WorldWideScience

Sample records for source region simulation

  1. Towards a realistic 3D simulation of the extraction region in ITER NBI relevant ion source

    Science.gov (United States)

    Mochalskyy, S.; Wünderlich, D.; Fantz, U.; Franzen, P.; Minea, T.

    2015-03-01

    The development of negative ion (NI) sources for ITER is strongly accompanied by modelling activities. The ONIX code addresses the physics of formation and extraction of negative hydrogen ions at caesiated sources as well as the amount of co-extracted electrons. In order to be closer to the experimental conditions the code has been improved. It includes now the bias potential applied to first grid (plasma grid) of the extraction system, and the presence of Cs+ ions in the plasma. The simulation results show that such aspects play an important role for the formation of an ion-ion plasma in the boundary region by reducing the depth of the negative potential well in vicinity to the plasma grid that limits the extraction of the NIs produced at the Cs covered plasma grid surface. The influence of the initial temperature of the surface produced NI and its emission rate on the NI density in the bulk plasma that in turn affects the beam formation region was analysed. The formation of the plasma meniscus, the boundary between the plasma and the beam, was investigated for the extraction potentials of 5 and 10 kV. At the smaller extraction potential the meniscus moves closer to the plasma grid but as in the case of 10 kV the deepest meniscus bend point is still outside of the aperture. Finally, a plasma containing the same amount of NI and electrons (nH- =ne =1017 m-3) , representing good source conditioning, was simulated. It is shown that at such conditions the extracted NI current can reach values of ˜32 mA cm-2 using ITER-relevant extraction potential of 10 kV and ˜19 mA cm-2 at 5 kV. These results are in good agreement with experimental measurements performed at the small scale ITER prototype source at the test facility BATMAN.

  2. Towards a realistic 3D simulation of the extraction region in ITER NBI relevant ion source

    International Nuclear Information System (INIS)

    Mochalskyy, S.; Wünderlich, D.; Fantz, U.; Franzen, P.; Minea, T.

    2015-01-01

    The development of negative ion (NI) sources for ITER is strongly accompanied by modelling activities. The ONIX code addresses the physics of formation and extraction of negative hydrogen ions at caesiated sources as well as the amount of co-extracted electrons. In order to be closer to the experimental conditions the code has been improved. It includes now the bias potential applied to first grid (plasma grid) of the extraction system, and the presence of Cs + ions in the plasma. The simulation results show that such aspects play an important role for the formation of an ion–ion plasma in the boundary region by reducing the depth of the negative potential well in vicinity to the plasma grid that limits the extraction of the NIs produced at the Cs covered plasma grid surface. The influence of the initial temperature of the surface produced NI and its emission rate on the NI density in the bulk plasma that in turn affects the beam formation region was analysed. The formation of the plasma meniscus, the boundary between the plasma and the beam, was investigated for the extraction potentials of 5 and 10 kV. At the smaller extraction potential the meniscus moves closer to the plasma grid but as in the case of 10 kV the deepest meniscus bend point is still outside of the aperture. Finally, a plasma containing the same amount of NI and electrons (n H − =n e =10 17 m −3 ), representing good source conditioning, was simulated. It is shown that at such conditions the extracted NI current can reach values of ∼32 mA cm −2 using ITER-relevant extraction potential of 10 kV and ∼19 mA cm −2 at 5 kV. These results are in good agreement with experimental measurements performed at the small scale ITER prototype source at the test facility BATMAN. (paper)

  3. Tsunami Simulation Method Assimilating Ocean Bottom Pressure Data Near a Tsunami Source Region

    Science.gov (United States)

    Tanioka, Yuichiro

    2018-02-01

    A new method was developed to reproduce the tsunami height distribution in and around the source area, at a certain time, from a large number of ocean bottom pressure sensors, without information on an earthquake source. A dense cabled observation network called S-NET, which consists of 150 ocean bottom pressure sensors, was installed recently along a wide portion of the seafloor off Kanto, Tohoku, and Hokkaido in Japan. However, in the source area, the ocean bottom pressure sensors cannot observe directly an initial ocean surface displacement. Therefore, we developed the new method. The method was tested and functioned well for a synthetic tsunami from a simple rectangular fault with an ocean bottom pressure sensor network using 10 arc-min, or 20 km, intervals. For a test case that is more realistic, ocean bottom pressure sensors with 15 arc-min intervals along the north-south direction and sensors with 30 arc-min intervals along the east-west direction were used. In the test case, the method also functioned well enough to reproduce the tsunami height field in general. These results indicated that the method could be used for tsunami early warning by estimating the tsunami height field just after a great earthquake without the need for earthquake source information.

  4. Simulation studies of the extraction region from glow discharge ion sources

    International Nuclear Information System (INIS)

    Abdelrahman, M.M.

    2012-01-01

    This paper studies the influence of various parameters and conditions on the performance of an ion-beam extraction system, the trajectories of the particles in the beam being simulated by a commercial software (SIMION 3D). Space-charge effects are accounted for and criteria allowing optimization of the system are proposed. Ion beam trajectories with and without space charge have been determined and, from the results, optimum extraction conditions have been deduced. Simulation of singly charged ion trajectories for a concave meniscus with 3.5 mm curvature radius was studied with and without space charge has been done using a singly charge argon ion trajectories. Firstly, for a concave meniscus with 3.5 mm curvature radius, the influence of the current density on the ion beam shape was investigated. Furthermore, influence of the extraction voltage applied to the extraction electrode on the ion beam envelope was studied. Finally, the influence of the extraction gap width on the ion beam envelope was also studied

  5. Sources of Regional Banks Capitalization

    Directory of Open Access Journals (Sweden)

    Olga Sergeevna Miroshnichenko

    2018-03-01

    Full Text Available Searching of sources to increase the capitalization of Russian banks is an important economic problem for both the national and regional economy. Moreover, a strong capital base allows to credit institutions to meet the demands of economic agents for banking service. The research focuses on the choice of sources of regulatory capital for the banks of Tyumen region in the context of changing supervisory requirements in the period of 2005–2016, in different phases of the business cycle. We apply econometric methods of statistical information using IBM SPSS Statistics software. We have calculated the individual correlations of regional banks’ capital with gross domestic product (GDP (excluding gross regional product (GRP and GRP (with the exception of the effect of GDP. These calculations have shown that the capital of regional banks is related only to GDP. The increase in the capital of regional banks is accompanied by a change in its structure: the share of authorized capital has halved, and the share of subordinated debt has grown. All sources of capital, other than the reserve fund, are related to GDP. Authorized capital is associated with the profit of profitable lending institutions; retained earnings in the capital of regional banks — with the aggregated amount of risks of the banking system of the Russian Federation. Subordinated debt, like capital as a whole, is negatively affected by the profitability of the banking sector. The change in the capital of regional banks is determined by the change in retained earnings, subordinated debt and reserve fund. Modelling of these relations has allowed to obtain a system of equations. This system synthesizes linear regression models of changing the capital of regional banks in the context of their sourcing. The results of this study are significant for theoretical justification and practical development of a balanced financial policy of regional banks. Our research will contribute to

  6. Simulating Irregular Source Geometries for Ionian Plumes

    Science.gov (United States)

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-05-01

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  7. Simulating Irregular Source Geometries for Ionian Plumes

    International Nuclear Information System (INIS)

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-01-01

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  8. Simulating Sources of Superstorm Plasmas

    Science.gov (United States)

    Fok, Mei-Ching

    2008-01-01

    We evaluated the contributions to magnetospheric pressure (ring current) of the solar wind, polar wind, auroral wind, and plasmaspheric wind, with the surprising result that the main phase pressure is dominated by plasmaspheric protons. We used global simulation fields from the LFM single fluid ideal MHD model. We embedded the Comprehensive Ring Current Model within it, driven by the LFM transpolar potential, and supplied with plasmas at its boundary including solar wind protons, polar wind protons, auroral wind O+, and plasmaspheric protons. We included auroral outflows and acceleration driven by the LFM ionospheric boundary condition, including parallel ion acceleration driven by upward currents. Our plasmasphere model runs within the CRCM and is driven by it. Ionospheric sources were treated using our Global Ion Kinetics code based on full equations of motion. This treatment neglects inertial loading and pressure exerted by the ionospheric plasmas, and will be superceded by multifluid simulations that include those effects. However, these simulations provide new insights into the respective role of ionospheric sources in storm-time magnetospheric dynamics.

  9. General Purpose Heat Source Simulator

    Science.gov (United States)

    Emrich, Bill

    2008-01-01

    The General Purpose Heat Source (GPHS) simulator project is designed to replicate through the use of electrical heaters, the form, fit, and function of actual GPHS modules which generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of spacecraft subsystems and systems without sacrificing the quantity and quality of the test data gathered. Previous GPHS activities are centered around developing robust heater designs with sizes and weights that closely matched those of actual Pu238 fueled GPHS blocks. These efforts were successful, although their maximum temperature capabilities were limited to around 850 C. New designs are being pursued which also replicate the sizes and weights of actual Pu238 fueled GPHS blocks but will allow operation up to 1100 C.

  10. Separation of source and propagation effects at regional distances

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, P.; Jarpe, S.; Mayeda, K. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-12-31

    Improved estimates of the contributions of source and propagation effects to regional seismic signals are needed to explain the performance of existing discriminants and to help develop more robust methods for identifying underground explosions. In this paper, we use close-in, local, and regional estimates of explosion source time functions to remove source effects from regional recordings of the Non-Proliferation Experiment (NPE), a one kiloton chemical explosion in N-tunnel at Rainier Mesa on the Nevada Test Site, and nearby nuclear explosions and earthquakes. Using source corrected regional waveforms, we find that regional Pg and Lg spectra of shallow explosions have significant low frequency ({approximately}1Hz) enhancements when compared to normal depth earthquakes. Data and simulations suggest that such enhancements are most sensitive to source depth, but may also be a function of mechanism, source receiver distance, and regional structure.

  11. Scalable Open Source Smart Grid Simulator (SGSim)

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Jacobsen, Rune Hylsberg; Stefanni, Francesco

    2017-01-01

    . This paper presents an open source smart grid simulator (SGSim). The simulator is based on open source SystemC Network Simulation Library (SCNSL) and aims to model scalable smart grid applications. SGSim has been tested under different smart grid scenarios that contain hundreds of thousands of households...

  12. On Open- source Multi-robot simulators

    CSIR Research Space (South Africa)

    Namoshe, M

    2008-07-01

    Full Text Available Open source software simulators play a major role in robotics design and research as platforms for developing, testing and improving architectures, concepts and algorithms for cooperative/multi-robot systems. Simulation environment enables control...

  13. OPEN SOURCE APPROACH TO URBAN GROWTH SIMULATION

    Directory of Open Access Journals (Sweden)

    A. Petrasova

    2016-06-01

    Full Text Available Spatial patterns of land use change due to urbanization and its impact on the landscape are the subject of ongoing research. Urban growth scenario simulation is a powerful tool for exploring these impacts and empowering planners to make informed decisions. We present FUTURES (FUTure Urban – Regional Environment Simulation – a patch-based, stochastic, multi-level land change modeling framework as a case showing how what was once a closed and inaccessible model benefited from integration with open source GIS.We will describe our motivation for releasing this project as open source and the advantages of integrating it with GRASS GIS, a free, libre and open source GIS and research platform for the geospatial domain. GRASS GIS provides efficient libraries for FUTURES model development as well as standard GIS tools and graphical user interface for model users. Releasing FUTURES as a GRASS GIS add-on simplifies the distribution of FUTURES across all main operating systems and ensures the maintainability of our project in the future. We will describe FUTURES integration into GRASS GIS and demonstrate its usage on a case study in Asheville, North Carolina. The developed dataset and tutorial for this case study enable researchers to experiment with the model, explore its potential or even modify the model for their applications.

  14. Source Region Identification Using Kernel Smoothing

    Science.gov (United States)

    As described in this paper, Nonparametric Wind Regression is a source-to-receptor source apportionment model that can be used to identify and quantify the impact of possible source regions of pollutants as defined by wind direction sectors. It is described in detail with an exam...

  15. Tracing meteorite source regions through asteroid spectroscopy

    Science.gov (United States)

    Thomas, Cristina Ana

    By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives the best representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original solar system formation locations for different meteorite classes. To forge the first link between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-micron and 2-micron geometric band centers and their band area ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in the H, L, LL and HED meteorite classes. For each NEO spectrum, we assign a set of probabilities for it being related to each of these meteorite classes. Our NEO- meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. An apparent (significant at the 2.1-sigma level) source region signature is found for the H chondrites to be preferentially delivered to the inner solar system through the 3:1 mean motion resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites. The spectroscopy of asteroids is subject to several sources of inherent error. The source region model used a variety of S-type spectra without

  16. SLC positron source: Simulation and performance

    International Nuclear Information System (INIS)

    Pitthan, R.; Braun, H.; Clendenin, J.E.; Ecklund, S.D.; Helm, R.H.; Kulikov, A.V.; Odian, A.C.; Pei, G.X.; Ross, M.C.; Woodley, M.D.

    1991-06-01

    Performance of the source was found to be in good general agreement with computer simulations with S-band acceleration, and where not, the simulations lead to identification of problems, in particular the underestimated impact of linac misalignments due to the 1989 Loma Prieta Earthquake. 13 refs., 7 figs

  17. NCCOS Assessment: Island sources and destinations of virtual larvae for the Mariana region, simulation results (2004 to 2012) (NCEI Accession 0156648)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This tabular dataset is the result of computer simulations conducted by NOAA scientists and their partners to estimate the transport of marine larvae between islands...

  18. Source region of aurora kilometric radiation

    International Nuclear Information System (INIS)

    Morioka, Akira; Oya, Hiroshi; Tokumaru, Munetoshi

    1981-01-01

    This paper discusses the source region of aurora kilometric radiation (AKR), and the relation between the particle acceleration region and the polar ionosphere. The observation was made by the satellite 'Jikiken'. The AKR can be transferred to Jikiken without any interception, when the magnetic latitude of the apogee of the satellite is low. The spectra taken in June, 1980, were analyzed. The observed spectra showed the source regions of the AKR were in the aurora bands of the north and south poles. One example showed that the 200 kHz component of AKR from both poles showed the similar behavior, and another example showed that the AKR spectra from both poles showed different behavior. The altitude distribution of source regions was able to be obtained. The altitude of AKR-A was in the range between 6200 and 12000 km, and that of AKR-B was in the range of 3500 and 5200 km. The source of AKR-A was identified as that in the south hemisphere, and that of AKR-B in the north hemisphere. The asymmetric spectra of AKR-A and B showed that the spread and intensity of the electric field along magnetic lines generated above the polar ionosphere were related with the conditions of the ionosphere. (Kato, T.)

  19. Progress Toward Source-to-Target Simulation

    International Nuclear Information System (INIS)

    Grote, D.P.; Friedman, A.; Craig, G.D.; Sharp, W.M.; Haber, I.

    2000-01-01

    Source-to-target simulation of an accelerator provides a thorough check on the consistency of the design as well as a detailed understanding of the beam behavior. Issues such as envelope mis-match and emittance growth can be examined in a self-consistent manner, including the details of accelerator transitions, long-term transport, and longitudinal compression. The large range in scales, from centimeter-scale transverse beam size and applied field scale-length, to meter-scale beam length, to kilometer-scale accelerator length, poses a significant computational challenge. The ever-increasing computational power that is becoming available through massively parallel computers is making such simulation realizable. This paper discusses the progress toward source-to-target simulation using the WARP particle-in-cell code. Representative examples are shown, including 3-D, along-term transport simulations of Integrated Research Experiment (IRE) scale accelerators

  20. Drive Current Enhancement in TFET by Dual Source Region

    Directory of Open Access Journals (Sweden)

    Zhi Jiang

    2015-01-01

    Full Text Available This paper presents tunneling field-effect transistor (TFET with dual source regions. It explores the physics of drive current enhancement. The novel approach of dual source provides an effective technique for enhancing the drive current. It is found that this structure can offer four tunneling junctions by increasing a source region. Meanwhile, the dual source structure does not influence the excellent features of threshold slope (SS of TFET. The number of the electrons and holes would be doubled by going through the tunneling junctions on the original basis. The overlap length of gate-source is also studied. The dependence of gate-drain capacitance Cgd and gate-source capacitance Cgs on gate-to-source voltage Vgs and drain-to-source voltage Vds was further investigated. There are simulation setups and methodology used for the dual source TFET (DS-TFET assessment, including delay time, total energy per operation, and energy-delay product. It is confirmed that the proposed TFET has strong potentials for VLSI.

  1. Simulation in teaching regional anesthesia: current perspectives.

    Science.gov (United States)

    Udani, Ankeet D; Kim, T Edward; Howard, Steven K; Mariano, Edward R

    2015-01-01

    The emerging subspecialty of regional anesthesiology and acute pain medicine represents an opportunity to evaluate critically the current methods of teaching regional anesthesia techniques and the practice of acute pain medicine. To date, there have been a wide variety of simulation applications in this field, and efficacy has largely been assumed. However, a thorough review of the literature reveals that effective teaching strategies, including simulation, in regional anesthesiology and acute pain medicine are not established completely yet. Future research should be directed toward comparative-effectiveness of simulation versus other accepted teaching methods, exploring the combination of procedural training with realistic clinical scenarios, and the application of simulation-based teaching curricula to a wider range of learner, from the student to the practicing physician.

  2. Simulation in teaching regional anesthesia: current perspectives

    Directory of Open Access Journals (Sweden)

    Udani AD

    2015-08-01

    Full Text Available Ankeet D Udani,1 T Edward Kim,2,3 Steven K Howard,2,3 Edward R Mariano2,3On behalf of the ADAPT (Anesthesiology-Directed Advanced Procedural Training Research Group1Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA; 2Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; 3Anesthesiology and Perioperative Care Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USAAbstract: The emerging subspecialty of regional anesthesiology and acute pain medicine represents an opportunity to evaluate critically the current methods of teaching regional anesthesia techniques and the practice of acute pain medicine. To date, there have been a wide variety of simulation applications in this field, and efficacy has largely been assumed. However, a thorough review of the literature reveals that effective teaching strategies, including simulation, in regional anesthesiology and acute pain medicine are not established completely yet. Future research should be directed toward comparative-effectiveness of simulation versus other accepted teaching methods, exploring the combination of procedural training with realistic clinical scenarios, and the application of simulation-based teaching curricula to a wider range of learner, from the student to the practicing physician.Keywords: regional anesthesia, simulation, medical education, ultrasound, nerve block, simulator

  3. Simulation of a Positron Source for CEBAF

    International Nuclear Information System (INIS)

    S. Golge; A. Freyberger; C. Hyde-Wright

    2007-01-01

    A positron source for the 6 GeV (or the proposed 12 GeV upgrade) recirculating linacs at Jefferson Lab is presented. The proposed 100nA CW positron source has several unique characteristics; high incident beam power (100kW), 10 MeV incident electron beam energy, CW incident beam and CW production. Positron production with 10 MeV electrons has several advantages; the energy is below neutron threshold so the production target will not become activated during use and the absolute energy spread is bounded by the low incident energy. These advantages are offset by the large angular distribution of the outgoing positrons. Results of simulations of the positron production, capture, acceleration and injection into the recirculating linac are presented. Energy flow and thermal management of the production target present a challenge and are included in the simulations

  4. Development of an application simulating radioactive sources

    International Nuclear Information System (INIS)

    Riffault, V.; Locoge, N.; Leblanc, E.; Vermeulen, M.

    2011-01-01

    This paper presents an application simulating radioactive gamma sources developed in the 'Ecole des Mines' of Douai (France). It generates raw counting data as an XML file which can then be statistically exploited to illustrate the various concepts of radioactivity (exponential decay law, isotropy of the radiation, attenuation of radiation in matter). The application, with a spread sheet for data analysis and lab procedures, has been released under free license. (authors)

  5. Regional model simulations of New Zealand climate

    Science.gov (United States)

    Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.

    1998-03-01

    Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.

  6. EPA Region 1 Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of...

  7. Toward real-time regional earthquake simulation of Taiwan earthquakes

    Science.gov (United States)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  8. EPA Region 1 Sole Source Aquifers

    Science.gov (United States)

    This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.The aquifers were defined by a EPA hydrogeologist. Aquifer boundaries were then drafted by EPA onto 1:24000 USGS quadrangles. For the coastal sole source aquifers the shoreline as it appeared on the quadrangle was used as a boundary. Delineated boundaries were then digitized into ARC/INFO.

  9. Electron backstream to the source plasma region in an ion source

    International Nuclear Information System (INIS)

    Ohara, Y.; Akiba, M.; Arakawa, Y.; Okumura, Y.; Sakuraba, J.

    1980-01-01

    The flux of backstream electrons to the source plasma region increases significantly with the acceleration voltage of an ion beam, so that the back plate in the arc chamber should be broken for quasi-dc operation. The flux of backstream electrons is estimated at the acceleration voltage of 50--100 kV for a proton beam with the aid of ion beam simulation code. The power flux of backstream electrons is up to about 7% of the total beam output at the acceleration voltage of 75 kV. It is pointed out that the conventional ion sources such as the duoPIGatron or the bucket source which use a magnetic field for source plasma production are not suitable for quasi-dc and high-energy ion sources, because the surface heat flux of the back plate is increased by the focusing of backstream electrons and the removal of it is quite difficult. A new ion source which has an electron beam dump in the arc chamber is proposed

  10. Note: Simulation and test of a strip source electron gun.

    Science.gov (United States)

    Iqbal, Munawar; Islam, G U; Misbah, I; Iqbal, O; Zhou, Z

    2014-06-01

    We present simulation and test of an indirectly heated strip source electron beam gun assembly using Stanford Linear Accelerator Center (SLAC) electron beam trajectory program. The beam is now sharply focused with 3.04 mm diameter in the post anode region at 15.9 mm. The measured emission current and emission density were 1.12 A and 1.15 A/cm(2), respectively, that corresponds to power density of 11.5 kW/cm(2), at 10 kV acceleration potential. The simulated results were compared with then and now experiments and found in agreement. The gun is without any biasing, electrostatic and magnetic fields; hence simple and inexpensive. Moreover, it is now more powerful and is useful for accelerators technology due to high emission and low emittance parameters.

  11. Searching for Compact Radio Sources Associated with UCH ii Regions

    Energy Technology Data Exchange (ETDEWEB)

    Masqué, Josep M.; Trinidad, Miguel A.; Rodríguez-Rico, Carlos A. [Departamento de Astronomía, Universidad de Guanajuato, Apdo. Postal 144, 36000 Guanajuato, México (Mexico); Rodríguez, Luis F.; Kurtz, Stan; Loinard, Laurent [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58089, México (Mexico); Dzib, Sergio A. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2017-02-10

    Ultra-compact (UC)H ii regions represent a very early stage of massive star formation. The structure and evolution of these regions are not yet fully understood. Interferometric observations showed in recent years that compact sources of uncertain nature are associated with some UCH ii regions. To examine this, we carried out VLA 1.3 cm observations in the A configuration of selected UCH ii regions in order to report additional cases of compact sources embedded in UCH ii regions. With these observations, we find 13 compact sources that are associated with 9 UCH ii regions. Although we cannot establish an unambiguous nature for the newly detected sources, we assess some of their observational properties. According to the results, we can distinguish between two types of compact sources. One type corresponds to sources that are probably deeply embedded in the dense ionized gas of the UCH ii region. These sources are photoevaporated by the exciting star of the region and will last for 10{sup 4}–10{sup 5} years. They may play a crucial role in the evolution of the UCH ii region as the photoevaporated material could replenish the expanding plasma and might provide a solution to the so-called lifetime problem of these regions. The second type of compact sources is not associated with the densest ionized gas of the region. A few of these sources appear resolved and may be photoevaporating objects such as those of the first type, but with significantly lower mass depletion rates. The remaining sources of this second type appear unresolved, and their properties are varied. We speculate on the similarity between the sources of the second type and those of the Orion population of radio sources.

  12. Modeling the explosion-source region: An overview

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1993-01-01

    The explosion-source region is defined as the region surrounding an underground explosion that cannot be described by elastic or anelastic theory. This region extends typically to ranges up to 1 km/(kt) 1/3 but for some purposes, such as yield estimation via hydrodynamic means (CORRTEX and HYDRO PLUS), the maximum range of interest is less by an order of magnitude. For the simulation or analysis of seismic signals, however, what is required is the time resolved motion and stress state at the inelastic boundary. Various analytic approximations have been made for these boundary conditions, but since they rely on near-field empirical data they cannot be expected to reliably extrapolate to different explosion sites. More important, without some knowledge of the initial energy density and the characteristics of the medium immediately surrounding the explosion, these simplified models are unable to distinguish chemical from nuclear explosions, identify cavity decoupling, or account for such phenomena as anomalous dissipation via pore collapse

  13. Identifying the source region of plasmaspheric hiss

    Czech Academy of Sciences Publication Activity Database

    Laakso, H.; Santolík, Ondřej; Horne, R.; Kolmašová, Ivana; Escoubet, P.; Masson, A.; Taylor, P.

    2015-01-01

    Roč. 42, č. 9 (2015), s. 3141-3149 ISSN 0094-8276 R&D Projects: GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : plasmaspheric hiss * plasmaspheric drainage plumes * plasmasphere * equatorial region of plumes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.212, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2015GL063755/full

  14. [Regional atmospheric environment risk source identification and assessment].

    Science.gov (United States)

    Zhang, Xiao-Chun; Chen, Wei-Ping; Ma, Chun; Zhan, Shui-Fen; Jiao, Wen-Tao

    2012-12-01

    Identification and assessment for atmospheric environment risk source plays an important role in regional atmospheric risk assessment and regional atmospheric pollution prevention and control. The likelihood exposure and consequence assessment method (LEC method) and the Delphi method were employed to build a fast and effective method for identification and assessment of regional atmospheric environment risk sources. This method was applied to the case study of a large coal transportation port in North China. The assessment results showed that the risk characteristics and the harm degree of regional atmospheric environment risk source were in line with the actual situation. Fast and effective identification and assessment of risk source has laid an important foundation for the regional atmospheric environmental risk assessment and regional atmospheric pollution prevention and control.

  15. Radioactive source simulation for half-life experiment

    International Nuclear Information System (INIS)

    Wanitsuksombut, Warapon; Decthyothin, Chanti

    1999-01-01

    A simulation of radioactivity decay by using programmable light source with a few minutes half-life is suggested. A photodiode with digital meter label in cps is use instead of radiation detector. Both light source and photodiode are installed in a black box to avoid surrounding room light. The simulation set can also demonstrate Inverse Square Law experiment of radiation penetration. (author)

  16. Smoothed particle hydrodynamic simulations of expanding HII regions

    Science.gov (United States)

    Bisbas, Thomas G.

    2009-09-01

    This thesis deals with numerical simulations of expanding ionized regions, known as HII regions. We implement a new three dimensional algorithm in Smoothed Particle Hydrodynamics for including the dynamical effects of the interaction between ionizing radiation and the interstellar medium. This interaction plays a crucial role in star formation at all epochs. We study the influence of ionizing radiation in spherically symmetric clouds. In particular, we study the spherically symmetric expansion of an HII region inside a uniform-density, non-self-gravitating cloud. We examine the ability of our algorithm to reproduce the known theoretical solution and we find that the agreement is very good. We also study the spherically symmetric expansion inside a uniform-density, self-gravitating cloud. We propose a new differential equation of motion for the expanding shell that includes the effects of gravity. Comparing its numerical solution with the simulations, we find that the equation predicts the position of the shell accurately. We also study the expansion of an off-centre HII region inside a uniform-density, non- self-gravitating cloud. This results in an evolution known as the rocket effect, where the ionizing radiation pushes and accelerates the cloud away from the exciting star leading to its dispersal. During this evolution, cometary knots appear as a result of Rayleigh-Taylor and Vishniac instabilities. The knots are composed of a dense head with a conic tail behind them, a structure that points towards the ionizing source. Our simulations show that these knots are very reminiscent of the observed structures in planetary nebula, such as in the Helix nebula. The last part of this thesis is dedicated to the study of cores ionized by an exciting source which is placed outside and far away from them. The evolution of these cores is known as radiation driven compression (or implosion). We perform simulations and compare our findings with results of other workers and we

  17. A synthesis of regional climate change simulations - A Scandinavian perspective

    DEFF Research Database (Denmark)

    Christensen, J. H.; Räinsänen, J.; Iversen, T.

    2001-01-01

    Four downscaling experiments of regional climate change for the Nordic countries have been conducted with three different regional climate models (RCMs). A short synthesis of the outcome of the suite of experiments is presented as an ensemble, reflecting the different driving atmosphere-ocean...... general circulation model (AOGCM) conditions, RCM model resolution and domain size, and choice of emission scenarios. This allows the sources of uncertainties in the projections to be assessed. At the same time analysis of the climate change signal for temperature and precipitation over the period 1990......-2050 reveals strong similarities. In particular, all experiments in the suite simulate changes in the precipitation distribution towards a higher frequency of heavy precipitation....

  18. Evaluation of regional climate simulations over the Great Lakes region driven by three global data sets

    Science.gov (United States)

    Shiyuan Zhong; Xiuping Li; Xindi Bian; Warren E. Heilman; L. Ruby Leung; William I. Jr. Gustafson

    2012-01-01

    The performance of regional climate simulations is evaluated for the Great Lakes region. Three 10-year (1990-1999) current-climate simulations are performed using the MM5 regional climate model (RCM) with 36-km horizontal resolution. The simulations employed identical configuration and physical parameterizations, but different lateral boundary conditions and sea-...

  19. Source of the backstreaming ion beams in the foreshock region

    International Nuclear Information System (INIS)

    Tanaka, M.; Goodrich, C.C.; Winske, D.; Papadopoulos, K.

    1983-01-01

    A new source mechanism is proposed for the 'reflected' ion beams observed in the foreshock region of the earth's bow shock. In our model the beams originate in the magnetosheath downstream of the qausi-perpendicular portion of the shock. The quasi-perpendicular shock transition is characterized by two downstream ion populations including high-energy gyrating ions in addition to the directly transmitted anisotropic ions. We show by particle simulations that this highly anisotropic downstream ion distribution (T/sub perpendicular//T/sub parallel/ >>1) can excite electromagnetic ion cyclotron waves which, in turn, pitch angle scatter the gyrating ions in a few ion gyroperiods. As a result, some ions acquire large parallel velocities and move fast enough along the convecting downstream magnetic field to escape back across the bow shock into the upstream region. The distribution of escaping ions calculated by using the pitch-angle-scattered ions, as a source, becomes a beam with a large temperature anisotropy T/sub perpendicular/ approx.3--5 T/sub parallel/ and a mean velocity along the magnetic field of about twice that of the solar wind velocity. A significant result is the presence of the maximum angle theta/sub n/B = theta/sub c/ above which no ions can escape, where theta/sub n/B is the angle between the shock normal and the interplanetary magnetic field. A wide peak of constant escaping ion flux is formed below theta/sub c/ whose number density is 1--2% of that of the solar wind. These results are in general agreement with the ISEE observations of the 'reflected' ions

  20. Simulations of negative hydrogen ion sources

    Science.gov (United States)

    Demerdjiev, A.; Goutev, N.; Tonev, D.

    2018-05-01

    The development and the optimisation of negative hydrogen/deuterium ion sources goes hand in hand with modelling. In this paper a brief introduction on the physics and types of different sources, and on the Kinetic and Fluid theories for plasma description is made. Examples of some recent models are considered whereas the main emphasis is on the model behind the concept and design of a matrix source of negative hydrogen ions. At the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences a new cyclotron center is under construction which opens new opportunities for research. One of them is the development of plasma sources for additional proton beam acceleration. We have applied the modelling technique implemented in the aforementioned model of the matrix source to a microwave plasma source exemplifying a plasma filled array of cavities made of a dielectric material with high permittivity. Preliminary results for the distribution of the plasma parameters and the φ component of the electric field in the plasma are obtained.

  1. Influence of feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    Science.gov (United States)

    van Walsum, P. E. V.

    2011-11-01

    Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a

  2. DSMC Simulations of Irregular Source Geometries for Io's Pele Plume

    Science.gov (United States)

    McDoniel, William; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2010-10-01

    Volcanic plumes on Io represent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D rarefied gas dynamics method (DSMC) is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. These deposition patterns, such as the deposition ring's shape and orientation, as well as the presence and shape of ash deposits around the vent, are linked to the shape of the vent from which the plume material arises. We will present three-dimensional simulations for a variety of possible vent geometries for Pele based on observations of the volcano's caldera. One is a curved line source corresponding to a Galileo IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire lava lake at the center of the plume. The curvature of the former is seen to be sufficient to produce the features seen in observations of Pele's deposition pattern, but the particular orientation of the source is found to be such that it cannot match the orientation of these features on Io's surface. The latter corrects the error in orientation while losing some of the structure, suggesting that the actual source may correspond well with part of the shore of the lava lake. In addition, we are collaborating with a group at the University of Illinois at Urbana-Champaign to develop a hybrid method to link the continuum flow beneath Io's surface and very close to the vent to the more rarefied flow in the large volcanic plumes. This work was funded by NASA-PATM grant NNX08AE72G.

  3. H2O sources in regions of star formation

    International Nuclear Information System (INIS)

    Lo, K.Y.; Burke, B.F.; Haschick, A.D.

    1975-01-01

    Regions and objects believed to be in early stages of stellar formation have been searched for H 2 O 22-GHz line emission with the Haystack 120-foot (37 m) telescope. The objects include radio condensations, infrared objects in H ii regions, and Herbig-Haro objects. Nine new H 2 O sources were detected in the vicinity of such objects, including the Sharpless H ii regions S152, S235, S255, S269, G45.1+0.1, G45.5+0.1, AFCRL infrared object No. 809--2992, and Herbig-Haro objects 1 and 9. The new H 2 O sources detected in H ii regions are associated, but not coincident, with the the radio condensations. Water vapor line emission was detected in approx.25 percent of the regions searched. The association of H 2 O sources with regions of star formation is taken to be real. The spatial relationship of H 2 O sources to infrared objects, radio condensations, class I OH sources, and molecular clouds are discussed. The suggestion is made that an H 2 O source may be excited by a highly obscured star of extreme youth

  4. Influence of ecohydrologic feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    Science.gov (United States)

    van Walsum, P. E. V.; Supit, I.

    2012-06-01

    Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, accounting for ecohydrologic feedbacks in terms of radiation fraction that reaches the soil, crop coefficient, interception fraction of rainfall, interception storage capacity, and root zone depth. Except for the last, these feedbacks are dependent on the leaf area index (LAI). The influence of regional groundwater on crop growth is included via a coupling to MODFLOW. Two versions of the MetaSWAP-WOFOST coupling were set up: one with exogenous vegetation parameters, the "static" model, and one with endogenous crop growth simulation, the "dynamic" model. Parameterization of the static and dynamic models ensured that for the current climate the simulated long-term averages of actual evapotranspiration are the same for both models. Simulations were made for two climate scenarios and two crops: grass and potato. In the dynamic model, higher temperatures in a warm year under the current climate resulted in accelerated crop development, and in the case of potato a shorter growing season, thus partly avoiding the late summer heat. The static model has a higher potential transpiration; depending on the available soil moisture, this translates to a higher actual transpiration. This difference between static and dynamic models is enlarged by climate change in combination with higher CO2 concentrations. Including the dynamic crop simulation gives for potato (and other annual arable land crops) systematically higher effects on the predicted recharge change due to climate change. Crop yields from soils with poor water retention capacities strongly depend on capillary rise if moisture supply from other sources is limited. Thus, including a crop simulation model in an integrated

  5. Using the GeoFEST Faulted Region Simulation System

    Science.gov (United States)

    Parker, Jay W.; Lyzenga, Gregory A.; Donnellan, Andrea; Judd, Michele A.; Norton, Charles D.; Baker, Teresa; Tisdale, Edwin R.; Li, Peggy

    2004-01-01

    GeoFEST (the Geophysical Finite Element Simulation Tool) simulates stress evolution, fault slip and plastic/elastic processes in realistic materials, and so is suitable for earthquake cycle studies in regions such as Southern California. Many new capabilities and means of access for GeoFEST are now supported. New abilities include MPI-based cluster parallel computing using automatic PYRAMID/Parmetis-based mesh partitioning, automatic mesh generation for layered media with rectangular faults, and results visualization that is integrated with remote sensing data. The parallel GeoFEST application has been successfully run on over a half-dozen computers, including Intel Xeon clusters, Itanium II and Altix machines, and the Apple G5 cluster. It is not separately optimized for different machines, but relies on good domain partitioning for load-balance and low communication, and careful writing of the parallel diagonally preconditioned conjugate gradient solver to keep communication overhead low. Demonstrated thousand-step solutions for over a million finite elements on 64 processors require under three hours, and scaling tests show high efficiency when using more than (order of) 4000 elements per processor. The source code and documentation for GeoFEST is available at no cost from Open Channel Foundation. In addition GeoFEST may be used through a browser-based portal environment available to approved users. That environment includes semi-automated geometry creation and mesh generation tools, GeoFEST, and RIVA-based visualization tools that include the ability to generate a flyover animation showing deformations and topography. Work is in progress to support simulation of a region with several faults using 16 million elements, using a strain energy metric to adapt the mesh to faithfully represent the solution in a region of widely varying strain.

  6. Development of regional meteorological and atmospheric diffusion simulation system

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Iwashige, Kengo; Kasano, Toshio

    2002-01-01

    Regional atmospheric diffusion online network (RADON) with atmospheric diffusion analysis code (ADAC) : a simulation program of diffusion of radioactive materials, volcanic ash, pollen, NOx and SOx was developed. This system can be executed in personal computer (PC) and note PC on Windows. Emission data consists of online, offline and default data. It uses the meteorology data sources such as meteorological forecasting mesh data, automated meteorological data acquisition system (AMeDAS) data, meteorological observation data in site and municipality observation data. The meteorological forecasting mesh data shows forecasting value of temperature, wind speed, wind direction and humidity in about two days. The nuclear environmental monitoring center retains the online data (meteorological data, emission source data, monitoring station data) in its PC server and can run forecasting or repeating calculation using these data and store and print out the calculation results. About 30 emission materials can be calculated simultaneously. This system can simulate a series of weather from the past and real time to the future. (S.Y.)

  7. Glacial Fluctuation in the Source Region of the Yangtze River

    International Nuclear Information System (INIS)

    Shengyi, Gao; Qingsong, Fan; Xi, Cao; Li, Ma

    2014-01-01

    Glaciers in the source region of the Yangtze River are not only water resources but also important energy and environmental resources. Glacial fluctuation is an important component of the study of changes in the natural environment, including climate change. We investigated the glaciers in the source region of the Yangtze River, and analyzed the fluctuations using multi-temporal remote sensing data. The trend in glacial fluctuation and the factors that influence it were determined. The results have implications for water resource management and environmental conservation in the Yangtze River region

  8. Positron annihilation lifetime spectroscopy source correction determination: A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Gurmeet S.; Keeble, David J., E-mail: d.j.keeble@dundee.ac.uk

    2016-02-01

    Positron annihilation lifetime spectroscopy (PALS) can provide sensitive detection and identification of vacancy-related point defects in materials. These measurements are normally performed using a positron source supported, and enclosed by, a thin foil. Annihilation events from this source arrangement must be quantified and are normally subtracted from the spectrum before analysis of the material lifetime components proceeds. Here simulated PALS spectra reproducing source correction evaluation experiments have been systematically fitted and analysed using the packages PALSfit and MELT. Simulations were performed assuming a single lifetime material, and for a material with two lifetime components. Source correction terms representing a directly deposited source and various foil supported sources were added. It is shown that in principle these source terms can be extracted from suitably designed experiments, but that fitting a number of independent, nominally identical, spectra is recommended.

  9. Simulations of effusion from ISOL target/ion source systems

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.

    2004-01-01

    Monte Carlo simulations of the low- and high-conductivity Target/Ion Source systems used at Oak Ridge National Laboratory for effusion measurements are performed. Comparisons with the corresponding experimental data for the different geometries are presented and discussed. Independent checks of the simulation using data for simple geometries and using the conductance approach well known in vacuum technology are performed. A simulation-based comparison between the low- and high-conductivity systems is also presented

  10. Source-Type Identification Analysis Using Regional Seismic Moment Tensors

    Science.gov (United States)

    Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.

    2012-12-01

    Waveform inversion to determine the seismic moment tensor is a standard approach in determining the source mechanism of natural and manmade seismicity, and may be used to identify, or discriminate different types of seismic sources. The successful applications of the regional moment tensor method at the Nevada Test Site (NTS) and the 2006 and 2009 North Korean nuclear tests (Ford et al., 2009a, 2009b, 2010) show that the method is robust and capable for source-type discrimination at regional distances. The well-separated populations of explosions, earthquakes and collapses on a Hudson et al., (1989) source-type diagram enables source-type discrimination; however the question remains whether or not the separation of events is universal in other regions, where we have limited station coverage and knowledge of Earth structure. Ford et al., (2012) have shown that combining regional waveform data and P-wave first motions removes the CLVD-isotropic tradeoff and uniquely discriminating the 2009 North Korean test as an explosion. Therefore, including additional constraints from regional and teleseismic P-wave first motions enables source-type discrimination at regions with limited station coverage. We present moment tensor analysis of earthquakes and explosions (M6) from Lop Nor and Semipalatinsk test sites for station paths crossing Kazakhstan and Western China. We also present analyses of smaller events from industrial sites. In these sparse coverage situations we combine regional long-period waveforms, and high-frequency P-wave polarity from the same stations, as well as from teleseismic arrays to constrain the source type. Discrimination capability with respect to velocity model and station coverage is examined, and additionally we investigate the velocity model dependence of vanishing free-surface traction effects on seismic moment tensor inversion of shallow sources and recovery of explosive scalar moment. Our synthetic data tests indicate that biases in scalar

  11. Stabilization effect of fission source in coupled Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Borge; Dufek, Jan [Div. of Nuclear Reactor Technology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm (Sweden)

    2017-08-15

    A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  12. Sources and sinks of carbon dioxide in the Arctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1982-01-01

    The data base required to adequately ascertain seasonal source and sink strengths in the arctic regions is difficult to obtain. However, there are now a reasonable quantity of data for this polar region to estimate sources and sinks within the Arctic which may contribute significantly to the annual tropospheric CO/sub 2/ concentration fluctuation. The sea-ice-air and the sea-air interfaces account for most of the contribution to the sources and sinks for carbon dioxide. Although the arctic and subarctic region is small in extent, it certainly is not impervious and ice sealed. Our estimate, based on historical data and current research, indicates that the Arctic, which is about 4% of the earth's surface, is an annual net sink for approx. 10/sup 15/ g CO/sub 2/ accounting for an equivalent of approx. 3% of the annual anthropogenic contribution of CO/sub 2/ to the troposphere.

  13. Viking observations at the source region of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Bahnsen, A.; Jespersen, M.; Ungstrup, E.; Pedersen, B.M.; Eliasson, L.; Murphree, J.S.; Elphinstone, R.D.; Blomberg, L.; Holmgren, G.; Zanetti, L.J.

    1989-01-01

    The orbit of the Swedish satellite Viking was optimized for in situ observations of auroral particle acceleration and related phenomena. In a large number of the orbits, auroral kilometric radiation (AKR) was observed, and in approximately 35 orbits the satellite passed through AKR source regions as evidenced by very strong signals at the local electron cyclotron frequency f ce . These sources were found at the poleward edge of the auroral oval at altitudes, from 5,000 to 8,000 km, predominantly in the evening sector. The strong AKR signal has a sharp low-frequency cutoff at or very close to f ce in the source. In addition to AKR, strong broadband electrostatic noise is measured during the source crossings. Energetic (1-15 keV) electrons are always present at and around the AKR sources. Upward directed ion beams of several keV are closely correlated with the source as are strong and variable electric fields, indicating that a region of upward pointing electric field below the observation point is a necessary condition for AKR generation. The plasma density is measured by three independent experiments and it is generally found that the density is low across the whole auroral oval. For some source crossings the three methods agree and show a density depletion (but not always confined to the source region itself), but in many cases the three measurements do not yield consistent results. The magnetic projection of the satellite passes through auroral forms during the source crossings, and the strongest AKR events seem to be connected with kinks in an arc or more complicated structures

  14. Optimization of Ion Source Head Position in the Central Region of DECY-13 Cyclotron

    Directory of Open Access Journals (Sweden)

    S Silakhuddin

    2017-08-01

    Full Text Available Optimization of the ion source head position of the DECY-13 Cyclotron in the central region has been carried out based on simulation process using a particle tracking program written in Scilab 5.2.1. The simulated particle was the H- ion that was accelerated in DECY-13 Cyclotron. The input for the program were the magnetic field and the electric field in the central region that were calculated by Opera-3D software package and TOSCA module. The optimized position of ion source head position is in a radius of 2 cm relative to the zero point of the magnet and at a distance of 4 mm relative to the puller. This result can be useful for determining the configuration of the parts in the central region when it is tested for generating the first ion beam in the future.

  15. On the global and regional potential of renewable energy sources

    NARCIS (Netherlands)

    Hoogwijk, Monique Maria

    2004-01-01

    In this thesis, the central research question is: what can be the contribution of renewable energy sources to the present and future world and regional energy supply system. The focus is on wind, solar PV and biomass energy (energy crops) for electricity generation. For the assessment of the

  16. Beam dynamics simulation in the X-ray Compton source

    Energy Technology Data Exchange (ETDEWEB)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A

    2002-05-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  17. Beam dynamics simulation in the X-ray Compton source

    International Nuclear Information System (INIS)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center

  18. Beam dynamics simulation in the X-ray Compton source

    CERN Document Server

    Gladkikh, P; Telegin, Yu P; Shcherbakov, A; Zelinsky, A

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  19. Tidal simulation using regional ocean modeling systems (ROMS)

    Science.gov (United States)

    Wang, Xiaochun; Chao, Yi; Li, Zhijin; Dong, Changming; Farrara, John; McWilliams, James C.; Shum, C. K.; Wang, Yu; Matsumoto, Koji; Rosenfeld, Leslie K.; hide

    2006-01-01

    The purpose of our research is to test the capability of ROMS in simulating tides. The research also serves as a necessary exercise to implement tides in an operational ocean forecasting system. In this paper, we emphasize the validation of the model tide simulation. The characteristics and energetics of tides of the region will be reported in separate publications.

  20. National Geo-Database for Biofuel Simulations and Regional Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies; (2) model biomass productivity and associated environmental impacts of annual cellulosic feedstocks; (3) simulate production of perennial biomass feedstocks grown on marginal lands; and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. We used the EPIC (Environmental Policy Integrated Climate) model to simulate biomass productivity and environmental impacts of annual and perennial cellulosic feedstocks across much of the USA on both croplands and marginal lands. We used data from LTER and eddy-covariance experiments within the study region to test the

  1. Open Source Power Plant Simulator Development Under Matlab Environment

    International Nuclear Information System (INIS)

    Ratemi, W.M.; Fadilah, S.M.; Abonoor, N

    2008-01-01

    In this paper an open source programming approach is targeted for the development of power plant simulator under Matlab environment. With this approach many individuals can contribute to the development of the simulator by developing different orders of complexities of the power plant components. Such modules can be modeled based on physical principles, or using neural networks or other methods. All of these modules are categorized in Matlab library, of which the user can select and build up his simulator. Many international companies developed its own authoring tool for the development of its simulators, and hence it became its own property available for high costs. Matlab is a general software developed by mathworks that can be used with its toolkits as the authoring tool for the development of components by different individuals, and through the appropriate coordination, different plant simulators, nuclear, traditional , or even research reactors can be computerly assembled. In this paper, power plant components such as a pressurizer, a reactor, a steam generator, a turbine, a condenser, a feedwater heater, a valve, a pump are modeled based on physical principles. Also a prototype modeling of a reactor ( a scram case) based on neural networks is developed. These modules are inserted in two different Matlab libraries one called physical and the other is called neural. Furthermore, during the simulation one can pause and shuffle the modules selected from the two libraries and then proceed the simulation. Also, under the Matlab environment a PID controller is developed for multi-loop plant which can be integrated for the control of the appropriate developed simulator. This paper is an attempt to base the open source approach for the development of power plant simulators or even research reactor simulators. It then requires the coordination among interested individuals or institutions to set it to professionalism. (author)

  2. MEASUREMENT AND SIMULATION OF SOURCE-GENERATED HALOS IN THE UNIVERSITY OF MARYLAND ELECTRON RING (UMER)

    International Nuclear Information System (INIS)

    Haber, I.; Haber, I.; Bernal, S.; Kishek, R.A.; O'Shea, P.G.; Papadopoulos, C.; Reiser, M.; Feldman, R.B.; Stratakis, D.; Walter, M.; Vay, J.-L.; Friedman, A.; Grote, D.P.

    2007-01-01

    One of the areas of fundamental beam physics that have served as the rationale for recent research on UMER is the study of the generation and evolution of beam halos. Recent experiments and simulations have identified imperfections in the source geometry, particularly in the region near the emitter edge, as a significant potential source of halo particles. The edge-generated halo particles, both in the experiments and the simulations are found to pass through the center of the beam a short distance downstream of the anode plane. Understanding the detailed evolution of these particle orbits is therefore important to designing any aperture to remove the beam halo

  3. Python bindings for the open source electromagnetic simulator Meep

    OpenAIRE

    Lambert, Emmanuel; Fiers, Martin; Nizamov, Shavkat; Tassaert, Martijn; Johnson, Steven G; Bienstman, Peter; Bogaerts, Wim

    2011-01-01

    Meep is a broadly used open source package for finite-difference time-domain electromagnetic simulations. Python bindings for Meep make it easier to use for researchers and open promising opportunities for integration with other packages in the Python ecosystem. As this project shows, implementing Python-Meep offers benefits for specific disciplines and for the wider research community.

  4. Source contributions and regional transport of primary particulate matter in China

    International Nuclear Information System (INIS)

    Hu, Jianlin; Wu, Li; Zheng, Bo; Zhang, Qiang; He, Kebin; Chang, Qing; Li, Xinghua; Yang, Fumo; Ying, Qi; Zhang, Hongliang

    2015-01-01

    A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China. Four months were simulated with emissions grouped to eight regions and six sectors. Predicted elemental carbon (EC), primary organic carbon (POC), and PPM concentrations and source contributions agree with measurements and have significant spatiotemporal variations. Residential is a major contributor to spring/winter EC (50–80%), POC (60%–90%), and PPM (30–70%). For summer/fall, industrial contributes 30–50% for EC/POC and 40–60% for PPM. Transportation is more important for EC (20–30%) than POC/PPM ( 90% in Beijing. - Highlights: • A source-oriented CMAQ was established for primary particulate matter (PPM). • Source and region contributions to EC, POC and PPM in China were quantified. • Residential is major in spring/winter and industrial dominates in summer/fall. • Open burning is more important for southern while dust is in contrast. • Both local and Heibei emissions contribute to PPM in Beijing. - Source and region contributions to primary particulate matter in China were quantified for four months during 2012-2013. Residential and industrial are the major contributors.

  5. Research on point source simulating the γ-ray detection efficiencies of stander source

    International Nuclear Information System (INIS)

    Tian Zining; Jia Mingyan; Shen Maoquan; Yang Xiaoyan; Cheng Zhiwei

    2010-01-01

    For φ 75 mm x 25 mm sample, the full energy peak efficiencies on different heights of sample radius were obtained using the point sources, and the function parameters about the full energy peak efficiencies of point sources based on radius was fixed. The 59.54 keV γ-ray, 661.66 keV γ-ray, 1173.2 keV γ-ray, 1332.5 keV γ-ray detection efficiencies on different height of samples were obtained, based on the full energy peak efficiencies of point sources and its height, and the function parameters about the full energy peak efficiencies of surface sources based on sample height was fixed. The detection efficiency of (75 mm x 25 mm calibration source can be obtained by integrality, the detection efficiencies simulated by point sources are consistent with the results of stander source in 10%. Therefore, the calibration method of stander source can be substituted by the point source simulation method, and it tis feasible when there is no stander source.) (authors)

  6. Simulation of a dense plasma focus x-ray source

    International Nuclear Information System (INIS)

    Stark, R.A.

    1994-01-01

    The authors are performing simulations of the magnetohydrodynamics of a Dense Plasma Focus (DPF) x-ray source located at Science Research Laboratory (SRL), Alameda, CA, in order to optimize its performance. The SRL DPF, which was developed as a compact source for x-ray lithography, operates at 20 Hz, giving x-ray power (9--14 Angstroms) of 500 W using neon gas. The simulations are performed with the two dimensional MHD code MACH2, developed by Mission Research Corporation, with a steady state corona model as the equation of state. The results of studies of the sensitivity of x-ray output to charging voltage and current, and to initial gas density will be presented. These studies should indicate ways to optimize x-ray production efficiency. Simulations of various inner electrode configurations will also be presented

  7. REGIONAL DRAINWATER MANAGEMENT: SOURCE CONTROL, AGROFORESTRY, AND EVAPORATION PONDS

    OpenAIRE

    Posnikoff, Judith F.; Knapp, Keith C.

    1996-01-01

    Source control is one way to address salinity and drainage problems in irrigated agriculture, and reuse of drainage flows on salt-tolerant crops or trees in agroforestry production is another. A regional model of agricultural production with drainwater reuse and disposal is developed. Deep percolation flows are controlled through choice of crop areas, irrigation systems, and applied-water quantities. Crop drainwater may by reused in agroforestry production, and residual emissions are disposed...

  8. Open Source AV solution supporting In Situ Simulation

    DEFF Research Database (Denmark)

    Krogh, Kristian; Pociunas, Gintas; Dahl, Mads Ronald

    the software to meet our expectations for a portable AV system for VAD. The system would make use of “off the shelf” hardware components which are widely available and easily replaced or expanded. The developed AV software and coding is contracted to be available as Copyleft Open Source to ensure low cost...... a stable AV software that has be developed and implemented for an in situ simulation initiative. This version (1.3) is the first on released as Open Source (Copyleft) software (see QR tag). We have found that it is possible to deliver multi-camera video assisted debriefing in a mobile, in situ simulation...... environment using an AV system constructed from “off the shelf” components and Open Source software....

  9. Large-region acoustic source mapping using a movable array and sparse covariance fitting.

    Science.gov (United States)

    Zhao, Shengkui; Tuna, Cagdas; Nguyen, Thi Ngoc Tho; Jones, Douglas L

    2017-01-01

    Large-region acoustic source mapping is important for city-scale noise monitoring. Approaches using a single-position measurement scheme to scan large regions using small arrays cannot provide clean acoustic source maps, while deploying large arrays spanning the entire region of interest is prohibitively expensive. A multiple-position measurement scheme is applied to scan large regions at multiple spatial positions using a movable array of small size. Based on the multiple-position measurement scheme, a sparse-constrained multiple-position vectorized covariance matrix fitting approach is presented. In the proposed approach, the overall sample covariance matrix of the incoherent virtual array is first estimated using the multiple-position array data and then vectorized using the Khatri-Rao (KR) product. A linear model is then constructed for fitting the vectorized covariance matrix and a sparse-constrained reconstruction algorithm is proposed for recovering source powers from the model. The user parameter settings are discussed. The proposed approach is tested on a 30 m × 40 m region and a 60 m × 40 m region using simulated and measured data. Much cleaner acoustic source maps and lower sound pressure level errors are obtained compared to the beamforming approaches and the previous sparse approach [Zhao, Tuna, Nguyen, and Jones, Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (2016)].

  10. Ultrasound-Guided Regional Anesthesia Simulation Training: A Systematic Review.

    Science.gov (United States)

    Chen, Xiao Xu; Trivedi, Vatsal; AlSaflan, AbdulHadi A; Todd, Suzanne Clare; Tricco, Andrea C; McCartney, Colin J L; Boet, Sylvain

    Ultrasound-guided regional anesthesia (UGRA) has become the criterion standard of regional anesthesia practice. Ultrasound-guided regional anesthesia teaching programs often use simulation, and guidelines have been published to help guide URGA education. This systematic review aimed to examine the effectiveness of simulation-based education for the acquisition and maintenance of competence in UGRA. Studies identified in MEDLINE, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, and ERIC were included if they assessed simulation-based UGRA teaching with outcomes measured at Kirkpatrick level 2 (knowledge and skills), 3 (transfer of learning to the workplace), or 4 (patient outcomes). Two authors independently reviewed all identified references for eligibility, abstracted data, and appraised quality. After screening 176 citations and 45 full-text articles, 12 studies were included. Simulation-enhanced training improved knowledge acquisition (Kirkpatrick level 2) when compared with nonsimulation training. Seven studies measuring skill acquisition (Kirkpatrick level 2) found that simulation-enhanced UGRA training was significantly more effective than alternative teaching methods or no intervention. One study measuring transfer of learning into the clinical setting (Kirkpatrick level 3) found no difference between simulation-enhanced UGRA training and non-simulation-based training. However, this study was discontinued early because of technical challenges. Two studies examined patient outcomes (Kirkpatrick level 4), and one of these found that simulation-based UGRA training improved patient outcomes compared with didactic teaching. Ultrasound-guided regional anesthesia knowledge and skills significantly improved with simulation training. The acquired UGRA skills may be transferred to the clinical setting; however, further studies are required to confirm these changes translate to improved patient outcomes.

  11. Spatial Sampling of Weather Data for Regional Crop Yield Simulations

    Science.gov (United States)

    Van Bussel, Lenny G. J.; Ewert, Frank; Zhao, Gang; Hoffmann, Holger; Enders, Andreas; Wallach, Daniel; Asseng, Senthold; Baigorria, Guillermo A.; Basso, Bruno; Biernath, Christian; hide

    2016-01-01

    Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50, 100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management

  12. Stabilization effect of fission source in coupled Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Börge Olsen

    2017-08-01

    Full Text Available A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  13. Monte Carlo Simulations Validation Study: Vascular Brachytherapy Beta Sources

    International Nuclear Information System (INIS)

    Orion, I.; Koren, K.

    2004-01-01

    During the last decade many versions of angioplasty irradiation treatments have been proposed. The purpose of this unique brachytherapy is to administer a sufficient radiation dose into the vein walls in order to prevent restonosis, a clinical sequel to balloon angioplasty. The most suitable sources for this vascular brachytherapy are the β - emitters such as Re-188, P-32, and Sr-90/Y-90, with a maximum energy range of up to 2.1 MeV [1,2,3]. The radioactive catheters configurations offered for these treatments can be a simple wire [4], a fluid filled balloon or a coated stent. Each source is differently positioned inside the blood vessel, and the emitted electrons ranges therefore vary. Many types of sources and configurations were studied either experimentally or with the use of the Monte Carlo calculation technique, while most of the Monte Carlo simulations were carried out using EGS4 [5] or MCNP [6]. In this study we compared the beta-source absorbed-dose versus radial-distance of two treatment configurations using MCNP and EGS4 simulations. This comparison was aimed to discover the differences between the MCNP and the EGS4 simulation code systems in intermediate energies electron transport

  14. Vacuum simulation and characterization for the Linac4 H- source

    Science.gov (United States)

    Pasquino, C.; Chiggiato, P.; Michet, A.; Hansen, J.; Lettry, J.

    2013-02-01

    At CERN, the 160 MeV H- Linac4 will soon replace the 50 MeV proton Linac2. In the H- source two major sources of gas are identified. The first is the pulsed injection at about 0.1 mbar in the plasma chamber. The second is the constant H2 injection up to 10-5 mbar in the LEBT for beam space charge compensation. In addition, the outgassing of materials exposed to vacuum can play an important role in contamination control and global gas balance. To evaluate the time dependent partial pressure profiles in the H- ion source and the RFQ, electrical network - vacuum analogy and test particle Monte Carlo simulation have been used. The simulation outcome indicates that the pressure requirements are in the reach of the proposed vacuum pumping system. Preliminary results show good agreement between the experimental and the simulated pressure profiles; a calibration campaign is in progress to fully benchmark the implemented calculations. Systematic outgassing rate measurements are on-going for critical components in the ion source and RFQ. Amongst them those for the Cu-coated SmCo magnet located in the vacuum system of the biased electron dump electrode, show results lower to stainless steel at room temperature.

  15. Simulation study on ion extraction from ECR ion sources

    International Nuclear Information System (INIS)

    Fu, S.; Kitagawa, A.; Yamada, S.

    1993-07-01

    In order to study beam optics of NIRS-ECR ion source used in HIMAC, EGUN code has been modified to make it capable of modeling ion extraction from a plasma. Two versions of the modified code are worked out with two different methods in which 1-D and 2-D sheath theories are used respectively. Convergence problem of the strong nonlinear self-consistent equations is investigated. Simulations on NIRS-ECR ion source and HYPER-ECR ion source (in INS, Univ. of Tokyo) are presented in this paper, exhibiting an agreement with the experimental results. Some preliminary suggestions on the upgrading the extraction systems of these sources are also proposed. (author)

  16. Simulation study on ion extraction from ECR ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, S.; Kitagawa, A.; Yamada, S.

    1993-07-01

    In order to study beam optics of NIRS-ECR ion source used in HIMAC, EGUN code has been modified to make it capable of modeling ion extraction from a plasma. Two versions of the modified code are worked out with two different methods in which 1-D and 2-D sheath theories are used respectively. Convergence problem of the strong nonlinear self-consistent equations is investigated. Simulations on NIRS-ECR ion source and HYPER-ECR ion source (in INS, Univ. of Tokyo) are presented in this paper, exhibiting an agreement with the experimental results. Some preliminary suggestions on the upgrading the extraction systems of these sources are also proposed. (author).

  17. Ion mixing and numerical simulation of different ions produced in the ECR ion source

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    This paper is to continue theoretical investigations and numerical simulations in the physics of ECR ion sources within the CERN program on heavy ion acceleration. The gas (ion) mixing effect in ECR sources is considered here. It is shown that the addition of light ions to the ECR plasma has three different mechanisms to improve highly charged ion production: the increase of confinement time and charge state of highly ions as the result of ion cooling; the concentration of highly charged ions in the central region of the source with high energy and density of electrons; the increase of electron production rate and density of plasma. The numerical simulations of lead ion production in the mixture with different light ions and different heavy and intermediate ions in the mixture with oxygen, are carried out to predict the principal ECR source possibilities for LHC applications. 18 refs., 23 refs

  18. Development of a helicon ion source: Simulations and preliminary experiments

    Science.gov (United States)

    Afsharmanesh, M.; Habibi, M.

    2018-03-01

    In the present context, the extraction system of a helicon ion source has been simulated and constructed. Results of the ion source commissioning at up to 20 kV are presented as well as simulations of an ion beam extraction system. Argon current of more than 200 μA at up to 20 kV is extracted and is characterized with a Faraday cup and beam profile monitoring grid. By changing different ion source parameters such as RF power, extraction voltage, and working pressure, an ion beam with current distribution exhibiting a central core has been detected. Jump transition of ion beam current emerges at the RF power near to 700 W, which reveals that the helicon mode excitation has reached this power. Furthermore, measuring the emission line intensity of Ar ii at 434.8 nm is the other way we have used for demonstrating the mode transition from inductively coupled plasma to helicon. Due to asymmetrical longitudinal power absorption of a half-helix helicon antenna, it is used for the ion source development. The modeling of the plasma part of the ion source has been carried out using a code, HELIC. Simulations are carried out by taking into account a Gaussian radial plasma density profile and for plasma densities in range of 1018-1019 m-3. Power absorption spectrum and the excited helicon mode number are obtained. Longitudinal RF power absorption for two different antenna positions is compared. Our results indicate that positioning the antenna near to the plasma electrode is desirable for the ion beam extraction. The simulation of the extraction system was performed with the ion optical code IBSimu, making it the first helicon ion source extraction designed with the code. Ion beam emittance and Twiss parameters of the ellipse emittance are calculated at different iterations and mesh sizes, and the best values of the mesh size and iteration number have been obtained for the calculations. The simulated ion beam extraction system has been evaluated using optimized parameters such

  19. Thermal unit availability modeling in a regional simulation model

    International Nuclear Information System (INIS)

    Yamayee, Z.A.; Port, J.; Robinett, W.

    1983-01-01

    The System Analysis Model (SAM) developed under the umbrella of PNUCC's System Analysis Committee is capable of simulating the operation of a given load/resource scenario. This model employs a Monte-Carlo simulation to incorporate uncertainties. Among uncertainties modeled is thermal unit availability both for energy simulation (seasonal) and capacity simulations (hourly). This paper presents the availability modeling in the capacity and energy models. The use of regional and national data in deriving the two availability models, the interaction between the two and modifications made to the capacity model in order to reflect regional practices is presented. A sample problem is presented to show the modification process. Results for modeling a nuclear unit using NERC-GADS is presented

  20. A Stigmergy Approach for Open Source Software Developer Community Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Beaver, Justin M [ORNL; Potok, Thomas E [ORNL; Pullum, Laura L [ORNL; Treadwell, Jim N [ORNL

    2009-01-01

    The stigmergy collaboration approach provides a hypothesized explanation about how online groups work together. In this research, we presented a stigmergy approach for building an agent based open source software (OSS) developer community collaboration simulation. We used group of actors who collaborate on OSS projects as our frame of reference and investigated how the choices actors make in contribution their work on the projects determinate the global status of the whole OSS projects. In our simulation, the forum posts and project codes served as the digital pheromone and the modified Pierre-Paul Grasse pheromone model is used for computing developer agent behaviors selection probability.

  1. Waste management outlook for mountain regions: Sources and solutions.

    Science.gov (United States)

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  2. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    Science.gov (United States)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  3. Numerical Simulation of Dispersion from Urban Greenhouse Gas Sources

    Science.gov (United States)

    Nottrott, Anders; Tan, Sze; He, Yonggang; Winkler, Renato

    2017-04-01

    Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model scalar emissions from various components of the natural gas distribution system, to study the impact of urban meteorology on mobile greenhouse gas measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in vertical dispersion of plumes, due to building wake effects. The OpenFOAM flow fields were combined with an inverse, stochastic dispersion model to quantify and visualize the sensitivity of point sensors to upwind sources in various built environments. The Boussinesq approximation was applied to investigate the effects of canopy layer temperature gradients and convection on sensor footprints.

  4. Analysis of the radiation budget in regional climate simulations with COSMO-CLM for Africa

    Directory of Open Access Journals (Sweden)

    Steffen Kothe

    2014-09-01

    Full Text Available This study analysed two regional climate simulations for Africa regarding the radiation budgets with particular focus on the contribution of potentially influential parameters on uncertainties in the radiation components. The ERA-Interim driven simulations have been performed with the COSMO-CLM (grid-spacings of 0.44 ° or 0.22 °. The simulated budgets were compared to the satellite-based Global Energy and Water Cycle Experiment Surface Radiation Budget and ERA-Interim data sets. The COSMO-CLM tended to underestimate the net solar radiation and the outgoing long-wave radiation, and showed a regionally varying over- or underestimation in all budget components. An increase in horizontal resolution from 0.44 ° to 0.22 ° slightly reduced the mean errors by up to 5 %. Especially over sea regions, uncertainties in cloud fraction were the main influencing parameter on errors in the simulated radiation fluxes. Compared to former simulations the introduction of a new bare soil albedo treatment reduced the influence of uncertainties in surface albedo significantly. Over the African continent errors in aerosol optical depth and skin temperature were regionally important sources for the discrepancies within the simulated radiation. In a sensitivity test it was shown that the use of aerosol optical depth values from the MACC reanalysis product improved the simulated surface radiation substantially.

  5. Regional Spectral Model simulations of the summertime regional climate over Taiwan and adjacent areas

    Science.gov (United States)

    Ching-Teng Lee; Ming-Chin Wu; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) version 97 was used to investigate the regional summertime climate over Taiwan and adjacent areas for June-July-August of 1990 through 2000. The simulated sea-level-pressure and wind fields of RSM1 with 50-km grid space are similar to the reanalysis, but the strength of the...

  6. Overview of the Lombardy Region (I) Source Apportionment Study

    Science.gov (United States)

    Larsen, B. R.

    2009-04-01

    The Lombardia Region (RL) is situated in the central part of the Po Plain (I) where the mesoscale climatological conditions are determined to a high degree by the orographical characteristics of this area. Encirclement from three sides (North, West and South) by the mountain chains contributes greatly to the climatological peculiarities that are related from the physical point of view to the dynamic of the air mass in this region. The adverse anemological regime and the persistence of atmospheric stability result in low wind speeds, inversion of the temperature, and shallow inversion layers. Due to these particular geographical and the meteorological conditions associated with a high population density (9 million inhabitants) and the connected anthropogenic activities, RL is one of Europe's most polluted regions with regard to PM and photochemical smog. The 24 hours EU air quality limit for PM10 of 50 ug/m3 is exceeded up to 180 days per year and the yearly limit of 40 ug/m3 is in breach for most urban/urban background areas. In order to efficiently plan abatement strategies, quantitative information is required on the pollution sources and available emission inventories need to be compared with source apportionment results derived by receptor modeling of the chemical composition of PM10 in ambient air and in source emissions. The European Commission Joint Research Centre (JRC) has embarked on a major integrated project in RL (2006-2010) in collaboration with the air quality authorities (ARPA) to support the design of appropriate air quality and emission reduction strategies in this area. The present paper presents the first results of this project, carried out during typical winter episodes in 2007 at ten measurement stations distributed over the entire RL. The source contributions to PM10 and the associated air toxics (benzo[a]pyrene, Pb, Ni, Cd and As) have been quantified by Chemical Mass Balance and Positive Matrix Factorization based upon the chemical

  7. Numerical simulation of the RF ion source RIG-10

    International Nuclear Information System (INIS)

    Arzt, T.

    1988-01-01

    A two-dimensional model for the numerical simulation of the inductively coupled radio-frequency (RF) ion source RIG-10 is presented. Due to the ambipolar characteristics of a discharge operating with hydrogen gas, the model consists of an equation for the space charge imbalance, Poisson's equation for the self-consistent presheath potential and the ion momentum transport equation. For a relatively broad range of operation and design parameters, the model allows the reproduction and prediction of the RF discharge behaviour in a systematic way and, hence, computes the 2D distribution of the ion current density within the source. By implementing relevant discharge physics, the model can provide an appropriate tool for ion source design with respect to an application in the field of neutral beam injection. (author)

  8. Tectonic isolation from regional sediment sourcing of the Paradox Basin

    Science.gov (United States)

    Smith, T. M.; Saylor, J.; Sundell, K. E.; Lapen, T. J.

    2017-12-01

    The Appalachian and Ouachita-Marathon mountain ranges were created by a series of tectonic collisions that occurred through the middle and late Paleozoic along North America's eastern and southern margins, respectively. Previous work employing detrital zircon U-Pb geochronology has demonstrated that fluvial and eolian systems transported Appalachian-derived sediment across the continent to North America's Paleozoic western margin. However, contemporaneous intraplate deformation of the Ancestral Rocky Mountains (ARM) compartmentalized much of the North American western interior and mid-continent. We employ lithofacies characterization, stratigraphic thickness, paleocurrent data, sandstone petrography, and detrital zircon U-Pb geochronology to evaluate source-sink relationships of the Paradox Basin, which is one of the most prominent ARM basins. Evaluation of provenance is conducted through quantitative comparison of detrital zircon U-Pb distributions from basin samples and potential sources via detrital zircon mixture modeling, and is augmented with sandstone petrography. Mixing model results provide a measure of individual source contributions to basin stratigraphy, and are combined with outcrop and subsurface data (e.g., stratigraphic thickness and facies distributions) to create tectonic isolation maps. These maps elucidate drainage networks and the degree to which local versus regional sources influence sediment character within a single basin, or multiple depocenters. Results show that despite the cross-continental ubiquity of Appalachian-derived sediment, fluvial and deltaic systems throughout much of the Paradox Basin do not record their influence. Instead, sediment sourcing from the Uncompahgre Uplift, which has been interpreted to drive tectonic subsidence and formation of the Paradox Basin, completely dominated its sedimentary record. Further, the strong degree of tectonic isolation experienced by the Paradox Basin appears to be an emerging, yet common

  9. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    Science.gov (United States)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  10. Quantifying uncertainty due to internal variability using high-resolution regional climate model simulations

    Science.gov (United States)

    Gutmann, E. D.; Ikeda, K.; Deser, C.; Rasmussen, R.; Clark, M. P.; Arnold, J. R.

    2015-12-01

    The uncertainty in future climate predictions is as large or larger than the mean climate change signal. As such, any predictions of future climate need to incorporate and quantify the sources of this uncertainty. One of the largest sources comes from the internal, chaotic, variability within the climate system itself. This variability has been approximated using the 30 ensemble members of the Community Earth System Model (CESM) large ensemble. Here we examine the wet and dry end members of this ensemble for cool-season precipitation in the Colorado Rocky Mountains with a set of high-resolution regional climate model simulations. We have used the Weather Research and Forecasting model (WRF) to simulate the periods 1990-2000, 2025-2035, and 2070-2080 on a 4km grid. These simulations show that the broad patterns of change depicted in CESM are inherited by the high-resolution simulations; however, the differences in the height and location of the mountains in the WRF simulation, relative to the CESM simulation, means that the location and magnitude of the precipitation changes are very different. We further show that high-resolution simulations with the Intermediate Complexity Atmospheric Research model (ICAR) predict a similar spatial pattern in the change signal as WRF for these ensemble members. We then use ICAR to examine the rest of the CESM Large Ensemble as well as the uncertainty in the regional climate model due to the choice of physics parameterizations.

  11. Climate Drivers of Spatiotemporal Variability of Precipitation in the Source Region of Yangtze River

    Science.gov (United States)

    Du, Y.; Berndtsson, R.; An, D.; Yuan, F.

    2017-12-01

    Variability of precipitation regime has significant influence on the environment sustainability in the source region of Yangtze River, especially when the vegetation degradation and biodiversity reduction have already occurred. Understanding the linkage between variability of local precipitation and global teleconnection patterns is essential for water resources management. Based on physical reasoning, indices of the climate drivers can provide a practical way of predicting precipitation. Due to high seasonal variability of precipitation, climate drivers of the seasonal precipitation also varies. However, few reports have gone through the teleconnections between large scale patterns with seasonal precipitation in the source region of Yangtze River. The objectives of this study are therefore (1) assessment of temporal trend and spatial variability of precipitation in the source region of Yangtze River; (2) identification of climate indices with strong influence on seasonal precipitation anomalies; (3) prediction of seasonal precipitation based on revealed climate indices. Principal component analysis and Spearman rank correlation were used to detect significant relationships. A feed-forward artificial neural network(ANN) was developed to predict seasonal precipitation using significant correlated climate indices. Different influencing climate indices were revealed for precipitation in each season, with significant level and lag times. Significant influencing factors were selected to be the predictors for ANN model. With correlation coefficients between observed and simulated precipitation over 0.5, the results were eligible to predict the precipitation of spring, summer and winter using teleconnections, which can improve integrated water resources management in the source region of Yangtze River.

  12. Development of an application simulating radioactive sources; Conception d'une application de simulation de sources radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Riffault, V.; Locoge, N. [Ecole des Mines de Douai, Dept. Chimie et Environnement, 59 - Douai (France); Leblanc, E.; Vermeulen, M. [Ecole des Mines de Douai, 59 (France)

    2011-05-15

    This paper presents an application simulating radioactive gamma sources developed in the 'Ecole des Mines' of Douai (France). It generates raw counting data as an XML file which can then be statistically exploited to illustrate the various concepts of radioactivity (exponential decay law, isotropy of the radiation, attenuation of radiation in matter). The application, with a spread sheet for data analysis and lab procedures, has been released under free license. (authors)

  13. Plant model of KIPT neutron source facility simulator

    International Nuclear Information System (INIS)

    Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.; Gohar, Yousry

    2016-01-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system is coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.

  14. Plant model of KIPT neutron source facility simulator

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, Thomas Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Grelle, Austin L. [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system is coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.

  15. Integration of Local Hydrology into Regional Hydrologic Simulation Model

    Science.gov (United States)

    Van Zee, R. J.; Lal, W. A.

    2002-05-01

    South Florida hydrology is dominated by the Central and South Florida (C&SF) Project that is managed to provide flood protection, water supply and environmental protection. A complex network of levees canals and structures provide these services to the individual drainage basins. The landscape varies widely across the C&SF system, with corresponding differences in the way water is managed within each basin. Agricultural areas are managed for optimal crop production. Urban areas maximize flood protection while maintaining minimum water levels to protect adjacent wetlands and local water supplies. "Natural" areas flood and dry out in response to the temporal distribution of rainfall. The evaluation of planning, regulation and operational issues require access to a simulation model that captures the effects of both regional and local hydrology. The Regional Simulation Model (RSM) uses a "pseudo-cell" approach to integrate local hydrology within the context of a regional hydrologic system. A 2-dimensional triangulated mesh is used to represent the regional surface and ground water systems and a 1-dimensional canal network is superimposed onto this mesh. The movement of water is simulated using a finite volume formulation with a diffusive wave approximation. Each cell in the triangulated mesh has a "pseudo-cell" counterpart, which represents the same area as the cell, but it is conceptualized such that it simulates the localized hydrologic conditions Protocols have been established to provide an interface between a cell and its pseudo-cell counterpart. . A number of pseudo-cell types have already been developed and tested in the simulation of Water Conservation Area 1 and several have been proposed to deal with specific local issues in the Southwest Florida Feasibility Study. This presentation will provide an overview of the overall RSM design, describe the relationship between cells and pseudo-cells, and illustrate how pseudo-cells are be used to simulate agriculture

  16. Large-eddy simulation of convective boundary layer generated by highly heated source with open source code, OpenFOAM

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Eguchi, Yuzuru; Sano, Tadashi; Shirai, Koji; Ishihara, Shuji

    2011-01-01

    Spatial- and temporal-characteristics of turbulence structures in the close vicinity of a heat source, which is a horizontal upward-facing round plate heated at high temperature, are examined by using well resolved large-eddy simulations. The verification is carried out through the comparison with experiments: the predicted statistics, including the PDF distribution of temperature fluctuations, agree well with measurements, indicating that the present simulations have a capability to appropriately reproduce turbulence structures near the heat source. The reproduced three-dimensional thermal- and fluid-fields in the close vicinity of the heat source reveals developing processes of coherence structures along the surface: the stationary- and streaky-flow patterns appear near the edge, and such patterns randomly shift to cell-like patterns with incursion into the center region, resulting in thermal-plume meandering. Both the patterns have very thin structures, but the depth of streaky structure is considerably small compared with that of cell-like patterns; this discrepancy causes the layered structures. The structure is the source of peculiar turbulence characteristics, the prediction of which is quite difficult with RANS-type turbulence models. The understanding such structures obtained in present study must be helpful to improve the turbulence model used in nuclear engineering. (author)

  17. Input for seismic hazard assessment using Vrancea seismic source region

    International Nuclear Information System (INIS)

    Ivan, Iren-Adelina; Enescu, B.D.; Pantea, A.

    1998-01-01

    We use an extended and combined data base including historical and modern, qualitative and quantitative data, i.e., more than 25 events during the period 1790 - 1990 with epicentral/maximum intensities ranging from X to V degree (MSK scale), the variation interval of isoseismal curves ranging from IX th to III rd degree. The data set was analysed using both the sum phasor techniques of Ridelek and Sacks (1984) for different magnitudes and depth intervals and the Stepp's method. For the assessment of seismic hazard we need a pattern of seismic source regions including an estimation for the maximum expected magnitude and the return period for the studied regions. Another necessary step in seismic hazard assessment is to develop attenuation relationships specific to a seismogenic zone, particularly to sub-crustal earthquakes of Vrancea region. The conceptual frame involves the use of appropriate decay models and consideration of the randomness in the attenuation, taking into account the azimuthal variation of the isoseist shapes. (authors)

  18. Characterization of electron temperature by simulating a multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Yeong Heum [Sungkyunkwan University, WCU Department of Energy Science, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Ghergherehchi, Mitra; Kim, Sang Bum; Jun, Woo Jung [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Lee, Jong Chul; Mohamed Gad, Khaled Mohamed [Sungkyunkwan University, WCU Department of Energy Science, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Namgoong, Ho [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Chai, Jong Seo, E-mail: jschai@skku.edu [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of)

    2016-12-01

    Multicusp ion sources are used in cyclotrons and linear accelerators to produce high beam currents. The structure of a multicusp ion source consists of permanent magnets, filaments, and an anode body. The configuration of the array of permanent magnets, discharge voltage of the plasma, extraction bias voltage, and structure of the multicusp ion source body decide the quality of the beam. The electrons are emitted from the filament by thermionic emission. The emission current can be calculated from thermal information pertaining to the filament, and from the applied voltage and current. The electron trajectories were calculated using CST Particle Studio to optimize the plasma. The array configuration of the permanent magnets decides the magnetic field inside the ion source. The extraction bias voltage and the structure of the multicusp ion source body decide the electric field. Optimization of the electromagnetic field was performed with these factors. CST Particle Studio was used to calculate the electron temperature with a varying permanent magnet array. Four types of permanent magnet array were simulated to optimize the electron temperature. It was found that a 2-layer full line cusp field (with inverse field) produced the best electron temperature control behavior.

  19. Innovative Entrepreneurship: a Source of Economic Growth in the Region

    Directory of Open Access Journals (Sweden)

    Elena Leonidovna Andreeva

    2016-09-01

    Full Text Available This article presents the findings of the study on the role of innovative entrepreneurship in the regional economy. The analysis is based on the methodology developed by Hermann Simon, a German scientist who has coined the term ”hidden champions” describing the phenomenon of little-known successful companies that act as innovative growth engines in the German economy. Today, the economies in different countries are developing amid the ”new normal,” in which no expected recovery followed the global crisis of 2008. This makes it necessary to rethink the role of entrepreneurship during a prolonged recession. The authors proposed and tested the hypothesis that, in this environment, the economic growth in the country and the region is increasingly determined not so much by large businesses, but by many small innovative companies. To identify Russian ”hidden champions,” we studied more than 1247 companies listed in the Innovation and Investment Market, a specialized section of the Moscow Exchange, and included in the specialized Register of Business Entities that use nanotechnology. We identified specifically Russian features of innovative entrepreneurship related to national cultural and historical characteristics and the current policy of import substitution. The authors proposed their own method for assessing the innovative entrepreneurship as a source of economic growth in the Russian regions that defines five groups of innovative entrepreneurs (global market leader, one of the global market leaders, Russian market leader, one of the Russian market leaders, not the leader in the Russian market and compares them with large companies in terms of turnover and profit dynamics. Based on such criteria as ”number of ”hidden champions” and ”number of large enterprises per 100 thousand organizations,” we built a model for the ratio of ”hidden champions” to major companies in the Russian regions that identifies, for each criterion

  20. Modeling and simulation of RF photoinjectors for coherent light sources

    Science.gov (United States)

    Chen, Y.; Krasilnikov, M.; Stephan, F.; Gjonaj, E.; Weiland, T.; Dohlus, M.

    2018-05-01

    We propose a three-dimensional fully electromagnetic numerical approach for the simulation of RF photoinjectors for coherent light sources. The basic idea consists in incorporating a self-consistent photoemission model within a particle tracking code. The generation of electron beams in the injector is determined by the quantum efficiency (QE) of the cathode, the intensity profile of the driving laser as well as by the accelerating field and magnetic focusing conditions in the gun. The total charge emitted during an emission cycle can be limited by the space charge field at the cathode. Furthermore, the time and space dependent electromagnetic field at the cathode may induce a transient modulation of the QE due to surface barrier reduction of the emitting layer. In our modeling approach, all these effects are taken into account. The beam particles are generated dynamically according to the local QE of the cathode and the time dependent laser intensity profile. For the beam dynamics, a tracking code based on the Lienard-Wiechert retarded field formalism is employed. This code provides the single particle trajectories as well as the transient space charge field distribution at the cathode. As an application, the PITZ injector is considered. Extensive electron bunch emission simulations are carried out for different operation conditions of the injector, in the source limited as well as in the space charge limited emission regime. In both cases, fairly good agreement between measurements and simulations is obtained.

  1. Topographic filtering simulation model for sediment source apportionment

    Science.gov (United States)

    Cho, Se Jong; Wilcock, Peter; Hobbs, Benjamin

    2018-05-01

    We propose a Topographic Filtering simulation model (Topofilter) that can be used to identify those locations that are likely to contribute most of the sediment load delivered from a watershed. The reduced complexity model links spatially distributed estimates of annual soil erosion, high-resolution topography, and observed sediment loading to determine the distribution of sediment delivery ratio across a watershed. The model uses two simple two-parameter topographic transfer functions based on the distance and change in elevation from upland sources to the nearest stream channel and then down the stream network. The approach does not attempt to find a single best-calibrated solution of sediment delivery, but uses a model conditioning approach to develop a large number of possible solutions. For each model run, locations that contribute to 90% of the sediment loading are identified and those locations that appear in this set in most of the 10,000 model runs are identified as the sources that are most likely to contribute to most of the sediment delivered to the watershed outlet. Because the underlying model is quite simple and strongly anchored by reliable information on soil erosion, topography, and sediment load, we believe that the ensemble of simulation outputs provides a useful basis for identifying the dominant sediment sources in the watershed.

  2. Research on numerical simulation technology about regional important pollutant diffusion of haze

    Science.gov (United States)

    Du, Boying; Ma, Yunfeng; Li, Qiangqiang; Wang, Qi; Hu, Qiongqiong; Bian, Yushan

    2018-02-01

    In order to analyze the formation of haze in Shenyang and the factors that affect the diffusion of pollutants, the simulation experiment adopted in this paper is based on the numerical model of WRF/CALPUFF coupling. Simulation experiment was conducted to select PM10 of Shenyang City in the period from March 1 to 8, and the PM10 in the regional important haze was simulated. The survey was conducted with more than 120 enterprises section the point of the emission source of this experiment. The contrastive data were analyzed with 11 air quality monitoring points, and the simulation results were compared. Analyze the contribution rate of each typical enterprise to the air quality, verify the correctness of the simulation results, and then use the model to establish the prediction model.

  3. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2004-01-01

    ée on Martinique, of Soufriere on St. Vincent and of the Kick’em Jenny underwater volcano near Grenada and provides an overall risk assessment of tsunami generation from volcanic sources in the Caribbean region.

  4. Regional simulation of interannual variability over South America

    Science.gov (United States)

    Misra, V.; Dirmeyer, P. A.; Kirtman, B. P.; Juang, H.-M. Henry; Kanamitsu, M.

    2002-08-01

    Three regional climate simulations covering the austral summer season during three contrasting phases of the El Niño-Southern Oscillation cycle were conducted with the Regional Spectral Model (RSM) developed at the National Centers for Environmental Prediction (NCEP). The simulated interannual variability of precipitation over the Amazon River Basin, the Intertropical Convergence Zone, the Pacific and Atlantic Ocean basins, and extratropical South America compare reasonably well with observations. The RSM optimally filters the peturbations about a time-varying base field, thereby enhancing the information content of the global NCEP reanalysis. The model is better than the reanalysis in reproducing the observed interannual variability of outgoing longwave radiation at both high frequencies (3-30 days) and intraseasonal (30-60 days) scales. The low-level jet shows a peak in its speed in 1998 and a minimum in the 1999 simulations. The lag correlation of the jet index with convection over various areas in continental South America indicates that the jet induces precipitation over the Pampas region downstream. A detailed moisture budget was conducted over various subregions. This budget reveals that moisture flux convergence determines most of the interannual variability of precipitation over the Amazon Basin, the Atlantic Intertropical Convergence Zone, and the Nordeste region of Brazil. However, both surface evaporation and surface moisture flux convergence were found to be critical in determining the interannual variability of precipitation over the southern Pampas, Gran Chaco area, and the South Atlantic Convergence Zone.

  5. Railway optimal network simulation for the development of regional transport-logistics system

    Directory of Open Access Journals (Sweden)

    Mikhail Borisovich Petrov

    2013-12-01

    Full Text Available The dependence of logistics on mineral fuel is a stable tendency of regions development, though when making strategic plans of logistics in the regions, it is necessary to provide the alternative possibilities of power-supply sources change together with population density, transport infrastructure peculiarities, and demographic changes forecast. On the example of timber processing complex of the Sverdlovsk region, the authors suggest the algorithm of decision of the optimal logistics infrastructure allocation. The problem of regional railway network organization at the stage of slow transition from the prolonged stagnation to the new development is carried out. The transport networks’ configurations of countries on the Pacific Rim, which successfully developed nowadays, are analyzed. The authors offer some results of regional transport network simulation on the basis of artificial intelligence method. These methods let to solve the task with incomplete data. The ways of the transport network improvement in the Sverdlovsk region are offered.

  6. The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation

    Science.gov (United States)

    Silva, F.; Goulet, C. A.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.

    2016-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100 Hz) ground motions for earthquakes at regional scales. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The BBP scientific software modules implement kinematic rupture generation, low- and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, several ground motion intensity measure calculations, and various ground motion goodness-of-fit tools. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground-motion seismograms, using multiple alternative ground motion simulation methods, and software utilities to generate tables, plots, and maps. The BBP has been developed over the last five years in a collaborative project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The SCEC BBP software released in 2016 can be compiled and run on recent Linux and Mac OS X systems with GNU compilers. It includes five simulation methods, seven simulation regions covering California, Japan, and Eastern North America, and the ability to compare simulation results against empirical ground motion models (aka GMPEs). The latest version includes updated ground motion simulation methods, a suite of new validation metrics and a simplified command line user interface.

  7. Simulation of Coulomb interaction effects in electron sources

    International Nuclear Information System (INIS)

    Rouse, John; Zhu Xieqing; Liu Haoning; Munro, Eric

    2011-01-01

    Over many years, we have developed electron source simulation software that has been used widely in the electron optics community to aid the development of rotationally symmetric electron and ion guns. The simulation includes the modelling of cathode emission and the effects of volumetric space charge. In the present paper we describe the existing software and explain how we have extended this software to include the effects of discrete Coulomb interactions between the electrons as they travel from the cathode surface to the exit of the gun. In the paper, we will describe the numerical models we have employed, the techniques we have used to maximize the speed of the Coulomb force computation and present several illustrative examples of cases analyzed using the new software, including thermal field emitters, LaB 6 guns and flat dispenser-type cathodes.

  8. Simulated nuclear optical signatures using explosive light sources (ELS)

    International Nuclear Information System (INIS)

    Glaser, R.F.

    1979-05-01

    Four Explosive Light Source (aluminium powder and oxygen) tests were conducted on the test range at Sandia Laboratories in Albuquerque (SLA) from 28 February through 7 March 1978. Although several types of measuring devices were used, the report documents only the optical time histories measured by the bhangmeters and the NBDS, and explains the conclusions reached. In general, the four shots made it possible to gather clear-air optical transmission data, determine the suitability of ELS to simulate the optical effects of a nuclear burst, and provide experience for the larger scale ELS tests to be conducted at Fort Ord, CA in April

  9. Simulated nuclear optical signatures using explosive light sources (ELS)

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, R.F.

    1979-05-01

    Four Explosive Light Source (aluminium powder and oxygen) tests were conducted on the test range at Sandia Laboratories in Albuquerque (SLA) from 28 February through 7 March 1978. Although several types of measuring devices were used, the report documents only the optical time histories measured by the bhangmeters and the NBDS, and explains the conclusions reached. In general, the four shots made it possible to gather clear-air optical transmission data, determine the suitability of ELS to simulate the optical effects of a nuclear burst, and provide experience for the larger scale ELS tests to be conducted at Fort Ord, CA in April.

  10. Source-to-target simulation of simultaneous longitudinal and transverse focusing of heavy ion beams

    Directory of Open Access Journals (Sweden)

    D. R. Welch

    2008-06-01

    Full Text Available Longitudinal bunching factors in excess of 70 of a 300-keV, 27-mA K^{+} ion beam have been demonstrated in the neutralized drift compression experiment [P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005PRLTAO0031-900710.1103/PhysRevLett.95.234801] in rough agreement with particle-in-cell source-to-target simulations. A key aspect of these experiments is that a preformed plasma provides charge neutralization of the ion beam in the last one meter drift region where the beam perveance becomes large. The simulations utilize the measured ion source temperature, diode voltage, and induction-bunching-module voltage waveforms in order to determine the initial beam longitudinal phase space which is critical to accurate modeling of the longitudinal compression. To enable simultaneous longitudinal and transverse compression, numerical simulations were used in the design of the solenoidal focusing system that compensated for the impact of the applied velocity tilt on the transverse phase space of the beam. Complete source-to-target simulations, that include detailed modeling of the diode, magnetic transport, induction bunching module, and plasma neutralized transport, were critical to understanding the interplay between the various accelerator components in the experiment. Here, we compare simulation results with the experiment and discuss the contributions to longitudinal and transverse emittance that limit the final compression.

  11. WHAT IS THE SOURCE OF QUIET SUN TRANSITION REGION EMISSION?

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, D. J.; De Pontieu, Bart [Lockheed-Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States)

    2016-11-10

    Dating back to the first observations of the on-disk corona, there has been a qualitative link between the photosphere’s magnetic network and enhanced transition-temperature plasma emission. These observations led to the development of a general model that describes emission structures through the partitioning of the atmospheric volume with different magnetic loop geometries that exhibit different energetic equilibria. Does the internetwork produce transition-temperature emission? What fraction of network flux connects to the corona? How does quiet Sun emission compare with low-activity Sun-like stars? In this work, we revisit the canonical model of the quiet Sun, with high-resolution observations from the Interface Region Imaging Spectrograph ( IRIS ) and HMI in hand, to address those questions. We use over 900 deep exposures of Si iv 1393 Å from IRIS along with nearly simultaneous HMI magnetograms to quantify the correlation between transition-temperature emission structures and magnetic field concentrations through a number of novel statistics. Our observational results are coupled with analysis of the Bifrost MHD model and a large-scale potential field model. Our results paint a complex portrait of the quiet Sun. We measure an emission signature in the distant internetwork that cannot be attributed to network contribution. We find that the dimmest regions of emission are not linked to the local vertical magnetic field. Using the MHD simulation, we categorize the emission contribution from cool mid-altitude loops and high-altitude coronal loops and discuss the potential emission contribution of spicules. Our results provide new constraints on the coupled solar atmosphere so that we can build on our understanding of how dynamic thermal and magnetic structures generate the observed phenomena in the transition region.

  12. An Open-Source Toolbox for PEM Fuel Cell Simulation

    Directory of Open Access Journals (Sweden)

    Jean-Paul Kone

    2018-05-01

    Full Text Available In this paper, an open-source toolbox that can be used to accurately predict the distribution of the major physical quantities that are transported within a proton exchange membrane (PEM fuel cell is presented. The toolbox has been developed using the Open Source Field Operation and Manipulation (OpenFOAM platform, which is an open-source computational fluid dynamics (CFD code. The base case results for the distribution of velocity, pressure, chemical species, Nernst potential, current density, and temperature are as expected. The plotted polarization curve was compared to the results from a numerical model and experimental data taken from the literature. The conducted simulations have generated a significant amount of data and information about the transport processes that are involved in the operation of a PEM fuel cell. The key role played by the concentration constant in shaping the cell polarization curve has been explored. The development of the present toolbox is in line with the objectives outlined in the International Energy Agency (IEA, Paris, France Advanced Fuel Cell Annex 37 that is devoted to developing open-source computational tools to facilitate fuel cell technologies. The work therefore serves as a basis for devising additional features that are not always feasible with a commercial code.

  13. A fully kinetic, self-consistent particle simulation model of the collisionless plasma--sheath region

    International Nuclear Information System (INIS)

    Procassini, R.J.; Birdsall, C.K.; Morse, E.C.

    1990-01-01

    A fully kinetic particle-in-cell (PIC) model is used to self-consistently determine the steady-state potential profile in a collisionless plasma that contacts a floating, absorbing boundary. To balance the flow of particles to the wall, a distributed source region is used to inject particles into the one-dimensional system. The effect of the particle source distribution function on the source region and collector sheath potential drops, and particle velocity distributions is investigated. The ion source functions proposed by Emmert et al. [Phys. Fluids 23, 803 (1980)] and Bissell and Johnson [Phys. Fluids 30, 779 (1987)] (and various combinations of these) are used for the injection of both ions and electrons. The values of the potential drops obtained from the PIC simulations are compared to those from the theories of Emmert et al., Bissell and Johnson, and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)], all of which assume that the electron density is related to the plasma potential via the Boltzmann relation. The values of the source region and total potential drop are found to depend on the choice of the electron source function, as well as the ion source function. The question of an infinite electric field at the plasma--sheath interface, which arises in the analyses of Bissell and Johnson and Scheuer and Emmert, is also addressed

  14. Design of 6 Mev linear accelerator based pulsed thermal neutron source: FLUKA simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T.; Pethe, S.N.; Krishnan, R. [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2012-01-15

    The 6 MeV LINAC based pulsed thermal neutron source has been designed for bulk materials analysis. The design was optimized by varying different parameters of the target and materials for each region using FLUKA code. The optimized design of thermal neutron source gives flux of 3 Multiplication-Sign 10{sup 6}ncm{sup -2}s{sup -1} with more than 80% of thermal neutrons and neutron to gamma ratio was 1 Multiplication-Sign 10{sup 4}ncm{sup -2}mR{sup -1}. The results of prototype experiment and simulation are found to be in good agreement with each other. - Highlights: Black-Right-Pointing-Pointer The optimized 6 eV linear accelerator based thermal neutron source using FLUKA simulation. Black-Right-Pointing-Pointer Beryllium as a photonuclear target and reflector, polyethylene as a filter and shield, graphite as a moderator. Black-Right-Pointing-Pointer Optimized pulsed thermal neutron source gives neutron flux of 3 Multiplication-Sign 10{sup 6} n cm{sup -2} s{sup -1}. Black-Right-Pointing-Pointer Results of the prototype experiment were compared with simulations and are found to be in good agreement. Black-Right-Pointing-Pointer This source can effectively be used for the study of bulk material analysis and activation products.

  15. Boundaries of magnetic anomaly sources in the Tyrrhenian region

    Directory of Open Access Journals (Sweden)

    A. Rapolla

    1998-06-01

    Full Text Available Analysis of the analytic signal of the aeromagnetic field in the Tyrrhenian region allowed the systematic location of the boundaries of magnetic shallow sources. This method was chosen because of its independence from the magnetization and inducing field direction, and the results were similar to those of the boundary analysis of the horizontal gradient of the pseudogravity transformed field. The analytic signal was computed by a stable algorithm based on the second order horizontal derivatives of the field and Laplace equation. The complexity of the investigated area is well reflected in the aeromagnetic field and an objective and systematic study, such as boundary analysis, provided a rather complete description of the main regional structures. Significant trends indicated the existence of structures, whose nature was still unknown or uncertain. These included structures located between the Vavilov and De Marchi seamounts, NW of Stromboli Island, south of Ponza Island, a buried horst immediately south of the Cilento coastline, a body located northwest of the Cassinis seamount and other small magnetized structures located south of the Tuscanian archipelago. In many cases, a better definition of several structures previously recognized was obtained as in the case of some tectonic alignments (e.g., the Elba ridge, the Romolo and Selli lines, etc., a large number of igneous seamounts (e.g., Magnaghi, Marsili, Vavilov, Anchise, Quirra, Enarete, Eolo and Sisifo seamounts and several crystalline outcrops (e.g., Ichnusa, Vercelli, M. della Rondine, Tiberino, Cassinis, Traiano, Glauco and Augusto seamounts.

  16. Evaluation of uncertainties in regional climate change simulations

    DEFF Research Database (Denmark)

    Pan, Z.; Christensen, J. H.; Arritt, R. W.

    2001-01-01

    , an atmosphere-ocean coupled general circulation model (GCM) current climate, and a future scenario of transient climate change. Common precipitation climatology features simulated by both models included realistic orographic precipitation, east-west transcontinental gradients, and reasonable annual cycles over...... to different subgrid scale processes in individual models. The ratio of climate change to biases, which we use as one measure of confidence in projected climate changes, is substantially larger than 1 in several seasons and regions while the ratios are always less than 1 in summer. The largest ratios among all...... regions are in California. Spatial correlation coefficients of precipitation were computed between simulation pairs in the 2x3 set. The climate change correlation is highest and the RCM performance correlation is lowest while boundary forcing and intermodel correlations are intermediate. The high spatial...

  17. Reducing Ambulance Diversion at Hospital and Regional Levels: Systemic Review of Insights from Simulation Models

    OpenAIRE

    Delgado, M. Kit; Meng, Lesley J.; Mercer, Mary P.; Pines, Jesse M.; Owens, Douglas K.; Zaric, Gregory S.

    2013-01-01

    Introduction: Optimal solutions for reducing diversion without worsening emergency department (ED) crowding are unclear. We performed a systematic review of published simulation studies to identify: 1) the tradeoff between ambulance diversion and ED wait times; 2) the predicted impact of patient flow interventions on reducing diversion; and 3) the optimal regional strategy for reducing diversion. Methods: Data Sources: Systematic review of articles using MEDLINE, Inspec, Scopus. Additional st...

  18. Heat waves over Central Europe in regional climate model simulations

    Science.gov (United States)

    Lhotka, Ondřej; Kyselý, Jan

    2014-05-01

    Regional climate models (RCMs) have become a powerful tool for exploring impacts of global climate change on a regional scale. The aim of the study is to evaluate the capability of RCMs to reproduce characteristics of major heat waves over Central Europe in their simulations of the recent climate (1961-2000), with a focus on the most severe and longest Central European heat wave that occurred in 1994. We analyzed 7 RCM simulations with a high resolution (0.22°) from the ENSEMBLES project, driven by the ERA-40 reanalysis. In observed data (the E-OBS 9.0 dataset), heat waves were defined on the basis of deviations of daily maximum temperature (Tmax) from the 95% quantile of summer Tmax distribution in grid points over Central Europe. The same methodology was applied in the RCM simulations; we used corresponding 95% quantiles (calculated for each RCM and grid point) in order to remove the bias of modelled Tmax. While climatological characteristics of heat waves are reproduced reasonably well in the RCM ensemble, we found major deficiencies in simulating heat waves in individual years. For example, METNOHIRHAM simulated very severe heat waves in 1996, when no heat wave was observed. Focusing on the major 1994 heat wave, considerable differences in simulated temperature patterns were found among the RCMs. The differences in the temperature patterns were clearly linked to the simulated amount of precipitation during this event. The 1994 heat wave was almost absent in all RCMs that did not capture the observed precipitation deficit, while it was by far most pronounced in KNMI-RACMO that simulated virtually no precipitation over Central Europe during the 15-day period of the heat wave. By contrast to precipitation, values of evaporative fraction in the RCMs were not linked to severity of the simulated 1994 heat wave. This suggests a possible major contribution of other factors such as cloud cover and associated downward shortwave radiation. Therefore, a more detailed

  19. Isotopic source signatures: Impact of regional variability on the δ13CH4 trend and spatial distribution

    Science.gov (United States)

    Feinberg, Aryeh I.; Coulon, Ancelin; Stenke, Andrea; Schwietzke, Stefan; Peter, Thomas

    2018-02-01

    The atmospheric methane growth rate has fluctuated over the past three decades, signifying variations in methane sources and sinks. Methane isotopic ratios (δ13CH4) differ between emission categories, and can therefore be used to distinguish which methane sources have changed. However, isotopic modelling studies have mainly focused on uncertainties in methane emissions rather than uncertainties in isotopic source signatures. We simulated atmospheric δ13CH4 for the period 1990-2010 using the global chemistry-climate model SOCOL. Empirically-derived regional variability in the isotopic signatures was introduced in a suite of sensitivity simulations. These simulations were compared to a baseline simulation with commonly used global mean isotopic signatures. We investigated coal, natural gas/oil, wetland, livestock, and biomass burning source signatures to determine whether regional variations impact the observed isotopic trend and spatial distribution. Based on recently published source signature datasets, our calculated global mean isotopic signatures are in general lighter than the commonly used values. Trends in several isotopic signatures were also apparent during the period 1990-2010. Tropical livestock emissions grew during the 2000s, introducing isotopically heavier livestock emissions since tropical livestock consume more C4 vegetation than midlatitude livestock. Chinese coal emissions, which are isotopically heavy compared to other coals, increase during the 2000s leading to higher global values of δ13CH4 for coal emissions. EDGAR v4.2 emissions disagree with the observed atmospheric isotopic trend for almost all simulations, confirming past doubts about this emissions inventory. The agreement between the modelled and observed δ13CH4 interhemispheric differences improves when regional source signatures are used. Even though the simulated results are highly dependent on the choice of methane emission inventories, they emphasize that the commonly used

  20. Systematic Quantum Mechanical Region Determination in QM/MM Simulation.

    Science.gov (United States)

    Karelina, Maria; Kulik, Heather J

    2017-02-14

    Hybrid quantum mechanical-molecular mechanical (QM/MM) simulations are widely used in enzyme simulation. Over ten convergence studies of QM/MM methods have revealed over the past several years that key energetic and structural properties approach asymptotic limits with only very large (ca. 500-1000 atom) QM regions. This slow convergence has been observed to be due in part to significant charge transfer between the core active site and the surrounding protein environment, which cannot be addressed by improvement of MM force fields or the embedding method employed within QM/MM. Given this slow convergence, it becomes essential to identify strategies for the most atom-economical determination of optimal QM regions and to gain insight into the crucial interactions captured only in large QM regions. Here, we extend and develop two methods for quantitative determination of QM regions. First, in the charge shift analysis (CSA) method, we probe the reorganization of electron density when core active site residues are removed completely, as determined by large-QM region QM/MM calculations. Second, we introduce the highly parallelizable Fukui shift analysis (FSA), which identifies how core/substrate frontier states are altered by the presence of an additional QM residue in smaller initial QM regions. We demonstrate that the FSA and CSA approaches are complementary and consistent on three test case enzymes: catechol O-methyltransferase, cytochrome P450cam, and hen eggwhite lysozyme. We also introduce validation strategies and test the sensitivities of the two methods to geometric structure, basis set size, and electronic structure methodology. Both methods represent promising approaches for the systematic, unbiased determination of quantum mechanical effects in enzymes and large systems that necessitate multiscale modeling.

  1. Tsunami simulation using submarine displacement calculated from simulation of ground motion due to seismic source model

    Science.gov (United States)

    Akiyama, S.; Kawaji, K.; Fujihara, S.

    2013-12-01

    Since fault fracturing due to an earthquake can simultaneously cause ground motion and tsunami, it is appropriate to evaluate the ground motion and the tsunami by single fault model. However, several source models are used independently in the ground motion simulation or the tsunami simulation, because of difficulty in evaluating both phenomena simultaneously. Many source models for the 2011 off the Pacific coast of Tohoku Earthquake are proposed from the inversion analyses of seismic observations or from those of tsunami observations. Most of these models show the similar features, which large amount of slip is located at the shallower part of fault area near the Japan Trench. This indicates that the ground motion and the tsunami can be evaluated by the single source model. Therefore, we examine the possibility of the tsunami prediction, using the fault model estimated from seismic observation records. In this study, we try to carry out the tsunami simulation using the displacement field of oceanic crustal movements, which is calculated from the ground motion simulation of the 2011 off the Pacific coast of Tohoku Earthquake. We use two fault models by Yoshida et al. (2011), which are based on both the teleseismic body wave and on the strong ground motion records. Although there is the common feature in those fault models, the amount of slip near the Japan trench is lager in the fault model from the strong ground motion records than in that from the teleseismic body wave. First, the large-scale ground motion simulations applying those fault models used by the voxel type finite element method are performed for the whole eastern Japan. The synthetic waveforms computed from the simulations are generally consistent with the observation records of K-NET (Kinoshita (1998)) and KiK-net stations (Aoi et al. (2000)), deployed by the National Research Institute for Earth Science and Disaster Prevention (NIED). Next, the tsunami simulations are performed by the finite

  2. HF-START: A Regional Radio Propagation Simulator

    Science.gov (United States)

    Hozumi, K.; Maruyama, T.; Saito, S.; Nakata, H.; Rougerie, S.; Yokoyama, T.; Jin, H.; Tsugawa, T.; Ishii, M.

    2017-12-01

    HF-START (HF Simulator Targeting for All-users' Regional Telecommunications) is a user-friendly simulator developed to meet the needs of space weather users. Prediction of communications failure due to space weather disturbances is of high priority. Space weather users from various backgrounds with high economic impact, i.e. airlines, telecommunication companies, GPS-related companies, insurance companies, international amateur radio union, etc., recently increase. Space weather information provided by Space Weather Information Center of NICT is, however, too professional to be understood and effectively used by the users. To overcome this issue, I try to translate the research level data to the user level data based on users' needs and provide an immediate usable data. HF-START is positioned to be a space weather product out of laboratory based truly on users' needs. It is originally for radio waves in HF band (3-30 MHz) but higher frequencies up to L band are planned to be covered. Regional ionospheric data in Japan and southeast Asia are employed as a reflector of skywave mode propagation. GAIA (Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy) model will be used as ionospheric input for global simulation. To evaluate HF-START, an evaluation campaign for Japan region will be launched in coming months. If the campaign successes, it will be expanded to southeast Asia region as well. The final goal of HF-START is to provide the near-realtime necessary radio parameters as well as the warning message of radio communications failure to the radio and space weather users.

  3. Impact of Variable-Resolution Meshes on Regional Climate Simulations

    Science.gov (United States)

    Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.

    2014-12-01

    The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.

  4. Source contributions and regional transport of primary particulate matter in China.

    Science.gov (United States)

    Hu, Jianlin; Wu, Li; Zheng, Bo; Zhang, Qiang; He, Kebin; Chang, Qing; Li, Xinghua; Yang, Fumo; Ying, Qi; Zhang, Hongliang

    2015-12-01

    A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China. Four months were simulated with emissions grouped to eight regions and six sectors. Predicted elemental carbon (EC), primary organic carbon (POC), and PPM concentrations and source contributions agree with measurements and have significant spatiotemporal variations. Residential is a major contributor to spring/winter EC (50-80%), POC (60%-90%), and PPM (30-70%). For summer/fall, industrial contributes 30-50% for EC/POC and 40-60% for PPM. Transportation is more important for EC (20-30%) than POC/PPM (Guangzhou and Chongqing. Dust contributes to 1/3-1/2 in spring/fall of Beijing, Xi'an and Chongqing. Based on sector-region combination, local residential/transportation and residential/industrial from Heibei are major contributors to spring PPM in Beijing. In summer/fall, local industrial is the largest. In winter, residential/industrial from local and Hebei account for >90% in Beijing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Two-dimensional particle simulation of negative ion extraction from a volume source

    International Nuclear Information System (INIS)

    Naitou, H.; Fukumasa, O.; Sakachou, K.; Mutou, K.

    1995-01-01

    Two-dimensional electrostatic particle simulation was done to study the extraction of negative ions from a volume plasma source. The simulation model is a rectangular system which consists of an extraction grid, a plasma grid, and a grounded wall. Full dynamics of electrons, ions, and negative ions are followed. Negative ions are extracted from the plasma region to the extraction grid through a slit in the plasma grid. For the lower value of extraction grid potential, the simulation results agree with the Child-Langumuir law, where the extracted negative ion current is proportional to the three-halves power of the potential of the extraction grid. For the higher value of extraction grid potential, the space charge effect of negative ions, which enter into the beamline at the top of the concavity of the positive ion boundary, reduces the negative ion current from the prediction of the Child-Langumuir law. ((orig.))

  6. From sink to source: Regional variation in U.S. forest carbon futures.

    Science.gov (United States)

    Wear, David N; Coulston, John W

    2015-11-12

    The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests' current net sequestration of atmospheric C to be 173 Tg yr(-1), offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr(-1)) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests' role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength.

  7. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  8. RF Wave Simulation Using the MFEM Open Source FEM Package

    Science.gov (United States)

    Stillerman, J.; Shiraiwa, S.; Bonoli, P. T.; Wright, J. C.; Green, D. L.; Kolev, T.

    2016-10-01

    A new plasma wave simulation environment based on the finite element method is presented. MFEM, a scalable open-source FEM library, is used as the basis for this capability. MFEM allows for assembling an FEM matrix of arbitrarily high order in a parallel computing environment. A 3D frequency domain RF physics layer was implemented using a python wrapper for MFEM and a cold collisional plasma model was ported. This physics layer allows for defining the plasma RF wave simulation model without user knowledge of the FEM weak-form formulation. A graphical user interface is built on πScope, a python-based scientific workbench, such that a user can build a model definition file interactively. Benchmark cases have been ported to this new environment, with results being consistent with those obtained using COMSOL multiphysics, GENRAY, and TORIC/TORLH spectral solvers. This work is a first step in bringing to bear the sophisticated computational tool suite that MFEM provides (e.g., adaptive mesh refinement, solver suite, element types) to the linear plasma-wave interaction problem, and within more complicated integrated workflows, such as coupling with core spectral solver, or incorporating additional physics such as an RF sheath potential model or kinetic effects. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.

  9. ELECTRON CLOUD AT COLLIMATOR AND INJECTION REGION OF THE SPALLATION NEUTRON SOURCE ACCUMULATOR RING

    International Nuclear Information System (INIS)

    WANG, L.; HSEUH, H.-C.; LEE, Y.Y.; RAPARIA, D.; WEI, J.; COUSINEAU, S.

    2005-01-01

    The beam loss along the Spallation Neutron Source's accumulator ring is mainly located at the collimator region and injection region. This paper studied the electron cloud build-up at these two regions with the three-dimension program CLOUDLAND

  10. Hypersonic simulations using open-source CFD and DSMC solvers

    Science.gov (United States)

    Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.

    2016-11-01

    Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.

  11. Winter precipitation and cyclones in the Mediterranean region: future climate scenarios in a regional simulation

    Directory of Open Access Journals (Sweden)

    P. Lionello

    2007-11-01

    Full Text Available Future climate projections show higher/lower winter (Dec-Jan-Feb precipitation in the northern/southern Mediterranean region than in present climate conditions. This paper analyzes the results of regional model simulations of the A2 and B2 scenarios, which confirm this opposite precipitation change and link it to the change of cyclone activity. The increase of the winter cyclone activity in future climate scenarios over western Europe is responsible for the larger precipitation at the northern coast of the basin, though the bulk of the change is located outside the Mediterranean region. The reduction of cyclone activity inside the Mediterranean region in future scenarios is responsible for the lower precipitation at the southern and eastern Mediterranean coast.

  12. Benchmarking shielding simulations for an accelerator-driven spallation neutron source

    Directory of Open Access Journals (Sweden)

    Nataliia Cherkashyna

    2015-08-01

    Full Text Available The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS, currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ, at the Paul Scherrer Institute (PSI, Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolith wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters instruments at ESS.

  13. The ShakeOut earthquake source and ground motion simulations

    Science.gov (United States)

    Graves, R.W.; Houston, Douglas B.; Hudnut, K.W.

    2011-01-01

    The ShakeOut Scenario is premised upon the detailed description of a hypothetical Mw 7.8 earthquake on the southern San Andreas Fault and the associated simulated ground motions. The main features of the scenario, such as its endpoints, magnitude, and gross slip distribution, were defined through expert opinion and incorporated information from many previous studies. Slip at smaller length scales, rupture speed, and rise time were constrained using empirical relationships and experience gained from previous strong-motion modeling. Using this rupture description and a 3-D model of the crust, broadband ground motions were computed over a large region of Southern California. The largest simulated peak ground acceleration (PGA) and peak ground velocity (PGV) generally range from 0.5 to 1.0 g and 100 to 250 cm/s, respectively, with the waveforms exhibiting strong directivity and basin effects. Use of a slip-predictable model results in a high static stress drop event and produces ground motions somewhat higher than median level predictions from NGA ground motion prediction equations (GMPEs).

  14. ALMA Thermal Observations of a Proposed Plume Source Region on Europa

    Energy Technology Data Exchange (ETDEWEB)

    Trumbo, Samantha K.; Brown, Michael E. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Butler, Bryan J. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States)

    2017-10-01

    We present a daytime thermal image of Europa taken with the Atacama Large Millimeter Array. The imaged region includes the area northwest of Pwyll Crater, which is associated with a nighttime thermal excess seen by the Galileo Photopolarimeter Radiometer and with two potential plume detections. We develop a global thermal model of Europa and simulate both the daytime and nighttime thermal emission to determine if the nighttime thermal anomaly is caused by excess endogenic heat flow, as might be expected from a plume source region. We find that the nighttime and daytime brightness temperatures near Pwyll Crater cannot be matched by including excess heat flow at that location. Rather, we can successfully model both measurements by increasing the local thermal inertia of the surface.

  15. Source tracking Mycobacterium ulcerans infections in the Ashanti region, Ghana.

    Directory of Open Access Journals (Sweden)

    Charles A Narh

    2015-01-01

    Full Text Available Although several studies have associated Mycobacterium ulcerans (MU infection, Buruli ulcer (BU, with slow moving water bodies, there is still no definite mode of transmission. Ecological and transmission studies suggest Variable Number Tandem Repeat (VNTR typing as a useful tool to differentiate MU strains from other Mycolactone Producing Mycobacteria (MPM. Deciphering the genetic relatedness of clinical and environmental isolates is seminal to determining reservoirs, vectors and transmission routes. In this study, we attempted to source-track MU infections to specific water bodies by matching VNTR profiles of MU in human samples to those in the environment. Environmental samples were collected from 10 water bodies in four BU endemic communities in the Ashanti region, Ghana. Four VNTR loci in MU Agy99 genome, were used to genotype environmental MU ecovars, and those from 14 confirmed BU patients within the same study area. Length polymorphism was confirmed with sequencing. MU was present in the 3 different types of water bodies, but significantly higher in biofilm samples. Four MU genotypes, designated W, X, Y and Z, were typed in both human and environmental samples. Other reported genotypes were only found in water bodies. Animal trapping identified 1 mouse with lesion characteristic of BU, which was confirmed as MU infection. Our findings suggest that patients may have been infected from community associated water bodies. Further, we present evidence that small mammals within endemic communities could be susceptible to MU infections. M. ulcerans transmission could involve several routes where humans have contact with risk environments, which may be further compounded by water bodies acting as vehicles for disseminating strains.

  16. A flexible open-source toolkit for lava flow simulations

    Science.gov (United States)

    Mossoux, Sophie; Feltz, Adelin; Poppe, Sam; Canters, Frank; Kervyn, Matthieu

    2014-05-01

    Lava flow hazard modeling is a useful tool for scientists and stakeholders confronted with imminent or long term hazard from basaltic volcanoes. It can improve their understanding of the spatial distribution of volcanic hazard, influence their land use decisions and improve the city evacuation during a volcanic crisis. Although a range of empirical, stochastic and physically-based lava flow models exists, these models are rarely available or require a large amount of physical constraints. We present a GIS toolkit which models lava flow propagation from one or multiple eruptive vents, defined interactively on a Digital Elevation Model (DEM). It combines existing probabilistic (VORIS) and deterministic (FLOWGO) models in order to improve the simulation of lava flow spatial spread and terminal length. Not only is this toolkit open-source, running in Python, which allows users to adapt the code to their needs, but it also allows users to combine the models included in different ways. The lava flow paths are determined based on the probabilistic steepest slope (VORIS model - Felpeto et al., 2001) which can be constrained in order to favour concentrated or dispersed flow fields. Moreover, the toolkit allows including a corrective factor in order for the lava to overcome small topographical obstacles or pits. The lava flow terminal length can be constrained using a fixed length value, a Gaussian probability density function or can be calculated based on the thermo-rheological properties of the open-channel lava flow (FLOWGO model - Harris and Rowland, 2001). These slope-constrained properties allow estimating the velocity of the flow and its heat losses. The lava flow stops when its velocity is zero or the lava temperature reaches the solidus. Recent lava flows of Karthala volcano (Comoros islands) are here used to demonstrate the quality of lava flow simulations with the toolkit, using a quantitative assessment of the match of the simulation with the real lava flows. The

  17. Considering a point-source in a regional air pollution model; Prise en compte d`une source ponctuelle dans un modele regional de pollution atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Lipphardt, M.

    1997-06-19

    This thesis deals with the development and validation of a point-source plume model, with the aim to refine the representation of intensive point-source emissions in regional-scale air quality models. The plume is modelled at four levels of increasing complexity, from a modified Gaussian plume model to the Freiberg and Lusis ring model. Plume elevation is determined by Netterville`s plume rise model, using turbulence and atmospheric stability parameters. A model for the effect of a fine-scale turbulence on the mean concentrations in the plume is developed and integrated in the ring model. A comparison between results with and without considering micro-mixing shows the importance of this effect in a chemically reactive plume. The plume model is integrated into the Eulerian transport/chemistry model AIRQUAL, using an interface between Airqual and the sub-model, and interactions between the two scales are described. A simulation of an air pollution episode over Paris is carried out, showing that the utilization of such a sub-scale model improves the accuracy of the air quality model

  18. An intercomparison of regional climate simulations for Europe

    DEFF Research Database (Denmark)

    Déqué, M.; Rowell, D. P.; Lüthi, D.

    2007-01-01

    Ten regional climate models (RCM) have been integrated with the standard forcings of the PRUDENCE experiment: IPCC-SRES A2 radiative forcing and Hadley Centre boundary conditions. The response over Europe, calculated as the difference between the 2071-2100 and the 1961-1990 means can be viewed...... as an average over a finite number of years (30). Model uncertainty is due to the fact that the models use different techniques to discretize the equations and to represent sub-grid effects. Radiative uncertainty is due to the fact that IPCC-SRES A2 is merely one hypothesis. Some RCMs have been run with another...... scenario of greenhouse gas concentration (IPCC-SRES B2). Boundary uncertainty is due to the fact that the regional models have been run under the constraint of the same global model. Some RCMs have been run with other boundary forcings. The contribution of the different sources varies according...

  19. Sources of atmospheric emissions in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    An inventory of emissions for the Athabasca oil sands airshed that can be used as a basis for air quality assessments was presented. This report was prepared for the Suncor Steepbank Mine Environmental Impact Assessment (EIA) and for the Syncrude Aurora Mine EIA. Both Syncrude and Suncor have plans to develop new oil sands leases and to increase their crude oil and bitumen production. Suncor has proposed modifications to reduce SO 2 emissions to the atmosphere and Syncrude will develop additional ambient air quality, sulphur deposition and biomonitoring programs to ensure that environmental quality is not compromised because of atmospheric emissions associated with their operations. Major emission sources are controlled and monitored by regulatory statutes, regulations and guidelines. In this report, the following four types of emission sources were identified and quantified: (1) major industrial sources associated with Suncor's and Syncrude's current oil sands operations, (2) fugitive and area emission sources such as volatilization of hydrocarbons from tanks and tailings ponds, (3) other industrial emission sources in the area, including oil sands and non-oil sands related facilities, and (4) highway and residential emission sources. Emissions associated with mining operations include: SO 2 , NO x , CO, and CO 2 . The overall conclusion was that although there are other smaller sources of emissions that can influence air quality, there is no reason to doubt that Suncor and Syncrude oil sands operations are the major sources of emissions to the atmosphere. 13 refs., 12 tabs., 8 figs

  20. Beam dynamics simulation of the Spallation Neutron Source linear accelerator

    International Nuclear Information System (INIS)

    Takeda, H.; Billen, J.H.; Bhatia, T.S.

    1998-01-01

    The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H - pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 βλ structure to a CCDTL operated at 805 MHz with a 12 βλ structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large (±500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac

  1. Regional Moment Tensor Source-Type Discrimination Analysis

    Science.gov (United States)

    2015-11-16

    unique normalized eigenvalues (black ‘+’ signs) or unique source-types on (a) the fundamental Lune (Tape and Tape, 2012a,b), and (b) on the Hudson...Solutions color-coded by variance reduction (VR) pre- sented on the Tape and Tape (2012a) and Tape and Tape (2012b) Lune . The white circle...eigenvalues (black ‘+’ signs) or unique source-types on (a) the fundamental Lune (Tape and Tape, 2012a,b), and (b) on the Hudson source-type plot (Hudson

  2. Numerical simulation of seismic wave propagation from land-excited large volume air-gun source

    Science.gov (United States)

    Cao, W.; Zhang, W.

    2017-12-01

    The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of

  3. Arctic climate change in an ensemble of regional CORDEX simulations

    Directory of Open Access Journals (Sweden)

    Torben Koenigk

    2015-03-01

    Full Text Available Fifth phase Climate Model Intercomparison Project historical and scenario simulations from four global climate models (GCMs using the Representative Concentration Pathways greenhouse gas concentration trajectories RCP4.5 and RCP8.5 are downscaled over the Arctic with the regional Rossby Centre Atmosphere model (RCA. The regional model simulations largely reflect the circulation bias patterns of the driving global models in the historical period, indicating the importance of lateral and lower boundary conditions. However, local differences occur as a reduced winter 2-m air temperature bias over the Arctic Ocean and increased cold biases over land areas in RCA. The projected changes are dominated by a strong warming in the Arctic, exceeding 15°K in autumn and winter over the Arctic Ocean in RCP8.5, strongly increased precipitation and reduced sea-level pressure. Near-surface temperature and precipitation are linearly related in the Arctic. The wintertime inversion strength is reduced, leading to a less stable stratification of the Arctic atmosphere. The diurnal temperature range is reduced in all seasons. The large-scale change patterns are dominated by the surface and lateral boundary conditions so future response is similar in RCA and the driving global models. However, the warming over the Arctic Ocean is smaller in RCA; the warming over land is larger in winter and spring but smaller in summer. The future response of winter cloud cover is opposite in RCA and the GCMs. Precipitation changes in RCA are much larger during summer than in the global models and more small-scale change patterns occur.

  4. Source apportionment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    Sahu, S.K.; Pandit, G.G.; Puranik, V.D.

    2007-05-01

    Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually find their way into various environmental compartments. One of the main issues of environmental pollution is the chemical composition of aerosols and their sources. In spite of all the efforts a considerable part of the atmospheric aerosol mass is still not accounted for. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report an attempt has been made to collect different size fractionated ambient aerosols and to quantify the percentage contribution of each size fraction to the total aerosol mass. Subsequently, an effort has been made for chemical characterization (inorganic, organic and carbon content) of these particulate matter using different analytical techniques. The comprehensive data set on chemical characterization of particulate matter thus generated is being used with receptor modeling techniques to identify the possible sources contributing to the observed concentrations of the measured pollutants. The use of this comprehensive data set in receptor modeling has been helpful in distinguishing the source types in a better way. Receptor modeling techniques are powerful tools that can be used to locate sources of pollutants to the atmosphere. The major advantage of the receptor models is that actual ambient data are used to apportion source contributions, negating the need for dispersion calculations. Pollution sources affecting the sampling site were statistically identified using varimax rotated factor analysis of

  5. Aging of plumes from emission sources based on chamber simulation

    Science.gov (United States)

    Wang, X.; Deng, W.; Fang, Z.; Bernard, F.; Zhang, Y.; Yu, J.; Mellouki, A.; George, C.

    2017-12-01

    Study on atmospheric aging of plumes from emission sources is essential to understand their contribution to both secondary and primary pollutants occurring in the ambient air. Here we directly introduced vehicle exhaust, biomass burning plume, industrial solvents and cooking plumes into a smog chamber with 30 m3 fluorinated ethylene propylene (FEP) Teflon film reactor housed in a temperature-controlled enclosure, for characterizing primarily emitted air pollutants and for investigating secondarily formed products during photo-oxidation. Moreover, we also initiated study on the formation of secondary aerosols when gasoline vehicle exhaust is mixed with typical coal combustion pollutant SO2 or typical agricultural-related pollutant NH3. Formation of secondary organic aerosols (SOA) from typical solvent toluene was also investigated in ambient air matrix in comparison with purified air matrix. Main findings include: 1) Except for exhaust from idling gasoline vehicles, traditional precursor volatile organic compounds could only explain a very small fraction of SOA formed from vehicle exhaust, biomass burning or cooking plumes, suggesting knowledge gap in SOA precursors; 2) There is the need to re-think vehicle emission standards with a combined primary and/or secondary contribution of vehicle exhaust to PM2.5 or other secondary pollutants such as ozone; 3) When mixed with SO2, the gasoline vehicle exhaust revealed an increase of SOA production factor by 60-200% and meanwhile SO2 oxidation rates increased about a factor of 2.7; when the aged gasoline vehicle exhaust were mixing with NH3, both particle number and mass concentrations were increasing explosively. These phenomenons implied the complex interaction during aging of co-existing source emissions. 4) For typical combination of "tolune+SO2+NOx", when compared to chamber simulation with purified air as matrix, both SOA formation and SO2 oxidation were greatly enhanced under ambient air matrix, and the enhancement

  6. Improvement of snowpack simulations in a regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Jin, J.; Miller, N.L.

    2011-01-10

    To improve simulations of regional-scale snow processes and related cold-season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth-generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5–CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5–CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land-surface model. One important cause for the underestimated SWE in Noah is its unrealistic land-surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow-season surface albedo overestimated by MM5–Noah is now more accurately predicted by MM5–CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near-surface cold bias in MM5–Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5–CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5–Noah. In addition, the over-predicted precipitation in the Pacific Northwest as shown in MM5–Noah is significantly decreased in MM5 CLM3 due to the lower evaporation resulting from the

  7. Estimating regional centile curves from mixed data sources and countries.

    Science.gov (United States)

    van Buuren, Stef; Hayes, Daniel J; Stasinopoulos, D Mikis; Rigby, Robert A; ter Kuile, Feiko O; Terlouw, Dianne J

    2009-10-15

    Regional or national growth distributions can provide vital information on the health status of populations. In most resource poor countries, however, the required anthropometric data from purpose-designed growth surveys are not readily available. We propose a practical method for estimating regional (multi-country) age-conditional weight distributions based on existing survey data from different countries. We developed a two-step method by which one is able to model data with widely different age ranges and sample sizes. The method produces references both at the country level and at the regional (multi-country) level. The first step models country-specific centile curves by Box-Cox t and Box-Cox power exponential distributions implemented in generalized additive model for location, scale and shape through a common model. Individual countries may vary in location and spread. The second step defines the regional reference from a finite mixture of the country distributions, weighted by population size. To demonstrate the method we fitted the weight-for-age distribution of 12 countries in South East Asia and the Western Pacific, based on 273 270 observations. We modeled both the raw body weight and the corresponding Z score, and obtained a good fit between the final models and the original data for both solutions. We briefly discuss an application of the generated regional references to obtain appropriate, region specific, age-based dosing regimens of drugs used in the tropics. The method is an affordable and efficient strategy to estimate regional growth distributions where the standard costly alternatives are not an option. Copyright (c) 2009 John Wiley & Sons, Ltd.

  8. The optimal on-source region size for detections with counting-type telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Klepser, Stefan

    2017-01-15

    The on-source region is typically a circular area with radius θ in which the signal is expected to appear with the shape of the instrument point spread function (PSF). This paper addresses the question of what is the θ that maximises the probability of detection for a given PSF width and background event density. In the high count number limit and assuming a Gaussian PSF profile, the optimum is found to be at ζ{sup 2}{sub ∞}∼2.51 times the squared PSF width σ{sup 2}{sub PSF39}. While this number is shown to be a good choice in many cases, a dynamic formula for cases of lower count numbers, which favour larger on-source regions, is given. The recipe to get to this parametrisation can also be applied to cases with a non-Gaussian PSF. This result can standardise and simplify analysis procedures, reduce trials and eliminate the need for experience-based ad hoc cut definitions or expensive case-by-case Monte Carlo simulations.

  9. The optimal on-source region size for detections with counting-type telescopes

    International Nuclear Information System (INIS)

    Klepser, Stefan

    2017-01-01

    The on-source region is typically a circular area with radius θ in which the signal is expected to appear with the shape of the instrument point spread function (PSF). This paper addresses the question of what is the θ that maximises the probability of detection for a given PSF width and background event density. In the high count number limit and assuming a Gaussian PSF profile, the optimum is found to be at ζ"2_∞∼2.51 times the squared PSF width σ"2_P_S_F_3_9. While this number is shown to be a good choice in many cases, a dynamic formula for cases of lower count numbers, which favour larger on-source regions, is given. The recipe to get to this parametrisation can also be applied to cases with a non-Gaussian PSF. This result can standardise and simplify analysis procedures, reduce trials and eliminate the need for experience-based ad hoc cut definitions or expensive case-by-case Monte Carlo simulations.

  10. A virtual source method for Monte Carlo simulation of Gamma Knife Model C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hoon; Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of); Chung, Hyun Tai [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-05-15

    The Monte Carlo simulation method has been used for dosimetry of radiation treatment. Monte Carlo simulation is the method that determines paths and dosimetry of particles using random number. Recently, owing to the ability of fast processing of the computers, it is possible to treat a patient more precisely. However, it is necessary to increase the simulation time to improve the efficiency of accuracy uncertainty. When generating the particles from the cobalt source in a simulation, there are many particles cut off. So it takes time to simulate more accurately. For the efficiency, we generated the virtual source that has the phase space distribution which acquired a single gamma knife channel. We performed the simulation using the virtual sources on the 201 channel and compared the measurement with the simulation using virtual sources and real sources. A virtual source file was generated to reduce the simulation time of a Gamma Knife Model C. Simulations with a virtual source executed about 50 times faster than the original source code and there was no statistically significant difference in simulated results.

  11. A virtual source method for Monte Carlo simulation of Gamma Knife Model C

    International Nuclear Information System (INIS)

    Kim, Tae Hoon; Kim, Yong Kyun; Chung, Hyun Tai

    2016-01-01

    The Monte Carlo simulation method has been used for dosimetry of radiation treatment. Monte Carlo simulation is the method that determines paths and dosimetry of particles using random number. Recently, owing to the ability of fast processing of the computers, it is possible to treat a patient more precisely. However, it is necessary to increase the simulation time to improve the efficiency of accuracy uncertainty. When generating the particles from the cobalt source in a simulation, there are many particles cut off. So it takes time to simulate more accurately. For the efficiency, we generated the virtual source that has the phase space distribution which acquired a single gamma knife channel. We performed the simulation using the virtual sources on the 201 channel and compared the measurement with the simulation using virtual sources and real sources. A virtual source file was generated to reduce the simulation time of a Gamma Knife Model C. Simulations with a virtual source executed about 50 times faster than the original source code and there was no statistically significant difference in simulated results

  12. Energy coupling of nuclear bursts in and above the ocean surface: source region calculations and experimental validation

    International Nuclear Information System (INIS)

    Clarke, D.B.; Harben, P.E.; Rock, D.W.; White, J.W.; Piacsek, A.

    1997-01-01

    In support of the Comprehensive Test Ban, research is under way on the long range propagation of signals from nuclear explosions in deep underwater sound (SOFAR) channel. Initially our work at LLNL on signals in the source region considered explosions in or above deep ocean. We studied the variation of wave properties and source region energy coupling as a function of height or depth of burst. Initial calculations on the CALE hydrodynamics code were linked at a few hundred milliseconds to a version of NRL's weak code, NPE, which solves the nonlinear progressive wave equation. The simulation of the wave propagation was carried down to 5000 m depth and out to 10,000 m range. We have completed ten such simulations at a variety of heights and depths below the ocean surface

  13. Simulation of wind wave growth with reference source functions

    Science.gov (United States)

    Badulin, Sergei I.; Zakharov, Vladimir E.; Pushkarev, Andrei N.

    2013-04-01

    We present results of extensive simulations of wind wave growth with the so-called reference source function in the right-hand side of the Hasselmann equation written as follows First, we use Webb's algorithm [8] for calculating the exact nonlinear transfer function Snl. Second, we consider a family of wind input functions in accordance with recent consideration [9] ( )s S = ?(k)N , ?(k) = ? ? ?- f (?). in k 0 ?0 in (2) Function fin(?) describes dependence on angle ?. Parameters in (2) are tunable and determine magnitude (parameters ?0, ?0) and wave growth rate s [9]. Exponent s plays a key role in this study being responsible for reference scenarios of wave growth: s = 4-3 gives linear growth of wave momentum, s = 2 - linear growth of wave energy and s = 8-3 - constant rate of wave action growth. Note, the values are close to ones of conventional parameterizations of wave growth rates (e.g. s = 1 for [7] and s = 2 for [5]). Dissipation function Sdiss is chosen as one providing the Phillips spectrum E(?) ~ ?5 at high frequency range [3] (parameter ?diss fixes a dissipation scale of wind waves) Sdiss = Cdissμ4w?N (k)θ(? - ?diss) (3) Here frequency-dependent wave steepness μ2w = E(?,?)?5-g2 makes this function to be heavily nonlinear and provides a remarkable property of stationary solutions at high frequencies: the dissipation coefficient Cdiss should keep certain value to provide the observed power-law tails close to the Phillips spectrum E(?) ~ ?-5. Our recent estimates [3] give Cdiss ? 2.0. The Hasselmann equation (1) with the new functions Sin, Sdiss (2,3) has a family of self-similar solutions of the same form as previously studied models [1,3,9] and proposes a solid basis for further theoretical and numerical study of wave evolution under action of all the physical mechanisms: wind input, wave dissipation and nonlinear transfer. Simulations of duration- and fetch-limited wind wave growth have been carried out within the above model setup to check its

  14. Design and simulation of ion optics for ion sources for production of singly charged ions

    Science.gov (United States)

    Zelenak, A.; Bogomolov, S. L.

    2004-05-01

    During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments.

  15. Design and simulation of ion optics for ion sources for production of singly charged ions

    International Nuclear Information System (INIS)

    Zelenak, A.; Bogomolov, S.L.

    2004-01-01

    During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments

  16. Design and numerical simulation of the electromagnetic field of linear anode layer ion source

    International Nuclear Information System (INIS)

    Wang Lisheng; Tang Deli; Cheng Changming

    2006-01-01

    The principle of anode layer ion source for etching, pre-cleaning and ion beam assisted deposition was described. The influence of the magnetic field on the performance of anode layer ion source was analyzed. Design of the magnetic loop for the linear anode layer ion source was given. The electromagnetic field distribution of the ion source was simulated by means of ANSYS code and the simulation results were in agreement with experimental ones. The numerical simulation results of the electromagnetic field are useful for improving the anode layer ion source. (authors)

  17. The mechanical design and simulation of a scaled H⁻ Penning ion source.

    Science.gov (United States)

    Rutter, T; Faircloth, D; Turner, D; Lawrie, S

    2016-02-01

    The existing ISIS Penning H(-) source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  18. The mechanical design and simulation of a scaled H- Penning ion source

    Science.gov (United States)

    Rutter, T.; Faircloth, D.; Turner, D.; Lawrie, S.

    2016-02-01

    The existing ISIS Penning H- source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  19. RTSTEP regional transportation simulation tool for emergency planning - final report.

    Energy Technology Data Exchange (ETDEWEB)

    Ley, H.; Sokolov, V.; Hope, M.; Auld, J.; Zhang, K.; Park, Y.; Kang, X. (Energy Systems)

    2012-01-20

    such materials over a large area, with responders trying to mitigate the immediate danger to the population in a variety of ways that may change over time (e.g., in-place evacuation, staged evacuations, and declarations of growing evacuation zones over time). In addition, available resources will be marshaled in unusual ways, such as the repurposing of transit vehicles to support mass evacuations. Thus, any simulation strategy will need to be able to address highly dynamic effects and will need to be able to handle any mode of ground transportation. Depending on the urgency and timeline of the event, emergency responders may also direct evacuees to leave largely on foot, keeping roadways as clear as possible for emergency responders, logistics, mass transport, and law enforcement. This RTSTEP project developed a regional emergency evacuation modeling tool for the Chicago Metropolitan Area that emergency responders can use to pre-plan evacuation strategies and compare different response strategies on the basis of a rather realistic model of the underlying complex transportation system. This approach is a significant improvement over existing response strategies that are largely based on experience gained from small-scale events, anecdotal evidence, and extrapolation to the scale of the assumed emergency. The new tool will thus add to the toolbox available to emergency response planners to help them design appropriate generalized procedures and strategies that lead to an improved outcome when used during an actual event.

  20. Estimating regional centile curves from mixed data sources and countries

    NARCIS (Netherlands)

    Buuren, S. van; Hayes, D.J.; Stasinopoulos, D.M.; Rigby, R.A.; Kuile, F.O. ter; Terlouw, D.J.

    2009-01-01

    Regional or national growth distributions can provide vital information on the health status of populations. In most resource poor countries, however, the required anthropometric data from purpose-designed growth surveys are not readily available. We propose a practical method for estimating

  1. Regional variation of carbonaceous aerosols from space and simulations

    Science.gov (United States)

    Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko; Kokhanovsky, Alexander

    2017-04-01

    Satellite remote sensing provides us with a systematic monitoring in a global scale. As such, aerosol observation via satellites is known to be useful and effective. However, before attempting to retrieve aerosol properties from satellite data, the efficient algorithms for aerosol retrieval need to be considered. The characteristics and distributions of atmospheric aerosols are known to be complicated, owing to both natural factors and human activities. It is known that the biomass burning aerosols generated by the large-scale forest fires and burn agriculture have influenced the severity of air pollution. Nevertheless the biomass burning episodes increase due to global warming and climate change and vice versa. It is worth noting that the near ultra violet (NUV) measurements are helpful for the detection of carbonaceous particles, which are the main component of aerosols from biomass burning. In this work, improved retrieval algorithms for biomass burning aerosols are shown by using the measurements observed by GLI and POLDER-2 on Japanese short term mission ADEOS-2 in 2003. The GLI sensor has 380nm channel. For detection of biomass burning episodes, the aerosol optical thickness of carbonaceous aerosols simulated with the numerical model simulations (SPRINTARS) is available as well as fire products from satellite imagery. Moreover the algorithm using shorter wavelength data is available for detection of absorbing aerosols. An algorithm based on the combined use of near-UV and violet data has been introduced in our previous work with ADEOS (Advanced Earth Observing Satellite) -2 /GLI measurements [1]. It is well known that biomass burning plume is a seasonal phenomenon peculiar to a particular region. Hence, the mass concentrations of aerosols are frequently governed with spatial and/or temporal variations of biomass burning plumes. Accordingly the satellite data sets for our present study are adopted from the view points of investigation of regional and seasonal

  2. Sensitivity of simulated regional Arctic climate to the choice of coupled model domain

    Directory of Open Access Journals (Sweden)

    Dmitry V. Sein

    2014-07-01

    Full Text Available The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis. Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the

  3. A review on vegetation models and applicability to climate simulations at regional scale

    Science.gov (United States)

    Myoung, Boksoon; Choi, Yong-Sang; Park, Seon Ki

    2011-11-01

    The lack of accurate representations of biospheric components and their biophysical and biogeochemical processes is a great source of uncertainty in current climate models. The interactions between terrestrial ecosystems and the climate include exchanges not only of energy, water and momentum, but also of carbon and nitrogen. Reliable simulations of these interactions are crucial for predicting the potential impacts of future climate change and anthropogenic intervention on terrestrial ecosystems. In this paper, two biogeographical (Neilson's rule-based model and BIOME), two biogeochemical (BIOME-BGC and PnET-BGC), and three dynamic global vegetation models (Hybrid, LPJ, and MC1) were reviewed and compared in terms of their biophysical and physiological processes. The advantages and limitations of the models were also addressed. Lastly, the applications of the dynamic global vegetation models to regional climate simulations have been discussed.

  4. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    Science.gov (United States)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica

  5. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    Directory of Open Access Journals (Sweden)

    H. Lucas

    2009-07-01

    Full Text Available This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells.

    For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s−1 of high quality groundwater (55% of the regional demand, requiring only disinfection (900 l s−1 or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make

  6. Loss and source mechanisms of Jupiter's radiation belts near the inner boundary of trapping regions

    Science.gov (United States)

    Santos-Costa, Daniel; Bolton, Scott J.; Becker, Heidi N.; Clark, George; Kollmann, Peter; Paranicas, Chris; Mauk, Barry; Joergensen, John L.; Adriani, Alberto; Thorne, Richard M.; Bagenal, Fran; Janssen, Mike A.; Levin, Steve M.; Oyafuso, Fabiano A.; Williamson, Ross; Adumitroaie, Virgil; Ingersoll, Andrew P.; Kurth, Bill; Connerney, John E. P.

    2017-04-01

    We have merged a set of physics-based and empirical models to investigate the energy and spatial distributions of Jupiter's electron and proton populations in the inner and middle magnetospheric regions. Beyond the main source of plasma (> 5 Rj) where interchange instability is believed to drive the radial transport of charged particles, the method originally developed by Divine and Garrett [J. Geophys. Res., 88, 6889-6903, 1983] has been adapted. Closer to the planet where field fluctuations control the radial transport, a diffusion theory approach is used. Our results for the equatorial and mid-latitude regions are compared with Pioneer and Galileo Probe measurements. Data collected along Juno's polar orbit allow us to examine the features of Jupiter's radiation environment near the inner boundary of trapping regions. Significant discrepancies between Juno (JEDI keV energy particles and high energy radiation environment measurements made by Juno's SRU and ASC star cameras and the JIRAM infrared imager) and Galileo Probe data sets and models are observed close to the planet. Our simulations of Juno MWR observations of Jupiter's electron-belt emission confirm the limitation of our model to realistically depict the energy and spatial distributions of the ultra-energetic electrons. In this paper, we present our modeling approach, the data sets and resulting data-model comparisons for Juno's first science orbits. We describe our effort to improve our models of electron and proton belts. To gain a physical understanding of the dissimilarities with observations, we revisit the magnetic environment and the mechanisms of loss and source in our models.

  7. Dry Deposition from Sahara Sources Regions of Western Africa

    Directory of Open Access Journals (Sweden)

    B. Douaiba

    2014-01-01

    Full Text Available Sahara dust storms during March 2004 have attracted much attention from the dust-research community due to their intensity, wide coverage, and endurance. In the present work, the dry deposition mechanisms of mineral dust are analysed during an event on the 3 March 2004 over the Northwest African coast. This particular case was chosen based on the strong dry removal that occurred, rendering it ideal for examining the deposition processes. The simulation of synoptic conditions and dry deposition of four dust particles including clay, small silt, large silt, and sand was performed with Eta model, coupled with a desert dust cycle module. The results have been compared with surface data from weather stations in North Africa, data of dry metals from stations located in Gran Canaria, and various satellite images such as European Organization for the Exploitation of Meteorological Satellites and Moderate Resolution Imaging Spectroradiometer for the period in question.

  8. Cradle to Grave: Managing Disused Sealed Radioactive Sources in the Mediterranean Region

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2014-01-01

    Some countries in the Mediterranean region lack appropriate facilities for the safe management or disposal of radioactive waste such as disused radioactive sources. Disused radioactive sources could be lost, stolen or abandoned and thus fall outside the regulatory control. Such loss of control over disused sources presents a significant risk to the public and the environment

  9. How should we build a generic open-source water management simulator?

    Science.gov (United States)

    Khadem, M.; Meier, P.; Rheinheimer, D. E.; Padula, S.; Matrosov, E.; Selby, P. D.; Knox, S.; Harou, J. J.

    2014-12-01

    Increasing water needs for agriculture, industry and cities mean effective and flexible water resource system management tools will remain in high demand. Currently many regions or countries use simulators that have been adapted over time to their unique system properties and water management rules and realities. Most regions operate with a preferred short-list of water management and planning decision support systems. Is there scope for a simulator, shared within the water management community, that could be adapted to different contexts, integrate community contributions, and connect to generic data and model management software? What role could open-source play in such a project? How could a genericuser-interface and data/model management software sustainably be attached to this model or suite of models? Finally, how could such a system effectively leverage existing model formulations, modeling technologies and software? These questions are addressed by the initial work presented here. We introduce a generic water resource simulation formulation that enables and integrates both rule-based and optimization driven technologies. We suggest how it could be linked to other sub-models allowing for detailed agent-based simulation of water management behaviours. An early formulation is applied as an example to the Thames water resource system in the UK. The model uses centralised optimisation to calculate allocations but allows for rule-based operations as well in an effort to represent observed behaviours and rules with fidelity. The model is linked through import/export commands to a generic network model platform named Hydra. Benefits and limitations of the approach are discussed and planned work and potential use cases are outlined.

  10. Beam tracking simulation in the central region of a 13 MeV PET cyclotron

    Science.gov (United States)

    Anggraita, Pramudita; Santosa, Budi; Taufik, Mulyani, Emy; Diah, Frida Iswinning

    2012-06-01

    This paper reports the trajectories simulation of proton beam in the central region of a 13 MeV PET cyclotron, operating with negative proton beam (for easier beam extraction using a stripper foil), 40 kV peak accelerating dee voltage at fourth harmonic frequency of 77.88 MHz, and average magnetic field of 1.275 T. The central region covers fields of 240mm × 240mm × 30mm size at 1mm resolution. The calculation was also done at finer 0.25mm resolution covering fields of 30mm × 30mm × 4mm size to see the effects of 0.55mm horizontal width of the ion source window and the halted trajectories of positive proton beam. The simulations show up to 7 turns of orbital trajectories, reaching about 1 MeV of beam energy. The distribution of accelerating electric fields and magnetic fields inside the cyclotron were calculated in 3 dimension using Opera3D code and Tosca modules for static magnetic and electric fields. The trajectory simulation was carried out using Scilab 5.3.3 code.

  11. An alternative approach to probabilistic seismic hazard analysis in the Aegean region using Monte Carlo simulation

    Science.gov (United States)

    Weatherill, Graeme; Burton, Paul W.

    2010-09-01

    The Aegean is the most seismically active and tectonically complex region in Europe. Damaging earthquakes have occurred here throughout recorded history, often resulting in considerable loss of life. The Monte Carlo method of probabilistic seismic hazard analysis (PSHA) is used to determine the level of ground motion likely to be exceeded in a given time period. Multiple random simulations of seismicity are generated to calculate, directly, the ground motion for a given site. Within the seismic hazard analysis we explore the impact of different seismic source models, incorporating both uniform zones and distributed seismicity. A new, simplified, seismic source model, derived from seismotectonic interpretation, is presented for the Aegean region. This is combined into the epistemic uncertainty analysis alongside existing source models for the region, and models derived by a K-means cluster analysis approach. Seismic source models derived using the K-means approach offer a degree of objectivity and reproducibility into the otherwise subjective approach of delineating seismic sources using expert judgment. Similar review and analysis is undertaken for the selection of peak ground acceleration (PGA) attenuation models, incorporating into the epistemic analysis Greek-specific models, European models and a Next Generation Attenuation model. Hazard maps for PGA on a "rock" site with a 10% probability of being exceeded in 50 years are produced and different source and attenuation models are compared. These indicate that Greek-specific attenuation models, with their smaller aleatory variability terms, produce lower PGA hazard, whilst recent European models and Next Generation Attenuation (NGA) model produce similar results. The Monte Carlo method is extended further to assimilate epistemic uncertainty into the hazard calculation, thus integrating across several appropriate source and PGA attenuation models. Site condition and fault-type are also integrated into the hazard

  12. Simulation and beam line experiments for the superconducting ECR ion source VENUS

    International Nuclear Information System (INIS)

    Todd, Damon S.; Leitner, Daniela; Grote, David P.; Lyneis, ClaudeM.

    2007-01-01

    The particle-in-cell code Warp has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving Warp the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disc. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS

  13. Simulating variable source problems via post processing of individual particle tallies

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    2000-01-01

    Monte Carlo is an extremely powerful method of simulating complex, three dimensional environments without excessive problem simplification. However, it is often time consuming to simulate models in which the source can be highly varied. Similarly difficult are optimization studies involving sources in which many input parameters are variable, such as particle energy, angle, and spatial distribution. Such studies are often approached using brute force methods or intelligent guesswork. One field in which these problems are often encountered is accelerator-driven Boron Neutron Capture Therapy (BNCT) for the treatment of cancers. Solving the reverse problem of determining the best neutron source for optimal BNCT treatment can be accomplished by separating the time-consuming particle-tracking process of a full Monte Carlo simulation from the calculation of the source weighting factors which is typically performed at the beginning of a Monte Carlo simulation. By post-processing these weighting factors on a recorded file of individual particle tally information, the effect of changing source variables can be realized in a matter of seconds, instead of requiring hours or days for additional complete simulations. By intelligent source biasing, any number of different source distributions can be calculated quickly from a single Monte Carlo simulation. The source description can be treated as variable and the effect of changing multiple interdependent source variables on the problem's solution can be determined. Though the focus of this study is on BNCT applications, this procedure may be applicable to any problem that involves a variable source

  14. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, J.S.; Thornton, P.E.; White, M.A.; Running, S.W. [Montana Univ., Missoula, MT (United States). School of Forestry

    1997-12-31

    Studies have shown that the boreal forest region is in danger of experiencing significant warming and drying in response to increases in atmospheric CO{sub 2} concentration and other greenhouse gases. Since the boreal forest region contains 16-24 per cent of the world`s soil carbon, warming in this region could result in a rapid, large-scale displacement and redistribution of boreal forest, enhanced release of CO{sub 2} to the atmosphere, and an intensification of global warming. A study was conducted in which a process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce. The objective was to integrate point measurements across multiple spatial and temporal scales using process level models of the boreal forest water, energy and biogeochemical cycles. Climate characteristics that control simulated carbon fluxes were also studied. Results showed that trees with large daily evapotranspiration rates and those situated on sandy soils with low water holding capacities were especially vulnerable to increased temperature and drought conditions. Trees subject to frequent water stress during the growing season, particularly older trees that exhibit low photosynthetic and high respiration rates, were on the margin between being annual net sources or sinks for atmospheric carbon. 71 refs., 3 tabs., 5 figs.

  15. Simulating the Regional Impact of Dust on the Middle East Climate and the Red Sea

    KAUST Repository

    Osipov, Sergey

    2018-01-19

    The Red Sea is located between North Africa and the Arabian Peninsula, the largest sources of dust in the world. Satellite retrievals show very high aerosol optical depth in the region, which increases during the summer season, especially over the southern Red Sea. Previously estimated and validated radiative effect from dust is expected to have a profound thermal and dynamic impact on the Red Sea, but that impact has not yet been studied or evaluated. Due to the strong dust radiative effect at the sea surface, uncoupled ocean modeling approaches with prescribed atmospheric boundary conditions result in an unrealistic ocean response. Therefore, to study the impact of dust on the regional climate of the Middle East and the Red Sea, we employed the Regional Ocean Modeling System fully coupled with the Weather Research and Forecasting model. We modified the atmospheric model to account for the radiative effect of dust. The simulations show that, in the equilibrium response, dust cools the Red Sea, reduces the surface wind speed, and weakens both the exchange at the Bab-el-Mandeb strait and the overturning circulation. The salinity distribution, freshwater, and heat budgets are significantly altered. A validation of the simulations against satellite products indicates that accounting for radiative effect from dust almost completely removes the bias and reduces errors in the top of the atmosphere fluxes and sea surface temperature. Our results suggest that dust plays an important role in the energy balance, thermal, and circulation regimes in the Red Sea.

  16. Simulating the Regional Impact of Dust on the Middle East Climate and the Red Sea

    Science.gov (United States)

    Osipov, Sergey; Stenchikov, Georgiy

    2018-02-01

    The Red Sea is located between North Africa and the Arabian Peninsula, the largest sources of dust in the world. Satellite retrievals show very high aerosol optical depth in the region, which increases during the summer season, especially over the southern Red Sea. Previously estimated and validated radiative effect from dust is expected to have a profound thermal and dynamic impact on the Red Sea, but that impact has not yet been studied or evaluated. Due to the strong dust radiative effect at the sea surface, uncoupled ocean modeling approaches with prescribed atmospheric boundary conditions result in an unrealistic ocean response. Therefore, to study the impact of dust on the regional climate of the Middle East and the Red Sea, we employed the Regional Ocean Modeling System fully coupled with the Weather Research and Forecasting model. We modified the atmospheric model to account for the radiative effect of dust. The simulations show that, in the equilibrium response, dust cools the Red Sea, reduces the surface wind speed, and weakens both the exchange at the Bab-el-Mandeb strait and the overturning circulation. The salinity distribution, freshwater, and heat budgets are significantly altered. A validation of the simulations against satellite products indicates that accounting for radiative effect from dust almost completely removes the bias and reduces errors in the top of the atmosphere fluxes and sea surface temperature. Our results suggest that dust plays an important role in the energy balance, thermal, and circulation regimes in the Red Sea.

  17. Open Source Opens Opportunities for Army's Simulation System

    National Research Council Canada - National Science Library

    Parsons, Douglas J; Wittman, Jr, Robert L

    2005-01-01

    .... Postured as an open-architecture, open-source application, the OneSAF program will put this software into the hands of a vast number of developers throughout the Department of Defense with the intent...

  18. Comparing brain graphs in which nodes are regions of interest or independent components: A simulation study.

    Science.gov (United States)

    Yu, Qingbao; Du, Yuhui; Chen, Jiayu; He, Hao; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D

    2017-11-01

    A key challenge in building a brain graph using fMRI data is how to define the nodes. Spatial brain components estimated by independent components analysis (ICA) and regions of interest (ROIs) determined by brain atlas are two popular methods to define nodes in brain graphs. It is difficult to evaluate which method is better in real fMRI data. Here we perform a simulation study and evaluate the accuracies of a few graph metrics in graphs with nodes of ICA components, ROIs, or modified ROIs in four simulation scenarios. Graph measures with ICA nodes are more accurate than graphs with ROI nodes in all cases. Graph measures with modified ROI nodes are modulated by artifacts. The correlations of graph metrics across subjects between graphs with ICA nodes and ground truth are higher than the correlations between graphs with ROI nodes and ground truth in scenarios with large overlapped spatial sources. Moreover, moving the location of ROIs would largely decrease the correlations in all scenarios. Evaluating graphs with different nodes is promising in simulated data rather than real data because different scenarios can be simulated and measures of different graphs can be compared with a known ground truth. Since ROIs defined using brain atlas may not correspond well to real functional boundaries, overall findings of this work suggest that it is more appropriate to define nodes using data-driven ICA than ROI approaches in real fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Application of numerical environment system to regional atmospheric radioactivity transport simulations

    International Nuclear Information System (INIS)

    Yamazawa, H.; Ohkura, T.; Iida, T.; Chino, M.; Nagai, H.

    2003-01-01

    Main functions of the Numerical Environment System (NES), as a part of the Information Technology Based Laboratory (ITBL) project implemented by Japan Atomic Energy Research Institute, became available for test use purposes although the development of the system is still underway. This system consists of numerical models of meteorology and atmospheric dispersion, database necessary for model simulations, post- and pre-processors such as data conversion and visualization, and a suite of system software which provide the users with system functions through a web page access. The system utilizes calculation servers such as vector- and scalar-parallel processors for numerical model execution, a EWS which serves as a hub of the system. This system provides users in the field of nuclear emergency preparedness and atmospheric environment with easy-to-use functions of atmospheric dispersion simulations including input meteorological data preparation and visualization of simulation results. The performance of numerical models in the system was examined with observation data of long-range transported radon-222. The models in the system reproduced quite well temporal variations in the observed radon-222 concentrations in air which were caused by changes in the meteorological field in the synoptic scale. By applying the NES models in combination with the idea of backward-in-time atmospheric dispersion simulation, seasonal shift of source areas of radon-222 in the eastern Asian regions affecting the concentrations in Japan was quantitatively illustrated. (authors)

  20. Potential sea salt aerosol sources from frost flowers in the pan-Arctic region

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Now at Department of Earth System Science, University of California, Irvine California USA; Russell, Lynn M. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Burrows, Susannah M. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA

    2016-09-23

    In order to better represent observed wintertime aerosol concentrations at Barrow, Alaska, we implemented an observationally-based parameterization for estimating sea salt production from frost flowers in the Community Earth System Model (CESM). In this work, we evaluate the potential influence of this sea salt source on the pan-Arctic (60ºN-90ºN) climate. Results show that frost flower salt emissions substantially increase the modeled surface sea salt aerosol concentration in the winter months when new sea ice and frost flowers are present. The parameterization reproduces both the magnitude and seasonal variation of the observed submicron sea salt aerosol concentration at surface in Barrow during winter much better than the standard CESM simulation without a frost-flower salt particle source. Adding these frost flower salt particle emissions increases aerosol optical depth by 10% and results in a small cooling at surface. The increase in salt particle mass concentrations of a factor of 8 provides nearly two times the cloud condensation nuclei concentration, as well as 10% increases in cloud droplet number and 40% increases in liquid water content near coastal regions adjacent to continents. These cloud changes reduce longwave cloud forcing by 3% and cause a small surface warming, increasing the downward longwave flux at the surface by 2 W m-2 in the pan-Arctic under the present-day climate.

  1. Numerical analysis of electronegative plasma in the extraction region of negative hydrogen ion sources

    Science.gov (United States)

    Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.

    2011-01-01

    This numerical study focuses on the physical mechanisms involved in the extraction of volume-produced H- ions from a steady state laboratory negative hydrogen ion source with one opening in the plasma electrode (PE) on which a dc-bias voltage is applied. A weak magnetic field is applied in the source plasma transversely to the extracted beam. The goal is to highlight the combined effects of the weak magnetic field and the PE bias voltage (upon the extraction process of H- ions and electrons). To do so, we focus on the behavior of electrons and volume-produced negative ions within a two-dimensional model using the particle-in-cell method. No collision processes are taken into account, except for electron diffusion across the magnetic field using a simple random-walk model at each time step of the simulation. The results show first that applying the magnetic field (without PE bias) enhances H- ion extraction, while it drastically decreases the extracted electron current. Secondly, the extracted H- ion current has a maximum when the PE bias is equal to the plasma potential, while the extracted electron current is significantly reduced by applying the PE bias. The underlying mechanism leading to the above results is the gradual opening by the PE bias of the equipotential lines towards the parts of the extraction region facing the PE. The shape of these lines is due originally to the electron trapping by the magnetic field.

  2. Numerical analysis of electronegative plasma in the extraction region of negative hydrogen ion sources

    International Nuclear Information System (INIS)

    Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.

    2011-01-01

    This numerical study focuses on the physical mechanisms involved in the extraction of volume-produced H - ions from a steady state laboratory negative hydrogen ion source with one opening in the plasma electrode (PE) on which a dc-bias voltage is applied. A weak magnetic field is applied in the source plasma transversely to the extracted beam. The goal is to highlight the combined effects of the weak magnetic field and the PE bias voltage (upon the extraction process of H - ions and electrons). To do so, we focus on the behavior of electrons and volume-produced negative ions within a two-dimensional model using the particle-in-cell method. No collision processes are taken into account, except for electron diffusion across the magnetic field using a simple random-walk model at each time step of the simulation. The results show first that applying the magnetic field (without PE bias) enhances H - ion extraction, while it drastically decreases the extracted electron current. Secondly, the extracted H - ion current has a maximum when the PE bias is equal to the plasma potential, while the extracted electron current is significantly reduced by applying the PE bias. The underlying mechanism leading to the above results is the gradual opening by the PE bias of the equipotential lines towards the parts of the extraction region facing the PE. The shape of these lines is due originally to the electron trapping by the magnetic field.

  3. Simulation of Electrical Grid with Omnet++ Open Source Discrete Event System Simulator

    Directory of Open Access Journals (Sweden)

    Sőrés Milán

    2016-12-01

    Full Text Available The simulation of electrical networks is very important before development and servicing of electrical networks and grids can occur. There are software that can simulate the behaviour of electrical grids under different operating conditions, but these simulation environments cannot be used in a single cloud-based project, because they are not GNU-licensed software products. In this paper, an integrated framework was proposed that models and simulates communication networks. The design and operation of the simulation environment are investigated and a model of electrical components is proposed. After simulation, the simulation results were compared to manual computed results.

  4. Beam simulation tools for GEANT4 (and neutrino source applications)

    International Nuclear Information System (INIS)

    V.Daniel Elvira, Paul Lebrun and Panagiotis Spentzouris email daniel@fnal.gov

    2002-01-01

    Geant4 is a tool kit developed by a collaboration of physicists and computer professionals in the High Energy Physics field for simulation of the passage of particles through matter. The motivation for the development of the Beam Tools is to extend the Geant4 applications to accelerator physics. Although there are many computer programs for beam physics simulations, Geant4 is ideal to model a beam going through material or a system with a beam line integrated to a complex detector. There are many examples in the current international High Energy Physics programs, such as studies related to a future Neutrino Factory, a Linear Collider, and a very Large Hadron Collider

  5. Characterization of an electrothermal plasma source for fusion transient simulations

    Science.gov (United States)

    Gebhart, T. E.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2018-01-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequently ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.

  6. MOSES: A Matlab-based open-source stochastic epidemic simulator.

    Science.gov (United States)

    Varol, Huseyin Atakan

    2016-08-01

    This paper presents an open-source stochastic epidemic simulator. Discrete Time Markov Chain based simulator is implemented in Matlab. The simulator capable of simulating SEQIJR (susceptible, exposed, quarantined, infected, isolated and recovered) model can be reduced to simpler models by setting some of the parameters (transition probabilities) to zero. Similarly, it can be extended to more complicated models by editing the source code. It is designed to be used for testing different control algorithms to contain epidemics. The simulator is also designed to be compatible with a network based epidemic simulator and can be used in the network based scheme for the simulation of a node. Simulations show the capability of reproducing different epidemic model behaviors successfully in a computationally efficient manner.

  7. The Trick Simulation Toolkit: A NASA/Open source Framework for Running Time Based Physics Models

    Science.gov (United States)

    Penn, John M.; Lin, Alexander S.

    2016-01-01

    This paper describes the design and use at of the Trick Simulation Toolkit, a simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes Trick's design goals and how the development environment attempts to achieve those goals. It describes how Trick is used in some of the many training and engineering simulations at NASA. Finally it describes the Trick NASA/Open source project on Github.

  8. Numerical simulation of convective generated gravity waves in the stratosphere and MLT regions.

    Science.gov (United States)

    Heale, C. J.; Snively, J. B.

    2017-12-01

    Convection is an important source of gravity wave generation, especially in the summer tropics and midlatitudes, and coherent wave fields above convection are now routinely measured in the stratosphere and mesosphere [e.g. Hoffmann et al., JGR, 118, 2013; Gong et al., JGR, 120, 2015; Perwitasari et al., GRL, 42, 22, 2016]. Numerical studies have been performed to investigate the generation mechanisms, source spectra, and their effects on the middle and upper atmosphere [e.g. Fovell et al., AMS, 49,16, 1992; Alexander and Holton, Atmos. Chem. Phys., 4 2004; Vincent et al., JGR, 1118, 2013], however there is still considerable work needed to fully describe these parameters. GCMs currently lack the resolution to explicitly simulate convection generation and rely on simplified parameterizations while full cloud resolving models are computationally expensive and often only extend into the stratosphere. More recent studies have improved the realism of these simulations by using radar derived precipitation rates to drive latent heating in models that simulate convection [Grimsdell et al., AMS, 67, 2010; Stephan and Alexander., J. Adv. Model. Earth. Syst, 7, 2015], however they too only consider wave propagation in the troposphere and stratosphere. We use a 2D nonlinear, fully compressible model [Snively and Pasko., JGR, 113, 2008] to excite convectively generated waves, based on NEXRAD radar data, using the Stephan and Alexander [2015] algorithms. We study the propagation, and spectral evolution of the generated waves up into the MLT region. Ambient atmosphere parameters are derived from observations and MERRA-2 reanalysis data, and stratospheric (AIRS) and mesospheric (Lidar, OH airglow) observations enable comparisons with simulation results.

  9. Search for tiny or transient sources in the Galaxy's central regions with H.E.S.S. - Application to the study of supernova W49B's remnant region

    International Nuclear Information System (INIS)

    Brun, F.

    2011-09-01

    H.E.S.S. (High Energy Stereoscopic System) is an array of four very-high energy (VHE) gamma-ray telescopes located in Namibia. These telescopes use the atmospheric Cherenkov imaging technique to detect gamma-rays between 100 GeV and a few tens of TeV. The H.E.S.S. cameras, each composed of 960 photomultiplier tubes and a fast electronics, need an accurate calibration of the shower to electronic signal conversion. A spurious capacitive coupling between the photomultiplier tubes and the data acquisition system (the common modes) was revealed and corrected during this thesis, resulting in data of better quality. H.E.S.S. is ideally located to observe the inner regions of the Galactic plane. Hence, the Galactic Plane Survey has been one of the primary goal since the beginning of the array operation in 2004 and led to unveiling the diversity of the VHE gamma-ray sources. This thesis presents the search for VHE gamma-ray sources in the inner regions of the Galactic plane using the most sensitive semi-analytical model based analysis currently available. A search for transient sources was also performed for these regions using powerful methods based on the time difference between consecutive events. These methods have been precisely characterized by simulation and didn't lead to the detection of significant variable sources. The very-high energy gamma-ray emission from the W49 region and the supernova remnant W49B in particular has been revealed during this thesis. The analysis of this region and the implications of this discovery are described in detail in this manuscript. (author)

  10. Review of radiation sources, calibration facilities and simulated workplace fields

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, V., E-mail: veronique.lacoste@irsn.f [Institut de Radioprotection et de Surete Nucleaire, BP3, Bat. 159, F-13115 Saint-Paul Lez Durance (France)

    2010-12-15

    A review on radiation sources, calibration facilities and realistic fields is presented and examples are given. The main characteristics of the fields are shortly described together with their domain of applications. New emerging fields are also mentioned and the question of needs for additional calibration fields is raised.

  11. Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions

    Science.gov (United States)

    Shultz, Christopher D.; Bailey, Ryan T.; Gates, Timothy K.; Heesemann, Brent E.; Morway, Eric D.

    2018-01-01

    Elevated levels of selenium (Se) in aqueous environments can harm aquatic life and endanger livestock and human health. Although Se occurs naturally in the rocks and soils of many alluvial aquifers, mining and agricultural activities can increase its rate of mobilization and transport to surface waters. Attention is given here to regions where nonpoint source return flows from irrigated lands carry pollutant loads to aquifers and streams, contributing to concentrations that violate regulatory and performance standards. Of particular concern is the heightened level and mobilization of Se influenced by nitrate (NO3), a harmful pollutant in its own right. We present a numerical model that simulates the reactive transport of Se and nitrogen (N) species in a coupled groundwater-surface water system. Building upon a conceptual model that incorporates the major processes affecting Se and NO3 transport in an irrigated watershed, the model links the finite-difference models MODFLOW, UZF-RT3D, and OTIS, to simulate flow and reactive transport of multiple chemical species in both the aquifer and a stream network, with mass exchange between the two. The capability of the new model is showcased by calibration, testing, and application to a 500 km2 region in Colorado’s Lower Arkansas River Valley using a rich data set gathered over a 10-yr period. Simulation of spatial and temporal distributions of Se concentration reveals conditions that exceed standards in groundwater for approximately 20% of the area. For the Arkansas River, standards are exceeded by 290%–450%. Simulation indicates that river concentrations of NO3 alone are near the current interim standard for the total of all dissolved N species. These results indicate the need for future use of the developed model to investigate the prospects for land and water best management practices to decrease pollutant levels.

  12. Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions

    Science.gov (United States)

    Shultz, Christopher D.; Bailey, Ryan T.; Gates, Timothy K.; Heesemann, Brent E.; Morway, Eric D.

    2018-05-01

    Elevated levels of selenium (Se) in aqueous environments can harm aquatic life and endanger livestock and human health. Although Se occurs naturally in the rocks and soils of many alluvial aquifers, mining and agricultural activities can increase its rate of mobilization and transport to surface waters. Attention is given here to regions where nonpoint source return flows from irrigated lands carry pollutant loads to aquifers and streams, contributing to concentrations that violate regulatory and performance standards. Of particular concern is the heightened level and mobilization of Se influenced by nitrate (NO3), a harmful pollutant in its own right. We present a numerical model that simulates the reactive transport of Se and nitrogen (N) species in a coupled groundwater-surface water system. Building upon a conceptual model that incorporates the major processes affecting Se and NO3 transport in an irrigated watershed, the model links the finite-difference models MODFLOW, UZF-RT3D, and OTIS, to simulate flow and reactive transport of multiple chemical species in both the aquifer and a stream network, with mass exchange between the two. The capability of the new model is showcased by calibration, testing, and application to a 500 km2 region in Colorado's Lower Arkansas River Valley using a rich data set gathered over a 10-yr period. Simulation of spatial and temporal distributions of Se concentration reveals conditions that exceed standards in groundwater for approximately 20% of the area. For the Arkansas River, standards are exceeded by 290%-450%. Simulation indicates that river concentrations of NO3 alone are near the current interim standard for the total of all dissolved N species. These results indicate the need for future use of the developed model to investigate the prospects for land and water best management practices to decrease pollutant levels.

  13. Temperature Changes In Poland In 21st Century – Results Of Global Simulation And Regional Downscaling

    Directory of Open Access Journals (Sweden)

    Pilarski Michał

    2015-09-01

    Full Text Available The main source of information about future climate changes are the results of numerical simulations performed in scientific institutions around the world. Present projections from global circulation models (GCMs are too coarse and are only usefulness for the world, hemisphere or continent spatial analysis. The low horizontal resolution of global models (100–200 km, does not allow to assess climate changes at regional or local scales. Therefore it is necessary to lead studies concerning how to detail the GCMs information. The problem of information transfer from the GCMs to higher spatial scale solve: dynamical and statistical downscaling. The dynamical downscaling method based on “nesting” global information in a regional models (RCMs, which solve the equations of motion and the thermodynamic laws in a small spatial scale (10–50 km. However, the statistical downscaling models (SDMs identify the relationship between large-scale variable (predictor and small-scale variable (predictand implementing linear regression. The main goal of the study was to compare the global model scenarios of thermal condition in Poland in XXI century with the more accurate statistical and dynamical regional models outcomes. Generally studies confirmed usefulness of statistical downscaling to detail information from GCMs. Basic results present that regional models captured local aspects of thermal conditions variability especially in coastal zone.

  14. Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data.

    Science.gov (United States)

    Owen, Julia P; Wipf, David P; Attias, Hagai T; Sekihara, Kensuke; Nagarajan, Srikantan S

    2012-03-01

    In this paper, we present an extensive performance evaluation of a novel source localization algorithm, Champagne. It is derived in an empirical Bayesian framework that yields sparse solutions to the inverse problem. It is robust to correlated sources and learns the statistics of non-stimulus-evoked activity to suppress the effect of noise and interfering brain activity. We tested Champagne on both simulated and real M/EEG data. The source locations used for the simulated data were chosen to test the performance on challenging source configurations. In simulations, we found that Champagne outperforms the benchmark algorithms in terms of both the accuracy of the source localizations and the correct estimation of source time courses. We also demonstrate that Champagne is more robust to correlated brain activity present in real MEG data and is able to resolve many distinct and functionally relevant brain areas with real MEG and EEG data. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. The mechanical design and simulation of a scaled H{sup −} Penning ion source

    Energy Technology Data Exchange (ETDEWEB)

    Rutter, T., E-mail: theo.rutter@stfc.ac.uk; Faircloth, D.; Turner, D.; Lawrie, S. [Rutherford Appleton Laboratory, Didcot OX110QX (United Kingdom)

    2016-02-15

    The existing ISIS Penning H{sup −} source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  16. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    Science.gov (United States)

    Alton, G. D.; Bilheux, H.

    2004-05-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j+ext, and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j+ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects.

  17. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    International Nuclear Information System (INIS)

    Alton, G.D.; Bilheux, H.

    2004-01-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j +ext , and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j +ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects

  18. Near Source Energy Partitioning for Regional Waves in 2D and 3D Models

    National Research Council Canada - National Science Library

    Xie, Xiao-Bi; Lay, Thome; Wu, Ru-Shan

    2008-01-01

    ...) to calculate seismic wave excitation and propagation in near-source region. An embedded array slowness analysis is used for quantifying how energy will be partitioned into the long-range propagation regime...

  19. Source processes of strong earthquakes in the North Tien-Shan region

    Science.gov (United States)

    Kulikova, G.; Krueger, F.

    2013-12-01

    Tien-Shan region attracts attention of scientists worldwide due to its complexity and tectonic uniqueness. A series of very strong destructive earthquakes occurred in Tien-Shan at the turn of XIX and XX centuries. Such large intraplate earthquakes are rare in seismology, which increases the interest in the Tien-Shan region. The presented study focuses on the source processes of large earthquakes in Tien-Shan. The amount of seismic data is limited for those early times. In 1889, when a major earthquake has occurred in Tien-Shan, seismic instruments were installed in very few locations in the world and these analog records did not survive till nowadays. Although around a hundred seismic stations were operating at the beginning of XIX century worldwide, it is not always possible to get high quality analog seismograms. Digitizing seismograms is a very important step in the work with analog seismic records. While working with historical seismic records one has to take into account all the aspects and uncertainties of manual digitizing and the lack of accurate timing and instrument characteristics. In this study, we develop an easy-to-handle and fast digitization program on the basis of already existing software which allows to speed up digitizing process and to account for all the recoding system uncertainties. Owing to the lack of absolute timing for the historical earthquakes (due to the absence of a universal clock at that time), we used time differences between P and S phases to relocate the earthquakes in North Tien-Shan and the body-wave amplitudes to estimate their magnitudes. Combining our results with geological data, five earthquakes in North Tien-Shan were precisely relocated. The digitizing of records can introduce steps into the seismograms which makes restitution (removal of instrument response) undesirable. To avoid the restitution, we simulated historic seismograph recordings with given values for damping and free period of the respective instrument and

  20. Modal functions. Properties and application for simulation of subject regions

    International Nuclear Information System (INIS)

    Rudkevich, A.V.

    1988-01-01

    New type of information structures for simulation of undefined information in information retrieval systems is suggested. Main properties of modal functions have been proved. Algorithm of their applications for data retrieval is presented. 9 refs

  1. A new method to estimate heat source parameters in gas metal arc welding simulation process

    International Nuclear Information System (INIS)

    Jia, Xiaolei; Xu, Jie; Liu, Zhaoheng; Huang, Shaojie; Fan, Yu; Sun, Zhi

    2014-01-01

    Highlights: •A new method for accurate simulation of heat source parameters was presented. •The partial least-squares regression analysis was recommended in the method. •The welding experiment results verified accuracy of the proposed method. -- Abstract: Heat source parameters were usually recommended by experience in welding simulation process, which induced error in simulation results (e.g. temperature distribution and residual stress). In this paper, a new method was developed to accurately estimate heat source parameters in welding simulation. In order to reduce the simulation complexity, a sensitivity analysis of heat source parameters was carried out. The relationships between heat source parameters and welding pool characteristics (fusion width (W), penetration depth (D) and peak temperature (T p )) were obtained with both the multiple regression analysis (MRA) and the partial least-squares regression analysis (PLSRA). Different regression models were employed in each regression method. Comparisons of both methods were performed. A welding experiment was carried out to verify the method. The results showed that both the MRA and the PLSRA were feasible and accurate for prediction of heat source parameters in welding simulation. However, the PLSRA was recommended for its advantages of requiring less simulation data

  2. Reducing Ambulance Diversion at Hospital and Regional Levels: Systemic Review of Insights from Simulation Models

    Directory of Open Access Journals (Sweden)

    M Kit Delgado

    2013-09-01

    Full Text Available Introduction: Optimal solutions for reducing diversion without worsening emergency department (ED crowding are unclear. We performed a systematic review of published simulation studies to identify: 1 the tradeoff between ambulance diversion and ED wait times; 2 the predicted impact of patient flow interventions on reducing diversion; and 3 the optimal regional strategy for reducing diversion.Methods: Data Sources: Systematic review of articles using MEDLINE, Inspec, Scopus. Additional studies identified through bibliography review, Google Scholar, and scientific conference proceedings. Study Selection: Only simulations modeling ambulance diversion as a result of ED crowding or inpatient capacity problems were included. Data extraction: Independent extraction by two authors using predefined data fields.Results: We identified 5,116 potentially relevant records; 10 studies met inclusion criteria. In models that quantified the relationship between ED throughput times and diversion, diversion was found to only minimally improve ED waiting room times. Adding holding units for inpatient boarders and ED-based fast tracks, improving lab turnaround times, and smoothing elective surgery caseloads were found to reduce diversion considerably. While two models found a cooperative agreement between hospitals is necessary to prevent defensive diversion behavior by a hospital when a nearby hospital goes on diversion, one model found there may be more optimal solutions for reducing region wide wait times than a regional ban on diversion.Conclusion: Smoothing elective surgery caseloads, adding ED fast tracks as well as holding units for inpatient boarders, improving ED lab turnaround times, and implementing regional cooperative agreements among hospitals. [West J Emerg Med. 2013;14(5:489-498.

  3. The Tokar Gap Jet: Regional Circulation, Diurnal Variability, and Moisture Transport Based on Numerical Simulations

    KAUST Repository

    Davis, Shannon R.; Pratt, Lawrence J.; Jiang, Houshuo

    2015-01-01

    The structure, variability, and regional connectivity of the Tokar Gap jet (TGJ) are described using WRF Model analyses and supporting atmospheric datasets from the East African–Red Sea–Arabian Peninsula (EARSAP) region during summer 2008. Sources

  4. Source sector and region contributions to BC and PM2.5 in Central Asia

    NARCIS (Netherlands)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J.P.; Shafer, M.M.; Schauer, J.J.; Solomon, P.A.; Saide, P.E.; Spak, S.N.; Cheng, Y.F.; Denier Van Der Gon, H.A.C.; Lu, Z.; Streets, D.G.; Janssens-Maenhout, G.; Wiedinmyer, C.; Lantz, J.; Artamonova, M.; Chen, B.; Imashev, S.; Sverdlik, L.; Deminter, J.T.; Adhikary, B.; D'Allura, A.; Wei, C.; Carmichael, G.R.

    2015-01-01

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008-July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather

  5. Source Sector and Region Contributions to BC and PM2.5 in Central Asia

    Science.gov (United States)

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector and source region contributions in Central Asia (CA) are analyzed for the period April 2008-July 2009 using the STEM chemical transport model and modeled meteorology from the WRF model. Predicted AOD valu...

  6. Production of accelerated electrons near an electron source in the plasma resonance region

    International Nuclear Information System (INIS)

    Fedorov, V.A.

    1989-01-01

    Conditions of generation of plasma electrons accelerated and their characteristics in the vicinity of an electron source are determined. The electron source isolated electrically with infinitely conducting surface, being in unrestricted collisionless plasma ω 0 >>ν, where ω 0 - plasma frequency of nonperturbated plasma, ν - frequency of plasma electron collisions with other plasma particles, is considered. Spherically symmetric injection of electrons, which rates are simulated by ω frequency, occurs from the source surface. When describing phenomena in the vicinity of the electron source, one proceeds from the quasihydrodynamic equation set

  7. Monte Carlo simulation of MOSFET dosimeter for brachytherapy sources

    International Nuclear Information System (INIS)

    Suchitra, G.; Bharanidharan, G.; Manigandan, D.; Aruna, P.; Ganesan, S.; Subbaiah, K.V.

    2008-01-01

    In vivo patient dose verification is considered to be an important part of quality assurance in radiotherapy, as there may be uncertainty between the prescribed dose and the dose actually delivered to the patients. A dose estimator method was used to calculate the dose in the extremely thin sensitive volume. This work shows the response of MOSFET detector for various brachytherapy sources at various experimental condition and the results were compared with the earlier published values. The details of computations and the results are discussed

  8. Numerical simulation of a meteorological regime of Pontic region

    Science.gov (United States)

    Toropov, P.; Silvestrova, K.

    2012-04-01

    The Black Sea Coast of Caucasus is one of priority in sense of meteorological researches. It is caused both strategic and economic importance of coast, and current development of an infrastructure for the winter Olympic Games «Sochi-2014». During the winter period at the Black Sea Coast of Caucasus often there are the synoptic conditions leading to occurrence of the dangerous phenomena of weather: «northeast», ice-storms, strong rains, etc. The Department of Meteorology (Moscow State University) throughout 8 years spends regular measurements on the basis of Southern Department of Institute of Oenology of the Russian Academy of Sciences in July and February. They include automatically measurements with the time resolution of 5 minutes in three points characterizing landscape or region (coast, steppe plain, top of the Markothsky ridge), measurements of flux of solar radiation, measurements an atmospheric precipitation in 8 points, which remoteness from each other - 2-3 km. The saved up material has allowed to reveal some features of a meteorological mode of coast. But an overall objective of measurements - an estimation of quality of the numerical forecast by means of «meso scale» models (for example - model WRF). The first of numerical experiments by WRF model were leaded in 2007 year and were devoted reproduction of a meteorological mode of the Black Sea coast. The second phase of experiments has been directed on reproduction the storm phenomena (Novorossiysk nord-ost). For estimation of the modeling data was choused area witch limited by coordinates 44,1 - 44,75 (latitude) and 37,6 - 39 (longitude). Estimations are spent for the basic meteorological parameters - for pressure, temperature, speed of a wind. As earlier it was marked, 8 meteorological stations are located in this territory. Their values are accepted for the standard. Errors are calculated for February 2005, 2006, 2008, 2011 years, because in these periods was marked a strong winds. As the

  9. The IAEA Regional Training Course on Regulatory Control of Radiation Sources

    International Nuclear Information System (INIS)

    2000-01-01

    Materials of the IAEA Regional Training Course contains 8 presented lectures. Authors deals with regulatory control of radiation sources. The next materials of the IAEA were presented: Organization and implementation of a national regulatory infrastructure governing protection against ionizing radiation and the safety of radiation sources. (IAEA-TECDOC-1067); Safety assessment plants for authorization and inspection of radiation sources (IAEA-TECDOC-1113); Regulatory authority information system RAIS, Version 2.0, Instruction manual

  10. Improved selection criteria for H II regions, based on IRAS sources

    Science.gov (United States)

    Yan, Qing-Zeng; Xu, Ye; Walsh, A. J.; Macquart, J. P.; MacLeod, G. C.; Zhang, Bo; Hancock, P. J.; Chen, Xi; Tang, Zheng-Hong

    2018-05-01

    We present new criteria for selecting H II regions from the Infrared Astronomical Satellite (IRAS) Point Source Catalogue (PSC), based on an H II region catalogue derived manually from the all-sky Wide-field Infrared Survey Explorer (WISE). The criteria are used to augment the number of H II region candidates in the Milky Way. The criteria are defined by the linear decision boundary of two samples: IRAS point sources associated with known H II regions, which serve as the H II region sample, and IRAS point sources at high Galactic latitudes, which serve as the non-H II region sample. A machine learning classifier, specifically a support vector machine, is used to determine the decision boundary. We investigate all combinations of four IRAS bands and suggest that the optimal criterion is log(F_{60}/F_{12})≥ ( -0.19 × log(F_{100}/F_{25})+ 1.52), with detections at 60 and 100 {μ}m. This selects 3041 H II region candidates from the IRAS PSC. We find that IRAS H II region candidates show evidence of evolution on the two-colour diagram. Merging the WISE H II catalogue with IRAS H II region candidates, we estimate a lower limit of approximately 10 200 for the number of H II regions in the Milky Way.

  11. Sources of water vapor to economically relevant regions in Amazonia and the effect of deforestation

    Science.gov (United States)

    Pires, G. F.; Fontes, V. C.

    2017-12-01

    The Amazon rain forest helps regulate the regional humid climate. Understanding the effects of Amazon deforestation is important to preserve not only the climate, but also economic activities that depend on it, in particular, agricultural productivity and hydropower generation. This study calculates the source of water vapor contributing to the precipitation on economically relevant regions in Amazonia according to different scenarios of deforestation. These regions include the state of Mato Grosso, which produces about 9% of the global soybean production, and the basins of the Xingu and Madeira, with infrastructure under construction that will be capable to generate 20% of the electrical energy produced in Brazil. The results show that changes in rainfall after deforestation are stronger in regions nearest to the ocean and indicate the importance of the continental water vapor source to the precipitation over southern Amazonia. In the two more continental regions (Madeira and Mato Grosso), decreases in the source of water vapor in one region were offset by increases in contributions from other continental regions, whereas in the Xingu basin, which is closer to the ocean, this mechanism did not occur. As a conclusion, the geographic location of the region is an important determinant of the resiliency of the regional climate to deforestation-induced regional climate change. The more continental the geographic location, the less climate changes after deforestation.

  12. Monte Carlo simulation of a TRIGA source driven core configuration: Preliminary results

    International Nuclear Information System (INIS)

    Burgio, N.; Ciavola, C.; Santagata, A.

    2002-01-01

    The different core configurations with a k eff ranging from 0.93 to 0.98, and their response when driven by a pulsed neutron source were simulated with MCNP4C3 (Los Alamos - Monte Carlo N Particles). Simulation results could be considered both as preliminary check for nuclear data and a conceptual design for 'source jerk' experiments on the frame of TRIGA Accelerator Driven Experiment (TRADE) on the reactor facility of Casaccia research center. (author)

  13. Regional cooperation to reduce the safety and security risks of Orphan radioactive sources

    International Nuclear Information System (INIS)

    Howard, Geoffrey; Hacker, Celia; Murray, Allan; Romallosa, Kristine; Caseria, Estrella; Africa del Castillo, Lorena

    2008-01-01

    ANSTO's Regional Security of Radioactive Sources (RSRS) Project, in cooperation with the Philippine Nuclear Research Institute (PNRI), has initiated a program to reduce the safety and security risks of orphan radioactive sources in the Philippines. Collaborative work commenced in February 2006 during the Regional Orphan Source Search and Methods Workshop, co-hosted by ANSTO and the US National Nuclear Security Administration. Further professional development activities have occurred following requests by PNRI to ANSTO to support improvements in PNRI's capability and training programs to use a range of radiation survey equipment and on the planning and methods for conducting orphan source searches. The activities, methods and outcomes of the PNRI-ANSTO cooperative program are described, including: i.) Delivering a training workshop which incorporates use of source search and nuclide identification equipment and search methodology; and train-the-trainer techniques for effective development and delivery of custom designed training in the Philippines; ii.) Support and peer review of course work on Orphan Source Search Equipment and Methodology developed by PNRI Fellows; iii.) Supporting the delivery of the inaugural National Training Workshop on Orphan Source Search hosted by PNRI in the Philippines; iv.) Partnering in searching for orphan sources in Luzon, Philippines, in May 2007. The methods employed during these international cooperation activities are establishing a new model of regional engagement that emphasises sustainability of outcomes for safety and security of radioactive sources. (author)

  14. PSRPOPPy: an open-source package for pulsar population simulations

    Science.gov (United States)

    Bates, S. D.; Lorimer, D. R.; Rane, A.; Swiggum, J.

    2014-04-01

    We have produced a new software package for the simulation of pulsar populations, PSRPOPPY, based on the PSRPOP package. The codebase has been re-written in Python (save for some external libraries, which remain in their native Fortran), utilizing the object-oriented features of the language, and improving the modularity of the code. Pre-written scripts are provided for running the simulations in `standard' modes of operation, but the code is flexible enough to support the writing of personalised scripts. The modular structure also makes the addition of experimental features (such as new models for period or luminosity distributions) more straightforward than with the previous code. We also discuss potential additions to the modelling capabilities of the software. Finally, we demonstrate some potential applications of the code; first, using results of surveys at different observing frequencies, we find pulsar spectral indices are best fitted by a normal distribution with mean -1.4 and standard deviation 1.0. Secondly, we model pulsar spin evolution to calculate the best fit for a relationship between a pulsar's luminosity and spin parameters. We used the code to replicate the analysis of Faucher-Giguère & Kaspi, and have subsequently optimized their power-law dependence of radio luminosity, L, with period, P, and period derivative, Ṗ. We find that the underlying population is best described by L ∝ P-1.39±0.09 Ṗ0.48±0.04 and is very similar to that found for γ-ray pulsars by Perera et al. Using this relationship, we generate a model population and examine the age-luminosity relation for the entire pulsar population, which may be measurable after future large-scale surveys with the Square Kilometre Array.

  15. Evaluating uncertainties in regional climate simulations over South America at the seasonal scale

    Energy Technology Data Exchange (ETDEWEB)

    Solman, Silvina A. [Centro de Investigaciones del Mar y la Atmosfera CIMA/CONICET-UBA, DCAO/FCEN, UMI-IFAECI/CNRS, CIMA-Ciudad Universitaria, Buenos Aires (Argentina); Pessacg, Natalia L. [Centro Nacional Patagonico (CONICET), Puerto Madryn, Chubut (Argentina)

    2012-07-15

    This work focuses on the evaluation of different sources of uncertainty affecting regional climate simulations over South America at the seasonal scale, using the MM5 model. The simulations cover a 3-month period for the austral spring season. Several four-member ensembles were performed in order to quantify the uncertainty due to: the internal variability; the definition of the regional model domain; the choice of physical parameterizations and the selection of physical parameters within a particular cumulus scheme. The uncertainty was measured by means of the spread among individual members of each ensemble during the integration period. Results show that the internal variability, triggered by differences in the initial conditions, represents the lowest level of uncertainty for every variable analyzed. The geographic distribution of the spread among ensemble members depends on the variable: for precipitation and temperature the largest spread is found over tropical South America while for the mean sea level pressure the largest spread is located over the southeastern Atlantic Ocean, where large synoptic-scale activity occurs. Using nudging techniques to ingest the boundary conditions reduces dramatically the internal variability. The uncertainty due to the domain choice displays a similar spatial pattern compared with the internal variability, except for the mean sea level pressure field, though its magnitude is larger all over the model domain for every variable. The largest spread among ensemble members is found for the ensemble in which different combinations of physical parameterizations are selected. The perturbed physics ensemble produces a level of uncertainty slightly larger than the internal variability. This study suggests that no matter what the source of uncertainty is, the geographical distribution of the spread among members of the ensembles is invariant, particularly for precipitation and temperature. (orig.)

  16. Parallel Beam Dynamics Simulation Tools for Future Light Source Linac Modeling

    International Nuclear Information System (INIS)

    Qiang, Ji; Pogorelov, Ilya v.; Ryne, Robert D.

    2007-01-01

    Large-scale modeling on parallel computers is playing an increasingly important role in the design of future light sources. Such modeling provides a means to accurately and efficiently explore issues such as limits to beam brightness, emittance preservation, the growth of instabilities, etc. Recently the IMPACT codes suite was enhanced to be applicable to future light source design. Simulations with IMPACT-Z were performed using up to one billion simulation particles for the main linac of a future light source to study the microbunching instability. Combined with the time domain code IMPACT-T, it is now possible to perform large-scale start-to-end linac simulations for future light sources, including the injector, main linac, chicanes, and transfer lines. In this paper we provide an overview of the IMPACT code suite, its key capabilities, and recent enhancements pertinent to accelerator modeling for future linac-based light sources

  17. Stochastic simulation of regional groundwater flow in Beishan area

    International Nuclear Information System (INIS)

    Dong Yanhui; Li Guomin

    2010-01-01

    Because of the hydrogeological complexity, traditional thinking of aquifer characteristics is not appropriate for groundwater system in Beishan area. Uncertainty analysis of groundwater models is needed to examine the hydrologic effects of spatial heterogeneity. In this study, fast Fourier transform spectral method (FFTS) was used to generate the random horizontal permeability parameters. Depth decay and vertical anisotropy of hydraulic conductivity were included to build random permeability models. Based on high-performance computers, hundreds of groundwater flow models were simulated. Through stochastic simulations, the effect of heterogeneity to groundwater flow pattern was analyzed. (authors)

  18. Basalts as probes of planetary interiors: constraints on the chemistry and mineralogy of their source regions

    International Nuclear Information System (INIS)

    Bence, A.E.; Grove, T.L.; Papike, J.J.

    1980-01-01

    Basalt magmas, derived by the partial melting of planetary interiors, have compositions that reflect the pre-accretionary history of the material from which the planet formed, the planets, subsequent evolutionary history, the chemistry and mineralogy of the source regions, and the intensive thermodynamic parameters operating at the source and emplacement sites. Studies of basalt suites from the Earth, its Moon, and the eucrite parent body reveal compositional differences intrinsic to their source regions which are, in turn, a characteristic of the planet and its formational and evolutionary history. (Auth.)

  19. OpenDanubia - An integrated, modular simulation system to support regional water resource management

    Science.gov (United States)

    Muerth, M.; Waldmann, D.; Heinzeller, C.; Hennicker, R.; Mauser, W.

    2012-04-01

    The already completed, multi-disciplinary research project GLOWA-Danube has developed a regional scale, integrated modeling system, which was successfully applied on the 77,000 km2 Upper Danube basin to investigate the impact of Global Change on both the natural and anthropogenic water cycle. At the end of the last project phase, the integrated modeling system was transferred into the open source project OpenDanubia, which now provides both the core system as well as all major model components to the general public. First, this will enable decision makers from government, business and management to use OpenDanubia as a tool for proactive management of water resources in the context of global change. Secondly, the model framework to support integrated simulations and all simulation models developed for OpenDanubia in the scope of GLOWA-Danube are further available for future developments and research questions. OpenDanubia allows for the investigation of water-related scenarios considering different ecological and economic aspects to support both scientists and policy makers to design policies for sustainable environmental management. OpenDanubia is designed as a framework-based, distributed system. The model system couples spatially distributed physical and socio-economic process during run-time, taking into account their mutual influence. To simulate the potential future impacts of Global Change on agriculture, industrial production, water supply, households and tourism businesses, so-called deep actor models are implemented in OpenDanubia. All important water-related fluxes and storages in the natural environment are implemented in OpenDanubia as spatially explicit, process-based modules. This includes the land surface water and energy balance, dynamic plant water uptake, ground water recharge and flow as well as river routing and reservoirs. Although the complete system is relatively demanding on data requirements and hardware requirements, the modular structure

  20. Post-processing of Monte Carlo simulations for rapid BNCT source optimization studies

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    2000-01-01

    A great advantage of some neutron sources, such as accelerator-produced sources, is that they can be tuned to produce different spectra. Unfortunately, optimization studies are often time-consuming and difficult, as they require a lengthy Monte Carlo simulation for each source. When multiple characteristics, such as energy, angle, and spatial distribution of a neutron beam are allowed to vary, an overwhelming number of simulations may be required. Many optimization studies, therefore, suffer from a small number of datapoints, restrictive treatment conditions, or poor statistics. By scoring pertinent information from every particle tally in a Monte Carlo simulation, then applying appropriate source variable weight factors in a post-processing algorithm, a single simulation can be used to model any number of multiple sources. Through this method, the response to a new source can be modeled in minutes or seconds, rather than hours or days, allowing for the analysis of truly variable source conditions of much greater resolution than is normally possible when a new simulation must be run for each datapoint in a study. This method has been benchmarked and used to recreate optimization studies in a small fraction of the time spent in the original studies

  1. Post-processing of Monte Carlo simulations for rapid BNCT source optimization studies

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    2000-01-01

    A great advantage of some neutron sources, such as accelerator-produced sources, is that they can be tuned to produce different spectra. Unfortunately, optimization studies are often time-consuming and difficult, as they require a lengthy Monte Carlo simulation for each source. When multiple characteristics, such as energy, angle, and spatial distribution of a neutron beam are allowed to vary, an overwhelming number of simulations may be required. Many optimization studies, therefore, suffer from a small number of data points, restrictive treatment conditions, or poor statistics. By scoring pertinent information from every particle tally in a Monte Carlo simulation, then applying appropriate source variable weight factors in a post-processing algorithm; a single simulation can be used to model any number of multiple sources. Through this method, the response to a new source can be modeled in minutes or seconds, rather than hours or days, allowing for the analysis of truly variable source conditions of much greater resolution than is normally possible when a new simulation must be run for each data point in a study. This method has been benchmarked and used to recreate optimization studies in a small fraction of the time spent in the original studies. (author)

  2. Source apportionment of secondary organic aerosol in China using a regional source-oriented chemical transport model and two emission inventories.

    Science.gov (United States)

    Wang, Peng; Ying, Qi; Zhang, Hongliang; Hu, Jianlin; Lin, Yingchao; Mao, Hongjun

    2018-06-01

    A Community Multiscale Air Quality (CMAQ) model with source-oriented lumped SAPRC-11 (S11L) photochemical mechanism and secondary organic aerosol (SOA) module was applied to determine the contributions of anthropogenic and biogenic sources to SOA concentrations in China. A one-year simulation of 2013 using the Multi-resolution Emission Inventory for China (MEIC) shows that summer SOA are generally higher (10-15 μg m -3 ) due to large contributions of biogenic (country average 60%) and industrial sources (17%). In winter, SOA formation was mostly due to anthropogenic emissions from industries (40%) and residential sources (38%). Emissions from other countries in southeast China account for approximately 14% of the SOA in both summer and winter, and 46% in spring due to elevated open biomass burning in southeast Asia. The Regional Emission inventory in ASia v2.1 (REAS2) was applied in this study for January and August 2013. Two sets of simulations with the REAS2 inventory were conducted using two different methods to speciate total non-methane carbon into model species. One approach uses total non-methane hydrocarbon (NMHC) emissions and representative speciation profiles from the SPECIATE database. The other approach retains the REAS2 speciated species that can be directly mapped to S11L model species and uses source specific splitting factors to map other REAS2 lumped NMHC species. Biogenic emissions are still the most significant contributor in summer based on these two sets of simulations. However, contributions from the transportation sector to SOA in January are predicted to be much more important based on the two REAS2 emission inventories (∼30-40% vs. ∼5% by MEIC), and contributions from residential sources according to REAS2 was much lower (∼21-24% vs. ∼42%). These discrepancies in source contributions to SOA need to be further investigated as the country seeks for optimal emission control strategies to fight severe air pollution. Copyright

  3. Nonlinear simulations of particle source effects on edge localized mode

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China)

    2015-12-15

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.

  4. Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model REMO

    International Nuclear Information System (INIS)

    Chevillard, A.; Ciais, P.; Lafont, S.

    2002-01-01

    The spatial distribution and the temporal variability of atmospheric CO 2 over Europe and western Siberia are investigated using the regional atmospheric model, REMO. The model, of typical horizontal resolution 50 km, is part of a nested modelling framework that has been established as a concerted action during the EUROSIBERIAN CARBONFLUX project. In REMO, the transport of CO 2 is simulated together with climate variables, which offers the possibility of calculating at each time step the land atmosphere CO 2 fluxes as driven by the modelled meteorology. The uptake of CO 2 by photosynthesis is calculated using a light use efficiency formulation, where the absorbed photosynthetically active solar radiation is inferred from satellite measurements. The release of CO 2 from plant and soil respiration is driven by the simulated climate and assumed to be in equilibrium with photosynthesis over the course of one year. Fossil CO 2 emissions and air-sea fluxes within the model domain are prescribed, whereas the influence of sources outside the model domain is computed from as a boundary condition CO 2 fields determined a global transport model. The modelling results are compared against pointwise eddy covariance fluxes, and against atmospheric CO 2 records. We show that a necessary condition to simulate realistically the variability of atmospheric CO 2 over continental Europe is to account for the diurnal cycle of biospheric exchange. Overall, for the study period of July 1998, REMO realistically simulates the short-term variability of fluxes and of atmospheric mixing ratios. However, the mean CO 2 gradients from western Europe to western Siberia are not correctly reproduced. This latter deficiency points out the key role of boundary conditions in a limited-area model, as well as the need for using more realistic geographic mean patterns of biospheric carbon fluxes

  5. Construction of Fine Particles Source Spectrum Bank in Typical Region and Empirical Research of Matching Diagnosis

    Science.gov (United States)

    Wang, Xing; Sun, Wenliang; Guo, Min; Li, Minjiao; Li, Wan

    2018-01-01

    The research object of this paper is fine particles in typical region. The construction of component spectrum bank is based on the technology of online source apportionment, then the result of the apportionment is utilized to verify the effectiveness of fine particles component spectrum bank and which also act as the matching basis of online source apportionment receptor sample. On the next, the particle source of air pollution is carried through the matching diagnosis empirical research by utilizing online source apportionment technology, to provide technical support for the cause analysis and treatment of heavy pollution weather.

  6. Regional-Scale Climate Change: Observations and Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  7. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    1997-01-01

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  8. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  9. simulation du climat futur et des rendements agricoles en region

    African Journals Online (AJOL)

    ACSS

    2017, African Crop Science Society. African Crop Science Journal by African Crop Science Society is licensed under a Creative Commons Attribution 3.0 Uganda License. Based on a work at www.ajol.info/ and www.bioline.org.br/cs. DOI: http://dx.doi.org/10.4314/acsj.v25i4.2. SIMULATION DU CLIMAT FUTUR ET DES ...

  10. Joint simulation of regional areas burned in Canadian forest fires: A Markov Chain Monte Carlo approach

    Science.gov (United States)

    Steen Magnussen

    2009-01-01

    Areas burned annually in 29 Canadian forest fire regions show a patchy and irregular correlation structure that significantly influences the distribution of annual totals for Canada and for groups of regions. A binary Monte Carlo Markov Chain (MCMC) is constructed for the purpose of joint simulation of regional areas burned in forest fires. For each year the MCMC...

  11. Simulation of RF power and multi-cusp magnetic field requirement for H{sup −} ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Manish [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Senecha, V.K., E-mail: kumarvsen@gmail.com [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Homi Bhabha National Institute, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Kumar, Rajnish; Ghodke, Dharmraj V. [Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India)

    2016-12-01

    A computer simulation study for multi-cusp RF based H{sup −} ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H{sup −} Linac project for SNS applications. The average reaction rates for different reactions responsible for H{sup −} ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H{sup -} ion source for a maximum possible H{sup −} ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H{sup −} ion source like excited hydrogen molecular density, H{sup −} ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H{sup −} ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H{sup −} ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.

  12. Application of SELECT and SWAT models to simulate source load, fate, and transport of fecal bacteria in watersheds.

    Science.gov (United States)

    Ranatunga, T.

    2017-12-01

    Modeling of fate and transport of fecal bacteria in a watershed is a processed based approach that considers releases from manure, point sources, and septic systems. Overland transport with water and sediments, infiltration into soils, transport in the vadose zone and groundwater, die-off and growth processes, and in-stream transport are considered as the other major processes in bacteria simulation. This presentation will discuss a simulation of fecal indicator bacteria source loading and in-stream conditions of a non-tidal watershed (Cedar Bayou Watershed) in South Central Texas using two models; Spatially Explicit Load Enrichment Calculation Tool (SELECT) and Soil and Water Assessment Tool (SWAT). Furthermore, it will discuss a probable approach of bacteria source load reduction in order to meet the water quality standards in the streams. The selected watershed is listed as having levels of fecal indicator bacteria that posed a risk for contact recreation and wading by the Texas Commission of Environmental Quality (TCEQ). The SELECT modeling approach was used in estimating the bacteria source loading from land categories. Major bacteria sources considered were, failing septic systems, discharges from wastewater treatment facilities, excreta from livestock (Cattle, Horses, Sheep and Goat), excreta from Wildlife (Feral Hogs, and Deer), Pet waste (mainly from Dogs), and runoff from urban surfaces. The estimated source loads from SELECT model were input to the SWAT model, and simulate the bacteria transport through the land and in-stream. The calibrated SWAT model was then used to estimate the indicator bacteria in-stream concentrations for future years based on regional land use, population and household forecast (up to 2040). Based on the reductions required to meet the water quality standards in-stream, the corresponding required source load reductions were estimated.

  13. simulation du climat futur et des rendements agricoles en region

    African Journals Online (AJOL)

    ACSS

    REGION SOUDANO-SAHELIENNE EN REPUBLIQUE DU BENIN. S. KATE, O. TEKA1, ... La présente étude a été initiée pour déterminer les caractéristiques des rendements des principales ..... Climate change in cities due to global warming ...

  14. Simulation of water use and herbage growth in arid regions

    NARCIS (Netherlands)

    Keulen, van H.

    1975-01-01

    The and and semi-arid regions of the world, totalling about 30% of the land surface of the earth, are predominantly used for extensive grazing, as low and erratic rainfall presents too high a risk for arable farming. The population that can be sustained by the animal products -meat, milk or

  15. Magnetic Separatrix as the Source Region of the Plasma Supply for an Active-region Filament

    Energy Technology Data Exchange (ETDEWEB)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Cao, Wenda [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

    2017-02-10

    Solar filaments can be formed via chromospheric evaporation followed by condensation in the corona or by the direct injection of cool plasma from the chromosphere to the corona. We here confirm with high-resolution H α data observed by the 1.6 m New Solar Telescope of the Big Bear Solar Observatory on 2015 August 21 that an active-region filament is maintained by the continuous injection of cold chromospheric plasma. We find that the filament is rooted along a bright ridge in H α , which corresponds to the intersection of a magnetic quasi-separatrix layer with the solar surface. This bright ridge consists of many small patches whose sizes are comparable to the width of the filament threads. It is found that upflows originate from the brighter patches of the ridge, whereas the downflows move toward the weaker patches of the ridge. The whole filament is composed of two opposite-direction streams, implying that longitudinal oscillations are not the only cause of the counterstreamings, and unidirectional siphon flows with alternative directions are another possibility.

  16. Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-12-01

    Full Text Available A novel multi-source energy harvester based on solar and radioisotope energy sources is designed and simulated in this work. We established the calculation formulas for the short-circuit current and open-circuit voltage, and then studied and analyzed the optimization thickness of the semiconductor, doping concentration, and junction depth with simulation of the transport process of β particles in a semiconductor material using the Monte Carlo simulation program MCNP (version 5, Radiation Safety Information Computational Center, Oak Ridge, TN, USA. In order to improve the efficiency of converting solar light energy into electric power, we adopted PC1D (version 5.9, University of New South Wales, Sydney, Australia to optimize the parameters, and selected the best parameters for converting both the radioisotope energy and solar energy into electricity. The results concluded that the best parameters for the multi-source energy harvester are as follows: Na is 1 × 1019 cm−3, Nd is 3.8 × 1016 cm−3, a PN junction depth of 0.5 μm (using the 147Pm radioisotope source, and so on. Under these parameters, the proposed harvester can achieve a conversion efficiency of 5.05% for the 147Pm radioisotope source (with the activity of 9.25 × 108 Bq and 20.8% for solar light radiation (AM1.5. Such a design and parameters are valuable for some unique micro-power fields, such as applications in space, isolated terrestrial applications, and smart dust in battlefields.

  17. Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized drift compression experiments

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2008-07-01

    Full Text Available Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX. The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and

  18. Methane Fluxes in West Siberia: 3-D Regional Model Simulation

    International Nuclear Information System (INIS)

    Jagovkina, S. V.; Karol, I. L.; Zubov, V. A.; Lagun, V. E.; Reshetnikov, A. I.; Rozanov, E. V.

    2001-01-01

    The West Siberian region is one of the main contributors of the atmospheric greenhouse gas methane due to the large areas of wetlands, rivers, lakes and numerous gas deposits situated there.But there are no reliable estimations of integral methane flux from this area into the atmosphere. For assessment of methane fluxes in West Siberia the specially constructed 3-D regional chemical transport model was applied. The 3-D distribution of methane is calculated on the basis of the current meteorological data fields(wind, temperature, geopotential) updated 4 times a day. The methane concentrations measured near the main gas fields of West Siberia in the summer season of 1999, were used for correction of methane flux intensity estimates obtained previously by comparison of measurements carried out in summer 1993 and 1996 with modelled methane mixing ratio distribution. This set of field and model experiments confirmed the preliminary conclusion about low leakage intensity: anthropogenic methane flux does not exceed 5-15% of total summer methane flux, estimated as 11-12 Mt CH 4 in summer from this region, in spite of the large areas of gas deposits located there

  19. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans.

    Science.gov (United States)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-07

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients' CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  20. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans

    Science.gov (United States)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-01

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  1. Simulation of regional day-ahead PV power forecast scenarios

    DEFF Research Database (Denmark)

    Nuno, Edgar; Koivisto, Matti Juhani; Cutululis, Nicolaos Antonio

    2017-01-01

    Uncertainty associated with Photovoltaic (PV) generation can have a significant impact on real-time planning and operation of power systems. This obstacle is commonly handled using multiple forecast realizations, obtained using for example forecast ensembles and/or probabilistic forecasts, often...... at the expense of a high computational burden. Alternatively, some power system applications may require realistic forecasts rather than actual estimates; able to capture the uncertainty of weatherdriven generation. To this end, we propose a novel methodology to generate day-ahead forecast scenarios of regional...... PV production matching the spatio-temporal characteristics while preserving the statistical properties of actual records....

  2. Power systems simulations of the western United States region

    International Nuclear Information System (INIS)

    Conzelmann, G.; Koritarov, V.; Poch, L.; Thimmapuram, P.; Veselka, T.

    2010-01-01

    This report documents a part of a broad assessment of energy-water-related issues in the western United States. The full analysis involved three Department of Energy national laboratories: Argonne National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories. Argonne's objective in the overall project was to develop a regional power sector expansion forecast and a detailed unit-level operational (dispatch) analysis. With these two major analysis components, Argonne estimated current and future freshwater withdrawals and consumption related to the operation of U.S. thermal-electric power plants in the Western Electricity Coordinating Council (WECC) region for the period 2005-2025. Water is withdrawn and used primarily for cooling but also for environmental control, such as sulfur scrubbers. The current scope of the analysis included three scenarios: (1) Baseline scenario as a benchmark for assessing the adequacy and cost-effectiveness of water conservation options and strategies, (2) High nuclear scenario, and (3) High renewables scenario. Baseline projections are consistent with forecasts made by the WECC and the Energy Information Administration (EIA) in its Annual Energy Outlook (AEO) (EIA 2006a). Water conservation scenarios are currently limited to two development alternatives that focus heavily on constructing new generating facilities with zero water consumption. These technologies include wind farms and nuclear power plants with dry cooling. Additional water conservation scenarios and estimates of water use associated with fuel or resource extraction and processing will be developed in follow-on analyses.

  3. Simulating the reactive transport of nitrogen species in a regional irrigated agricultural groundwater system

    Science.gov (United States)

    Bailey, R. T.; Gates, T. K.

    2011-12-01

    The fate and transport of nitrogen (N) species in irrigated agricultural groundwater systems is governed by irrigation patterns, cultivation practices, aquifer-surface water exchanges, and chemical reactions such as oxidation-reduction, volatilization, and sorption, as well as the presence of dissolved oxygen (O2). We present results of applying the newly-developed numerical model RT3D-AG to a 50,400-ha regional study site within the Lower Arkansas River Valley in southeastern Colorado, where elevated concentrations of NO3 have been observed in both groundwater and surface water during the recent decade. Furthermore, NO3 has a strong influence on the fate and transport of other contaminants in the aquifer system such as selenium (Se) through inhibition of reduction of dissolved Se as well as oxidation of precipitate Se from outcropped and bedrock shale. RT3D-AG, developed by appending the multi-species reactive transport finite-difference model RT3D with modular packages that account for variably-saturated transport, the cycling of carbon (C) and N, and the fate and transport of O2 within the soil and aquifer system, simulates organic C and organic N decomposition and mineralization, oxidation-reduction reactions, and sorption. System sources/sinks consist of applied fertilizer and manure; crop uptake of ammonium (NH4) and NO3 during the growing season; mass of O2, NO3, and NH4 associated with irrigation water and canal seepage; mass of O2, NO3, and NH4 transferred to canals and the Arkansas River from the aquifer; and dead root mass and after-harvest stover mass incorporated into the soil organic matter at the end of the growing season. Chemical reactions are simulated using first-order Monod kinetics, wherein the rate of reaction is dependent on the concentration of the reactants as well as temperature and water content of the soil. Fertilizer and manure application timing and loading, mass of seasonal crop uptake, and end-of-season root mass and stover mass are

  4. Observed and simulated precipitation responses in wet and dry regions 1850–2100

    International Nuclear Information System (INIS)

    Liu Chunlei; Allan, Richard P

    2013-01-01

    Global warming is expected to enhance fluxes of fresh water between the surface and atmosphere, causing wet regions to become wetter and dry regions drier, with serious implications for water resource management. Defining the wet and dry regions as the upper 30% and lower 70% of the precipitation totals across the tropics (30° S–30° N) each month we combine observations and climate model simulations to understand changes in the wet and dry regions over the period 1850–2100. Observed decreases in precipitation over dry tropical land (1950–2010) are also simulated by coupled atmosphere–ocean climate models (−0.3%/decade) with trends projected to continue into the 21st century. Discrepancies between observations and simulations over wet land regions since 1950 exist, relating to decadal fluctuations in El Niño southern oscillation, the timing of which is not represented by the coupled simulations. When atmosphere-only simulations are instead driven by observed sea surface temperature they are able to adequately represent this variability over land. Global distributions of precipitation trends are dominated by spatial changes in atmospheric circulation. However, the tendency for already wet regions to become wetter (precipitation increases with warming by 3% K −1 over wet tropical oceans) and the driest regions drier (precipitation decreases of −2% K −1 over dry tropical land regions) emerges over the 21st century in response to the substantial surface warming. (letter)

  5. Simulating the Regional Impact of Dust on the Middle East Climate and the Red Sea

    KAUST Repository

    Osipov, Sergey; Stenchikov, Georgiy L.

    2018-01-01

    the Regional Ocean Modeling System fully coupled with the Weather Research and Forecasting model. We modified the atmospheric model to account for the radiative effect of dust. The simulations show that, in the equilibrium response, dust cools the Red Sea

  6. Very high resolution regional climate model simulations over Greenland: Identifying added value

    DEFF Research Database (Denmark)

    Lucas-Picher, P.; Wulff-Nielsen, M.; Christensen, J.H.

    2012-01-01

    models. However, the bias between the simulations and the few available observations does not reduce with higher resolution. This is partly explained by the lack of observations in regions where the higher resolution is expected to improve the simulated climate. The RCM simulations show......This study presents two simulations of the climate over Greenland with the regional climate model (RCM) HIRHAM5 at 0.05° and 0.25° resolution driven at the lateral boundaries by the ERA-Interim reanalysis for the period 1989–2009. These simulations are validated against observations from...... that the temperature has increased the most in the northern part of Greenland and at lower elevations over the period 1989–2009. Higher resolution increases the relief variability in the model topography and causes the simulated precipitation to be larger on the coast and smaller over the main ice sheet compared...

  7. Simulation of the Investment Attractiveness of Science in a Region

    Directory of Open Access Journals (Sweden)

    Aleksandr Aleksandrovich Tarasyev

    2016-03-01

    Full Text Available The article is devoted to the variable and disproportionate funding of science in the Russian economy. The paper is focused on the analysis of the Russian financial flows into scientific research and development. The paper explains the dynamics of the main investment flows trends into research and development, highlights the causes of financial flows variable dynamics directed to the high-tech industry. In the work, the investment situation in the Russian market was compared with the foreign experience. The genesis of the optimal financial distribution problems showed the need to develop a dynamic model with the built-in differential equations to forecast the behavioral dynamics of investment flows. We selected the statistical indicators, which have a significant impact on the dynamics of investment flows directed into science. To assess the dynamics of investment flows, we have developed a methodology, which provides a cumulative assessment of the territory investment attractiveness. The multifactor integral estimation allows to describe a data array, reflecting the accumulation of investment attractiveness over time depending on the dynamics of the resultant socio-economic proportional indexes. Due to the accumulation of a data array over time using a differential equation, it is possible to obtain a forecast of the volume of the territory investment attractiveness. The amount of the projected investment flows depends directly on the amount of the investment attractiveness accumulated for the previous step of model’s time. The integrated assessment of the investment attractiveness of the scientific sector in the region allows to reveal the investors preference of the regions with a high concentration of research institutions and higher education institutes.

  8. Generalizable open source urban water portfolio simulation framework demonstrated using a multi-objective risk-based planning benchmark problem.

    Science.gov (United States)

    Trindade, B. C.; Reed, P. M.

    2017-12-01

    The growing access and reduced cost for computing power in recent years has promoted rapid development and application of multi-objective water supply portfolio planning. As this trend continues there is a pressing need for flexible risk-based simulation frameworks and improved algorithm benchmarking for emerging classes of water supply planning and management problems. This work contributes the Water Utilities Management and Planning (WUMP) model: a generalizable and open source simulation framework designed to capture how water utilities can minimize operational and financial risks by regionally coordinating planning and management choices, i.e. making more efficient and coordinated use of restrictions, water transfers and financial hedging combined with possible construction of new infrastructure. We introduce the WUMP simulation framework as part of a new multi-objective benchmark problem for planning and management of regionally integrated water utility companies. In this problem, a group of fictitious water utilities seek to balance the use of the mentioned reliability driven actions (e.g., restrictions, water transfers and infrastructure pathways) and their inherent financial risks. Several traits of this problem make it ideal for a benchmark problem, namely the presence of (1) strong non-linearities and discontinuities in the Pareto front caused by the step-wise nature of the decision making formulation and by the abrupt addition of storage through infrastructure construction, (2) noise due to the stochastic nature of the streamflows and water demands, and (3) non-separability resulting from the cooperative formulation of the problem, in which decisions made by stakeholder may substantially impact others. Both the open source WUMP simulation framework and its demonstration in a challenging benchmarking example hold value for promoting broader advances in urban water supply portfolio planning for regions confronting change.

  9. Sources and Transportation of Bulk, Low-Cost Lunar Simulant Materials

    Science.gov (United States)

    Rickman, D. L.

    2013-01-01

    Marshall Space Flight Center (MSFC) has built the Lunar Surface Testbed using 200 tons of volcanic cinder and ash from the same source used for the simulant series JSC-1. This Technical Memorandum examines the alternatives examined for transportation and source. The cost of low-cost lunar simulant is driven by the cost of transportation, which is controlled by distance and, to a lesser extent, quantity. Metabasalts in the eastern United States were evaluated due to their proximity to MSFC. Volcanic cinder deposits in New Mexico, Colorado, and Arizona were recognized as preferred sources. In addition to having fewer green, secondary minerals, they contain vesicular glass, both of which are desirable. Transportation costs were more than 90% of the total procurement costs for the simulant material.

  10. Measurement and simulation of the time-dependent behavior of the UMER source

    International Nuclear Information System (INIS)

    Haber, I.; Feldman, D.; Fiorito, R.; Friedman, A.; Grote, D.P.; Kishek, R.A.; Quinn, B.; Reiser, M.; Rodgers, J.; O'Shea, P.G.; Stratakis, D.; Tian, K.; Vay, J.-L.; Walter, M.

    2007-01-01

    Control of the time-dependent characteristics of the beam pulse, beginning when it is born from the source, is important for obtaining adequate beam intensity on a target. Recent experimental measurements combined with the new mesh-refinement capability in WARP have improved the understanding of time-dependent beam characteristics beginning at the source, as well as the predictive ability of the simulation codes. The University of Maryland Electron Ring (UMER), because of its ease of operation and flexible diagnostics has proved particularly useful for benchmarking WARP by comparing simulation to measurement. One source of significant agreement has been in the ability of three-dimensional WARP simulations to predict the onset of virtual cathode oscillations in the vicinity of the cathode grid in the UMER gun, and the subsequent measurement of the predicted oscillations

  11. Uncertainty Source of Modeled Ecosystem Productivity in East Asian Monsoon Region: A Traceability Analysis

    Science.gov (United States)

    Cui, E.; Xia, J.; Huang, K.; Ito, A.; Arain, M. A.; Jain, A. K.; Poulter, B.; Peng, C.; Hayes, D. J.; Ricciuto, D. M.; Huntzinger, D. N.; Tian, H.; Mao, J.; Fisher, J.; Schaefer, K. M.; Huang, M.; Peng, S.; Wang, W.

    2017-12-01

    East Asian monsoon region, benefits from sufficient water-heat availability and increasing nitrogen deposition, represents significantly higher net ecosystem productivity than the same latitudes of Europe-Africa and North America. A better understanding of major contributions to the uncertainties of terrestrial carbon cycle in this region is greatly important for evaluating the global carbon balance. This study analyzed the key carbon processes and parameters derived from a series of terrestrial biosphere models. A wide range of inter-model disagreement on GPP was found in China's subtropical regions. Then, this large difference was traced to a few traceable components included in terrestrial carbon cycle. The increase in ensemble mean GPP over 1901-2010 was predominantly resulted from increasing atmospheric CO2 concentration and nitrogen deposition, while high frequent land-use change over this region showed a slightly negative effect on GPP. However, inter-model differences of GPP were mainly attributed to the baseline simulations without changes in external forcing. According to the variance decomposition, the large spread in simulated GPP was well explained by the differences in leaf area index (LAI) and specific leaf area (SLA) among models. In addition, the underlying errors in simulated GPP propagate through the model and introduce some additional errors to the simulation of NPP and biomass. By comparing the simulations with satellite-derived, data-oriented and observation-based datasets, we further found that GPP, vegetation carbon turn-over time, aboveground biomass, LAI and SLA were all overestimated in most of the models while biomass distribution in leaves was significantly underestimated. The results of this study indicate that model performance on ecosystem productivity in East Asian monsoon region can be improved by a more realistic representation of leaf functional traits.

  12. An Open Source-based Approach to the Development of Research Reactor Simulator

    International Nuclear Information System (INIS)

    Joo, Sung Moon; Suh, Yong Suk; Park, Cheol Park

    2016-01-01

    In reactor design, operator training, safety analysis, or research using a reactor, it is essential to simulate time dependent reactor behaviors such as neutron population, fluid flow, and heat transfer. Furthermore, in order to use the simulator to train and educate operators, a mockup of the reactor user interface is required. There are commercial software tools available for reactor simulator development. However, it is costly to use those commercial software tools. Especially for research reactors, it is difficult to justify the high cost as regulations on research reactor simulators are not as strict as those for commercial Nuclear Power Plants(NPPs). An open source-based simulator for a research reactor is configured as a distributed control system based on EPICS framework. To demonstrate the use of the simulation framework proposed in this work, we consider a toy example. This example approximates a 1-second impulse reactivity insertion in a reactor, which represents the instantaneous removal and reinsertion of a control rod. The change in reactivity results in a slightly delayed change in power and corresponding increases in temperatures throughout the system. We proposed an approach for developing research reactor simulator using open source software tools, and showed preliminary results. The results demonstrate that the approach presented in this work can provide economical and viable way of developing research reactor simulators

  13. Temporal variation and source identification of black carbon at Lin'an and Longfengshan regional background stations in China

    Science.gov (United States)

    Cheng, Siyang; Wang, Yaqiang; An, Xingqin

    2017-12-01

    Black carbon (BC) is a component of fine particulate matter (PM2.5), associated with climate, weather, air quality, and people's health. However, studies on temporal variation of atmospheric BC concentration at background stations in China and its source area identification are lacking. In this paper, we use 2-yr BC observations from two background stations, Lin'an (LAN) and Longfengshan (LFS), to perform the investigation. The results show that the mean diurnal variation of BC has two significant peaks at LAN while different characteristics are found in the BC variation at LFS, which are probably caused by the difference in emission source contributions. Seasonal variation of monthly BC shows double peaks at LAN but a single peak at LFS. The annual mean concentrations of BC at LAN and LFS decrease by 1.63 and 0.26 μg m-3 from 2009 to 2010, respectively. The annual background concentration of BC at LAN is twice higher than that at LFS. The major source of the LAN BC is industrial emission while the source of the LFS BC is residential emission. Based on transport climatology on a 7-day timescale, LAN and LFS stations are sensitive to surface emissions respectively in belt or approximately circular area, which are dominated by summer monsoon or colder land air flows in Northwest China. In addition, we statistically analyze the BC source regions by using BC observation and FLEXible PARTicle dispersion model (FLEXPART) simulation. In summer, the source regions of BC are distributed in the northwest and south of LAN and the southwest of LFS. Low BC concentration is closely related to air mass from the sea. In winter, the source regions of BC are concentrated in the west and south of LAN and the northeast of the threshold area of s tot at LFS. The cold air mass in the northwest plays an important role in the purification of atmospheric BC. On a yearly scale, sources of BC are approximately from five provinces in the northwest/southeast of LAN and the west of LFS. These

  14. The Use of Wood Biomass in the Regional System of Renewable Energy Sources as a Chance for the Region

    Directory of Open Access Journals (Sweden)

    Andrzej Kluczkowski

    2017-12-01

    Full Text Available The world needs energy. It is an obvious truth you do not need to prove. The modern world needs the electricity. With advancing civilization and the rate of consumption, and the demand for electricity is growing. At the same time, conventional resources are running out. This situation leads to the search for new renewable sources of energy. Therefore a crucial role of forests should be taken into consideration. The study shows that, in the relatively short term, the wood biomass (mainly forest will play a significant role in the regional energy system.

  15. Note: The design of thin gap chamber simulation signal source based on field programmable gate array

    International Nuclear Information System (INIS)

    Hu, Kun; Wang, Xu; Li, Feng; Jin, Ge; Lu, Houbing; Liang, Futian

    2015-01-01

    The Thin Gap Chamber (TGC) is an important part of ATLAS detector and LHC accelerator. Targeting the feature of the output signal of TGC detector, we have designed a simulation signal source. The core of the design is based on field programmable gate array, randomly outputting 256-channel simulation signals. The signal is generated by true random number generator. The source of randomness originates from the timing jitter in ring oscillators. The experimental results show that the random number is uniform in histogram, and the whole system has high reliability

  16. Response of a BGO detector to photon and neutron sources simulations and measurements

    CERN Document Server

    Vincke, H H; Fabjan, Christian Wolfgang; Otto, T

    2002-01-01

    In this paper Monte Carlo simulations (FLUKA) and measurements of the response of a BGO detector are reported. %For the measurements different radioactive sources were used to irradiate the BGO crystal. For the measurements three low-energy photon emitters $\\left({}^{60}\\rm{Co},\\right.$ ${}^{54}\\rm{Mn},$ $\\left. {}^{137}\\rm{Cs}\\right)$ were used to irradiate the BGO from various distances and angles. The neutron response was measured with an Am--Be neutron source. Simulations of the experimental irradiations were carried out. Our study can also be considered as a benchmark for FLUKA in terms of its reliability to predict the detector response of a BGO scintillator.

  17. SIMULATION OF THE SYSTEMS WITH RENEWABLE ENERGY SOURCES USING HOMER SOFTWARE

    Directory of Open Access Journals (Sweden)

    FIRINCĂ S.D.

    2015-12-01

    Full Text Available This paper simulates by using the Homer software, distributed energy systems with capacity below 1 MW. Among the renewable energy sources are used wind and solar energy. For photovoltaic panels, we are considering two situations: fixed panels, oriented at 45 ° and panels with tracking system with two axis. Simulation results contain information regarding operation hours of the system throughout the year, energy produced from the renewable energy sources, energy consumption for the load, and excess of electrical energy. The Homer software also allows an economic analysis of these systems.

  18. Runoff simulation using the North American regional reanalysis data set

    International Nuclear Information System (INIS)

    Rasmussen, P.; Kim, S.J.; Moore, A.; Choi, W.

    2008-01-01

    In part due to concerns about the impact of climate change, there has been an increased interest in hydrological modelling of watersheds in Canada. Most of Canada is sparsely populated and a recurrent problem is the lack of quality weather data that are often not available at the sites of interest. Continuous hydrologic models require input of temperature and precipitation as a minimum, and often additional information such as solar radiation and humidity. It is not uncommon that such information must be obtained by interpolating information from weather stations located far outside the watershed. The difficulty in obtaining good calibration results is obvious in such cases. The recently released North American Regional Reanalysis (NARR) data set has been found to be in reasonable agreement with surface observations. NARR surface data, including those commonly required in hydrologic models, are available on a 32 km by 32 km grid which is appropriate for hydrologic modelling. The objective of this paper is to investigate whether hydrologic models for selected watersheds in Central Canada can be adequately calibrated using NARR data rather than conventional station information. For the specific case studies considered here, it is found that calibration with NARR weather information is quite acceptable and similar to what can be obtained using interpolated weather station data. (author)

  19. Numerical simulation for optimization of multipole permanent magnets of multicusp ion source

    International Nuclear Information System (INIS)

    Hosseinzadeh, M.; Afarideh, H.

    2014-01-01

    A new ion source will be designed and manufactured for the CYCLONE30 commercial cyclotron with a much advanced performance compared with the previous one. The newly designed ion source has more plasma density, which is designed to deliver an H – beam at 30 keV. In this paper numerical simulation of the magnetic flux density from permanent magnet used for a multicusp ion source, plasma confinement and trapping of fast electrons by the magnetic field has been performed to optimize the number of magnets confining the plasma. A code has been developed to fly electrons in the magnetic field to evaluate the mean life of electrons in plasma in different magnetic conditions to have a better evaluation and comparison of density in different cases. The purpose of this design is to recapture more energetic electrons with permanent magnets. Performance simulations of the optimized ion source show considerable improvement over reported one by IBA

  20. Optimization of source pencil deployment based on plant growth simulation algorithm

    International Nuclear Information System (INIS)

    Yang Lei; Liu Yibao; Liu Yujuan

    2009-01-01

    A plant growth simulation algorithm was proposed for optimizing source pencil deployment for a 60 Co irradiator. A method used to evaluate the calculation results was presented with the objective function defined by relative standard deviation of the exposure rate at the reference points, and the method to transform two kinds of control variables, i.e., position coordinates x j and y j of source pencils in the source plaque, into proper integer variables was also analyzed and solved. The results show that the plant growth simulation algorithm, which possesses both random and directional search mechanism, has good global search ability and can be used conveniently. The results are affected a little by initial conditions, and improve the uniformity in the irradiation fields. It creates a dependable field for the optimization of source bars arrangement at irradiation facility. (authors)

  1. GIS-Based Noise Simulation Open Source Software: N-GNOIS

    Science.gov (United States)

    Vijay, Ritesh; Sharma, A.; Kumar, M.; Shende, V.; Chakrabarti, T.; Gupta, Rajesh

    2015-12-01

    Geographical information system (GIS)-based noise simulation software (N-GNOIS) has been developed to simulate the noise scenario due to point and mobile sources considering the impact of geographical features and meteorological parameters. These have been addressed in the software through attenuation modules of atmosphere, vegetation and barrier. N-GNOIS is a user friendly, platform-independent and open geospatial consortia (OGC) compliant software. It has been developed using open source technology (QGIS) and open source language (Python). N-GNOIS has unique features like cumulative impact of point and mobile sources, building structure and honking due to traffic. Honking is the most common phenomenon in developing countries and is frequently observed on any type of roads. N-GNOIS also helps in designing physical barrier and vegetation cover to check the propagation of noise and acts as a decision making tool for planning and management of noise component in environmental impact assessment (EIA) studies.

  2. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin

    Directory of Open Access Journals (Sweden)

    M. T. Taye

    2011-01-01

    Full Text Available The potential impact of climate change was investigated on the hydrological extremes of Nyando River and Lake Tana catchments, which are located in two source regions of the Nile River basin. Climate change scenarios were developed for rainfall and potential evapotranspiration (ETo, considering 17 General Circulation Model (GCM simulations to better understand the range of possible future change. They were constructed by transferring the extracted climate change signals to the observed series using a frequency perturbation downscaling approach, which accounts for the changes in rainfall extremes. Projected changes under two future SRES emission scenarios A1B and B1 for the 2050s were considered. Two conceptual hydrological models were calibrated and used for the impact assessment. Their difference in simulating the flows under future climate scenarios was also investigated.

    The results reveal increasing mean runoff and extreme peak flows for Nyando catchment for the 2050s while unclear trend is observed for Lake Tana catchment for mean volumes and high/low flows. The hydrological models for Lake Tana catchment, however, performed better in simulating the hydrological regimes than for Nyando, which obviously also induces a difference in the reliability of the extreme future projections for both catchments. The unclear impact result for Lake Tana catchment implies that the GCM uncertainty is more important for explaining the unclear trend than the hydrological models uncertainty. Nevertheless, to have a better understanding of future impact, hydrological models need to be verified for their credibility of simulating extreme flows.

  3. Evaluation of model-simulated source contributions to tropospheric ozone with aircraft observations in the factor-projected space

    Directory of Open Access Journals (Sweden)

    Y. Yoshida

    2008-03-01

    Full Text Available Trace gas measurements of TOPSE and TRACE-P experiments and corresponding global GEOS-Chem model simulations are analyzed with the Positive Matrix Factorization (PMF method for model evaluation purposes. Specially, we evaluate the model simulated contributions to O3 variability from stratospheric transport, intercontinental transport, and production from urban/industry and biomass burning/biogenic sources. We select a suite of relatively long-lived tracers, including 7 chemicals (O3, NOy, PAN, CO, C3H8, CH3Cl, and 7Be and 1 dynamic tracer (potential temperature. The largest discrepancy is found in the stratospheric contribution to 7Be. The model underestimates this contribution by a factor of 2–3, corresponding well to a reduction of 7Be source by the same magnitude in the default setup of the standard GEOS-Chem model. In contrast, we find that the simulated O3 contributions from stratospheric transport are in reasonable agreement with those derived from the measurements. However, the springtime increasing trend over North America derived from the measurements are largely underestimated in the model, indicating that the magnitude of simulated stratospheric O3 source is reasonable but the temporal distribution needs improvement. The simulated O3 contributions from long-range transport and production from urban/industry and biomass burning/biogenic emissions are also in reasonable agreement with those derived from the measurements, although significant discrepancies are found for some regions.

  4. Molecular line study of massive star-forming regions from the Red MSX Source survey

    Science.gov (United States)

    Yu, Naiping; Wang, Jun-Jie

    2014-05-01

    In this paper, we have selected a sample of massive star-forming regions from the Red MSX Source survey, in order to study star formation activities (mainly outflow and inflow signatures). We have focused on three molecular lines from the Millimeter Astronomy Legacy Team Survey at 90 GHz: HCO+(1-0), H13CO+(1-0) and SiO(2-1). According to previous observations, our sources can be divided into two groups: nine massive young stellar object candidates (radio-quiet) and 10 H II regions (which have spherical or unresolved radio emissions). Outflow activities have been found in 11 sources, while only three show inflow signatures in all. The high outflow detection rate means that outflows are common in massive star-forming regions. The inflow detection rate was relatively low. We suggest that this was because of the beam dilution of the telescope. All three inflow candidates have outflow(s). The outward radiation and thermal pressure from the central massive star(s) do not seem to be strong enough to halt accretion in G345.0034-00.2240. Our simple model of G318.9480-00.1969 shows that it has an infall velocity of about 1.8 km s-1. The spectral energy distribution analysis agrees our sources are massive and intermediate-massive star formation regions.

  5. The foundation of computer based closed radionuclide sources turnover control system in Moscow city region

    International Nuclear Information System (INIS)

    Gusev, A.E.; Kozlov, A.A.; Lavrov, K.N.; Sobolev, I.A.

    1998-01-01

    This paper concerns the problem of Closed Radionuclide Sources (CRS) automated account and control in Moscow city and Moscow region. Information relations structure between authorities and enterprises is shown. Special computer oriented system of CRS turnover monitoring is used for this purposes. Its possibilities and numeric characteristics of database are mentioned. This system benefit and application aspects are discussed in detail. (author)

  6. Development of coherent tunable source in 2–16 μm region using ...

    Indian Academy of Sciences (India)

    2014-01-09

    Jan 9, 2014 ... A very convenient way to obtain widely tunable source of coherent radiation in the infrared region is through nonlinear frequency mixing processes like second harmonic generation (SHG), difference-frequency mixing (DFM) or optical parametric oscillation (OPO). Using commonly available Nd:YAG laser ...

  7. Validation of the intrinsic spatial efficiency method for non cylindrical homogeneous sources using MC simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Ramírez, Pablo, E-mail: rapeitor@ug.uchile.cl; Ruiz, Andrés [Departamento de Física, Facultad de Ciencias, Universidad de Chile (Chile)

    2016-07-07

    The Monte Carlo simulation of the gamma spectroscopy systems is a common practice in these days. The most popular softwares to do this are MCNP and Geant4 codes. The intrinsic spatial efficiency method is a general and absolute method to determine the absolute efficiency of a spectroscopy system for any extended sources, but this was only demonstrated experimentally for cylindrical sources. Due to the difficulty that the preparation of sources with any shape represents, the simplest way to do this is by the simulation of the spectroscopy system and the source. In this work we present the validation of the intrinsic spatial efficiency method for sources with different geometries and for photons with an energy of 661.65 keV. In the simulation the matrix effects (the auto-attenuation effect) are not considered, therefore these results are only preliminaries. The MC simulation is carried out using the FLUKA code and the absolute efficiency of the detector is determined using two methods: the statistical count of Full Energy Peak (FEP) area (traditional method) and the intrinsic spatial efficiency method. The obtained results show total agreement between the absolute efficiencies determined by the traditional method and the intrinsic spatial efficiency method. The relative bias is lesser than 1% in all cases.

  8. Monte Carlo Simulation of stepping source in afterloading intracavitary brachytherapy for GZP6 unit

    International Nuclear Information System (INIS)

    Toossi, M.T.B.; Abdollahi, M.; Ghorbani, M.

    2010-01-01

    Full text: Stepping source in brachytherapy systems is used to treat a target lesion longer than the effective treatment length of the source. Dose calculation accuracy plays a vital role in the outcome of brachytherapy treatment. In this study, the stepping source (channel 6) of GZP6 brachytherapy unit was simulated by Monte Carlo simulation and matrix shift method. The stepping source of GZP6 was simulated by Monte Carlo MCNPX code. The Mesh tally (type I) was employed for absorbed dose calculation in a cylindrical water phantom. 5 x 108 photon histories were scored and a 0.2% statistical uncertainty was obtained by Monte Carlo calculations. Dose distributions were obtained by our matrix shift method for esophageal cancer tumor lengths of 8 and 10 cm. Isodose curves produced by simulation and TPS were superimposed to estimate the differences. Results Comparison of Monte Carlo and TPS dose distributions show that in longitudinal direction (source movement direction) Monte Carlo and TPS dose distributions are comparable. [n transverse direction, the dose differences of 7 and 5% were observed for esophageal tumor lengths of 8 and 10 cm respectively. Conclusions Although, the results show that the maximum difference between Monte Carlo and TPS calculations is about 7%, but considering that the certified activity is given with ± I 0%, uncertainty, then an error of the order of 20% for Monte Carlo calculation would be reasonable. It can be suggested that accuracy of the dose distribution produced by TPS is acceptable for clinical applications. (author)

  9. Separating contributions from natural and anthropogenic sources in atmospheric methane from the Black Sea region, Romania

    International Nuclear Information System (INIS)

    Cuna, Stela; Pendall, Elise; Miller, John B.; Tans, Pieter P.; Dlugokencky, Ed; White, James W.C.

    2008-01-01

    The Danube Delta-Black Sea region of Romania is an important wetland, and this preliminary study evaluates the significance of this region as a source of atmospheric CH 4 . Measurements of the mixing ratio and δ 13 C in CH 4 are reported from air and water samples collected at eight sites in the Danube Delta. High mixing ratios of CH 4 were found in air (2500-14,000 ppb) and dissolved in water samples (∼1-10 μmol L -1 ), demonstrating that the Danube Delta is an important natural source of CH 4 . The intercepts on Keeling plots of about -62 per mille show that the main source of CH 4 in this region is microbial, probably resulting primarily from acetate fermentation. Atmospheric CH 4 and CO data from the NOAA/ESRL (National Oceanic and Atmospheric Administration/Earth System Research Laboratory) were used to make a preliminary estimate of biogenic CH 4 at the Black Sea sampling site at Constanta (BSC). These data were used to calculate ratios of CH 4 /CO in air samples, and using an assumed CH 4 /CO anthropogenic emissions ratio of 0.6, fossil fuel emissions at BSC were estimated. Biogenic CH 4 emissions were then estimated by a simple mass balance approach. Keeling plots of well-mixed air from the BSC site suggested a stronger wetland source in summer and a stronger fossil fuel source in winter

  10. Airborne black carbon concentrations over an urban region in western India-temporal variability, effects of meteorology, and source regions.

    Science.gov (United States)

    Bapna, Mukund; Sunder Raman, Ramya; Ramachandran, S; Rajesh, T A

    2013-03-01

    This study characterizes over 5 years of high time resolution (5 min), airborne black carbon (BC) concentrations (July 2003 to December 2008) measured over Ahmedabad, an urban region in western India. The data were used to obtain different time averages of BC concentrations, and these averages were then used to assess the diurnal, seasonal, and annual variability of BC over the study region. Assessment of diurnal variations revealed a strong association between BC concentrations and vehicular traffic. Peaks in BC concentration were co-incident with the morning (0730 to 0830, LST) and late evening (1930 to 2030, LST) rush hour traffic. Additionally, diurnal variability in BC concentrations during major festivals (Diwali and Dushera during the months of October/November) revealed an increase in BC concentrations due to fireworks displays. Maximum half hourly BC concentrations during the festival days were as high as 79.8 μg m(-3). However, the high concentrations rapidly decayed suggesting that local meteorology during the festive season was favorable for aerosol dispersion. A multiple linear regression (MLR) model with BC as the dependent variable and meteorological parameters as independent variables was fitted. The variability in temperature, humidity, wind speed, and wind direction accounted for about 49% of the variability in measured BC concentrations. Conditional probability function (CPF) analysis was used to identify the geographical location of local source regions contributing to the effective BC measured (at 880 nm) at the receptor site. The east north-east (ENE) direction to the receptor was identified as a major source region. National highway (NH8) and two coal-fired thermal power stations (at Gandhinagar and Sabarmati) were located in the identified direction, suggesting that local traffic and power plant emissions were likely contributors to the measured BC.

  11. A Survey of Open-Source UAV Flight Controllers and Flight Simulators

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Skriver, Martin; Terkildsen, Kristian Husum

    2018-01-01

    The current disruptive innovation in civilian drone (UAV) applications has led to an increased need for research and development in UAV technology. The key challenges currently being addressed are related to UAV platform properties such as functionality, reliability, fault tolerance, and endurance......-source drone platform elements that can be used for research and development. The survey covers open-source hardware, software, and simulation drone platforms and compares their main features....

  12. Characterization of emissions sources in the California-Mexico Border Region during Cal-Mex 2010

    Science.gov (United States)

    Zavala, M. A.; Lei, W.; Li, G.; Bei, N.; Barrera, H.; Tejeda, D.; Molina, L. T.; Cal-Mex 2010 Emissions Team

    2010-12-01

    The California-Mexico border region provides an opportunity to evaluate the characteristics of the emission processes in rapidly expanding urban areas where intensive international trade and commerce activities occur. Intense anthropogenic activities, biomass burning, as well as biological and geological sources significantly contribute to high concentration levels of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitrogen oxides (NOx), volatile organic compounds (VOCs), air toxics, and ozone observed in the California-US Baja California-Mexico border region. The continued efforts by Mexico and US for improving and updating the emissions inventories in the sister cities of San Diego-Tijuana and Calexico-Mexicali has helped to understand the emission processes in the border region. In addition, the recent Cal-Mex 2010 field campaign included a series of measurements aimed at characterizing the emissions from major sources in the California-Mexico border region. In this work we will present our analyzes of the data obtained during Cal-Mex 2010 for the characterization of the emission sources and their use for the evaluation of the recent emissions inventories for the Mexican cities of Tijuana and Mexicali. The developed emissions inventories will be implemented in concurrent air quality modeling efforts for understanding the physical and chemical transformations of air pollutants in the California-Mexico border region and their impacts.

  13. Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR

    Directory of Open Access Journals (Sweden)

    F. Rohrer

    2005-01-01

    Full Text Available HONO formation has been proposed as an important OH radical source in simulation chambers for more than two decades. Besides the heterogeneous HONO formation by the dark reaction of NO2 and adsorbed water, a photolytic source has been proposed to explain the elevated reactivity in simulation chamber experiments. However, the mechanism of the photolytic process is not well understood so far. As expected, production of HONO and NOx was also observed inside the new atmospheric simulation chamber SAPHIR under solar irradiation. This photolytic HONO and NOx formation was studied with a sensitive HONO instrument under reproducible controlled conditions at atmospheric concentrations of other trace gases. It is shown that the photolytic HONO source in the SAPHIR chamber is not caused by NO2 reactions and that it is the only direct NOy source under illuminated conditions. In addition, the photolysis of nitrate which was recently postulated for the observed photolytic HONO formation on snow, ground, and glass surfaces, can be excluded in the chamber. A photolytic HONO source at the surface of the chamber is proposed which is strongly dependent on humidity, on light intensity, and on temperature. An empirical function describes these dependencies and reproduces the observed HONO formation rates to within 10%. It is shown that the photolysis of HONO represents the dominant radical source in the SAPHIR chamber for typical tropospheric O3/H2O concentrations. For these conditions, the HONO concentrations inside SAPHIR are similar to recent observations in ambient air.

  14. An open source platform for multi-scale spatially distributed simulations of microbial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Segre, Daniel [Boston Univ., MA (United States)

    2014-08-14

    The goal of this project was to develop a tool for facilitating simulation, validation and discovery of multiscale dynamical processes in microbial ecosystems. This led to the development of an open-source software platform for Computation Of Microbial Ecosystems in Time and Space (COMETS). COMETS performs spatially distributed time-dependent flux balance based simulations of microbial metabolism. Our plan involved building the software platform itself, calibrating and testing it through comparison with experimental data, and integrating simulations and experiments to address important open questions on the evolution and dynamics of cross-feeding interactions between microbial species.

  15. THE PROPER MOTIONS OF THE DOUBLE RADIO SOURCE n IN THE ORION BN/KL REGION

    International Nuclear Information System (INIS)

    Rodríguez, Luis F.; Loinard, Laurent; Zapata, Luis; Lizano, Susana; Dzib, Sergio A.; Menten, Karl M.; Gómez, Laura

    2017-01-01

    We have extended the time baseline for observations of the proper motions of radio sources in the Orion BN/KL region from 14.7 to 22.5 years. We present improved determinations for the sources BN and I. In addition, we address the proper motions of the double radio source n, that have been questioned in the literature. We confirm that all three sources are moving away at transverse velocities of tens of kilometers per second from a region in-between them, where they were located about 500 years ago. Source n exhibits a new component that we interpret as due to a one-sided ejection of free–free emitting plasma that took place after 2006.36. We used the highly accurate relative proper motions between sources BN and I to determine that their closest separation took place in the year 1475 ± 6, when they were within ∼100 au or less from each other in the plane of the sky.

  16. THE PROPER MOTIONS OF THE DOUBLE RADIO SOURCE n IN THE ORION BN/KL REGION

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Luis F.; Loinard, Laurent; Zapata, Luis; Lizano, Susana [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Dzib, Sergio A.; Menten, Karl M. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Gómez, Laura, E-mail: l.rodriguez@crya.unam.mx [Joint ALMA Observatory, Alonso de Córdoba 3107, Vitacura, Santiago (Chile)

    2017-01-10

    We have extended the time baseline for observations of the proper motions of radio sources in the Orion BN/KL region from 14.7 to 22.5 years. We present improved determinations for the sources BN and I. In addition, we address the proper motions of the double radio source n, that have been questioned in the literature. We confirm that all three sources are moving away at transverse velocities of tens of kilometers per second from a region in-between them, where they were located about 500 years ago. Source n exhibits a new component that we interpret as due to a one-sided ejection of free–free emitting plasma that took place after 2006.36. We used the highly accurate relative proper motions between sources BN and I to determine that their closest separation took place in the year 1475 ± 6, when they were within ∼100 au or less from each other in the plane of the sky.

  17. A program PULSYN01 for wide-band simulation of source radiation from a finite earthquake source/fault

    International Nuclear Information System (INIS)

    Gusev, A.A.

    2001-12-01

    The purpose of the program PULSYN01 is to apply a realistic wideband source-side input for calculation of earthquake ground motion. The source is represented as a grid of point subsources, and their seismic moment rate time functions are generated considering each of them as realizations (sample functions) of a non-stationary random process. The model is intended for use at receiver-to fault distances from far field to as small as 10-20% of the fault width. Combined with an adequate Green's function synthesizer, PULSUNT01 can be used for assessment of possible ground motion and seismic hazard in many ways, including scenario event simulation, parametric studies, and eventually stochastic hazard calculations

  18. Simulation of the regional groundwater-flow system of the Menominee Indian Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Dunning, Charles P.

    2015-01-01

    A regional, two-dimensional, steady-state groundwater-flow model was developed to simulate the groundwater-flow system and groundwater/surface-water interactions within the Menominee Indian Reservation. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Menominee Indian Tribe of Wisconsin, to contribute to the fundamental understanding of the region’s hydrogeology. The objectives of the regional model were to improve understanding of the groundwater-flow system, including groundwater/surface-water interactions, and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate groundwater/surface-water interactions, provide a framework for simulating regional groundwater-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate groundwater-flow patterns at multiple scales. Simulations made with the regional model reproduce groundwater levels and stream base flows representative of recent conditions (1970–2013) and illustrate groundwater-flow patterns with maps of (1) the simulated water table and groundwater-flow directions, (2) probabilistic areas contributing recharge to high-capacity pumped wells, and (3) estimation of the extent of infiltrated wastewater from treatment lagoons.

  19. Linking source region and ocean wave parameters with the observed primary microseismic noise

    Science.gov (United States)

    Juretzek, C.; Hadziioannou, C.

    2017-12-01

    In previous studies, the contribution of Love waves to the primary microseismic noise field was found to be comparable to those of Rayleigh waves. However, so far only few studies analysed both wave types present in this microseismic noise band, which is known to be generated in shallow water and the theoretical understanding has mainly evolved for Rayleigh waves only. Here, we study the relevance of different source region parameters on the observed primary microseismic noise levels of Love and Rayleigh waves simultaneously. By means of beamforming and correlation of seismic noise amplitudes with ocean wave heights in the period band between 12 and 15 s, we analysed how source areas of both wave types compare with each other around Europe. The generation effectivity in different source regions was compared to ocean wave heights, peak ocean gravity wave propagation direction and bathymetry. Observed Love wave noise amplitudes correlate comparably well with near coastal ocean wave parameters as Rayleigh waves. Some coastal regions serve as especially effective sources for one or the other wave type. These coincide not only with locations of high wave heights but also with complex bathymetry. Further, Rayleigh and Love wave noise amplitudes seem to depend equally on the local ocean wave heights, which is an indication for a coupled variation with swell height during the generation of both wave types. However, the wave-type ratio varies directionally. This observation likely hints towards a spatially varying importance of different source mechanisms or structural influences. Further, the wave-type ratio is modulated depending on peak ocean wave propagation directions which could indicate a variation of different source mechanism strengths but also hints towards an imprint of an effective source radiation pattern. This emphasizes that the inclusion of both wave types may provide more constraints for the understanding of acting generation mechanisms.

  20. A Divide and Conquer Strategy for Scaling Weather Simulations with Multiple Regions of Interest

    Directory of Open Access Journals (Sweden)

    Preeti Malakar

    2013-01-01

    Full Text Available Accurate and timely prediction of weather phenomena, such as hurricanes and flash floods, require high-fidelity compute intensive simulations of multiple finer regions of interest within a coarse simulation domain. Current weather applications execute these nested simulations sequentially using all the available processors, which is sub-optimal due to their sub-linear scalability. In this work, we present a strategy for parallel execution of multiple nested domain simulations based on partitioning the 2-D processor grid into disjoint rectangular regions associated with each domain. We propose a novel combination of performance prediction, processor allocation methods and topology-aware mapping of the regions on torus interconnects. Experiments on IBM Blue Gene systems using WRF show that the proposed strategies result in performance improvement of up to 33% with topology-oblivious mapping and up to additional 7% with topology-aware mapping over the default sequential strategy.

  1. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    Science.gov (United States)

    Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.

    2014-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results

  2. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region

    Science.gov (United States)

    Pirrone, N.; Costa, P.; Pacyna, J. M.; Ferrara, R.

    This report discusses past, current and projected mercury emissions to the atmosphere from major industrial sources, and presents a first assessment of the contribution to the regional mercury budget from selected natural sources. Emissions (1995 estimates) from fossil fuels combustion (29.8 t yr -1) , cement production (28.8 t yr -1) and incineration of solid wastes (27.6 t yr -1) , all together account for about 82% of the regional anthropogenic total (105.7 t yr -1) . Other industrial sources in the region are smelters (4.8 t yr -1) , iron-steel plants (4.8 t yr -1) and other minor sources (chlor-alkali plants, crematoria, chemicals production) that have been considered together in the miscellaneous category (9.6 t yr -1) . Regional emissions from anthropogenic sources increased at a rate of 3% yr-1 from 1983 to 1995 and are projected to increase at a rate of 1.9% yr-1 in the next 25 years, if no improvement in emission control policy occurs. On a country-by-country basis, France is the leading emitter country with 22.6 t yr -1 followed by Turkey (16.1 t yr -1) , Italy (11.4 t yr -1) , Spain (9.1 t yr -1) , the former Yugoslavia 7.9 ( t yr -1) , Morocco (6.9 t yr -1) , Bulgaria (6.8 t yr -1) , Egypt (6.1 t yr -1) , Syria (3.6 t yr -1) , Libya (2.9 t yr -1) , Tunisia (2.8 t yr -1) and Greece (2.7 t yr -1) , whereas the remaining countries account for less than 7% of the regional total. The annual emission from natural sources is 110 t yr -1, although this figure only includes the volatilisation of elemental mercury from surface waters and emissions from volcanoes, whereas the contribution due to the degassing of mercury from top soil and vegetation has not been included in this first assessment. Therefore, natural and anthropogenic sources in the Mediterranean region release annually about 215 t of mercury, which represents a significant contribution to the total mercury budget released in Europe and to the global atmosphere.

  3. Source region and sector contributions of atmospheric soot particle in a coalfield region of Dhanbad, eastern part of India

    Science.gov (United States)

    Singh, S.; Tiwari, S.; Dumka, U. C.; Kumar, R.; Singh, P. K.

    2017-11-01

    Black carbon (BC) aerosols affect the Earth's climate directly by interacting with the solar radiation and indirectly by modifying the lifetime and optical properties of clouds. However, our understanding of BC aerosols and their impacts on the climate are limited by lack of in situ measurements of BC, especially in the developing world. This study reports measurements of BC from Dhanbad, a coalfields area of eastern India, we analyze BC data at 370 and 880 nm during 2013 to gain insight into the emission sources affecting the study area. Our analysis indicates significantly higher absorption at the lower wavelength (ultraviolet). We estimate that 33% of BC at Dhanbad comes from biomass/biofuel combustion and the remaining 67% from the fossil fuel combustion. Higher concentrations of BC370 nm (> 12 μg m- 3) were observed when the air masses affecting Dhanbad originated far away in countries like Iran, Afghanistan, Pakistan, Oman, United Arab Emirates and passed over the Indo-Gangetic Plains (IGP) prior to arriving at the observation site. The source regions affecting BC880 nm were localized over the IGP but BC880 nm concentrations are 33% lower ( 8 μg m- 3) than BC370 nm. The cluster analysis showed that the largest fraction (35 and 29%) of the air masses arriving at Dhanbad passed through the boundary layer of the central IGP and north-west IGP region during the post-monsoon season. Average values of BC370 nm (16.0 and 20.0 μg m- 3) and BC880 nm (9.5 and 10.0 μg m- 3) in the IGP influenced air masses were significantly higher than those arriving from other source regions. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) model were applied to understand the relative importance of different sources affecting Dhanbad. The variability of observed BC mass concentrations was captured fairly well by WRF-Chem with minor deviations from the measured values. Model results indicate that anthropogenic emissions account for more than 75% of the

  4. Meteorite Source Regions as Revealed by the Near-Earth Object Population

    Science.gov (United States)

    Binzel, Richard P.; DeMeo, Francesca E.; Burt, Brian J.; Polishook, David; Burbine, Thomas H.; Bus, Schelte J.; Tokunaga, Alan; Birlan, Mirel

    2014-11-01

    Spectroscopic and taxonomic information is now available for 1000 near-Earth objects, having been obtained through both targeted surveys (e.g. [1], [2], [3]) or resulting from all-sky surveys (e.g. [4]). We determine their taxonomic types in the Bus-DeMeo system [5] [6] and subsequently examine meteorite correlations based on spectral analysis (e.g. [7],[8]). We correlate our spectral findings with the source region probabilities calculated using the methods of Bottke et al. [9]. In terms of taxonomy, very clear sources are indicated: Q-, Sq-, and S-types most strongly associated with ordinary chondrite meteorites show clear source signatures through the inner main-belt. V-types are relatively equally balanced between nu6 and 3:1 resonance sources, consistent with the orbital dispersion of the Vesta family. B- and C-types show distinct source region preferences for the outer belt and for Jupiter family comets. A Jupiter family comet source predominates for the D-type near-Earth objects, implying these "asteroidal" bodies may be extinct or dormant comets [10]. Similarly, near-Earth objects falling in the spectrally featureless "X-type" category also show a strong outer belt and Jupiter family comet source region preference. Finally the Xe-class near-Earth objects, which most closely match the spectral properties of enstatite achondrite (aubrite) meteorites seen in the Hungaria region[11], show a source region preference consistent with a Hungaria origin by entering near-Earth space through the Mars crossing and nu6 resonance pathways. This work supported by the National Science Foundation Grant 0907766 and NASA Grant NNX10AG27G.[1] Lazzarin, M. et al. (2004), Mem. S. A. It. Suppl. 5, 21. [2] Thomas, C. A. et al. (2014), Icarus 228, 217. [3] Tokunaga, A. et al. (2006) BAAS 38, 59.07. [4] Hasselmann, P. H., Carvano, J. M., Lazzaro, D. (2011) NASA PDS, EAR-A-I0035-5-SDSSTAX-V1.0. [5] Bus, S.J., Binzel, R.P. (2002). Icarus 158, 146. [6] DeMeo, F.E. et al. (2009), Icarus

  5. Near-infrared observations of the far-infrared source V region in NGC 6334

    International Nuclear Information System (INIS)

    Fischer, J.; Joyce, R.R.; Simon, M.; Simon, T.

    1982-01-01

    We have observed a very red near-infrared source at the center of NGC 6334 FIRS V, a far-infrared source suspected of variability by McBreen et al. The near-infrared source has deep ice and silicate absorption bands, and its half-power size at 20 μm is approx.15'' x 10''. Over the past 2 years we have observed no variability in the near-infrared flux. We have also detected an extended source of H 2 line emission in this region. The total luminosity in the H 2 v-1--0 S(1) line, uncorrected for extinction along the line of sight, is 0.3 L/sub sun/. Detection of emission in high-velocity wings of the J = 1--0 12 CO line suggests that the H 2 emission is associated with a supersonic gas flow

  6. Simulation study on ion extraction from electron cyclotron resonance ion sources

    Science.gov (United States)

    Fu, S.; Kitagawa, A.; Yamada, S.

    1994-04-01

    In order to study beam optics of NIRS-ECR ion source used in the HIMAC project, the EGUN code has been modified to make it capable of modeling ion extraction from a plasma. Two versions of the modified code are worked out with two different methods in which 1D and 2D sheath theories are used, respectively. Convergence problem of the strong nonlinear self-consistent equations is investigated. Simulations on NIRS-ECR ion source and HYPER-ECR ion source are presented in this paper, exhibiting an agreement with the experiment results.

  7. Using Simulated Ground Motions to Constrain Near-Source Ground Motion Prediction Equations in Areas Experiencing Induced Seismicity

    Science.gov (United States)

    Bydlon, S. A.; Dunham, E. M.

    2016-12-01

    Recent increases in seismic activity in historically quiescent areas such as Oklahoma, Texas, and Arkansas, including large, potentially induced events such as the 2011 Mw 5.6 Prague, OK, earthquake, have spurred the need for investigation into expected ground motions associated with these seismic sources. The neoteric nature of this seismicity increase corresponds to a scarcity of ground motion recordings within 50 km of earthquakes Mw 3.0 and greater, with increasing scarcity at larger magnitudes. Gathering additional near-source ground motion data will help better constraints on regional ground motion prediction equations (GMPEs) and will happen over time, but this leaves open the possibility of damaging earthquakes occurring before potential ground shaking and seismic hazard in these areas are properly understood. To aid the effort of constraining near-source GMPEs associated with induced seismicity, we integrate synthetic ground motion data from simulated earthquakes into the process. Using the dynamic rupture and seismic wave propagation code waveqlab3d, we perform verification and validation exercises intended to establish confidence in simulated ground motions for use in constraining GMPEs. We verify the accuracy of our ground motion simulator by performing the PEER/SCEC layer-over-halfspace comparison problem LOH.1 Validation exercises to ensure that we are synthesizing realistic ground motion data include comparisons to recorded ground motions for specific earthquakes in target areas of Oklahoma between Mw 3.0 and 4.0. Using a 3D velocity structure that includes a 1D structure with additional small-scale heterogeneity, the properties of which are based on well-log data from Oklahoma, we perform ground motion simulations of small (Mw 3.0 - 4.0) earthquakes using point moment tensor sources. We use the resulting synthetic ground motion data to develop GMPEs for small earthquakes in Oklahoma. Preliminary results indicate that ground motions can be amplified

  8. Source apportionment of settleable particles in an impacted urban and industrialized region in Brazil.

    Science.gov (United States)

    Santos, Jane Meri; Reis, Neyval Costa; Galvão, Elson Silva; Silveira, Alexsander; Goulart, Elisa Valentim; Lima, Ana Teresa

    2017-09-01

    Settleable particulate matter (SPM), especially coarser particles with diameters greater than 10 μm, has been found culprit of high deposition rates in cities affected by hinterland industrial activities. This is the case of Metropolitan Region of Vitoria (MRV), Espirito Santo, Brazil where industrial facilities are located within the urban sprawl and building constructions are intense. Frequent population complaints to the environmental protection agency (IEMA) throughout the years have triggered monitoring campaigns to determine SPM deposition rates and source apportionment. Eight different locations were monitored throughout the MRV, and SPM was quantified and chemically characterized. Sources profiles were defined either by using US EPA SPECIATE data or by experimental analysis. Atmospheric fallout in the MRV ranged between 2 and 20g/(m 2 30-day), with only one monitoring station ranging from 6-10 g/(m 2 30-day). EC, OC, Fe, Al, and Si were found the main constituents of dry deposition in the region. Source apportionment by the chemical mass balance (CMB) model determined that steel and iron ore pelletizing industries were the main contributor to one of the eight locations whereas resuspension, civil construction, and vehicular sources were also very important contributors to the other stations. Quarries and soil were also considered expressive SPM sources, but at the city periphery. CMB model could differentiate contributions from six industrial source groups: thermoelectric; iron ore, pellet, and pellet furnaces; coal coke and coke oven; sintering, blast furnace, and basic oxygen furnace; and soil, resuspension, and vehicles. However, the CMB model was unable to differentiate between iron ore and pellet stockpiles which are present in both steel and iron ore pelletizing industries. Further characterization of source and SPM might be necessary to aid local authorities in decision-making regarding these two industrial sources.

  9. Analyzing Source Apportioned Methane in Northern California During DISCOVER-AQ-CA Using Airborne Measurements and Model Simulations

    Science.gov (United States)

    Johnson, Matthew S.

    2014-01-01

    This study analyzes source apportioned methane (CH4) emissions and atmospheric concentrations in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were 5.30 Gg/day (Gg 1.0 109 grams) (equating to 1.9 103 Gg/yr) for all of California. According to EDGAR, the SFBA and northern SJV region contributes 30 of total emissions from California. Source apportionment analysis during this study shows that CH4 concentrations over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 concentrations in northern California (average normalized mean bias (NMB) -5 and linear regression slope 0.25). The largest negative biases in the model were calculated on days when hot spots of local emission sources were measured and atmospheric CH4 concentrations reached values 3.0 parts per million (model NMB -10). Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be obtained and additional research is necessary to better quantify source apportioned CH4 emissions in California and further the understanding of the physical processes

  10. Analyzing source apportioned methane in northern California during Discover-AQ-CA using airborne measurements and model simulations

    Science.gov (United States)

    Johnson, Matthew S.; Yates, Emma L.; Iraci, Laura T.; Loewenstein, Max; Tadić, Jovan M.; Wecht, Kevin J.; Jeong, Seongeun; Fischer, Marc L.

    2014-12-01

    This study analyzes source apportioned methane (CH4) emissions and atmospheric mixing ratios in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were ∼5.30 Gg day-1 (Gg = 1.0 × 109 g) (equating to ∼1.90 × 103 Gg yr-1) for all of California. According to EDGAR, the SFBA and northern SJV region contributes ∼30% of total CH4 emissions from California. Source apportionment analysis during this study shows that CH4 mixing ratios over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 mixing ratios in northern California (average normalized mean bias (NMB) = -5.2% and linear regression slope = 0.20). The largest negative biases in the model were calculated on days when large amounts of CH4 were measured over local emission sources and atmospheric CH4 mixing ratios reached values >2.5 parts per million. Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be obtained and additional research is necessary to better quantify source apportioned CH4 emissions in California.

  11. Simulation of preindustrial atmospheric methane to constrain the global source strength of natural wetlands

    NARCIS (Netherlands)

    Houweling, S; Dentener, F; Lelieveld, J

    2000-01-01

    Previous attempts to quantify the global source strength of CH4 from natural wetlands have resulted in a range of 90-260 TE(CH4) yr(-1). This relatively uncertain estimate significantly limits our understanding of atmospheric methane. In this study we reduce this uncertainty by simulating

  12. Mapping sources, sinks, and connectivity using a simulation model of Northern Spotted Owls

    Science.gov (United States)

    This is a study of source-sink dynamics at a landscape scale. In conducting the study, we make use of a mature simulation model for the northern spotted owl (Strix occidentalis caurina) that was developed as part of the US Fish and Wildlife Service’s most recent recovery plannin...

  13. Consideration of a ultracold neutron source in two-dimensional cylindrical geometry by taking simulated boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.ir [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Nuclear Energy Research Center, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Firoozabadi, M. M.; Mohammadi, H. [Department of Physics, University of Birjand, Birjand 97175 (Iran, Islamic Republic of)

    2014-01-15

    A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D{sub 2}O and solid D{sub 2} (sD{sub 2}). The D{sub 2}O was investigated as the neutron moderator, and sD{sub 2} as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (ρ − z) geometry was considered for 330 neutron energy groups in the sD{sub 2}. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD{sub 2} volume) equal to 6.79 × 10{sup 6} cm{sup −2}s{sup −1} and 2.20 ×10{sup 5} cm{sup −3}s{sup −1}, respectively.

  14. BlueSky ATC Simulator Project : An Open Data and Open Source Approach

    NARCIS (Netherlands)

    Hoekstra, J.M.; Ellerbroek, J.

    2016-01-01

    To advance ATM research as a science, ATM research results should be made more comparable. A possible way to do this is to share tools and data. This paper presents a project that investigates the feasibility of a fully open-source and open-data approach to air traffic simulation. Here, the first of

  15. Primary sources of selected POPs: regional and global scale emission inventories

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M

    2004-03-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale.

  16. Primary sources of selected POPs: regional and global scale emission inventories

    International Nuclear Information System (INIS)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M.

    2004-01-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale

  17. Simulations of Liners and Test Objects for a New Atlas Advanced Radiography Source

    International Nuclear Information System (INIS)

    Morgan, D. V.; Iversen, S.; Hilko, R. A.

    2002-01-01

    The Advanced Radiographic Source (ARS) will improve the data significantly due to its smaller source width. Because of the enhanced ARS output, larger source-to-object distances are a reality. The harder ARS source will allow radiography of thick high-Z targets. The five different spectral simulations resulted in similar imaging detector weighted transmission. This work used a limited set of test objects and imaging detectors. Other test objects and imaging detectors could possibly change the MVp-sensitivity result. The effect of material motion blur must be considered for the ARS due to the expected smaller X-ray source size. This study supports the original 1.5-MVp value

  18. Heavy metal contamination status and source apportionment in sediments of Songhua River Harbin region, Northeast China.

    Science.gov (United States)

    Li, Ning; Tian, Yu; Zhang, Jun; Zuo, Wei; Zhan, Wei; Zhang, Jian

    2017-02-01

    The Songhua River represents one of the seven major river systems in China. It flows through Harbin city with 66 km long, locating in the northern China with a longer winter time. This paper aimed to study concentration distributions, stability, risk assessment, and source apportionment of heavy metals including chromium (Cr), cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), and nickel (Ni) in 11 selected sections of the Songhua River Harbin region. Results showed that Cr, Cd, Pb, Hg, and As exceeded their respective geochemical background values in sediments of most monitoring sections. Compared with other important rivers and lakes in China, Cr, Hg, Cd, and As pollutions in surface sediments were above medium level. Further analysis of chemical speciation indicated that Cr and As in surface sediments were relatively stable while Pb and Cd were easily bioavailable. Correlation analysis revealed sources of these metals except As might be identical. Pollution levels and ecological risks of heavy metals in surface sediments presented higher in the mainstream region (45° 47.0' N ~ 45° 53.3' N, 126° 37.0' E ~ 126° 42.1' E). Source apportionment found Hejiagou and Ashi River were the main contributors to metal pollution of this region. Thus, anthropogenic activities along the Hejiagou and Ashi River should be restricted in order to protect the Songhua River Harbin region from metal contamination.

  19. Applying Open Source Game Engine for Building Visual Simulation Training System of Fire Fighting

    Science.gov (United States)

    Yuan, Diping; Jin, Xuesheng; Zhang, Jin; Han, Dong

    There's a growing need for fire departments to adopt a safe and fair method of training to ensure that the firefighting commander is in a position to manage a fire incident. Visual simulation training systems, with their ability to replicate and interact with virtual fire scenarios through the use of computer graphics or VR, become an effective and efficient method for fire ground education. This paper describes the system architecture and functions of a visual simulated training system of fire fighting on oil storage, which adopting Delat3D, a open source game and simulation engine, to provide realistic 3D views. It presents that using open source technology provides not only the commercial-level 3D effects but also a great reduction of cost.

  20. Benzene observations and source appointment in a region of oil and natural gas development

    Science.gov (United States)

    Halliday, Hannah Selene

    Benzene is a primarily anthropogenic volatile organic compound (VOC) with a small number of well characterized sources. Atmospheric benzene affects human health and welfare, and low level exposure (Atmospheric Observatory (PAO) in Colorado to investigate how O&NG development impacts air quality within the Wattenburg Gas Field (WGF) in the Denver-Julesburg Basin. The measurements were carried out in July and August 2014 as part of NASA's DISCOVER-AQ field campaign. The PTR-QMS data were supported by pressurized whole air canister samples and airborne vertical and horizontal surveys of VOCs. Unexpectedly high benzene mixing ratios were observed at PAO at ground level (mean benzene = 0.53 ppbv, maximum benzene = 29.3 ppbv), primarily at night (mean nighttime benzene = 0.73 ppbv). These high benzene levels were associated with southwesterly winds. The airborne measurements indicate that benzene originated from within the WGF, and typical source signatures detected in the canister samples implicate emissions from O&NG activities rather than urban vehicular emissions as primary benzene source. This conclusion is backed by a regional toluene-to-benzene ratio analysis which associated southerly flow with vehicular emissions from the Denver area. Weak benzene-to-CO correlations confirmed that traffic emissions were not responsible for the observed high benzene levels. Previous measurements at the Boulder Atmospheric Observatory (BAO) and our data obtained at PAO allow us to locate the source of benzene enhancements between the two atmospheric observatories. Fugitive emissions of benzene from O&NG operations in the Platteville area are discussed as the most likely causes of enhanced benzene levels at PAO. A limited information source attribution with the PAO dataset was completed using the EPA's positive matrix factorization (PMF) source receptor model. Six VOCs from the PTR-QMS measurement were used along with CO and NO for a total of eight chemical species. Six sources

  1. An experimental study on the near-source region of lazy turbulent plumes

    Science.gov (United States)

    Ciriello, Francesco; Hunt, Gary R.

    2017-11-01

    The near-source region of a `lazy' turbulent buoyant plume issuing from a circular source is examined for source Richardson numbers in the range of 101 to 107. New data is acquired for the radial contraction and streamwise variation of volume flux through an experimental programme of dye visualisations and particle image velocimetry. This data reveals the limited applicability of traditional entrainment laws used in integral modelling approaches for the description of the near-source region for these source Richardson numbers. A revised entrainment function is proposed, based on which we introduce a classification of plume behaviour whereby the degree of `laziness' may be expressed in terms of the excess dilution that occurs compared to a `pure' constant Richardson number plume. The increased entrainment measured in lazy plumes is attributed to Rayleigh-Taylor instabilities developing along the contraction of the plume which promote the additional engulfment of ambient fluid into the plume. This work was funded by an EPSRC Industial Case Award sponsored by Dyson Technology Ltd. Special thanks go to the members of the Dyson Environmental Control Group that regularly visit us in Cambridge for discussions about our work.

  2. Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture

    Science.gov (United States)

    Dyer, Ellen L. E.; Jones, Dylan B. A.; Nusbaumer, Jesse; Li, Harry; Collins, Owen; Vettoretti, Guido; Noone, David

    2017-07-01

    Precipitation in the Congo Basin was examined using a version of the National Center for Atmospheric Research Community Earth System Model (CESM) with water tagging capability. Using regionally defined water tracers, or tags, the moisture contribution from different source regions to Congo Basin precipitation was investigated. We found that the Indian Ocean and evaporation from the Congo Basin were the dominant moisture sources and that the Atlantic Ocean was a comparatively small source of moisture. In both rainy seasons the southwestern Indian Ocean contributed about 21% of the moisture, while the recycling ratio for moisture from the Congo Basin was about 25%. Near the surface, a great deal of moisture is transported from the Atlantic into the Congo Basin, but much of this moisture is recirculated back over the Atlantic in the lower troposphere. Although the southwestern Indian Ocean is a major source of Indian Ocean moisture, it is not associated with the bulk of the variability in precipitation over the Congo Basin. In wet years, more of the precipitation in the Congo Basin is derived from Indian Ocean moisture, but the spatial distribution of the dominant sources is shifted, reflecting changes in the midtropospheric circulation over the Indian Ocean. During wet years there is increased transport of moisture from the equatorial and eastern Indian Ocean. Our results suggest that reliably capturing the linkages between the large-scale circulation patterns over the Indian Ocean and the local circulation over the Congo Basin is critical for future projections of Congo Basin precipitation.

  3. Detection of aerosol pollution sources during sandstorms in Northwestern China using remote sensed and model simulated data

    Science.gov (United States)

    Filonchyk, Mikalai; Yan, Haowen; Yang, Shuwen; Lu, Xiaomin

    2018-02-01

    The present paper has used a comprehensive approach to study atmosphere pollution sources including the study of vertical distribution characteristics, the epicenters of occurrence and transport of atmospheric aerosol in North-West China under intensive dust storm registered in all cities of the region in April 2014. To achieve this goal, the remote sensing data using Moderate Resolution Imaging Spectroradiometer satellite (MODIS) as well as model-simulated data, were used, which facilitate tracking the sources, routes, and spatial extent of dust storms. The results of the study have shown strong territory pollution with aerosol during sandstorm. According to ground-based air quality monitoring stations data, concentrations of PM10 and PM2.5 exceeded 400 μg/m3 and 150 μg/m3, respectively, the ratio PM2.5/PM10 being within the range of 0.123-0.661. According to MODIS/Terra Collection 6 Level-2 aerosol products data and the Deep Blue algorithm data, the aerosol optical depth (AOD) at 550 nm in the pollution epicenter was within 0.75-1. The vertical distribution of aerosols indicates that the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 532 nm total attenuates backscatter coefficient ranges from 0.01 to 0.0001 km-1 × sr-1 with the distribution of the main types of aerosols in the troposphere of the region within 0-12.5 km, where the most severe aerosol contamination is observed in the lower troposphere (at 3-6 km). According to satellite sounding and model-simulated data, the sources of pollution are the deserted regions of Northern and Northwestern China.

  4. Numerical Simulation of the Pressure Distribution in the Reactor Vessel Downcomer Region Fluctuated by the Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dong Hwa; Jung, Byung Ryul; Jang, Ho Cheol; Yune, Seok Jeong; Kim, Eun Kee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    In this study the numerical simulation of the pressure distribution in the downcomer region resulting from the pressure pulsation by the Reactor Coolant Pump (RCP) is performed using the Finite Difference Method (FDM). Simulation is carried out for the cylindrical shaped 2-dimensional model equivalent to the outer surface of the Core Support Barrel (CSB) of APR1400 and a 1/2 model is adopted based on the bilateral symmetry by the inlet nozzle. The fluid temperature is 555 .deg. F and the forcing frequencies are 120Hz, 240Hz, 360Hz and 480Hz. Simulation results of the axial pressure distributions are provided as the Root Mean Square (RMS) values at the five locations of 0°, 45°, 90°, 135° and 180° in the circumferential direction from the inlet nozzle location. In the study, the numerical simulation of pressure distributions in the downcomer region induced by the RCP was performed using FDM and the results were reviewed. The interference of the waves returned from both boundaries in the axial direction and the source of the sinusoidal wave is shown on the inlet nozzle interface pressure point. It seems that the maximum pressures result from the superposition of the waves reflected from the seating surface and the waves newly arrived from the inlet nozzle interface pressure location.

  5. Planar location of the simulative acoustic source based on fiber optic sensor array

    Science.gov (United States)

    Liang, Yi-Jun; Liu, Jun-feng; Zhang, Qiao-ping; Mu, Lin-lin

    2010-06-01

    A fiber optic sensor array which is structured by four Sagnac fiber optic sensors is proposed to detect and locate a simulative source of acoustic emission (AE). The sensing loops of Sagnac interferometer (SI) are regarded as point sensors as their small size. Based on the derived output light intensity expression of SI, the optimum work condition of the Sagnac fiber optic sensor is discussed through the simulation of MATLAB. Four sensors are respectively placed on a steel plate to structure the sensor array and the location algorithms are expatiated. When an impact is generated by an artificial AE source at any position of the plate, the AE signal will be detected by four sensors at different times. With the help of a single chip microcomputer (SCM) which can calculate the position of the AE source and display it on LED, we have implemented an intelligent detection and location.

  6. Simulation of neutron multiplicity measurements using Geant4. Open source software for nuclear arms control

    Energy Technology Data Exchange (ETDEWEB)

    Kuett, Moritz

    2016-07-07

    Nuclear arms control, including nuclear safeguards and verification technologies for nuclear disarmament typically use software as part of many different technological applications. This thesis proposes to use three open source criteria for such software, allowing users and developers to have free access to a program, have access to the full source code and be able to publish modifications for the program. This proposition is presented and analyzed in detail, together with the description of the development of ''Open Neutron Multiplicity Simulation'', an open source software tool to simulate neutron multiplicity measurements. The description includes physical background of the method, details of the developed program and a comprehensive set of validation calculations.

  7. Modeling of gas flow in the simulation of H- ion source

    International Nuclear Information System (INIS)

    Ogasawara, M.; Okuda, Y.; Shirai, M.; Mitsuhashi, S.; Hatayama, A.

    1996-01-01

    Actual gas supply into the ion source is modeled. Filling pressure is related to gas flow rate and conductance of the H - extraction system. The rate equation for the H 2 molecule with gas inflow and outflow rates related with the filling pressure are employed in the numerical simulation of a negative hydrogen ion source. With the results of numerical simulation, the H number conservation relation and pressure balance equation are shown to be inaccurate especially for higher electron temperature. Actually for 5 eV of electron temperature, lost H 2 density amounts to 79% and the pressure becomes 5 times the original pressure of 5 mTorr. Even for a low pressure of 3 mTorr, the lost fraction is 67% for 5 eV of the electron temperature. This inaccuracy is large in high power and even for low pressure operation of the ion source. copyright 1996 American Institute of Physics

  8. Numerical Simulation of Ion Transport in a Nano-Electrospray Ion Source at Atmospheric Pressure

    Science.gov (United States)

    Wang, Wei; Bajic, Steve; John, Benzi; Emerson, David R.

    2018-03-01

    Understanding ion transport properties from the ion source to the mass spectrometer (MS) is essential for optimizing device performance. Numerical simulation helps in understanding of ion transport properties and, furthermore, facilitates instrument design. In contrast to previously reported numerical studies, ion transport simulations in a continuous injection mode whilst considering realistic space-charge effects have been carried out. The flow field was solved using Reynolds-averaged Navier-Stokes (RANS) equations, and a particle-in-cell (PIC) method was applied to solve a time-dependent electric field with local charge density. A series of ion transport simulations were carried out at different cone gas flow rates, ion source currents, and capillary voltages. A force evaluation analysis reveals that the electric force, the drag force, and the Brownian force are the three dominant forces acting on the ions. Both the experimental and simulation results indicate that cone gas flow rates of ≤250 slph (standard liter per hour) are important for high ion transmission efficiency, as higher cone gas flow rates reduce the ion signal significantly. The simulation results also show that the ion transmission efficiency reduces exponentially with an increased ion source current. Additionally, the ion loss due to space-charge effects has been found to be predominant at a higher ion source current, a lower capillary voltage, and a stronger cone gas counterflow. The interaction of the ion driving force, ion opposing force, and ion dispersion is discussed to illustrate ion transport mechanism in the ion source at atmospheric pressure. [Figure not available: see fulltext.

  9. A regional climate simulation over the Iberian Peninsula for the last millennium

    Directory of Open Access Journals (Sweden)

    J. J. Gómez-Navarro

    2011-04-01

    Full Text Available A high-resolution (30 km regional paleoclimate simulation of the last millennium over the Iberian Peninsula (IP is presented. The simulation was performed with a climate version of the mesoscale model MM5 driven by the global model ECHO-G. Both models were driven by the same reconstructions of several external forcing factors. The high spatial resolution of the regional model allows climatologists to realistically simulate many aspects of the climate in the IP, as compared to an observational data set in the reference period 1961–1990. Although the spatial-averaged values developed by the regional model are tightly driven by the boundary conditions, it is capable to develop a different realisation of the past climate at regional scales, especially in the high-frequency domain and for precipitation. This has to be considered when comparing the results of climate simulations versus proxy reconstructions. A preliminary comparison of the simulation results with reconstructions of temperature and precipitation over the IP shows good agreement in the warming trends in the last century of the simulation, although there are large disagreements in key periods such as the precipitation anomalies in the Maunder Minimum.

  10. Estimation of mercury emissions from forest fires, lakes, regional and local sources using measurements in Milwaukee and an inverse method

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2012-10-01

    Full Text Available Gaseous elemental mercury is a global pollutant that can lead to serious health concerns via deposition to the biosphere and bio-accumulation in the food chain. Hourly measurements between June 2004 and May 2005 in an urban site (Milwaukee, WI show elevated levels of mercury in the atmosphere with numerous short-lived peaks as well as longer-lived episodes. The measurements are analyzed with an inverse model to obtain information about mercury emissions. The model is based on high resolution meteorological simulations (WRF, hourly back-trajectories (WRF-FLEXPART and a chemical transport model (CAMx. The hybrid formulation combining back-trajectories and Eulerian simulations is used to identify potential source regions as well as the impacts of forest fires and lake surface emissions. Uncertainty bounds are estimated using a bootstrap method on the inversions. Comparison with the US Environmental Protection Agency's National Emission Inventory (NEI and Toxic Release Inventory (TRI shows that emissions from coal-fired power plants are properly characterized, but emissions from local urban sources, waste incineration and metal processing could be significantly under-estimated. Emissions from the lake surface and from forest fires were found to have significant impacts on mercury levels in Milwaukee, and to be underestimated by a factor of two or more.

  11. Very high-resolution regional climate simulations over Scandinavia-present climate

    DEFF Research Database (Denmark)

    Christensen, Ole B.; Christensen, Jens H.; Machenhauer, Bennert

    1998-01-01

    realistically simulated. It is found in particular that in mountainous regions the high-resolution simulation shows improvements in the simulation of hydrologically relevant fields such as runoff and snow cover. Also, the distribution of precipitation on different intensity classes is most realistically...... on a high-density station network for the Scandinavian countries compiled for the present study. The simulated runoff is compared with observed data from Sweden extracted from a Swedish climatological atlas. These runoff data indicate that the precipitation analyses are underestimating the true...... simulated in the high-resolution simulation. It does, however, inherit certain large-scale systematic errors from the driving GCM. In many cases these errors increase with increasing resolution. Model verification of near-surface temperature and precipitation is made using a new gridded climatology based...

  12. Testing the Accuracy of Data-driven MHD Simulations of Active Region Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Leake, James E.; Linton, Mark G. [U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States); Schuck, Peter W., E-mail: james.e.leake@nasa.gov [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2017-04-01

    Models for the evolution of the solar coronal magnetic field are vital for understanding solar activity, yet the best measurements of the magnetic field lie at the photosphere, necessitating the development of coronal models which are “data-driven” at the photosphere. We present an investigation to determine the feasibility and accuracy of such methods. Our validation framework uses a simulation of active region (AR) formation, modeling the emergence of magnetic flux from the convection zone to the corona, as a ground-truth data set, to supply both the photospheric information and to perform the validation of the data-driven method. We focus our investigation on how the accuracy of the data-driven model depends on the temporal frequency of the driving data. The Helioseismic and Magnetic Imager on NASA’s Solar Dynamics Observatory produces full-disk vector magnetic field measurements at a 12-minute cadence. Using our framework we show that ARs that emerge over 25 hr can be modeled by the data-driving method with only ∼1% error in the free magnetic energy, assuming the photospheric information is specified every 12 minutes. However, for rapidly evolving features, under-sampling of the dynamics at this cadence leads to a strobe effect, generating large electric currents and incorrect coronal morphology and energies. We derive a sampling condition for the driving cadence based on the evolution of these small-scale features, and show that higher-cadence driving can lead to acceptable errors. Future work will investigate the source of errors associated with deriving plasma variables from the photospheric magnetograms as well as other sources of errors, such as reduced resolution, instrument bias, and noise.

  13. Decomposition of the Seismic Source Using Numerical Simulations and Observations of Nuclear Explosions

    Science.gov (United States)

    2017-05-31

    with an appropriate Green’s function. The representation theorem is exact. That is, no matter how complex the 3D motion is on the source region boundary ... application of the representation theorem to propagate motion to farther distances. Panels (c) and (d) show south-to-north (S-N) and west-to-east (W-E...waveform from the nonlinear calculations propagated using the representation theorem , and also a waveform from a point source plane- layered medium

  14. Monitoring of seismic events from a specific source region using a single regional array: A case study

    Science.gov (United States)

    Gibbons, S. J.; Kværna, T.; Ringdal, F.

    2005-07-01

    In the monitoring of earthquakes and nuclear explosions using a sparse worldwide network of seismic stations, it is frequently necessary to make reliable location estimates using a single seismic array. It is also desirable to screen out routine industrial explosions automatically in order that analyst resources are not wasted upon detections which can, with a high level of confidence, be associated with such a source. The Kovdor mine on the Kola Peninsula of NW Russia is the site of frequent industrial blasts which are well recorded by the ARCES regional seismic array at a distance of approximately 300 km. We describe here an automatic procedure for identifying signals which are likely to result from blasts at the Kovdor mine and, wherever possible, for obtaining single array locations for such events. Carefully calibrated processing parameters were chosen using measurements from confirmed events at the mine over a one-year period for which the operators supplied Ground Truth information. Phase arrival times are estimated using an autoregressive method and slowness and azimuth are estimated using broadband f{-} k analysis in fixed frequency bands and time-windows fixed relative to the initial P-onset time. We demonstrate the improvement to slowness estimates resulting from the use of fixed frequency bands. Events can be located using a single array if, in addition to the P-phase, at least one secondary phase is found with both an acceptable slowness estimate and valid onset-time estimate. We evaluate the on-line system over a twelve month period; every event known to have occured at the mine is detected by the process and 32 out of 53 confirmed events were located automatically. The remaining events were classified as “very likely” Kovdor events and were subsequently located by an analyst. The false alarm rate is low; only 84 very likely Kovdor events were identified during the whole of 2003 and none of these were subsequently located at a large distance from

  15. Complex active regions as the main source of extreme and large solar proton events

    Science.gov (United States)

    Ishkov, V. N.

    2013-12-01

    A study of solar proton sources indicated that solar flare events responsible for ≥2000 pfu proton fluxes mostly occur in complex active regions (CARs), i.e., in transition structures between active regions and activity complexes. Different classes of similar structures and their relation to solar proton events (SPEs) and evolution, depending on the origination conditions, are considered. Arguments in favor of the fact that sunspot groups with extreme dimensions are CARs are presented. An analysis of the flare activity in a CAR resulted in the detection of "physical" boundaries, which separate magnetic structures of the same polarity and are responsible for the independent development of each structure.

  16. Understanding Sediment Sources, Pathways, and Sinks in Regional Sediment Management: Application of Wash Load and Bed-Material Load Concept

    National Research Council Canada - National Science Library

    Biedenham, David S; Hubbard, Lisa C; Thome, Colin R; Watson, Chester C

    2006-01-01

    ... through the fluvial system for sediments derived from various bed, bank, gully, and catchment sources thereby providing a reliable analytical foundation for effective regional sediment management...

  17. Application of a generalized Leibniz rule for calculating electromagnetic fields within continuous source regions

    International Nuclear Information System (INIS)

    Silberstein, M.

    1991-01-01

    In deriving the electric and magnetic fields in a continuous source region by differentiating the vector potential, Yaghjian (1985) explains that the central obstacle is the dependence of the integration limits on the differentiation variable. Since it is not mathematically rigorous to assume the curl and integral signs are interchangeable, he uses an integration variable substitution to circumvent this problematic dependence. Here, an alternative derivation is presented, which evaluates the curl of the vector potential volume integral directly, retaining the dependence of the limits of integration on the differentiation variable. It involves deriving a three-dimensional version of Leibniz' rule for differentiating an integral with variable limits of integration, and using the generalized rule to find the Maxwellian and cavity fields in the source region. 7 refs

  18. Source characterization of underground explosions from hydrodynamic-to-elastic coupling simulations

    Science.gov (United States)

    Chiang, A.; Pitarka, A.; Ford, S. R.; Ezzedine, S. M.; Vorobiev, O.

    2017-12-01

    A major improvement in ground motion simulation capabilities for underground explosion monitoring during the first phase of the Source Physics Experiment (SPE) is the development of a wave propagation solver that can propagate explosion generated non-linear near field ground motions to the far-field. The calculation is done using a hybrid modeling approach with a one-way hydrodynamic-to-elastic coupling in three dimensions where near-field motions are computed using GEODYN-L, a Lagrangian hydrodynamics code, and then passed to WPP, an elastic finite-difference code for seismic waveform modeling. The advancement in ground motion simulation capabilities gives us the opportunity to assess moment tensor inversion of a realistic volumetric source with near-field effects in a controlled setting, where we can evaluate the recovered source properties as a function of modeling parameters (i.e. velocity model) and can provide insights into previous source studies on SPE Phase I chemical shots and other historical nuclear explosions. For example the moment tensor inversion of far-field SPE seismic data demonstrated while vertical motions are well-modeled using existing velocity models large misfits still persist in predicting tangential shear wave motions from explosions. One possible explanation we can explore is errors and uncertainties from the underlying Earth model. Here we investigate the recovered moment tensor solution, particularly on the non-volumetric component, by inverting far-field ground motions simulated from physics-based explosion source models in fractured material, where the physics-based source models are based on the modeling of SPE-4P, SPE-5 and SPE-6 near-field data. The hybrid modeling approach provides new prospects in modeling explosion source and understanding the uncertainties associated with it.

  19. Studies of an inductively coupled negative hydrogen ion radio frequency source through simulations and experiments

    International Nuclear Information System (INIS)

    Bandyopadhyay, M.

    2004-01-01

    In the frame work of a development project for ITER neutral beam injection system a radio frequency (RF) driven negative hydrogen (H-/D-) ion source, (BATMAN ion source) is developed which is designed to produce several 10s of ampere of H-/D- beam current. This PhD work has been carried out to understand and optimize BATMAN ion source. The study has been done with the help of computer simulations, modeling and experiments. The complete three dimensional Monte-Carlo computer simulation codes have been developed under the scope of this PhD work. A comprehensive description about the volume production and the surface production of H- ions is presented in the thesis along with the study results obtained from the simulations, modeling and the experiments. One of the simulations is based on the volume production of H- ions, where it calculates the density profile of the vibrationally excited H2 molecules, the density profile of H- ions and the transport probability of those H- ions along the source axis towards the grid. The other simulation studies the transport of those H- ions which are produced on the surface of the plasma grid. It is expected that if there is a plasma flow in the source, the transport of plasma components (molecules and ions) would be influenced. Experimentally it is observed that there is a convective plasma flow exists in the ion source. A transverse magnetic filter field which is present near the grid inside the ion source reduces the flow velocity. Negative ions and electrons have the same sign of charge; therefore the electrons are co-extracted with the negative ions through the grid system, which is not desirable. It is observed that a magnetic field near the grid, magnetized the electrons and therefore reduce the co-extracted electron current. It is also observed experimentally that if the plasma grid is biased positively with respect to the source body, the electron density near the plasma grid is reduced and therefore the co

  20. Methods of formation of efficiency indexes of electric power sources integration in regional electric power systems

    International Nuclear Information System (INIS)

    Marder, L.I.; Myzin, A.I.

    1993-01-01

    A methodic approach to the grounding of the integration process efficiency within the Unified electric power system is given together with the selection of a rational areal structure and concentration of power-generating source capacities. Formation of an economic functional according to alternative scenavies including the cost components taking account of the regional interests is considered. A method for estimation and distribution of the effect from electric power production integration in the power systems under new economic conditions is proposed

  1. Kinetic plasma simulation of ion beam extraction from an ECR ion source

    International Nuclear Information System (INIS)

    Elliott, S.M.; White, E.K.; Simkin, J.

    2012-01-01

    Designing optimized ECR (electron cyclotron resonance) ion beam sources can be streamlined by the accurate simulation of beam optical properties in order to predict ion extraction behavior. The complexity of these models, however, can make PIC-based simulations time-consuming. In this paper, we first describe a simple kinetic plasma finite element simulation of extraction of a proton beam from a permanent magnet hexapole ECR ion source. Second, we analyze the influence of secondary electrons generated by ion collisions in the residual gas on the space charge of a proton beam of a dual-solenoid ECR ion source. The finite element method (FEM) offers a fast modeling environment, allowing analysis of ion beam behavior under conditions of varying current density, electrode potential, and gas pressure. The new version of SCALA/TOSCA v14 permits the making of simulations in tens of minutes to a few hours on standard computer platforms without the need of particle-in-cell methods. The paper is followed by the slides of the presentation. (authors)

  2. Incorporating information from source simulations into searches for gravitational-wave bursts

    International Nuclear Information System (INIS)

    Brady, Patrick R; Ray-Majumder, Saikat

    2004-01-01

    The detection of gravitational waves from astrophysical sources of gravitational waves is a realistic goal for the current generation of interferometric gravitational-wave detectors. Short duration bursts of gravitational waves from core-collapse supernovae or mergers of binary black holes may bring a wealth of astronomical and astrophysical information. The weakness of the waves and the rarity of the events urges the development of optimal methods to detect the waves. The waves from these sources are not generally known well enough to use matched filtering however; this drives the need to develop new ways to exploit source simulation information in both detection and information extraction. We present an algorithmic approach to using catalogues of gravitational-wave signals developed through numerical simulation, or otherwise, to enhance our ability to detect these waves. As more detailed simulations become available, it is straightforward to incorporate the new information into the search method. This approach may also be useful when trying to extract information from a gravitational-wave observation by allowing direct comparison between the observation and simulations

  3. Tabulated square-shaped source model for linear accelerator electron beam simulation.

    Science.gov (United States)

    Khaledi, Navid; Aghamiri, Mahmood Reza; Aslian, Hossein; Ameri, Ahmad

    2017-01-01

    Using this source model, the Monte Carlo (MC) computation becomes much faster for electron beams. The aim of this study was to present a source model that makes linear accelerator (LINAC) electron beam geometry simulation less complex. In this study, a tabulated square-shaped source with transversal and axial distribution biasing and semi-Gaussian spectrum was investigated. A low energy photon spectrum was added to the semi-Gaussian beam to correct the bremsstrahlung X-ray contamination. After running the MC code multiple times and optimizing all spectrums for four electron energies in three different medical LINACs (Elekta, Siemens, and Varian), the characteristics of a beam passing through a 10 cm × 10 cm applicator were obtained. The percentage depth dose and dose profiles at two different depths were measured and simulated. The maximum difference between simulated and measured percentage of depth doses and dose profiles was 1.8% and 4%, respectively. The low energy electron and photon spectrum and the Gaussian spectrum peak energy and associated full width at half of maximum and transversal distribution weightings were obtained for each electron beam. The proposed method yielded a maximum computation time 702 times faster than a complete head simulation. Our study demonstrates that there was an excellent agreement between the results of our proposed model and measured data; furthermore, an optimum calculation speed was achieved because there was no need to define geometry and materials in the LINAC head.

  4. Multipoint investigation of the source region of storm-time chorus

    Directory of Open Access Journals (Sweden)

    O. Santolík

    2004-07-01

    Full Text Available In this case study we investigate the source region of whistler-mode chorus located close to the geomagnetic equator at a radial distance of 4.4 Earth radii. We use measurements from the four Cluster spacecraft at separations of less than a few hundreds of km, recorded during the geomagnetic storm of 18 April 2002. The waveforms of the electric field fluctuations were obtained by the WBD instruments in the frequency range 50Hz-9.5kHz. Using these data, we calculate linear and rank correlation coefficients of the frequency averaged power-spectral density measured by the different spacecraft. Those coefficients have been recently shown to decrease with spacecraft separation distance perpendicular to the static magnetic field cchor03 with a characteristic scale length of 100km. We find this characteristic scale varying between 60 and 200km for different data intervals inside the source region. We examine possible explanations for the observed large scatter of the correlation coefficients, and we suggest a simultaneously acting effect of random positions of locations at which the individual chorus wave packets are generated. The statistical properties of the observations are approximately reproduced by a simple 2-D model of the source region, assuming a perpendicular half-width of 35km (approximately one wavelength of the whistler-mode waves for the distribution of power radiated from individual active areas.

  5. Principles for the establishment of upper bounds to doses to individuals from global and regional sources

    International Nuclear Information System (INIS)

    1989-01-01

    The IAEA Safety Guide, Safety Series No. 77 (1986), Principles for Limiting Releases of Radioactive Effluents into the Environment, identifies the concept of upper bounds to individual dose. They are the fractions of the dose limit for members of the public allocated to the various different sources and practices which can give rise to individual exposure. This Guide is concerned with the contributions to individual dose which may arise from other sources in the same region and also from sources which are far away but which, because of the nature of the radionuclides involved, give rise to a global component of dose. Consideration is given to the need for control of such exposures and the means by which it could be achieved. The text may be seen as providing expansion of the guidance given in Safety Series No. 77. 24 refs

  6. Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean

    Science.gov (United States)

    Yolsal-Çevikbilen, Seda; Taymaz, Tuncay

    2012-04-01

    We studied source mechanism parameters and slip distributions of earthquakes with Mw ≥ 5.0 occurred during 2000-2008 along the Hellenic subduction zone by using teleseismic P- and SH-waveform inversion methods. In addition, the major and well-known earthquake-induced Eastern Mediterranean tsunamis (e.g., 365, 1222, 1303, 1481, 1494, 1822 and 1948) were numerically simulated and several hypothetical tsunami scenarios were proposed to demonstrate the characteristics of tsunami waves, propagations and effects of coastal topography. The analogy of current plate boundaries, earthquake source mechanisms, various earthquake moment tensor catalogues and several empirical self-similarity equations, valid for global or local scales, were used to assume conceivable source parameters which constitute the initial and boundary conditions in simulations. Teleseismic inversion results showed that earthquakes along the Hellenic subduction zone can be classified into three major categories: [1] focal mechanisms of the earthquakes exhibiting E-W extension within the overriding Aegean plate; [2] earthquakes related to the African-Aegean convergence; and [3] focal mechanisms of earthquakes lying within the subducting African plate. Normal faulting mechanisms with left-lateral strike slip components were observed at the eastern part of the Hellenic subduction zone, and we suggest that they were probably concerned with the overriding Aegean plate. However, earthquakes involved in the convergence between the Aegean and the Eastern Mediterranean lithospheres indicated thrust faulting mechanisms with strike slip components, and they had shallow focal depths (h < 45 km). Deeper earthquakes mainly occurred in the subducting African plate, and they presented dominantly strike slip faulting mechanisms. Slip distributions on fault planes showed both complex and simple rupture propagations with respect to the variation of source mechanism and faulting geometry. We calculated low stress drop

  7. Premature deaths attributed to source-specific BC emissions in six urban US regions

    International Nuclear Information System (INIS)

    Turner, Matthew D; Henze, Daven K; Capps, Shannon L; Hakami, Amir; Zhao, Shunliu; Resler, Jaroslav; Carmichael, Gregory R; Stanier, Charles O; Baek, Jaemeen; Sandu, Adrian; Russell, Armistead G; Nenes, Athanasios; Pinder, Rob W; Napelenok, Sergey L; Bash, Jesse O; Percell, Peter B; Chai, Tianfeng

    2015-01-01

    Recent studies have shown that exposure to particulate black carbon (BC) has significant adverse health effects and may be more detrimental to human health than exposure to PM 2.5 as a whole. Mobile source BC emission controls, mostly on diesel-burning vehicles, have successfully decreased mobile source BC emissions to less than half of what they were 30 years ago. Quantification of the benefits of previous emissions controls conveys the value of these regulatory actions and provides a method by which future control alternatives could be evaluated. In this study we use the adjoint of the Community Multiscale Air Quality (CMAQ) model to estimate highly-resolved spatial distributions of benefits related to emission reductions for six urban regions within the continental US. Emissions from outside each of the six chosen regions account for between 7% and 27% of the premature deaths attributed to exposure to BC within the region. While we estimate that nonroad mobile and onroad diesel emissions account for the largest number of premature deaths attributable to exposure to BC, onroad gasoline is shown to have more than double the benefit per unit emission relative to that of nonroad mobile and onroad diesel. Within the region encompassing New York City and Philadelphia, reductions in emissions from large industrial combustion sources that are not classified as EGUs (i.e., non-EGU) are estimated to have up to triple the benefits per unit emission relative to reductions to onroad diesel sectors, and provide similar benefits per unit emission to that of onroad gasoline emissions in the region. While onroad mobile emissions have been decreasing in the past 30 years and a majority of vehicle emission controls that regulate PM focus on diesel emissions, our analysis shows the most efficient target for stricter controls is actually onroad gasoline emissions. (letter)

  8. [Metallic content of water sources and drinkable water in industrial cities of Murmansk region].

    Science.gov (United States)

    Doushkina, E V; Dudarev, A A; Sladkova, Yu N; Zachinskaya, I Yu; Chupakhin, V S; Goushchin, I V; Talykova, L V; Nikanov, A N

    2015-01-01

    Performed in 2013, sampling of centralized and noncentralized water-supply and analysis of engineering technology materials on household water use in 6 cities of Murmansk region (Nikel, Zapolyarny, Olenegorsk, Montchegorsk, Apatity, Kirovsk), subjected to industrial emissions, enabled to evaluate and compare levels of 15 metals in water sources (lakes and springs) and the cities' drinkable waters. Findings are that some cities lack sanitary protection zones for water sources, most cities require preliminary water processing, water desinfection involves only chlorination. Concentrations of most metals in water samples from all the cities at the points of water intake, water preparation and water supply are within the hygienic norms. But values significantly (2-5 times) exceeding MACs (both in water sources and in drinkable waters of the cities) were seen for aluminium in Kirovsk city and for nickel in Zapolarny and Nikel cities. To decrease effects of aluminium, nickel and their compounds in the three cities' residents (and preserve health of the population and offsprings), the authors necessitate specification and adaptation of measures to purify the drinkable waters from the pollutants. In all the cities studied, significantly increased concentrations of iron and other metals were seen during water transportation from the source to the city supply--that necessitates replacement of depreciated water supply systems by modern ones. Water taken from Petchenga region springs demonstrated relatively low levels of metals, except from strontium and barium.

  9. Integration and Optimization of Alternative Sources of Energy in a Remote Region

    Science.gov (United States)

    Berberi, Pellumb; Inodnorjani, Spiro; Aleti, Riza

    2010-01-01

    In a remote coastal region supply of energy from national grid is insufficient for a sustainable development. Integration and optimization of local alternative renewable energy sources is an optional solution of the problem. In this paper we have studied the energetic potential of local sources of renewable energy (water, solar, wind and biomass). A bottom-up energy system optimization model is proposed in order to support planning policies for promoting the use of renewable energy sources. A software, based on multiple factors and constrains analysis for optimization energy flow is proposed, which provides detailed information for exploitation each source of energy, power and heat generation, GHG emissions and end-use sectors. Economical analysis shows that with existing technologies both stand alone and regional facilities may be feasible. Improving specific legislation will foster investments from Central or Local Governments and also from individuals, private companies or small families. The study is carried on the frame work of a FP6 project "Integrated Renewable Energy System."

  10. Investigation of error sources in regional inverse estimates of greenhouse gas emissions in Canada

    Science.gov (United States)

    Chan, E.; Chan, D.; Ishizawa, M.; Vogel, F.; Brioude, J.; Delcloo, A.; Wu, Y.; Jin, B.

    2015-08-01

    Inversion models can use atmospheric concentration measurements to estimate surface fluxes. This study is an evaluation of the errors in a regional flux inversion model for different provinces of Canada, Alberta (AB), Saskatchewan (SK) and Ontario (ON). Using CarbonTracker model results as the target, the synthetic data experiment analyses examined the impacts of the errors from the Bayesian optimisation method, prior flux distribution and the atmospheric transport model, as well as their interactions. The scaling factors for different sub-regions were estimated by the Markov chain Monte Carlo (MCMC) simulation and cost function minimization (CFM) methods. The CFM method results are sensitive to the relative size of the assumed model-observation mismatch and prior flux error variances. Experiment results show that the estimation error increases with the number of sub-regions using the CFM method. For the region definitions that lead to realistic flux estimates, the numbers of sub-regions for the western region of AB/SK combined and the eastern region of ON are 11 and 4 respectively. The corresponding annual flux estimation errors for the western and eastern regions using the MCMC (CFM) method are -7 and -3 % (0 and 8 %) respectively, when there is only prior flux error. The estimation errors increase to 36 and 94 % (40 and 232 %) resulting from transport model error alone. When prior and transport model errors co-exist in the inversions, the estimation errors become 5 and 85 % (29 and 201 %). This result indicates that estimation errors are dominated by the transport model error and can in fact cancel each other and propagate to the flux estimates non-linearly. In addition, it is possible for the posterior flux estimates having larger differences than the prior compared to the target fluxes, and the posterior uncertainty estimates could be unrealistically small that do not cover the target. The systematic evaluation of the different components of the inversion

  11. Simulation of West African air pollution during the DACCIWA experiment with the GEOS-Chem West African regional model.

    Science.gov (United States)

    Morris, Eleanor; Evans, Mathew

    2017-04-01

    Pollutant emissions from West African cities are forecast to increase rapidly in future years because of extensive economic and population growth, together with poorly regulated industrialisation and urbanisation. Observational constraints in this region are few, leading to poor understanding of present-day air pollution in this region. To increase our understanding of the processes controlling air pollutants over the region, airborne observations were made from three research aircraft based out of Lomé, Togo during the DACCIWA field campaign in June-July 2016. A new 0.25x0.3125 degree West Africa regional version of the GEOS-Chem offline chemical transport model has also been developed to explore the processes controlling pollutants over the region. We evaluate the model using the aircraft data and focus on primary (CO, SO2, NOx, VOCs) and secondary pollutants (O3, aerosol). We find significant differences between the model and the measurements for certain primary compounds which is indicative of significant uncertainties in the base (EDGAR) emissions. For CO (a general tracer of pollution) we evaluate the role of different emissions sources (transport, low temperature combustion, power generation) in determining its concentration in the region. We conclude that the leading cause of uncertainty in our simulation is associated with the emissions datasets and explore the impact of using differing datasets.

  12. [Kinetic simulation of enhanced biological phosphorus removal with fermentation broth as carbon source].

    Science.gov (United States)

    Zhang, Chao; Chen, Yin-Guang

    2013-07-01

    As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.

  13. Sensitivity of the coastal tsunami simulation to the complexity of the 2011 Tohoku earthquake source model

    Science.gov (United States)

    Monnier, Angélique; Loevenbruck, Anne; Gailler, Audrey; Hébert, Hélène

    2016-04-01

    The 11 March 2011 Tohoku-Oki event, whether earthquake or tsunami, is exceptionally well documented. A wide range of onshore and offshore data has been recorded from seismic, geodetic, ocean-bottom pressure and sea level sensors. Along with these numerous observations, advance in inversion technique and computing facilities have led to many source studies. Rupture parameters inversion such as slip distribution and rupture history permit to estimate the complex coseismic seafloor deformation. From the numerous published seismic source studies, the most relevant coseismic source models are tested. The comparison of the predicted signals generated using both static and cinematic ruptures to the offshore and coastal measurements help determine which source model should be used to obtain the more consistent coastal tsunami simulations. This work is funded by the TANDEM project, reference ANR-11-RSNR-0023-01 of the French Programme Investissements d'Avenir (PIA 2014-2018).

  14. Simulation of Photon energy Spectra Using MISC, SOURCES, MCNP and GADRAS

    International Nuclear Information System (INIS)

    Tucker, Lucas P.; Shores, Erik F.; Myers, Steven C.; Felsher, Paul D.; Garner, Scott E.; Solomon, Clell J. Jr.

    2012-01-01

    The detector response functions included in the Gamma Detector Response and Analysis Software (GADRAS) are a valuable resource for simulating radioactive source emission spectra. Application of these response functions to the results of three-dimensional transport calculations is a useful modeling capability. Using a 26.2 kg shell of depleted uranium (DU) as a simple test problem, this work illustrates a method for manipulating current tally results from MCNP into the GAM file format necessary for a practical link to GADRAS detector response functions. MISC (MCNP Intrinsic Source Constructor) and SOURCES 4C were used to develop photon and neutron source terms for subsequent MCNP transport, and the resultant spectrum is shown to be in good agreement with that from GADRAS. A 1 kg DU sphere was also modeled with the method described here and showed similarly encouraging results.

  15. Simulation of Photon energy Spectra Using MISC, SOURCES, MCNP and GADRAS

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Lucas P. [Los Alamos National Laboratory; Shores, Erik F. [Los Alamos National Laboratory; Myers, Steven C. [Los Alamos National Laboratory; Felsher, Paul D. [Los Alamos National Laboratory; Garner, Scott E. [Los Alamos National Laboratory; Solomon, Clell J. Jr. [Los Alamos National Laboratory

    2012-08-14

    The detector response functions included in the Gamma Detector Response and Analysis Software (GADRAS) are a valuable resource for simulating radioactive source emission spectra. Application of these response functions to the results of three-dimensional transport calculations is a useful modeling capability. Using a 26.2 kg shell of depleted uranium (DU) as a simple test problem, this work illustrates a method for manipulating current tally results from MCNP into the GAM file format necessary for a practical link to GADRAS detector response functions. MISC (MCNP Intrinsic Source Constructor) and SOURCES 4C were used to develop photon and neutron source terms for subsequent MCNP transport, and the resultant spectrum is shown to be in good agreement with that from GADRAS. A 1 kg DU sphere was also modeled with the method described here and showed similarly encouraging results.

  16. A two-region simulation model of vertical U-tube ground heat exchanger and its experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weibo; Liu, Guangyuan [School of Energy and Power Engineering, Yangzhou University, Yangzhou City (China); Shi, Mingheng; Chen, Zhenqian [School of Energy and Environment, Southeast University, Nanjing City (China)

    2009-10-15

    Heat transfer around vertical ground heat exchanger (GHE) is a common problem for the design and simulation of ground coupled heat pump (GCHP). In this paper, an updated two-region vertical U-tube GHE analytical model, which is fit for system dynamic simulation of GCHP, is proposed and developed. It divides the heat transfer region of GHE into two parts at the boundary of borehole wall, and the two regions are coupled by the temperature of borehole wall. Both steady and transient heat transfer method are used to analyze the heat transfer process inside and outside borehole, respectively. The transient borehole wall temperature is calculated for the soil region outside borehole by use of a variable heat flux cylindrical source model. As for the region inside borehole, considering the variation of fluid temperature along the borehole length and the heat interference between two adjacent legs of U-tube, a quasi-three dimensional steady-state heat transfer analytical model for the borehole is developed based on the element energy conservation. The implement process of the model used in the dynamic simulation of GCHPs is illuminated in detail and the application calculation example for it is also presented. The experimental validation on the model is performed in a solar-geothermal multifunctional heat pump experiment system with two vertical boreholes and each with a 30 m vertical 1 1/4 in nominal diameter HDPE single U-tube GHE, the results indicate that the calculated fluid outlet temperatures of GHE by the model are agreed well with the corresponding test data and the guess relative error is less than 6%. (author)

  17. Akuna: An Open Source User Environment for Managing Subsurface Simulation Workflows

    Science.gov (United States)

    Freedman, V. L.; Agarwal, D.; Bensema, K.; Finsterle, S.; Gable, C. W.; Keating, E. H.; Krishnan, H.; Lansing, C.; Moeglein, W.; Pau, G. S. H.; Porter, E.; Scheibe, T. D.

    2014-12-01

    The U.S. Department of Energy (DOE) is investing in development of a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. ASCEM is an open source and modular computing framework that incorporates new advances and tools for predicting contaminant fate and transport in natural and engineered systems. The ASCEM toolset includes both a Platform with Integrated Toolsets (called Akuna) and a High-Performance Computing multi-process simulator (called Amanzi). The focus of this presentation is on Akuna, an open-source user environment that manages subsurface simulation workflows and associated data and metadata. In this presentation, key elements of Akuna are demonstrated, which includes toolsets for model setup, database management, sensitivity analysis, parameter estimation, uncertainty quantification, and visualization of both model setup and simulation results. A key component of the workflow is in the automated job launching and monitoring capabilities, which allow a user to submit and monitor simulation runs on high-performance, parallel computers. Visualization of large outputs can also be performed without moving data back to local resources. These capabilities make high-performance computing accessible to the users who might not be familiar with batch queue systems and usage protocols on different supercomputers and clusters.

  18. Risk-based prioritization of ground water threatening point sources at catchment and regional scales

    DEFF Research Database (Denmark)

    Overheu, Niels Døssing; Tuxen, Nina; Flyvbjerg, John

    2014-01-01

    framework has been developed to enable a systematic and transparent risk assessment and prioritization of contaminant point sources, considering the local, catchment, or regional scales (Danish EPA, 2011, 2012). The framework has been tested in several catchments in Denmark with different challenges...... and needs, and two of these are presented. Based on the lessons learned, the Danish EPA has prepared a handbook to guide the user through the steps in a risk-based prioritization (Danish EPA, 2012). It provides guidance on prioritization both in an administratively defined area such as a Danish Region...... of the results are presented using the case studies as examples. The methodology was developed by a broad industry group including the Danish EPA, the Danish Regions, the Danish Nature Agency, the Technical University of Denmark, and consultants — and the framework has been widely accepted by the professional...

  19. Beam dynamics simulations of the injector for a compact THz source

    International Nuclear Information System (INIS)

    Li Ji; Pei Yuanji; Shang Lei; Li Chenglong; Feng Guangyao; Hu Tongning; Chen Qushan

    2014-01-01

    Terahertz radiation has broad application prospects due to its ability to penetrate deep into many organic materials without the damage caused by ionizing radiations. A free electron laser (FEL)-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Beam dynamics simulations have been done with ASTRA code to verify the design and to optimize parameters. Simulations of the operating mode at 6 MeV have also been executed. (authors)

  20. Beam dynamics simulations of the injector for a compact THz source

    Science.gov (United States)

    Li, Ji; Pei, Yuan-Ji; Shang, Lei; Feng, Guang-Yao; Hu, Tong-Ning; Chen, Qu-Shan; Li, Cheng-Long

    2014-08-01

    Terahertz radiation has broad application prospects due to its ability to penetrate deep into many organic materials without the damage caused by ionizing radiations. A free electron laser (FEL)-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Beam dynamics simulations have been done with ASTRA code to verify the design and to optimize parameters. Simulations of the operating mode at 6 MeV have also been executed.

  1. Current status of regional hydrogeological studies and numerical simulations on geological disposal

    International Nuclear Information System (INIS)

    Nakao, Shinsuke; Kikuchi, Tsuneo; Ishido, Tsuneo

    2004-01-01

    Current status of regional hydrogeological studies on geological disposal including hydrogeological modeling using numerical simulators is reviewed in this report. A regional scale and boundary conditions of numerical models are summarized mainly from the results of the RHS (regional hydrogeological study) project conducted by Japan Nuclear Cycle Development Institute (JNC) in the Tono area. We also refer to the current conceptual modes of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada, which is the arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Understanding behavior of a freshwater-saltwater transition zone seems to play a key role in the hydrogeological modeling in a coastal region. Technical features of a numerical simulator as a tool for geothermal reservoir modeling is also briefly described. (author)

  2. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    Directory of Open Access Journals (Sweden)

    Kathleen Feiner

    2015-09-01

    New hydrological insights for the region: The construction of a beaver dam resulted in minimal changes to regional groundwater flow paths at this site, which is attributed to a clay unit underlying the peat, disconnecting this wetland from regional groundwater flow. However, groundwater discharge from the wetland pond increased by 90%. Simulating a scenario with the numerical model in which the wetland is connected to regional groundwater flow results in a much larger impact on flow paths. In the absence of the clay layer, the simulated construction of a beaver dam causes a 70% increase in groundwater discharge from the wetland pond and increases the surface area of both the capture zone and the discharge zone by 30% and 80%, respectively.

  3. Correlation between Angular Widths of CMEs and Characteristics of Their Source Regions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. H.; Feng, X. S. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Feng, H. Q. [Institute of Space Physics, Luoyang Normal University, Luoyang, Henan 471934 (China); Li, Z. [Institute of Space Weather, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044 (China)

    2017-11-10

    The angular width of a coronal mass ejection (CME) is an important factor in determining whether the corresponding interplanetary CME (ICME) and its preceding shock will reach Earth. However, there have been very few studies of the decisive factors of the CME’s angular width. In this study, we use the three-dimensional (3D) angular width of CMEs obtained from the Graduated Cylindrical Shell model based on observations of Solar Terrestrial Relations Observatory ( STEREO ) to study the relations between the CME’s 3D width and characteristics of the CME’s source region. We find that for the CMEs produced by active regions (ARs), the CME width has some correlations with the AR’s area and flux, but these correlations are not strong. The magnetic flux contained in the CME seems to come from only part of the AR’s total flux. For the CMEs produced by flare regions, the correlations between the CME angular width and the flare region’s area and flux are strong. The magnetic flux within those CMEs seems to come from the whole flare region or even from a larger region than the flare. Our findings show that the CME’s 3D angular width can be generally estimated based on observations of Solar Dynamics Observatory for the CME’s source region instead of the observations from coronagraphs on board the Solar and Heliospheric Observatory and STEREO if the two foot points of the CME stay in the same places with no expansion of the CME in the transverse direction until reaching Earth.

  4. Improved hydrological modeling for remote regions using a combination of observed and simulated precipitation data

    DEFF Research Database (Denmark)

    van der Linden, Sandra; Christensen, Jens Hesselbjerg

    2003-01-01

    -resolution regional climate model (HIRHAM4) with a mean-field bias correction using observed precipitation. A hydrological model (USAFLOW) was applied to simulate runoff using observed precipitation and a combination of observed and simulated precipitation as input. The method was illustrated for the remote Usa basin......, situated in the European part of Arctic Russia, close to the Ural Mountains. It was shown that runoff simulations agree better with observations when the combined precipitation data set was used than when only observed precipitation was used. This appeared to be because the HIRHAM4 model data compensated...... for the absence of observed data from mountainous areas where precipitation is orographically enhanced. In both cases, the runoff simulated by USAFLOW was superior to the runoff simulated within the HIRHAM4 model itself. This was attributed to the rather simplistic description of the water balance in the HIRHAM4...

  5. Characterizing and sourcing ambient PM2.5 over key emission regions in China III: Carbon isotope based source apportionment of black carbon

    Science.gov (United States)

    Yu, Kuangyou; Xing, Zhenyu; Huang, Xiaofeng; Deng, Junjun; Andersson, August; Fang, Wenzheng; Gustafsson, Örjan; Zhou, Jiabin; Du, Ke

    2018-03-01

    Regional haze over China has severe implications for air quality and regional climate. To effectively combat these effects the high uncertainties regarding the emissions from different sources needs to be reduced. In this paper, which is the third in a series on the sources of PM2.5 in pollution hotspot regions of China, we focus on the sources of black carbon aerosols (BC), using carbon isotope signatures. Four-season samples were collected at two key locations: Beijing-Tianjin-Hebei (BTH, part of Northern China plain), and the Pearl River Delta (PRD). We find that that fossil fuel combustion was the predominant source of BC in both BTH and PRD regions, accounting for 75 ± 5%. However, the contributions of what fossil fuel components were dominating differed significantly between BTH and PRD, and varied dramatically with seasons. Coal combustion is overall the all-important BC source in BTH, accounting for 46 ± 12% of the BC in BTH, with the maximum value (62%) found in winter. In contrast for the PRD region, liquid fossil fuel combustion (e.g., oil, diesel, and gasoline) is the dominant source of BC, with an annual mean value of 41 ± 15% and the maximum value of 55% found in winter. Region- and season-specific source apportionments are recommended to both accurately assess the climate impact of carbonaceous aerosol emissions and to effectively mitigate deteriorating air quality caused by carbonaceous aerosols.

  6. The vibrational source strength descriptor using power input from equivalent forces: a simulation study

    DEFF Research Database (Denmark)

    Laugesen, Søren; Ohlrich, Mogens

    1994-01-01

    Simple, yet reliable methods for the approximate determination of the vibratory power supplied by the internal excitation forces of a given vibrational source are of great interest. One such method that relies on the application of a number of “equivalent forces” and measurements of the mean...... squared velocity on either the source or the receiving structure is studied in this paper by means of computer simulations. The study considers a simple system of two flexural beams coupled via a pair of springs. The investigation shows that a relatively small number of equivalent forces suffice...

  7. A global hydrological simulation to specify the sources of water used by humans

    Science.gov (United States)

    Hanasaki, Naota; Yoshikawa, Sayaka; Pokhrel, Yadu; Kanae, Shinjiro

    2018-01-01

    Humans abstract water from various sources to sustain their livelihood and society. Some global hydrological models (GHMs) include explicit schemes of human water abstraction, but the representation and performance of these schemes remain limited. We substantially enhanced the water abstraction schemes of the H08 GHM. This enabled us to estimate water abstraction from six major water sources, namely, river flow regulated by global reservoirs (i.e., reservoirs regulating the flow of the world's major rivers), aqueduct water transfer, local reservoirs, seawater desalination, renewable groundwater, and nonrenewable groundwater. In its standard setup, the model covers the whole globe at a spatial resolution of 0.5° × 0.5°, and the calculation interval is 1 day. All the interactions were simulated in a single computer program, and all water fluxes and storage were strictly traceable at any place and time during the simulation period. A global hydrological simulation was conducted to validate the performance of the model for the period of 1979-2013 (land use was fixed for the year 2000). The simulated water fluxes for water abstraction were validated against those reported in earlier publications and showed a reasonable agreement at the global and country level. The simulated monthly river discharge and terrestrial water storage (TWS) for six of the world's most significantly human-affected river basins were compared with gauge observations and the data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. It is found that the simulation including the newly added schemes outperformed the simulation without human activities. The simulated results indicated that, in 2000, of the 3628±75 km3 yr-1 global freshwater requirement, 2839±50 km3 yr-1 was taken from surface water and 789±30 km3 yr-1 from groundwater. Streamflow, aqueduct water transfer, local reservoirs, and seawater desalination accounted for 1786±23, 199±10, 106±5, and 1.8

  8. Evaluation of the optimum region for mammographic system using computer simulation to study modulation transfer functions

    International Nuclear Information System (INIS)

    Oliveira, Isaura N. Sombra; Schiable, Homero; Porcel, Naider T.; Frere, Annie F.; Marques, Paulo M.A.

    1996-01-01

    An investigation of the 'optimum region' of the radiation field considering mammographic systems is studied. Such a region was defined in previous works as the field range where the system has its best performance and sharpest images. This study is based on a correlation of two methods for evaluating radiologic imaging systems, both using computer simulation in order to determine modulation transfer functions (MTFs) due to the X-ray tube focal spot in several field orientation and locations

  9. A fugacity model for source determination of the Lake Baikal region pollution with polychlorinated Biphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Sofiev, M. [Finnish Meteorological Inst., Helsinki (Finland); Galperin, M.; Maslyaev, A. [Inst. of Program Systems, Pereslavl-Zalesskiy (Russian Federation); McLachlan, M. [Stockholm Univ. (Sweden); Wania, F. [Toronto Univ. (Canada)

    2004-09-15

    PCBs were discovered in the Lake Baikal ecosystem by Malakhov et al. and Bobovnikova et al. A follow up to the initial study showed no decrease over 1981-1989 4, in contrast to what has been observed in other water bodies in the industrialised world. Further studies also showed the contamination in pinnipeds to be among the highest measured anywhere. Above studies and other data suggested a presence of a strong local PCB source (or several ones), which has had a widespread adverse effect for the whole region. To locate the source, Mamontov et al. collected samples from 34 sites over the region, the analysis of which showed a gradient of a factor of 1000, with the lowest concentrations at the north-east of Lake Baikal and the highest concentrations close to the city of Usolye Sibirskoye, a centre of the chemical industry in the Angara River valley. A continuous decrease in the soil contamination was observed along the path from Usolye Sibirskoye up the Angara River valley to Lake Baikal and from there north-eastward along the lake. These results indicate that there was (and perhaps still is) a major source of PCBs in the Usolye area, from where the PCBs are dispersed over the region. However, various obstacles prevent direct observations of potential sources. Therefore, a mathematical modelling approach was adopted in a currently ongoing INTAS project aiming to shed some more light on this problem. The model principles, setup and the results of the first experiments are presented in the current paper.

  10. Studing Regional Wave Source Time Functions Using A Massive Automated EGF Deconvolution Procedure

    Science.gov (United States)

    Xie, J. "; Schaff, D. P.

    2010-12-01

    Reliably estimated source time functions (STF) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection, and minimization of parameter trade-off in attenuation studies. The empirical Green’s function (EGF) method can be used for estimating STF, but it requires a strict recording condition. Waveforms from pairs of events that are similar in focal mechanism, but different in magnitude must be on-scale recorded on the same stations for the method to work. Searching for such waveforms can be very time consuming, particularly for regional waves that contain complex path effects and have reduced S/N ratios due to attenuation. We have developed a massive, automated procedure to conduct inter-event waveform deconvolution calculations from many candidate event pairs. The procedure automatically evaluates the “spikiness” of the deconvolutions by calculating their “sdc”, which is defined as the peak divided by the background value. The background value is calculated as the mean absolute value of the deconvolution, excluding 10 s around the source time function. When the sdc values are about 10 or higher, the deconvolutions are found to be sufficiently spiky (pulse-like), indicating similar path Green’s functions and good estimates of the STF. We have applied this automated procedure to Lg waves and full regional wavetrains from 989 M ≥ 5 events in and around China, calculating about a million deconvolutions. Of these we found about 2700 deconvolutions with sdc greater than 9, which, if having a sufficiently broad frequency band, can be used to estimate the STF of the larger events. We are currently refining our procedure, as well as the estimated STFs. We will infer the source scaling using the STFs. We will also explore the possibility that the deconvolution procedure could complement cross-correlation in a real time event-screening process.

  11. Regional variation and possible sources of brominated contaminants in breast milk from Japan

    International Nuclear Information System (INIS)

    Fujii, Yukiko; Ito, Yoshiko; Harada, Kouji H.; Hitomi, Toshiaki; Koizumi, Akio; Haraguchi, Koichi

    2012-01-01

    This study focuses on the regional trends and possible sources of brominated organic contaminants accumulated in breast milk from mothers in southeastern (Okinawa) and northwestern (Hokkaido) areas of Japan. For persistent brominated flame retardants, polybrominated diphenyl ethers (PBDEs; major components, BDE-47 and BDE-153) were distributed at higher levels in mothers from Okinawa (mean, 2.1 ng/g lipid), while hexabromobenzene (HeBB) and its metabolite 1,2,4,5-tetrabromobenzene were more abundantly detected in mothers from Hokkaido (0.86 and 2.6 ng/g lipid), suggesting that there are regional differences in their exposure in Japan. We also detected naturally produced brominated compounds, one of which was identified as 2′-methoxy-2,3′,4,5′-tetrabromodiphenyl ether (2′-MeO-BDE68) at higher levels in mothers from Okinawa (0.39 ng/g lipid), while the other was identified as 3,3′,4,4′-tetrabromo-5,5′-dichloro-2,2′-dimethyl-1,1′-bipyrrole in mothers from Hokkaido (0.45 ng/g lipid). The regional variation may be caused by source differences, i.e. southern seafood for MeO-PBDEs and northern biota for halogenated bipyrroles in the Japanese coastal water. - Highlights: ► In this study, we detected brominated organic contaminants in Japanese breast milk. ► Naturally produced brominated organic contaminants were also detected. ► Northern and southern Japan showed regional differences in these contaminants. ► Exposure to the contaminants is suggested to arise from different specific sources. - Brominated organic contaminants were detected in Japanese breast milk.

  12. Global Source Parameters from Regional Spectral Ratios for Yield Transportability Studies

    Science.gov (United States)

    Phillips, W. S.; Fisk, M. D.; Stead, R. J.; Begnaud, M. L.; Rowe, C. A.

    2016-12-01

    We use source parameters such as moment, corner frequency and high frequency rolloff as constraints in amplitude tomography, ensuring that spectra of well-studied earthquakes are recovered using the ensuing attenuation and site term model. We correct explosion data for path and site effects using such models, which allows us to test transportability of yield estimation techniques based on our best source spectral estimates. To develop a background set of source parameters, we applied spectral ratio techniques to envelopes of a global set of regional distance recordings from over 180,000 crustal events. Corner frequencies and moment ratios were determined via inversion using all event pairs within predetermined clusters, shifting to absolute levels using independently determined regional and teleseismic moments. The moment and corner frequency results can be expressed as stress drop, which has considerable scatter, yet shows dramatic regional patterns. We observe high stress in subduction zones along S. America, S. Mexico, the Banda Sea, and associated with the Yakutat Block in Alaska. We also observe high stress at the Himalayan syntaxes, the Pamirs, eastern Iran, the Caspian, the Altai-Sayan, and the central African rift. Low stress is observed along mid ocean spreading centers, the Afar rift, patches of convergence zones such as Nicaragua, the Zagros, Tibet, and the Tien Shan, among others. Mine blasts appear as low stress events due to their low corners and steep rolloffs. Many of these anomalies have been noted by previous studies, and we plan to compare results directly. As mentioned, these results will be used to constrain tomographic imaging, but can also be used in model validation procedures similar to the use of ground truth in location problems, and, perhaps most importantly, figure heavily in quality control of local and regional distance amplitude measurements.

  13. Crop Yield Simulations Using Multiple Regional Climate Models in the Southwestern United States

    Science.gov (United States)

    Stack, D.; Kafatos, M.; Kim, S.; Kim, J.; Walko, R. L.

    2013-12-01

    Agricultural productivity (described by crop yield) is strongly dependent on climate conditions determined by meteorological parameters (e.g., temperature, rainfall, and solar radiation). California is the largest producer of agricultural products in the United States, but crops in associated arid and semi-arid regions live near their physiological limits (e.g., in hot summer conditions with little precipitation). Thus, accurate climate data are essential in assessing the impact of climate variability on agricultural productivity in the Southwestern United States and other arid regions. To address this issue, we produced simulated climate datasets and used them as input for the crop production model. For climate data, we employed two different regional climate models (WRF and OLAM) using a fine-resolution (8km) grid. Performances of the two different models are evaluated in a fine-resolution regional climate hindcast experiment for 10 years from 2001 to 2010 by comparing them to the North American Regional Reanalysis (NARR) dataset. Based on this comparison, multi-model ensembles with variable weighting are used to alleviate model bias and improve the accuracy of crop model productivity over large geographic regions (county and state). Finally, by using a specific crop-yield simulation model (APSIM) in conjunction with meteorological forcings from the multi-regional climate model ensemble, we demonstrate the degree to which maize yields are sensitive to the regional climate in the Southwestern United States.

  14. Evaluation of regional climate model simulations versus gridded observed and regional reanalysis products using a combined weighting scheme

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Hyung-Il; Laprise, Rene [University of Quebec at Montreal, ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada); Gachon, Philippe [University of Quebec at Montreal, ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada); Environment Canada, Adaptation and Impacts Research Section, Climate Research Division, Montreal, QC (Canada); Ouarda, Taha [University of Quebec, INRS-ETE (Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement), Quebec, QC (Canada)

    2012-04-15

    This study presents a combined weighting scheme which contains five attributes that reflect accuracy of climate data, i.e. short-term (daily), mid-term (annual), and long-term (decadal) timescales, as well as spatial pattern, and extreme values, as simulated from Regional Climate Models (RCMs) with respect to observed and regional reanalysis products. Southern areas of Quebec and Ontario provinces in Canada are used for the study area. Three series of simulation from two different versions of the Canadian RCM (CRCM4.1.1, and CRCM4.2.3) are employed over 23 years from 1979 to 2001, driven by both NCEP and ERA40 global reanalysis products. One series of regional reanalysis dataset (i.e. NARR) over North America is also used as reference for comparison and validation purpose, as well as gridded historical observed daily data of precipitation and temperatures, both series have been beforehand interpolated on the CRCM 45-km grid resolution. Monthly weighting factors are calculated and then combined into four seasons to reflect seasonal variability of climate data accuracy. In addition, this study generates weight averaged references (WARs) with different weighting factors and ensemble size as new reference climate data set. The simulation results indicate that the NARR is in general superior to the CRCM simulated precipitation values, but the CRCM4.1.1 provides the highest weighting factors during the winter season. For minimum and maximum temperature, both the CRCM4.1.1 and the NARR products provide the highest weighting factors, respectively. The NARR provides more accurate short- and mid-term climate data, but the two versions of the CRCM provide more precise long-term data, spatial pattern and extreme events. Or study confirms also that the global reanalysis data (i.e. NCEP vs. ERA40) used as boundary conditions in the CRCM runs has non-negligible effects on the accuracy of CRCM simulated precipitation and temperature values. In addition, this study demonstrates

  15. Simulation of ultrasonic surface waves with multi-Gaussian and point source beam models

    International Nuclear Information System (INIS)

    Zhao, Xinyu; Schmerr, Lester W. Jr.; Li, Xiongbing; Sedov, Alexander

    2014-01-01

    In the past decade, multi-Gaussian beam models have been developed to solve many complicated bulk wave propagation problems. However, to date those models have not been extended to simulate the generation of Rayleigh waves. Here we will combine Gaussian beams with an explicit high frequency expression for the Rayleigh wave Green function to produce a three-dimensional multi-Gaussian beam model for the fields radiated from an angle beam transducer mounted on a solid wedge. Simulation results obtained with this model are compared to those of a point source model. It is shown that the multi-Gaussian surface wave beam model agrees well with the point source model while being computationally much more efficient

  16. Factors Related to the Selection of Information Sources: A Study of Ramkhamhaeng University Regional Campuses Graduate Students

    Science.gov (United States)

    Angchun, Peemasak

    2011-01-01

    This study assessed students' satisfaction with Ramkhamhaeng University regional library services (RURLs) and the perceived quality of information retrieved from other information sources. In particular, this study investigated factors relating to regional students' selection of information sources to meet their information needs. The researcher…

  17. Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF

    Science.gov (United States)

    Tang, Jianping; Wang, Shuyu; Niu, Xiaorui; Hui, Pinhong; Zong, Peishu; Wang, Xueyuan

    2017-04-01

    In this study, the impact of the spectral nudging method on regional climate simulation over the Coordinated Regional Climate Downscaling Experiment East Asia (CORDEX-EA) region is investigated using the Weather Research and Forecasting model (WRF). Driven by the ERA-Interim reanalysis, five continuous simulations covering 1989-2007 are conducted by the WRF model, in which four runs adopt the interior spectral nudging with different wavenumbers, nudging variables and nudging coefficients. Model validation shows that WRF has the ability to simulate spatial distributions and temporal variations of the surface climate (air temperature and precipitation) over CORDEX-EA domain. Comparably the spectral nudging technique is effective in improving the model's skill in the following aspects: (1), the simulated biases and root mean square errors of annual mean temperature and precipitation are obviously reduced. The SN3-UVT (spectral nudging with wavenumber 3 in both zonal and meridional directions applied to U, V and T) and SN6 (spectral nudging with wavenumber 6 in both zonal and meridional directions applied to U and V) experiments give the best simulations for temperature and precipitation respectively. The inter-annual and seasonal variances produced by the SN experiments are also closer to the ERA-Interim observation. (2), the application of spectral nudging in WRF is helpful for simulating the extreme temperature and precipitation, and the SN3-UVT simulation shows a clear advantage over the other simulations in depicting both the spatial distributions and inter-annual variances of temperature and precipitation extremes. With the spectral nudging, WRF is able to preserve the variability in the large scale climate information, and therefore adjust the temperature and precipitation variabilities toward the observation.

  18. Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system

    Directory of Open Access Journals (Sweden)

    Y. Yan

    2016-02-01

    Full Text Available Small-scale nonlinear chemical and physical processes over pollution source regions affect the tropospheric ozone (O3, but these processes are not captured by current global chemical transport models (CTMs and chemistry–climate models that are limited by coarse horizontal resolutions (100–500 km, typically 200 km. These models tend to contain large (and mostly positive tropospheric O3 biases in the Northern Hemisphere. Here we use the recently built two-way coupling system of the GEOS-Chem CTM to simulate the regional and global tropospheric O3 in 2009. The system couples the global model (at 2.5° long.  ×  2° lat. and its three nested models (at 0.667° long.  ×  0.5° lat. covering Asia, North America and Europe, respectively. Specifically, the nested models take lateral boundary conditions (LBCs from the global model, better capture small-scale processes and feed back to modify the global model simulation within the nested domains, with a subsequent effect on their LBCs. Compared to the global model alone, the two-way coupled system better simulates the tropospheric O3 both within and outside the nested domains, as found by evaluation against a suite of ground (1420 sites from the World Data Centre for Greenhouse Gases (WDCGG, the United States National Oceanic and Atmospheric Administration (NOAA Earth System Research Laboratory Global Monitoring Division (GMD, the Chemical Coordination Centre of European Monitoring and Evaluation Programme (EMEP, and the United States Environmental Protection Agency Air Quality System (AQS, aircraft (the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER Pole-to-Pole Observations (HIPPO and Measurement of Ozone and Water Vapor by Airbus In- Service Aircraft (MOZAIC and satellite measurements (two Ozone Monitoring Instrument (OMI products. The two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean surface O3

  19. Towards open-source, low-cost haptics for surgery simulation.

    Science.gov (United States)

    Suwelack, Stefan; Sander, Christian; Schill, Julian; Serf, Manuel; Danz, Marcel; Asfour, Tamim; Burger, Wolfgang; Dillmann, Rüdiger; Speidel, Stefanie

    2014-01-01

    In minimally invasive surgery (MIS), virtual reality (VR) training systems have become a promising education tool. However, the adoption of these systems in research and clinical settings is still limited by the high costs of dedicated haptics hardware for MIS. In this paper, we present ongoing research towards an open-source, low-cost haptic interface for MIS simulation. We demonstrate the basic mechanical design of the device, the sensor setup as well as its software integration.

  20. Regensim – Matlab toolbox for renewable energy sources modelling and simulation

    Directory of Open Access Journals (Sweden)

    Cristian Dragoş Dumitru

    2011-12-01

    Full Text Available This paper deals with the implementation and development of a Matlab Simulink library named RegenSim designed for modeling, simulations and analysis of real hybrid solarwind-hydro systems connected to local grids. Blocks like wind generators, hydro generators, solar photovoltaic modules and accumulators are implemented. The main objective is the study of the hybrid power system behavior, which allows employing renewable and variable in time energy sources while providing a continuous supply.

  1. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, M., E-mail: mmusgrov@usgs.gov [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Opsahl, S.P. [U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249 (United States); Mahler, B.J. [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Herrington, C. [City of Austin Watershed Protection Department, Austin, TX 78704 (United States); Sample, T.L. [U.S. Geological Survey, 19241 David Memorial Dr., Ste. 180, Conroe, TX 77385 (United States); Banta, J.R. [U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249 (United States)

    2016-10-15

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO{sub 3}{sup −}) loading to surface and groundwater. We investigate variability and sources of NO{sub 3}{sup −} in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO{sub 3}{sup −} stable isotopes (δ{sup 15}N and δ{sup 18}O). These data were augmented by historical data collected from 1937 to 2007. NO{sub 3}{sup −} concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO{sub 3}{sup −} concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO{sub 3}{sup −} concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO{sub 3}{sup −}. These results highlight the vulnerability of karst aquifers to NO{sub 3}{sup −} contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO{sub 3}{sup −} than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates

  2. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas

    International Nuclear Information System (INIS)

    Musgrove, M.; Opsahl, S.P.; Mahler, B.J.; Herrington, C.; Sample, T.L.; Banta, J.R.

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO 3 − ) loading to surface and groundwater. We investigate variability and sources of NO 3 − in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO 3 − stable isotopes (δ 15 N and δ 18 O). These data were augmented by historical data collected from 1937 to 2007. NO 3 − concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO 3 − concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO 3 − concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO 3 − . These results highlight the vulnerability of karst aquifers to NO 3 − contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO 3 − than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a

  3. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry

    Directory of Open Access Journals (Sweden)

    Böttrich Marcel

    2015-09-01

    Full Text Available Transabdominal fetal pulse oximetry is a method to monitor the oxygen supply of the unborn child non-invasively. Due to the measurement setup, the received signal of the detector is composed of photons coding purely maternal and photons coding mixed fetal-maternal information. To analyze the wellbeing of the fetus, the fetal signal is extracted from the mixed component. In this paper we assess source-detector configurations, such that the mixed fetal-maternal components of the acquired signals are maximized. Monte-Carlo method is used to simulate light propagation and photon distribution in tissue. We use a plane layer and a spherical layer geometry to model the abdomen of a pregnant woman. From the simulations we extracted the fluence at the detector side for several source-detector distances and analyzed the ratio of the mixed fluence component to total fluence. Our simulations showed that the power of the mixed component depends on the source-detector distance as expected. Further we were able to visualize hot spot areas in the spherical layer model where the mixed fluence ratio reaches the highest level. The results are of high importance for sensor design considering signal composition and quality for non-invasive fetal pulse oximetry.

  4. A generic open-source software framework supporting scenario simulations in bioterrorist crises.

    Science.gov (United States)

    Falenski, Alexander; Filter, Matthias; Thöns, Christian; Weiser, Armin A; Wigger, Jan-Frederik; Davis, Matthew; Douglas, Judith V; Edlund, Stefan; Hu, Kun; Kaufman, James H; Appel, Bernd; Käsbohrer, Annemarie

    2013-09-01

    Since the 2001 anthrax attack in the United States, awareness of threats originating from bioterrorism has grown. This led internationally to increased research efforts to improve knowledge of and approaches to protecting human and animal populations against the threat from such attacks. A collaborative effort in this context is the extension of the open-source Spatiotemporal Epidemiological Modeler (STEM) simulation and modeling software for agro- or bioterrorist crisis scenarios. STEM, originally designed to enable community-driven public health disease models and simulations, was extended with new features that enable integration of proprietary data as well as visualization of agent spread along supply and production chains. STEM now provides a fully developed open-source software infrastructure supporting critical modeling tasks such as ad hoc model generation, parameter estimation, simulation of scenario evolution, estimation of effects of mitigation or management measures, and documentation. This open-source software resource can be used free of charge. Additionally, STEM provides critical features like built-in worldwide data on administrative boundaries, transportation networks, or environmental conditions (eg, rainfall, temperature, elevation, vegetation). Users can easily combine their own confidential data with built-in public data to create customized models of desired resolution. STEM also supports collaborative and joint efforts in crisis situations by extended import and export functionalities. In this article we demonstrate specifically those new software features implemented to accomplish STEM application in agro- or bioterrorist crisis scenarios.

  5. Regional Integrated Tenets to Reinforce the Safety and Security of Radioactive Sources (ClearZone)

    International Nuclear Information System (INIS)

    Salzer, P.

    2003-01-01

    The EURATOM Research and Training Programme on Nuclear Energy includes 2 main fields - fusion energy research and management of radioactive waste, radiation protection and other activities of nuclear technology and safety.Seven instruments (mechanisms) for projects management are used - 'Network of Excellence' (NOE); 'Integrated Project' (IP); 'Specific Targeted Research Project' or 'Specific Targeted Training Project' (STREP); 'Co-ordination Action' (CA); Actions to Promote and Develop Human Resources and Mobility Specific Support Actions; Integrated Infrastructure Initiatives. Two consecutive sub-projects are proposed: 'small' - countries of the Visegrad four + Austrian participant -within the 6th FP 'Specific Supported Actions' and 'large' - participation of more countries in the region - more oriented to practical implementation of the 'small' project findings - intention to use the 6th Framework Programme resources to co-financing the implementation activities. The main objectives are: to create effective lines of defense (prevention -detection - categorization - transport - storage) against malicious use of radioactive sources; to achieve and maintain a high level of safety and security of radioactive sources; to arise the radioactive sources management safety and security culture at the Central European region. Consortium of 11 organisations from Czech Republic, Slovak Republic, Austria, Hungary and Poland is established for the Project implementation. The Project task are grouped in the following areas: legislation, infrastructure, practices; metallurgical industry, cross border control; instrumentation and metrology; information system

  6. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China

    Science.gov (United States)

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-03-01

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively.

  7. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China.

    Science.gov (United States)

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-03-07

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively.

  8. 42: An Open-Source Simulation Tool for Study and Design of Spacecraft Attitude Control Systems

    Science.gov (United States)

    Stoneking, Eric

    2018-01-01

    Simulation is an important tool in the analysis and design of spacecraft attitude control systems. The speaker will discuss the simulation tool, called simply 42, that he has developed over the years to support his own work as an engineer in the Attitude Control Systems Engineering Branch at NASA Goddard Space Flight Center. 42 was intended from the outset to be high-fidelity and powerful, but also fast and easy to use. 42 is publicly available as open source since 2014. The speaker will describe some of 42's models and features, and discuss its applicability to studies ranging from early concept studies through the design cycle, integration, and operations. He will outline 42's architecture and share some thoughts on simulation development as a long-term project.

  9. Fast modal simulation of paraxial optical systems: the MIST open source toolbox

    International Nuclear Information System (INIS)

    Vajente, Gabriele

    2013-01-01

    This paper presents a new approach to the simulation of optical laser systems in the paraxial approximation, with particular applications to interferometric gravitational wave detectors. The method presented here is based on a standard decomposition of the laser field in terms of Hermite–Gauss transverse modes. The innovative feature consists of a symbolic manipulation of the equations describing the field propagation. This approach allows a huge reduction in the computational time, especially when a large number of higher order modes is needed to properly simulate the system. The new algorithm has been implemented in an open source toolbox, called the MIST, based on the MATLAB® environment. The MIST has been developed and is being used in the framework of the design of advanced gravitational wave detectors. Examples from this field of application will be discussed to illustrate the capabilities and performance of the simulation tool. (paper)

  10. Confidence range estimate of extended source imagery acquisition algorithms via computer simulations. [in optical communication systems

    Science.gov (United States)

    Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret

    1992-01-01

    Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.

  11. Design and simulation of a nanoelectronic DG MOSFET current source using artificial neural networks

    International Nuclear Information System (INIS)

    Djeffal, F.; Dibi, Z.; Hafiane, M.L.; Arar, D.

    2007-01-01

    The double gate (DG) MOSFET has received great attention in recent years owing to the inherent suppression of short channel effects (SCEs), excellent subthreshold slope (S), improved drive current (I ds ) and transconductance (gm), volume inversion for symmetric devices and excellent scalability. Therefore, simulation tools which can be applied to design nanoscale transistors in the future require new theory and modeling techniques that capture the physics of quantum transport accurately and efficiently. In this sense, this work presents the applicability of the artificial neural networks (ANN) for the design and simulation of a nanoelectronic DG MOSFET current source. The latter is based on the 2D numerical Non-Equilibrium Green's Function (NEGF) simulation of the current-voltage characteristics of an undoped symmetric DG MOSFET. Our results are discussed in order to obtain some new and useful information about the ULSI technology

  12. Numerical simulation for the accelerator of the KSTAR neutral beam ion source

    International Nuclear Information System (INIS)

    Kim, Tae-Seong; Jeong, Seung Ho; In, Sang Ryul

    2010-01-01

    Recent experiments with a prototype long-pulse, high-current ion source being developed for the neutral beam injection system of the Korea Superconducting Tokamak Advanced Research have shown that the accelerator grid assembly needs a further upgrade to achieve the final goal of 120keV/65A for the deuterium ion beam. The accelerator upgrade concept was determined theoretically by simulations using the IGUN code. The simulation study was focused on finding parameter sets that raise the optimum perveance as large as possible and reduce the beam divergence as low as possible. From the simulation results, it was concluded that it is possible to achieve this goal by sliming the plasma grid (G1), shortening the second gap (G2-G3), and adjusting the G2 voltage ratio.

  13. Internal and external variability in regional simulations of the Iberian Peninsula climate over the last millennium

    Directory of Open Access Journals (Sweden)

    J. J. Gómez-Navarro

    2012-01-01

    Full Text Available In this study we analyse the role of internal variability in regional climate simulations through a comparison of two regional paleoclimate simulations for the last millennium. They share the same external forcings and model configuration, differing only in the initial condition used to run the driving global model simulation. A comparison of these simulations allows us to study the role of internal variability in climate models at regional scales, and how it affects the long-term evolution of climate variables such as temperature and precipitation. The results indicate that, although temperature is homogeneously sensitive to the effect of external forcings, the evolution of precipitation is more strongly governed by random unpredictable internal dynamics. There are, however, some areas where the role of internal variability is lower than expected, allowing precipitation to respond to the external forcings. In this respect, we explore the underlying physical mechanisms responsible for it. This study identifies areas, depending on the season, in which a direct comparison between model simulations of precipitation and climate reconstructions would be meaningful, but also other areas where good agreement between them should not be expected even if both are perfect.

  14. Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings

    DEFF Research Database (Denmark)

    Giorgi, Filippo; Whetton, Peter H.; Jones, Richard G.

    2001-01-01

    We analyse temperature and precipitation changes for the late decades of the 21st century (with respect to present day conditions) over 23 land regions of the world from 18 recent transient, climate change experiments with coupled atmosphere-ocean General Circulation Models (AOGCMs). The analysis...... involves two different forcing scenarios and nine models, and it focuses on model agreement in the simulated regional changes for the summer and winter seasons. While to date very few conclusions have been presented on regional climatic changes, mostly limited to some broad latitudinal bands, our analysis...

  15. Development of capability for microtopography-resolving simulations of hydrologic processes in permafrost affected regions

    Science.gov (United States)

    Painter, S.; Moulton, J. D.; Berndt, M.; Coon, E.; Garimella, R.; Lewis, K. C.; Manzini, G.; Mishra, P.; Travis, B. J.; Wilson, C. J.

    2012-12-01

    The frozen soils of the Arctic and subarctic regions contain vast amounts of stored organic carbon. This carbon is vulnerable to release to the atmosphere as temperatures warm and permafrost degrades. Understanding the response of the subsurface and surface hydrologic system to degrading permafrost is key to understanding the rate, timing, and chemical form of potential carbon releases to the atmosphere. Simulating the hydrologic system in degrading permafrost regions is challenging because of the potential for topographic evolution and associated drainage network reorganization as permafrost thaws and massive ground ice melts. The critical process models required for simulating hydrology include subsurface thermal hydrology of freezing/thawing soils, thermal processes within ice wedges, mechanical deformation processes, overland flow, and surface energy balances including snow dynamics. A new simulation tool, the Arctic Terrestrial Simulator (ATS), is being developed to simulate these coupled processes. The computational infrastructure must accommodate fully unstructured grids that track evolving topography, allow accurate solutions on distorted grids, provide robust and efficient solutions on highly parallel computer architectures, and enable flexibility in the strategies for coupling among the various processes. The ATS is based on Amanzi (Moulton et al. 2012), an object-oriented multi-process simulator written in C++ that provides much of the necessary computational infrastructure. Status and plans for the ATS including major hydrologic process models and validation strategies will be presented. Highly parallel simulations of overland flow using high-resolution digital elevation maps of polygonal patterned ground landscapes demonstrate the feasibility of the approach. Simulations coupling three-phase subsurface thermal hydrology with a simple thaw-induced subsidence model illustrate the strong feedbacks among the processes. D. Moulton, M. Berndt, M. Day, J

  16. MASTODON: A geosciences simulation tool built using the open-source framework MOOSE

    Science.gov (United States)

    Slaughter, A.

    2017-12-01

    The Department of Energy (DOE) is currently investing millions of dollars annually into various modeling and simulation tools for all aspects of nuclear energy. An important part of this effort includes developing applications based on the open-source Multiphysics Object Oriented Simulation Environment (MOOSE; mooseframework.org) from Idaho National Laboratory (INL).Thanks to the efforts of the DOE and outside collaborators, MOOSE currently contains a large set of physics modules, including phase field, level set, heat conduction, tensor mechanics, Navier-Stokes, fracture (extended finite-element method), and porous media, among others. The tensor mechanics and contact modules, in particular, are well suited for nonlinear geosciences problems. Multi-hazard Analysis for STOchastic time-DOmaiN phenomena (MASTODON; https://seismic-research.inl.gov/SitePages/Mastodon.aspx)--a MOOSE-based application--is capable of analyzing the response of 3D soil-structure systems to external hazards with current development focused on earthquakes. It is capable of simulating seismic events and can perform extensive "source-to-site" simulations including earthquake fault rupture, nonlinear wave propagation, and nonlinear soil-structure interaction analysis. MASTODON also includes a dynamic probabilistic risk assessment capability that enables analysts to not only perform deterministic analyses, but also easily perform probabilistic or stochastic simulations for the purpose of risk assessment. Although MASTODON has been developed for the nuclear industry, it can be used to assess the risk for any structure subjected to earthquakes.The geosciences community can learn from the nuclear industry and harness the enormous effort underway to build simulation tools that are open, modular, and share a common framework. In particular, MOOSE-based multiphysics solvers are inherently parallel, dimension agnostic, adaptive in time and space, fully coupled, and capable of interacting with other

  17. False alarms and mine seismicity: An example from the Gentry Mountain mining region, Utah. Los Alamos Source Region Project

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.R.

    1992-09-23

    Mining regions are a cause of concern for monitoring of nuclear test ban treaties because they present the opportunity for clandestine nuclear tests (i.e. decoupled explosions). Mining operations are often characterized by high seismicity rates and can provide the cover for excavating voids for decoupling. Chemical explosions (seemingly as part of normal mining activities) can be used to complicate the signals from a simultaneous decoupled nuclear explosion. Thus, most concern about mines has dealt with the issue of missed violations to a test ban treaty. In this study, we raise the diplomatic concern of false alarms associated with mining activities. Numerous reports and papers have been published about anomalous seismicity associated with mining activities. As part of a large discrimination study in the western US (Taylor et al., 1989), we had one earthquake that was consistently classified as an explosion. The magnitude 3.5 disturbance occurred on May 14, 1981 and was conspicuous in its lack of Love waves, relative lack of high- frequency energy, low Lg/Pg ratio, and high m{sub b} {minus} M{sub s}. A moment-tensor solution by Patton and Zandt (1991) indicated the event had a large implosional component. The event occurred in the Gentry Mountain coal mining region in the eastern Wasatch Plateau, Utah. Using a simple source representation, we modeled the event as a tabular excavation collapse that occurred as a result of normal mining activities. This study raises the importance of having a good catalogue of seismic data and information about mining activities from potential proliferant nations.

  18. Analysis and Comparison on the Flood Simulation in Typical Hilly & Semi-mountainous Region

    Science.gov (United States)

    Luan, Qinghua; Wang, Dong; Zhang, Xiang; Liu, Jiahong; Fu, Xiaoran; Zhang, Kun; Ma, Jun

    2017-12-01

    Water-logging and flood are both serious in hilly and semi-mountainous cities of China, but the related research is rare. Lincheng Economic Development Zone (EDZ) in Hebei Province as the typical city was selected and storm water management model (SWMM) was applied for flood simulation in this study. The regional model was constructed through calibrating and verifying the runoff coefficient of different flood processes. Different designed runoff processes in five-year, ten-year and twenty-year return periods in basic scenario and in the low impact development (LID) scenario, respectively, were simulated and compared. The result shows that: LID measures have effect on peak reduction in the study area, but the effectiveness is not significant; the effectiveness of lagging peak time is poor. These simulation results provide decision support for the rational construction of LID in the study area, and provide the references for regional rain flood management.

  19. Regional demand forecasting and simulation model: user's manual. Task 4, final report

    Energy Technology Data Exchange (ETDEWEB)

    Parhizgari, A M

    1978-09-25

    The Department of Energy's Regional Demand Forecasting Model (RDFOR) is an econometric and simulation system designed to estimate annual fuel-sector-region specific consumption of energy for the US. Its purposes are to (1) provide the demand side of the Project Independence Evaluation System (PIES), (2) enhance our empirical insights into the structure of US energy demand, and (3) assist policymakers in their decisions on and formulations of various energy policies and/or scenarios. This report provides a self-contained user's manual for interpreting, utilizing, and implementing RDFOR simulation software packages. Chapters I and II present the theoretical structure and the simulation of RDFOR, respectively. Chapter III describes several potential scenarios which are (or have been) utilized in the RDFOR simulations. Chapter IV presents an overview of the complete software package utilized in simulation. Chapter V provides the detailed explanation and documentation of this package. The last chapter describes step-by-step implementation of the simulation package using the two scenarios detailed in Chapter III. The RDFOR model contains 14 fuels: gasoline, electricity, natural gas, distillate and residual fuels, liquid gases, jet fuel, coal, oil, petroleum products, asphalt, petroleum coke, metallurgical coal, and total fuels, spread over residential, commercial, industrial, and transportation sectors.

  20. Assessing the impact of aerosol-atmosphere interactions in convection-permitting regional climate simulations: the Rolf medicane in 2011

    Science.gov (United States)

    José Gómez-Navarro, Juan; María López-Romero, José; Palacios-Peña, Laura; Montávez, Juan Pedro; Jiménez-Guerrero, Pedro

    2017-04-01

    A critical challenge for assessing regional climate change projections relies on improving the estimate of atmospheric aerosol impact on clouds and reducing the uncertainty associated with the use of parameterizations. In this sense, the horizontal grid spacing implemented in state-of-the-art regional climate simulations is typically 10-25 kilometers, meaning that very important processes such as convective precipitation are smaller than a grid box, and therefore need to be parameterized. This causes large uncertainties, as closure assumptions and a number of parameters have to be established by model tuning. Convection is a physical process that may be strongly conditioned by atmospheric aerosols, although the solution of aerosol-cloud interactions in warm convective clouds remains nowadays a very important scientific challenge, rendering parametrization of these complex processes an important bottleneck that is responsible from a great part of the uncertainty in current climate change projections. Therefore, the explicit simulation of convective processes might improve the quality and reliability of the simulations of the aerosol-cloud interactions in a wide range of atmospheric phenomena. Particularly over the Mediterranean, the role of aerosol particles is very important, being this a crossroad that fuels the mixing of particles from different sources (sea-salt, biomass burning, anthropogenic, Saharan dust, etc). Still, the role of aerosols in extreme events in this area such as medicanes has been barely addressed. This work aims at assessing the role of aerosol-atmosphere interaction in medicanes with the help of the regional chemistry/climate on-line coupled model WRF-CHEM run at a convection-permitting resolution. The analysis is exemplary based on the "Rolf" medicane (6-8 November 2011). Using this case study as reference, four sets of simulations are run with two spatial resolutions: one at a convection-permitting configuration of 4 km, and other at the

  1. Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations

    Science.gov (United States)

    Servillat, M.

    2009-05-01

    Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).

  2. HIGH-RESOLUTION IMAGING OF THE ATLBS REGIONS: THE RADIO SOURCE COUNTS

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, K.; Subrahmanyan, R.; Saripalli, L.; Ekers, R. D., E-mail: kshitij@rri.res.in [Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)

    2013-01-01

    The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6'' angular resolution and 72 {mu}Jy beam{sup -1} rms noise. The images (centered at R.A. 00{sup h}35{sup m}00{sup s}, decl. -67 Degree-Sign 00'00'' and R.A. 00{sup h}59{sup m}17{sup s}, decl. -67 Degree-Sign 00'00'', J2000 epoch) cover 8.42 deg{sup 2} sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50''. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists-as opposed to component lists-and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.

  3. Impact of optimized mixing heights on simulated regional atmospheric transport of CO2

    Directory of Open Access Journals (Sweden)

    R. Kretschmer

    2014-07-01

    Full Text Available The mixing height (MH is a crucial parameter in commonly used transport models that proportionally affects air concentrations of trace gases with sources/sinks near the ground and on diurnal scales. Past synthetic data experiments indicated the possibility to improve tracer transport by minimizing errors of simulated MHs. In this paper we evaluate a method to constrain the Lagrangian particle dispersion model STILT (Stochastic Time-Inverted Lagrangian Transport with MH diagnosed from radiosonde profiles using a bulk Richardson method. The same method was used to obtain hourly MHs for the period September/October 2009 from the Weather Research and Forecasting (WRF model, which covers the European continent at 10 km horizontal resolution. Kriging with external drift (KED was applied to estimate optimized MHs from observed and modelled MHs, which were used as input for STILT to assess the impact on CO2 transport. Special care has been taken to account for uncertainty in MH retrieval in this estimation process. MHs and CO2 concentrations were compared to vertical profiles from aircraft in situ data. We put an emphasis on testing the consistency of estimated MHs to observed vertical mixing of CO2. Modelled CO2 was also compared with continuous measurements made at Cabauw and Heidelberg stations. WRF MHs were significantly biased by ~10–20% during day and ~40–60% during night. Optimized MHs reduced this bias to ~5% with additional slight improvements in random errors. The KED MHs were generally more consistent with observed CO2 mixing. The use of optimized MHs had in general a favourable impact on CO2 transport, with bias reductions of 5–45% (day and 60–90% (night. This indicates that a large part of the found CO2 model–data mismatch was indeed due to MH errors. Other causes for CO2 mismatch are discussed. Applicability of our method is discussed in the context of CO2 inversions at regional scales.

  4. Impact of optimized mixing heights on simulated regional atmospheric transport of CO2

    International Nuclear Information System (INIS)

    Kretschmer, R.; Gerbig, C.; Karstens, U.; Biavati, G.; Vermeulen, A.; Vogel, E.; Hammer, S.; Totsche, K.U.

    2014-01-01

    The mixing height (MH) is a crucial parameter in commonly used transport models that proportionally affects air concentrations of trace gases with sources/sinks near the ground and on diurnal scales. Past synthetic data experiments indicated the possibility to improve tracer transport by minimizing errors of simulated MHs. In this paper we evaluate a method to constrain the Lagrangian particle dispersion model STILT (Stochastic Time-Inverted Lagrangian Transport) with MH diagnosed from radiosonde profiles using a bulk Richardson method. The same method was used to obtain hourly MHs for the period September/October 2009 from the Weather Research and Forecasting (WRF) model, which covers the European continent at 10 km horizontal resolution. Kriging with external drift (KED) was applied to estimate optimized MHs from observed and modelled MHs, which were used as input for STILT to assess the impact on CO 2 transport. Special care has been taken to account for uncertainty in MH retrieval in this estimation process.MHs and CO 2 concentrations were compared to vertical profiles from aircraft in situ data.We put an emphasis on testing the consistency of estimated MHs to observed vertical mixing of CO 2 . Modelled CO 2 was also compared with continuous measurements made at Cabauw and Heidelberg stations. WRF MHs were significantly biased by 10-20% during day and 40-60% during night. Optimized MHs reduced this bias to 5% with additional slight improvements in random errors. The KED MHs were generally more consistent with observed CO 2 mixing. The use of optimized MHs had in general a favourable impact on CO 2 transport, with bias reductions of 5-45% (day) and 60-90% (night). This indicates that a large part of the found CO 2 model-data mismatch was indeed due to MH errors. Other causes for CO 2 mismatch are discussed. Applicability of our method is discussed in the context of CO 2 inversions at regional scales. (authors)

  5. Human impact on fluvial sediments: distinguishing regional and local sources of heavy metals contamination

    Science.gov (United States)

    Novakova, T.; Matys Grygar, T.; Bábek, O.; Faměra, M.; Mihaljevič, M.; Strnad, L.

    2012-04-01

    Industrial pollution can provide a useful tool to study spatiotemporal distribution of modern floodplain sediments, trace their provenance, and allow their dating. Regional contamination of southern Moravia (the south-eastern part of the Czech Republic) by heavy metals during the 20th century was determined in fluvial sediments of the Morava River by means of enrichment factors. The influence of local sources and sampling sites heterogeneity were studied in overbank fines with different lithology and facies. For this purpose, samples were obtained from hand-drilled cores from regulated channel banks, with well-defined local sources of contamination (factories in Zlín and Otrokovice) and also from near naturally inundated floodplains in two nature protected areas (at 30 km distance). The analyses were performed by X-ray fluorescence spectroscopy (ED XRF), ICP MS (EDXRF samples calibration, 206Pb/207Pb ratio), magnetic susceptibility, cation exchange capacity (CEC), and 137Cs and 210Pb activities. Enrichment factors (EF) of heavy metals (Pb, Zn, Cu and Cr) and magnetic susceptibility of overbank fines in near-naturally (near annually) inundated areas allowed us to reconstruct historical contamination by heavy metals in the entire study area independently on lithofacies. Measured lithological background values were then used for calculation of EFs in the channel sediments and in floodplain sediments deposited within narrow part of a former floodplain which is now reduced to about one quarter of its original width by flood defences. Sediments from regulated channel banks were found stratigraphically and lithologically "erratic", unreliable for quantification of regional contamination due to a high variability of sedimentary environment. On the other hand, these sediments are very sensitive to the nearby local sources of heavy metals. For a practical work one must first choose whether large scale, i.e. a really averaged regional contamination should be reconstructed

  6. Strong source heat transfer simulations based on a GalerKin/Gradient - least - squares method

    International Nuclear Information System (INIS)

    Franca, L.P.; Carmo, E.G.D. do.

    1989-05-01

    Heat conduction problems with temperature-dependent strong sources are modeled by an equation with a laplacian term, a linear term and a given source distribution term. When the linear-temperature-dependent source term is much larger than the laplacian term, we have a singular perturbation problem. In this case, boundary layers are formed to satisfy the Dirichlet boundary conditions. Although this is an elliptic equation, the standard Galerkin method solution is contaminated by spurious oscillations in the neighborhood of the boundary layers. Herein we employ a Galerkin/Gradient-least-squares method which eliminates all pathological phenomena of the Galerkin method. The method is constructed by adding to the Galerkin method a mesh-dependent term obtained by the least-squares form of the gradient of the Euler-Lagrange equation. Error estimates, numerical simulations in one-and multi-dimensions are given that attest the good stability and accuracy properties of the method [pt

  7. Radioactivity determination of sealed pure beta-sources by surface dose measurements and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Jung, Seongmoon [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Choi, Kanghyuk; Son, Kwang-Jae; Lee, Jun Sig [Hanaro Applications Research, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ye, Sung-Joon, E-mail: sye@snu.ac.kr [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Center for Convergence Research on Robotics, Advance Institutes of Convergence Technology, Seoul National University, Suwon (Korea, Republic of)

    2016-04-21

    This study aims to determine the activity of a sealed pure beta-source by measuring the surface dose rate using an extrapolation chamber. A conversion factor (cGy s{sup −1} Bq{sup −1}), which was defined as the ratio of surface dose rate to activity, can be calculated by Monte Carlo simulations of the extrapolation chamber measurement. To validate this hypothesis the certified activities of two standard pure beta-sources of Sr/Y-90 and Si/P-32 were compared with those determined by this method. In addition, a sealed test source of Sr/Y-90 was manufactured by the HANARO reactor group of KAERI (Korea Atomic Energy Research Institute) and used to further validate this method. The measured surface dose rates of the Sr/Y-90 and Si/P-32 standard sources were 4.615×10{sup −5} cGy s{sup −1} and 2.259×10{sup −5} cGy s{sup −1}, respectively. The calculated conversion factors of the two sources were 1.213×10{sup −8} cGy s{sup −1} Bq{sup −1} and 1.071×10{sup −8} cGy s{sup −1} Bq{sup −1}, respectively. Therefore, the activity of the standard Sr/Y-90 source was determined to be 3.995 kBq, which was 2.0% less than the certified value (4.077 kBq). For Si/P-32 the determined activity was 2.102 kBq, which was 6.6% larger than the certified activity (1.971 kBq). The activity of the Sr/Y-90 test source was determined to be 4.166 kBq, while the apparent activity reported by KAERI was 5.803 kBq. This large difference might be due to evaporation and diffusion of the source liquid during preparation and uncertainty in the amount of weighed aliquot of source liquid. The overall uncertainty involved in this method was determined to be 7.3%. We demonstrated that the activity of a sealed pure beta-source could be conveniently determined by complementary combination of measuring the surface dose rate and Monte Carlo simulations.

  8. Simulated East-west differences in F-region peak electron density at Far East mid-latitude region

    Science.gov (United States)

    Ren, Z.; Wan, W.

    2017-12-01

    In the present work, using Three-Dimensional Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME3D-IGGCAS), we simulated the east-west differences in Fregion peak electron density (NmF2) at Far East mid-latitude region.We found that, after removing the longitudinal variations of neutral parameters, TIME3D-IGGCAS can better represent the observed relative east-west difference (Rew) features. Rew is mainly negative (West NmF2 > East NmF2) at noon and positive (East NmF2 >West NmF2) at evening-night. The magnitude of daytime negative Rew is weak at local winter and strong at local summer, and the daytime Rew show two negative peaks around two equinoxes. With the increasing of solar flux level, the magnitude of Rew mainly become larger, and two daytime negative peaks slight shifts to June Solstice. With the decreasing of geographical latitude, Rew mainly become positive, and two daytime negative peaks slight shifts to June Solstice. Our simulation also suggested that the thermospheric zonal wind combined with the geomagnetic field configuration play a pivotal role in the formation of the ionospheric east-west differences at Far East midlatitude region.

  9. Developments in regional scale simulation: modelling ecologically sustainable development in the Northern Territory

    International Nuclear Information System (INIS)

    Moffatt, I.

    1992-01-01

    This paper outlines one way in which researchers can make a positive methodological contribution to the debate on ecologically sustainable development (ESD) by integrating dynamic modelling and geographical information systems to form the basis for regional scale simulations. Some of the orthodox uses of Geographic Information System (GIS) are described and it is argued that most applications do not incorporate process based causal models. A description of a pilot study into developing a processed base model of ESD in the Northern Territory is given. This dynamic process based simulation model consists of two regions namely the 'Top End' and the 'Central' district. Each region consists of ten sub-sectors and the pattern of land use represents a common sector to both regions. The role of environmental defence expenditure, including environmental rehabilitation of uranium mines, in the model is noted. Similarly, it is hypothesized that the impact of exogenous changes such as the greenhouse effect and global economic fluctuations can have a differential impact on the behaviour of several sectors of the model. Some of the problems associated with calibrating and testing the model are reviewed. Finally, it is suggested that further refinement of this model can be achieved with the pooling of data sets and the development of PC based transputers for more detailed and accurate regional scale simulations. When fully developed it is anticipated that this pilot model can be of service to environmental managers and other groups involved in promoting ESD in the Northern Territory. 54 refs., 6 figs

  10. Legislation and water management of water source areas of São Paulo Metropolitan Region, Brazil

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Gregolin Grisotto

    2010-12-01

    Full Text Available This paper presents the history of occupation in the water source areas in São Paulo Metropolitan Region (hereinafter SPMR and the evolution of the legislation related to this issue, from the point of view of the environmental and water management. A descriptive methodology was used, with searches into bibliographical and documental materials, in order to present the main laws for the protection of the water supply areas of SPMR and environmental and water management. It was possible to observe some progress in the premises of the both legislation and the format proposed for the management of the water source areas. However, such progress is limited due to the lack of a more effective mechanism for metropolitan management. The construction of the metropolitan management in SPMR would enlarge the capacity of integration between municipalities and sectors. The integration between the management of water and the land use management showed to be fundamental for the protection of the water sources. The new law for protection of the water sources, State Law nº 9.866/97, is decentralized and participative, focusing on non-structural actions and integrated management. However, the effective implementation of the law still depends on the harmonization of sectoral public policies, extensive coordination and cooperation among municipalities and the progress in the degree of the commitment of the governments.

  11. Regional air-sea coupled model simulation for two types of extreme heat in North China

    Science.gov (United States)

    Li, Donghuan; Zou, Liwei; Zhou, Tianjun

    2018-03-01

    Extreme heat (EH) over North China (NC) is affected by both large scale circulations and local topography, and could be categorized into foehn favorable and no-foehn types. In this study, the performance of a regional coupled model in simulating EH over NC was examined. The effects of regional air-sea coupling were also investigated by comparing the results with the corresponding atmosphere-alone regional model. On foehn favorable (no-foehn) EH days, a barotropic cyclonic (anticyclonic) anomaly is located to the northeast (northwest) of NC, while anomalous northwesterlies (southeasterlies) prevail over NC in the lower troposphere. In the uncoupled simulation, barotropic anticyclonic bias occurs over China on both foehn favorable and no-foehn EH days, and the northwesterlies in the lower troposphere on foehn favorable EH days are not obvious. These biases are significantly reduced in the regional coupled simulation, especially on foehn favorable EH days with wind anomalies skill scores improving from 0.38 to 0.47, 0.47 to 0.61 and 0.38 to 0.56 for horizontal winds at 250, 500 and 850 hPa, respectively. Compared with the uncoupled simulation, the reproduction of the longitudinal position of Northwest Pacific subtropical high (NPSH) and the spatial pattern of the low-level monsoon flow over East Asia are improved in the coupled simulation. Therefore, the anticyclonic bias over China is obviously reduced, and the proportion of EH days characterized by anticyclonic anomaly is more appropriate. The improvements in the regional coupled model indicate that it is a promising choice for the future projection of EH over NC.

  12. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China

    Science.gov (United States)

    Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi

    2015-11-01

    Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth.

  13. X-ray sources in regions of star formation. I. The naked T Tauri stars

    International Nuclear Information System (INIS)

    Walter, F.M.

    1986-01-01

    Einstein X-ray observations of regions of active star formation in Taurus, Ophiuchus, and Corona Australis show a greatly enhanced surface density of stellar X-ray sources over that seen in other parts of the sky. Many of the X-ray sources are identified with low-mass, pre-main-sequence stars which are not classical T Tauri stars. The X-ray, photometric, and spectroscopic data for these stars are discussed. Seven early K stars in Oph and CrA are likely to be 1-solar-mass post-T Tauri stars with ages of 10-million yr. The late K stars in Taurus are not post-T Tauri, but naked T Tauri stars, which are coeval with the T Tauri stars, differing mainly in the lack of a circumstellar envelope. 72 references

  14. Biogenic halocarbons from coastal oceanic upwelling regions as tropospheric halogen source

    Science.gov (United States)

    Krüger, Kirstin; Fuhlbrügge, Steffen; Hepach, Helmke; Fiehn, Alina; Atlas, Elliot; Quack, Birgit

    2016-04-01

    Halogenated very short lived substances (VSLS) are naturally produced in the ocean and emitted to the atmosphere. Recently, oceanic upwelling regions in the tropical East Atlantic were identified as strong sources of brominated halocarbons to the troposphere. During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian Upwelling for the first time. This study presents novel observations of the three VSLS bromoform, dibromomethane and methyl iodide together with high resolution meteorological measurements and Lagrangian transport modelling. Although relatively low oceanic emissions were observed, except for methyl iodide, surface atmospheric abundances were elevated. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting both as strong barriers for convection and trace gas transport in this region. Significant correlations between observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height were found. We used a simple source-loss estimate to identify the contribution of oceanic emissions to observed atmospheric concentrations which revealed that the observed marine VSLS abundances were dominated by horizontal advection below the trade inversion. The observed VSLS variations can be explained by the low emissions and their accumulation under different MABL and trade inversion conditions. Finally, observations from a second Peruvian Upwelling cruise with R/V SONNE during El Nino in October 2015 will be compared to highlight the role of different El Nino Southern Oscillation conditions. This study confirms the importance of coastal oceanic upwelling and trade wind systems on creating effective transport barriers in the lowermost atmosphere controlling the distribution of VSLS abundances above coastal ocean upwelling

  15. Characterization and source identification of nitrogen in a riverine system of monsoon-climate region, China.

    Science.gov (United States)

    Yuan, Jie; Li, Siyue; Han, Xi; Chen, Qiuyang; Cheng, Xiaoli; Zhang, Quanfa

    2017-08-15

    There are increasing concerns in nitrogen (N) pollution worldwide, especially in aquatic ecosystems, and thus quantifying its sources in waterways is critical for pollution prevention and control. In this study, we investigated the spatio-temporal variabilities of inorganic N concentration (i.e., NO 3 - , NH 4 + ) and total dissolved N (TDN) and identified their sources in waters and suspended matters using an isotopical approach in the Jinshui River, a river with a length of 87km in the monsoon-climate region of China. The spatio-temporal inorganic N concentrations differed significantly along the longitudinal gradient in the river network. The NO 3 - , NH 4 + and TDN concentrations ranged from 0.02 to 1.12mgl -1 , 0.03 to 4.28mgl -1 , and 0.33 to 2.78mgl -1 , respectively. The 15 N tracing studies demonstrated that N in suspended organic matter was in the form of suspended particulate nitrogen (SPN) and was primarily from atmospheric deposition and agricultural fertilizer. In contrast, N in stream waters was mainly in the form of nitrate and was from atmospheric deposition, fertilizers, soil, and sewage. Meanwhile, both δ 15 N-SPN and δ 15 N-NO 3 - peaked in the rainy season (i.e., July) because of higher terrigenous sources via rain runoff, demonstrating the dominant diffusive N sources in the catchment. Thus, our results could provide critical information on N pollution control and sustainable watershed management of the riverine ecosystem in monsoon-climate region. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. ELECTROMAGNETIC AND THERMAL SIMULATIONS FOR THE SWITCH REGION OF A COMPACT PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Wang, L; Caporaso, G J; Sullivan, J S

    2007-01-01

    A compact proton accelerator for medical applications is being developed at Lawrence Livermore National Laboratory. The accelerator architecture is based on the dielectric wall accelerator (DWA) concept. One critical area to consider is the switch region. Electric field simulations and thermal calculations of the switch area were performed to help determine the operating limits of rmed SiC switches. Different geometries were considered for the field simulation including the shape of the thin Indium solder meniscus between the electrodes and SiC. Electric field simulations were also utilized to demonstrate how the field stress could be reduced. Both transient and steady steady-state thermal simulations were analyzed to find the average power capability of the switches

  17. Preliminary analysis on the tectonic stress level in the source region of Tangshan earthquake

    Science.gov (United States)

    Jian-Tao, Zhao; Cui, Xiao-Feng; Xie, Fu-Ren

    2002-05-01

    The abundant data of focal mechanism solutions in Tangshan region, China, are inverted for the tectonic stress field. Combined with tectonophysical consideration, the magnitude of the three principal stresses, as well as their vertical variation under the average crustal rock property, in the source region of the 1976 Tangshan earthquake is estimated. The relationship between crustal stress and friction μ c, pore pressure P 0 and stress shape factor Φ is studied. The paper draws the conclusion that the vertical increasing rate of the maximum principal stress σ is directly proportional to friction, and inversely to pore pressure P 0 and stress shape factor Φ; while the vertical increasing rate of the minimum principal tress σ is directly proportional to pore pressure P 0, inversely to friction μ c and stress shape factor Φ. This study is a try to invert the data of focal mechanism solutions for the complete stress tensor.

  18. Towards a physically-based multi-scale ecohydrological simulator for semi-arid regions

    Science.gov (United States)

    Caviedes-Voullième, Daniel; Josefik, Zoltan; Hinz, Christoph

    2017-04-01

    The use of numerical models as tools for describing and understanding complex ecohydrological systems has enabled to test hypothesis and propose fundamental, process-based explanations of the system system behaviour as a whole as well as its internal dynamics. Reaction-diffusion equations have been used to describe and generate organized pattern such as bands, spots, and labyrinths using simple feedback mechanisms and boundary conditions. Alternatively, pattern-matching cellular automaton models have been used to generate vegetation self-organization in arid and semi-arid regions also using simple description of surface hydrological processes. A key question is: How much physical realism is needed in order to adequately capture the pattern formation processes in semi-arid regions while reliably representing the water balance dynamics at the relevant time scales? In fact, redistribution of water by surface runoff at the hillslope scale occurs at temporal resolution of minutes while the vegetation development requires much lower temporal resolution and longer times spans. This generates a fundamental spatio-temporal multi-scale problem to be solved, for which high resolution rainfall and surface topography are required. Accordingly, the objective of this contribution is to provide proof-of-concept that governing processes can be described numerically at those multiple scales. The requirements for a simulating ecohydrological processes and pattern formation with increased physical realism are, amongst others: i. high resolution rainfall that adequately captures the triggers of growth as vegetation dynamics of arid regions respond as pulsed systems. ii. complex, natural topography in order to accurately model drainage patterns, as surface water redistribution is highly sensitive to topographic features. iii. microtopography and hydraulic roughness, as small scale variations do impact on large scale hillslope behaviour iv. moisture dependent infiltration as temporal

  19. Model simulations and proxy-based reconstructions for the European region in the past millennium (Invited)

    Science.gov (United States)

    Zorita, E.

    2009-12-01

    One of the objectives when comparing simulations of past climates to proxy-based climate reconstructions is to asses the skill of climate models to simulate climate change. This comparison may accomplished at large spatial scales, for instance the evolution of simulated and reconstructed Northern Hemisphere annual temperature, or at regional or point scales. In both approaches a 'fair' comparison has to take into account different aspects that affect the inevitable uncertainties and biases in the simulations and in the reconstructions. These efforts face a trade-off: climate models are believed to be more skillful at large hemispheric scales, but climate reconstructions are these scales are burdened by the spatial distribution of available proxies and by methodological issues surrounding the statistical method used to translate the proxy information into large-spatial averages. Furthermore, the internal climatic noise at large hemispheric scales is low, so that the sampling uncertainty tends to be also low. On the other hand, the skill of climate models at regional scales is limited by the coarse spatial resolution, which hinders a faithful representation of aspects important for the regional climate. At small spatial scales, the reconstruction of past climate probably faces less methodological problems if information from different proxies is available. The internal climatic variability at regional scales is, however, high. In this contribution some examples of the different issues faced when comparing simulation and reconstructions at small spatial scales in the past millennium are discussed. These examples comprise reconstructions from dendrochronological data and from historical documentary data in Europe and climate simulations with global and regional models. These examples indicate that the centennial climate variations can offer a reasonable target to assess the skill of global climate models and of proxy-based reconstructions, even at small spatial scales

  20. X-33 Telemetry Best Source Selection, Processing, Display, and Simulation Model Comparison

    Science.gov (United States)

    Burkes, Darryl A.

    1998-01-01

    The X-33 program requires the use of multiple telemetry ground stations to cover the launch, ascent, transition, descent, and approach phases for the flights from Edwards AFB to landings at Dugway Proving Grounds, UT and Malmstrom AFB, MT. This paper will discuss the X-33 telemetry requirements and design, including information on fixed and mobile telemetry systems, best source selection, and support for Range Safety Officers. A best source selection system will be utilized to automatically determine the best source based on the frame synchronization status of the incoming telemetry streams. These systems will be used to select the best source at the landing sites and at NASA Dryden Flight Research Center to determine the overall best source between the launch site, intermediate sites, and landing site sources. The best source at the landing sites will be decommutated to display critical flight safety parameters for the Range Safety Officers. The overall best source will be sent to the Lockheed Martin's Operational Control Center at Edwards AFB for performance monitoring by X-33 program personnel and for monitoring of critical flight safety parameters by the primary Range Safety Officer. The real-time telemetry data (received signal strength, etc.) from each of the primary ground stations will also be compared during each nu'ssion with simulation data generated using the Dynamic Ground Station Analysis software program. An overall assessment of the accuracy of the model will occur after each mission. Acknowledgment: The work described in this paper was NASA supported through cooperative agreement NCC8-115 with Lockheed Martin Skunk Works.

  1. 3D relativistic MHD numerical simulations of X-shaped radio sources

    Science.gov (United States)

    Rossi, P.; Bodo, G.; Capetti, A.; Massaglia, S.

    2017-10-01

    Context. A significant fraction of extended radio sources presents a peculiar X-shaped radio morphology: in addition to the classical double lobed structure, radio emission is also observed along a second axis of symmetry in the form of diffuse wings or tails. In a previous investigation we showed the existence of a connection between the radio morphology and the properties of the host galaxies. Motivated by this connection we performed two-dimensional numerical simulations showing that X-shaped radio sources may naturally form as a jet propagates along the major axis a highly elliptical density distribution, because of the fast expansion of the cocoon along the minor axis of the distribution. Aims: We intend to extend our analysis by performing three-dimensional numerical simulations and investigating the role of different parameters in determining the formation of the X-shaped morphology. Methods: The problem is addressed by numerical means, carrying out three-dimensional relativistic magnetohydrodynamic simulations of bidirectional jets propagating in a triaxial density distribution. Results: We show that only jets with power ≲ 1044 erg s-1 can give origin to an X-shaped morphology and that a misalignment of 30° between the jet axis and the major axis of the density distribution is still favourable to the formation of this kind of morphology. In addition we compute synthetic radio emission maps and polarization maps. Conclusions: In our scenario for the formation of X-shaped radio sources only low power FRII can give origin to such kind of morphology. Our synthetic emission maps show that the different observed morphologies of X-shaped sources can be the result of similar structures viewed under different perspectives.

  2. PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems.

    Science.gov (United States)

    Ghaffarizadeh, Ahmadreza; Heiland, Randy; Friedman, Samuel H; Mumenthaler, Shannon M; Macklin, Paul

    2018-02-01

    Many multicellular systems problems can only be understood by studying how cells move, grow, divide, interact, and die. Tissue-scale dynamics emerge from systems of many interacting cells as they respond to and influence their microenvironment. The ideal "virtual laboratory" for such multicellular systems simulates both the biochemical microenvironment (the "stage") and many mechanically and biochemically interacting cells (the "players" upon the stage). PhysiCell-physics-based multicellular simulator-is an open source agent-based simulator that provides both the stage and the players for studying many interacting cells in dynamic tissue microenvironments. It builds upon a multi-substrate biotransport solver to link cell phenotype to multiple diffusing substrates and signaling factors. It includes biologically-driven sub-models for cell cycling, apoptosis, necrosis, solid and fluid volume changes, mechanics, and motility "out of the box." The C++ code has minimal dependencies, making it simple to maintain and deploy across platforms. PhysiCell has been parallelized with OpenMP, and its performance scales linearly with the number of cells. Simulations up to 105-106 cells are feasible on quad-core desktop workstations; larger simulations are attainable on single HPC compute nodes. We demonstrate PhysiCell by simulating the impact of necrotic core biomechanics, 3-D geometry, and stochasticity on the dynamics of hanging drop tumor spheroids and ductal carcinoma in situ (DCIS) of the breast. We demonstrate stochastic motility, chemical and contact-based interaction of multiple cell types, and the extensibility of PhysiCell with examples in synthetic multicellular systems (a "cellular cargo delivery" system, with application to anti-cancer treatments), cancer heterogeneity, and cancer immunology. PhysiCell is a powerful multicellular systems simulator that will be continually improved with new capabilities and performance improvements. It also represents a significant

  3. A neural mass model of interconnected regions simulates rhythm propagation observed via TMS-EEG.

    Science.gov (United States)

    Cona, F; Zavaglia, M; Massimini, M; Rosanova, M; Ursino, M

    2011-08-01

    Knowledge of cortical rhythms represents an important aspect of modern neuroscience, to understand how the brain realizes its functions. Recent data suggest that different regions in the brain may exhibit distinct electroencephalogram (EEG) rhythms when perturbed by Transcranial Magnetic Stimulation (TMS) and that these rhythms can change due to the connectivity among regions. In this context, in silico simulations may help the validation of these hypotheses that would be difficult to be verified in vivo. Neural mass models can be very useful to simulate specific aspects of electrical brain activity and, above all, to analyze and identify the overall frequency content of EEG in a cortical region of interest (ROI). In this work we implemented a model of connectivity among cortical regions to fit the impulse responses in three ROIs recorded during a series of TMS/EEG experiments performed in five subjects and using three different impulse intensities. In particular we investigated Brodmann Area (BA) 19 (occipital lobe), BA 7 (parietal lobe) and BA 6 (frontal lobe). Results show that the model can reproduce the natural rhythms of the three regions quite well, acting on a few internal parameters. Moreover, the model can explain most rhythm changes induced by stimulation of another region, and inter-subject variability, by estimating just a few long-range connectivity parameters among ROIs. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Assessment on the Effect of Climate Change on Streamflow in the Source Region of the Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Huanqing Bian

    2017-01-01

    Full Text Available Tuotuo River basin, known as the source region of the Yangtze River, is the key area where the impact of climate change has been observed on many of the hydrological processes of this central region of the Tibetan Plateau. In this study, we examined six Global Climate Models (GCMs under three Representative Concentration Pathways (RCPs scenarios. First, the already impacted climate change was analyzed, based on the historical data available and then, the simulation results of the GCMs and RCPs were used for future scenario assessments. Results indicated that the annual mean temperature will likely be increased, ranging from −0.66 °C to 6.68 °C during the three future prediction periods (2020s, 2050s and 2080s, while the change in the annual precipitation ranged from −1.18% to 66.14%. Then, a well-known distributed hydrological soil vegetation model (DHSVM was utilized to evaluate the effects of future climate change on the streamflow dynamics. The seasonal mean streamflows, predicted by the six GCMs and the three RCPs scenarios, were also shown to likely increase, ranging from −0.52% to 22.58%. Watershed managers and regulators can use the findings from this study to better implement their conservation practices in the face of climate change.

  5. An alternative technique for simulating volumetric cylindrical sources in the Morse code utilization

    International Nuclear Information System (INIS)

    Vieira, W.J.; Mendonca, A.G.

    1985-01-01

    In the solution of deep-penetration problems using the Monte Carlo method, calculation techniques and strategies are used in order to increase the particle population in the regions of interest. A common procedure is the coupling of bidimensional calculations, with (r,z) discrete ordinates transformed into source data, and tridimensional Monte Carlo calculations. An alternative technique for this procedure is presented. This alternative proved effective when applied to a sample problem. (F.E.) [pt

  6. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    Science.gov (United States)

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.

  7. Flash Floods Simulation using a Physical-Based Hydrological Model at Different Hydroclimatic Regions

    Science.gov (United States)

    Saber, Mohamed; Kamil Yilmaz, Koray

    2016-04-01

    Currently, flash floods are seriously increasing and affecting many regions over the world. Therefore, this study will focus on two case studies; Wadi Abu Subeira, Egypt as arid environment, and Karpuz basin, Turkey as Mediterranean environment. The main objective of this work is to simulate flash floods at both catchments considering the hydrometeorological differences between them which in turn effect their flash flood behaviors. An integrated methodology incorporating Hydrological River Basin Environmental Assessment Model (Hydro-BEAM) and remote sensing observations was devised. Global Satellite Mapping of Precipitation (GSMAP) were compared with the rain gauge network at the target basins to estimate the bias in an effort to further use it effectively in simulation of flash floods. Based on the preliminary results of flash floods simulation on both basins, we found that runoff behaviors of flash floods are different due to the impacts of climatology, hydrological and topographical conditions. Also, the simulated surface runoff hydrographs are reasonably coincide with the simulated ones. Consequently, some mitigation strategies relying on this study could be introduced to help in reducing the flash floods disasters at different climate regions. This comparison of different climatic basins would be a reasonable implication for the potential impact of climate change on the flash floods frequencies and occurrences.

  8. Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump

    International Nuclear Information System (INIS)

    Wu, Wei; You, Tian; Wang, Baolong; Shi, Wenxing; Li, Xianting

    2014-01-01

    Highlights: • A combined heating/cooling/DHW system based on GSAHP is proposed in cold regions. • The soil imbalance is effectively reduced and soil temperature can be kept stable. • 20% and 15% of condensation/absorption heat is recovered by GSAHP to produce DHW. • The combined system can improve the primary energy efficiency by 23.6% and 44.4%. - Abstract: The amount of energy used for heating and domestic hot water (DHW) is very high and will keep increasing. The conventional ground source electrical heat pump used in heating-dominated buildings has the problems of thermal imbalance, decrease of soil temperature, and deterioration of heating performance. Ground source absorption heat pump (GSAHP) is advantageous in both imbalance reduction and primary energy efficiency (PEE) improvement; however, the imbalance is still unacceptable in the warmer parts of cold regions. A combined heating/cooling/DHW (HCD) system based on GSAHP is proposed to overcome this problem. The GSAHPs using generator absorber heat exchange (GAX) and single-effect (SE) cycles are simulated to obtain the performance under various working conditions. Different HCD systems in Beijing and Shenyang are simulated comparatively in TRNSYS, based on which the thermal imbalance, soil temperature, heat recovery, and energy efficiency are analyzed. Results show that GSAHP–GAX–HCD is suitable for Beijing and GSAHP–SE–HCD is suitable for Shenyang. The imbalance ratio can be reduced to −14.8% in Beijing and to 6.0% in Shenyang with an annual soil temperature variation of only 0.5 °C and 0.1 °C. Furthermore, about 20% and 15% of the total condensation/absorption heat is recovered to produce DHW, and the PEE can reach 1.516 in Beijing and 1.163 in Shenyang. The combined HCD systems can achieve a PEE improvement of 23.6% and 44.4% compared with the normal heating/cooling systems

  9. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    Science.gov (United States)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  10. A virtual source model for Monte Carlo simulation of helical tomotherapy.

    Science.gov (United States)

    Yuan, Jiankui; Rong, Yi; Chen, Quan

    2015-01-08

    The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase-space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS-generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of < 1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of < 2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM-based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose-volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent

  11. Chorus source region localization in the Earth's outer magnetosphere using THEMIS measurements

    Directory of Open Access Journals (Sweden)

    O. Agapitov

    2010-06-01

    Full Text Available Discrete ELF/VLF chorus emissions, the most intense electromagnetic plasma waves observed in the Earth's radiation belts and outer magnetosphere, are thought to propagate roughly along magnetic field lines from a localized source region near the magnetic equator towards the magnetic poles. THEMIS project Electric Field Instrument (EFI and Search Coil Magnetometer (SCM measurements were used to determine the spatial scale of the chorus source localization region on the day side of the Earth's outer magnetosphere. We present simultaneous observations of the same chorus elements registered onboard several THEMIS spacecraft in 2007 when all the spacecraft were in the same orbit. Discrete chorus elements were observed at 0.15–0.25 of the local electron gyrofrequency, which is typical for the outer magnetosphere. We evaluated the Poynting flux and wave vector distribution and obtained chorus wave packet quasi-parallel propagation to the local magnetic field. Amplitude and phase correlation data analysis allowed us to estimate the characteristic spatial correlation scale transverse to the local magnetic field to be in the 2800–3200 km range.

  12. Sensitivity of simulated maize crop yields to regional climate in the Southwestern United States

    Science.gov (United States)

    Kim, S.; Myoung, B.; Stack, D.; Kim, J.; Hatzopoulos, N.; Kafatos, M.

    2013-12-01

    The sensitivity of maize yield to the regional climate in the Southwestern United States (SW US) has been investigated by using a crop-yield simulation model (APSIM) in conjunction with meteorological forcings (daily minimum and maximum temperature, precipitation, and radiation) from the North American Regional Reanalysis (NARR) dataset. The primary focus of this study is to look at the effects of interannual variations of atmospheric components on the crop productivity in the SW US over the 21-year period (1991 to 2011). First of all, characteristics and performance of APSIM was examined by comparing simulated maize yields with observed yields from United States Department of Agriculture (USDA) and the leaf-area index (LAI) from MODIS satellite data. Comparisons of the simulated maize yield with the available observations show that the crop model can reasonably reproduce observed maize yields. Sensitivity tests were performed to assess the relative contribution of each climate driver to regional crop yield. Sensitivity experiments show that potential crop production responds nonlinearly to climate drivers and the yield sensitivity varied among geographical locations depending on their mean climates. Lastly, a detailed analysis of both the spatial and temporal variations of each climate driver in the regions where maize is actually grown in three states (CA, AZ, and NV) in the SW US was performed.

  13. Mass conservation for instantaneous sources in FEM3 simulations of material dispersion

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1987-11-01

    This report presents the results of a systematic study in which it is shown that the numerical integration errors in determining material mass content are negligible; the material phase-change model by itself is not a cause of material mass variation; and a linear relation between fractional mass change and fractional density change at the source center for given mesh and source geometries exists over a range of values from 10 -5 to 10 -1 . This suggests that the omission of the ∂ rho/∂t term from the mass conservation equation is the cause of the observed non-conservation of mass by FEM3. It is shown that these mass variations can be minimized by minimizing the initial density gradients in the source region. 5 refs., 18 figs., 4 tabs

  14. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    Directory of Open Access Journals (Sweden)

    H. W. Ter Maat

    2010-08-01

    Full Text Available This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS, coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C, and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.

    The simulations performed with the coupled regional model (RAMS-SWAPS-C are in good qualitative agreement with the observations. The station validation of the model demonstrates that the incoming shortwave radiation and surface fluxes of water and CO2 are well simulated. The comparison against aircraft data shows that the regional meteorology (i.e. wind, temperature is captured well by the model. Comparing spatially explicitly simulated fluxes with aircraft observed fluxes we conclude that in general latent heat fluxes are underestimated by the model compared to the observations but that the latter exhibit large variability within all flights. Sensitivity experiments demonstrate the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same tests also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.

  15. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  16. ZnO sublimation using a polyenergetic pulsed electron beam source: numerical simulation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Tricot, S; Semmar, N; Lebbah, L; Boulmer-Leborgne, C, E-mail: sylvain.tricot@univ-orleans.f [GREMI, UMR 6606-CNRS/Universite d' Orleans, 14 rue d' Issoudun, BP 6744, 45067 Orleans cedex 2 (France)

    2010-02-17

    This paper details the electro-thermal study of the sublimation phase on a zinc oxide surface. This thermodynamic process occurs when a ZnO target is bombarded by a pulsed electron beam source composed of polyenergetic electrons. The source delivers short pulses of 180 ns of electrons with energies up to 16 keV. The beam total current reaches 800 A and is focused onto a spot area 2 mm in diameter. The Monte Carlo CASINO program is used to study the first stage of the interaction and to define the heat source space distribution inside the ZnO target. Simulation of the second stage of interaction is developed in a COMSOL multiphysics project. The simulated thermal field induced by space and time heat conduction is presented. Typically for a pulsed electron beam 2 mm in diameter of electrons having energies up to 16 keV, the surface temperature reaches a maximum of 7000 K. The calculations are supported by SEM pictures of the target irradiated by various beam energies and numbers of pulses.

  17. ZnO sublimation using a polyenergetic pulsed electron beam source: numerical simulation and validation

    International Nuclear Information System (INIS)

    Tricot, S; Semmar, N; Lebbah, L; Boulmer-Leborgne, C

    2010-01-01

    This paper details the electro-thermal study of the sublimation phase on a zinc oxide surface. This thermodynamic process occurs when a ZnO target is bombarded by a pulsed electron beam source composed of polyenergetic electrons. The source delivers short pulses of 180 ns of electrons with energies up to 16 keV. The beam total current reaches 800 A and is focused onto a spot area 2 mm in diameter. The Monte Carlo CASINO program is used to study the first stage of the interaction and to define the heat source space distribution inside the ZnO target. Simulation of the second stage of interaction is developed in a COMSOL multiphysics project. The simulated thermal field induced by space and time heat conduction is presented. Typically for a pulsed electron beam 2 mm in diameter of electrons having energies up to 16 keV, the surface temperature reaches a maximum of 7000 K. The calculations are supported by SEM pictures of the target irradiated by various beam energies and numbers of pulses.

  18. A systematic intercomparison of regional flood frequency analysis models in a simulation framework

    Science.gov (United States)

    Ganora, Daniele; Laio, Francesco; Claps, Pierluigi

    2015-04-01

    Regional frequency analysis (RFA) is a well-established methodology to provide an estimate of the flood frequency curve (or other discharge-related variables), based on the fundamental concept of substituting temporal information at a site (no data or short time series) by exploiting observations at other sites (spatial information). Different RFA paradigms exist, depending on the way the information is transferred to the site of interest. Despite the wide use of such methodology, a systematic comparison between these paradigms has not been performed. The aim of this study is to provide a framework wherein carrying out the intercomparison: we thus synthetically generate data through Monte Carlo simulations for a number of (virtual) stations, following a GEV parent distribution; different scenarios can be created to represent different spatial heterogeneity patterns by manipulating the parameters of the parent distribution at each station (e.g. with a linear variation in space of the shape parameter of the GEV). A special case is the homogeneous scenario where each station record is sampled from the same parent distribution. For each scenario and each simulation, different regional models are applied to evaluate the 200-year growth factor at each station. Results are than compared to the exact growth factor of each station, which is known in our virtual world. Considered regional approaches include: (i) a single growth curve for the whole region; (ii) a multiple-region model based on cluster analysis which search for an adequate number of homogeneous subregions; (iii) a Region-of-Influence model which defines a homogeneous subregion for each site; (iv) a spatially-smooth estimation procedure based on linear regressions.. A further benchmark model is the at-site estimate based on the analysis of the local record. A comprehensive analysis of the results of the simulations shows that, if the scenario is homogeneous (no spatial variability), all the regional approaches

  19. Long term simulation of {sup 137}Cs radioactivity in the regional ocean following the Fukushima Daiichi nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Tsumune, D.; Tsubono, T.; Misumi, K.; Yoshida, Y.; Hayami, H. [Central Research Institute of Electric Power Industry (Japan); Aoyama, M. [Meteorological Research Institute (Japan); Uematsu, M. [University of Tokyo (Japan); Maeda, Y. [CERES, Inc. (Japan)

    2014-07-01

    A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant following the earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean by two major pathways, direct release from the accident site and atmospheric deposition. A regional-scale simulation of {sup 137}Cs activity in the ocean offshore of Fukushima was carried out, the sources of radioactivity being direct release, atmospheric deposition, and the inflow of {sup 137}Cs deposited on the ocean by atmospheric deposition outside the domain of the model for more than two years. Direct releases of {sup 131}I, {sup 134}Cs, and {sup 137}Cs were estimated for 1 year after the accident by comparing simulated results and measured activities. The estimated total amounts of directly released {sup 131}I, {sup 134}Cs, and {sup 137}Cs were 11.1±2.2 PBq, 3.5±0.7 PBq, and 3.6±0.7 PBq, respectively. The contributions of each source were estimated by analysis of {sup 131}I/{sup 137}Cs and {sup 134}Cs/{sup 137}Cs activity ratios and comparisons between simulated results and measured activities of {sup 137}Cs. Simulated {sup 137}Cs activities attributable to direct release were in good agreement with measured activities close to the accident site, a result that implies that the estimated direct release rate was reasonable, while simulated {sup 137}Cs activities attributable to atmospheric deposition were low compared to measured activities. The rate of atmospheric deposition onto the ocean was underestimated because of a lack of measurements of deposition onto the ocean when atmospheric deposition rates were being estimated. Measured {sup 137}Cs activities attributable to atmospheric deposition helped to improve the accuracy of simulated atmospheric deposition rates. Simulated {sup 137}Cs activities attributable to the inflow of {sup 137}Cs deposited onto the ocean outside the domain of the model were in good agreement with measured activities in the open ocean within the

  20. Laboratory estimate of the regional shortwave refractive index and single scattering albedo of mineral dust from major sources worldwide

    Science.gov (United States)

    Di Biagio, C.; Formenti, P.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, M. O.; Kandler, K.; Saeed, T.; Piketh, S.; Seibert, D.; Williams, E.; Balkanski, Y.; Doussin, J. F.

    2017-12-01

    Mineral dust is one of the most abundant aerosol species in the atmosphere and strongly contributes to the global and regional direct radiative effect. Still large uncertainties persist on the magnitude and overall sign of the dust direct effect, where indeed one of the main unknowns is how much mineral dust absorbs light in the shortwave (SW) spectral range. Aerosol absorption is represented both by the imaginary part (k) of the complex refractive index or the single scattering albedo (SSA, i.e. the ratio of the scattering to extinction coefficient). In this study we present a new dataset of SW complex refractive indices and SSA for mineral dust aerosols obtained from in situ measurements in the 4.2 m3 CESAM simulation chamber at LISA (Laboratoire Interuniversitaire des Systemes Atmospheriques) in Créteil, France. Investigated dust aerosol samples were issued from major desert sources worldwide, including the African Sahara and Sahel, Eastern Asia, the Middle East, Southern Africa, Australia, and the Americas, with differing iron oxides content. Results from the present study provide a regional mapping of the SW absorption by dust and show that the imaginary part of the refractive index largely varies (by up to a factor 6, 0.003-0.02 at 370 nm and 0.001-0.003 at 950 nm) for the different source areas due to the change in the particle iron oxide content. The SSA for dust varies between 0.75-0.90 at 370 nm and 0.95-0.99 at 950 nm, with the largest absorption observed for Sahelian and Australian dust aerosols. Our range of variability for k and SSA is well bracketed by already published literature estimates, but suggests that regional‒dependent values should be used in models. The possible relationship between k and the dust iron oxides content is investigated with the aim of providing a parameterization of the regional‒dependent dust absorption to include in climate models.

  1. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia

    International Nuclear Information System (INIS)

    Kebede, Seifu; Travi, Yves; Alemayehu, Tamiru; Ayenew, Tenalem

    2005-01-01

    Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO 2 influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na-HCO 3 type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca-Mg-HCO 3 type waters. Despite the high altitude (mean altitude ∼2500 masl) and the relatively low mean annual air temperature (18 deg. C) of the region compared to Sahelian Africa, there is no commensurate depletion in δ 18 O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted δ 18 O groundwaters. Altitudinal depletion of δ 18 O is 0.1%o/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude

  2. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Kebede, Seifu [Laboratory of Hydrogeology, University of Avignon, 33 Rue Louis Pasteur, 84000 Avignon (France) and Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)]. E-mail: seifu.kebede@univ-avignon.fr; Travi, Yves [Laboratory of Hydrogeology, University of Avignon, 33 Rue Louis Pasteur, 84000 Avignon (France); Alemayehu, Tamiru [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia); Ayenew, Tenalem [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2005-09-15

    Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO{sub 2} influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na-HCO {sub 3} type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca-Mg-HCO {sub 3} type waters. Despite the high altitude (mean altitude {approx}2500 masl) and the relatively low mean annual air temperature (18 deg. C) of the region compared to Sahelian Africa, there is no commensurate depletion in {delta} {sup 18}O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted {delta} {sup 18}O groundwaters. Altitudinal depletion of {delta} {sup 18}O is 0.1%o/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude.

  3. Polybrominated diphenyl ethers and polychlorinated biphenyls in sediments of southwest Taiwan: Regional characteristics and potential sources

    International Nuclear Information System (INIS)

    Jiang, Jheng-Jie; Lee, Chon-Lin; Fang, Meng-Der; Ko, Fung-Chi; Baker, Joel E.

    2011-01-01

    Research highlights: → This paper presents the very first PBDE and PCB study in coastal sediment of Taiwan. → Compositional patterns indicated deca-BDE and octa-BDE products as dominant sources. → The possible source of PBDE may be the nearby electric/electronic industry in Taiwan. → PCB signatures suggested the legacy of past use of commercial PCB mixtures in Taiwan. - Abstract: Very little information is available on the contamination of coastal sediments of Taiwan by PBDEs and PCBs. In this study, we determined the concentrations of 19 PBDE and 209 PCB congeners in 57 surface sediment samples to identify the possible sources of PBDEs and PCBs. The total PBDE and PCB concentrations ranged from below detection limit to 7.73 ng/g and 0.88-7.13 ng/g, respectively; these values are within the ranges observed for most coastal sediments worldwide. The PBDE congeners were dominated by BDE-209 (50.7-99.7%), with minor contributions from penta- and octa-BDEs. The signatures of PCB congeners suggested that PCB residues in Kaohsiung coast may be the legacy of past use or the result of ongoing inputs from the maintenance, repair and salvage of old ships. Principal component analysis of the congener-specific composition of PBDEs and PCBs revealed distinct regional patterns that are related to the use of commercial products.

  4. Studying Regional Wave Source Time Functions Using the Empirical Green's Function Method: Application to Central Asia

    Science.gov (United States)

    Xie, J.; Schaff, D. P.; Chen, Y.; Schult, F.

    2013-12-01

    Reliably estimated source time functions (STFs) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection and discrimination, and minimization of parameter trade-off in attenuation studies. We have searched for candidate pairs of larger and small earthquakes in and around China that share the same focal mechanism but significantly differ in magnitudes, so that the empirical Green's function (EGF) method can be applied to study the STFs of the larger events. We conducted about a million deconvolutions using waveforms from 925 earthquakes, and screened the deconvolved traces to exclude those that are from event pairs that involved different mechanisms. Only 2,700 traces passed this screening and could be further analyzed using the EGF method. We have developed a series of codes for speeding up the final EGF analysis by implementing automations and user-graphic interface procedures. The codes have been fully tested with a subset of screened data and we are currently applying them to all the screened data. We will present a large number of deconvolved STFs retrieved using various phases (Lg, Pn, Sn and Pg and coda) with information on any directivities, any possible dependence of pulse durations on the wave types, on scaling relations for the pulse durations and event sizes, and on the estimated source static stress drops.

  5. Quantifying the sources of ozone, fine particulate matter, and regional haze in the Southeastern United States.

    Science.gov (United States)

    Odman, M Talat; Hu, Yongtao; Russell, Armistead G; Hanedar, Asude; Boylan, James W; Brewer, Patricia F

    2009-07-01

    A detailed sensitivity analysis was conducted to quantify the contributions of various emission sources to ozone (O3), fine particulate matter (PM2.5), and regional haze in the Southeastern United States. O3 and particulate matter (PM) levels were estimated using the Community Multiscale Air Quality (CMAQ) modeling system and light extinction values were calculated from modeled PM concentrations. First, the base case was established using the emission projections for the year 2009. Then, in each model run, SO2, primary carbon (PC), NH3, NO(x) or VOC emissions from a particular source category in a certain geographic area were reduced by 30% and the responses were determined by calculating the difference between the results of the reduced emission case and the base case. The sensitivity of summertime O3 to VOC emissions is small in the Southeast and ground-level NO(x) controls are generally more beneficial than elevated NO(x) controls (per unit mass of emissions reduced). SO2 emission reduction is the most beneficial control strategy in reducing summertime PM2.5 levels and improving visibility in the Southeast and electric generating utilities are the single largest source of SO2. Controlling PC emissions can be very effective locally, especially in winter. Reducing NH3 emissions is an effective strategy to reduce wintertime ammonium nitrate (NO3NH4) levels and improve visibility; NO(x) emissions reductions are not as effective. The results presented here will help the development of specific emission control strategies for future attainment of the National Ambient Air Quality Standards in the region.

  6. PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems

    Science.gov (United States)

    Ghaffarizadeh, Ahmadreza; Mumenthaler, Shannon M.

    2018-01-01

    Many multicellular systems problems can only be understood by studying how cells move, grow, divide, interact, and die. Tissue-scale dynamics emerge from systems of many interacting cells as they respond to and influence their microenvironment. The ideal “virtual laboratory” for such multicellular systems simulates both the biochemical microenvironment (the “stage”) and many mechanically and biochemically interacting cells (the “players” upon the stage). PhysiCell—physics-based multicellular simulator—is an open source agent-based simulator that provides both the stage and the players for studying many interacting cells in dynamic tissue microenvironments. It builds upon a multi-substrate biotransport solver to link cell phenotype to multiple diffusing substrates and signaling factors. It includes biologically-driven sub-models for cell cycling, apoptosis, necrosis, solid and fluid volume changes, mechanics, and motility “out of the box.” The C++ code has minimal dependencies, making it simple to maintain and deploy across platforms. PhysiCell has been parallelized with OpenMP, and its performance scales linearly with the number of cells. Simulations up to 105-106 cells are feasible on quad-core desktop workstations; larger simulations are attainable on single HPC compute nodes. We demonstrate PhysiCell by simulating the impact of necrotic core biomechanics, 3-D geometry, and stochasticity on the dynamics of hanging drop tumor spheroids and ductal carcinoma in situ (DCIS) of the breast. We demonstrate stochastic motility, chemical and contact-based interaction of multiple cell types, and the extensibility of PhysiCell with examples in synthetic multicellular systems (a “cellular cargo delivery” system, with application to anti-cancer treatments), cancer heterogeneity, and cancer immunology. PhysiCell is a powerful multicellular systems simulator that will be continually improved with new capabilities and performance improvements. It also

  7. Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint

    International Nuclear Information System (INIS)

    Gleeson, Tom; Wada, Yoshihide

    2013-01-01

    Groundwater is a critical resource for agricultural production, ecosystems, drinking water and industry, yet groundwater depletion is accelerating, especially in a number of agriculturally important regions. Assessing the stress of groundwater resources is crucial for science-based policy and management, yet water stress assessments have often neglected groundwater and used single data sources, which may underestimate the uncertainty of the assessment. We consistently analyze and interpret groundwater stress across whole nations using multiple data sources for the first time. We focus on two nations with the highest national groundwater abstraction rates in the world, the United States and India, and use the recently developed groundwater footprint and multiple datasets of groundwater recharge and withdrawal derived from hydrologic models and data synthesis. A minority of aquifers, mostly with known groundwater depletion, show groundwater stress regardless of the input dataset. The majority of aquifers are not stressed with any input data while less than a third are stressed for some input data. In both countries groundwater stress affects agriculturally important regions. In the United States, groundwater stress impacts a lower proportion of the national area and population, and is focused in regions with lower population and water well density compared to India. Importantly, the results indicate that the uncertainty is generally greater between datasets than within datasets and that much of the uncertainty is due to recharge estimates. Assessment of groundwater stress consistently across a nation and assessment of uncertainty using multiple datasets are critical for the development of a science-based rationale for policy and management, especially with regard to where and to what extent to focus limited research and management resources. (letter)

  8. Long range transport of CO and ozone from source regions in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, D.; Mahura, A. [Univ. of Alaska, Fairbanks, AK (United States)]|[Institute of Northern Ecological Problems, Moscow (Russian Federation); Novelli, P. [Univ. of Colorado, Boulder, CO (United States); Merrill, J. [Univ. of Rhode Island, Narraganset, RI (United States)

    1996-12-31

    Based on current understanding of the atmosphere, CO and photochemically produced ozone can be transported thousands of kilometers prior to being removed. Emissions from Asia have a possible impact on the CO and ozone concentrations over the U.S. west coast following transport across the Pacific Ocean. If this is correct, then there are implications for ozone control strategies in the downwind region. Evidence includes: (1) Global 3D chemical transport models indicating a monthly mean enhancement of 10-20% on the US west coast for both CO and ozone during winter-spring due to emissions from Asia; and (2) CO and O{sub 3} data from several Pacific sites which demonstrate that Asian pollutants can be transported great distances. The weekly flask data clearly define a CO seasonal cycle. In the present analysis we use a locally weighted smoothing technique to identify individual data outliers from the smoothed seasonal cycle. We hypothesize that these outliers represent periods when continental emissions influenced the atmospheric mixing ratios at these locations. Using isentropic back trajectories we try to identify a possible source region or pathway for each event and present a distribution of the trajectory types for the events. For the events at Midway, Mauna Loa, Guam and Shemya, we are able to identify a source region for elevated CO in 82, 72, 65 and 50% of the events, respectively. At Mauna Loa and Midway a majority of the events occur during spring and are mostly associated with transport from Asia. These events bring the highest CO mixing ratios observed at any time during the year to these sites, with CO enhancements up to 46 ppb. For Mauna Loa, a small number of events during summer are due to transport from North and Central America. In-situ ozone from Mauna Loa also demonstrates an impact from Asian emissions.

  9. SIMULATION FRAMEWORK FOR REGIONAL GEOLOGIC CO{sub 2} STORAGE ALONG ARCHES PROVINCE OF MIDWESTERN UNITED STATES

    Energy Technology Data Exchange (ETDEWEB)

    Sminchak, Joel

    2012-09-30

    This report presents final technical results for the project Simulation Framework for Regional Geologic CO{sub 2} Storage Infrastructure along Arches Province of the Midwest United States. The Arches Simulation project was a three year effort designed to develop a simulation framework for regional geologic carbon dioxide (CO{sub 2}) storage infrastructure along the Arches Province through development of a geologic model and advanced reservoir simulations of large-scale CO{sub 2} storage. The project included five major technical tasks: (1) compilation of geologic, hydraulic and injection data on Mount Simon, (2) development of model framework and parameters, (3) preliminary variable density flow simulations, (4) multi-phase model runs of regional storage scenarios, and (5) implications for regional storage feasibility. The Arches Province is an informal region in northeastern Indiana, northern Kentucky, western Ohio, and southern Michigan where sedimentary rock formations form broad arch and platform structures. In the province, the Mount Simon sandstone is an appealing deep saline formation for CO{sub 2} storage because of the intersection of reservoir thickness and permeability. Many CO{sub 2} sources are located in proximity to the Arches Province, and the area is adjacent to coal fired power plants along the Ohio River Valley corridor. Geophysical well logs, rock samples, drilling logs, and geotechnical tests were evaluated for a 500,000 km{sup 2} study area centered on the Arches Province. Hydraulic parameters and historical operational information was also compiled from Mount Simon wastewater injection wells in the region. This information was integrated into a geocellular model that depicts the parameters and conditions in a numerical array. The geologic and hydraulic data were integrated into a three-dimensional grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO{sub 2} injection. Permeability data

  10. SIMULATION FRAMEWORK FOR REGIONAL GEOLOGIC CO{sub 2} STORAGE ALONG ARCHES PROVINCE OF MIDWESTERN UNITED STATES

    Energy Technology Data Exchange (ETDEWEB)

    Sminchak, Joel

    2012-09-30

    This report presents final technical results for the project Simulation Framework for Regional Geologic CO{sub 2} Storage Infrastructure along Arches Province of the Midwest United States. The Arches Simulation project was a three year effort designed to develop a simulation framework for regional geologic carbon dioxide (CO{sub 2}) storage infrastructure along the Arches Province through development of a geologic model and advanced reservoir simulations of large-scale CO{sub 2} storage. The project included five major technical tasks: (1) compilation of geologic, hydraulic and injection data on Mount Simon, (2) development of model framework and parameters, (3) preliminary variable density flow simulations, (4) multi-phase model runs of regional storage scenarios, and (5) implications for regional storage feasibility. The Arches Province is an informal region in northeastern Indiana, northern Kentucky, western Ohio, and southern Michigan where sedimentary rock formations form broad arch and platform structures. In the province, the Mount Simon sandstone is an appealing deep saline formation for CO{sub 2} storage because of the intersection of reservoir thickness and permeability. Many CO{sub 2} sources are located in proximity to the Arches Province, and the area is adjacent to coal fired power plants along the Ohio River Valley corridor. Geophysical well logs, rock samples, drilling logs, and geotechnical tests were evaluated for a 500,000 km{sup 2} study area centered on the Arches Province. Hydraulic parameters and historical operational information was also compiled from Mount Simon wastewater injection wells in the region. This information was integrated into a geocellular model that depicts the parameters and conditions in a numerical array. The geologic and hydraulic data were integrated into a three-dimensional grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO{sub 2} injection. Permeability data

  11. Climate Impact of a Regional Nuclear Weapons Exchange: An Improved Assessment Based On Detailed Source Calculations

    Science.gov (United States)

    Reisner, Jon; D'Angelo, Gennaro; Koo, Eunmo; Even, Wesley; Hecht, Matthew; Hunke, Elizabeth; Comeau, Darin; Bos, Randall; Cooley, James

    2018-03-01

    We present a multiscale study examining the impact of a regional exchange of nuclear weapons on global climate. Our models investigate multiple phases of the effects of nuclear weapons usage, including growth and rise of the nuclear fireball, ignition and spread of the induced firestorm, and comprehensive Earth system modeling of the oceans, land, ice, and atmosphere. This study follows from the scenario originally envisioned by Robock, Oman, Stenchikov, et al. (2007, https://doi.org/10.5194/acp-7-2003-2007), based on the analysis of Toon et al. (2007, https://doi.org/10.5194/acp-7-1973-2007), which assumes a regional exchange between India and Pakistan of fifty 15 kt weapons detonated by each side. We expand this scenario by modeling the processes that lead to production of black carbon, in order to refine the black carbon forcing estimates of these previous studies. When the Earth system model is initiated with 5 × 109 kg of black carbon in the upper troposphere (approximately from 9 to 13 km), the impact on climate variables such as global temperature and precipitation in our simulations is similar to that predicted by previously published work. However, while our thorough simulations of the firestorm produce about 3.7 × 109 kg of black carbon, we find that the vast majority of the black carbon never reaches an altitude above weather systems (approximately 12 km). Therefore, our Earth system model simulations conducted with model-informed atmospheric distributions of black carbon produce significantly lower global climatic impacts than assessed in prior studies, as the carbon at lower altitudes is more quickly removed from the atmosphere. In addition, our model ensembles indicate that statistically significant effects on global surface temperatures are limited to the first 5 years and are much smaller in magnitude than those shown in earlier works. None of the simulations produced a nuclear winter effect. We find that the effects on global surface temperatures

  12. Continuously on-­going regional climate hindcast simulations for impact applications

    Science.gov (United States)

    Anders, Ivonne; Piringer, Martin; Kaufmann, Hildegard; Knauder, Werner; Resch, Gernot; Andre, Konrad

    2017-04-01

    Observational data for e.g. temperature, precipitation, radiation, or wind are often used as meteorological forcing for different impact models, like e.g. crop models, urban models, economic models and energy system models. To assess a climate signal, the time period covered by the observation is often too short, they have gaps in between, and are inhomogeneous over time, due to changes in the measurements itself or in the near surrounding. Thus output from global and regional climate models can close the gap and provide homogeneous and physically consistent time series of meteorological parameters. CORDEX evaluation runs performed for the IPCC-AR5 provide a good base for the regional scale. However, with respect to climate services, continuously on-going hindcast simulations are required for regularly updated applications. The Climate Research group at the national Austrian weather service, ZAMG, is focusing on high mountain regions and, especially on the Alps. The hindcast-simulation performed with the regional climate model COSMO-CLM is forced by ERAinterim and optimized for the Alpine Region. The simulation available for the period of 1979-2015 in a spatial resolution of about 10km is prolonged ongoing and fullfils the customer's needs with respect of output variables, levels, intervals and statistical measures. One of the main tasks is to capture strong precipitation events which often occur during summer when low pressure systems develop over the Golf of Genoa, moving to the Northeast. This leads to floods and landslide events in Austria, Czech Republic and Germany. Such events are not sufficiently represented in the CORDEX-evaluation runs. ZAMG use high quality gridded precipitation and temperature data for the Alpine Region (1-6km) to evaluate the model performance. Data is provided e.g. to hydrological modellers (high water, low water), but also to assess icing capability of infrastructure or the calculation the separation distances between livestock

  13. The electron-dose distribution surrounding an 192Ir wire bracytherapy source investigated using EGS4 simulations and GafChromic film

    International Nuclear Information System (INIS)

    Cheung, Y.C.; Yu, P.K.N.; Young, E.C.M.; Wong, T.P.Y.

    1997-01-01

    The steep dose gradient around 192 Ir brachytherapy wire implants is predicted by the EGS4 (PRESTA version) Monte Carlo simulation. When considering radiation absorbing regions close to the wire source, the accurate dose distribution cannot be calculated by the GE Target II Sun Sparc treatment-planning system. Experiments using GafChromic TM film have been performed to prove the validity of the EGS4 user code when calculating the dose close to the wire source in a low energy range. (Author)

  14. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.

    Science.gov (United States)

    Pronk, Sander; Páll, Szilárd; Schulz, Roland; Larsson, Per; Bjelkmar, Pär; Apostolov, Rossen; Shirts, Michael R; Smith, Jeremy C; Kasson, Peter M; van der Spoel, David; Hess, Berk; Lindahl, Erik

    2013-04-01

    Molecular simulation has historically been a low-throughput technique, but faster computers and increasing amounts of genomic and structural data are changing this by enabling large-scale automated simulation of, for instance, many conformers or mutants of biomolecules with or without a range of ligands. At the same time, advances in performance and scaling now make it possible to model complex biomolecular interaction and function in a manner directly testable by experiment. These applications share a need for fast and efficient software that can be deployed on massive scale in clusters, web servers, distributed computing or cloud resources. Here, we present a range of new simulation algorithms and features developed during the past 4 years, leading up to the GROMACS 4.5 software package. The software now automatically handles wide classes of biomolecules, such as proteins, nucleic acids and lipids, and comes with all commonly used force fields for these molecules built-in. GROMACS supports several implicit solvent models, as well as new free-energy algorithms, and the software now uses multithreading for efficient parallelization even on low-end systems, including windows-based workstations. Together with hand-tuned assembly kernels and state-of-the-art parallelization, this provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations. GROMACS is an open source and free software available from http://www.gromacs.org. Supplementary data are available at Bioinformatics online.

  15. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations

    Science.gov (United States)

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028

  16. Study on simulation methods of atrium building cooling load in hot and humid regions

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yiqun; Li, Yuming; Huang, Zhizhong [Institute of Building Performance and Technology, Sino-German College of Applied Sciences, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Wu, Gang [Weldtech Technology (Shanghai) Co. Ltd. (China)

    2010-10-15

    In recent years, highly glazed atria are popular because of their architectural aesthetics and advantage of introducing daylight into inside. However, cooling load estimation of such atrium buildings is difficult due to complex thermal phenomena that occur in the atrium space. The study aims to find out a simplified method of estimating cooling loads through simulations for various types of atria in hot and humid regions. Atrium buildings are divided into different types. For every type of atrium buildings, both CFD and energy models are developed. A standard method versus the simplified one is proposed to simulate cooling load of atria in EnergyPlus based on different room air temperature patterns as a result from CFD simulation. It incorporates CFD results as input into non-dimensional height room air models in EnergyPlus, and the simulation results are defined as a baseline model in order to compare with the results from the simplified method for every category of atrium buildings. In order to further validate the simplified method an actual atrium office building is tested on site in a typical summer day and measured results are compared with simulation results using the simplified methods. Finally, appropriate methods of simulating different types of atrium buildings are proposed. (author)

  17. Simplified human model and pedestrian simulation in the millimeter-wave region

    Science.gov (United States)

    Han, Junghwan; Kim, Seok; Lee, Tae-Yun; Ka, Min-Ho

    2016-02-01

    The 24 GHz and 77 GHz radar sensors have been studied as a strong candidate for advanced driver assistance systems(ADAS) because of their all-weather capability and accurate range and radial velocity measuring scheme. However, developing a reliable pedestrian recognition system hasmany obstacles due to the inaccurate and non-trivial radar responses at these high frequencies and the many combinations of clothes and accessories. To overcome these obstacles, many researchers used electromagnetic (EM) simulation to characterize the radar scattering response of a human. However, human simulation takes so long time because of the electrically huge size of a human in the millimeter-wave region. To reduce simulation time, some researchers assumed the skin of a human is the perfect electric conductor (PEC) and have simulated the PEC human model using physical optics (PO) algorithm without a specific explanation about how the human body could be modeled with PEC. In this study, the validity of the assumption that the surface of the human body is considered PEC in the EM simulation is verified, and the simulation result of the dry skin human model is compared with that of the PEC human model.

  18. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.

    Science.gov (United States)

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.

  19. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.

    Directory of Open Access Journals (Sweden)

    Holger Hoffmann

    Full Text Available We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.

  20. Numerical simulation and analysis of confined turbulent buoyant jet with variable source

    KAUST Repository

    El-Amin, Mohamed

    2016-01-23

    In this work, experimental and numerical investigations are undertaken for confined buoyant turbulent jet with varying inlet temperatures. Results of the experimental work and numerical simulations for the problem under consideration are presented. Four cases of different variable inlet temperatures and different flow rates are considered. The realizable k-ɛ turbulence model is used to model the turbulent flow. Comparisons show good agreements between simulated and measured results. The average deviation of the simulated temperature by realizable k-ɛ turbulent model and the measured temperature is within 2%. The results indicate that temperatures along the vertical axis vary, generally, in nonlinear fashion as opposed to the approximately linear variation that was observed for the constant inlet temperature that was done in a previous work. Furthermore, thermal stratification exits, particularly closer to the entrance region. Further away from the entrance region the variation in temperatures becomes relatively smaller. The stratification is observed since the start of the experiment and continues during the whole course. Numerical experiments for constant, monotone increasing and monotone decreasing of inlet temperature are done to show its effect on the buoyancy force in terms of Richardson number.

  1. Numerical simulation and analysis of confined turbulent buoyant jet with variable source

    KAUST Repository

    El-Amin, Mohamed; Al-Ghamdi, Abdulmajeed; Salama, Amgad; Sun, Shuyu

    2016-01-01

    In this work, experimental and numerical investigations are undertaken for confined buoyant turbulent jet with varying inlet temperatures. Results of the experimental work and numerical simulations for the problem under consideration are presented. Four cases of different variable inlet temperatures and different flow rates are considered. The realizable k-ɛ turbulence model is used to model the turbulent flow. Comparisons show good agreements between simulated and measured results. The average deviation of the simulated temperature by realizable k-ɛ turbulent model and the measured temperature is within 2%. The results indicate that temperatures along the vertical axis vary, generally, in nonlinear fashion as opposed to the approximately linear variation that was observed for the constant inlet temperature that was done in a previous work. Furthermore, thermal stratification exits, particularly closer to the entrance region. Further away from the entrance region the variation in temperatures becomes relatively smaller. The stratification is observed since the start of the experiment and continues during the whole course. Numerical experiments for constant, monotone increasing and monotone decreasing of inlet temperature are done to show its effect on the buoyancy force in terms of Richardson number.

  2. [Micro-simulation of firms' heterogeneity on pollution intensity and regional characteristics].

    Science.gov (United States)

    Zhao, Nan; Liu, Yi; Chen, Ji-Ning

    2009-11-01

    In the same industrial sector, heterogeneity of pollution intensity exists among firms. There are some errors if using sector's average pollution intensity, which are calculated by limited number of firms in environmental statistic database to represent the sector's regional economic-environmental status. Based on the production function which includes environmental depletion as input, a micro-simulation model on firms' operational decision making is proposed. Then the heterogeneity of firms' pollution intensity can be mechanically described. Taking the mechanical manufacturing sector in Deyang city, 2005 as the case, the model's parameters were estimated. And the actual COD emission intensities of environmental statistic firms can be properly matched by the simulation. The model's results also show that the regional average COD emission intensity calculated by the environmental statistic firms (0.002 6 t per 10 000 yuan fixed asset, 0.001 5 t per 10 000 yuan production value) is lower than the regional average intensity calculated by all the firms in the region (0.003 0 t per 10 000 yuan fixed asset, 0.002 3 t per 10 000 yuan production value). The difference among average intensities in the six counties is significant as well. These regional characteristics of pollution intensity attribute to the sector's inner-structure (firms' scale distribution, technology distribution) and its spatial deviation.

  3. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    Science.gov (United States)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and

  4. PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China

    Science.gov (United States)

    Zong, Zheng; Wang, Xiaoping; Tian, Chongguo; Chen, Yingjun; Fu, Shanfei; Qu, Lin; Ji, Ling; Li, Jun; Zhang, Gan

    2018-05-01

    To apportion regional PM2.5 (atmospheric particles with aerodynamic diameter water-soluble ions and inorganic elements, various approaches, such as Mann-Kendall test, chemical mass closure, ISORROPIA II model, Positive Matrix Factorization (PMF) linked with Potential Source Contribution Function (PSCF), were used to explore the PM2.5 speciation, sources, and source regions. Consequently, distinct seasonal variations of PM2.5 and its main species were found and could be explained by varying emission source characteristics. Based on PMF model, seven source factors for PM2.5 were identified, which were coal combustion + biomass burning, vehicle emission, mineral dust, ship emission, sea salt, industry source, refined chrome industry with the contribution of 48.21%, 30.33%, 7.24%, 6.63%, 3.51%, 3.2%, and 0.88%, respectively. In addition, PSCF analysis using the daily contribution of each factor from PMF result suggested that Shandong peninsula and Hebei province were identified as the high potential region for coal combustion + biomass burning; Beijing-Tianjin-Hebei (BTH) region was the main source region for industry source; Bohai Sea and East China Sea were found to be of high source potential for ship emission; Geographical region located northwest of BH Island was possessed of high probability for sea salt; Mineral dust presumably came from the region of Mongolia; Refined chrome industry mostly came from Liaoning, Jilin province; The vehicle emission was primarily of BTH region origin, centring on metropolises, such as Beijing and Tianjin. These results provided precious implications for PM2.5 control strategies in North China.

  5. Pika: A snow science simulation tool built using the open-source framework MOOSE

    Science.gov (United States)

    Slaughter, A.; Johnson, M.

    2017-12-01

    The Department of Energy (DOE) is currently investing millions of dollars annually into various modeling and simulation tools for all aspects of nuclear energy. An important part of this effort includes developing applications based on the open-source Multiphysics Object Oriented Simulation Environment (MOOSE; mooseframework.org) from Idaho National Laboratory (INL).Thanks to the efforts of the DOE and outside collaborators, MOOSE currently contains a large set of physics modules, including phase-field, level set, heat conduction, tensor mechanics, Navier-Stokes, fracture and crack propagation (via the extended finite-element method), flow in porous media, and others. The heat conduction, tensor mechanics, and phase-field modules, in particular, are well-suited for snow science problems. Pika--an open-source MOOSE-based application--is capable of simulating both 3D, coupled nonlinear continuum heat transfer and large-deformation mechanics applications (such as settlement) and phase-field based micro-structure applications. Additionally, these types of problems may be coupled tightly in a single solve or across length and time scales using a loosely coupled Picard iteration approach. In addition to the wide range of physics capabilities, MOOSE-based applications also inherit an extensible testing framework, graphical user interface, and documentation system; tools that allow MOOSE and other applications to adhere to nuclear software quality standards. The snow science community can learn from the nuclear industry and harness the existing effort to build simulation tools that are open, modular, and share a common framework. In particular, MOOSE-based multiphysics solvers are inherently parallel, dimension agnostic, adaptive in time and space, fully coupled, and capable of interacting with other applications. The snow science community should build on existing tools to enable collaboration between researchers and practitioners throughout the world, and advance the

  6. Open Source Tools for Numerical Simulation of Urban Greenhouse Gas Emissions

    Science.gov (United States)

    Nottrott, A.; Tan, S. M.; He, Y.

    2016-12-01

    There is a global movement toward urbanization. Approximately 7% of the global population lives in just 28 megacities, occupying less than 0.1% of the total land area used by human activity worldwide. These cities contribute a significant fraction of the global budget of anthropogenic primary pollutants and greenhouse gasses. The 27 largest cities consume 9.9%, 9.3%, 6.7% and 3.0% of global gasoline, electricity, energy and water use, respectively. This impact motivates novel approaches to quantify and mitigate the growing contribution of megacity emissions to global climate change. Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model methane (CH4) emissions from various components of the natural gas distribution system, to investigate the impact of urban meteorology on mobile CH4 measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in

  7. Source-to-sink cycling of aeolian sediment in the north polar region of Mars

    Science.gov (United States)

    Ewing, R. C.; Kocurek, G.

    2012-12-01

    Aeolian sand dunes are prominent features on the landscapes of Earth, Mars, Venus and Titan and sedimentary deposits interpreted as aeolian in origin are found in the rock records of Earth and Mars. The widespread occurrence of aeolian dunes on the surface of these worlds and within their deep-time depositional records suggests that aeolian systems are and likely have been a default depositional environment for the Solar System. Within an aeolian source-to-sink context, we hypothesize that planet-specific boundary conditions strongly impact production, transport, accumulation and preservation of aeolian sediment, whereas dunes and dune-field patterns remain largely similar. This hypothesis is explored within the north polar region of Mars, which hosts the most extensive aeolian dune fields and aeolian sedimentary deposits yet recognized on Mars and appears to be a region of dynamic source-to-sink cycling of aeolian sediments. The Planum Boreum Cavi Unit rests beneath north polar ice cap of Mars and is composed of several hundred meters of niveo-aeolian dune cross-stratification. The overall architecture of the unit consists of sets of preserved dune topography with an upward increase in the abundance of ice. Dune sets are defined by stabilized, polygonally fractured bounding surfaces, erosional bounding surfaces and typical internal lee foresets made of sediment and ice. The accumulation of the Cavi Unit is interpreted as occurring through freezing and serves as an example of a cold temperature boundary condition on aeolian sediment accumulation. Preservation of the Cavi Unit arises because of deposition of the overlying ice cap and contrasts with preservation of aeolian sediment on Earth, which is largely driven by eustasy and tectonics. The Cavi Unit is thought to be one source of sediment for the north polar Olympia Undae Dune Field. The region of Olympia Undae near the Cavi Unit shows a reticulate dune field pattern composed of two sets of nearly orthogonal

  8. Disruption simulation experiment using high-frequency rastering electron beam as the heat source

    International Nuclear Information System (INIS)

    Yamazaki, S.; Seki, M.

    1987-01-01

    The disruption is a serious event which possibly reduces the lifetime of plasm interactive components, so the effects of the resulting high heat flux on the wall materials must be clearly identified. The authors performed disruption simulation experiments to investigate melting, evaporation, and crack initiation behaviors using an electron beam facility as the heat source. The facility was improved with a high-frequency beam rastering system which provided spatially and temporally uniform heat flux on wider test surfaces. Along with the experiments, thermal and mechanical analyses were also performed. A two-dimensional disruption thermal analysis code (DREAM) was developed for the analyses

  9. Start-to-end simulation of the injector for a compact THz source

    OpenAIRE

    Li, J.; Pei, Y. J.; Shang, L.; Feng, G.; Hu, T.; Chen, Q.; Li, C.

    2013-01-01

    Terahertz radiation has broad application prospect due to its ability to penetrate deep into many organic materials without damage caused by ionizing radiations. A FEL-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, which is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Start-to-end simulation has been done with ASTRA code to verify the design and t...

  10. A New Estimate of North American Mountain Snow Accumulation From Regional Climate Model Simulations

    Science.gov (United States)

    Wrzesien, Melissa L.; Durand, Michael T.; Pavelsky, Tamlin M.; Kapnick, Sarah B.; Zhang, Yu; Guo, Junyi; Shum, C. K.

    2018-02-01

    Despite the importance of mountain snowpack to understanding the water and energy cycles in North America's montane regions, no reliable mountain snow climatology exists for the entire continent. We present a new estimate of mountain snow water equivalent (SWE) for North America from regional climate model simulations. Climatological peak SWE in North America mountains is 1,006 km3, 2.94 times larger than previous estimates from reanalyses. By combining this mountain SWE value with the best available global product in nonmountain areas, we estimate peak North America SWE of 1,684 km3, 55% greater than previous estimates. In our simulations, the date of maximum SWE varies widely by mountain range, from early March to mid-April. Though mountains comprise 24% of the continent's land area, we estimate that they contain 60% of North American SWE. This new estimate is a suitable benchmark for continental- and global-scale water and energy budget studies.

  11. Correction of head movements in positron emission tomography using point source tracking system: a simulation study.

    Science.gov (United States)

    Nazarparvar, Babak; Shamsaei, Mojtaba; Rajabi, Hossein

    2012-01-01

    The motion of the head during brain positron emission tomography (PET) acquisitions has been identified as a source of artifact in the reconstructed image. In this study, a method is described to develop an image-based motion correction technique for correcting the post-acquisition data without using external optical motion-tracking system such as POLARIS. In this technique, GATE has been used to simulate PET brain scan using point sources mounted around the head to accurately monitor the position of the head during the time frames. The measurement of head motion in each frame showed a transformation in the image frame matrix, resulting in a fully corrected data set. Using different kinds of phantoms and motions, the accuracy of the correction method is tested and its applicability to experimental studies is demonstrated as well.

  12. Preparation of tracing source layer in simulation test of nuclide migration

    International Nuclear Information System (INIS)

    Zhao Yingjie; Ni Shiwei; Li Weijuan; Yamamoto, T.; Tanaka, T.; Komiya, T.

    1993-01-01

    In cooperative research between CIRP and JAERI on safety assessment for shallow land disposal of low level radioactive waste, a laboratory simulation test of nuclide migration was carried out, in which the undisturbed loess soil column sampled from CIRP' s field test site was used as testing material, three nuclides, Sr-85, Cs-137 and Co-60 were used as tracers. Special experiment on tracing method was carried out, which included measuring pH value of quartz sand in HCl solution, determining the eligible water content of quartz sand as tracer carrier, measuring distribution uniformity of nuclides in the tracing quartz sand, determining elution rate of nuclides from the tracing quartz sand and detecting activity uniformity of tracing source layer. The experiment results showed that the tracing source layer, in which fine quartz sand was used as tracer carrier, satisfied expected requirement. (1 fig.)

  13. Seismic signal simulation and study of underground nuclear sources by moment inversion

    International Nuclear Information System (INIS)

    Crusem, R.

    1986-09-01

    Some problems of underground nuclear explosions are examined from the seismological point of view. In the first part a model is developed for mean seismic propagation through the lagoon of Mururoa atoll and for calculation of synthetic seismograms (in intermediate fields: 5 to 20 km) by summation of discrete wave numbers. In the second part this ground model is used with a linear inversion method of seismic moments for estimation of elastic source terms equivalent to the nuclear source. Only the isotrope part is investigated solution stability is increased by using spectral smoothing and a minimal phase hypothesis. Some examples of applications are presented: total energy estimation of a nuclear explosion, simulation of mechanical effects induced by an underground explosion [fr

  14. Design and simulation of an optimized e-linac based neutron source for BNCT research

    International Nuclear Information System (INIS)

    Durisi, E.; Alikaniotis, K.; Borla, O.; Bragato, F.; Costa, M.; Giannini, G.; Monti, V.; Visca, L.; Vivaldo, G.; Zanini, A.

    2015-01-01

    The paper is focused on the study of a novel photo-neutron source for BNCT preclinical research based on medical electron Linacs. Previous studies by the authors already demonstrated the possibility to obtain a mixed thermal and epithermal neutron flux of the order of 10"7 cm"−"2 s"−"1. This paper investigates possible Linac’s modifications and a new photo-converter design to rise the neutron flux above 5 10"7 cm"−"2 s"−"1, also reducing the gamma contamination. - Highlights: • Proposal of a mixed thermal and epithermal (named hyperthermal) neutron source based on medical high energy electron Linac. • Photo-neutron production via Giant Dipole Resonance on high Z materials. • MCNP4B-GN simulations to design the photo-converter geometry maximizing the hyperthermal neutron flux and minimizing the fast neutron and gamma contaminations. Hyperthermal neutron field suitable for BNCT preclinical research.

  15. LibCPIXE: A PIXE simulation open-source library for multilayered samples

    International Nuclear Information System (INIS)

    Pascual-Izarra, C.; Barradas, N.P.; Reis, M.A.

    2006-01-01

    Most particle induced X-ray emission (PIXE) data analysis codes are not focused on handling multilayered samples. We have developed an open-source library called 'LibCPIXE', for PIXE data analysis. It is written in standard C and implements functions for simulating X-ray yields of PIXE spectra taken from arbitrary samples, including multilayered targets. The library is designed to be fast, portable, modular and scalable, as well as to facilitate its incorporation into any existing program. In order to demonstrate the capabilities of the library, a program called CPIXE was developed and used to analyze various real samples involving both bulk and layered samples. Just as the library, the CPIXE source code is freely available under the General Public License. We demonstrate that it runs both under GNU/Linux systems as well as under MS Windows. There is in principle no limitation to port it to other platforms

  16. Recent trends and drivers of regional sources and sinks of carbon dioxide

    Science.gov (United States)

    Sitch, S.; Friedlingstein, P.; Gruber, N.; Jones, S. D.; Murray-Tortarolo, G.; Ahlström, A.; Doney, S. C.; Graven, H.; Heinze, C.; Huntingford, C.; Levis, S.; Levy, P. E.; Lomas, M.; Poulter, B.; Viovy, N.; Zaehle, S.; Zeng, N.; Arneth, A.; Bonan, G.; Bopp, L.; Canadell, J. G.; Chevallier, F.; Ciais, P.; Ellis, R.; Gloor, M.; Peylin, P.; Piao, S. L.; Le Quéré, C.; Smith, B.; Zhu, Z.; Myneni, R.

    2015-02-01

    The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990-2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990-2009, the DGVMs simulate a mean global land carbon sink of -2.4 ± 0.7 Pg C yr-1 with a small significant trend of -0.06 ± 0.03 Pg C yr-2 (increasing sink). Over the more limited period 1990-2004, the ocean models simulate a mean ocean sink of -2.2 ± 0.2 Pg C yr-1 with a trend in the net C uptake that is indistinguishable from zero (-0.01 ± 0.02 Pg C yr-2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of -0.02 ± 0.01 Pg C yr-2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr-2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr-2 - primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (-0.04 ± 0.01 Pg C yr-2), with almost no trend over the northern land region

  17. Attribution of aerosol radiative forcing over India during the winter monsoon to emissions from source categories and geographical regions

    Science.gov (United States)

    Verma, S.; Venkataraman, C.; Boucher, O.

    2011-08-01

    We examine the aerosol radiative effects due to aerosols emitted from different emission sectors (anthropogenic and natural) and originating from different geographical regions within and outside India during the northeast (NE) Indian winter monsoon (January-March). These studies are carried out through aerosol transport simulations in the general circulation (GCM) model of the Laboratoire de Météorologie Dynamique (LMD). The model estimates of aerosol single scattering albedo (SSA) show lower values (0.86-0.92) over the region north to 10°N comprising of the Indian subcontinent, Bay of Bengal, and parts of the Arabian Sea compared to the region south to 10°N where the estimated SSA values lie in the range 0.94-0.98. The model estimated SSA is consistent with the SSA values inferred through measurements on various platforms. Aerosols of anthropogenic origin reduce the incoming solar radiation at the surface by a factor of 10-20 times the reduction due to natural aerosols. At the top-of-atmosphere (TOA), aerosols from biofuel use cause positive forcing compared to the negative forcing from fossil fuel and natural sources in correspondence with the distribution of SSA which is estimated to be the lowest (0.7-0.78) from biofuel combustion emissions. Aerosols originating from India and Africa-west Asia lead to the reduction in surface radiation (-3 to -8 W m -2) by 40-60% of the total reduction in surface radiation due to all aerosols over the Indian subcontinent and adjoining ocean. Aerosols originating from India and Africa-west Asia also lead to positive radiative effects at TOA over the Arabian Sea, central India (CNI), with the highest positive radiative effects over the Bay of Bengal and cause either negative or positive effects over the Indo-Gangetic plain (IGP).

  18. Wastewater as a Heat Source for Individual Residence Heating: A Techno-economic Feasibility Study in the Brussels Capital Region

    Directory of Open Access Journals (Sweden)

    Jan Spriet

    2017-09-01

    Full Text Available A large part of the thermal energy in buildings is lost through the drain and ends up as warm wastewater in the sewer system. The installation of heat exchangers in the sewer system enables a rise of the source temperature of heat pumps, increasing their coefficient of performance. To investigate the potential of such a technique in the Brussels Capital Region, a test facility named MYRTES has been installed in the sewer network, the starting point of this facility being to have one heat recovery system per residence. To estimate the heat recovery rate, potentially available in the Brussels Capital Region, the data from this test facility have been used as inputs and validation for a predictive model, considering both the heat recovery and its financial and environmental implications. Simulations show a minimum heating power of the heat pump of 6.3 kW, at a hot water temperature of 45 °C. A maximum of 35% of the buildings in the Brussels Capital Region are eligible for the use of such a system. At current tariffs, the levelized cost of energy for these systems, is lower than for traditional air heat pumps, but is higher than for gas boiler systems. The total equivalent warming impact, however, is estimated to be around 49% lower than for gas boiler systems and around 13% lower than for air heat pumps. In conclusion, heating through these types of systems is more expensive than gas boiler systems, but with increased consumption the competitiveness of these systems improves.

  19. Regional simulation of Indian summer monsoon intraseasonal oscillations at gray-zone resolution

    Science.gov (United States)

    Chen, Xingchao; Pauluis, Olivier M.; Zhang, Fuqing

    2018-01-01

    Simulations of the Indian summer monsoon by the cloud-permitting Weather Research and Forecasting (WRF) model at gray-zone resolution are described in this study, with a particular emphasis on the model ability to capture the monsoon intraseasonal oscillations (MISOs). Five boreal summers are simulated from 2007 to 2011 using the ERA-Interim reanalysis as the lateral boundary forcing data. Our experimental setup relies on a horizontal grid spacing of 9 km to explicitly simulate deep convection without the use of cumulus parameterizations. When compared to simulations with coarser grid spacing (27 km) and using a cumulus scheme, the 9 km simulations reduce the biases in mean precipitation and produce more realistic low-frequency variability associated with MISOs. Results show that the model at the 9 km gray-zone resolution captures the salient features of the summer monsoon. The spatial distributions and temporal evolutions of monsoon rainfall in the WRF simulations verify qualitatively well against observations from the Tropical Rainfall Measurement Mission (TRMM), with regional maxima located over Western Ghats, central India, Himalaya foothills, and the west coast of Myanmar. The onset, breaks, and withdrawal of the summer monsoon in each year are also realistically captured by the model. The MISO-phase composites of monsoon rainfall, low-level wind, and precipitable water anomalies in the simulations also agree qualitatively with the observations. Both the simulations and observations show a northeastward propagation of the MISOs, with the intensification and weakening of the Somali Jet over the Arabian Sea during the active and break phases of the Indian summer monsoon.

  20. {sup 239+240}Pu in the Barents Sea Regions. Sources and radioecological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Iosjpe, Mikhail [Norwegian Radiation Protection Authority, P.O. Box 55, N-1332 Oesteraas (Norway)

    2014-07-01

    The radioecological assessment for {sup 239+240}Pu in the Barents sea regions was made using the compartment modelling approach. The following sources of radioactive contamination were under consideration: global fallout from atmospheric testing of nuclear weapons, transport of {sup 239+240}Pu from the Sellafield and La Hauge nuclear plants and underwater testing of nuclear weapons in Chernaya Bay, Novaya Zemlya. The box model developed at NRPA uses a modified approach for compartmental modeling, which takes into account the dispersion of radionuclides over time. The box structures for surface, mid-depth and deep water layers have been developed based on the description of polar, Atlantic and deep waters in the Arctic Ocean and the Northern Seas, as well as site-specific information for the boxes. The volume of the three water layers in each box has been calculated using detailed bathymetry together with Geographical Information Systems. The box model includes the processes of advection of radioactivity between compartments, sedimentation, diffusion of radioactivity through pore water in sediments, resuspension, mixing due to bioturbation, particle mixing and a burial process for radionuclides in deep sediment layers. Radioactive decay is calculated for all compartments. The contamination of biota is further calculated from the known radionuclide concentrations in filtered seawater in the different water regions. Doses to man are calculated on the basis of seafood consumptions, in accordance with available data for seafood catches and assumptions about human diet in the respective areas. Dose to biota are determined on the basis of calculated radionuclide concentrations in marine organisms, water and sediment, using dose conversion factors. Results of the calculations show that atmospheric deposition is the dominant source for the Barents Sea, except for the Chernaya Bay region. It is also demonstrated that the impact of the Sellafield nuclear facilities has

  1. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas.

    Science.gov (United States)

    Musgrove, MaryLynn; Opsahl, Stephen P.; Mahler, Barbara J.; Herrington, Chris; Sample, Thomas; Banta, John

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO3−) loading to surface and groundwater. We investigate variability and sources of NO3− in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO3− stable isotopes (δ15N and δ18O). These data were augmented by historical data collected from 1937 to 2007. NO3− concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO3− concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO3− concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO3−. These results highlight the vulnerability of karst aquifers to NO3− contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO3−than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously

  2. Impact of spectral nudging on the downscaling of tropical cyclones in regional climate simulations

    Science.gov (United States)

    Choi, Suk-Jin; Lee, Dong-Kyou

    2016-06-01

    This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model