at developing generalized scaling laws or theories, but these require restrictive assumptions that render them ineffective in many real problems. We propose instead an approach that applies physical and numerical experiments at small scales (specifically the pore scale) to a selected model system in order to identify the scaling approach appropriate to that type of problem. Although the results of such studies will

  14. Mechanistically-Based Field-Scale Models of Uranium Biogeochemistry from Upscaling Pore-Scale Experiments and Models

    Energy Technology Data Exchange (ETDEWEB)

    Tim Scheibe; Alexandre Tartakovsky; Brian Wood; Joe Seymour

    2007-04-19

    Effective environmental management of DOE sites requires reliable prediction of reactive transport phenomena. A central issue in prediction of subsurface reactive transport is the impact of multiscale physical, chemical, and biological heterogeneity. Heterogeneity manifests itself through incomplete mixing of reactants at scales below those at which concentrations are explicitly defined (i.e., the numerical grid scale). This results in a mismatch between simulated reaction processes (formulated in terms of average concentrations) and actual processes (controlled by local concentrations). At the field scale, this results in apparent scale-dependence of model parameters and inability to utilize laboratory parameters in field models. Accordingly, most field modeling efforts are restricted to empirical estimation of model parameters by fitting to field observations, which renders extrapolation of model predictions beyond fitted conditions unreliable. The objective of this project is to develop a theoretical and computational framework for (1) connecting models of coupled reactive transport from pore-scale processes to field-scale bioremediation through a hierarchy of models that maintain crucial information from the smaller scales at the larger scales; and (2) quantifying the uncertainty that is introduced by both the upscaling process and uncertainty in physical parameters. One of the challenges of addressing scale-dependent effects of coupled processes in heterogeneous porous media is the problem-specificity of solutions. Much effort has been aimed at developing generalized scaling laws or theories, but these require restrictive assumptions that render them ineffective in many real problems. We propose instead an approach that applies physical and numerical experiments at small scales (specifically the pore scale) to a selected model system in order to identify the scaling approach appropriate to that type of problem. Although the results of such studies will

  15. Scale modelling in LMFBR safety

    International Nuclear Information System (INIS)

    Cagliostro, D.J.; Florence, A.L.; Abrahamson, G.R.

    1979-01-01

    This paper reviews scale modelling techniques used in studying the structural response of LMFBR vessels to HCDA loads. The geometric, material, and dynamic similarity parameters are presented and identified using the methods of dimensional analysis. Complete similarity of the structural response requires that each similarity parameter be the same in the model as in the prototype. The paper then focuses on the methods, limitations, and problems of duplicating these parameters in scale models and mentions an experimental technique for verifying the scaling. Geometric similarity requires that all linear dimensions of the prototype be reduced in proportion to the ratio of a characteristic dimension of the model to that of the prototype. The overall size of the model depends on the structural detail required, the size of instrumentation, and the costs of machining and assemblying the model. Material similarity requires that the ratio of the density, bulk modulus, and constitutive relations for the structure and fluid be the same in the model as in the prototype. A practical choice of a material for the model is one with the same density and stress-strain relationship as the operating temperature. Ni-200 and water are good simulant materials for the 304 SS vessel and the liquid sodium coolant, respectively. Scaling of the strain rate sensitivity and fracture toughness of materials is very difficult, but may not be required if these effects do not influence the structural response of the reactor components. Dynamic similarity requires that the characteristic pressure of a simulant source equal that of the prototype HCDA for geometrically similar volume changes. The energy source is calibrated in the geometry and environment in which it will be used to assure that heat transfer between high temperature loading sources and the coolant simulant and that non-equilibrium effects in two-phase sources are accounted for. For the geometry and flow conitions of interest, the

  16. Patient experience of source isolation: lessons for clinical practice.

    Science.gov (United States)

    Barratt, Ruth Linda; Shaban, Ramon; Moyle, Wendy

    2011-10-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is now the leading antimicrobial-resistant organism of concern to clinicians worldwide. Preventing and controlling the increase and spread of MRSA within the health-care environment is therefore an important function of the infection control team. The prevention and control of MRSA requires strict use of both Standard and Additional Precautions, which include good hand hygiene practices, judicious antimicrobial prescribing, and source isolation. While few would dispute the need for these precautions for preventing the spread of MRSA and other infections, their use may result in adverse physical and psychological effects for the patient. In an age of quality and safety of health care, ensuring infection control practice such as source isolation and contact precautions adhere to fundamental human rights is paramount. This paper presents a review of the literature on the patient experience of source isolation for MRSA or other infectious diseases. The review yielded five major interconnected themes: (1) psychological effects of isolation; (2) coping with isolation; (3) social isolation; (4) communication and information provision; and (5) physical environment and quality of care. It found that the experience of isolation by patients has both negative and positive elements. Isolation may result in detrimental psychological effects including anxiety, stress and depression, but may also result in the patient receiving less or substandard care. However, patients may also benefit from the quietness and privacy of single rooms. Nurses and other healthcare workers must look for ways to improve the experience of isolation and contact precautions of patients in source isolation. Opportunities exist in particular in improving the environment and the patient's self-control of the situation and in providing adequate information.

  17. Model-Based Least Squares Reconstruction of Coded Source Neutron Radiographs: Integrating the ORNL HFIR CG1D Source Model

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Gregor, Jens [University of Tennessee, Knoxville (UTK); Bingham, Philip R [ORNL

    2014-01-01

    At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. To overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.

  18. Marine snow microbial communities: scaling of abundances with aggregate size

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2003-01-01

    Marine aggregates are inhabited by diverse microbial communities, and the concentration of attached microbes typically exceeds concentrations in the ambient water by orders of magnitude. An extension of the classical Lotka-Volterra model, which includes 3 trophic levels (bacteria, flagellates...... are controlled by flagellate grazing, while flagellate and ciliate populations are governed by colonization and detachment. The model also suggests that microbial populations are turned over rapidly (1 to 20 times d-1) due to continued colonization and detachment. The model overpredicts somewhat the scaling...... of microbial abundances with aggregate size observed in field-collected aggregates. This may be because it disregards the aggregation/disaggregation dynamics of aggregates, as well as interspecific interactions between bacteria....

  19. Experiments of Nanometer Spot Size Monitor at FETB Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry has been developed and installed in the final focus test beam (FFTB) line at SLAC. The beam experiments started in September 1993, the first fringe pattern from the monitor was observed in the beginning of April 1994, then the small vertical spot around 70 nm was observed in May 1994. The spot size monitor has been routinely used for tuning the beam optics in FFTB. Basic principle of this monitor has been well proved, and its high performance as a precise beam monitor in nanometer range has been demonstrated.

  20. Micro-scale hydrological field experiments in Romania

    Directory of Open Access Journals (Sweden)

    Minea Gabriel

    2016-02-01

    Full Text Available The paper (communication presents an overview of hydrologic field experiments at micro-scale in Romania. In order to experimentally investigate micro (plot-scale hydrological impact of soil erosion, the National Institute of Hydrology and Water Management founded Voineşti Experimental Basin (VES in 1964 and the Aldeni Experimental Basins (AEB in 1984. AEB and VES are located in the Curvature Subcarpathians. Experimental plots are organized in a double systems and have an area of 80 m2 (runoff plots at AEB and 300 m2 (water balance plots at VES. Land use of plot: first plot ”grass-land” is covered with perennial grass and second plot (control consists in ”bare soil”. Over the latter one, the soil is hoeing, which results in a greater development of infiltration than in the first plot. Experimental investigations at micro-scale are aimed towards determining the parameters of the water balance equation, during natural and artificial rainfalls, researching of flows and soil erosion processes on experimental plots, extrapolating relations involving runoff coefficients from a small scale to medium scale. Nowadays, the latest evolutions in data acquisition and transmission equipment are represented by sensors (such as: sensors to determinate the soil moisture content. Exploitation and dissemination of hydrologic data is accomplished by research themes/projects, year-books of basic data and papers.

  1. Scaling up debris-flow experiments on a centrifuge

    Science.gov (United States)

    Hung, C.; Capart, H.; Crone, T. J.; Grinspum, E.; Hsu, L.; Kaufman, D.; Li, L.; Ling, H.; Reitz, M. D.; Smith, B.; Stark, C. P.

    2013-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Formulation of an erosion-rate law for debris flows is therefore a high priority, and it makes sense to build such a law around laboratory experiments. However, running experiments big enough to generate realistic boundary forces is a logistical challenge to say the least [1]. One alternative is to run table-top simulations with unnaturally weak but fast-eroding pseudo-bedrock, another is to extrapolate from micro-erosion of natural substrates driven by unnaturally weak impacts; hybrid-scale experiments have also been conducted [2]. Here we take a different approach in which we scale up granular impact forces by running our experiments under enhanced gravity in a geotechnical centrifuge [3]. Using a 40cm-diameter rotating drum [2] spun at up to 100g, we generate debris flows with an effective depth of over several meters. By varying effective gravity from 1g to 100g we explore the scaling of granular flow forces and the consequent bed and wall erosion rates. The velocity and density structure of these granular flows is monitored using laser sheets, high-speed video, and particle tracking [4], and the progressive erosion of the boundary surfaces is measured by laser scanning. The force structures and their fluctuations within the granular mass and at the boundaries are explored with contact dynamics numerical simulations that mimic the lab experimental conditions [5]. In this presentation we summarize these results and discuss how they can contribute to the formulation of debris-flow erosion law. [1] Major, J. J. (1997), Journal of Geology 105: 345-366, doi:10.1086/515930 [2] Hsu, L. (2010), Ph.D. thesis, University of California, Berkeley [3] Brucks, A., et al (2007), Physical Review E 75, 032301, doi:10.1103/PhysRevE.75.032301 [4] Spinewine, B., et al (2011), Experiments in Fluids 50: 1507-1525, doi: 10.1007/s00348

  2. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Derrick [Colorado School of Mines, Golden, CO (United States)

    2014-12-22

    Two decimeter-scale 2D experiments were conducted in the proposed research. To the extent possible, the first experiment (2.44 m x 0.61 m x 10 cm) was be packed to reproduce the observed distributions of sediment size fractions in the subsurface at the tracer test site. Four size fractions of sediment (<125m, 125-250m, 250m to 2 mm, >2mm) were packed in the tank and the size fractions were placed in a sediment structure imitating pattern rather than the block pattern used in the previous experiments conducted with Naturita sediment. The second tank used the same total amount of sediment and proportions of the three size fractions used in the first experiment but was packed at larger geostatistical correlation lengths to evaluate how the scale of heterogeneity affects the upscaling results. This experiment was conducted with the goal of trying to determine how the upscaling would be affected by the diffusion path length associated with low permeability zones. The initial conditions in the tanks were based on observed field conditions. The influent was a synthetic groundwater that mimicked uncontaminated groundwater observed at the Naturita site. Samples were collected from side and end ports of the tank and were analyzed for U(VI), alkalinity, pH and major ions as was done in previous experiments. Each decimeter scale experiment was run for approximately 6 months and the experiments were run in parallel. Extensive premodeling occurred for both tanks and lasted the first year of the project.

  3. Grain size control method for the nozzles of AP1000 primary coolant pipes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shenglong [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Sun, Yanhui [Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Yang, Bin, E-mail: byang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Zhang, Mingxian [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China)

    2017-04-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  4. Grain size control method for the nozzles of AP1000 primary coolant pipes

    International Nuclear Information System (INIS)

    Wang, Shenglong; Sun, Yanhui; Yang, Bin; Zhang, Mingxian

    2017-01-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  5. Scale for positive aspects of caregiving experience: development, reliability, and factor structure.

    Science.gov (United States)

    Kate, N; Grover, S; Kulhara, P; Nehra, R

    2012-06-01

    OBJECTIVE. To develop an instrument (Scale for Positive Aspects of Caregiving Experience [SPACE]) that evaluates positive caregiving experience and assess its psychometric properties. METHODS. Available scales which assess some aspects of positive caregiving experience were reviewed and a 50-item questionnaire with a 5-point rating was constructed. In all, 203 primary caregivers of patients with severe mental disorders were asked to complete the questionnaire. Internal consistency, test-retest reliability, cross-language reliability, split-half reliability, and face validity were evaluated. Principal component factor analysis was run to assess the factorial validity of the scale. RESULTS. The scale developed as part of the study was found to have good internal consistency, test-retest reliability, cross-language reliability, split-half reliability, and face validity. Principal component factor analysis yielded a 4-factor structure, which also had good test-retest reliability and cross-language reliability. There was a strong correlation between the 4 factors obtained. CONCLUSION. The SPACE developed as part of this study has good psychometric properties.

  6. Local Scale Radiobrightness Modeling During the Intensive Observing Period-4 of the Cold Land Processes Experiment-1

    Science.gov (United States)

    Kim, E.; Tedesco, M.; de Roo, R.; England, A. W.; Gu, H.; Pham, H.; Boprie, D.; Graf, T.; Koike, T.; Armstrong, R.; Brodzik, M.; Hardy, J.; Cline, D.

    2004-12-01

    The NASA Cold Land Processes Field Experiment (CLPX-1) was designed to provide microwave remote sensing observations and ground truth for studies of snow and frozen ground remote sensing, particularly issues related to scaling. CLPX-1 was conducted in 2002 and 2003 in Colorado, USA. One of the goals of the experiment was to test the capabilities of microwave emission models at different scales. Initial forward model validation work has concentrated on the Local-Scale Observation Site (LSOS), a 0.8~ha study site consisting of open meadows separated by trees where the most detailed measurements were made of snow depth and temperature, density, and grain size profiles. Results obtained in the case of the 3rd Intensive Observing Period (IOP3) period (February, 2003, dry snow) suggest that a model based on Dense Medium Radiative Transfer (DMRT) theory is able to model the recorded brightness temperatures using snow parameters derived from field measurements. This paper focuses on the ability of forward DMRT modelling, combined with snowpack measurements, to reproduce the radiobrightness signatures observed by the University of Michigan's Truck-Mounted Radiometer System (TMRS) at 19 and 37~GHz during the 4th IOP (IOP4) in March, 2003. Unlike in IOP3, conditions during IOP4 include both wet and dry periods, providing a valuable test of DMRT model performance. In addition, a comparison will be made for the one day of coincident observations by the University of Tokyo's Ground-Based Microwave Radiometer-7 (GBMR-7) and the TMRS. The plot-scale study in this paper establishes a baseline of DMRT performance for later studies at successively larger scales. And these scaling studies will help guide the choice of future snow retrieval algorithms and the design of future Cold Lands observing systems.

  7. SCALE Validation Experience Using an Expanded Isotopic Assay Database for Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Gauld, Ian C.; Radulescu, Georgeta; Ilas, Germina

    2009-01-01

    The availability of measured isotopic assay data to validate computer code predictions of spent fuel compositions applied in burnup-credit criticality calculations is an essential component for bias and uncertainty determination in safety and licensing analyses. In recent years, as many countries move closer to implementing or expanding the use of burnup credit in criticality safety for licensing, there has been growing interest in acquiring additional high-quality assay data. The well-known open sources of assay data are viewed as potentially limiting for validating depletion calculations for burnup credit due to the relatively small number of isotopes measured (primarily actinides with relatively few fission products), sometimes large measurement uncertainties, incomplete documentation, and the limited burnup and enrichment range of the fuel samples. Oak Ridge National Laboratory (ORNL) recently initiated an extensive isotopic validation study that includes most of the public data archived in the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) electronic database, SFCOMPO, and new datasets obtained through participation in commercial experimental programs. To date, ORNL has analyzed approximately 120 different spent fuel samples from pressurized-water reactors that span a wide enrichment and burnup range and represent a broad class of assembly designs. The validation studies, completed using SCALE 5.1, are being used to support a technical basis for expanded implementation of burnup credit for spent fuel storage facilities, and other spent fuel analyses including radiation source term, dose assessment, decay heat, and waste repository safety analyses. This paper summarizes the isotopic assay data selected for this study, presents validation results obtained with SCALE 5.1, and discusses some of the challenges and experience associated with evaluating the results. Preliminary results obtained using SCALE 6 and ENDF

  8. Multi-scale modelling for HEDP experiments on Orion

    Science.gov (United States)

    Sircombe, N. J.; Ramsay, M. G.; Hughes, S. J.; Hoarty, D. J.

    2016-05-01

    The Orion laser at AWE couples high energy long-pulse lasers with high intensity short-pulses, allowing material to be compressed beyond solid density and heated isochorically. This experimental capability has been demonstrated as a platform for conducting High Energy Density Physics material properties experiments. A clear understanding of the physics in experiments at this scale, combined with a robust, flexible and predictive modelling capability, is an important step towards more complex experimental platforms and ICF schemes which rely on high power lasers to achieve ignition. These experiments present a significant modelling challenge, the system is characterised by hydrodynamic effects over nanoseconds, driven by long-pulse lasers or the pre-pulse of the petawatt beams, and fast electron generation, transport, and heating effects over picoseconds, driven by short-pulse high intensity lasers. We describe the approach taken at AWE; to integrate a number of codes which capture the detailed physics for each spatial and temporal scale. Simulations of the heating of buried aluminium microdot targets are discussed and we consider the role such tools can play in understanding the impact of changes to the laser parameters, such as frequency and pre-pulse, as well as understanding effects which are difficult to observe experimentally.

  9. Scaling laws for spherical pinch experiments

    International Nuclear Information System (INIS)

    Singh, D.P.; Palleschi, V.; Vaselli, M.

    1991-01-01

    In spherical pinch (SP) experiments, the plasma heated at the center of a cell to reach ignition temperature is confined by imploding shock waves for a time long enough to satisfy the Lawson criterion for plasma fusion. In earlier theoretical studies, the expansion of the central plasma either is neglected or is assumed to be radially uniform. The energy is considered to be deposited instantaneously at the center of the cell and the nonlinear heat conduction equation is solved to study the temporal evolution of the central plasma. Incorporating the ignition condition for the average temperature of the expanding fireball, and its confinement by imploding convergent shock waves, which may be fired from the periphery of the cell with some time delay, the scaling laws for satisfying the Lawson criterion are investigated in detail. The relevant calculations indicate that the cumulative effects of the convergent shock waves in the vicinity of the center of the cell play an important role in these scaling laws. (author)

  10. Effects of Isometric Brain-Body Size Scaling on the Complexity of Monoaminergic Neurons in a Minute Parasitic Wasp

    NARCIS (Netherlands)

    Woude, van der Emma; Smid, Hans M.

    2017-01-01

    Trichogramma evanescens parasitic wasps show large phenotypic plasticity in brain and body size, resulting in a 5-fold difference in brain volume among genetically identical sister wasps. Brain volume scales linearly with body volume in these wasps. This isometric brain scaling forms an exception to

  11. The maximum sizes of large scale structures in alternative theories of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Sourav [IUCAA, Pune University Campus, Post Bag 4, Ganeshkhind, Pune, 411 007 India (India); Dialektopoulos, Konstantinos F. [Dipartimento di Fisica, Università di Napoli ' Federico II' , Complesso Universitario di Monte S. Angelo, Edificio G, Via Cinthia, Napoli, I-80126 Italy (Italy); Romano, Antonio Enea [Instituto de Física, Universidad de Antioquia, Calle 70 No. 52–21, Medellín (Colombia); Skordis, Constantinos [Department of Physics, University of Cyprus, 1 Panepistimiou Street, Nicosia, 2109 Cyprus (Cyprus); Tomaras, Theodore N., E-mail: sbhatta@iitrpr.ac.in, E-mail: kdialekt@gmail.com, E-mail: aer@phys.ntu.edu.tw, E-mail: skordis@ucy.ac.cy, E-mail: tomaras@physics.uoc.gr [Institute of Theoretical and Computational Physics and Department of Physics, University of Crete, 70013 Heraklion (Greece)

    2017-07-01

    The maximum size of a cosmic structure is given by the maximum turnaround radius—the scale where the attraction due to its mass is balanced by the repulsion due to dark energy. We derive generic formulae for the estimation of the maximum turnaround radius in any theory of gravity obeying the Einstein equivalence principle, in two situations: on a spherically symmetric spacetime and on a perturbed Friedman-Robertson-Walker spacetime. We show that the two formulae agree. As an application of our formula, we calculate the maximum turnaround radius in the case of the Brans-Dicke theory of gravity. We find that for this theory, such maximum sizes always lie above the ΛCDM value, by a factor 1 + 1/3ω, where ω>> 1 is the Brans-Dicke parameter, implying consistency of the theory with current data.

  12. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    Directory of Open Access Journals (Sweden)

    A. Richard

    2011-09-01

    Full Text Available Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter <10 μm (PM10 in ambient air. Receptor modeling was performed with positive matrix factorization (PMF for trace element data from an urban background site in Zürich, Switzerland. Eight different sources were identified for the three examined size ranges (PM1−0.1, PM2.5−1 and PM10−2.5: secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS, assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate, hydrocarbon-like organic aerosol (HOA, related to road traffic and biomass burning organic aerosol (BBOA, explaining 60 %, 22 % and 17 % of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  13. Experiments on different materials (polyamide, stainless & galvanized steel) influencing geothermal CaCO3 scaling formation: Polymorphs & elemental incorporation

    Science.gov (United States)

    Wedenig, Michael; Dietzel, Martin; Boch, Ronny; Hippler, Dorothee

    2016-04-01

    Thermal water is increasingly used for heat and electric power production providing base-load capable renewable and virtually unlimited geothermal energy. Compared to other energy sources geothermal facilities are less harmful to the environment, i.e. chemically and visually. In order to promote the economic viability of these systems compared to other traditional and renewable energy sources, production hindering processes such as corrosion and scaling of components arising from the typically high salinity thermal waters have to be considered as important economic factors. In this context, using proper materials being in contact with the thermal water is crucial and a playground for further improvements. Aim of the study presented, are basic experiments and observations of scaling and corrosive effects from hydrothermal water interacting with different materials and surfaces (stainless steel, polyamide, galvanized steel) and in particular the nucleation and growth effects of these materials regarding the precipitation of solid carbonate phases. The incorporation of Mg, Sr and Ba cations into the carbonate scalings are investigated as environmental proxy. For this purpose, hydrothermal carbonate precipitating experiments were initialized by mixing NaHCO3 and Ca-Mg-Sr-Ba-chloride solutions at temperatures ranging from 40 to 80 °C in glass reactors hosting artificial substrates of the above mentioned materials. The experiments show a strong dependence of the precipitation behaviour of calcium carbonate polymorphs on the particular material being present. Stainless steel and polyamide seem to restrict aragonite formation, whereas galvanized steel supports aragonite nucleation. Vaterite formation is promoted by polyamide surfaces. Importantly, vaterite is more soluble (less stable) compared to the other anhydrous calcium carbonate polymorphs, i.e. vaterite can be more easily re-dissolved. Thus, the use of polyamide components might reduce the amount and durability of

  14. Neoclassical tearing modes on ASDEX Upgrade: Improved scaling laws, high confinement at high βN and new stabilization experiments

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Igochine, V.; Maraschek, M.; Sips, A.C.C.; Zohm, H.; Gantenbein, G.; Sauter, O.

    2003-01-01

    In this paper recent results on the physics of neoclassical tearing modes (NTMs) achieved on ASDEX Upgrade are reported. A scaling law for NTM decay has been found, showing that the minimum local bootstrap current density required for mode growth is proportional to the ion gyro radius. As this scaling law does not depend on the seed island size, and thus on the background MHD activity, it is more reliable than previously derived scaling laws for the NTM onset. Furthermore, the recently reported Frequently Interrupted Regime (FIR) is discussed. In this new regime (m,n) NTMs are characterized by frequent amplitude drops caused by interaction with (m+1,n+1) background MHD activity. Due to the resulting reduced time averaged island size this leads to lower confinement degradation compared to that caused by the usual NTMs. As shown here, the transition into this regime can actively be triggered by lowering the magnetic shear at the q=(m+1)/=(n+1) rational surface. Further investigations regard mechanisms to increase the β N value for NTM onset such as plasma shaping, seed island size and density profile control. Using these studies, a scenario with high β N (β N = 3:5) at high density (n/n GW = 0.83) and confinement (H 98(y,2) = 1.2) has been developed. Moreover, this scenario is characterized by type II ELM activity and thus by moderate heat load to the target plates. Finally, new NTM stabilization experiments are reported, demonstrating an increase in β N after NTM stabilization. (author)

  15. Wellbore Completion Systems Containment Breach Solution Experiments at a Large Scale Underground Research Laboratory : Sealant placement & scale-up from Lab to Field

    Science.gov (United States)

    Goodman, H.

    2017-12-01

    This investigation seeks to develop sealant technology that can restore containment to completed wells that suffer CO2 gas leakages currently untreatable using conventional technologies. Experimentation is performed at the Mont Terri Underground Research Laboratory (MT-URL) located in NW Switzerland. The laboratory affords investigators an intermediate-scale test site that bridges the gap between the laboratory bench and full field-scale conditions. Project focus is the development of CO2 leakage remediation capability using sealant technology. The experimental concept includes design and installation of a field scale completion package designed to mimic well systems heating-cooling conditions that may result in the development of micro-annuli detachments between the casing-cement-formation boundaries (Figure 1). Of particular interest is to test novel sealants that can be injected in to relatively narrow micro-annuli flow-paths of less than 120 microns aperture. Per a special report on CO2 storage submitted to the IPCC[1], active injection wells, along with inactive wells that have been abandoned, are identified as one of the most probable sources of leakage pathways for CO2 escape to the surface. Origins of pressure leakage common to injection well and completions architecture often occur due to tensile cracking from temperature cycles, micro-annulus by casing contraction (differential casing to cement sheath movement) and cement sheath channel development. This discussion summarizes the experiment capability and sealant testing results. The experiment concludes with overcoring of the entire mock-completion test site to assess sealant performance in 2018. [1] IPCC Special Report on Carbon Dioxide Capture and Storage (September 2005), section 5.7.2 Processes and pathways for release of CO2 from geological storage sites, page 244

  16. Development and examination of the psychometric properties of the Learning Experience Scale in nursing.

    Science.gov (United States)

    Takase, Miyuki; Imai, Takiko; Uemura, Chizuru

    2016-06-01

    This paper examines the psychometric properties of the Learning Experience Scale. A survey method was used to collect data from a total of 502 nurses. Data were analyzed by factor analysis and the known-groups technique to examine the construct validity of the scale. In addition, internal consistency was evaluated by Cronbach's alpha, and stability was examined by test-retest correlation. Factor analysis showed that the Learning Experience Scale consisted of five factors: learning from practice, others, training, feedback, and reflection. The scale also had the power to discriminate between nurses with high and low levels of nursing competence. The internal consistency and the stability of the scale were also acceptable. The Learning Experience Scale is a valid and reliable instrument, and helps organizations to effectively design learning interventions for nurses. © 2015 Wiley Publishing Asia Pty Ltd.

  17. Finite-size scaling method for the Berezinskii–Kosterlitz–Thouless transition

    International Nuclear Information System (INIS)

    Hsieh, Yun-Da; Kao, Ying-Jer; Sandvik, Anders W

    2013-01-01

    We test an improved finite-size scaling method for reliably extracting the critical temperature T BKT of a Berezinskii–Kosterlitz–Thouless (BKT) transition. Using known single-parameter logarithmic corrections to the spin stiffness ρ s at T BKT in combination with the Kosterlitz–Nelson relation between the transition temperature and the stiffness, ρ s (T BKT ) = 2T BKT /π, we define a size-dependent transition temperature T BKT (L 1 ,L 2 ) based on a pair of system sizes L 1 ,L 2 , e.g., L 2 = 2L 1 . We use Monte Carlo data for the standard two-dimensional classical XY model to demonstrate that this quantity is well behaved and can be reliably extrapolated to the thermodynamic limit using the next expected logarithmic correction beyond the ones included in defining T BKT (L 1 ,L 2 ). For the Monte Carlo calculations we use GPU (graphical processing unit) computing to obtain high-precision data for L up to 512. We find that the sub-leading logarithmic corrections have significant effects on the extrapolation. Our result T BKT = 0.8935(1) is several error bars above the previously best estimates of the transition temperature, T BKT ≈ 0.8929. If only the leading log-correction is used, the result is, however, consistent with the lower value, suggesting that previous works have underestimated T BKT because of the neglect of sub-leading logarithms. Our method is easy to implement in practice and should be applicable to generic BKT transitions. (paper)

  18. [Multiple time scales analysis of spatial differentiation characteristics of non-point source nitrogen loss within watershed].

    Science.gov (United States)

    Liu, Mei-bing; Chen, Xing-wei; Chen, Ying

    2015-07-01

    Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively. Furthermore, multiple linear correlation analysis was conducted to analyze the contribution of natural environment and anthropogenic disturbance on nitrogen loss. The results showed that there were significant spatial differences of TN loss in Shanmei Reservoir watershed at different time scales, and the spatial differentiation degree of nitrogen loss was in the order of monthly average > yearly average > rainstorms flood process. TN loss load mainly came from upland Taoxi subbasin, which was identified as the critical source area. At different time scales, land use types (such as farmland and forest) were always the dominant factor affecting the spatial distribution of nitrogen loss, while the effect of precipitation and runoff on the nitrogen loss was only taken in no fertilization month and several processes of storm flood at no fertilization date. This was mainly due to the significant spatial variation of land use and fertilization, as well as the low spatial variability of precipitation and runoff.

  19. Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects

    International Nuclear Information System (INIS)

    Vardoulakis, I.; Kourkoulis, S.K.; Exadaktylos, G.

    1998-01-01

    A gradient bending theory is developed based on a strain energy function that includes the classical Bernoulli-Euler term, the shape correction term (microstructural length scale) introduced by Timoshenko, and a term associated with surface energy (micromaterial length scale) accounting for the bending moment gradient effect. It is shown that the last term is capable to interpret the size effect in three-point bending (3PB), namely the decrease of the failure load with decreasing beam length for the same aspect ratio. This theory is used to describe the mechanical behaviour of Dionysos-Pentelikon marble in 3PB. Series of tests with prismatic marble beams of the same aperture but with different lengths were conducted and it was concluded that the present theory predicts well the size effect. (orig.)

  20. Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions

    Directory of Open Access Journals (Sweden)

    M. Claeys

    2010-10-01

    Full Text Available Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondônia, Brazil using a high-volume dichotomous sampler (HVDS and a Micro-Orifice Uniform Deposit Impactor (MOUDI within the framework of the 2002 LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazônia – Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate campaign. The campaign spanned the late dry season (biomass burning, a transition period, and the onset of the wet season (clean conditions. In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including levoglucosan, malic acid, isoprene secondary organic aerosol (SOA tracers and tracers for fungal spores. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM2.5 size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 μg m−3 and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m−3 during the dry period versus 157 ng m−3 during the transition period and 52 ng m−3 during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern, which is consistent with different aerosol formation processes (i.e., gas-to-particle partitioning in the case of malic acid and heterogeneous formation from gas-phase precursors in the case of

  1. LEVIS lithium ion source experiments on PBFA-II

    International Nuclear Information System (INIS)

    Renk, T.J.; Tisone, G.C.; Adams, R.G.; Lopez, M.; Clark, B.F.; Schroeder, J.; Bailey, J.E.; Filuk, A.B.; Carlson, A.L.

    1992-01-01

    PBFA-II is a pulsed power generator designed to apply up to a 25 MV, 20 ns pulse to a focusing 15 cm-radius Applied-B ion diode for inertial confinement fusion applications. Several different approaches have been pursued to produce a high-purity (> 90%), high-current density (5--10 kA/cm 2 ) singly ionized lithium ion source for acceleration in this diode. In addition to having high source purity, such a source should be active, i.e. the ions should be produced before the power pulse arrives, to provide better electrical coupling from the accelerator to the diode. In the LEVIS (Laser EVaporation Ion Source) process, energy from two lasers impinges on a thin (500 nm) lithium or lithium-bearing film on an insulating substrate. The authors will discuss a new series of LEVIS experiments, with a number of improvements: (1) the laser distribution cone was redesigned, resulting in a more uniform illumination of the 4 cm-tall Li-producing surface; (2) the anode surface is being slow-heated to 120--150 C to help drive off contaminants; and (3) they have expanded the number of source and beam diagnostics

  2. Isotope source apportionment of carbonaceous aerosol as a function of particle size and thermal refractiveness

    Science.gov (United States)

    Masalaite, Agne; Holzinger, Rupert; Remeikis, Vidmantas; Röckmann, Thomas; Dusek, Ulrike

    2016-04-01

    The stable carbon isotopes can be used to get information about sources and processing of carbonaceous aerosol. We will present results from source apportionment of carbonaceous aerosol as a function of particle size thermal refractiveness. Separate source apportionment for particles smaller than 200 nm and for different carbon volatility classes are rarely reported and give new insights into aerosol sources in the urban environment. Stable carbon isotope ratios were measured for the organic carbon (OC) fraction and total carbon (TC) of MOUDI impactor samples that were collected on a coastal site (Lithuania) during the winter 2012 and in the city of Vilnius (Lithuania) during the winter of 2009. The 11 impactor stages spanned a size range from 0.056 to 18 μm, but only the 6 stages in the submicron range were analysed. The δ13C values of bulk total carbon (δ13CTC) were determined with an elemental analyser (Flash EA 1112) coupled with an isotope ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) (EA - IRMS). Meanwhile δ13COC was measured using thermal-desorption isotope ratio mass spectrometry (IRMS) system. This allows a rough separation of the more volatile OC fraction (desorbed in the oven of IRMS up to 250 0C) from the more refractory fraction (desorbed up to 400 0C). In this study we investigated the composition of organic aerosol desorbed from filter samples at different temperatures using the thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS) technique. During winter-time in Lithuania we expect photochemistry and biogenic emissions to be of minor importance. The main sources of aerosol carbon should be fossil fuel and biomass combustion. In both sites, the coastal and the urban site, δ13C measurements give a clear indication that the source contributions differ for small and large particles. Small particles < 200 nm are depleted in 13C with respect to larger particles by 1 - 2 ‰Ṫhis shows that OC in small particle

  3. Heavy ion source support gas mixing experiments

    International Nuclear Information System (INIS)

    Hudson, E.D.; Mallory, M.L.

    1977-01-01

    Experiments on mixing an easily ionized support gas with the primary ion source gas have produced large beam enhancements for high charge state light ions (masses less than or equal to 20). In the Oak Ridge Isochronous Cyclotron (ORIC), the beam increase has been a factor of 5 or greater, depending on ion species and charge state. Approximately 0.1 cc/min of the easily ionized support gas (argon, krypton, or xenon) is supplied to the ion source through a separate gas line and the primary gas flow is reduced by approximately 30 percent. The proposed mechanism for increased intensity is as follows: The heavier support gas ionizes readily to a higher charge state, providing increased cathode heating. The increased heating permits a reduction in primary gas flow (lower pressure) and the subsequent beam increase

  4. LLNL large-area inductively coupled plasma (ICP) source: Experiments

    International Nuclear Information System (INIS)

    Richardson, R.A.; Egan, P.O.; Benjamin, R.D.

    1995-05-01

    We describe initial experiments with a large (76-cm diameter) plasma source chamber to explore the problems associated with large-area inductively coupled plasma (ICP) sources to produce high density plasmas useful for processing 400-mm semiconductor wafers. Our experiments typically use a 640-nun diameter planar ICP coil driven at 13.56 MHz. Plasma and system data are taken in Ar and N 2 over the pressure range 3-50 mtorr. RF inductive power was run up to 2000W, but typically data were taken over the range 100-1000W. Diagnostics include optical emission spectroscopy, Langmuir probes, and B probes as well as electrical circuit measurements. The B and E-M measurements are compared with models based on commercial E-M codes. Initial indications are that uniform plasmas suitable for 400-mm processing are attainable

  5. Chapter two: Phenomenology of tsunamis II: scaling, event statistics, and inter-event triggering

    Science.gov (United States)

    Geist, Eric L.

    2012-01-01

    Observations related to tsunami catalogs are reviewed and described in a phenomenological framework. An examination of scaling relationships between earthquake size (as expressed by scalar seismic moment and mean slip) and tsunami size (as expressed by mean and maximum local run-up and maximum far-field amplitude) indicates that scaling is significant at the 95% confidence level, although there is uncertainty in how well earthquake size can predict tsunami size (R2 ~ 0.4-0.6). In examining tsunami event statistics, current methods used to estimate the size distribution of earthquakes and landslides and the inter-event time distribution of earthquakes are first reviewed. These methods are adapted to estimate the size and inter-event distribution of tsunamis at a particular recording station. Using a modified Pareto size distribution, the best-fit power-law exponents of tsunamis recorded at nine Pacific tide-gauge stations exhibit marked variation, in contrast to the approximately constant power-law exponent for inter-plate thrust earthquakes. With regard to the inter-event time distribution, significant temporal clustering of tsunami sources is demonstrated. For tsunami sources occurring in close proximity to other sources in both space and time, a physical triggering mechanism, such as static stress transfer, is a likely cause for the anomalous clustering. Mechanisms of earthquake-to-earthquake and earthquake-to-landslide triggering are reviewed. Finally, a modification of statistical branching models developed for earthquake triggering is introduced to describe triggering among tsunami sources.

  6. A new large-scale plasma source with plasma cathode

    International Nuclear Information System (INIS)

    Yamauchi, K.; Hirokawa, K.; Suzuki, H.; Satake, T.

    1996-01-01

    A new large-scale plasma source (200 mm diameter) with a plasma cathode has been investigated. The plasma has a good spatial uniformity, operates at low electron temperature, and is highly ionized under relatively low gas pressure of about 10 -4 Torr. The plasma source consists of a plasma chamber and a plasma cathode generator. The plasma chamber has an anode which is 200 mm in diameter, 150 mm in length, is made of 304 stainless steel, and acts as a plasma expansion cup. A filament-cathode-like plasma ''plasma cathode'' is placed on the central axis of this source. To improve the plasma spatial uniformity in the plasma chamber, a disk-shaped, floating electrode is placed between the plasma chamber and the plasma cathode. The 200 mm diameter plasma is measure by using Langmuir probes. As a result, the discharge voltage is relatively low (30-120 V), the plasma space potential is almost equal to the discharge voltage and can be easily controlled, the electron temperature is several electron volts, the plasma density is about 10 10 cm -3 , and the plasma density is about 10% variance in over a 100 mm diameter. (Author)

  7. PTB’s radiometric scales for UV and VUV source calibration based on synchrotron radiation

    Science.gov (United States)

    Klein, Roman; Kroth, Simone; Paustian, Wolfgang; Richter, Mathias; Thornagel, Reiner

    2018-06-01

    The radiant intensity of synchrotron radiation can be accurately calculated with classical electrodynamics. This primary realization of the spectral radiant intensity has been used by PTB at several electron storage rings which have been optimized to be operated as primary source standards for the calibration of transfer sources in the spectral range of UV and VUV for almost 30 years. The transfer sources are compared to the primary source standard by means of suitable wavelength-dispersive transfer stations. The spectral range covered by deuterium lamps, which represent transfer sources that are easy to handle, is of particular relevance in practice. Here, we report on developments in the realization and preservation of the radiometric scales for spectral radiant intensity and spectral radiance in the wavelength region from 116 nm to 400 nm, based on a set of deuterium reference lamps, over the last few decades. An inside view and recommendations on the operation of the D2 lamps used for the realization of the radiometric scale are presented. The data has been recently compiled to illustrate the chronological behaviour at various wavelengths. Moreover, an overview of the internal and external validation measurements and intercomparisons is given.

  8. Engineering development for a small-scale recirculator experiment

    International Nuclear Information System (INIS)

    Newton, M.A.; Deadrick, F.J.; Hanks, R.L.; Hawkins, S.A.; Holm, K.A.; Kirbie, H.C.; Karpenko, V.P.; Nattrass, L.A.; Longinotti, D.B.

    1995-01-01

    Lawrence Livermore National Laboratory (LLNL) is evaluating the physics and technology of recirculating induction accelerators for heavy-ion inertial-fusion drivers. As part of this evaluation, the authors are building a small-scale recirculator to demonstrate the concept and to use as a test bed for the development of recirculator technologies. System designs have been completed and components are presently being designed and developed for the small-scale recirculator. This paper discusses results of the design and development activities that are presently being conducted to implement the small-scale recirculator experiments. An, overview of the system design is presented along with a discussion of the implications of this design on the mechanical and electrical hardware. The paper focuses primarily on discussions of the development and design of the half-lattice period hardware and the advanced solid-state modulator

  9. SIMMER analysis of SRI high pressure bubble expansion experiments

    International Nuclear Information System (INIS)

    Rexroth, P.E.; Suo-Anttila, A.J.

    1979-01-01

    SIMMER-II was used to analyze the results of the SRI nitrogen bubble expansion experiments. Good agreement was found for all of the experiments analyzed as well as the theoretical isentropic limiting case. Scaling to a full size CRBR reactor reveals no significant scaling effects for the structureless core

  10. Temperature Scaling Law for Quantum Annealing Optimizers.

    Science.gov (United States)

    Albash, Tameem; Martin-Mayor, Victor; Hen, Itay

    2017-09-15

    Physical implementations of quantum annealing unavoidably operate at finite temperatures. We point to a fundamental limitation of fixed finite temperature quantum annealers that prevents them from functioning as competitive scalable optimizers and show that to serve as optimizers annealer temperatures must be appropriately scaled down with problem size. We derive a temperature scaling law dictating that temperature must drop at the very least in a logarithmic manner but also possibly as a power law with problem size. We corroborate our results by experiment and simulations and discuss the implications of these to practical annealers.

  11. Development of technology for the large-scale preparation of 60Co polymer film source

    International Nuclear Information System (INIS)

    Udhayakumar, J.; Pardeshi, G.S.; Gandhi, Shymala S.; Chakravarty, Rubel; Kumar, Manoj; Dash, Ashutosh; Venkatesh, Meera

    2008-01-01

    60 Co sources (∼37 kBq) in the form of a thin film are widely used in position identification of perforation in offshore oil-well explorations. This paper describes the large-scale preparation of such sources using a radioactive polymer containing 60 Co. 60 Co was extracted into chloroform containing 8-hydroxyquinoline. The chloroform layer was mixed with polymethyl methacrylate (PMMA) polymer. A large film was prepared using the polymer solution containing the complex. The polymer film was then cut into circular sources, mounted on a source holder and supplied to various users

  12. Development of Large-Scale Spacecraft Fire Safety Experiments

    DEFF Research Database (Denmark)

    Ruff, Gary A.; Urban, David L.; Fernandez-Pello, A. Carlos

    2013-01-01

    exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low...... of the spacecraft fire safety risk. The activity of this project is supported by an international topical team of fire experts from other space agencies who conduct research that is integrated into the overall experiment design. The large-scale space flight experiment will be conducted in an Orbital Sciences...

  13. Variability of the raindrop size distribution at small spatial scales

    Science.gov (United States)

    Berne, A.; Jaffrain, J.

    2010-12-01

    Because of the interactions between atmospheric turbulence and cloud microphysics, the raindrop size distribution (DSD) is strongly variable in space and time. The spatial variability of the DSD at small spatial scales (below a few km) is not well documented and not well understood, mainly because of a lack of adequate measurements at the appropriate resolutions. A network of 16 disdrometers (Parsivels) has been designed and set up over EPFL campus in Lausanne, Switzerland. This network covers a typical operational weather radar pixel of 1x1 km2. The question of the significance of the variability of the DSD at such small scales is relevant for radar remote sensing of rainfall because the DSD is often assumed to be uniform within a radar sample volume and because the Z-R relationships used to convert the measured radar reflectivity Z into rain rate R are usually derived from point measurements. Thanks to the number of disdrometers, it was possible to quantify the spatial variability of the DSD at the radar pixel scale and to show that it can be significant. In this contribution, we show that the variability of the total drop concentration, of the median volume diameter and of the rain rate are significant, taking into account the sampling uncertainty associated with disdrometer measurements. The influence of this variability on the Z-R relationship can be non-negligible. Finally, the spatial structure of the DSD is quantified using a geostatistical tool, the variogram, and indicates high spatial correlation within a radar pixel.

  14. Exploration of experiences in therapeutic groups for patients with severe mental illness: development of the Ferrara group experiences scale (FE- GES).

    Science.gov (United States)

    Caruso, Rosangela; Grassi, Luigi; Biancosino, Bruno; Marmai, Luciana; Bonatti, Luciano; Moscara, Maria; Rigatelli, Marco; Carr, Catherine; Priebe, Stefan

    2013-10-01

    Group therapies are routinely provided for patients with severe mental illness. The factors important to the group experience of patients are still poorly understood and are rarely measured. To support further research and practice, we aimed to develop a questionnaire that captures how patients experience groups within a community mental health context. An initial pool of 39 items was conceptually generated to assess different aspects of group experiences. Items were completed by 166 patients with severe mental illness attending group therapies in community mental health services in Italy. Patients with different psychiatric diagnoses who attended at least 5 group sessions were included. An exploratory factor analysis was used to identify different dimensions of group experiences and to reduce the number of items for each dimension. The resulting questionnaire has five subscales: 1) sharing of emotions and experiences, 2) cognitive improvement, 3) group learning, 4) difficulties in open expression and 5) relationships. Each subscale has 4 items. The scale and sub-scales have good internal consistency. The Ferrara Group Experiences Scale is conceptually derived and assesses dimensions of group experience that are theoretically and practically relevant. It is brief, easy to use and has good psychometric properties. After further validation, the scale may be used for research into patient experiences across different group therapy modalities and for evaluation in routine care.

  15. Manufacturing of large size RF based -ve ion source with 8 drivers-challenges and learnings

    International Nuclear Information System (INIS)

    Joshi, Jaydeep; Patel, Hitesh; Singh, Mahendrajit; Bandyopadhyay, Mainak; Chakraborty, Arun

    2017-01-01

    Radio Frequency (RF) Ion Source for ITER Diagnostic Neutral Beam (DNB) system, is an 8 driver based ion source, where the desired plasma density is produced by inductive coupling of RF power. The present paper describes the experience of developing a manufacturing design to meet the above mentioned requirements, feasibility assessment, prototyping carried out, parallel experiments in support of manufacturing and realization of sub-components along with their quality inspections activities performed. Additionally, paper also presents to the observations in terms of deviations and non-conformities encountered, as a part of learning for the future components

  16. Finite-size scaling theory and quantum hamiltonian Field theory: the transverse Ising model

    International Nuclear Information System (INIS)

    Hamer, C.J.; Barber, M.N.

    1979-01-01

    Exact results for the mass gap, specific heat and susceptibility of the one-dimensional transverse Ising model on a finite lattice are generated by constructing a finite matrix representation of the Hamiltonian using strong-coupling eigenstates. The critical behaviour of the limiting infinite chain is analysed using finite-size scaling theory. In this way, excellent estimates (to within 1/2% accuracy) are found for the critical coupling and the exponents α, ν and γ

  17. Fundamental-mode sources in approach to critical experiments

    International Nuclear Information System (INIS)

    Goda, J.; Busch, R.

    2000-01-01

    An equivalent fundamental-mode source is an imaginary source that is distributed identically in space, energy, and angle to the fundamental-mode fission source. Therefore, it produces the same neutron multiplication as the fundamental-mode fission source. Even if two source distributions produce the same number of spontaneous fission neutrons, they will not necessarily contribute equally toward the multiplication of a given system. A method of comparing the relative importance of source distributions is needed. A factor, denoted as g* and defined as the ratio of the fixed-source multiplication to the fundamental-mode multiplication, is used to convert a given source strength to its equivalent fundamental-mode source strength. This factor is of interest to criticality safety as it relates to the 1/M method of approach to critical. Ideally, a plot of 1/M versus κ eff is linear. However, since 1/M = (1 minus κ eff )/g*, the plot will be linear only if g* is constant with κ eff . When g* increases with κ eff , the 1/M plot is said to be conservative because the critical mass is underestimated. However, it is possible for g* to decrease with κ eff yielding a nonconservative 1/M plot. A better understanding of g* would help predict whether a given approach to critical will be conservative or nonconservative. The equivalent fundamental-mode source strength g*S can be predicted by experiment. The experimental method was tested on the XIX-1 core on the Fast Critical Assembly at the Japan Atomic Energy Research Institute. The results showed a 30% difference between measured and calculated values. However, the XIX-1 reactor had significant intermediate-energy neutrons. The presence of intermediate-energy neutrons may have made the cross-section set used for predicted values less than ideal for the system

  18. A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics.

    Science.gov (United States)

    Muluneh, Melaku; Issadore, David

    2014-12-07

    In recent years there has been great progress harnessing the small-feature size and programmability of integrated circuits (ICs) for biological applications, by building microfluidics directly on top of ICs. However, a major hurdle to the further development of this technology is the inherent size-mismatch between ICs (~mm) and microfluidic chips (~cm). Increasing the area of the ICs to match the size of the microfluidic chip, as has often been done in previous studies, leads to a waste of valuable space on the IC and an increase in fabrication cost (>100×). To address this challenge, we have developed a three dimensional PDMS chip that can straddle multiple length scales of hybrid IC/microfluidic chips. This approach allows millimeter-scale ICs, with no post-processing, to be integrated into a centimeter-sized PDMS chip. To fabricate this PDMS chip we use a combination of soft-lithography and laser micromachining. Soft lithography was used to define micrometer-scale fluid channels directly on the surface of the IC, allowing fluid to be controlled with high accuracy and brought into close proximity to sensors for highly sensitive measurements. Laser micromachining was used to create ~50 μm vias to connect these molded PDMS channels to a larger PDMS chip, which can connect multiple ICs and house fluid connections to the outside world. To demonstrate the utility of this approach, we built and demonstrated an in-flow magnetic cytometer that consisted of a 5 × 5 cm(2) microfluidic chip that incorporated a commercial 565 × 1145 μm(2) IC with a GMR sensing circuit. We additionally demonstrated the modularity of this approach by building a chip that incorporated two of these GMR chips connected in series.

  19. Antarctic krill; assessment of mesh size selectivity and escape mortality from trawls

    DEFF Research Database (Denmark)

    Krafft, Bjørn A.; Krag, Ludvig Ahm; Herrmann, Bent

    2015-01-01

    Marine AS. The project will examine krill escape mortality from the codend during a full scale field experiment, model size selectivity and escape mortality in codends including different designs and assess the size selectivity in the trawl body forward of the codend. Based on end results from the preceding...... examinations we will be able to predict size selectivity and escape mortality from the entire trawl body with the appurtenant mortality for different trawl designs......This working paper presents the aims and methodology for a three-year-project (commenced in 2015) assessing size selectivity and escape mortality of Antarctic krill from trawl nets. The project is widely based on acquired experiences from a completed study Net Escapement of Antarctic krill...

  20. Fusion power economy of scale

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1993-01-01

    In the next 50 yr, the world will need to develop hundreds of gigawatts of non-fossil-fuel energy sources for production of electricity and fuels. Nuclear fusion can probably provide much of the required energy economically, if large single-unit power plants are acceptable. Large power plants are more common than most people realize: There are already many multiple-unit power plants producing 2 to 5 GW(electric) at a single site. The cost of electricity (COE) from fusion energy is predicted to scale as COE ∼ COE 0 (P/P 0 ) -n , where P is the electrical power, the subscript zero denotes reference values, and the exponent n ∼ 0.36 to 0.7 in various designs. The validity ranges of these scalings are limited and need to be extended by future work. The fusion power economy of scale derives from four interrelated effects: improved operations and maintenance costs; scaling of equipment unit costs; a geometric effect that increases the mass power density; and reduction of the recirculating power fraction. Increased plasma size also relaxes the required confinement parameters: For the same neutron wall loading, larger tokamaks can use lower magnetic fields. Fossil-fuel power plants have a weaker economy of scale than fusion because the fuel costs constitute much of their COE. Solar and wind power plants consist of many small units, so they have little economy of scale. Fission power plants have a strong economy of scale but are unable to exploit it because the maximum unit size is limited by safety concerns. Large, steady-state fusion reactors generating 3 to 6 GW(electric) may be able to produce electricity for 4 to 5 cents/kW·h, which would be competitive with other future energy sources. 38 refs., 6 figs., 6 tabs

  1. Fabrication and Characterization of Polymeric Hollow Fiber Membranes with Nano-scale Pore Sizes

    International Nuclear Information System (INIS)

    Amir Mansourizadeh; Ahmad Fauzi Ismail

    2011-01-01

    Porous polyvinylidene fluoride (PVDF) and polysulfide (PSF) hollow fiber membranes were fabricated via a wet spinning method. The membranes were characterized in terms of gas permeability, wetting pressure, overall porosity and water contact angle. The morphology of the membranes was examined by FESEM. From gas permeation test, mean pore sizes of 7.3 and 9.6 nm were obtained for PSF and PVDF membrane, respectively. Using low polymer concentration in the dopes, the membranes demonstrated a relatively high overall porosity of 77 %. From FESEM examination, the PSF membrane presented a denser outer skin layer, which resulted in significantly lower N 2 permeance. Therefore, due to the high hydrophobicity and nano-scale pore sizes of the PVDF membrane, a good wetting pressure of 4.5x10 -5 Pa was achieved. (author)

  2. Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available In this article, and in a companion paper by Hamrin et al. (2009 [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data at the altitude of about 15–20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs and 35 Concentrated Generator Regions (CGRs. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1–10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005. The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1–10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.

  3. Beyond the Usability Lab Conducting Large-scale Online User Experience Studies

    CERN Document Server

    Albert, William; Tullis, Thomas

    2010-01-01

    Usability testing and user experience research typically take place in a controlled lab with small groups. While this type of testing is essential to user experience design, more companies are also looking to test large sample sizes to be able compare data according to specific user populations and see how their experiences differ across user groups. But few usability professionals have experience in setting up these studies, analyzing the data, and presenting it in effective ways.  Online usability testing offers the solution by allowing testers to elicit feedback simultaneously from 1,0

  4. Contact kinematics of biomimetic scales

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Ranajay; Ebrahimi, Hamid; Vaziri, Ashkan, E-mail: vaziri@coe.neu.edu [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-12-08

    Dermal scales, prevalent across biological groups, considerably boost survival by providing multifunctional advantages. Here, we investigate the nonlinear mechanical effects of biomimetic scale like attachments on the behavior of an elastic substrate brought about by the contact interaction of scales in pure bending using qualitative experiments, analytical models, and detailed finite element (FE) analysis. Our results reveal the existence of three distinct kinematic phases of operation spanning linear, nonlinear, and rigid behavior driven by kinematic interactions of scales. The response of the modified elastic beam strongly depends on the size and spatial overlap of rigid scales. The nonlinearity is perceptible even in relatively small strain regime and without invoking material level complexities of either the scales or the substrate.

  5. psiTurk: An open-source framework for conducting replicable behavioral experiments online.

    Science.gov (United States)

    Gureckis, Todd M; Martin, Jay; McDonnell, John; Rich, Alexander S; Markant, Doug; Coenen, Anna; Halpern, David; Hamrick, Jessica B; Chan, Patricia

    2016-09-01

    Online data collection has begun to revolutionize the behavioral sciences. However, conducting carefully controlled behavioral experiments online introduces a number of new of technical and scientific challenges. The project described in this paper, psiTurk, is an open-source platform which helps researchers develop experiment designs which can be conducted over the Internet. The tool primarily interfaces with Amazon's Mechanical Turk, a popular crowd-sourcing labor market. This paper describes the basic architecture of the system and introduces new users to the overall goals. psiTurk aims to reduce the technical hurdles for researchers developing online experiments while improving the transparency and collaborative nature of the behavioral sciences.

  6. Experiments with radioactive samples at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Veluri, V. R.; Justus, A.; Glagola, B.; Rauchas, A.; Vacca, J.

    2000-01-01

    The Advanced Photon Source (APS) at Argonne National Laboratory is a national synchrotron-radiation light source research facility. The 7 GeV electron Storage Ring is currently delivering intense high brilliance x-ray beams to a total of 34 beamlines with over 120 experiment stations to members of the international scientific community to carry out forefront basic and applied research in several scientific disciplines. Researchers come to the APS either as members of Collaborative Access Teams (CATs) or as Independent Investigators (IIs). Collaborative Access Teams comprise large number of investigators from universities, industry, and research laboratories with common research objectives. These teams are responsible for the design, construction, finding, and operation of beamlines. They are the owners of their experimental enclosures (''hutches'') designed and built to meet their specific research needs. Fig. 1 gives a plan view of the location of the Collaborative Access Teams by Sector and Discipline. In the past two years, over 2000 individual experiments were conducted at the APS facility. Of these, about 60 experiments involved the use of radioactive samples, which is less than 3% of the total. However, there is an increase in demand for experiment stations to accommodate the use of radioactive samples in different physical forms embedded in various matrices with activity levels ranging from trace amounts of naturally occurring radionuclides to MBq (mCi) quantities including transuranics. This paper discusses in some detail the steps in the safety review process for experiments involving radioactive samples and how ALARA philosophy is invoked at each step and implemented

  7. Large-scale preparation of CdS quantum dots by direct thermolysis of a single-source precursor

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhiguo; Cai Wei; Sui Jiehe [School of Material Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China)

    2008-01-23

    CdS quantum dots (QDs) have been synthesized on a large scale, based on the direct thermolysis of one single-source precursor (Me{sub 4}N){sub 4}[S{sub 4}Cd{sub 10}(SPh){sub 16}], in hexadecylamine (HDA). Transmission electron microscopy (TEM) observations show that the CdS QDs are well-defined, nearly spherical particles. The clear lattice fringes in high-resolution TEM (HRTEM) images confirm the crystalline nature of the QDs. The broad diffraction in the x-ray diffraction (XRD) pattern and diffuse diffraction rings of the selected-area electron diffraction (SAED) pattern are typical of nanomeric-size particles and indicative of the hexagonal phase of CdS QDs. The absorption spectra confirm quantum confinement of CdS QDs. The synthesis process for CdS QDs was investigated by ultraviolet-visible (UV-vis) absorption spectroscopy. The results demonstrate that the nucleation and growth stages were separated automatically in a homogeneous system.

  8. Sediment Sources and Transport Pathway Identification Based on Grain-Size Distributions on the SW Coast of Portugal

    Directory of Open Access Journals (Sweden)

    Xiaoqin Du

    2015-01-01

    Full Text Available Espichel-Sines is an embayed coast in SW Portugal, consisting of two capes at both extremities, a tidal inlet and associated ebb tidal delta, a barrier spit, sandy beaches, sea cliffs, and a submarine canyon. Beach berm, backshore, near shore and inner shelf sediment samples were taken. Samples were analyzed for their grain-size compositions. This study ranks the hypothetical sediment sources influences on the sediment distributions in the study area using the multivariate Empirical Orthogonal Function (EOF techniques. Transport pathways in this study were independently identified using the grain size trend analysis (GSTA technique to verify the EOF findings. The results show that the cliff-erosion sediment is composed of pebbles and sand and is the most important sediment source for the entire embayment. The sediment at the inlet mouth is a mixture of pebbles, sand, silt, and clay, which is a minor sediment source that only has local influence. The overall grain-size distributions on the shelf are dominated by the sand except for the high mud content around the tidal delta front in the northern embayment. Sediment transport patterns on the inner shelf at the landward and north sides of the canyon head are landward and northward along the barrier spit, respectively. On the south side of the canyon head, the prevailing sediment transport is seaward. Sediment transport occurs in both directions along the shore.

  9. Numerical Investigation of Earthquake Nucleation on a Laboratory-Scale Heterogeneous Fault with Rate-and-State Friction

    Science.gov (United States)

    Higgins, N.; Lapusta, N.

    2014-12-01

    Many large earthquakes on natural faults are preceded by smaller events, often termed foreshocks, that occur close in time and space to the larger event that follows. Understanding the origin of such events is important for understanding earthquake physics. Unique laboratory experiments of earthquake nucleation in a meter-scale slab of granite (McLaskey and Kilgore, 2013; McLaskey et al., 2014) demonstrate that sample-scale nucleation processes are also accompanied by much smaller seismic events. One potential explanation for these foreshocks is that they occur on small asperities - or bumps - on the fault interface, which may also be the locations of smaller critical nucleation size. We explore this possibility through 3D numerical simulations of a heterogeneous 2D fault embedded in a homogeneous elastic half-space, in an attempt to qualitatively reproduce the laboratory observations of foreshocks. In our model, the simulated fault interface is governed by rate-and-state friction with laboratory-relevant frictional properties, fault loading, and fault size. To create favorable locations for foreshocks, the fault surface heterogeneity is represented as patches of increased normal stress, decreased characteristic slip distance L, or both. Our simulation results indicate that one can create a rate-and-state model of the experimental observations. Models with a combination of higher normal stress and lower L at the patches are closest to matching the laboratory observations of foreshocks in moment magnitude, source size, and stress drop. In particular, we find that, when the local compression is increased, foreshocks can occur on patches that are smaller than theoretical critical nucleation size estimates. The additional inclusion of lower L for these patches helps to keep stress drops within the range observed in experiments, and is compatible with the asperity model of foreshock sources, since one would expect more compressed spots to be smoother (and hence have

  10. Large Scale Water Vapor Sources Relative to the October 2000 Piedmont Flood

    Science.gov (United States)

    Turato, Barbara; Reale, Oreste; Siccardi, Franco

    2003-01-01

    Very intense mesoscale or synoptic-scale rainfall events can occasionally be observed in the Mediterranean region without any deep cyclone developing over the areas affected by precipitation. In these perplexing cases the synoptic situation can superficially look similar to cases in which very little precipitation occurs. These situations could possibly baffle the operational weather forecasters. In this article, the major precipitation event that affected Piedmont (Italy) between 13 and 16 October 2000 is investigated. This is one of the cases in which no intense cyclone was observed within the Mediterranean region at any time, only a moderate system was present, and yet exceptional rainfall and flooding occurred. The emphasis of this study is on the moisture origin and transport. Moisture and energy balances are computed on different space- and time-scales, revealing that precipitation exceeds evaporation over an area inclusive of Piedmont and the northwestern Mediterranean region, on a time-scale encompassing the event and about two weeks preceding it. This is suggestive of an important moisture contribution originating from outside the region. A synoptic and dynamic analysis is then performed to outline the potential mechanisms that could have contributed to the large-scale moisture transport. The central part of the work uses a quasi-isentropic water-vapor back trajectory technique. The moisture sources obtained by this technique are compared with the results of the balances and with the synoptic situation, to unveil possible dynamic mechanisms and physical processes involved. It is found that moisture sources on a variety of atmospheric scales contribute to this event. First, an important contribution is caused by the extratropical remnants of former tropical storm Leslie. The large-scale environment related to this system allows a significant amount of moisture to be carried towards Europe. This happens on a time- scale of about 5-15 days preceding the

  11. Experiments for the Undergraduate Laboratory that Illustrate the Size-Exclusion Properties of Zeolite Molecular Sieves

    Science.gov (United States)

    Cooke, Jason; Henderson, Eric J.

    2009-01-01

    Experiments are presented that demonstrate the size-exclusion properties of zeolites and reveal the reason for naming zeolites "molecular sieves". If an IR spectrometer is available, the adsorption or exclusion of alcohols of varying sizes from dichloromethane or chloroform solutions can be readily demonstrated by monitoring changes in the…

  12. Development of a helicon ion source: Simulations and preliminary experiments

    Science.gov (United States)

    Afsharmanesh, M.; Habibi, M.

    2018-03-01

    In the present context, the extraction system of a helicon ion source has been simulated and constructed. Results of the ion source commissioning at up to 20 kV are presented as well as simulations of an ion beam extraction system. Argon current of more than 200 μA at up to 20 kV is extracted and is characterized with a Faraday cup and beam profile monitoring grid. By changing different ion source parameters such as RF power, extraction voltage, and working pressure, an ion beam with current distribution exhibiting a central core has been detected. Jump transition of ion beam current emerges at the RF power near to 700 W, which reveals that the helicon mode excitation has reached this power. Furthermore, measuring the emission line intensity of Ar ii at 434.8 nm is the other way we have used for demonstrating the mode transition from inductively coupled plasma to helicon. Due to asymmetrical longitudinal power absorption of a half-helix helicon antenna, it is used for the ion source development. The modeling of the plasma part of the ion source has been carried out using a code, HELIC. Simulations are carried out by taking into account a Gaussian radial plasma density profile and for plasma densities in range of 1018-1019 m-3. Power absorption spectrum and the excited helicon mode number are obtained. Longitudinal RF power absorption for two different antenna positions is compared. Our results indicate that positioning the antenna near to the plasma electrode is desirable for the ion beam extraction. The simulation of the extraction system was performed with the ion optical code IBSimu, making it the first helicon ion source extraction designed with the code. Ion beam emittance and Twiss parameters of the ellipse emittance are calculated at different iterations and mesh sizes, and the best values of the mesh size and iteration number have been obtained for the calculations. The simulated ion beam extraction system has been evaluated using optimized parameters such

  13. Summary of mirror experiments relevant to beam-plasma neutron source

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1988-01-01

    A promising design for a deuterium-tritium (DT) neutron source is based on the injection of neutral beams into a dense, warm plasma column. Its purpose is to test materials for possible use in fusion reactors. A series of designs have evolved, from a 4-T version to an 8-T version. Intense fluxes of 5--10 MW/m 2 is achieved at the plasma surface, sufficient to complete end-of-life tests in one to two years. In this report, we review data from earlier mirror experiments that are relevant to such neutron sources. Most of these data are from 2XIIB, which was the only facility to ever inject 5 MW of neutral beams into a single mirror call. The major physics issues for a beam-plasma neutron source are magnetohydrodynamic (MHD) equilibrium and stability, microstability, startup, cold-ion fueling of the midplane to allow two-component reactions, and operation in the Spitzer conduction regime, where the power is removed to the ends by an axial gradient in the electron temperature T/sub e/. We show in this report that the conditions required for a neutron source have now been demonstrated in experiments. 20 refs., 15 figs., 3 tabs

  14. Miniature x-ray source

    Science.gov (United States)

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  15. Reproducible and controllable induction voltage adder for scaled beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yasuo; Nakajima, Mitsuo; Horioka, Kazuhiko [Department of Energy Sciences, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2016-08-15

    A reproducible and controllable induction adder was developed using solid-state switching devices and Finemet cores for scaled beam compression experiments. A gate controlled MOSFET circuit was developed for the controllable voltage driver. The MOSFET circuit drove the induction adder at low magnetization levels of the cores which enabled us to form reproducible modulation voltages with jitter less than 0.3 ns. Preliminary beam compression experiments indicated that the induction adder can improve the reproducibility of modulation voltages and advance the beam physics experiments.

  16. Open-source sensors system for doing simple physics experiments

    Directory of Open Access Journals (Sweden)

    César Llamas Bello

    2018-04-01

    Full Text Available An open-source platform to be used in high school or university laboratories has been developed. The platform permits the performance of dynamics experiments in a simple and affordable way, combining measurements of different sensors in the platform. The sensors are controlled by an Arduino microcontroller, which can be wirelessly accessed with smartphones or tablets. The platform constitutes an economical sensing alternative to commercial configurations and can easily be extended by including new sensors that broaden the range of covered experiments.

  17. Benford analysis of quantum critical phenomena: First digit provides high finite-size scaling exponent while first two and further are not much better

    Science.gov (United States)

    Bera, Anindita; Mishra, Utkarsh; Singha Roy, Sudipto; Biswas, Anindya; Sen(De), Aditi; Sen, Ujjwal

    2018-06-01

    Benford's law is an empirical edict stating that the lower digits appear more often than higher ones as the first few significant digits in statistics of natural phenomena and mathematical tables. A marked proportion of such analyses is restricted to the first significant digit. We employ violation of Benford's law, up to the first four significant digits, for investigating magnetization and correlation data of paradigmatic quantum many-body systems to detect cooperative phenomena, focusing on the finite-size scaling exponents thereof. We find that for the transverse field quantum XY model, behavior of the very first significant digit of an observable, at an arbitrary point of the parameter space, is enough to capture the quantum phase transition in the model with a relatively high scaling exponent. A higher number of significant digits do not provide an appreciable further advantage, in particular, in terms of an increase in scaling exponents. Since the first significant digit of a physical quantity is relatively simple to obtain in experiments, the results have potential implications for laboratory observations in noisy environments.

  18. Most experiments done so far with limited plants. Large-scale testing ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Most experiments done so far with limited plants. Large-scale testing needs to be done with objectives such as: Apart from primary transformants, their progenies must be tested. Experiments on segregation, production of homozygous lines, analysis of expression levels in ...

  19. Effects of the application of different particle sizes of mill scale (residue) in mass red ceramic

    International Nuclear Information System (INIS)

    Arnt, A.B.C.; Rocha, M.R.; Meller, J.G.

    2012-01-01

    This study aims to evaluate the influence of particle size of mill scale, residue, when added to a mass ceramic. This residue rich in iron oxide may be used as pigment in the ceramics industry. The use of pigments in ceramic products is related to the characteristics of non-toxicity, chemical stability and determination of tone. The tendency to solubilize the pigment depends on the specific surface area. The residue study was initially subjected to physical and chemical characterization and added in a proportion of 5% at a commercial ceramic white burning, with different particle sizes. Both formulations were sintered at a temperature of 950 ° C and evaluated for: loss on ignition, firing linear shrinkage, water absorption, flexural strength and difference of tone. Samples with finer particles of mill scale 0.038 μ showed higher mechanical strength values in the order of 18 MPa. (author)

  20. Source profiles of particulate matter emissions from a pilot-scale boiler burning North American coal blends.

    Science.gov (United States)

    Lee, S W

    2001-11-01

    Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 microm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships. A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 pm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented. Preliminary results indicate that volatile trace elements such as Pb, Zn, Ti, and Se are preferentially enriched in PM2.5. PM2.5 is also more concentrated in soluble sulfates relative to total PM. Coal fly ash collected at the outlet of the electrostatic precipitator (ESP) contains about 85-90% PM10 and 30-50% PM2.5. Particles contain the highest elemental concentrations of Si and Al while Ca, Fe, Na, Ba, and K also exist as major elements. Approximately 4-12% of the materials exists as soluble sulfates in fly ash generated by coal blends containing 0.2-0.8% sulfur by mass

  1. Compact deuterium-tritium neutron generator using a novel field ionization source

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth, J. L., E-mail: ellsworth7@llnl.gov; Falabella, S.; Sanchez, J.; Tang, V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Wang, H. [Department of Computer Science, Stanford University, Stanford, California 94305 (United States)

    2014-11-21

    Active interrogation using neutrons is an effective method for detecting shielded nuclear material. A lightweight, lunch-box-sized, battery-operated neutron source would enable new concepts of operation in the field. We have developed at-scale components for a highly portable, completely self-contained, pulsed Deuterium-Tritium (DT) neutron source producing 14 MeV neutrons with average yields of 10{sup 7} n/s. A gated, field ionization ion source using etched electrodes has been developed that produces pulsed ion currents up to 500 nA. A compact Cockcroft-Walton high voltage source is used to accelerate deuterons into a metal hydride target for neutron production. The results of full scale DT tests using the field ionization source are presented.

  2. Optimal unit sizing for small-scale integrated energy systems using multi-objective interval optimization and evidential reasoning approach

    International Nuclear Information System (INIS)

    Wei, F.; Wu, Q.H.; Jing, Z.X.; Chen, J.J.; Zhou, X.X.

    2016-01-01

    This paper proposes a comprehensive framework including a multi-objective interval optimization model and evidential reasoning (ER) approach to solve the unit sizing problem of small-scale integrated energy systems, with uncertain wind and solar energies integrated. In the multi-objective interval optimization model, interval variables are introduced to tackle the uncertainties of the optimization problem. Aiming at simultaneously considering the cost and risk of a business investment, the average and deviation of life cycle cost (LCC) of the integrated energy system are formulated. In order to solve the problem, a novel multi-objective optimization algorithm, MGSOACC (multi-objective group search optimizer with adaptive covariance matrix and chaotic search), is developed, employing adaptive covariance matrix to make the search strategy adaptive and applying chaotic search to maintain the diversity of group. Furthermore, ER approach is applied to deal with multiple interests of an investor at the business decision making stage and to determine the final unit sizing solution from the Pareto-optimal solutions. This paper reports on the simulation results obtained using a small-scale direct district heating system (DH) and a small-scale district heating and cooling system (DHC) optimized by the proposed framework. The results demonstrate the superiority of the multi-objective interval optimization model and ER approach in tackling the unit sizing problem of integrated energy systems considering the integration of uncertian wind and solar energies. - Highlights: • Cost and risk of investment in small-scale integrated energy systems are considered. • A multi-objective interval optimization model is presented. • A novel multi-objective optimization algorithm (MGSOACC) is proposed. • The evidential reasoning (ER) approach is used to obtain the final optimal solution. • The MGSOACC and ER can tackle the unit sizing problem efficiently.

  3. Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process

    Science.gov (United States)

    Feng, Jicheng; Biskos, George; Schmidt-Ott, Andreas

    2015-10-01

    Continuous gas-phase synthesis of nanoparticles is associated with rapid agglomeration, which can be a limiting factor for numerous applications. In this report, we challenge this paradigm by providing experimental evidence to support that gas-phase methods can be used to produce ultrapure non-agglomerated “singlet” nanoparticles having tunable sizes at room temperature. By controlling the temperature in the particle growth zone to guarantee complete coalescence of colliding entities, the size of singlets in principle can be regulated from that of single atoms to any desired value. We assess our results in the context of a simple analytical model to explore the dependence of singlet size on the operating conditions. Agreement of the model with experimental measurements shows that these methods can be effectively used for producing singlets that can be processed further by many alternative approaches. Combined with the capabilities of up-scaling and unlimited mixing that spark ablation enables, this study provides an easy-to-use concept for producing the key building blocks for low-cost industrial-scale nanofabrication of advanced materials.

  4. CLEAR: Prospects for a low threshold neutrino experiment at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Scholberg, Kate

    2008-01-01

    A low-threshold neutrino scattering experiment at a high intensity stopped-pion neutrino source has the potential to measure coherent neutral current neutrino-nucleus elastic scattering. A promising prospect for the measurement of this process is a proposed noble-liquid-based experiment, dubbed CLEAR (Coherent Low Energy A (Nuclear) Recoils), at the Spallation Neutron Source. This poster will describe the CLEAR proposal and its physics reach.

  5. Economies of scale and optimal size of hospitals: Empirical results for Danish public hospitals

    DEFF Research Database (Denmark)

    Kristensen, Troels

    number of beds per hospital is estimated to be 275 beds per site. Sensitivity analysis to partial changes in model parameters yields a joint 95% confidence interval in the range 130 - 585 beds per site. Conclusions: The results indicate that it may be appropriate to consolidate the production of small...... the current configuration of Danish hospitals is subject to scale economies that may justify such plans and to estimate an optimal hospital size. Methods: We estimate cost functions using panel data on total costs, DRG-weighted casemix, and number : We estimate cost functions using panel data on total costs......, DRG-weighted casemix, and number of beds for three years from 2004-2006. A short-run cost function is used to derive estimates of long-run scale economies by applying the envelope condition. Results: We identify moderate to significant long-run economies of scale when applying two alternative We...

  6. Dependence of exponents on text length versus finite-size scaling for word-frequency distributions

    Science.gov (United States)

    Corral, Álvaro; Font-Clos, Francesc

    2017-08-01

    Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

  7. Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments.

    Science.gov (United States)

    Bi, Ran; Liu, Peng

    2016-03-31

    RNA-Sequencing (RNA-seq) experiments have been popularly applied to transcriptome studies in recent years. Such experiments are still relatively costly. As a result, RNA-seq experiments often employ a small number of replicates. Power analysis and sample size calculation are challenging in the context of differential expression analysis with RNA-seq data. One challenge is that there are no closed-form formulae to calculate power for the popularly applied tests for differential expression analysis. In addition, false discovery rate (FDR), instead of family-wise type I error rate, is controlled for the multiple testing error in RNA-seq data analysis. So far, there are very few proposals on sample size calculation for RNA-seq experiments. In this paper, we propose a procedure for sample size calculation while controlling FDR for RNA-seq experimental design. Our procedure is based on the weighted linear model analysis facilitated by the voom method which has been shown to have competitive performance in terms of power and FDR control for RNA-seq differential expression analysis. We derive a method that approximates the average power across the differentially expressed genes, and then calculate the sample size to achieve a desired average power while controlling FDR. Simulation results demonstrate that the actual power of several popularly applied tests for differential expression is achieved and is close to the desired power for RNA-seq data with sample size calculated based on our method. Our proposed method provides an efficient algorithm to calculate sample size while controlling FDR for RNA-seq experimental design. We also provide an R package ssizeRNA that implements our proposed method and can be downloaded from the Comprehensive R Archive Network ( http://cran.r-project.org ).

  8. A large-scale soil-structure interaction experiment: Part I design and construction

    International Nuclear Information System (INIS)

    Tang, H.T.; Tang, Y.K.; Wall, I.B.; Lin, E.

    1987-01-01

    In the simulated earthquake experiments (SIMQUAKE) sponsored by EPRI, the detonation of vertical arrays of explosives propagated wave motions through the ground to the model structures. Although such a simulation can provide information about dynamic soil-structure interaction (SSI) characteristics in a strong motion environment, it lacks seismic wave scattering characteristics for studying seismic input to the soil-structure system and the effect of different kinds of wave composition to the soil-structure response. To supplement the inadequacy of the simulated earthquake SSI experiment, the Electric Power Research Institute (EPRI) and the Taiwan Power Company (Taipower) jointly sponsored a large scale SSI experiment in the field. The objectives of the experiment are: (1) to obtain actual strong motion earthquakes induced database in a soft-soil environment which will substantiate predictive and design SSI models;and (2) to assess nuclear power plant reactor containment internal components dynamic response and margins relating to actual earthquake-induced excitation. These objectives are accomplished by recording and analyzing data from two instrumented, scaled down, (1/4- and 1/12-scale) reinforced concrete containments sited in a high seismic region in Taiwan where a strong-motion seismic array network is located

  9. Interpretation of the TRADE In-Pile source multiplication experiments

    International Nuclear Information System (INIS)

    Mercatali, Luigi; Carta, Mario; Peluso, Vincenzo

    2006-01-01

    Within the framework of the neutronic characterization of the TRIGA RC-1 reactor in support to the TRADE (TRiga Accelerator Driven Experiment) program, the interpretation of the subcriticality level measurements performed in static regime during the TRADE In-Pile experimental program is presented. Different levels of subcriticality have been measured using the MSA (Modified Source Approximated) method by the insertion of a standard fixed radioactive source into different core positions. Starting from a reference configuration, fuel elements were removed: control rods were moved outward as required for the coupling experiments envisioned with the proton accelerator and fission chambers were inserted in order to measure subcritical count rates. A neutron-physics analysis based on the modified formulation of the source multiplication method (MSM) has been carried out, which requires the systematic solution for each experimental configuration of the homogeneous, both in the forward and adjoint forms, and inhomogeneous Boltzmann equations. By means of such a methodology calculated correction factors to be applied to the MSA measured reactivities were produced in order to take into account spatial and energetic effects creating changes in the detector efficiencies and effective source with respect to the calibration configuration. The methodology presented has been tested against a large number of experimental states. The measurements have underlined the sensitivity of the MSA measured reactivities to core geometry changes and control rod perturbations; the efficiency of MSM factors to dramatically correct for this sensitivity is underlined, making of this technique a relevant methodology in view of the incoming US RACE program to be performed in TRIGA reactors

  10. Experiment using laboratory scale extruder. Fluid behavior in twin-screw extruder

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Miura, Akihiko

    1999-09-01

    All evidences and chemical data suggest non-chemical heating mechanism raised the filling temperature of the bituminized product. But they indicate the filling temperature was higher than before at the incident. We estimated the physical heat mechanism in the extruder. It is well known that the viscous-heating occurs in mixing process in extruders. In order to confirm the behavior of the torque and temperature, some experiment using laboratory scale extruder were performed. The result of the experiment using laboratory scale extruder showed that the phenomena of salt enrichment and salt accumulation were observed and they raised mixture temperature at the decreased feed rate. These phenomena depend on the feed rate. It is considered that they have large contribution to heat transportation and operational torque due to the friction between screw and mixture. In this report, all experiment result are explained. (author)

  11. Programmed heating of coke ovens for increased coke size

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, D.R.; Mahoney, M.R. [University of Newcastle, Callaghan, NSW (Australia)

    2010-11-15

    Large, uniform sized coke is desirable for blast furnace use. It has previously been shown that the coke oven flue temperature in the first few hours of coking is a key determinant of coke size. In this paper, the authors present a new programmed heating approach, which is called pulsed heating, aiming to increase coke mean size at a given average flue temperature. The approach takes into account the charging sequence in coke oven batteries and the authors demonstrate how existing operating practice can be modified in batteries with suitable heating systems to achieve the desired heating programme. A mathematical model of fissure formation provides a prediction of the increase in coke mean size using pulsed heating, compared with standard heating. Pilot scale experiments have also been performed to validate the modelling approach. The results of the modelling indicate that the mean coke size can be increased by several millimetres in some cases, although results from the pilot scale show that pulsed heating increases coke size, but by a smaller amount than that predicted by the model. The potential advantages and limitations of pulsed heating are discussed, as well as opportunities for further investigation of the approach.

  12. Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Sanchez, R.; Carreras, B.A.

    2004-01-01

    Transport in fusion plasmas in the low confinement mode is characterized by several remarkable properties: the anomalous scaling of transport with system size, stiff (or 'canonical') profiles, power degradation, and rapid transport phenomena. The present article explores the possibilities of constructing a unified transport model, based on the continuous-time random walk, in which all these phenomena are handled adequately. The resulting formalism appears to be sufficiently general to provide a sound starting point for the development of a full-blown plasma transport code, capable of incorporating the relevant microscopic transport mechanisms, and allowing predictions of confinement properties

  13. Up-scaling, formative phases, and learning in the historical diffusion of energy technologies

    International Nuclear Information System (INIS)

    Wilson, Charlie

    2012-01-01

    The 20th century has witnessed wholesale transformation in the energy system marked by the pervasive diffusion of both energy supply and end-use technologies. Just as whole industries have grown, so too have unit sizes or capacities. Analysed in combination, these unit level and industry level growth patterns reveal some consistencies across very different energy technologies. First, the up-scaling or increase in unit size of an energy technology comes after an often prolonged period of experimentation with many smaller-scale units. Second, the peak growth phase of an industry can lag these increases in unit size by up to 20 years. Third, the rate and timing of up-scaling at the unit level is subject to countervailing influences of scale economies and heterogeneous market demand. These observed patterns have important implications for experience curve analyses based on time series data covering the up-scaling phases of energy technologies, as these are likely to conflate industry level learning effects with unit level scale effects. The historical diffusion of energy technologies also suggests that low carbon technology policies pushing for significant jumps in unit size before a ‘formative phase’ of experimentation with smaller-scale units are risky. - Highlights: ► Comparative analysis of energy technology diffusion. ► Consistent pattern of sequential formative, up-scaling, and growth phases. ► Evidence for conflation of industry level learning effects with unit level up-scaling. ► Implications for experience curve analyses and technology policy.

  14. Investigation of the physical scaling of sea spray spume droplet production

    Science.gov (United States)

    Fairall, C. W.; Banner, M. L.; Peirson, W. L.; Asher, W.; Morison, R. P.

    2009-10-01

    In this paper we report on a laboratory study, the Spray Production and Dynamics Experiment (SPANDEX), conducted at the University of New South Wales Water Research Laboratory in Australia. The goals of SPANDEX were to illuminate physical aspects of spume droplet production and dispersion; verify theoretical simplifications used to estimate the source function from ambient droplet concentration measurements; and examine the relationship between the implied source strength and forcing parameters such as wind speed, surface turbulent stress, and wave properties. Observations of droplet profiles give reasonable confirmation of the basic power law profile relationship that is commonly used to relate droplet concentrations to the surface source strength. This essentially confirms that, even in a wind tunnel, there is a near balance between droplet production and removal by gravitational settling. The observations also indicate considerable droplet mass may be present for sizes larger than 1.5 mm diameter. Phase Doppler Anemometry observations revealed significant mean horizontal and vertical slip velocities that were larger closer to the surface. The magnitude seems too large to be an acceleration time scale effect. Scaling of the droplet production surface source strength proved to be difficult. The wind speed forcing varied only 23% and the stress increased a factor of 2.2. Yet, the source strength increased by about a factor of 7. We related this to an estimate of surface wave energy flux through calculations of the standard deviation of small-scale water surface disturbance, a wave-stress parameterization, and numerical wave model simulations. This energy index only increased by a factor of 2.3 with the wind forcing. Nonetheless, a graph of spray mass surface flux versus surface disturbance energy is quasi-linear with a substantial threshold.

  15. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  16. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    International Nuclear Information System (INIS)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-01-01

    We report results on lithium alumino-silicate ion source development in preparation for warm-dense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCX-II). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ∼1275 C, a space-charge-limited Li + beam current density of J ∼1 mA/cm 2 was obtained. The lifetime of the ion source was ∼50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 (micro) s.

  17. The influence of testing apparatus stiffness on the source properties of laboratory stick-slip

    Science.gov (United States)

    Kilgore, B. D.; McGarr, A.; Beeler, N. M.; Lockner, D. A.

    2016-12-01

    Stick-slip experiments were performed to determine the influence of the testing apparatus stiffness on source properties, to develop methods to relate stick-slip to natural earthquakes, and to examine the hypothesis of McGarr [2012] that the product of unloading stiffness, k, and slip duration, T, is both scale-independent and approximately constant for both laboratory and natural earthquakes. A double-direct shear load frame was used with Sierra White Granite samples at 2 MPa normal stress, and a remote loading rate of 0.2 µm/s. The stiffness of the test apparatus was varied by more than an order of magnitude by inserting disk springs into the shear loading column adjacent to the granite samples. Servo-controlling slip at a point between the forcing ram and the shear force load cell, produced repeatable slip events. Slip and slip duration decrease as k increases, as they do for natural earthquakes. In contrast to earthquakes, stress drop and slip rate decrease with increasing k, and the product kT for these experiments is not constant, but decreases with k. These data, collected over a range of k, do not conform to McGarr's [2012] hypothesis. However, analysis of stick-slip studies from other testing apparatuses is consistent with McGarr's hypothesis; kT is scale-independent, similar to that of earthquakes, equal to the ratio of static stress drop to average slip velocity, and similar to the ratio of shear modulus to wavespeed of rock. These properties result from conducting experiments over a range of sample sizes, using rock samples with the same elastic properties as the Earth, and using testing machines whose stiffnesses decrease, and characteristic periods increase with scale. A consequence of our experiments and analysis is that extrapolation of lab scale earthquake source properties to the Earth is more difficult than previously thought, requiring an accounting for the properties of the testing machines and additional research beyond that reported here.

  18. Invasion of top and intermediate consumers in a size structured fish community

    OpenAIRE

    Ask, Per

    2010-01-01

    In this thesis I have investigated the effects of invading top and intermediate consumers in a size-structured fish community, using a combination of field studies, a lake invasion experiment and smaller scale pond and aquaria experiments. The lake invasion experiment was based on introductions of an intermediate consumer, ninespine stickleback (Pungitius pungitius L.), in to allopatric populations of an omnivorous top predator, Arctic char (Salvelinus alpinus L.). The invasion experiment was...

  19. Explicating Experience: Development of a Valid Scale of Past Hazard Experience for Tornadoes.

    Science.gov (United States)

    Demuth, Julie L

    2018-03-23

    People's past experiences with a hazard theoretically influence how they approach future risks. Yet, past hazard experience has been conceptualized and measured in wide-ranging, often simplistic, ways, resulting in mixed findings about its relationship with risk perception. This study develops a scale of past hazard experiences, in the context of tornadoes, that is content and construct valid. A conceptual definition was developed, a set of items were created to measure one's most memorable and multiple tornado experiences, and the measures were evaluated through two surveys of the public who reside in tornado-prone areas. Four dimensions emerged of people's most memorable experience, reflecting their awareness of the tornado risk that day, their personalization of the risk, the intrusive impacts on them personally, and impacts experienced vicariously through others. Two dimensions emerged of people's multiple experiences, reflecting common types of communication received and negative emotional responses. These six dimensions are novel in that they capture people's experience across the timeline of a hazard as well as intangible experiences that are both direct and indirect. The six tornado experience dimensions were correlated with tornado risk perceptions measured as cognitive-affective and as perceived probability of consequences. The varied experience-risk perception results suggest that it is important to understand the nuances of these concepts and their relationships. This study provides a foundation for future work to continue explicating past hazard experience, across different risk contexts, and for understanding its effect on risk assessment and responses. © 2018 Society for Risk Analysis.

  20. The first synchrotron infrared beamlines at the Advanced Light Source: Spectromicroscopy and fast timing

    International Nuclear Information System (INIS)

    Martin, Michael C.; McKinney, Wayne R.

    1999-01-01

    Two recently commissioned infrared beamlines on the 1.4 bending magnet port at the Advanced Light Source, LBNL, are described. Using a synchrotron as an IR source provides three primary advantages: increased brightness, very fast light pulses, and enhanced far-IR flux. The considerable brightness advantage manifests itself most beneficially when performing spectroscopy on a microscopic length scale. Beamline (BL) 1.4.3 is a dedicated FTIR spectromicroscopy beamline, where a diffraction-limited spot size using the synchrotron source is utilized. BL 1.4.2 consists of a vacuum FTIR bench with a wide spectral range and step-scan capability. This BL makes use of the pulsed nature of the synchrotron light as well as the far-IR flux. Fast timing is demonstrated by observing the pulses from the electron bunch storage pattern at the ALS. Results from several experiments from both IR beamlines will be presented as an overview of the IR research currently being done at the ALS

  1. Measuring the black hole mass in ultraluminous X-ray sources with the X-ray scaling method

    Science.gov (United States)

    Jang, I.; Gliozzi, M.; Satyapal, S.; Titarchuk, L.

    2018-01-01

    In our recent work, we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BH), could be reliably extended to estimate the mass of supermassive black holes accreting at moderate to high level. Here, we apply this X-ray scaling method to ultraluminous X-ray sources (ULXs) to constrain their MBH. Using 49 ULXs with multiple XMM-Newton observations, we infer that ULXs host both stellar mass BHs and intermediate mass BHs. The majority of the sources of our sample seem to be consistent with the hypothesis of highly accreting massive stellar BHs with MBH ∼ 100 M⊙. Our results are in general agreement with the MBH values obtained with alternative methods, including model-independent variability methods. This suggests that the X-ray scaling method is an actual scale-independent method that can be applied to all BH systems accreting at moderate-high rate.

  2. Spatial coherence properties of a compact and ultrafast laser-produced plasma keV x-ray source

    International Nuclear Information System (INIS)

    Boschetto, D.; Mourou, G.; Rousse, A.; Mordovanakis, A.; Hou, Bixue; Nees, J.; Kumah, D.; Clarke, R.

    2007-01-01

    The authors use Fresnel diffraction from knife-edges to demonstrate the spatial coherence of a tabletop ultrafast x-ray source produced by laser-plasma interaction. Spatial coherence is achieved in the far field by producing micrometer-scale x-ray spot dimensions. The results show an x-ray source size of 6 μm that leads to a transversal coherence length of 20 μm at a distance of 60 cm from the source. Moreover, they show that the source size is limited by the spatial spread of the absorbed laser energy

  3. Automated nodule location and size estimation using a multi-scale Laplacian of Gaussian filtering approach.

    Science.gov (United States)

    Jirapatnakul, Artit C; Fotin, Sergei V; Reeves, Anthony P; Biancardi, Alberto M; Yankelevitz, David F; Henschke, Claudia I

    2009-01-01

    Estimation of nodule location and size is an important pre-processing step in some nodule segmentation algorithms to determine the size and location of the region of interest. Ideally, such estimation methods will consistently find the same nodule location regardless of where the the seed point (provided either manually or by a nodule detection algorithm) is placed relative to the "true" center of the nodule, and the size should be a reasonable estimate of the true nodule size. We developed a method that estimates nodule location and size using multi-scale Laplacian of Gaussian (LoG) filtering. Nodule candidates near a given seed point are found by searching for blob-like regions with high filter response. The candidates are then pruned according to filter response and location, and the remaining candidates are sorted by size and the largest candidate selected. This method was compared to a previously published template-based method. The methods were evaluated on the basis of stability of the estimated nodule location to changes in the initial seed point and how well the size estimates agreed with volumes determined by a semi-automated nodule segmentation method. The LoG method exhibited better stability to changes in the seed point, with 93% of nodules having the same estimated location even when the seed point was altered, compared to only 52% of nodules for the template-based method. Both methods also showed good agreement with sizes determined by a nodule segmentation method, with an average relative size difference of 5% and -5% for the LoG and template-based methods respectively.

  4. Improving scaling methods to estimate eruption energies from volcanic crater structures using blast experiments

    Science.gov (United States)

    Sonder, I.; Graettinger, A. H.; Valentine, G.; Schmid, A.; Zimanowski, B.; Majji, M.; Ross, P.; White, J. D.; Taddeucci, J.; Lube, G.; Kueppers, U.; Bowman, D. C.

    2013-12-01

    In an ongoing effort to understand the relevant processes behind the formation of volcanic crater-, maar-, and diatreme structures, experiments producing craters with radii exceeding one meter were conducted at University at Buffalos Geohazards Field Station. A chemical explosive was used as energy source for the tests, and detonated in prepared test beds made from several stratified, compacted aggregates. The amount of explosive, as well as its depth of burial were varied in the twelve experiments. The detonations were recorded by a diverse set of sensors including high-speed/high-definition cameras, seismic and electric field sensors, normal- and infrasound microphones. Morphology and structures were documented after each blast by manual measurements and semi-automated photogrammetry. After all blasts were complete the structures excavated and analyzed. The measured sensor signals were evaluated and related to blast energies, depths of burial and crater morphologies. Former experiments e.g. performed by Goto et al. (2001; Geophys. Res. Lett. 28, 4287-4290) considered craters of single blasts at a given lateral position and found empirical relationships emphasizing the importance of length scaling with the cube root of the blasts energy E. For example the depth of burial producing the largest crater radius--the ';optimal' depth--is proportional to E1/3, as is the corresponding radius. Resembling natural processes creating crater and diatreme structures the experiments performed here feature several blasts at one lateral position. The dependencies on E1/3 could be roughly confirmed. Also the scaled depth correlated with the sensor signals capturing the blasts dynamics. However, significant scatter was introduced by the pre-existing morphologies. Using a suitable re-definition for the charges depth of burial (';eruption depth'), accounting for a pre-existing (crater) morphology, the measured dependencies of morphology and blast dynamics on E can be improved

  5. The Effect of Initial Inoculum Source on the Microbial Community Structure and Dynamics in Laboratory-Scale Sequencing Batch Reactors

    KAUST Repository

    Hernandez, Susana

    2011-07-01

    Understanding the factors that shapes the microbial community assembly in activated sludge wastewater treatment processes provide a conceptual foundation for improving process performance. The aim of this study was to compare two major theories (deterministic theory and neutral theory) regarding the assembly of microorganisms in activated sludge: Six lab-scale activated sludge sequencing batch reactors were inoculated with activated sludge collected from three different sources (domestic, industrial, and sugar industry WWTP). Additionally, two reactors were seeded with equal proportion of sludge from the three WWTPs. Duplicate reactors were used for each sludge source (i.e. domestic, industrial, sugar and mix). Reactors were operated in parallel for 11 weeks under identical conditions. Bacterial diversity and community structure in the eight SBRs were assessed by 16S rRNA gene pyrosequencing. The 16S rRNA gene sequences were analyzed using taxonomic and clustering analysis and by measuring diversity indices (Shannon-weaver and Chao1 indices). Cluster analysis revealed that the microbial community structure was dynamic and that replicate reactors evolved differently. Also the microbial community structure in the SBRs seeded with a different sludge did not converge after 11 weeks of operation under identical conditions. These results suggest that history and distribution of taxa in the source inoculum were stronger regulating factors in shaping bacterial community structure than environmental factors. This supports the neutral theory which states that the assembly of the local microbial community from the metacommunity is random and is regulated by the size and diversity of the metacommunity. Furthermore, sludge performance, measured by COD and ammonia removal, confirmed that broad-scale functions (e.g. COD removal) are not influenced by dynamics in the microbial composition, while specific functions (e.g. nitrification) are more susceptible to these changes.

  6. Full-Scale Turbofan Engine Noise-Source Separation Using a Four-Signal Method

    Science.gov (United States)

    Hultgren, Lennart S.; Arechiga, Rene O.

    2016-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.

  7. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    Science.gov (United States)

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  8. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.

    Science.gov (United States)

    Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C

    2011-11-27

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

  9. Influence of scale-dependent fracture intensity on block size distribution and rock slope failure mechanisms in a DFN framework

    Science.gov (United States)

    Agliardi, Federico; Galletti, Laura; Riva, Federico; Zanchi, Andrea; Crosta, Giovanni B.

    2017-04-01

    An accurate characterization of the geometry and intensity of discontinuities in a rock mass is key to assess block size distribution and degree of freedom. These are the main controls on the magnitude and mechanisms of rock slope instabilities (structurally-controlled, step-path or mass failures) and rock mass strength and deformability. Nevertheless, the use of over-simplified discontinuity characterization approaches, unable to capture the stochastic nature of discontinuity features, often hampers a correct identification of dominant rock mass behaviour. Discrete Fracture Network (DFN) modelling tools have provided new opportunities to overcome these caveats. Nevertheless, their ability to provide a representative picture of reality strongly depends on the quality and scale of field data collection. Here we used DFN modelling with FracmanTM to investigate the influence of fracture intensity, characterized on different scales and with different techniques, on the geometry and size distribution of generated blocks, in a rock slope stability perspective. We focused on a test site near Lecco (Southern Alps, Italy), where 600 m high cliffs in thickly-bedded limestones folded at the slope scale impend on the Lake Como. We characterized the 3D slope geometry by Structure-from-Motion photogrammetry (range: 150-1500m; point cloud density > 50 pts/m2). Since the nature and attributes of discontinuities are controlled by brittle failure processes associated to large-scale folding, we performed a field characterization of meso-structural features (faults and related kinematics, vein and joint associations) in different fold domains. We characterized the discontinuity populations identified by structural geology on different spatial scales ranging from outcrops (field surveys and photo-mapping) to large slope sectors (point cloud and photo-mapping). For each sampling domain, we characterized discontinuity orientation statistics and performed fracture mapping and circular

  10. Covering sources of toxic vapors with foam

    International Nuclear Information System (INIS)

    Aue, W. P.; Guidetti, F.

    2009-01-01

    In a case of chemical terrorism, first responders might well be confronted with a liquid source of toxic vapor which keeps spreading out its hazardous contents. With foam as an efficient and simple means, such a source could be covered up in seconds and the spread of vapors mitigated drastically. Once covered, the source could then wait for a longer time to be removed carefully and professionally by a decontamination team. In order to find foams useful for covering up toxic vapor sources, a large set of measurements has been performed in order to answer the following questions: - Which foams could be used for this purpose? - How thick should the foam cover be? - For how long would such a foam cover be effective? - Could the practical application of foam cause a spread of the toxic chemical? The toxic vapors sources included GB, GD and HD. Among the foams were 10 fire fighter foams (e.g. AFFF, protein) and the aqueous decontamination foam CASCAD. Small scale experiments showed that CASCAD is best suited for covering a toxic source; a 10 cm layer of it covers and decontaminates GB. The large scale experiments confirmed that any fire fighter foam is a suitable cover for a longer or shorter period.(author)

  11. Developing the cyber victimisation experiences and cyber bullying behaviours scales

    OpenAIRE

    Betts, LR; Spenser, KA

    2017-01-01

    The reported prevalence rates of cyber victimisation experiences and cyber bullying behaviours vary. Part of this variation is likely due to the diverse definitions and operationalisations of the constructs adopted in previous research and the lack of psychometrically robust measures. Through two studies, the current research developed (Study 1) and evaluated (Study 2) the cyber victimisation experiences and cyber bullying behaviours scales. In Study 1 393 (122 male, 171 female), and in Study...

  12. Small Scale Yielding Correction of Constraint Loss in Small Sized Fracture Toughness Test Specimens

    International Nuclear Information System (INIS)

    Kim, Maan Won; Kim, Min Chul; Lee, Bong Sang; Hong, Jun Hwa

    2005-01-01

    Fracture toughness data in the ductile-brittle transition region of ferritic steels show scatter produced by local sampling effects and specimen geometry dependence which results from relaxation in crack tip constraint. The ASTM E1921 provides a standard test method to define the median toughness temperature curve, so called Master Curve, for the material corresponding to a 1T crack front length and also defines a reference temperature, T 0 , at which median toughness value is 100 MPam for a 1T size specimen. The ASTM E1921 procedures assume that high constraint, small scaling yielding (SSY) conditions prevail at fracture along the crack front. Violation of the SSY assumption occurs most often during tests of smaller specimens. Constraint loss in such cases leads to higher toughness values and thus lower T 0 values. When applied to a structure with low constraint geometry, the standard fracture toughness estimates may lead to strongly over-conservative estimates. A lot of efforts have been made to adjust the constraint effect. In this work, we applied a small-scale yielding correction (SSYC) to adjust the constraint loss of 1/3PCVN and PCVN specimens which are relatively smaller than 1T size specimen at the fracture toughness Master Curve test

  13. Thermal anchoring of wires in large scale superconducting coil test experiment

    International Nuclear Information System (INIS)

    Patel, Dipak; Sharma, A.N.; Prasad, Upendra; Khristi, Yohan; Varmora, Pankaj; Doshi, Kalpesh; Pradhan, S.

    2013-01-01

    Highlights: • We addressed how thermal anchoring in large scale coil test is different compare to small cryogenic apparatus? • We did precise estimation of thermal anchoring length at 77 K and 4.2 K heat sink in large scale superconducting coil test experiment. • We addressed, the quality of anchoring without covering entire wires using Kapton/Teflon tape. • We obtained excellent results in temperature measurement without using GE Varnish by doubling estimated anchoring length. -- Abstract: Effective and precise thermal anchoring of wires in cryogenic experiment is mandatory to measure temperature in milikelvin accuracy and to avoid unnecessary cooling power due to additional heat conduction from room temperature (RT) to operating temperature (OT) through potential, field, displacement and stress measurement instrumentation wires. Instrumentation wires used in large scale superconducting coil test experiments are different compare to cryogenic apparatus in terms of unique construction and overall diameter/area due to errorless measurement in large time-varying magnetic field compare to small cryogenic apparatus, often shielded wires are used. Hence, along with other variables, anchoring techniques and required thermal anchoring length are entirely different in this experiment compare to cryogenic apparatus. In present paper, estimation of thermal anchoring length of five different types of instrumentation wires used in coils test campaign at Institute for Plasma Research (IPR), India has been discussed and some temperature measurement results of coils test campaign have been presented

  14. Finite Size Scaling of Perceptron

    OpenAIRE

    Korutcheva, Elka; Tonchev, N.

    2000-01-01

    We study the first-order transition in the model of a simple perceptron with continuous weights and large, bit finite value of the inputs. Making the analogy with the usual finite-size physical systems, we calculate the shift and the rounding exponents near the transition point. In the case of a general perceptron with larger variety of inputs, the analysis only gives bounds for the exponents.

  15. Positive matrix factorization and trajectory modelling for source identification: A new look at Indian Ocean Experiment ship observations

    Science.gov (United States)

    Bhanuprasad, S. G.; Venkataraman, Chandra; Bhushan, Mani

    The sources of aerosols on a regional scale over India have only recently received attention in studies using back trajectory analysis and chemical transport modelling. Receptor modelling approaches such as positive matrix factorization (PMF) and the potential source contribution function (PSCF) are effective tools in source identification of urban and regional-scale pollution. In this work, PMF and PSCF analysis is applied to identify categories and locations of sources that influenced surface concentrations of aerosols in the Indian Ocean Experiment (INDOEX) domain measured on-board the research vessel Ron Brown [Quinn, P.K., Coffman, D.J., Bates, T.S., Miller, T.L., Johnson, J.E., Welton, E.J., et al., 2002. Aerosol optical properties during INDOEX 1999: means, variability, and controlling factors. Journal of Geophysical Research 107, 8020, doi:10.1029/2000JD000037]. Emissions inventory information is used to identify sources co-located with probable source regions from PSCF. PMF analysis identified six factors influencing PM concentrations during the INDOEX cruise of the Ron Brown including a biomass combustion factor (35-40%), three industrial emissions factors (35-40%), primarily secondary sulphate-nitrate, balance trace elements and Zn, and two dust factors (20-30%) of Si- and Ca-dust. The identified factors effectively predict the measured submicron PM concentrations (slope of regression line=0.90±0.20; R2=0.76). Probable source regions shifted based on changes in surface and elevated flows during different times in the ship cruise. They were in India in the early part of the cruise, but in west Asia, south-east Asia and Africa, during later parts of the cruise. Co-located sources include coal-fired electric utilities, cement, metals and petroleum production in India and west Asia, biofuel combustion for energy and crop residue burning in India, woodland/forest burning in north sub-Saharan Africa and forest burning in south-east Asia. Significant findings

  16. Optimization of atomic beam sources for polarization experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Martin; Nass, Alexander; Stroeher, Hans [IKP, Forschungszentrum Juelich (Germany)

    2012-07-01

    For experiments with spinpolarized protons and neutrons a dense target is required. In current atomic beam sources an atomic hydrogen or deuterium beam is expanded through a cold nozzle and a system of sextupole magnets and RF-transition units selects a certain hyperfine state. The achievable flux seems to be limited to about 10{sup 17} particles per second with a high nuclear polarization. A lot of experimental and theoretical effort has been undertaken to understand all effects and to increase the flux. However, improvements have remained marginal. Now, a Monte Carlo simulation based on the DSMC part of the open source C++ library OpenFOAM is set up in order to get a better understanding of the flow and to optimize the various elements. The goal is to include important effects like deflection from a magnetic field, recombination on the walls and spin exchange collisions in the simulation and make quantitative predictions of changes in the experimental setup. The goal is to get a tool that helps to further increase the output of an atomic beam source.

  17. Practical sublimation source for large-scale chromium gettering in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, J E; Gabbard, W A; Emerson, L C; Mioduszewski, P K [Oak Ridge National Lab., TN (USA)

    1984-05-01

    This paper describe the fabrication and testing of a large-scale chromium sublimation source that resembles the VARIAN Ti-ballsup(TM) in its design. The device consists of a hollow chromium sphere with a diameter of approximately 3 cm and an incandescent filament for radiation heating from inside the ball. We also discuss the gettering technique utilizing this source. The experimental arrangement consists of an ultrahigh vacuum (UHV) system instrumented for total and partial pressure measurements, a film thickness monitor, thermocouples, an optical pyrometer, and appropriate instrumentation to measure the heating power. The results show the temperature and corresponding sublimation rate of the Cr-ball as functions of input power. In addition, an example of the total pumping speed of a gettered surface is shown.

  18. Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2009-11-01

    Full Text Available In this article, and in a companion paper by Hamrin et al. (2009 [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data at the altitude of about 15–20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs and 35 Concentrated Generator Regions (CGRs. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1–10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005. The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1–10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.

  19. Full Scale Experiment with Interactive Urban Lighting

    DEFF Research Database (Denmark)

    Poulsen, Esben Skouboe; Andersen, Hans Jørgen; Jensen, Ole B.

    2012-01-01

    and region of occupancy of persons in the town square were monitored in real time by computer vision analyses of thermal images from 3 cameras monitoring the twin square. The results of the computer vision analyses were used to control the illumination from 16 3.5 meter high RGB LED Lamps that were......This paper presents and discusses the results of a full-scale interactive urban illumination experiment. The experiment investigates how human motion intensities can be used as input for controlling the illumination of a town square in the city of Aalborg in Denmark. The trajectory, velocity...... distributed across the square in an irregular grid. The lamps were DMX controlled. Using architectural models as sketching tools, 4 different illumination designs were developed and tested for a week in January. The result shows that in general people immersed in the square did not notice that the light...

  20. DNA damage on nano- and micrometer scales impacts dicentric induction: computer modelling of ion microbeam experiments

    Science.gov (United States)

    Friedland, Werner; Kundrat, Pavel; Schmitt, Elke

    2016-07-01

    Detailed understanding of the enhanced relative biological effectiveness (RBE) of ions, in particular at high linear energy transfer (LET) values, is needed to fully explore the radiation risk of manned space missions. It is generally accepted that the enhanced RBE of high-LET particles results from the DNA lesion patterns, in particular DNA double-strand breaks (DSB), due to the spatial clustering of energy deposits around their trajectories. In conventional experiments on biological effects of radiation types of diverse quality, however, clustering of energy deposition events on nanometer scale that is relevant for the induction and local complexity of DSB is inherently interlinked with regional (sub-)micrometer-scale DSB clustering along the particle tracks. Due to this limitation, the role of both (nano- and micrometer) scales on the induction of diverse biological endpoints cannot be frankly separated. To address this issue in a unique way, experiments at the ion microbeam SNAKE [1] and corresponding track-structure based model calculations of DSB induction and subsequent repair with the biophysical code PARTRAC [2] have been performed. In the experiments, hybrid human-hamster A_{L} cells were irradiated with 20 MeV (2.6 keV/μm) protons, 45 MeV (60 keV/μm) lithium ions or 55 MeV (310 keV/μm) carbon ions. The ions were either quasi-homogeneously distributed or focused to 0.5 x 1 μm^{2} spots on regular matrix patterns of 5.4 μm, 7.6 μm and 10.6 μm grid size, with pre-defined particle numbers per spot so as to deposit a mean dose of 1.7 Gy for all irradiation patterns. As expected, the induction of dicentrics by homogeneous irradiation increased with LET: lithium and carbon ions induced about two- and four-fold higher yields of dicentrics than protons. The induction of dicentrics is, however, affected by µm-scale, too: focusing 20 lithium ions or 451 protons per spot on a 10.6 μm grid induced two or three times more dicentrics, respectively, than a