WorldWideScience

Sample records for source pollution models

  1. Nitrogen component in nonpoint source pollution models

    Science.gov (United States)

    Pollutants entering a water body can be very destructive to the health of that system. Best Management Practices (BMPs) and/or conservation practices are used to reduce these pollutants, but understanding the most effective practices is very difficult. Watershed models are an effective tool to aid...

  2. Groundwater Pollution Source Identification using Linked ANN-Optimization Model

    Science.gov (United States)

    Ayaz, Md; Srivastava, Rajesh; Jain, Ashu

    2014-05-01

    Groundwater is the principal source of drinking water in several parts of the world. Contamination of groundwater has become a serious health and environmental problem today. Human activities including industrial and agricultural activities are generally responsible for this contamination. Identification of groundwater pollution source is a major step in groundwater pollution remediation. Complete knowledge of pollution source in terms of its source characteristics is essential to adopt an effective remediation strategy. Groundwater pollution source is said to be identified completely when the source characteristics - location, strength and release period - are known. Identification of unknown groundwater pollution source is an ill-posed inverse problem. It becomes more difficult for real field conditions, when the lag time between the first reading at observation well and the time at which the source becomes active is not known. We developed a linked ANN-Optimization model for complete identification of an unknown groundwater pollution source. The model comprises two parts- an optimization model and an ANN model. Decision variables of linked ANN-Optimization model contain source location and release period of pollution source. An objective function is formulated using the spatial and temporal data of observed and simulated concentrations, and then minimized to identify the pollution source parameters. In the formulation of the objective function, we require the lag time which is not known. An ANN model with one hidden layer is trained using Levenberg-Marquardt algorithm to find the lag time. Different combinations of source locations and release periods are used as inputs and lag time is obtained as the output. Performance of the proposed model is evaluated for two and three dimensional case with error-free and erroneous data. Erroneous data was generated by adding uniformly distributed random error (error level 0-10%) to the analytically computed concentration

  3. Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm

    Science.gov (United States)

    Zhang, Shou-ping; Xin, Xiao-kang

    2017-07-01

    Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.

  4. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    Science.gov (United States)

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  5. A model for managing sources of groundwater pollution

    Science.gov (United States)

    Gorelick, Steven M.

    1982-01-01

    The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.

  6. Polluted Runoff: Nonpoint Source Pollution

    Science.gov (United States)

    Nonpoint Source (NPS) pollution is caused by rainfall or snowmelt moving over and through the ground, it picks up and carries natural and human-made pollutants, depositing them into lakes, rivers, wetlands, coastal waters and ground waters.

  7. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County.

    Science.gov (United States)

    Wang, Long; Wei, Jiahua; Huang, Yuefei; Wang, Guangqian; Maqsood, Imran

    2011-07-01

    Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Revealing transboundary and local air pollutant sources affecting Metro Manila through receptor modeling studies

    International Nuclear Information System (INIS)

    Pabroa, Preciosa Corazon B.; Bautista VII, Angel T.; Santos, Flora L.; Racho, Joseph Michael D.

    2011-01-01

    Ambient fine particulate matter (PM 2 .5) levels at the Metro Manila air sampling stations of the Philippine Nuclear Research Research Institute were found to be above the WHO guideline value of 10 μg m 3 indicating, in general, very poor air quality in the area. The elemental components of the fine particulate matter were obtained using the energy-dispersive x-ray fluorescence spectrometry. Positive matrix factorization, a receptor modelling tool, was used to identify and apportion air pollution sources. Location of probable transboundary air pollutants were evaluated using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) while location of probable local air pollutant sources were determined using the conditional probability function (CPF). Air pollutant sources can either be natural or anthropogenic. This study has shown natural air pollutant sources such as volcanic eruptions from Bulusan volcano in 2006 and from Anatahan volcano in 2005 to have impacted on the region. Fine soils was shown to have originated from China's Mu US Desert some time in 2004. Smoke in the fine fraction in 2006 show indications of coming from forest fires in Sumatra and Borneo. Fine particulate Pb in Valenzuela was shown to be coming from the surrounding area. Many more significant air pollution impacts can be evaluated with the identification of probable air pollutant sources with the use of elemental fingerprints and locating these sources with the use of HYSPLIT and CPF. (author)

  9. Evaluation of the Agricultural Non-point Source Pollution in Chongqing Based on PSR Model

    Institute of Scientific and Technical Information of China (English)

    Hanwen; ZHANG; Xinli; MOU; Hui; XIE; Hong; LU; Xingyun; YAN

    2014-01-01

    Through a series of exploration based on PSR framework model,for the purpose of building a suitable Chongqing agricultural nonpoint source pollution evaluation index system model framework,combined with the presence of Chongqing specific agro-environmental issues,we build a agricultural non-point source pollution assessment index system,and then study the agricultural system pressure,agro-environmental status and human response in total 3 major categories,develope an agricultural non-point source pollution evaluation index consisting of 3 criteria indicators and 19 indicators. As can be seen from the analysis,pressures and responses tend to increase and decrease linearly,state and complex have large fluctuations,and their fluctuations are similar mainly due to the elimination of pressures and impact,increasing the impact for agricultural non-point source pollution.

  10. Advection-diffusion model for the simulation of air pollution distribution from a point source emission

    Science.gov (United States)

    Ulfah, S.; Awalludin, S. A.; Wahidin

    2018-01-01

    Advection-diffusion model is one of the mathematical models, which can be used to understand the distribution of air pollutant in the atmosphere. It uses the 2D advection-diffusion model with time-dependent to simulate air pollution distribution in order to find out whether the pollutants are more concentrated at ground level or near the source of emission under particular atmospheric conditions such as stable, unstable, and neutral conditions. Wind profile, eddy diffusivity, and temperature are considered in the model as parameters. The model is solved by using explicit finite difference method, which is then visualized by a computer program developed using Lazarus programming software. The results show that the atmospheric conditions alone influencing the level of concentration of pollutants is not conclusive as the parameters in the model have their own effect on each atmospheric condition.

  11. Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling.

    Science.gov (United States)

    Nazeer, Summya; Ali, Zeshan; Malik, Riffat Naseem

    2016-07-01

    The present study was designed to determine the spatiotemporal patterns in water quality of River Soan using multivariate statistics. A total of 26 sites were surveyed along River Soan and its associated tributaries during pre- and post-monsoon seasons in 2008. Hierarchical agglomerative cluster analysis (HACA) classified sampling sites into three groups according to their degree of pollution, which ranged from least to high degradation of water quality. Discriminant function analysis (DFA) revealed that alkalinity, orthophosphates, nitrates, ammonia, salinity, and Cd were variables that significantly discriminate among three groups identified by HACA. Temporal trends as identified through DFA revealed that COD, DO, pH, Cu, Cd, and Cr could be attributed for major seasonal variations in water quality. PCA/FA identified six factors as potential sources of pollution of River Soan. Absolute principal component scores using multiple regression method (APCS-MLR) further explained the percent contribution from each source. Heavy metals were largely added through industrial activities (28 %) and sewage waste (28 %), nutrients through agriculture runoff (35 %) and sewage waste (28 %), organic pollution through sewage waste (27 %) and urban runoff (17 %) and macroelements through urban runoff (39 %), and mineralization and sewage waste (30 %). The present study showed that anthropogenic activities are the major source of variations in River Soan. In order to address the water quality issues, implementation of effective waste management measures are needed.

  12. Source-Flux-Fate Modelling of Priority Pollutants in Stormwater Systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca

    quality management. The thesis provides a framework for the trustworthy application of models to estimate PP fluxes from their sources, and through stormwater drainage systems, and to the sink. This fills a knowledge gap regarding stormwater PP and it supplies urban water managers with modelling tools......The increasing focus on management of stormwater Priority Pollutants (PP) enhances the role of mathematical models as support for the assessment of stormwater quality control strategies. This thesis investigates and presents modelling approaches that are suitable to simulate PP fluxes across...... stormwater systems, supporting the development of pollution control strategies. This is obtained by analyzing four study areas: (i) catchment characterization, (ii) pollutant release and transport models, (iii) stormwater treatment models, and (iv) combination of the above into an integrated model. Given...

  13. Sources of pollution

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Sources of pollution. Domestic wastewater (Sewage). Organic matter; Nitrogen & phosphorus; Pathogens, viruses, …. Agricultural runoff. Nitrogen & phosphorus; Pesticides; Industrial effluents; Organics (oil &grease, pigments, phenols, organic matter ….) Heavy ...

  14. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County

    International Nuclear Information System (INIS)

    Wang Long; Wei Jiahua; Huang Yuefei; Wang Guangqian; Maqsood, Imran

    2011-01-01

    Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. - Highlights: → An improved urban NPS model was developed. → It performs well in areas where storm events have great temporal variation. → Threshold of total runoff volume for ignoring residual pollutant was determined. - An improved urban NPS model was developed. Threshold of total runoff volume for ignoring residual pollutant was determined.

  15. Considering a point-source in a regional air pollution model; Prise en compte d`une source ponctuelle dans un modele regional de pollution atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Lipphardt, M.

    1997-06-19

    This thesis deals with the development and validation of a point-source plume model, with the aim to refine the representation of intensive point-source emissions in regional-scale air quality models. The plume is modelled at four levels of increasing complexity, from a modified Gaussian plume model to the Freiberg and Lusis ring model. Plume elevation is determined by Netterville`s plume rise model, using turbulence and atmospheric stability parameters. A model for the effect of a fine-scale turbulence on the mean concentrations in the plume is developed and integrated in the ring model. A comparison between results with and without considering micro-mixing shows the importance of this effect in a chemically reactive plume. The plume model is integrated into the Eulerian transport/chemistry model AIRQUAL, using an interface between Airqual and the sub-model, and interactions between the two scales are described. A simulation of an air pollution episode over Paris is carried out, showing that the utilization of such a sub-scale model improves the accuracy of the air quality model

  16. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  17. Sources of contamination and modelled pollutant trajectories in a Mediterranean harbour (Tarragona, Spain).

    Science.gov (United States)

    Mestres, M; Sierra, J P; Mösso, C; Sánchez-Arcilla, A

    2010-06-01

    The proximity of commercial harbours to residential areas and the growing environmental awareness of society have led most port authorities to include environmental management within their administration plan. Regarding water quality, it is necessary to have the capacity and tools to deal with contamination episodes that may damage marine ecosystems and human health, but also affect the normal functioning of harbours. This paper presents a description of the main pollutant sources in Tarragona Harbour (Spain), and a numerical analysis of several pollution episodes based on the Port Authority's actual environmental concerns. The results show that pollution generated inside the harbour tends to remain confined within the port, whereas it is very likely that oil spills from a nearby monobuoy may affect the neighbouring beaches. The present combination of numerical models proves itself a useful tool to assess the environmental risk associated to harbour activities and potential pollution spills.

  18. Point Pollution Sources Dimensioning

    Directory of Open Access Journals (Sweden)

    Georgeta CUCULEANU

    2011-06-01

    Full Text Available In this paper a method for determining the main physical characteristics of the point pollution sources is presented. It can be used to find the main physical characteristics of them. The main physical characteristics of these sources are top inside source diameter and physical height. The top inside source diameter is calculated from gas flow-rate. For reckoning the physical height of the source one takes into account the relation given by the proportionality factor, defined as ratio between the plume rise and physical height of the source. The plume rise depends on the gas exit velocity and gas temperature. That relation is necessary for diminishing the environmental pollution when the production capacity of the plant varies, in comparison with the nominal one.

  19. Atmospheric dispersion and inverse modelling for the reconstruction of accidental sources of pollutants

    International Nuclear Information System (INIS)

    Winiarek, Victor

    2014-01-01

    Uncontrolled releases of pollutant in the atmosphere may be the consequence of various situations: accidents, for instance leaks or explosions in an industrial plant, or terrorist attacks such as biological bombs, especially in urban areas. In the event of such situations, authorities' objectives are various: predict the contaminated zones to apply first countermeasures such as evacuation of concerned population; determine the source location; assess the long-term polluted areas, for instance by deposition of persistent pollutants in the soil. To achieve these objectives, numerical models can be used to model the atmospheric dispersion of pollutants. We will first present the different processes that govern the transport of pollutants in the atmosphere, then the different numerical models that are commonly used in this context. The choice between these models mainly depends of the scale and the details one seeks to take into account. We will then present several inverse modeling methods to estimate the emission as well as statistical methods to estimate prior errors, to which the inversion is very sensitive. Several case studies are presented, using synthetic data as well as real data such as the estimation of source terms from the Fukushima accident in March 2011. From our results, we estimate the Cesium-137 emission to be between 12 and 19 PBq with a standard deviation between 15 and 65% and the Iodine-131 emission to be between 190 and 380 PBq with a standard deviation between 5 and 10%. Concerning the localization of an unknown source of pollutant, two strategies can be considered. On one hand parametric methods use a limited number of parameters to characterize the source term to be reconstructed. To do so, strong assumptions are made on the nature of the source. The inverse problem is hence to estimate these parameters. On the other hand nonparametric methods attempt to reconstruct a full emission field. Several parametric and nonparametric methods are

  20. A GIS-based atmospheric dispersion model for pollutants emitted by complex source areas.

    Science.gov (United States)

    Teggi, Sergio; Costanzini, Sofia; Ghermandi, Grazia; Malagoli, Carlotta; Vinceti, Marco

    2018-01-01

    Gaussian dispersion models are widely used to simulate the concentrations and deposition fluxes of pollutants emitted by source areas. Very often, the calculation time limits the number of sources and receptors and the geometry of the sources must be simple and without holes. This paper presents CAREA, a new GIS-based Gaussian model for complex source areas. CAREA was coded in the Python language, and is largely based on a simplified formulation of the very popular and recognized AERMOD model. The model allows users to define in a GIS environment thousands of gridded or scattered receptors and thousands of complex sources with hundreds of vertices and holes. CAREA computes ground level, or near ground level, concentrations and dry deposition fluxes of pollutants. The input/output and the runs of the model can be completely managed in GIS environment (e.g. inside a GIS project). The paper presents the CAREA formulation and its applications to very complex test cases. The tests shows that the processing time are satisfactory and that the definition of sources and receptors and the output retrieval are quite easy in a GIS environment. CAREA and AERMOD are compared using simple and reproducible test cases. The comparison shows that CAREA satisfactorily reproduces AERMOD simulations and is considerably faster than AERMOD. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Computer Simulation for Dispersion of Air Pollution Released from a Line Source According to Gaussian Model

    International Nuclear Information System (INIS)

    Emad, A.A.; El Shazly, S.M.; Kassem, Kh.O.

    2010-01-01

    A line source model, developed in laboratory of environmental physics, faculty of science at Qena, Egypt is proposed to describe the downwind dispersion of pollutants near roadways, at different cities in Egypt. The model is based on the Gaussian plume methodology and is used to predict air pollutants' concentrations near roadways. In this direction, simple software has been presented in this paper, developed by authors, adopted completely Graphical User Interface (GUI) technique for operating in various windows-based microcomputers. The software interface and code have been designed by Microsoft Visual basic 6.0 based on the Gaussian diffusion equation. This software is developed to predict concentrations of gaseous pollutants (eg. CO, SO 2 , NO 2 and particulates) at a user specified receptor grid

  2. Economic-environmental modeling of point source pollution in Jefferson County, Alabama, USA.

    Science.gov (United States)

    Kebede, Ellene; Schreiner, Dean F; Huluka, Gobena

    2002-05-01

    This paper uses an integrated economic-environmental model to assess the point source pollution from major industries in Jefferson County, Northern Alabama. Industrial expansion generates employment, income, and tax revenue for the public sector; however, it is also often associated with the discharge of chemical pollutants. Jefferson County is one of the largest industrial counties in Alabama that experienced smog warnings and ambient ozone concentration, 1996-1999. Past studies of chemical discharge from industries have used models to assess the pollution impact of individual plants. This study, however, uses an extended Input-Output (I-O) economic model with pollution emission coefficients to assess direct and indirect pollutant emission for several major industries in Jefferson County. The major findings of the study are: (a) the principal emission by the selected industries are volatile organic compounds (VOC) and these contribute to the ambient ozone concentration; (b) the direct and indirect emissions are significantly higher than the direct emission by some industries, indicating that an isolated analysis will underestimate the emission by an industry; (c) while low emission coefficient industries may suggest industry choice they may also emit the most hazardous chemicals. This study is limited by the assumptions made, and the data availability, however it provides a useful analytical tool for direct and cumulative emission estimation and generates insights on the complexity in choice of industries.

  3. Receptor model-based source apportionment of particulate pollution in Hyderabad, India.

    Science.gov (United States)

    Guttikunda, Sarath K; Kopakka, Ramani V; Dasari, Prasad; Gertler, Alan W

    2013-07-01

    Air quality in Hyderabad, India, often exceeds the national ambient air quality standards, especially for particulate matter (PM), which, in 2010, averaged 82.2 ± 24.6, 96.2 ± 12.1, and 64.3 ± 21.2 μg/m(3) of PM10, at commercial, industrial, and residential monitoring stations, respectively, exceeding the national ambient standard of 60 μg/m(3). In 2005, following an ordinance passed by the Supreme Court of India, a source apportionment study was conducted to quantify source contributions to PM pollution in Hyderabad, using the chemical mass balance (version 8.2) receptor model for 180 ambient samples collected at three stations for PM10 and PM2.5 size fractions for three seasons. The receptor modeling results indicated that the PM10 pollution is dominated by the direct vehicular exhaust and road dust (more than 60%). PM2.5 with higher propensity to enter the human respiratory tracks, has mixed sources of vehicle exhaust, industrial coal combustion, garbage burning, and secondary PM. In order to improve the air quality in the city, these findings demonstrate the need to control emissions from all known sources and particularly focus on the low-hanging fruits like road dust and waste burning, while the technological and institutional advancements in the transport and industrial sectors are bound to enhance efficiencies. Andhra Pradesh Pollution Control Board utilized these results to prepare an air pollution control action plan for the city.

  4. Source-receptor metrology and modeling of trace amounts of atmospheric pollutants

    International Nuclear Information System (INIS)

    Coddeville, P.

    2005-12-01

    This work deals with acid pollution and with its long distance transport using the metrology of trace amounts of pollutants in rural environment and the identification of the emission sources at the origin of acid atmospheric fallouts. Several French and foreign precipitation collectors have been evaluated and tested on the field. The measurement efficiency and limitations of four sampling systems for gas and particulate sulfur, ammonia and nitrous compounds have been evaluated. The limits of methods and the measurement uncertainties have been determined and calculated. A second aspect concerns the development of oriented receptor-type statistical models with the aim of improving the research of emission sources in smaller size areas defined by the cells of a geographical mesh. The construction of these models combines the pollution data of the sites with the informations about the trajectories of air masses. Results are given as probability or concentration fields revealing the areas potentially at the origin of pollutant emissions. Areas with strong pollutant emissions have been detected at the Polish, Czech and German borders and have been identified as responsible of pollution events encountered in Morvan region. Quantitative source-receptor relations have been also established. The different atmospheric transport profiles, their related frequency and concentration have been also evaluated using a dynamical clouds classification of air mass retro-trajectories. Finally, the first medium-term exploitation results (14 years) of precipitation data from measurement stations allow to perfectly identify the different meteorological regimes of the French territory by establishing a relation with the chemical composition of rainfalls. A west-east oriented increase of rainfall acidity is observed over the French territory. The pluviometry of the north-east area being among the highest of France, it generates more important deposits of acidifying compounds. The analysis

  5. Non point source pollution modelling in the watershed managed by Integrated Conctructed Wetlands: A GIS approach.

    OpenAIRE

    Vyavahare, Nilesh

    2008-01-01

    The non-point source pollution has been recognised as main cause of eutrophication in Ireland (EPA Ireland, 2001). Integrated Constructed Wetland (ICW) is a management practice adopted in Annestown stream watershed, located in the south county of Waterford in Ireland, used to cleanse farmyard runoff. Present study forms the annual pollution budget for the Annestown stream watershed. The amount of pollution from non-point sources flowing into the stream was simulated by using GIS techniques; u...

  6. Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model

    International Nuclear Information System (INIS)

    Wang, Long; Wang, Shuxiao; Zhang, Lei; Wang, Yuxuan; Zhang, Yanxu; Nielsen, Chris; McElroy, Michael B.; Hao, Jiming

    2014-01-01

    China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35–50% of THg concentration and 50–70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China. - Highlights: • China's anthropogenic mercury emission was 643.1 t in 2007. • GEOS-Chem model well reproduces the background Hg concentrations. • Anthropogenic emissions contribute 35–50% of Hg concentrations in polluted regions. • The priorities for mercury control in polluted regions are identified. - Anthropogenic Hg emissions are updated and their impacts on atmospheric mercury concentrations and depositions are quantified for China

  7. United States‐Mexican border watershed assessment: Modeling nonpoint source pollution in Ambos Nogales

    Science.gov (United States)

    Norman, Laura M.

    2007-01-01

    Ecological considerations need to be interwoven with economic policy and planning along the United States‐Mexican border. Non‐point source pollution can have significant implications for the availability of potable water and the continued health of borderland ecosystems in arid lands. However, environmental assessments in this region present a host of unique issues and problems. A common obstacle to the solution of these problems is the integration of data with different resolutions, naming conventions, and quality to create a consistent database across the binational study area. This report presents a simple modeling approach to predict nonpoint source pollution that can be used for border watersheds. The modeling approach links a hillslopescale erosion‐prediction model and a spatially derived sediment‐delivery model within a geographic information system to estimate erosion, sediment yield, and sediment deposition across the Ambos Nogales watershed in Sonora, Mexico, and Arizona. This paper discusses the procedures used for creating a watershed database to apply the models and presents an example of the modeling approach applied to a conservation‐planning problem.

  8. Tracking sensitive source areas of different weather pollution types using GRAPES-CUACE adjoint model

    Science.gov (United States)

    Wang, Chao; An, Xingqin; Zhai, Shixian; Hou, Qing; Sun, Zhaobin

    2018-02-01

    In this study, the sustained pollution processes were selected during which daily PM2.5 concentration exceeded 75 μg/m3 for three days continuously based on the hourly data of Beijing observation sites from July 2012 to December 2015. Using the China Meteorological Administration (CMA) MICAPS meteorological processing system, synoptic situation during PM2.5 pollution processes was classified into five weather types: low pressure and weak high pressure alternating control, weak high pressure, low pressure control, high rear, and uniform pressure field. Then, we chose the representative pollution cases corresponding to each type, adopted the GRAPES-CUACE adjoint model tracking the sensitive source areas of the five types, and analyzed the critical discharge periods of Beijing and neighboring provinces as well as their contribution to the PM2.5 peak concentration in Beijing. The results showed that the local source plays the main theme in the 30 h before the objective time, and prior to 72 h before the objective time contribution of local sources for the five pollution types are 37.5%, 25.0%, 39.4%, 31.2%, and 42.4%, respectively; the Hebei source contributes constantly in the 57 h ahead of the objective time with the contribution proportion ranging from 37% to 64%; the contribution period and rate of Tianjin and Shanxi sources are shorter and smaller. Based on the adjoint sensitivity analysis, we further discussed the effect of emission reduction control measures in different types, finding that the effect of local source reduction in the first 20 h of the objective time is better, and if the local source is reduced 50% within 72 h before the objective time, the decline rates of PM2.5 in the five types are 11.6%, 9.4%, 13.8%, 9.9% and 15.2% respectively. And the reduction effect of the neighboring sources is better within the 3-57 h before the objective time.

  9. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale

    International Nuclear Information System (INIS)

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-01-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. - Highlights: • Ensemble models including stochastic gradient boosting and random forest are used. • The models were verified by cross-validation and SGB performed better than RF. • Heavy metal pollution sources on a local scale are identified and apportioned. • Models illustrate good suitability in assessing sources in local-scale agricultural soils. • Anthropogenic sources contributed most to soil Pb and Cd pollution in our case. - Multi-source and multi-phase pollution by heavy metals in agricultural soils on a local scale were identified and apportioned.

  10. A modified receptor model for source apportionment of heavy metal pollution in soil.

    Science.gov (United States)

    Huang, Ying; Deng, Meihua; Wu, Shaofu; Japenga, Jan; Li, Tingqiang; Yang, Xiaoe; He, Zhenli

    2018-07-15

    Source apportionment is a crucial step toward reduction of heavy metal pollution in soil. Existing methods are generally based on receptor models. However, overestimation or underestimation occurs when they are applied to heavy metal source apportionment in soil. Therefore, a modified model (PCA-MLRD) was developed, which is based on principal component analysis (PCA) and multiple linear regression with distance (MLRD). This model was applied to a case study conducted in a peri-urban area in southeast China where soils were contaminated by arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). Compared with existing models, PCA-MLRD is able to identify specific sources and quantify the extent of influence for each emission. The zinc (Zn)-Pb mine was identified as the most important anthropogenic emission, which affected approximately half area for Pb and As accumulation, and approximately one third for Cd. Overall, the influence extent of the anthropogenic emissions decreased in the order of mine (3 km) > dyeing mill (2 km) ≈ industrial hub (2 km) > fluorescent factory (1.5 km) > road (0.5 km). Although algorithm still needs to improved, the PCA-MLRD model has the potential to become a useful tool for heavy metal source apportionment in soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Modelling nonpoint source pollution of MUDA river basin using GIS (Geographic Information System)

    International Nuclear Information System (INIS)

    Nyon Yong Chik; Taher Buyong

    2000-01-01

    The management of our rivers is under increasing pressure to conserve and sustain as it remains the focus of human civilization and subjected to increasing demand from man and its activities. Integrated river basin management represents comprehensive form of terrestrial water resources management while GIS is a promising tool to be used in the management strategy. In efforts to display the true capabilities of GIS in analysing nonpoint source pollution (NPS), an assessment of NPS was carried out at MUDA river basin using Arc View 3.0 Spatial Analyst. Expected Mean Concentration (EMC) which is associated with land use was used to predict the amount of pollutants constituents. A runoff grid was then processed to model the flow domain. Finally, the modelling of the pollutant loads downstreams towards the basin outlet is achieved by flow direction and accumulation analysis of the product of EMC and runoff grid. A user interface was programmed to display each application data theme via a pop-up window. In addition, users will be able to enter EMG values for the corresponding land use through an application dialog developed in Visual Basic. (Author)

  12. Simulation of agricultural non-point source pollution in Xichuan by using SWAT model

    Science.gov (United States)

    Xing, Linan; Zuo, Jiane; Liu, Fenglin; Zhang, Xiaohui; Cao, Qiguang

    2018-02-01

    This paper evaluated the applicability of using SWAT to access agricultural non-point source pollution in Xichuan area. In order to build the model, DEM, soil sort and land use map, climate monitoring data were collected as basic database. The SWAT model was calibrated and validated for the SWAT was carried out using streamflow, suspended solids, total phosphorus and total nitrogen records from 2009 to 2011. Errors, coefficient of determination and Nash-Sutcliffe coefficient were considered to evaluate the applicability. The coefficient of determination were 0.96, 0.66, 0.55 and 0.66 for streamflow, SS, TN, and TP, respectively. Nash-Sutcliffe coefficient were 0.93, 0.5, 0.52 and 0.63, respectively. The results all meet the requirements. It suggested that the SWAT model can simulate the study area.

  13. Seasonal Characteristics of Widespread Ozone Pollution in China and India: Current Model Capabilities and Source Attributions

    Science.gov (United States)

    Gao, M.; Song, S.; Beig, G.; Zhang, H.; Hu, J.; Ying, Q.; McElroy, M. B.

    2017-12-01

    Fast urbanization and industrialization in China and India have led to severe ozone pollution, threatening public health in these densely populated countries. We show the spatial and seasonal characteristics of ozone concentrations using nation-wide observations for these two countries in 2013. We used the Weather Research and Forecasting model coupled to chemistry (WRF-Chem) to conduct one-year simulations and to evaluate how current models capture the important photochemical processes using the exhaustive available datasets in China and India, including surface measurements, ozonesonde data and satellite retrievals. We also employed the factor separation approach to distinguish the contributions of different sectors to ozone during different seasons. The back trajectory model FLEXPART was applied to investigate the role of transport in highly polluted regions (e.g., North China Plain, Yangtze River delta, and Pearl River Delta) during different seasons. Preliminary results indicate that the WRF-Chem model provides a satisfactory representation of the temporal and spatial variations of ozone for both China and India. The factor separation approach offers valuable insights into relevant sources of ozone for both countries providing valuable guidance for policy options designed to mitigate the related problem.

  14. A reactive transport model for mercury fate in soil--application to different anthropogenic pollution sources.

    Science.gov (United States)

    Leterme, Bertrand; Blanc, Philippe; Jacques, Diederik

    2014-11-01

    Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg(2+) to Hg(0) was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg(2+) with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg(2+) sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of

  15. A novel modelling framework to prioritize estimation of non-point source pollution parameters for quantifying pollutant origin and discharge in urban catchments.

    Science.gov (United States)

    Fraga, I; Charters, F J; O'Sullivan, A D; Cochrane, T A

    2016-02-01

    Stormwater runoff in urban catchments contains heavy metals (zinc, copper, lead) and suspended solids (TSS) which can substantially degrade urban waterways. To identify these pollutant sources and quantify their loads the MEDUSA (Modelled Estimates of Discharges for Urban Stormwater Assessments) modelling framework was developed. The model quantifies pollutant build-up and wash-off from individual impervious roof, road and car park surfaces for individual rain events, incorporating differences in pollutant dynamics between surface types and rainfall characteristics. This requires delineating all impervious surfaces and their material types, the drainage network, rainfall characteristics and coefficients for the pollutant dynamics equations. An example application of the model to a small urban catchment demonstrates how the model can be used to identify the magnitude of pollutant loads, their spatial origin and the response of the catchment to changes in specific rainfall characteristics. A sensitivity analysis then identifies the key parameters influencing each pollutant load within the stormwater given the catchment characteristics, which allows development of a targeted calibration process that will enhance the certainty of the model outputs, while minimizing the data collection required for effective calibration. A detailed explanation of the modelling framework and pre-calibration sensitivity analysis is presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale.

    Science.gov (United States)

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-11-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Arsenic pollution sources.

    Science.gov (United States)

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  18. Estimation of contribution ratios of pollutant sources to a specific section based on an enhanced water quality model.

    Science.gov (United States)

    Cao, Bibo; Li, Chuan; Liu, Yan; Zhao, Yue; Sha, Jian; Wang, Yuqiu

    2015-05-01

    Because water quality monitoring sections or sites could reflect the water quality status of rivers, surface water quality management based on water quality monitoring sections or sites would be effective. For the purpose of improving water quality of rivers, quantifying the contribution ratios of pollutant resources to a specific section is necessary. Because physical and chemical processes of nutrient pollutants are complex in water bodies, it is difficult to quantitatively compute the contribution ratios. However, water quality models have proved to be effective tools to estimate surface water quality. In this project, an enhanced QUAL2Kw model with an added module was applied to the Xin'anjiang Watershed, to obtain water quality information along the river and to assess the contribution ratios of each pollutant source to a certain section (the Jiekou state-controlled section). Model validation indicated that the results were reliable. Then, contribution ratios were analyzed through the added module. Results show that among the pollutant sources, the Lianjiang tributary contributes the largest part of total nitrogen (50.43%), total phosphorus (45.60%), ammonia nitrogen (32.90%), nitrate (nitrite + nitrate) nitrogen (47.73%), and organic nitrogen (37.87%). Furthermore, contribution ratios in different reaches varied along the river. Compared with pollutant loads ratios of different sources in the watershed, an analysis of contribution ratios of pollutant sources for each specific section, which takes the localized chemical and physical processes into consideration, was more suitable for local-regional water quality management. In summary, this method of analyzing the contribution ratios of pollutant sources to a specific section based on the QUAL2Kw model was found to support the improvement of the local environment.

  19. Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model.

    Science.gov (United States)

    Wang, Long; Wang, Shuxiao; Zhang, Lei; Wang, Yuxuan; Zhang, Yanxu; Nielsen, Chris; McElroy, Michael B; Hao, Jiming

    2014-07-01

    China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35-50% of THg concentration and 50-70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Modeling non-point source pollutants in the vadose zone: Back to the basics

    Science.gov (United States)

    Corwin, Dennis L.; Letey, John, Jr.; Carrillo, Marcia L. K.

    More than ever before in the history of scientific investigation, modeling is viewed as a fundamental component of the scientific method because of the relatively recent development of the computer. No longer must the scientific investigator be confined to artificially isolated studies of individual processes that can lead to oversimplified and sometimes erroneous conceptions of larger phenomena. Computer models now enable scientists to attack problems related to open systems such as climatic change, and the assessment of environmental impacts, where the whole of the interactive processes are greater than the sum of their isolated components. Environmental assessment involves the determination of change of some constituent over time. This change can be measured in real time or predicted with a model. The advantage of prediction, like preventative medicine, is that it can be used to alter the occurrence of potentially detrimental conditions before they are manifest. The much greater efficiency of preventative, rather than remedial, efforts strongly justifies the need for an ability to accurately model environmental contaminants such as non-point source (NPS) pollutants. However, the environmental modeling advances that have accompanied computer technological development are a mixed blessing. Where once we had a plethora of discordant data without a holistic theory, now the pendulum has swung so that we suffer from a growing stockpile of models of which a significant number have never been confirmed or even attempts made to confirm them. Modeling has become an end in itself rather than a means because of limited research funding, the high cost of field studies, limitations in time and patience, difficulty in cooperative research and pressure to publish papers as quickly as possible. Modeling and experimentation should be ongoing processes that reciprocally enhance one another with sound, comprehensive experiments serving as the building blocks of models and models

  1. An improved export coefficient model to estimate non-point source phosphorus pollution risks under complex precipitation and terrain conditions.

    Science.gov (United States)

    Cheng, Xian; Chen, Liding; Sun, Ranhao; Jing, Yongcai

    2018-05-15

    To control non-point source (NPS) pollution, it is important to estimate NPS pollution exports and identify sources of pollution. Precipitation and terrain have large impacts on the export and transport of NPS pollutants. We established an improved export coefficient model (IECM) to estimate the amount of agricultural and rural NPS total phosphorus (TP) exported from the Luanhe River Basin (LRB) in northern China. The TP concentrations of rivers from 35 selected catchments in the LRB were used to test the model's explanation capacity and accuracy. The simulation results showed that, in 2013, the average TP export was 57.20 t at the catchment scale. The mean TP export intensity in the LRB was 289.40 kg/km 2 , which was much higher than those of other basins in China. In the LRB topographic regions, the TP export intensity was the highest in the south Yanshan Mountains and was followed by the plain area, the north Yanshan Mountains, and the Bashang Plateau. Among the three pollution categories, the contribution ratios to TP export were, from high to low, the rural population (59.44%), livestock husbandry (22.24%), and land-use types (18.32%). Among all ten pollution sources, the contribution ratios from the rural population (59.44%), pigs (14.40%), and arable land (10.52%) ranked as the top three sources. This study provides information that decision makers and planners can use to develop sustainable measures for the prevention and control of NPS pollution in semi-arid regions.

  2. Identification of petroleum pollution sources

    International Nuclear Information System (INIS)

    Begak, O.Yu.; Syroezhko, A.M.

    2001-01-01

    A possibility of preliminary identification of petroleum pollution sources was investigated on specimens of the Khanty-Mansi autonomous district six deposits and specimens of soil and water polluted by these petroleums. Investigations were conducted using IR Fourier spectroscopy and gamma spectrometry, as well as methods of chromato-mass spectrometry and capillary gas liquid chromatography. Every of studied samples of petroleum from different deposits have an individual radiation impression. Insignificant total content of radionuclides in samples is specific to the Khanty-Mansi petroleum region. Gamma spectrometry admits to identify potential source of petroleum pollution using radionuclides of uranium and thorium series [ru

  3. Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons

    Energy Technology Data Exchange (ETDEWEB)

    Meroney, Robert N. [Fluid Mechanics and Wind Engineering Program, Civil Engineering Department, Colorado State University Fort Collins, CO (United States); Pavageau, Michel; Rafailidis, Stilianos; Schatzmann, Michael [Meteorologisches Institut, Universitaet Hamburg, Hamburg (Germany)

    1996-08-01

    The University of Hamburg initiated a wind tunnel study of car exhaust dispersion from street canyons in an urban environment to investigate how pollution dispersion is affected by street geometry. Particular emphasis at the beginning of this work was put on the design of a line source to represent traffic exhaust. Pollution dispersion was studied in two dimensions (i.e., infinite-length streets were assumed). The case of an isolated street canyon in open country was examined first. The same street canyon geometry was subsequently studied in an urban environment, i.e., with additional canyons of similar geometry upstream and downstream of the test street. The dynamic and dispersion characteristics of the flow in the two cases were quite different. In the canyon amidst open country we observed better canyon ventilation than in the urban roughness case

  4. Assessing the effects of rural livelihood transition on non-point source pollution: a coupled ABM-IECM model.

    Science.gov (United States)

    Yuan, Chengcheng; Liu, Liming; Ye, Jinwei; Ren, Guoping; Zhuo, Dong; Qi, Xiaoxing

    2017-05-01

    Water pollution caused by anthropogenic activities and driven by changes in rural livelihood strategies in an agricultural system has received increasing attention in recent decades. To simulate the effects of rural household livelihood transition on non-point source (NPS) pollution, a model combining an agent-based model (ABM) and an improved export coefficient model (IECM) was developed. The ABM was adopted to simulate the dynamic process of household livelihood transition, and the IECM was employed to estimate the effects of household livelihood transition on NPS pollution. The coupled model was tested in a small catchment in the Dongting Lake region, China. The simulated results reveal that the transition of household livelihood strategies occurred with the changes in the prices of rice, pig, and labor. Thus, the cropping system, land-use intensity, resident population, and number of pigs changed in the small catchment from 2000 to 2014. As a result of these changes, the total nitrogen load discharged into the river initially increased from 6841.0 kg in 2000 to 8446.3 kg in 2004 and then decreased to 6063.9 kg in 2014. Results also suggest that rural living, livestock, paddy field, and precipitation alternately became the main causes of NPS pollution in the small catchment, and the midstream region of the small catchment was the primary area for NPS pollution from 2000 to 2014. Despite some limitations, the coupled model provides an innovative way to simulate the effects of rural household livelihood transition on NPS pollution with the change of socioeconomic factors, and thereby identify the key factors influencing water pollution to provide valuable suggestions on how agricultural environmental risks can be reduced through the regulation of the behaviors of farming households in the future.

  5. Escherichia coli pollution in a Baltic Sea lagoon: a model-based source and spatial risk assessment.

    Science.gov (United States)

    Schippmann, Bianca; Schernewski, Gerald; Gräwe, Ulf

    2013-07-01

    Tourism around the Oder (Szczecin) Lagoon, at the southern Baltic coast, has a long tradition, is an important source of income and shall be further developed. Insufficient bathing water quality and frequent beach closings, especially in the Oder river mouth, hamper tourism development. Monitoring data gives only an incomplete picture of Escherichia coli (E. coli) bacteria sources, spatial transport patterns, risks and does neither support an efficient bathing water quality management nor decision making. We apply a 3D ocean model and a Lagrangian particle tracking model to analyse pollution events and to obtain spatial E. coli pollution maps based on scenario simulations. Model results suggests that insufficient sewage treatment in the city of Szczecin is the major source of faecal pollution, even for beaches 20km downstream. E. coli mortality rate and emission intensity are key parameters for concentration levels downstream. Wind and river discharge play a modifying role. Prevailing southwestern wind conditions cause E. coli transport along the eastern coast and favour high concentration levels at the beaches. Our simulations indicate that beach closings in 2006 would not have been necessary according to the new EU-Bathing Water Quality Directive (2006/7/EC). The implementation of the new directive will, very likely, reduce the number of beach closings, but not the risk for summer tourists. Model results suggest, that a full sewage treatment in Szczecin would allow the establishment of new beaches closer to the city (north of Dabie lake). Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Multi-model Estimates of Intercontinental Source-Receptor Relationships for Ozone Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Fiore, A M; Dentener, F J; Wild, O; Cuvelier, C; Schultz, M G; Hess, P; Textor, C; Schulz, M; Doherty, R; Horowitz, L W; MacKenzie, I A; Sanderson, M G; Shindell, D T; Stevenson, D S; Szopa, S; Van Dingenen, R; Zeng, G; Atherton, C; Bergmann, D; Bey, I; Carmichael, G; Collins, W J; Duncan, B N; Faluvegi, G; Folberth, G; Gauss, M; Gong, S; Hauglustaine, D; Holloway, T; Isaksen, I A; Jacob, D J; Jonson, J E; Kaminski, J W; Keating, T J; Lupu, A; Marmer, E; Montanaro, V; Park, R; Pitari, G; Pringle, K J; Pyle, J A; Schroeder, S; Vivanco, M G; Wind, P; Wojcik, G; Wu, S; Zuber, A

    2008-10-16

    Understanding the surface O{sub 3} response over a 'receptor' region to emission changes over a foreign 'source' region is key to evaluating the potential gains from an international approach to abate ozone (O{sub 3}) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O{sub 3} response over East Asia (EA), Europe (EU), North America (NA) and South Asia (SA) to 20% decreases in anthropogenic emissions of the O{sub 3} precursors, NO{sub x}, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O{sub 3} concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern U.S. and Japan. The sum of the O{sub 3} responses to NO{sub x}, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale 'import sensitivity' as the ratio of the O{sub 3} response to the 20% reductions in foreign versus 'domestic' (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the 3 foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O{sub 3} response to foreign emissions is largest in spring and late fall (0.7-0.9 ppb decrease in all regions from the combined precursor reductions in the 3 foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8-1.6 ppb). High O{sub 3} values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA

  7. Modeling Multi-Event Non-Point Source Pollution in a Data-Scarce Catchment Using ANN and Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2017-06-01

    Full Text Available Event-based runoff–pollutant relationships have been the key for water quality management, but the scarcity of measured data results in poor model performance, especially for multiple rainfall events. In this study, a new framework was proposed for event-based non-point source (NPS prediction and evaluation. The artificial neural network (ANN was used to extend the runoff–pollutant relationship from complete data events to other data-scarce events. The interpolation method was then used to solve the problem of tail deviation in the simulated pollutographs. In addition, the entropy method was utilized to train the ANN for comprehensive evaluations. A case study was performed in the Three Gorges Reservoir Region, China. Results showed that the ANN performed well in the NPS simulation, especially for light rainfall events, and the phosphorus predictions were always more accurate than the nitrogen predictions under scarce data conditions. In addition, peak pollutant data scarcity had a significant impact on the model performance. Furthermore, these traditional indicators would lead to certain information loss during the model evaluation, but the entropy weighting method could provide a more accurate model evaluation. These results would be valuable for monitoring schemes and the quantitation of event-based NPS pollution, especially in data-poor catchments.

  8. Receptor modeling studies for the characterization of PM10 pollution sources in Belgrade

    Directory of Open Access Journals (Sweden)

    Mijić Zoran

    2012-01-01

    Full Text Available The objective of this study is to determine the major sources and potential source regions of PM10 over Belgrade, Serbia. The PM10 samples were collected from July 2003 to December 2006 in very urban area of Belgrade and concentrations of Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb were analyzed by atomic absorption spectrometry. The analysis of seasonal variations of PM10 mass and some element concentrations reported relatively higher concentrations in winter, what underlined the importance of local emission sources. The Unmix model was used for source apportionment purpose and the four main source profiles (fossil fuel combustion; traffic exhaust/regional transport from industrial centers; traffic related particles/site specific sources and mineral/crustal matter were identified. Among the resolved factors the fossil fuel combustion was the highest contributor (34% followed by traffic/regional industry (26%. Conditional probability function (CPF results identified possible directions of local sources. The potential source contribution function (PSCF and concentration weighted trajectory (CWT receptor models were used to identify spatial source distribution and contribution of regional-scale transported aerosols. [Projekat Ministarstva nauke Republike Srbije, br. III43007 i br. III41011

  9. Detection of aerosol pollution sources during sandstorms in Northwestern China using remote sensed and model simulated data

    Science.gov (United States)

    Filonchyk, Mikalai; Yan, Haowen; Yang, Shuwen; Lu, Xiaomin

    2018-02-01

    The present paper has used a comprehensive approach to study atmosphere pollution sources including the study of vertical distribution characteristics, the epicenters of occurrence and transport of atmospheric aerosol in North-West China under intensive dust storm registered in all cities of the region in April 2014. To achieve this goal, the remote sensing data using Moderate Resolution Imaging Spectroradiometer satellite (MODIS) as well as model-simulated data, were used, which facilitate tracking the sources, routes, and spatial extent of dust storms. The results of the study have shown strong territory pollution with aerosol during sandstorm. According to ground-based air quality monitoring stations data, concentrations of PM10 and PM2.5 exceeded 400 μg/m3 and 150 μg/m3, respectively, the ratio PM2.5/PM10 being within the range of 0.123-0.661. According to MODIS/Terra Collection 6 Level-2 aerosol products data and the Deep Blue algorithm data, the aerosol optical depth (AOD) at 550 nm in the pollution epicenter was within 0.75-1. The vertical distribution of aerosols indicates that the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 532 nm total attenuates backscatter coefficient ranges from 0.01 to 0.0001 km-1 × sr-1 with the distribution of the main types of aerosols in the troposphere of the region within 0-12.5 km, where the most severe aerosol contamination is observed in the lower troposphere (at 3-6 km). According to satellite sounding and model-simulated data, the sources of pollution are the deserted regions of Northern and Northwestern China.

  10. Modeling and simulation of a solar power source at 3kW for a clean energy without pollution

    Directory of Open Access Journals (Sweden)

    Louzazni M.

    2014-04-01

    Full Text Available The air pollution was much worse, and it became necessary to replace the fossil energy sources by the renewable energies. The causes are related to reserves that can be exhausted, to pollution and their impacts on the environment. Production of toxic gases from the combustion of coal for the effect of increasing the temperature of the earth. Solar energy is a clean and inexhaustible excellent alternative. We propose a modeling and simulation of a solar system consists of a photovoltaic generator (PVG, a boost chopper, to supply a telecommunications relay station (BTS, According to the load characteristics (I = 60A, V = 48V DC (3 kW. A stage adaptation composed of this chopper controlled by a PWM controller (Pulse Width Modulation is used to control the optimal operating point (MPPT and optimize system performance using Matlab / Simulink.

  11. Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques

    Science.gov (United States)

    Su, Shiliang; Zhi, Junjun; Lou, Liping; Huang, Fang; Chen, Xia; Wu, Jiaping

    Characterizing the spatio-temporal patterns and apportioning the pollution sources of water bodies are important for the management and protection of water resources. The main objective of this study is to describe the dynamics of water quality and provide references for improving river pollution control practices. Comprehensive application of neural-based modeling and different multivariate methods was used to evaluate the spatio-temporal patterns and source apportionment of pollution in Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites for the period of 2001-2004. A self-organizing map classified the 41 monitoring sites into three groups (Group A, B and C), representing different pollution characteristics. Four significant parameters (dissolved oxygen, biochemical oxygen demand, total phosphorus and total lead) were identified by discriminant analysis for distinguishing variations of different years, with about 80% correct assignment for temporal variation. Rotated principal component analysis (PCA) identified four potential pollution sources for Group A (domestic sewage and agricultural pollution, industrial wastewater pollution, mineral weathering, vehicle exhaust and sand mining), five for Group B (heavy metal pollution, agricultural runoff, vehicle exhaust and sand mining, mineral weathering, chemical plants discharge) and another five for Group C (vehicle exhaust and sand mining, chemical plants discharge, soil weathering, biochemical pollution, mineral weathering). The identified potential pollution sources explained 75.6% of the total variances for Group A, 75.0% for Group B and 80.0% for Group C, respectively. Receptor-based source apportionment was applied to further estimate source contributions for each pollution variable in the three groups, which facilitated and supported the PCA results. These results could assist managers to develop optimal strategies and determine priorities for river

  12. Light sources and light pollution

    International Nuclear Information System (INIS)

    Pichler, G.

    2005-01-01

    From the dawn of mankind fire and light sources in general played an essential role in everyday life and protection over night. The development of new light sources went through many stages and is now an immense technological achievement, but also a threat for the wildlife at night, mainly because of the so-called light pollution. This paper discusses several very successful light sources connected with low pressure mercury and sodium vapour electric discharges. The luminous efficacy, colour rendering index and other lighting features cannot be always satisfactory, but at least some of the features can be much better than those met by the standard tungsten filament bulbs. High-pressure metal-vapour discharge lamps definitely have a good colour rendering index and a relatively high luminosity. Different light sources with burners at high pressure are discussed, paying special attention to their spectrum. The paper investigates new trends in development through a number of examples with non-toxic elements and pulsed electric discharge, which may be good news in terms of clean environment and energy savings. Light emitting diodes have recently appeared as worthy competitors to conventional light sources. White LEDs have approached 100 lumen/Watt efficacy in laboratories. This suggests that in some not very distant future they could completely replace high-pressure lamps, at least in indoor lighting. The article speculates on new developments which combine trends in nano technology and material science. The paper concludes with light pollution in view of several recent observations of plant and animal life at night in the vicinity of strong light sources. Photo-induced changes at the cell level may completely alter the normal life of plants and animals.(author)

  13. Model elucidating the sources and formation mechanisms of severe haze pollution over Northeast mega-city cluster in China.

    Science.gov (United States)

    Yang, Ting; Gbaguidi, Alex; Yan, Pingzhong; Zhang, Wending; Zhu, Lili; Yao, Xuefeng; Wang, Zifa; Chen, Hui

    2017-11-01

    Recent studies on regional haze pollution over China come up in general with strong variability of main causes of heavy polluted episodes, in linkage with local specificities, sources and pollution characteristics. This paper therefore aims at elucidating the main specific sources and formation mechanisms of observed strong haze pollution episodes over 1-15 November 2015 in Northeast region considered as one of biggest megacity clusters in China. The Northeast China mega-city cluster, including Heilong Jiang, Jilin and Liaoning provinces, is adjacent to Russia in the north, Mongolian at the west, North Korea at east, and representing key geographical location in the regional and transnational air pollution issues in China due to the presence of heavy industries and intense economic activities. The present study, based on air quality monitoring, remote sensing satellite data and sensitivity experiments carried on the Nested Air Quality Prediction Modeling System (NAQPMS), quantitatively assesses the impact of meteorological conditions and potential contributions from regional chemical transport, intensive energy combustion, illegal emission and biomass burning emissions to PM 2.5 concentration variation. The results indicate strong inversion occurrence at lower atmosphere with weak near-surface wind speed and high relative humidity, leading to PM 2.5 concentration increase of about 30-50%. Intensive energy combustion (plausibly for heating activities) and illegal emission also significantly enhance the overall PM 2.5 accumulation by 100-200 μg m -3 (60-70% increase), against 75-100 μg m -3 from the biomass burning under the northeast-southwest transport pathway, corresponding to a contribution of 10-20% to PM 2.5 concentration increase. Obviously, stagnant meteorological conditions, energy combustion, illegal emission and biomass burning are main drivers of strong haze formation and spatial distribution over Northeast China megacity cluster. In clear, much

  14. A fugacity model for source determination of the Lake Baikal region pollution with polychlorinated Biphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Sofiev, M. [Finnish Meteorological Inst., Helsinki (Finland); Galperin, M.; Maslyaev, A. [Inst. of Program Systems, Pereslavl-Zalesskiy (Russian Federation); McLachlan, M. [Stockholm Univ. (Sweden); Wania, F. [Toronto Univ. (Canada)

    2004-09-15

    PCBs were discovered in the Lake Baikal ecosystem by Malakhov et al. and Bobovnikova et al. A follow up to the initial study showed no decrease over 1981-1989 4, in contrast to what has been observed in other water bodies in the industrialised world. Further studies also showed the contamination in pinnipeds to be among the highest measured anywhere. Above studies and other data suggested a presence of a strong local PCB source (or several ones), which has had a widespread adverse effect for the whole region. To locate the source, Mamontov et al. collected samples from 34 sites over the region, the analysis of which showed a gradient of a factor of 1000, with the lowest concentrations at the north-east of Lake Baikal and the highest concentrations close to the city of Usolye Sibirskoye, a centre of the chemical industry in the Angara River valley. A continuous decrease in the soil contamination was observed along the path from Usolye Sibirskoye up the Angara River valley to Lake Baikal and from there north-eastward along the lake. These results indicate that there was (and perhaps still is) a major source of PCBs in the Usolye area, from where the PCBs are dispersed over the region. However, various obstacles prevent direct observations of potential sources. Therefore, a mathematical modelling approach was adopted in a currently ongoing INTAS project aiming to shed some more light on this problem. The model principles, setup and the results of the first experiments are presented in the current paper.

  15. Lead pollution sources and Impacts

    International Nuclear Information System (INIS)

    El-Haggar, S.M.; Saad, S.G.; Saleh, S.K.; El-Kady, M.A.

    1996-01-01

    Despite the medical awareness of lead toxicity, and despite legislation designed to reduce environmental contamination, lead is one of the most widely used heavy metals. Significant human exposure occurs from automobile exhaust fumes, cigarette smoking, lead-based paints and plumbing systems lead spread in the environment can take place in several ways, the most important of which is through the lead compounds released in automobile exhaust as a direct result of the addition of tetraethyl or tetraethyl lead to gasoline as octane boosting agents. Of special is the effect of lead pollution on children, which affects their behavioral and educational attributes considerably. The major channel through through which lead is absorbed is through inhalation of lead compounds in the atmosphere. Lead is a heavy metal characterized its malleability, ductility and poor conduction of electricity. So, it has a wide range of applications ranging from battery manufacturing to glazing ceramics. It is rarely found free in nature but is present in several minerals and compounds. The aim of this paper is to discuss natural and anthropogenic sources of lead together with its distribution and trends with emphasis on egypt. The effects of lead pollution on human health, vegetation and welfare are also presented. It could be concluded that, the excessive release of lead into the environment, especially through the atmosphere, can produce many detrimental and sometimes fatal effects on human, agriculture and zoological life. Besides, it is very plain that there is a serious problem of pollution lead in egypt and specially in cairo. 7 figs

  16. Identification and elucidation of anthropogenic source contribution in PM10 pollutant: Insight gain from dispersion and receptor models.

    Science.gov (United States)

    Roy, Debananda; Singh, Gurdeep; Yadav, Pankaj

    2016-10-01

    Source apportionment study of PM 10 (Particulate Matter) in a critically polluted area of Jharia coalfield, India has been carried out using Dispersion model, Principle Component Analysis (PCA) and Chemical Mass Balance (CMB) techniques. Dispersion model Atmospheric Dispersion Model (AERMOD) was introduced to simplify the complexity of sources in Jharia coalfield. PCA and CMB analysis indicates that monitoring stations near the mining area were mainly affected by the emission from open coal mining and its associated activities such as coal transportation, loading and unloading of coal. Mine fire emission also contributed a considerable amount of particulate matters in monitoring stations. Locations in the city area were mostly affected by vehicular, Liquid Petroleum Gas (LPG) & Diesel Generator (DG) set emissions, residential, and commercial activities. The experimental data sampling and their analysis could aid understanding how dispersion based model technique along with receptor model based concept can be strategically used for quantitative analysis of Natural and Anthropogenic sources of PM 10 . Copyright © 2016. Published by Elsevier B.V.

  17. Reduction Assessment of Agricultural Non-Point Source Pollutant Loading

    OpenAIRE

    Fu, YiCheng; Zang, Wenbin; Zhang, Jian; Wang, Hongtao; Zhang, Chunling; Shi, Wanli

    2018-01-01

    NPS (Non-point source) pollution has become a key impact element to watershed environment at present. With the development of technology, application of models to control NPS pollution has become a very common practice for resource management and Pollutant reduction control in the watershed scale of China. The SWAT (Soil and Water Assessment Tool) model is a semi-conceptual model, which was put forward to estimate pollutant production & the influences on water quantity-quality under different...

  18. The air pollution: sources, effects, prevention

    International Nuclear Information System (INIS)

    Elichegaray, C.

    2008-01-01

    The author offers a detailed and illustrated panorama of the air pollution sources and effects. The study is realized at the individual scale with the indoor pollution and at a global scale with the consequences of the greenhouse effect gases. Added to classical pollutants, the book takes into account new pollutants (organic, nano particulates, biological) and the epidemiology. (A.L.B.)

  19. A simulation-based interval two-stage stochastic model for agricultural nonpoint source pollution control through land retirement

    International Nuclear Information System (INIS)

    Luo, B.; Li, J.B.; Huang, G.H.; Li, H.L.

    2006-01-01

    This study presents a simulation-based interval two-stage stochastic programming (SITSP) model for agricultural nonpoint source (NPS) pollution control through land retirement under uncertain conditions. The modeling framework was established by the development of an interval two-stage stochastic program, with its random parameters being provided by the statistical analysis of the simulation outcomes of a distributed water quality approach. The developed model can deal with the tradeoff between agricultural revenue and 'off-site' water quality concern under random effluent discharge for a land retirement scheme through minimizing the expected value of long-term total economic and environmental cost. In addition, the uncertainties presented as interval numbers in the agriculture-water system can be effectively quantified with the interval programming. By subdividing the whole agricultural watershed into different zones, the most pollution-related sensitive cropland can be identified and an optimal land retirement scheme can be obtained through the modeling approach. The developed method was applied to the Swift Current Creek watershed in Canada for soil erosion control through land retirement. The Hydrological Simulation Program-FORTRAN (HSPF) was used to simulate the sediment information for this case study. Obtained results indicate that the total economic and environmental cost of the entire agriculture-water system can be limited within an interval value for the optimal land retirement schemes. Meanwhile, a best and worst land retirement scheme was obtained for the study watershed under various uncertainties

  20. Non-point Source Pollution Modeling Using Geographic Information System (GIS for Representing Best Management Practices (BMP in the Gorganrood Watershed

    Directory of Open Access Journals (Sweden)

    Z. Pasandidehfard

    2014-09-01

    Full Text Available The most important pollutants that cause water pollution are nitrogen and phosphorus from agricultural runoff called Non-Point Source Pollution (NPS. To solve this problem, management practices known as BMPs or Best Management Practices are applied. One of the common methods for Non-Point Source Pollution prediction is modeling. By modeling, efficiency of many practices can be tested before application. In this study, land use changes were studied from the years 1984 till 2010 that showed an increase in agricultural lands from 516908.52 to 630737.19 ha and expansion of cities from 5237.87 to 15487.59 ha and roads from 9666.07 to 11430.24 ha. Using L-THIA model (from nonpoint source pollution models for both land use categories, the amount of pollutant and the volume of runoff were calculated that showed high growth. Then, the seventh sub-basin was recognized as a critical zone in terms of pollution among the sub-basins. In the end, land use change was considered as a BMP using Multi-Criteria Evaluation (MCE based on which a more suitable land use map was produced. After producing the new land use map, L-THIA model was run again and the result of the model was compared to the actual land use to show the effect of this BMP. Runoff volume decreased from 367.5 to 308.6 M3/ha and nitrogen in runoff was reduced from 3.26 to 1.58 mg/L and water BOD from 3.61 to 2.13 mg/L. Other pollutants also showed high reduction. In the end, land use change is confirmed as an effective BMP for Non-Point Source Pollution reduction.

  1. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model

    Science.gov (United States)

    Abou Rafee, Sameh A.; Martins, Leila D.; Kawashima, Ana B.; Almeida, Daniela S.; Morais, Marcos V. B.; Souza, Rita V. A.; Oliveira, Maria B. L.; Souza, Rodrigo A. F.; Medeiros, Adan S. S.; Urbina, Viviana; Freitas, Edmilson D.; Martin, Scot T.; Martins, Jorge A.

    2017-06-01

    This paper evaluates the contributions of the emissions from mobile, stationary and biogenic sources on air pollution in the Amazon rainforest by using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. The analyzed air pollutants were CO, NOx, SO2, O3, PM2. 5, PM10 and volatile organic compounds (VOCs). Five scenarios were defined in order to evaluate the emissions by biogenic, mobile and stationary sources, as well as a future scenario to assess the potential air quality impact of doubled anthropogenic emissions. The stationary sources explain the highest concentrations for all air pollutants evaluated, except for CO, for which the mobile sources are predominant. The anthropogenic sources considered resulted an increasing in the spatial peak-temporal average concentrations of pollutants in 3 to 2780 times in relation to those with only biogenic sources. The future scenario showed an increase in the range of 3 to 62 % in average concentrations and 45 to 109 % in peak concentrations depending on the pollutant. In addition, the spatial distributions of the scenarios has shown that the air pollution plume from the city of Manaus is predominantly transported west and southwest, and it can reach hundreds of kilometers in length.

  2. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model

    Directory of Open Access Journals (Sweden)

    S. A. Abou Rafee

    2017-06-01

    Full Text Available This paper evaluates the contributions of the emissions from mobile, stationary and biogenic sources on air pollution in the Amazon rainforest by using the Weather Research and Forecasting with Chemistry (WRF-Chem model. The analyzed air pollutants were CO, NOx, SO2, O3, PM2. 5, PM10 and volatile organic compounds (VOCs. Five scenarios were defined in order to evaluate the emissions by biogenic, mobile and stationary sources, as well as a future scenario to assess the potential air quality impact of doubled anthropogenic emissions. The stationary sources explain the highest concentrations for all air pollutants evaluated, except for CO, for which the mobile sources are predominant. The anthropogenic sources considered resulted an increasing in the spatial peak-temporal average concentrations of pollutants in 3 to 2780 times in relation to those with only biogenic sources. The future scenario showed an increase in the range of 3 to 62 % in average concentrations and 45 to 109 % in peak concentrations depending on the pollutant. In addition, the spatial distributions of the scenarios has shown that the air pollution plume from the city of Manaus is predominantly transported west and southwest, and it can reach hundreds of kilometers in length.

  3. Combined Source Apportionment and Degradation Quantification of Organic Pollutants with CSIA: 2. Model Validation and Application

    NARCIS (Netherlands)

    Lutz, S.R.; van Breukelen, B.M.

    2014-01-01

    Compound-specific stable isotope analysis (CSIA) has proven a useful tool for the quantification of the extent of degradation (QED), and for source identification and source apportionment (SA) in contaminated environmental systems. However, the simultaneous occurrence of degradation processes and

  4. A GIS-based multi-source and multi-box modeling approach (GMSMB) for air pollution assessment--a North American case study.

    Science.gov (United States)

    Wang, Bao-Zhen; Chen, Zhi

    2013-01-01

    This article presents a GIS-based multi-source and multi-box modeling approach (GMSMB) to predict the spatial concentration distributions of airborne pollutant on local and regional scales. In this method, an extended multi-box model combined with a multi-source and multi-grid Gaussian model are developed within the GIS framework to examine the contributions from both point- and area-source emissions. By using GIS, a large amount of data including emission sources, air quality monitoring, meteorological data, and spatial location information required for air quality modeling are brought into an integrated modeling environment. It helps more details of spatial variation in source distribution and meteorological condition to be quantitatively analyzed. The developed modeling approach has been examined to predict the spatial concentration distribution of four air pollutants (CO, NO(2), SO(2) and PM(2.5)) for the State of California. The modeling results are compared with the monitoring data. Good agreement is acquired which demonstrated that the developed modeling approach could deliver an effective air pollution assessment on both regional and local scales to support air pollution control and management planning.

  5. Characterizing and locating air pollution sources in a complex industrial district using optical remote sensing technology and multivariate statistical modeling.

    Science.gov (United States)

    Chang, Pao-Erh Paul; Yang, Jen-Chih Rena; Den, Walter; Wu, Chang-Fu

    2014-09-01

    Emissions of volatile organic compounds (VOCs) are most frequent environmental nuisance complaints in urban areas, especially where industrial districts are nearby. Unfortunately, identifying the responsible emission sources of VOCs is essentially a difficult task. In this study, we proposed a dynamic approach to gradually confine the location of potential VOC emission sources in an industrial complex, by combining multi-path open-path Fourier transform infrared spectrometry (OP-FTIR) measurement and the statistical method of principal component analysis (PCA). Close-cell FTIR was further used to verify the VOC emission source by measuring emitted VOCs from selected exhaust stacks at factories in the confined areas. Multiple open-path monitoring lines were deployed during a 3-month monitoring campaign in a complex industrial district. The emission patterns were identified and locations of emissions were confined by the wind data collected simultaneously. N,N-Dimethyl formamide (DMF), 2-butanone, toluene, and ethyl acetate with mean concentrations of 80.0 ± 1.8, 34.5 ± 0.8, 103.7 ± 2.8, and 26.6 ± 0.7 ppbv, respectively, were identified as the major VOC mixture at all times of the day around the receptor site. As the toxic air pollutant, the concentrations of DMF in air samples were found exceeding the ambient standard despite the path-average effect of OP-FTIR upon concentration levels. The PCA data identified three major emission sources, including PU coating, chemical packaging, and lithographic printing industries. Applying instrumental measurement and statistical modeling, this study has established a systematic approach for locating emission sources. Statistical modeling (PCA) plays an important role in reducing dimensionality of a large measured dataset and identifying underlying emission sources. Instrumental measurement, however, helps verify the outcomes of the statistical modeling. The field study has demonstrated the feasibility of

  6. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida.

    Science.gov (United States)

    Haji Gholizadeh, Mohammad; Melesse, Assefa M; Reddi, Lakshmi

    2016-10-01

    In this study, principal component analysis (PCA), factor analysis (FA), and the absolute principal component score-multiple linear regression (APCS-MLR) receptor modeling technique were used to assess the water quality and identify and quantify the potential pollution sources affecting the water quality of three major rivers of South Florida. For this purpose, 15years (2000-2014) dataset of 12 water quality variables covering 16 monitoring stations, and approximately 35,000 observations was used. The PCA/FA method identified five and four potential pollution sources in wet and dry seasons, respectively, and the effective mechanisms, rules and causes were explained. The APCS-MLR apportioned their contributions to each water quality variable. Results showed that the point source pollution discharges from anthropogenic factors due to the discharge of agriculture waste and domestic and industrial wastewater were the major sources of river water contamination. Also, the studied variables were categorized into three groups of nutrients (total kjeldahl nitrogen, total phosphorus, total phosphate, and ammonia-N), water murkiness conducive parameters (total suspended solids, turbidity, and chlorophyll-a), and salt ions (magnesium, chloride, and sodium), and average contributions of different potential pollution sources to these categories were considered separately. The data matrix was also subjected to PMF receptor model using the EPA PMF-5.0 program and the two-way model described was performed for the PMF analyses. Comparison of the obtained results of PMF and APCS-MLR models showed that there were some significant differences in estimated contribution for each potential pollution source, especially in the wet season. Eventually, it was concluded that the APCS-MLR receptor modeling approach appears to be more physically plausible for the current study. It is believed that the results of apportionment could be very useful to the local authorities for the control and

  7. Model for estimating air pollutant uptake by forests: calculation of forest absorption of sulfur dioxide from dispersed sources

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Sinclair, T.R.; Knoerr, K.R.

    1975-01-01

    The computer model presented in this paper is designed to estimate the uptake of air pollutants by forests. The model utilizes submodels to describe atmospheric diffusion immediately above and within the canopy, and into the sink areas within or on the trees. The program implementing the model is general and can be used with only minor changes for any gaseous pollutant. To illustrate the utility of the model, estimates are made of the sink strength of forests for sulfur dioxide. The results agree with experimentally derived estimates of sulfur dioxide uptake in crops and forest trees. (auth)

  8. Assessing model characterization of single source secondary pollutant impacts using 2013 SENEX field study measurements

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset consists of 4 comma-separated value (csv) text files and 3 netCDF data files. Each csv file contains the observed and CMAQ modeled gas and aerosol...

  9. Application of air pollution dispersion modeling for source-contribution assessment and model performance evaluation at integrated industrial estate-Pantnagar

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, T., E-mail: tirthankaronline@gmail.com [Department of Environmental Science, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, Uttarakhand 263 145 (India); Barman, S.C., E-mail: scbarman@yahoo.com [Department of Environmental Monitoring, Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh (India); Srivastava, R.K., E-mail: rajeevsrivastava08@gmail.com [Department of Environmental Science, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, Uttarakhand 263 145 (India)

    2011-04-15

    Source-contribution assessment of ambient NO{sub 2} concentration was performed at Pantnagar, India through simulation of two urban mathematical dispersive models namely Gaussian Finite Line Source Model (GFLSM) and Industrial Source Complex Model (ISCST-3) and model performances were evaluated. Principal approaches were development of comprehensive emission inventory, monitoring of traffic density and regional air quality and conclusively simulation of urban dispersive models. Initially, 18 industries were found responsible for emission of 39.11 kg/h of NO{sub 2} through 43 elevated stacks. Further, vehicular emission potential in terms of NO{sub 2} was computed as 7.1 kg/h. Air quality monitoring delineates an annual average NO{sub 2} concentration of 32.6 {mu}g/m{sup 3}. Finally, GFLSM and ISCST-3 were simulated in conjunction with developed emission inventories and existing meteorological conditions. Models simulation indicated that contribution of NO{sub 2} from industrial and vehicular source was in a range of 45-70% and 9-39%, respectively. Further, statistical analysis revealed satisfactory model performance with an aggregate accuracy of 61.9%. - Research highlights: > Application of dispersion modeling for source-contribution assessment of ambient NO{sub 2}. > Inventorization revealed emission from industry and vehicles was 39.11 and 7.1 kg/h. > GFLSM revealed that vehicular pollution contributes a range of 9.0-38.6%. > Source-contribution of 45-70% was found for industrial emission through ISCST-3. > Aggregate performance of both models shows good agreement with an accuracy of 61.9%. - Development of industrial and vehicular inventory in terms of ambient NO{sub 2} for model simulation at Pantnagar, India and model validation revealed satisfactory outcome.

  10. New source review for stationary sources of air pollution

    National Research Council Canada - National Science Library

    Committee on Changes in New Source Review Programs for Stationary Sources of Air Pollution, National Research Council

    2006-01-01

    The Clean Air Act established a pair of programsâ€"known as New Source Review (NSR)â€"that regulate large stationary sources of air pollution, such as factories and electricity-generating facilities...

  11. Mining-related nonpoint-source pollution

    International Nuclear Information System (INIS)

    Cohen, R.H.; Gorman, J.

    1991-01-01

    This article describes the effects of increased mining activity on surface and groundwater. The topics covered include pollutant sources, contaminant transport and fate, trace element toxicity, pollution control and abatement, treating acid mine drainage, modern constructed wetlands and site reclamation including site stabilization, refuse burial and sludge application

  12. Evaluasi Aliran Permukaan Erosi dan Sedimentasi di SUB DAS Cisadane Hulu dengan Menggunakan Model AGNPS (Agricultural Non Point Source Pollution Model

    Directory of Open Access Journals (Sweden)

    Sukandi Sukartaatmadja

    2006-12-01

    Full Text Available Composition of a good watershed management planning needs accurate information about erosion, runoff and its quality, so that its model for them, middle term and long term goal can be projected. The model had been used is AGNPS (agricultural non point source pollution model is developed by Robert A. Young, Charles A. Onstad, David D. Bosch. And Wayne P. Anderson in 1987. The Objective of this reseacrh is to looked for the effect of soil conservation had been done with rehabilitation activities plan to watershed condition using AGNPS model wich is divided into two plans. The effect of soil conservation activieties by a better plan wich is suited with Upper Cisadane Watershed could decreased runoff volume, runoff peak rate, annual erosion and sediment weight into 20% so that it could repaired the condition of Upper Cisadane Watershed wich is dangerouse before.

  13. Proposal of a stationary model of dispersion diagnoses of pollutants chemically non-reactivate, applied for mobile sources in Bogota

    International Nuclear Information System (INIS)

    Ruiz Murcia, Jose Franklln; Pabon Caicedo, Jose Daniel

    2002-01-01

    The following document presents a semi empirical model to calculate concentrations of monoxide of carbon in surface by mobile sources. This model considers three basic components: meteorology, emissions and atmospheric chemistry. Scientifically, the propose model is sustained en the fact that the quality of the air depends of the weather's conditions and the numbers of source that is emitting

  14. Urban Sources of Air Pollution

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.

    1998-01-01

    A discusion of the relative importance of different mobile sources, effects of driving on emissions, history of emissions standards, and technological methods to reduce emissions.......A discusion of the relative importance of different mobile sources, effects of driving on emissions, history of emissions standards, and technological methods to reduce emissions....

  15. Verifying mapping, monitoring and modeling of fine sediment pollution sources in West Maui, Hawai'i, USA

    Science.gov (United States)

    Cerovski-Darriau, C.; Stock, J. D.

    2017-12-01

    Coral reef ecosystems, and the fishing and tourism industries they support, depend on clean waters. Fine sediment pollution from nearshore watersheds threatens these enterprises in West Maui, Hawai'i. To effectively mitigate sediment pollution, we first have to know where the sediment is coming from, and how fast it erodes. In West Maui, we know that nearshore sediment plumes originate from erosion of fine sand- to silt-sized air fall deposits where they are exposed by grazing, agriculture, or other disturbances. We identified and located these sediment sources by mapping watershed geomorphological processes using field traverses, historic air photos, and modern orthophotos. We estimated bank lowering rates using erosion pins, and other surface erosion rates were extrapolated from data collected elsewhere on the Hawaiian Islands. These measurements and mapping led to a reconnaissance sediment budget which showed that annual loads are dominated by bank erosion of legacy terraces. Field observations during small storms confirm that nearshore sediment plumes are sourced from bank erosion of in-stream, legacy agricultural deposits. To further verify this sediment budget, we used geochemical fingerprinting to uniquely identify each potential source (e.g. stream banks, agricultural fields, roads, other human modified soils, and hillslopes) from the Wahikuli watershed (10 km2) and analyzed the fine fraction using ICP-MS for elemental geochemistry. We propose to apply this the fingerprinting results to nearshore suspended sediment samples taken during storms to identify the proportion of sediment coming from each source. By combining traditional geomorphic mapping, monitoring and geochemistry, we hope to provide a powerful tool to verify the primary source of sediment reaching the nearshore.

  16. Source apportionment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    Sahu, S.K.; Pandit, G.G.; Puranik, V.D.

    2007-05-01

    Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually find their way into various environmental compartments. One of the main issues of environmental pollution is the chemical composition of aerosols and their sources. In spite of all the efforts a considerable part of the atmospheric aerosol mass is still not accounted for. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report an attempt has been made to collect different size fractionated ambient aerosols and to quantify the percentage contribution of each size fraction to the total aerosol mass. Subsequently, an effort has been made for chemical characterization (inorganic, organic and carbon content) of these particulate matter using different analytical techniques. The comprehensive data set on chemical characterization of particulate matter thus generated is being used with receptor modeling techniques to identify the possible sources contributing to the observed concentrations of the measured pollutants. The use of this comprehensive data set in receptor modeling has been helpful in distinguishing the source types in a better way. Receptor modeling techniques are powerful tools that can be used to locate sources of pollutants to the atmosphere. The major advantage of the receptor models is that actual ambient data are used to apportion source contributions, negating the need for dispersion calculations. Pollution sources affecting the sampling site were statistically identified using varimax rotated factor analysis of

  17. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    Directory of Open Access Journals (Sweden)

    E. Kristensen

    2018-02-01

    Full Text Available Groundwater-borne contaminants such as nutrients, dissolved organic carbon (DOC, coloured dissolved organic matter (CDOM and pesticides can have an impact the biological quality of lakes. The sources of pollutants can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach for fast hydrological surveys of small groundwater-fed lakes using multiple groundwater-borne tracers. Water samples were collected from the lake and temporary groundwater wells, installed every 50 m within a distance of 5–45 m to the shore, were analysed for tracer concentrations of CDOM, DOC, total dissolved nitrogen (TDN, groundwater only, total nitrogen (TN, lake only, total dissolved phosphorus (TDP, groundwater only, total phosphorus (TP, lake only, δ18O ∕ δ16O isotope ratios and fluorescent dissolved organic matter (FDOM components derived from parallel factor analysis (PARAFAC. The isolation of groundwater recharge areas was based on δ18O measurements and areas with a high groundwater recharge rate were identified using a microbially influenced FDOM component. Groundwater discharge sites and the fractions of water delivered from the individual sites were isolated with the Community Assembly via Trait Selection model (CATS. The CATS model utilized tracer measurements of TDP, TDN, DOC and CDOM from the groundwater samples and related these to the tracer measurements of TN, TP, DOC and CDOM in the lake. A direct comparison between the lake and the inflowing groundwater was possible as degradation rates of the tracers in the lake were taken into account and related to a range of water retention times (WRTs of the lake (0.25–3.5 years in 0.25-year increments. These estimations showed that WRTs above 2 years required a higher tracer concentration of inflowing water than found in any of the groundwater wells around the lake. From the estimations of inflowing tracer concentration

  18. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    Science.gov (United States)

    Kristensen, Emil; Madsen-Østerbye, Mikkel; Massicotte, Philippe; Pedersen, Ole; Markager, Stiig; Kragh, Theis

    2018-02-01

    Groundwater-borne contaminants such as nutrients, dissolved organic carbon (DOC), coloured dissolved organic matter (CDOM) and pesticides can have an impact the biological quality of lakes. The sources of pollutants can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach for fast hydrological surveys of small groundwater-fed lakes using multiple groundwater-borne tracers. Water samples were collected from the lake and temporary groundwater wells, installed every 50 m within a distance of 5-45 m to the shore, were analysed for tracer concentrations of CDOM, DOC, total dissolved nitrogen (TDN, groundwater only), total nitrogen (TN, lake only), total dissolved phosphorus (TDP, groundwater only), total phosphorus (TP, lake only), δ18O / δ16O isotope ratios and fluorescent dissolved organic matter (FDOM) components derived from parallel factor analysis (PARAFAC). The isolation of groundwater recharge areas was based on δ18O measurements and areas with a high groundwater recharge rate were identified using a microbially influenced FDOM component. Groundwater discharge sites and the fractions of water delivered from the individual sites were isolated with the Community Assembly via Trait Selection model (CATS). The CATS model utilized tracer measurements of TDP, TDN, DOC and CDOM from the groundwater samples and related these to the tracer measurements of TN, TP, DOC and CDOM in the lake. A direct comparison between the lake and the inflowing groundwater was possible as degradation rates of the tracers in the lake were taken into account and related to a range of water retention times (WRTs) of the lake (0.25-3.5 years in 0.25-year increments). These estimations showed that WRTs above 2 years required a higher tracer concentration of inflowing water than found in any of the groundwater wells around the lake. From the estimations of inflowing tracer concentration, the CATS model isolated

  19. Study on the Influence of Building Materials on Indoor Pollutants and Pollution Sources

    Science.gov (United States)

    Wang, Yao

    2018-01-01

    The paper summarizes the achievements and problems of indoor air quality research at home and abroad. The pollutants and pollution sources in the room are analyzed systematically. The types of building materials and pollutants are also discussed. The physical and chemical properties and health effects of main pollutants were analyzed and studied. According to the principle of mass balance, the basic mathematical model of indoor air quality is established. Considering the release rate of pollutants and indoor ventilation, a mathematical model for predicting the concentration of indoor air pollutants is derived. The model can be used to analyze and describe the variation of pollutant concentration in indoor air, and to predict and calculate the concentration of pollutants in indoor air at a certain time. The results show that the mathematical model established in this study can be used to analyze and predict the variation law of pollutant concentration in indoor air. The evaluation model can be used to evaluate the impact of indoor air quality and evaluation of current situation. Especially in the process of building and interior decoration, through pre-evaluation, it can provide reliable design parameters for selecting building materials and determining ventilation volume.

  20. An export coefficient based inexact fuzzy bi-level multi-objective programming model for the management of agricultural nonpoint source pollution under uncertainty

    Science.gov (United States)

    Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Yue, Wencong; Tan, Qian

    2018-02-01

    In this research, an export coefficient based inexact fuzzy bi-level multi-objective programming (EC-IFBLMOP) model was developed through integrating export coefficient model (ECM), interval parameter programming (IPP) and fuzzy parameter programming (FPP) within a bi-level multi-objective programming framework. The proposed EC-IFBLMOP model can effectively deal with the multiple uncertainties expressed as discrete intervals and fuzzy membership functions. Also, the complexities in agricultural systems, such as the cooperation and gaming relationship between the decision makers at different levels, can be fully considered in the model. The developed model was then applied to identify the optimal land use patterns and BMP implementing levels for agricultural nonpoint source (NPS) pollution management in a subcatchment in the upper stream watershed of the Miyun Reservoir in north China. The results of the model showed that the desired optimal land use patterns and implementing levels of best management of practices (BMPs) would be obtained. It is the gaming result between the upper- and lower-level decision makers, when the allowable discharge amounts of NPS pollutants were limited. Moreover, results corresponding to different decision scenarios could provide a set of decision alternatives for the upper- and lower-level decision makers to identify the most appropriate management strategy. The model has a good applicability and can be effectively utilized for agricultural NPS pollution management.

  1. Behavior of pollutants from the instantaneous sources in mine airways

    Energy Technology Data Exchange (ETDEWEB)

    Abuel-Kassem, M. [Assiut Univ. (Egypt)

    1993-12-31

    The air quality management of roadway tunnels is an important task; that is the roadway tunnels either natural or mechanical ventilation is required to keep air quality within the acceptable levels for pollutants. The main objective of this paper is to study the behavior of pollutants from the blasting operation during tunneling as an instantaneous source in mines based on the diffusion modeling. Diffusion models are modified and applied to estimate the concentration of pollutants using a computer program. (Author). 9 refs., 3 figs., 2 tabs.

  2. Analysis of coupled model uncertainties in source-to-dose modeling of human exposures to ambient air pollution: A PM 2.5 case study

    Science.gov (United States)

    Özkaynak, Halûk; Frey, H. Christopher; Burke, Janet; Pinder, Robert W.

    Quantitative assessment of human exposures and health effects due to air pollution involve detailed characterization of impacts of air quality on exposure and dose. A key challenge is to integrate these three components on a consistent spatial and temporal basis taking into account linkages and feedbacks. The current state-of-practice for such assessments is to exercise emission, meteorology, air quality, exposure, and dose models separately, and to link them together by using the output of one model as input to the subsequent downstream model. Quantification of variability and uncertainty has been an important topic in the exposure assessment community for a number of years. Variability refers to differences in the value of a quantity (e.g., exposure) over time, space, or among individuals. Uncertainty refers to lack of knowledge regarding the true value of a quantity. An emerging challenge is how to quantify variability and uncertainty in integrated assessments over the source-to-dose continuum by considering contributions from individual as well as linked components. For a case study of fine particulate matter (PM 2.5) in North Carolina during July 2002, we characterize variability and uncertainty associated with each of the individual concentration, exposure and dose models that are linked, and use a conceptual framework to quantify and evaluate the implications of coupled model uncertainties. We find that the resulting overall uncertainties due to combined effects of both variability and uncertainty are smaller (usually by a factor of 3-4) than the crudely multiplied model-specific overall uncertainty ratios. Future research will need to examine the impact of potential dependencies among the model components by conducting a truly coupled modeling analysis.

  3. Environmental Radioactive Pollution Sources and Effects on Man

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1999-01-01

    The sources of environmental radioactivity are essentially the naturally occurring radionuclides in the earth,s crust and the cosmogenic radionuclides reaching the environmental ecosystems. The other sources of environmental radioactivity are the man made sources which result from the radioactive materials in human life. The naturally occurring environmental radioactivity is an integral component of the terrestrial and extraterrestrial creation, and therefore it is not considered a source of radioactive pollution to the environment. The radioactive waste from human activities is released into the environment, and its radionuclide content becomes incorporated into the different ecosystems. This results in a situation of environmental radioactive pollution. This review presents the main features of environmental radioactive pollution, the radionuclide behaviour in the ecosystems, pathway models of radionuclides in the body and the probability of associated health hazards. The dose effect relationship of internal radiation exposure and its quantitative aspects are considered because of their relevance to this subject

  4. East Asian SO2 pollution plume over Europe – Part 1: Airborne trace gas measurements and source identification by particle dispersion model simulations

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2009-07-01

    Full Text Available A large SO2-rich pollution plume of East Asian origin was detected by aircraft based CIMS (Chemical Ionization Mass Spectrometry measurements at 3–7.5 km altitude over the North Atlantic. The measurements, which took place on 3 May 2006 aboard of the German research aircraft Falcon, were part of the INTEX-B (Intercontinental Chemical Transport Experiment-B campaign. Additional trace gases (NO, NOy, CO, H2O were measured and used for comparison and source identification. The atmospheric SO2 mole fraction was markedly increased inside the plume and reached up to 900 pmol/mol. Accompanying lagrangian FLEXPART particle dispersion model simulations indicate that the probed pollution plume originated at low altitudes from densely populated and industrialized regions of East Asia, primarily China, about 8–12 days prior to the measurements.

  5. The use of nonlinear regression analysis for integrating pollutant concentration measurements with atmospheric dispersion modeling for source term estimation

    International Nuclear Information System (INIS)

    Edwards, L.L.; Freis, R.P.; Peters, L.G.; Gudiksen, P.H.; Pitovranov, S.E.

    1993-01-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on the knowledge of the source term characteristics, which are generally poorly known. The development of an automated numerical technique that integrates the radiological measurements with atmospheric dispersion modeling for more accurate source term estimation is reported. Often, this process of parameter estimation is performed by an emergency response assessor, who takes an intelligent first guess at the model parameters, then, comparing the model results with whatever measurements are available, makes an intuitive, informed next guess of the model parameters. This process may be repeated any number of times until the assessor feels that the model results are reasonable in terms of the measured observations. A new approach, based on a nonlinear least-squares regression scheme coupled with the existing Atmospheric Release Advisory Capability three-dimensional atmospheric dispersion models, is to supplement the assessor's intuition with automated mathematical methods that do not significantly increase the response time of the existing predictive models. The viability of the approach is evaluated by estimation of the known SF 6 tracer release rates associated with the Mesoscale Atmospheric Transport Studies tracer experiments conducted at the Savannah River Laboratory during 1983. These 19 experiments resulted in 14 successful, separate tracer releases with sampling of the tracer plumes along the cross-plume arc situated ∼30 km from the release site

  6. Air pollution sources, impact and monitoring

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    1999-01-01

    Improper management of socio-economic developmental activities has put a great stress on natural resources and eco-systems and has caused environmental degradation. Indiscriminate release of toxic substances into the atmosphere from power generation, industrial operations, transportation, incineration of waste and other operations has affected the quality of ambient air. Combustion of fossil fuel results in the emission of oxides of carbon, sulfur and nitrogen, particulate and organic compounds which affect the local, regional and global environment. Industrial operations release a wide variety of pollutants which directly affect the local environment. Operation of automobiles releases oxides of carbon, sulfur and nitrogen, hydrocarbons, traces of heavy metals and toxic polycyclic aromatic compounds whereas incineration of municipal waste releases particulate, acid fumes and photochemically reactive and odorous compounds. These air pollutants have varying impacts on health and environment. The intake of polluted air may produce various physiological disorders ranging from respiratory diseases to changes in blood chemistry. Therefore, the emission of pollutants should be controlled at the source and monitoring the levels of pollution should assess the quality of air. (author)

  7. SESAM: a model for the calculation of radiation exposure by emission of pollutants with the exhaust air in the case of a multi-source situation

    International Nuclear Information System (INIS)

    Ehrlich, H.G.; Vogt, K.J.; Brunen, E.

    The report deals with the calculation of the individual radiation exposure in the catchment area of several nuclear emitters. A model and computer program, SESAM - Calculation of the Radiation Exposure by Emission of Pollutants with the Exhaust air in the Case of a Multi-Source Situation -, was developed which makes possible all the evaluations of long-time exposure which are relevant for the licensing process - such as the determination of the maximum individual radiation exposure to the various organs at the worst receiving point - together with the exposure of the environment by several nuclear emission sources - such as, for example, several units of a power plant facility, the various emitters of a waste management center, or even consideration of the previous exposure of a site by nuclear emission sources

  8. Unused energy sources inducing minimal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Voss, A [Inst. fur Reaktorentwicklung, Kernforschungsanlage Julich GmbH, German Federal Republic

    1974-01-01

    The contribution of hydroelectricity to the growing worldwide energy demand is not expected to exceed 6%. As the largest amount of hydroelectric potential is located in developing nations, it will find its greatest development outside the currently industrialized sphere. The potential of 60 GW ascribed to tidal and geothermal energy is a negligible quantity. Solar energy represents an essentially inexhaustible source, but technological problems will preclude any major contribution from it during this century. The environmental problems caused by these 'new' energy sources are different from those engendered by fossil and nuclear power plants, but they are not negligible. It is irresponsible and misleading to describe them as pollution-free.

  9. Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning

    Directory of Open Access Journals (Sweden)

    C. Wespes

    2012-01-01

    Full Text Available In this paper, we analyze tropospheric O3 together with HNO3 during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport program, combining observations and model results. Aircraft observations from the NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites and NOAA ARCPAC (Aerosol, Radiation and Cloud Processes affecting Arctic Climate campaigns during spring and summer of 2008 are used together with the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4 to assist in the interpretation of the observations in terms of the source attribution and transport of O3 and HNO3 into the Arctic (north of 60° N. The MOZART-4 simulations reproduce the aircraft observations generally well (within 15%, but some discrepancies in the model are identified and discussed. The observed correlation of O3 with HNO3 is exploited to evaluate the MOZART-4 model performance for different air mass types (fresh plumes, free troposphere and stratospheric-contaminated air masses.

    Based on model simulations of O3 and HNO3 tagged by source type and region, we find that the anthropogenic pollution from the Northern Hemisphere is the dominant source of O3 and HNO3 in the Arctic at pressures greater than 400 hPa, and that the stratospheric influence is the principal contribution at pressures less 400 hPa. During the summer, intense Russian fire emissions contribute some amount to the tropospheric columns of both gases over the American sector of the Arctic. North American fire emissions (California and Canada also show an important impact on tropospheric ozone in the Arctic boundary layer.

    Additional analysis of tropospheric O3 measurements from ground-based FTIR and from the IASI satellite sounder made

  10. Source-specific pollution exposure and associations with pulmonary response in the Atlanta Commuters Exposure Studies.

    Science.gov (United States)

    Krall, Jenna R; Ladva, Chandresh N; Russell, Armistead G; Golan, Rachel; Peng, Xing; Shi, Guoliang; Greenwald, Roby; Raysoni, Amit U; Waller, Lance A; Sarnat, Jeremy A

    2018-01-03

    Concentrations of traffic-related air pollutants are frequently higher within commuting vehicles than in ambient air. Pollutants found within vehicles may include those generated by tailpipe exhaust, brake wear, and road dust sources, as well as pollutants from in-cabin sources. Source-specific pollution, compared to total pollution, may represent regulation targets that can better protect human health. We estimated source-specific pollution exposures and corresponding pulmonary response in a panel study of commuters. We used constrained positive matrix factorization to estimate source-specific pollution factors and, subsequently, mixed effects models to estimate associations between source-specific pollution and pulmonary response. We identified four pollution factors that we named: crustal, primary tailpipe traffic, non-tailpipe traffic, and secondary. Among asthmatic subjects (N = 48), interquartile range increases in crustal and secondary pollution were associated with changes in lung function of -1.33% (95% confidence interval (CI): -2.45, -0.22) and -2.19% (95% CI: -3.46, -0.92) relative to baseline, respectively. Among non-asthmatic subjects (N = 51), non-tailpipe pollution was associated with pulmonary response only at 2.5 h post-commute. We found no significant associations between pulmonary response and primary tailpipe pollution. Health effects associated with traffic-related pollution may vary by source, and therefore some traffic pollution sources may require targeted interventions to protect health.

  11. A Study on Water Pollution Source Localization in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-01-01

    Full Text Available The water pollution source localization is of great significance to water environment protection. In this paper, a study on water pollution source localization is presented. Firstly, the source detection is discussed. Then, the coarse localization methods and the localization methods based on diffusion models are introduced and analyzed, respectively. In addition, the localization method based on the contour is proposed. The detection and localization methods are compared in experiments finally. The results show that the detection method using hypotheses testing is more stable. The performance of the coarse localization algorithm depends on the nodes density. The localization based on the diffusion model can yield precise localization results; however, the results are not stable. The localization method based on the contour is better than the other two localization methods when the concentration contours are axisymmetric. Thus, in the water pollution source localization, the detection using hypotheses testing is more preferable in the source detection step. If concentration contours are axisymmetric, the localization method based on the contour is the first option. And, in case the nodes are dense and there is no explicit diffusion model, the coarse localization algorithm can be used, or else the localization based on diffusion models is a good choice.

  12. Identifiability and Identification of Trace Continuous Pollutant Source

    Directory of Open Access Journals (Sweden)

    Hongquan Qu

    2014-01-01

    Full Text Available Accidental pollution events often threaten people’s health and lives, and a pollutant source is very necessary so that prompt remedial actions can be taken. In this paper, a trace continuous pollutant source identification method is developed to identify a sudden continuous emission pollutant source in an enclosed space. The location probability model is set up firstly, and then the identification method is realized by searching a global optimal objective value of the location probability. In order to discuss the identifiability performance of the presented method, a conception of a synergy degree of velocity fields is presented in order to quantitatively analyze the impact of velocity field on the identification performance. Based on this conception, some simulation cases were conducted. The application conditions of this method are obtained according to the simulation studies. In order to verify the presented method, we designed an experiment and identified an unknown source appearing in the experimental space. The result showed that the method can identify a sudden trace continuous source when the studied situation satisfies the application conditions.

  13. Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2013-04-16

    As heavy metals occur naturally in soils at measurable concentrations and their natural background contents have significant spatial variations, identification and apportionment of heavy metal pollution sources across large-scale regions is a challenging task. Stochastic models, including the recently developed conditional inference tree (CIT) and the finite mixture distribution model (FMDM), were applied to identify the sources of heavy metals found in the surface soils of the Pearl River Delta, China, and to apportion the contributions from natural background and human activities. Regression trees were successfully developed for the concentrations of Cd, Cu, Zn, Pb, Cr, Ni, As, and Hg in 227 soil samples from a region of over 7.2 × 10(4) km(2) based on seven specific predictors relevant to the source and behavior of heavy metals: land use, soil type, soil organic carbon content, population density, gross domestic product per capita, and the lengths and classes of the roads surrounding the sampling sites. The CIT and FMDM results consistently indicate that Cd, Zn, Cu, Pb, and Cr in the surface soils of the PRD were contributed largely by anthropogenic sources, whereas As, Ni, and Hg in the surface soils mostly originated from the soil parent materials.

  14. Identifying the contribution of different urban highway air pollution sources

    International Nuclear Information System (INIS)

    Peace, H.; Owen, B.; Raper, D.W.

    2004-01-01

    This paper describes the methodology and results, and draws conclusions from a large-scale source apportionment study undertaken in a large urban conurbation in the northwest of England. Annual average oxides of nitrogen (NOx) emission and ambient air pollution contributions have been estimated for road traffic sources. Ground level air pollution concentrations were estimated over a 1552-km 2 area with a resolution of up to 20 m, using emissions estimates and the second generation ADMS-Urban Gaussian dispersion model. Road traffic emissions were split into car and motorcycles; heavy and light goods vehicles; and buses to represent domestic users; commercial users and bus companies. Car related emissions were split further in to journey lengths under 3 km; journeys between 3 and 8 km; and journeys over 8 km to represent journeys which could be either walked or cycled; journeys for which a bus can easily be used and other journeys. These source sections were chosen so that the relevant authorities could target key groups in terms of reducing air pollution. The results confirm that the areas most likely to exceed air quality objectives are typically close to main arterial routes and close to urban centres and that the major culprits of road traffic related air pollution are goods vehicles and car journeys over 8 km. The paper also discusses the implications of the results and suggests how these can be used in the assessment of actions to reduce air pollution concentrations

  15. Identifying the contribution of different urban highway air pollution sources.

    Science.gov (United States)

    Peace, H; Owen, B; Raper, D W

    2004-12-01

    This paper describes the methodology and results, and draws conclusions from a large-scale source apportionment study undertaken in a large urban conurbation in the northwest of England. Annual average oxides of nitrogen (NOx) emission and ambient air pollution contributions have been estimated for road traffic sources. Ground level air pollution concentrations were estimated over a 1552-km(2) area with a resolution of up to 20 m, using emissions estimates and the second generation ADMS-Urban Gaussian dispersion model. Road traffic emissions were split into car and motorcycles; heavy and light goods vehicles; and buses to represent domestic users; commercial users and bus companies. Car related emissions were split further in to journey lengths under 3 km; journeys between 3 and 8 km; and journeys over 8 km to represent journeys which could be either walked or cycled; journeys for which a bus can easily be used and other journeys. These source sections were chosen so that the relevant authorities could target key groups in terms of reducing air pollution. The results confirm that the areas most likely to exceed air quality objectives are typically close to main arterial routes and close to urban centres and that the major culprits of road traffic related air pollution are goods vehicles and car journeys over 8 km. The paper also discusses the implications of the results and suggests how these can be used in the assessment of actions to reduce air pollution concentrations.

  16. Evaluation of non-point source pollution reduction by applying best management practices using a SWAT model and QuickBird high resolution satellite imagery.

    Science.gov (United States)

    Lee, MiSeon; Park, GeunAe; Park, MinJi; Park, JongYoon; Lee, JiWan; Kim, SeongJoon

    2010-01-01

    This study evaluated the reduction effect of non-point source pollution by applying best management practices (BMPs) to a 1.21 km2 small agricultural watershed using a SWAT (Soil and Water Assessment Tool) model. Two meter QuickBird land use data were prepared for the watershed. The SWAT was calibrated and validated using daily streamflow and monthly water quality (total phosphorus (TP), total nitrogen (TN), and suspended solids (SS)) records from 1999 to 2000 and from 2001 to 2002. The average Nash and Sutcliffe model efficiency was 0.63 for the streamflow and the coefficients of determination were 0.88, 0.72, and 0.68 for SS, TN, and TP, respectively. Four BMP scenarios viz. the application of vegetation filter strip and riparian buffer system, the regulation of Universal Soil Loss Equation P factor, and the fertilizing control amount for crops were applied and analyzed.

  17. ALTERNATIVE SOURCES OF ENERGY - ALTERNATIVE SOURCES OF POLLUTION?

    Directory of Open Access Journals (Sweden)

    Marius-Razvan SURUGIU

    2007-06-01

    Full Text Available In many countries of the world investments are made for obtaining energy efficiency, pursuing to increase the generation of non-polluting fuels due to the fact that energy is vital for any economy. The increase in non-polluting fuels and in renewable energy generation might lead to diminishing the dependence of countries less endowed with conventional energy resources on oil and natural gas from Russia or from Arab countries. Nevertheless, environmental issues represent serious questions facing the mankind, requiring the identification, prevention, and why not, their total solving.European Union countries depend on imports of energy, especially on oil imports. At the same time, the European Union countries record a high volume of greenhouse gas emissions, substances adding to global warming. The transport sector is the main consumer of fossil fuels and generator of greenhouse gas emissions. Therefore, diversifying the energy supply used in the transport sector with less polluting sources is an essential objective of the European Union policy in the transport, energy and environment sector. Road transports’ is the sector recording the highest consumption of energy and the highest volume of greenhouse gas emissions.The use of ecologic fuels in the transport sector is an important factor for achieving the objectives of European policies in the field. It is yet to be seen to what extent alternative energy sources are damaging to the environment, as it is a known fact that even for them is recorded a certain level of negative externalities.

  18. Modelling traffic pollution in streets

    Energy Technology Data Exchange (ETDEWEB)

    Berkowicz, R.; Hertel, O. [National Environmental Research Inst., Dept. of Atmospheric Environment, Roskilde (Denmark); Larsen, S.E.; Soerensen, N.N.; Nielsen, M. [Risoe National Lab., Dept. of Meteorology and Wind Energy, Roskilde (Denmark)

    1997-01-01

    This report concerns mainly the subject related to modelling air pollution from traffic in urban streets. A short overview is presented over the theoretical aspects and examples of most commonly used methods and models are given. Flow and dispersion conditions in street canyons are discussed and the presentation is substantiated with the analysis of the experimental data. The main emphasis is on the modelling methods that are suitable for routine applications and a more detailed presentation is given of the Operational Street Pollution Model (OSPM), which was developed by the National Environmental Research Institute. The model is used for surveillance of air pollution from traffic in Danish cities and also for special air pollution studies. (au) 76 refs.

  19. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  20. Inverse modeling for the optimization of primary sources of atmospheric pollution at a regional scale; Modelisation inverse pour l'optimisation des sources primaires de pollution atmospherique a l'echelle regionale

    Energy Technology Data Exchange (ETDEWEB)

    Pison, I

    2005-12-15

    Atmospheric pollution at a regional scale is the result of various interacting processes: emissions, chemistry, transport, mixing and deposition of gaseous species. The forecast of air quality is then performed by models, in which the emissions are taken into account through inventories. The simulated pollutant concentrations depend highly on the emissions that are used. Now inventories that represent them have large uncertainties. Since it would be difficult today to improve their building methodologies, there remains the possibility of adding information to existing inventories. The optimization of emissions uses the information that is available in measurements to get the inventory that minimizes the difference between simulated and measured concentrations. A method for the inversion of anthropogenic emissions at a regional scale, using network measurements and based on the CHIMERE model and its adjoint, was developed and validated. A kriging technique allows us to optimize the use of the information available in the concentration space. Repeated kriging-optimization cycles increase the quality of the results. A dynamical spatial aggregation technique makes it possible to further reduce the size of the problem. The NO{sub x} emissions from the inventory elaborated by AIRPARIF for the Paris area were inverted during the summers of 1998 and 1999, the events of the ESQUIF campaign being studied in detail. The optimization reduces large differences between simulated and measured concentrations. Generally, however, the confidence level of the results decreases with the density of the measurement network. Therefore, the results with the higher confidence level correspond to the most intense emission fluxes of the Paris area. On the whole domain, the corrections to the average emitted mass and to the matching time profiles are consistent with the estimate of 15% obtained during the ESQUIF campaign. (author)

  1. Inverse modeling for the optimization of primary sources of atmospheric pollution at a regional scale; Modelisation inverse pour l'optimisation des sources primaires de pollution atmospherique a l'echelle regionale

    Energy Technology Data Exchange (ETDEWEB)

    Pison, I.

    2005-12-15

    Atmospheric pollution at a regional scale is the result of various interacting processes: emissions, chemistry, transport, mixing and deposition of gaseous species. The forecast of air quality is then performed by models, in which the emissions are taken into account through inventories. The simulated pollutant concentrations depend highly on the emissions that are used. Now inventories that represent them have large uncertainties. Since it would be difficult today to improve their building methodologies, there remains the possibility of adding information to existing inventories. The optimization of emissions uses the information that is available in measurements to get the inventory that minimizes the difference between simulated and measured concentrations. A method for the inversion of anthropogenic emissions at a regional scale, using network measurements and based on the CHIMERE model and its adjoint, was developed and validated. A kriging technique allows us to optimize the use of the information available in the concentration space. Repeated kriging-optimization cycles increase the quality of the results. A dynamical spatial aggregation technique makes it possible to further reduce the size of the problem. The NO{sub x} emissions from the inventory elaborated by AIRPARIF for the Paris area were inverted during the summers of 1998 and 1999, the events of the ESQUIF campaign being studied in detail. The optimization reduces large differences between simulated and measured concentrations. Generally, however, the confidence level of the results decreases with the density of the measurement network. Therefore, the results with the higher confidence level correspond to the most intense emission fluxes of the Paris area. On the whole domain, the corrections to the average emitted mass and to the matching time profiles are consistent with the estimate of 15% obtained during the ESQUIF campaign. (author)

  2. Assessment of the impact of point source pollution from the ...

    African Journals Online (AJOL)

    Assessment of the impact of point source pollution from the Keiskammahoek Sewage ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... Also, significant pollution of the receiving Keiskamma River was indicated for ...

  3. The electric power stations viewed as a source of local and transfrontier pollution

    International Nuclear Information System (INIS)

    Motiu, C.; Sandu, I.

    1994-01-01

    The pollutant emission of the thermal power stations may have an important contribution to the local pollution as well as to regional (transfrontier) and global pollution. Due to the impossibility at present of making continuous monitoring of the emission of pollutants it is necessary to use computational models for obtaining inventories of the pollutant sources and for studying their dispersion into atmosphere. The computational code used to simulate the pollutant diffusion in the atmosphere is a climatologic model giving the annual average concentration and the evaluation of the maximum SO 2 concentration. The paper presents the analyses for the case of 14 thermal power stations of Romania

  4. A coupled model approach to reduce nonpoint-source pollution resulting from predicted urban growth: A case study in the Ambos Nogales watershed

    Science.gov (United States)

    Norman, L.M.; Guertin, D.P.; Feller, M.

    2008-01-01

    The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning 'both Nogaleses,' is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be

  5. Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output

    Directory of Open Access Journals (Sweden)

    D. Hirdman

    2010-01-01

    Full Text Available As a part of the IPY project POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate Chemistry, Aerosols and Transport, this paper studies the sources of equivalent black carbon (EBC, sulphate, light-scattering aerosols and ozone measured at the Arctic stations Zeppelin, Alert, Barrow and Summit during the years 2000–2007. These species are important pollutants and climate forcing agents, and sulphate and EBC are main components of Arctic haze. To determine where these substances originate, the measurement data were combined with calculations using FLEXPART, a Lagrangian particle dispersion model. The climatology of atmospheric transport from surrounding regions on a twenty-day time scale modelled by FLEXPART shows that the stations Zeppelin, Alert and Barrow are highly sensitive to surface emissions in the Arctic and to emissions in high-latitude Eurasia in winter. Emission sensitivities over southern Asia and southern North America are small throughout the year. The high-altitude station Summit is an order of magnitude less sensitive to surface emissions in the Arctic whereas emissions in the southern parts of the Northern Hemisphere continents are more influential relative to the other stations. Our results show that for EBC and sulphate measured at Zeppelin, Alert and Barrow, northern Eurasia is the dominant source region. For sulphate, Eastern Europe and the metal smelting industry in Norilsk are particularly important. For EBC, boreal forest fires also contribute in summer. No evidence for any substantial contribution to EBC from sources in southern Asia is found. European air masses are associated with low ozone concentrations in winter due to titration by nitric oxides, but are associated with high ozone concentrations in summer due to photochemical ozone formation. There is also a strong influence of ozone depletion events in the Arctic boundary layer on measured ozone concentrations in spring

  6. Application of an integrated Weather Research and Forecasting (WRF)/CALPUFF modeling tool for source apportionment of atmospheric pollutants for air quality management: A case study in the urban area of Benxi, China.

    Science.gov (United States)

    Wu, Hao; Zhang, Yan; Yu, Qi; Ma, Weichun

    2018-04-01

    In this study, the authors endeavored to develop an effective framework for improving local urban air quality on meso-micro scales in cities in China that are experiencing rapid urbanization. Within this framework, the integrated Weather Research and Forecasting (WRF)/CALPUFF modeling system was applied to simulate the concentration distributions of typical pollutants (particulate matter with an aerodynamic diameter air quality to different degrees. According to the type-based classification, which categorized the pollution sources as belonging to the Bengang Group, large point sources, small point sources, and area sources, the source apportionment showed that the Bengang Group, the large point sources, and the area sources had considerable impacts on urban air quality. Finally, combined with the industrial characteristics, detailed control measures were proposed with which local policy makers could improve the urban air quality in Benxi. In summary, the results of this study showed that this framework has credibility for effectively improving urban air quality, based on the source apportionment of atmospheric pollutants. The authors endeavored to build up an effective framework based on the integrated WRF/CALPUFF to improve the air quality in many cities on meso-micro scales in China. Via this framework, the integrated modeling tool is accurately used to study the characteristics of meteorological fields, concentration fields, and source apportionments of pollutants in target area. The impacts of classified sources on air quality together with the industrial characteristics can provide more effective control measures for improving air quality. Through the case study, the technical framework developed in this study, particularly the source apportionment, could provide important data and technical support for policy makers to assess air pollution on the scale of a city in China or even the world.

  7. Vehicular pollution modeling using the operational street pollution model (OSPM) for Chembur, Mumbai (India)

    DEFF Research Database (Denmark)

    Kumar, Awkash; Ketzel, Matthias; Patil, Rashmi S.

    2016-01-01

    Megacities in India such as Mumbai and Delhi are among the most polluted places in the world. In the present study, the widely used operational street pollution model (OSPM) is applied for assessing pollutant loads in the street canyons of Chembur, a suburban area just outside Mumbai city. Chembur...... concentrations from the routine monitoring performed in Mumbai. NOx emissions originate mainly from vehicles which are ground-level sources and are emitting close to where people live. Therefore, those emissions are highly relevant. The modeled NOx concentration compared satisfactorily with observed data...

  8. The Sources of Air Pollution and Their Control.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Arlington, VA.

    The problems of air pollution and its control are discussed. Major consideration is given the sources of pollution - motor vehicles, industry, power plants, space heating, and refuse disposal. Annual emission levels of five principle pollutants - carbon monoxide, sulfur dioxide, nitrogen oxides, hydrocarbons, and particulate matter - are listed…

  9. Annotated Bibliography of Law-Related Pollution Prevention Sources.

    Science.gov (United States)

    Lynch, Holly; Murphy, Elaine

    This annotated bibliography of law-related pollution prevention sources was prepared by the National Pollution Prevention Center for Higher Education. Some topics of the items include waste reduction, hazardous wastes, risk reduction, environmental policy, pollution prevention, environmental protection, environmental leadership, environmental…

  10. Geostatistical models for air pollution

    International Nuclear Information System (INIS)

    Pereira, M.J.; Soares, A.; Almeida, J.; Branquinho, C.

    2000-01-01

    The objective of this paper is to present geostatistical models applied to the spatial characterisation of air pollution phenomena. A concise presentation of the geostatistical methodologies is illustrated with practical examples. The case study was conducted in an underground copper-mine located on the southern of Portugal, where a biomonitoring program using lichens has been implemented. Given the characteristics of lichens as indicators of air pollution it was possible to gather a great amount of data in space, which enabled the development and application of geostatistical methodologies. The advantages of using geostatistical models compared with deterministic models, as environmental control tools, are highlighted. (author)

  11. Modeling of atmospheric pollutant transfers

    International Nuclear Information System (INIS)

    Jourdain, F.

    2007-01-01

    Modeling is today a common tool for the evaluation of the environmental impact of atmospheric pollution events, for the design of air monitoring networks or for the calculation of pollutant concentrations in the ambient air. It is even necessary for the a priori evaluation of the consequences of a pollution plume. A large choice of atmospheric transfer codes exist but no ideal tool is available which allows to model all kinds of situations. The present day approach consists in combining different types of modeling according to the requested results and simulations. The CEA has a solid experience in this domain and has developed independent tools for the impact and safety studies relative to industrial facilities and to the management of crisis situations. (J.S.)

  12. A combined microscopic and macroscopic approach to modeling the transport of pathogenic microorganisms from nonpoint sources of pollution

    DEFF Research Database (Denmark)

    Yeghiazarian, L.L.; Walker, M.J.; Binning, Philip John

    2006-01-01

    is important for accurate risk assessment and prediction of water contamination events. This paper presents a stochastic Markov model of microorganism transport, with distinct states of microorganism behavior capturing the microbial partitioning between solid and aqueous phases in runoff and soil surface...

  13. Study on road surface source pollution controlled by permeable pavement

    Science.gov (United States)

    Zheng, Chaocheng

    2018-06-01

    The increase of impermeable pavement in urban construction not only increases the runoff of the pavement, but also produces a large number of Non-Point Source Pollution. In the process of controlling road surface runoff by permeable pavement, a large number of particulate matter will be withheld when rainwater is being infiltrated, so as to control the source pollution at the source. In this experiment, we determined the effect of permeable road surface to remove heavy pollutants in the laboratory and discussed the related factors that affect the non-point pollution of permeable pavement, so as to provide a theoretical basis for the application of permeable pavement.

  14. Rainfall Deduction Method for Estimating Non-Point Source Pollution Load for Watershed

    OpenAIRE

    Cai, Ming; Li, Huai-en; KAWAKAMI, Yoji

    2004-01-01

    The water pollution can be divided into point source pollution (PSP) and non-point source pollution (NSP). Since the point source pollution has been controlled, the non-point source pollution is becoming the main pollution source. The prediction of NSP load is being increasingly important in water pollution controlling and planning in watershed. Considering the monitoring data shortage of NPS in China, a practical estimation method of non-point source pollution load --- rainfall deduction met...

  15. Applications of lead isotope rations for identification and apportionment on pollution sources in food

    International Nuclear Information System (INIS)

    Zhao Duoyong; Wei Yimin; Guo Boli; Wei Shuai

    2011-01-01

    Lead is one of the toxic heavy metals which can accumulate to an adverse effect level in human bodies through ingestion, inhalation or other pathways. Because of the persistent lead contamination in farmland environment, large risk exists in the primary stage of 'from farm to table' chain. Environmental media such as soils, atmospheric aerosols were the possible lead sources of agro-food. To pinpoint the pollution sources exactly, cut off the contamination pathways in time, and reduce the risk of hazard, pollution sources tracing was very important. Lead isotope ratio combined with certain models is an effective method to discriminate correctly pollution sources and calculate the individual source contributions. In this review, to provide theoretical and technical reference for controlling lead pollution in environment and food, lead pollution sources in food, tracing principle and methods of lead isotope ratios, and its applications on vegetable, tea, wine, cereal and other food products were concerned. (authors)

  16. Sources and Processes Affecting Particulate Matter Pollution over North China

    Science.gov (United States)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  17. Source attribution and mitigation strategies for air pollution in Delhi

    Science.gov (United States)

    Kiesewetter, Gregor; Purohit, Pallav; Schoepp, Wolfgang; Liu, Jun; Amann, Markus; Bhanarkar, Anil

    2017-04-01

    Indian cities, and the megacity of Delhi in particular, have suffered from high air pollution for years. Recent observations show that ambient concentrations of fine particulate matter (PM2.5) in Delhi strongly exceed the Indian national ambient air quality standards as well as the World Health Organization's interim target levels. At the same time, India is experiencing strong urbanization, and both Delhi's emissions as well as the exposed population are growing. Therefore the question arises how PM2.5 concentrations will evolve in the future, and how they can be improved efficiently. In the past, typical responses of the Delhi government to high pollution episodes have been restrictions on motorized road traffic, on power plant operations and on construction activities. However, to design sustainable and efficient pollution mitigation measures, the contribution of different source sectors and spatial scales needs to be quantified. Here we combine the established emission calculation scheme of the Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) model with regional chemistry-transport model simulations (0.5° resolution) as well as local particle dispersion (2 × 2 km resolution) to arrive at a source attribution of ambient PM2.5 in Delhi. Calculated concentrations compare well to observations. We find that roughly 60% of total population-weighted PM2.5 originates from sources outside the national capital territory of Delhi itself. Consequently, mitigation strategies need to involve neighboring states and address the typical sources there. We discuss the likely evolution of ambient concentrations under different scenarios which assume either current emission control legislation, or application of a Clean Air Scenario foreseeing additional regulations in non-industrial sectors which are often overlooked, such as phase-out of solid fuel cookstoves, and road paving. Only in the case where the Clean Air Scenario is applied both in Delhi as well as in

  18. [Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].

    Science.gov (United States)

    Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun

    2013-04-01

    The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.

  19. Spatial-temporal Variations and Source Apportionment of typical Heavy Metals in Beijing-Tianjin-Hebei (BTH) region of China Based on Localized Air Pollutants Emission Inventory and WRF-CMAQ modelling

    Science.gov (United States)

    Tian, H.; Liu, S.; Zhu, C.; Liu, H.; Wu, B.

    2017-12-01

    Abstract: Anthropogenic atmospheric emissions of air pollutants have caused worldwide concerns due to their adverse effects on human health and the ecosystem. By determining the best available emission factors for varied source categories, we established the comprehensive atmospheric emission inventories of hazardous air pollutants including 12 typical toxic heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu, and Zn) from primary anthropogenic activities in Beijing-Tianjin-Hebei (BTH) region of China for the period of 2012 for the first time. The annual emissions of these pollutants were allocated at a high spatial resolution of 9km × 9km grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). Notably, the total heavy metal emissions from this region represented about 10.9% of the Chinese national total emissions. The areas with high emissions of heavy metals were mainly concentrated in Tangshan, Shijiazhuang, Handan and Tianjin. Further, WRF-CMAQ modeling system were applied to simulate the regional concentration of heavy metals to explore their spatial-temporal variations, and the source apportionment of these heavy metals in BTH region was performed using the Brute-Force method. Finally, integrated countermeasures were proposed to minimize the final air pollutants discharge on account of the current and future demand of energy-saving and pollution reduction in China. Keywords: heavy metals; particulate matter; emission inventory; CMAQ model; source apportionment Acknowledgment. This work was funded by the National Natural Science Foundation of China (21377012 and 21177012) and the Trail Special Program of Research on the Cause and Control Technology of Air Pollution under the National Key Research and Development Plan of China (2016YFC0201501).

  20. Regional Persistent Organic Pollutants' Environmental Impact Assessment and Control Model

    Directory of Open Access Journals (Sweden)

    Jurgis Staniskis

    2008-10-01

    Full Text Available The sources of formation, environmental distribution and fate of persistent organic pollutants (POPs are increasingly seen as topics to be addressed and solved at the global scale. Therefore, there are already two international agreements concerning persistent organic pollutants: the Protocol of 1998 to the 1979 Convention on the Long-Range Transboundary Air Pollution on Persistent Organic Pollutants (Aarhus Protocol; and the Stockholm Convention on Persistent Organic Pollutants. For the assessment of environmental pollution of POPs, for the risk assessment, for the evaluation of new pollutants as potential candidates to be included in the POPs list of the Stokholmo or/and Aarhus Protocol, a set of different models are developed or under development. Multimedia models help describe and understand environmental processes leading to global contamination through POPs and actual risk to the environment and human health. However, there is a lack of the tools based on a systematic and integrated approach to POPs management difficulties in the region.

  1. National Management Measures to Control Nonpoint Source Pollution from Forestry

    Science.gov (United States)

    This report helps forest owners protect lakes and streams from polluted runoff that can result from forestry activities. The report will also help states to implement their nonpoint source control programs.

  2. Identifying sources of groundwater pollution using trace element signatures

    International Nuclear Information System (INIS)

    Olmez, I.; Hayes, M.J.

    1990-01-01

    A simple receptor modeling approach has been applied to groundwater pollution studies and has shown that marker trace elements can be used effectively in source identification and apportionment. Groundwater and source materials from one coal-fired and five oil-fired power plants, and one coal-tar deposit site have been analyzed by instrumental neutron activation analysis for more than 20 minor and trace elements. In one of the oil-fired power plants, trace element patterns indicated a leak from the hazardous waste surface impoundments owing to the failure of a hypolon liner. Also, the extent and spatial distribution of groundwater contamination have been determined in a coal-tar deposit site

  3. Stochastic Modeling of Traffic Air Pollution

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2014-01-01

    In this paper, modeling of traffic air pollution is discussed with special reference to infrastructures. A number of subjects related to health effects of air pollution and the different types of pollutants are briefly presented. A simple model for estimating the social cost of traffic related air...... and using simple Monte Carlo techniques to obtain a stochastic estimate of the costs of traffic air pollution for infrastructures....... pollution is derived. Several authors have published papers on this very complicated subject, but no stochastic modelling procedure have obtained general acceptance. The subject is discussed basis of a deterministic model. However, it is straightforward to modify this model to include uncertain parameters...

  4. Pollution Sources in the nile and their environmental impacts

    International Nuclear Information System (INIS)

    Abd El- Bary, M.R.

    1999-01-01

    Over the past decades , the natural quality of water sources has been altered by the impact of various human activities and water uses. In Egypt, the Nile River which is considered as the main water source is still a recipient of most of the wastewater discharged by industrial effluents and several agriculture drains contains mixed wastes (sewage and industrial). These wastes includes a variety of pollutants which have considerable potential effect on both water ecosystem and human health. Monitoring of these pollutant is the first step for the improvement and protection of the Nile River .The Nile Research Institute designed a monitoring program includes collection and analysis of samples from 35 stations along the Nile River from Aswan to the Mediterranean Sea and from all points sources of pollution discharge their wastes into the Nile. The most important pollutant in these wastes are heavy metals, organic matters, inorganic compounds and micro organism causing disease

  5. Pollution externalities in a Schumpeterian growth model

    OpenAIRE

    Koesler, Simon

    2010-01-01

    This paper extends a standard Schumpeterian growth model to include an environmental dimension. Thereby, it explicitly links the pollution intensity of economic activity to technological progress. In a second step, it investigates the effect of pollution on economic growth under the assumption that pollution intensities are related to technological progress. Several conclusions emerge from the model. In equilibrium, the economy follows a balanced growth path. The effect of pollution on the ec...

  6. Characterization and source apportionment of water pollution in Jinjiang River, China.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Yue, Weifeng; Song, Liuting

    2013-11-01

    Characterizing water quality and identifying potential pollution sources could greatly improve our knowledge about human impacts on the river ecosystem. In this study, fuzzy comprehensive assessment (FCA), pollution index (PI), principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) were combined to obtain a deeper understanding of temporal-spatial characterization and sources of water pollution with a case study of the Jinjiang River, China. Measurement data were obtained with 17 water quality variables from 20 sampling sites in the December 2010 (withered water period) and June 2011 (high flow period). FCA and PI were used to comprehensively estimate the water quality variables and compare temporal-spatial variations, respectively. Rotated PCA and receptor model (APCS-MLR) revealed potential pollution sources and their corresponding contributions. Application results showed that comprehensive application of various multivariate methods were effective for water quality assessment and management. In the withered water period, most sampling sites were assessed as low or moderate pollution with characteristics pollutants of permanganate index and total nitrogen (TN), whereas 90% sites were classified as high pollution in the high flow period with higher TN and total phosphorus. Agricultural non-point sources, industrial wastewater discharge, and domestic sewage were identified as major pollution sources. Apportionment results revealed that most variables were complicatedly influenced by industrial wastewater discharge and agricultural activities in withered water period and primarily dominated by agricultural runoff in high flow period.

  7. Cost-effectiveness and cost-benefit analysis of BMPs in controlling agricultural nonpoint source pollution in China based on the SWAT model.

    Science.gov (United States)

    Liu, Ruimin; Zhang, Peipei; Wang, Xiujuan; Wang, Jiawei; Yu, Wenwen; Shen, Zhenyao

    2014-12-01

    Best management practices (BMPs) have been widely used in managing agricultural nonpoint source pollution (ANSP) at the watershed level. Most BMPs are related to land use, tillage management, and fertilizer levels. In total, seven BMP scenarios (Reforest1, Reforest2, No Tillage, Contour tillage, and fertilizer level 1-4) that are related to these three factors were estimated in this study. The objectives were to investigate the effectiveness and cost-benefit of these BMPs on ANSP reduction in a large tributary of the Three Gorges Reservoir (TGR) in China, which are based on the simulation results of the Soil and Water Assessment Tool (SWAT) model. The results indicated that reforestation was the most economically efficient of all BMPs, and its net benefits were up to CNY 4.36×10(7) years(-1) (about USD 7.08×10(6) years(-1)). Regarding tillage practices, no tillage practice was more environmentally friendly than other tillage practices, and contour tillage was more economically efficient. Reducing the local fertilizer level to 0.8-fold less than that of 2010 can yield a satisfactory environmental and economic efficiency. Reforestation and fertilizer management were more effective in reducing total phosphorus (TP), whereas tillage management was more effective in reducing total nitrogen (TN). When CNY 10,000 (about USD 162) was applied to reforestation, no tillage, contour tillage, and an 0.8-fold reduction in the fertilizer level, then annual TN load can be reduced by 0.08, 0.16, 0.11, and 0.04 t and annual TP load can be reduced by 0.04, 0.02, 0.01 and 0.03 t, respectively. The cost-benefit (CB) ratios of the BMPs were as follows: reforestation (207 %) > contour tillage (129 %) > no tillage (114 %) > fertilizer management (96 and 89 %). The most economical and effective BMPs can be designated as follows: BMP1 (returning arable land with slopes greater than 25° to forests and those lands with slopes of 15-25° to orchards), BMP2 (implementing no tillage

  8. Pollutant Source Tracking (PST) Technical Guidance

    Science.gov (United States)

    2011-12-01

    in the context of heavy metals (lead, copper), is considered to be a minor process contribution to the source fingerprint. 3.7 RAPID SCREENING...limits (summarized in Table 2) support the use of ICP-AES (ICP-OES) for heavy metal determination in soils , sediments, wastewater and other matrices...are included here. Isotopic ratios of stable isotopes of the metal of interest can be used for source identification and apportionment in complex

  9. Health effects and sources of indoor air pollution. Part I

    International Nuclear Information System (INIS)

    Samet, J.M.; Marbury, M.C.; Spengler, J.D.

    1987-01-01

    Since the early 1970s, the health effects of indoor air pollution have been investigated with increasing intensity. Consequently, a large body of literature is now available on diverse aspects of indoor air pollution: sources, concentrations, health effects, engineering, and policy. This review begins with a review of the principal pollutants found in indoor environments and their sources. Subsequently, exposure to indoor air pollutants and health effects are considered, with an emphasis on those indoor air quality problems of greatest concern at present: passive exposure to tobacco smoke, nitrogen dioxide from gas-fueled cooking stoves, formaldehyde exposure, radon daughter exposure, and the diverse health problems encountered by workers in newer sealed office buildings. The review concludes by briefly addressing assessment of indoor air quality, control technology, research needs, and clinical implications. 243 references

  10. [Watershed water environment pollution models and their applications: a review].

    Science.gov (United States)

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  11. Development of Laboratory Model Ecosystems as Early Warning Elements of Environmental Pollution

    Science.gov (United States)

    1974-12-01

    AD-AOll 851 DEVELOPMENT OF LABORATORY MODEL ECOSYSTEMS AS EARLY WARNING ELEMENTS OF ENVIRONMENTAL POLLUTION Robert L. Metcalf... ENVIRONMENTAL POLLUTION Robert L. Metcalf, Ph. D. University of Illinois Urbana-Champaign, Illinois INTRODUCTION Problems of environmental pollution with...house dust is unsafe to breathe (Ewing and Pearson, 1974). Most of the source of our concern about environmental pollution by trace substances relates

  12. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao'an District, Shenzhen, China

    Science.gov (United States)

    Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan

    2016-11-01

    Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.

  13. Air Pollution Modeling at Road Sides Using the Operational Street Pollution Model-A Case Study in Hanoi, Vietnam

    DEFF Research Database (Denmark)

    Hung, Ngo Tho; Ketzel, Matthias; Jensen, Steen Solvang

    2010-01-01

    In many metropolitan areas, traffic is the main source of air pollution. The high concentrations of pollutants in streets have the potential to affect human health. Therefore, estimation of air pollution at the street level is required for health impact assessment. This task has been carried out...... in many developed countries by a combination of air quality measurements and modeling. This study focuses on how to apply a dispersion model to cities in the developing world, where model input data and data from air quality monitoring stations are limited or of varying quality. This research uses...... the operational street pollution model (OSPM) developed by the National Environmental Research Institute in Denmark for a case study in Hanoi, the capital of Vietnam. OSPM predictions from five streets were evaluated against air pollution measurements of nitrogen oxides (NO), sulfur dioxide (SO2), carbon monoxide...

  14. Assessing Model Characterization of Single Source ...

    Science.gov (United States)

    Aircraft measurements made downwind from specific coal fired power plants during the 2013 Southeast Nexus field campaign provide a unique opportunity to evaluate single source photochemical model predictions of both O3 and secondary PM2.5 species. The model did well at predicting downwind plume placement. The model shows similar patterns of an increasing fraction of PM2.5 sulfate ion to the sum of SO2 and PM2.5 sulfate ion by distance from the source compared with ambient based estimates. The model was less consistent in capturing downwind ambient based trends in conversion of NOX to NOY from these sources. Source sensitivity approaches capture near-source O3 titration by fresh NO emissions, in particular subgrid plume treatment. However, capturing this near-source chemical feature did not translate into better downwind peak estimates of single source O3 impacts. The model estimated O3 production from these sources but often was lower than ambient based source production. The downwind transect ambient measurements, in particular secondary PM2.5 and O3, have some level of contribution from other sources which makes direct comparison with model source contribution challenging. Model source attribution results suggest contribution to secondary pollutants from multiple sources even where primary pollutants indicate the presence of a single source. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, deci

  15. Diagnosing Tibetan pollutant sources via volatile organic compound observations

    Science.gov (United States)

    Li, Hongyan; He, Qiusheng; Song, Qi; Chen, Laiguo; Song, Yongjia; Wang, Yuhang; Lin, Kui; Xu, Zhencheng; Shao, Min

    2017-10-01

    Atmospheric transport of black carbon (BC) from surrounding areas has been shown to impact the Tibetan environment, and clarifying the geographical source and receptor regions is crucial for providing guidance for mitigation actions. In this study, 10 trace volatile organic compounds (VOCs) sampled across Tibet are chosen as proxies to diagnose source regions and related transport of pollutants to Tibet. The levels of these VOCs in Tibet are higher than those in the Arctic and Antarctic regions but much lower than those observed at many remote and background sites in Asia. The highest VOC level is observed in the eastern region, followed by the southern region and the northern region. A positive matrix factorization (PMF) model found that three factors-industry, biomass burning, and traffic-present different spatial distributions, which indicates that different zones of Tibet are influenced by different VOC sources. The average age of the air masses in the northern and eastern regions is estimated to be 3.5 and 2.8 days using the ratio of toluene to benzene, respectively, which indicates the foreign transport of VOC species to those regions. Back-trajectory analyses show that the Afghanistan-Pakistan-Tajikistan region, Indo-Gangetic Plain (IGP), and Meghalaya-Myanmar region could transport industrial VOCs to different zones of Tibet from west to east. The agricultural bases in northern India could transport biomass burning-related VOCs to the middle-northern and eastern zones of Tibet. High traffic along the unique national roads in Tibet is associated with emissions from local sources and neighboring areas. Our study proposes international joint-control efforts and targeted actions to mitigate the climatic changes and effects associated with VOCs in Tibet, which is a climate sensitive region and an important source of global water.

  16. Characterization and indentification of air pollution sources in Metro Manila

    International Nuclear Information System (INIS)

    Santos, Flora L.; Pabroa, Preciosa Corazon B.; Racho, Joseph Michael D.; Morco, Ryan P.; Bautista VII, Angel T.; Bucal, Camille Grace D.

    2010-01-01

    Air particulates matter (PM 1 0 and PM 2 .5) is a mixture of different pollutant sources which can be of anthropogenic and/or natural origin. Identification and apportionment of pollutant sources is important to be able to have better understanding of prevailing conditions in the area and thus better air quality management can be applied. Results have shown that in all the sampling sites, a major fraction of pollutant sources come from vehicular or traffic-oriented sources, comprising more than 30% of PM 2 .5. Of particular great concern especially in the residents of the area are the high Pb levels in Valenzuela City. In 2005, the annual mean level of PM 1 0 Pb in Valenzuela was 0.267 μg/m 3 while the other PNRI sampling sites registered annual mean levels between 0033 to 0.085 μ/m 3 . The high Pb condition is reflected in the source apportionment studies with Pb sources showing up in both the coarse (PM 1 0-2.5) and the fine fractions (PM 2 .5). The CPF analysis plots of 2008 Pb levels in both the coarse and the fine fractions show patterns for probable sources in 2008. Further study of the location of battery recycling facilities and other possible sources of lead is needed to validate the results of the CPF determination. (author)

  17. Pollution source localization in an urban water supply network based on dynamic water demand.

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  18. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source

    Science.gov (United States)

    Liu, Jun; Mauzerall, Denise L.; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R.; Zhu, Tong

    2016-01-01

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m−3 (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m−3; mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m−3 (40 ± 9% of 67 ± 41 μg⋅m−3), 44 ± 27 μg⋅m−3 (43 ± 10% of 99 ± 54 μg⋅m−3), and 25 ± 14 μg⋅m−3 (35 ± 8% of 70 ± 35 μg⋅m−3) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level. PMID:27354524

  19. Pollutants in drinking water - sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2005-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemicals and radionuclide etc. This is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  20. A Summary of Best Management Practices for Nonpoint Source Pollution

    Science.gov (United States)

    1992-08-01

    and concrete block material, and structures and systems for soil stabilization including erosion checks, revetments , retaining structures, and...industrial storage areas, and coal/ slag piles. Rural NPS pollution includes runoff from Some of the above sources plus runoff from agriculture...water quality. The effectiveness of detention ponds is reduced, however, when maintenance is neglected. Common problems include blocked outlets

  1. Pollutant dispersion models for issues of air pollution control

    International Nuclear Information System (INIS)

    1985-01-01

    14 papers entered separately into the data base were presented at the meeting for application-oriented dispersion models for issues of air pollution control. These papers focus on fields of application, availability of required input data relevant to emissions and meteorology, performance and accuracy of these methods and their practicability. (orig./PW) [de

  2. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  3. An Analysis of Air Pollution in Makkah - a View Point of Source Identification

    Directory of Open Access Journals (Sweden)

    Turki M. Habeebullah

    2013-07-01

    Full Text Available Makkah is one of the busiest cities in Saudi Arabia and remains busy all year around, especially during the season of Hajj and the month of Ramadan when millions of people visit this city. This emphasizes the importance of clean air and of understanding the sources of various air pollutants, which is vital for the management and advanced modeling of air pollution. This study intends to identify the major sources of air pollutants in Makkah, near the Holy Mosque (Al-Haram using a graphical approach. Air pollutants considered in this study are nitrogen oxides (NOx, nitrogen dioxide (NO2, nitric oxide (NO, carbon monoxide (CO, sulphur dioxide (SO2, ozone (O3 and particulate matter with aero-dynamic diameter of 10 um or less (PM10. Polar plots, time variation plots and correlation analysis are used to analyse the data and identify the major sources of emissions. Most of the pollutants demonstrate high concentrations during the morning traffic peak hours, suggesting road traffic as the main source of emission. The main sources of pollutant emissions identified in Makkahwere road traffic, re-suspended and windblown dust and sand particles. Further investigation on detailedsource apportionment is required, which is part of the ongoing project.

  4. Mobile source pollution control in the United States and China

    International Nuclear Information System (INIS)

    Menz, Fredric C

    2002-01-01

    This paper reviews policies for the control of mobile source pollution and their potential application in China. The first section of the paper reviews the U.S. experience with mobile source pollution control since regulations were first established in the Clean Air Act of 1970. Highlights in the policy and trends in vehicle emissions over the 1970 to 2000 time period are discussed. The second section of the paper discusses the range of policy instruments that could be used to control vehicle pollution, ranging from traditional direct regulations to market-based instruments. Experiences with the use of economic incentives in the United States and elsewhere are also discussed. The third section of the paper discusses possible implications of the U.S. experience for controlling vehicle pollution in China. While market-based instruments might be particularly appropriate for use in several aspects of China's pollution control policies, important differences between the institutional structures in China and the United States suggest that they should be phased in gradually. The paper closes with concluding remarks. (author)

  5. Mobile source pollution control in the United States and China

    Energy Technology Data Exchange (ETDEWEB)

    Menz, Fredric C

    2002-07-01

    This paper reviews policies for the control of mobile source pollution and their potential application in China. The first section of the paper reviews the U.S. experience with mobile source pollution control since regulations were first established in the Clean Air Act of 1970. Highlights in the policy and trends in vehicle emissions over the 1970 to 2000 time period are discussed. The second section of the paper discusses the range of policy instruments that could be used to control vehicle pollution, ranging from traditional direct regulations to market-based instruments. Experiences with the use of economic incentives in the United States and elsewhere are also discussed. The third section of the paper discusses possible implications of the U.S. experience for controlling vehicle pollution in China. While market-based instruments might be particularly appropriate for use in several aspects of China's pollution control policies, important differences between the institutional structures in China and the United States suggest that they should be phased in gradually. The paper closes with concluding remarks. (author)

  6. Nonpoint source pollution of urban stormwater runoff: a methodology for source analysis.

    Science.gov (United States)

    Petrucci, Guido; Gromaire, Marie-Christine; Shorshani, Masoud Fallah; Chebbo, Ghassan

    2014-09-01

    The characterization and control of runoff pollution from nonpoint sources in urban areas are a major issue for the protection of aquatic environments. We propose a methodology to quantify the sources of pollutants in an urban catchment and to analyze the associated uncertainties. After describing the methodology, we illustrate it through an application to the sources of Cu, Pb, Zn, and polycyclic aromatic hydrocarbons (PAH) from a residential catchment (228 ha) in the Paris region. In this application, we suggest several procedures that can be applied for the analysis of other pollutants in different catchments, including an estimation of the total extent of roof accessories (gutters and downspouts, watertight joints and valleys) in a catchment. These accessories result as the major source of Pb and as an important source of Zn in the example catchment, while activity-related sources (traffic, heating) are dominant for Cu (brake pad wear) and PAH (tire wear, atmospheric deposition).

  7. AirPEx. Air Pollution Exposure Model

    Energy Technology Data Exchange (ETDEWEB)

    Freijer, J.I.; Bloemen, H.J.Th.; De Loos, S.; Marra, M.; Rombout, P.J.A.; Steentjes, G.M.; Van Veen, M.P.

    1997-12-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The principal grounds for studying the inhalatory exposure of humans to air pollutants are formed by the need for realistic exposure/dose estimates to evaluate the health effects of these pollutants. The AirPEx (Air Pollution Exposure) model, developed to assess the time- and space-dependence of inhalatory exposure of humans to air pollution, has been implemented for use as a Windows 3.1 computer program. The program is suited to estimating various exposure and dose quantities for individuals, as well as for populations and subpopulations. This report describes the fundamentals of the AirPEx model and provides a user manual for the computer program. Several examples included in the report illustrate the possibilities of the AirPEx model in exposure assessment. The model will be used at the National Institute of Public Health and the Environment as a tool in analysing the current exposure of the Dutch population to air pollutants. 57 refs.

  8. Sources of fluoride pollution in Kasur district, Pakistan

    International Nuclear Information System (INIS)

    Khan, I.H.; Haq, M.M.I.

    2005-01-01

    Serious bone problems were reported in certain localities in Pakistan due to contamination of drinking water by fluoride pollution. Against WHO recommended threshold limit of 0.7 mg/L, about 40 mg/L of fluoride is determined by ion chromatographic technique of HPLC. The compositions of pollutants were investigated in the present study by examination the chemical and mineralogical studies of water and soil samples. It is found that main problem in Manga Mandi area of District Kasur, was caused due to the decomposition of phosphorus containing minerals in soil under acidic conditions. The other sources of fluoride contamination in different areas of Pakistan is being investigated. (author)

  9. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China.

    Science.gov (United States)

    Zhang, Bao-Lei; Cui, Bo-Hao; Zhang, Shu-Min; Wu, Quan-Yuan; Yao, Lei

    2018-05-03

    Nitrogen (N) and phosphorus (P) from non-point source (NPS) pollution in Nansi Lake Basin greatly influenced the water quality of Nansi Lake, which is the determinant factor for the success of East Route of South-North Water Transfer Project in China. This research improved Johnes export coefficient model (ECM) by developing a method to determine the export coefficients of different land use types based on the hydrological and water quality data. Taking NPS total nitrogen (TN) and total phosphorus (TP) as the study objects, this study estimated the contributions of different pollution sources and analyzed their spatial distributions based on the improved ECM. The results underlined that the method for obtaining output coefficients of land use types using hydrology and water quality data is feasible and accurate, and is suitable for the study of NPS pollution at large-scale basins. The average output structure of NPS TN from land use, rural breeding and rural life is 33.6, 25.9, and 40.5%, and the NPS TP is 31.6, 43.7, and 24.7%, respectively. Especially, dry land was the main land use source for both NPS TN and TP pollution, with the contributed proportions of 81.3 and 81.8% respectively. The counties of Zaozhuang, Tengzhou, Caoxian, Yuncheng, and Shanxian had higher contribution rates and the counties of Dingtao, Juancheng, and Caoxian had the higher load intensities for both NPS TN and TP pollution. The results of this study allowed for an improvement in the understanding of the pollution source contribution and enabled researchers and planners to focus on the most important sources and regions of NPS pollution.

  10. Modeling Ballasted Tracks for Pollutants

    Science.gov (United States)

    2012-08-01

    In this study, the Regional Transportation Districts (RTDs) light rail operations were examined for pollutant production and runoff. To : accomplish this, a laboratory study utilizing a rainfall-runoff facility was conducted. Input to this labo...

  11. Analysis of Nonlinear Dispersion of a Pollutant Ejected by an External Source into a Channel Flow

    Directory of Open Access Journals (Sweden)

    T. Chinyoka

    2010-01-01

    Full Text Available This paper focuses on the transient analysis of nonlinear dispersion of a pollutant ejected by an external source into a laminar flow of an incompressible fluid in a channel. The influence of density variation with pollutant concentration is approximated according to the Boussinesq approximation, and the nonlinear governing equations of momentum and pollutant concentration are obtained. The problem is solved numerically using a semi-implicit finite difference method. Solutions are presented in graphical form and given in terms of fluid velocity, pollutant concentration, skin friction, and wall mass transfer rate for various parametric values. The model can be a useful tool for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water body.

  12. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    Science.gov (United States)

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  13. Application of genetic algorithm for the simultaneous identification of atmospheric pollution sources

    Science.gov (United States)

    Cantelli, A.; D'Orta, F.; Cattini, A.; Sebastianelli, F.; Cedola, L.

    2015-08-01

    A computational model is developed for retrieving the positions and the emission rates of unknown pollution sources, under steady state conditions, starting from the measurements of the concentration of the pollutants. The approach is based on the minimization of a fitness function employing a genetic algorithm paradigm. The model is tested considering both pollutant concentrations generated through a Gaussian model in 25 points in a 3-D test case domain (1000m × 1000m × 50 m) and experimental data such as the Prairie Grass field experiments data in which about 600 receptors were located along five concentric semicircle arcs and the Fusion Field Trials 2007. The results show that the computational model is capable to efficiently retrieve up to three different unknown sources.

  14. Pollution assessment and source apportionment of heavy metals in contaminated site soils

    Science.gov (United States)

    Zheng, Hongbo; Ma, Yan

    2018-03-01

    Pollution characteristics of heavy metals in soil were analyzed with a typical contaminated site as the case area. The pollution degree of the element was evaluated by indexes of geoaccumulation (Igeo). The potential ecological risk of heavy metals was assessed with potential ecological risk index model. Principal component analysis (PCA) model was simultaneously carried out to identify the main sources of heavy metals in topsoils. The results indicated that: 1. Mean values of 11 kinds of metals in topsoils were greater than respective soil background values, following the order: Zn>Pb>V>Cr>Cu>Ni>Co>As>Sb>Cd>Hg. Heavy metals with a certain accumulation in the research area were significantly affected by external factors. 2. Igeo results showed that Cd and Zn reached strongly polluted degree, while Pb with moderately to strongly polluted, Sb and Hg with moderately polluted, Cu, Co, Ni and Cr with unpolluted to moderately polluted, V and As with un-polluted. 3. Potential ecological risk assessment showed the degree of ecological risk with Cd at very high risk, Hg at high risk, Pb at moderate risk and others at low risk. The comprehensive risk of all the metals was very high. 4. PCA got three main sources with contributions, including industrial activities (44.18%), traffic and burning dust (26.68%) and soil parent materials (12.20%).

  15. Vehicular pollution modeling using the operational street pollution model (OSPM) for Chembur, Mumbai (India).

    Science.gov (United States)

    Kumar, Awkash; Ketzel, Matthias; Patil, Rashmi S; Dikshit, Anil Kumar; Hertel, Ole

    2016-06-01

    Megacities in India such as Mumbai and Delhi are among the most polluted places in the world. In the present study, the widely used operational street pollution model (OSPM) is applied for assessing pollutant loads in the street canyons of Chembur, a suburban area just outside Mumbai city. Chembur is both industrialized and highly congested with vehicles. There are six major street canyons in this area, for which modeling has been carried out for NOx and particulate matter (PM). The vehicle emission factors for Indian cities have been developed by Automotive Research Association of India (ARAI) for PM, not specifically for PM10 or PM2.5. The model has been applied for 4 days of winter season and for the whole year to see the difference of effect of meteorology. The urban background concentrations have been obtained from an air quality monitoring station. Results have been compared with measured concentrations from the routine monitoring performed in Mumbai. NOx emissions originate mainly from vehicles which are ground-level sources and are emitting close to where people live. Therefore, those emissions are highly relevant. The modeled NOx concentration compared satisfactorily with observed data. However, this was not the case for PM, most likely because the emission inventory did not contain emission terms due to resuspended particulate matter.

  16. Loading functions for assessment of water pollution from nonpoint sources

    International Nuclear Information System (INIS)

    McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W.

    1976-05-01

    Methods for evaluating the quantity of water pollutants generated from nonpoint sources including agriculture, silviculture, construction, mining, runoff from urban areas and rural roads, and terrestrial disposal are developed and compiled for use in water quality planning. The loading functions, plus in some instances emission values, permit calculation of nonpoint source pollutants from available data and information. Natural background was considered to be a source and loading functions were presented to estimate natural or background loads of pollutants. Loading functions/values are presented for average conditions, i.e., annual average loads expressed as metric tons/hectare/year (tons/acre/year). Procedures for estimating seasonal or 30-day maximum and minimum loads are also presented. In addition, a wide variety of required data inputs to loading functions, and delineation of sources of additional information are included in the report. The report also presents an evaluation of limitations and constraints of various methodologies which will enable the user to employ the functions realistically

  17. Modeling Water Pollution of Soil

    Directory of Open Access Journals (Sweden)

    V. Doležel

    2008-01-01

    Full Text Available The government of the Czech Republic decided that in the location to the west of Prague, capital city of the Czech Republic, some deep mines should be closed because of their low efficiency of coal mined i.e. small amounts and low quality of the coal extracted in the final stage of mining. The locations near Prague influenced the decision to do maintenance on the abandoned mines, as the thread of soil pollution was unacceptably high in the neighborhood of the capital city. Before the mines were closed it was necessary to separate existed extensive horizontal location of salt water below a clay layer in order not to deteriorate the upper fresh water. The salt water could not be allowed to pollute the upper layer with the fresh water, as many wells in villages in the neighborhood of the former mines would be contaminated. Two horizontal clay layers (an insulator and a semi-insulator separated the two horizons containing salt water and fresh water. Before starting deep mining, vertical shafts had to be constructed with concrete linings to enable the miners to access the depths. The salt water was draining away throughout the existence of the mine. The drainage was designed very carefully to avoid possible infiltration of salt water into the upper horizon. Before the mines were abandoned it was necessary to prevent contact between the two kinds of waters in the shafts. Several options were put forward, the most efficient of which appeared to be one that proposed filling the shafts with spoil soil and creating a joint seal made of disparate material at the interface between the salt water and fresh water to create a reliable stopper. The material for the spoil soil was delivered from deposits located not far from the shafts. This material consisted of a variety of grains of sand, big boulders of slate, slaty clay, sandstone, etc.. Chemical admixtures were considered to improve the flocculation of the filling material. The stopper was positioned at a

  18. Mathematical models for atmospheric pollutants. Final report

    International Nuclear Information System (INIS)

    Drake, R.L.; Barrager, S.M.

    1979-08-01

    The present and likely future roles of mathematical modeling in air quality decisions are described. The discussion emphasizes models and air pathway processes rather than the chemical and physical behavior of specific anthropogenic emissions. Summarized are the characteristics of various types of models used in the decision-making processes. Specific model subclasses are recommended for use in making air quality decisions that have site-specific, regional, national, or global impacts. The types of exposure and damage models that are currently used to predict the effects of air pollutants on humans, other animals, plants, ecosystems, property, and materials are described. The aesthetic effects of odor and visibility and the impact of pollutants on weather and climate are also addressed. Technical details of air pollution meteorology, chemical and physical properties of air pollutants, solution techniques, and air quality models are discussed in four appendices bound in separate volumes

  19. Lead isotopes as an environmental indicator of pollution sources

    International Nuclear Information System (INIS)

    Aaberg, G.; Pacyna, J.; Stray, H.

    1997-02-01

    An interesting question when determining and quantifying pollution is the characterisation of the sources. Also, is the pollution locally derived or is it longtransported? Analyses of Pb isotope ratios and Pb concentrations on airfilter from Oslo, Norway, together with analyses of coal of different origin and wood, show that the decrease in total Pb in the first half of the 1990's is not due only to the reduction of leaded petrol but that there are other important sources for the pollution which have been cut down. The reduction in emissions from coal burning in Europe can be seen on airfilter from Oslo and also the following reduction in leaded petrol. An isotopic study of lead on airfilter from the countryside outside Oslo implies that the finer particles have been atmospherically long transported while the coarser particles are of a more local origin, e.g. from domestic burning of wood. The above results show that the use of a natural isotopic system like Pb is a powerful tool for e.g. the determination of pollution, routes of its transportation, for the monitoring of processes of the present, and for provenance determinations. 7 refs., 8 figs., 2 tabs

  20. Fine Particulate Pollution and Source Apportionment in the Urban Centers for Africa, Asia and Latin America

    Science.gov (United States)

    Guttikunda, S. K.; Johnson, T. M.; Procee, P.

    2004-12-01

    Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.

  1. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong, E-mail: wangdong@nju.edu.cn; Zhu, Xiaobin

    2016-07-15

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl{sup −} concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM{sub (ZS)} is used as sampling algorithm. Then, the predictive distribution of Cl{sup -} concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl{sup -} concentration. The results of model calibration and verification demonstrate that the DREAM{sub (ZS)} based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015–2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl{sup −} concentration of groundwater source field always vary between 175 mg/l and 200 mg/l. - Highlights: • The parameter uncertainty of seawater intrusion model is evaluated by MCMC. • Groundwater source field won’t be polluted by seawater intrusion in future 5 years. • The pollution risk is assessed by the predictive quantiles of Cl{sup −} concentration.

  2. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion

    International Nuclear Information System (INIS)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong; Zhu, Xiaobin

    2016-01-01

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl − concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM (ZS) is used as sampling algorithm. Then, the predictive distribution of Cl - concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl - concentration. The results of model calibration and verification demonstrate that the DREAM (ZS) based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015–2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl − concentration of groundwater source field always vary between 175 mg/l and 200 mg/l. - Highlights: • The parameter uncertainty of seawater intrusion model is evaluated by MCMC. • Groundwater source field won’t be polluted by seawater intrusion in future 5 years. • The pollution risk is assessed by the predictive quantiles of Cl − concentration

  3. Car indoor air pollution - analysis of potential sources

    Directory of Open Access Journals (Sweden)

    Müller Daniel

    2011-12-01

    Full Text Available Abstract The population of industrialized countries such as the United States or of countries from the European Union spends approximately more than one hour each day in vehicles. In this respect, numerous studies have so far addressed outdoor air pollution that arises from traffic. By contrast, only little is known about indoor air quality in vehicles and influences by non-vehicle sources. Therefore the present article aims to summarize recent studies that address i.e. particulate matter exposure. It can be stated that although there is a large amount of data present for outdoor air pollution, research in the area of indoor air quality in vehicles is still limited. Especially, knowledge on non-vehicular sources is missing. In this respect, an understanding of the effects and interactions of i.e. tobacco smoke under realistic automobile conditions should be achieved in future.

  4. Simultaneous identification of unknown groundwater pollution sources and estimation of aquifer parameters

    Science.gov (United States)

    Datta, Bithin; Chakrabarty, Dibakar; Dhar, Anirban

    2009-09-01

    Pollution source identification is a common problem encountered frequently. In absence of prior information about flow and transport parameters, the performance of source identification models depends on the accuracy in estimation of these parameters. A methodology is developed for simultaneous pollution source identification and parameter estimation in groundwater systems. The groundwater flow and transport simulator is linked to the nonlinear optimization model as an external module. The simulator defines the flow and transport processes, and serves as a binding equality constraint. The Jacobian matrix which determines the search direction in the nonlinear optimization model links the groundwater flow-transport simulator and the optimization method. Performance of the proposed methodology using spatiotemporal hydraulic head values and pollutant concentration measurements is evaluated by solving illustrative problems. Two different decision model formulations are developed. The computational efficiency of these models is compared using two nonlinear optimization algorithms. The proposed methodology addresses some of the computational limitations of using the embedded optimization technique which embeds the discretized flow and transport equations as equality constraints for optimization. Solution results obtained are also found to be better than those obtained using the embedded optimization technique. The performance evaluations reported here demonstrate the potential applicability of the developed methodology for a fairly large aquifer study area with multiple unknown pollution sources.

  5. Chromatographic fingerprint similarity analysis for pollutant source identification

    International Nuclear Information System (INIS)

    Xie, Juan-Ping; Ni, Hong-Gang

    2015-01-01

    In the present study, a similarity analysis method was proposed to evaluate the source-sink relationships among environmental media for polybrominated diphenyl ethers (PBDEs), which were taken as the representative contaminants. Chromatographic fingerprint analysis has been widely used in the fields of natural products chemistry and forensic chemistry, but its application to environmental science has been limited. We established a library of various sources of media containing contaminants (e.g., plastics), recognizing that the establishment of a more comprehensive library allows for a better understanding of the sources of contamination. We then compared an environmental complex mixture (e.g., sediment, soil) with the profiles in the library. These comparisons could be used as the first step in source tracking. The cosine similarities between plastic and soil or sediment ranged from 0.53 to 0.68, suggesting that plastic in electronic waste is an important source of PBDEs in the environment, but it is not the only source. A similarity analysis between soil and sediment indicated that they have a source-sink relationship. Generally, the similarity analysis method can encompass more relevant information of complex mixtures in the environment than a profile-based approach that only focuses on target pollutants. There is an inherent advantage to creating a data matrix containing all peaks and their relative levels after matching the peaks based on retention times and peak areas. This data matrix can be used for source identification via a similarity analysis without quantitative or qualitative analysis of all chemicals in a sample. - Highlights: • Chromatographic fingerprint analysis can be used as the first step in source tracking. • Similarity analysis method can encompass more relevant information of pollution. • The fingerprints strongly depend on the chromatographic conditions. • A more effective and robust method for identifying similarities is required

  6. Open source molecular modeling.

    Science.gov (United States)

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Groundwater Pollution Sources Apportionment in the Ghaen Plain, Iran

    OpenAIRE

    Mohammad Reza Vesali Naseh; Roohollah Noori; Ronny Berndtsson; Jan Adamowski; Elaheh Sadatipour

    2018-01-01

    Although Iran’s Ghaen Plain provides saffron to much of the world, no regional groundwater quality (GQ) assessment has yet been undertaken. Given the region’s potential for saltwater intrusion and heavy metal contamination, it is important to assess the GQ and determine its main probable source of pollution (MPSP). Such knowledge would allow for informed mitigation or elimination of the potential adverse health effects of this groundwater through its use as drinking water, or indirectly as a ...

  8. Summary of pollutant emissions from individual sources in the Republic of Macedonia (air pollution)

    International Nuclear Information System (INIS)

    Davkova, Katica; Simeva, Radmila

    1995-01-01

    The air pollution is one of the heaviest and one of the most actual problems in the industrial developed countries. The sudden development of the cities, industry and automobile traffic brings to the atmosphere natural composition disturbance, which means that the environment, material goods and the whole ecosystem are endangered. This paper presents the results from the measurements taken in the territory of the Macedonia, from 1989-1993. 95 measuring objects, more exactly 156 individual measuring pollutants emission sources are encompassed. The main air pollutants, as a result of the solid as well as liquid fuels combustion, are SO 2 , Co 2 , No x as well as ashes. The measuring results are given tabular. 3 tabs., 6 figs., 1 ill

  9. Effects of the spatial resolution of urban drainage data on nonpoint source pollution prediction.

    Science.gov (United States)

    Dai, Ying; Chen, Lei; Hou, Xiaoshu; Shen, Zhenyao

    2018-03-14

    Detailed urban drainage data are important for urban nonpoint source (NPS) pollution prediction. However, the difficulties in collecting complete pipeline data usually interfere with urban NPS pollution studies, especially in large-scale study areas. In this study, NPS pollution models were constructed for a typical urban catchment using the SWMM, based on five drainage datasets with different resolution levels. The influence of the data resolution on the simulation results was examined. The calibration and validation results of the higher-resolution (HR) model indicated a satisfactory model performance with relatively detailed drainage data. However, the performances of the parameter-regionalized lower-resolution (LR) models were still affected by the drainage data scale. This scale effect was due not only to the pipe routing process but also to changes in the effective impervious area, which could be limited by a scale threshold. The runoff flow and NPS pollution responded differently to changes in scale, primarily because of the difference between buildup and washoff and the more significant decrease in pollutant infiltration loss and the much greater increase of pollutant flooding loss while scaling up. Additionally, scale effects were also affected by the rainfall type. Sub-area routing between impervious and pervious areas could improve the LR model performances to an extent, and this approach is recommended to offset the influence of spatial resolution deterioration.

  10. Estimation of light source colours for light pollution assessment.

    Science.gov (United States)

    Ziou, D; Kerouh, F

    2018-05-01

    The concept of the smart city raised several technological and scientific issues including light pollution. There are various negative impacts of light pollution on economy, ecology, and heath. This paper deals with the census of the colour of light emitted by lamps used in a city environment. To this end, we derive a light bulb colour estimator based on Bayesian reasoning, directional data, and image formation model in which the usual concept of reflectance is not used. All choices we made are devoted to designing an algorithm which can be run almost in real-time. Experimental results show the effectiveness of the proposed approach. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Sources and timing of anthropogenic pollution in the Ensenada de San Simon (inner Ria de Vigo), Galicia, NW Spain: an application of mixture-modelling and nonlinear optimization to recent sedimentation.

    Science.gov (United States)

    Howarth, Richard J; Evans, Graham; Croudace, Ian W; Cundy, Andrew B

    2005-03-20

    The Ensenada de San Simon is the inner part of the Ria de Vigo, one of the major mesotidal rias of the Galician coast, NW Spain. The geochemistry of its bottom sediments can be accounted for in terms of both natural and anthropogenic sources. Mixture-modelling enables much of the Cr, Ni, V, Cu, Pb and Zn concentrations of the bottom and subaqueous sediments to be explained by sediment input from the river systems and faecal matter from manmade mussel rafts. The compositions and relative contributions of additional, unknown, sources of anomalous heavy-metal concentrations are quantified using constrained nonlinear optimization. The pattern of metal enrichment is attributed to: material carried in solution and suspension in marine water entering the Ensenada from the polluted industrial areas of the adjacent Ria de Vigo; wind-borne urban dusts and/or vehicular emissions from the surrounding network of roads and a motorway road-bridge over the Estrecho de Rande; industrial and agricultural pollution from the R. Redondela; and waste from a former ceramics factory near the mouth of the combined R. Oitaben and R. Verdugo. Using (137)Cs dating, it is suggested that heavy metal build-up in the sediments since the late 1970s followed development of inshore fisheries and introduction of the mussel rafts (ca. 1960) and increasing industrialisation.

  12. 76 FR 4155 - National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

    Science.gov (United States)

    2011-01-24

    ... 63 National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities; and Gasoline Dispensing Facilities; Final...] RIN 2060-AP16 National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

  13. Integrated modelling of Priority Pollutants in stormwater systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Ledin, Anna; Mikkelsen, Peter Steen

    2012-01-01

    The increasing focus on urban diffuse sources of Priority Pollutants (PPs) has highlighted stormwater as an important contributor to contamination of natural water bodies. This study presents an example of an integrated model developed to be able to quantify PP loads discharged by stormwater...

  14. PAH diagnostic ratios for the identification of pollution emission sources

    International Nuclear Information System (INIS)

    Tobiszewski, Marek; Namieśnik, Jacek

    2012-01-01

    Polycyclic aromatic hydrocarbon (PAH) diagnostic ratios have recently come into common use as a tool for identifying and assessing pollution emission sources. Some diagnostic ratios are based on parent PAHs, others on the proportions of alkyl-substituted to non-substituted molecules. The ratios are applicable to PAHs determined in different environmental media: air (gas + particle phase), water, sediment, soil, as well as biomonitor organisms such as leaves or coniferous needles, and mussels. These ratios distinguish PAH pollution originating from petroleum products, petroleum combustion and biomass or coal burning. The compounds involved in each ratio have the same molar mass, so it is assumed they have similar physicochemical properties. Numerous studies show that diagnostic ratios change in value to different extents during phase transfers and environmental degradation. The paper reviews applications of diagnostic ratios, comments on their use and specifies their limitations. - Highlights: ► PAH diagnostic ratios may identify pollution coming from petroleum spills, fuel combustion and coal or biomass burning. ► They are sensitive to changes during PAHs environmental fate processes. ► Some diagnostic ratios are of limited value due to fast photodegradation of one of the compounds. - The paper reviews PAH diagnostic ratios that are applied to identify pollution emission originating from petroleum products, fuel combustion or coal and biomass burning.

  15. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources

    Directory of Open Access Journals (Sweden)

    Neil J. Hime

    2018-06-01

    Full Text Available This article briefly reviews evidence of health effects associated with exposure to particulate matter (PM air pollution from five common outdoor emission sources: traffic, coal-fired power stations, diesel exhaust, domestic wood combustion heaters, and crustal dust. The principal purpose of this review is to compare the evidence of health effects associated with these different sources with a view to answering the question: Is exposure to PM from some emission sources associated with worse health outcomes than exposure to PM from other sources? Answering this question will help inform development of air pollution regulations and environmental policy that maximises health benefits. Understanding the health effects of exposure to components of PM and source-specific PM are active fields of investigation. However, the different methods that have been used in epidemiological studies, along with the differences in populations, emission sources, and ambient air pollution mixtures between studies, make the comparison of results between studies problematic. While there is some evidence that PM from traffic and coal-fired power station emissions may elicit greater health effects compared to PM from other sources, overall the evidence to date does not indicate a clear ‘hierarchy’ of harmfulness for PM from different emission sources. Further investigations of the health effects of source-specific PM with more advanced approaches to exposure modeling, measurement, and statistics, are required before changing the current public health protection approach of minimising exposure to total PM mass.

  16. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.

  17. Yield calculation of agricultural non-point source pollutants in Huntai River Basin based on SWAT model%基于SWAT模型的浑太河流域农业面源污染物产生量估算

    Institute of Scientific and Technical Information of China (English)

    付意成; 臧文斌; 董飞; 付敏; 张剑

    2016-01-01

    The establishment of non-point source pollutants output load model under the mode of rainfall-runoff and land use, the analog calculation of agricultural non-point source pollutants in the process of migration and transformation, and the systematic analysis of non-point source pollutants discharge quantity, distribution and composition characteristics are based on actual monitoring data, calibration and validation model, in consideration of underlying surface, hydrology and meteorology, and physical features of Huntai River basin. The areas 1 km away from each side of master stream Huntai River, Taizihe River and Daliaohe River and 5 km away from reservoir were defined as buffer zone, where the mode of land use was transformed so as to restore the natural ecosystem. The process of pollutant migration and conversion was simulated based on the calibration of key hydrological parameters, and the causes as well as the migratory features of non-point source pollution were investigated. The primary area of water environment pollution was mainly distributed along both sides of the water channel of the mainstreams of Huntai River. The point-source pollutant was mainly related to the distribution of industry and the amount of discharged wastewater. The risk of non-point pollution was mainly related to the pattern of agricultural plantation and farmland utilization. The secondary area of water environment pollution was mainly distributed along both sides of the water channel of tributaries. Therefore, the situation of pollutant production corresponding to the intra-regional regulation of industrial structure, land utilization pattern surrounding the water channel should be highlighted. The non-point pollution in Huntai watershed was dominated by farmland pollution, and the main indices of pollutants were total nitrogen (N) and total phosphorus (P). The contribution rate of pollutants was farmland runoff > livestock and poultry breeding > urban runoff > water and soil erosion

  18. Consideration of environmental pollution in MESSAGE-type energy models

    International Nuclear Information System (INIS)

    Rentz, O.; Hanicke, T.; Hempelmann, R.

    1981-10-01

    Macroeconomic and microeconomic data are acquired and processed to obtain a model-adequate data base. The MESSAGE model is adapted and implemented. Modifications for specific problems are described. Aspects of environmental pollution are considered for the various energy supply concepts. The model conception is flexible with regard to new technologies, in particular in the field of primary and secondary energy sources, and to cogeneration products (district heat, electric power). (HP) [de

  19. Atmospheric dispersion models for environmental pollution applications

    International Nuclear Information System (INIS)

    Gifford, F.A.

    1976-01-01

    Pollutants are introduced into the air by many of man's activities. The potentially harmful effects these can cause are, broadly speaking, of two kinds: long-term, possibly large-scale and wide-spread chronic effects, including long-term effects on the earth's climate; and acute, short-term effects such as those associated with urban air pollution. This section is concerned with mathematical cloud or plume models describing the role of the atmosphere, primarily in relation to the second of these, the acute effects of air pollution, i.e., those arising from comparatively high concentration levels. The need for such air pollution modeling studies has increased spectacularly as a result of the National Environmental Policy Act of 1968 and, especially, two key court decisions; the Calvert Cliffs decision, and the Sierra Club ruling on environmental non-degradation

  20. Modeling Water Pollution of Soil

    OpenAIRE

    V. Doležel; P. Procházka; V. Křístek

    2008-01-01

    The government of the Czech Republic decided that in the location to the west of Prague, capital city of the Czech Republic, some deep mines should be closed because of their low efficiency of coal mined i.e. small amounts and low quality of the coal extracted in the final stage of mining. The locations near Prague influenced the decision to do maintenance on the abandoned mines, as the thread of soil pollution was unacceptably high in the neighborhood of the capital city. Before the mines we...

  1. Amphibian commerce as a likely source of pathogen pollution.

    Science.gov (United States)

    Picco, Angela M; Collins, James P

    2008-12-01

    The commercial trade of wildlife occurs on a global scale. In addition to removing animals from their native populations, this trade may lead to the release and subsequent introduction of nonindigenous species and the pathogens they carry. Emerging infectious diseases, such as chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), and ranaviral disease have spread with global trade in amphibians and are linked to amphibian declines and die-offs worldwide, which suggests that the commercial trade in amphibians may be a source of pathogen pollution. We screened tiger salamanders involved in the bait trade in the western United States for both ranaviruses and Bd with polymerase chain reaction and used oral reports from bait shops and ranavirus DNA sequences from infected bait salamanders to determine how these animals and their pathogens are moved geographically by commerce. In addition, we conducted 2 surveys of anglers to determine how often tiger salamanders are used as bait and how often they are released into fishing waters by anglers, and organized bait-shop surveys to determine whether tiger salamanders are released back into the wild after being housed in bait shops. Ranaviruses were detected in the tiger salamander bait trade in Arizona, Colorado, and New Mexico, and Bd was detected in Arizona bait shops. Ranaviruses were spread geographically through the bait trade. All tiger salamanders in the bait trade were collected from the wild, and in general they moved east to west and north to south, bringing with them their multiple ranavirus strains. Finally, 26-73% of anglers used tiger salamanders as fishing bait, 26-67% of anglers released tiger salamanders bought as bait into fishing waters, and 4% of bait shops released tiger salamanders back into the wild after they were housed in shops with infected animals. The tiger salamander bait trade in the western United States is a useful model for understanding the consequences of the

  2. An novel identification method of the environmental risk sources for surface water pollution accidents in chemical industrial parks.

    Science.gov (United States)

    Peng, Jianfeng; Song, Yonghui; Yuan, Peng; Xiao, Shuhu; Han, Lu

    2013-07-01

    The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgent demand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extent depending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of the whole accident process, a novel and expandable identification method for risk sources causing water pollution accidents is presented. The newly developed approach, by analyzing and stimulating the whole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses, were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China, was selected to test the potential of the identification method. The results showed that there were four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plant would lead to the most serious impact on the surrounding water environment. This potential accident would severely damage the ecosystem up to 3.8 km downstream of Yangtze River, and lead to pollution over a distance stretching to 73.7 km downstream. The proposed method is easily extended to the nationwide identification of potential risk sources.

  3. Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area

    Science.gov (United States)

    Du, Tangzheng; Liu, Chun-Ho

    2013-04-01

    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.

  4. Isotope ratios of lead as pollutant source indicators

    International Nuclear Information System (INIS)

    Chow, T.J.; Snyder, C.B.; Earal, J.L.

    1975-01-01

    Each lead ore deposit has its characteristic isotope ratios which are fixed during mineral ore genesis, and this unique property can be used to indicate the source of lead pollutants in the environment. The wolld production of primary lead is tabulated, and the geochemical significances of lead isotope ratios are discussed. The manufacture of lead alkyl additives for gasoline, which is the major source of lead pollutants, utilizes about 10% of the world annual consumption of lead. The isotope ratios of lead in gasoline, aerosols, soils and plants are correlated. Lead additives in various brands of gasoline sold in one region do not have the same isotope ratios. Regional variations in isotope ratios of lead additives were observed. This reflects the fact that petroleum refineries obtained the additives from various lead alkyl manufacturers which utilized lead from different mining districts. A definite changing trend of isotope ratios of lead pollutants in the San Diego, California (USA), area was detected. The lead shows a gradual increase in its radiogenic components during the past decade. This trend can be explained by the change of lead sources used by the additive manufacturers: Lead isotope ratios of the mid-1960's gasoline additives in the United States of America reflected those of less radiogenic leads imported from Canada, Australia, Peru and Mexico. Since then, the U.S. lead production has doubled-mainly from the Missouri district of highly radiogenic lead. Meanwhile, there has been a decrease in total lead imports. These combined effects result in changes in isotope ratios, from the less to more radiogenic, of the pooled lead. (aothor)

  5. Isotope ratios as pollutant source and behaviour indicators

    International Nuclear Information System (INIS)

    1975-01-01

    Recent years have witnessed significant advances in isotope techniques for identifying origins and for studying the behaviour of trace contaminants and pollutants of the environment under actual existing environmental conditions. Improvements in the supply of stable isotopes and their labelled compounds, instrumental analysis and information on stable or radioactive isotopic ratios of existing environmental contaminants as a function of origin or behaviour have provided relatively new tools for the environmental scientist. While variations in natural or existing environmental stable and radioactive nuclides could be regarded as 'background noise' in conventional tracer experiments they promised unique information about sources and behaviour to those who listened carefully. (author)

  6. A source classification framework supporting pollutant source mapping, pollutant release prediction, transport and load forecasting, and source control planning for urban environments

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Donner, Erica; Wickman, Tonie

    2012-01-01

    for this purpose. Methods Existing source classification systems were examined by a multidisciplinary research team, and an optimised SCF was developed. The performance and usability of the SCF were tested using a selection of 25 chemicals listed as priority pollutants in Europe. Results The SCF is structured...... in the form of a relational database and incorporates both qualitative and quantitative source classification and release data. The system supports a wide range of pollution monitoring and management applications. The SCF functioned well in the performance test, which also revealed important gaps in priority...

  7. [A landscape ecological approach for urban non-point source pollution control].

    Science.gov (United States)

    Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing

    2005-05-01

    Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.

  8. Detection and monitoring of pollutant sources with Lidar/Dial techniques

    International Nuclear Information System (INIS)

    Gaudio, P; Gelfusa, M; Malizia, A; Parracino, S; Richetta, M; De Leo, L; Perrimezzi, C; Bellecci, C

    2015-01-01

    It's well known that air pollution due to anthropogenic sources can have adverse effects on humans and the ecosystem. Therefore, in the last years, surveying large regions of the atmosphere in an automatic way has become a strategic objective of various public health organizations for early detection of pollutant sources in urban and industrial areas.The Lidar and Dial techniques have become well established laser based methods for the remote sensing of the atmosphere. They are often implemented to probe almost any level of the atmosphere and to acquire information to validate theoretical models about different topics of atmospheric physics. They can also be used for environment surveying by monitoring particles, aerosols and molecules.The aim of the present work is to demonstrate the potential of these methods to detect pollutants emitted from local sources (such as particulate and/or chemical compounds) and to evaluate their concentration. This is exemplified with the help of experimental data acquired in an industrial area in the south of Italy by mean of experimental campaign by use of pollutants simulated source. For this purpose, two mobile systems Lidar and Dial have been developed by the authors. In this paper there will be presented the operating principles of the system and the results of the experimental campaign. (paper)

  9. Currents trends in the application of IBA techniques to air pollution source fingerprinting and source apportionment

    International Nuclear Information System (INIS)

    Cohen, David; Stelcer, Ed.; Atanacio, Armand; Crawford, Jagoda

    2013-01-01

    Full text: IBA techniques have been used for many years to characterise fine particle air pollution. This is not new the techniques are well established. Typically 2-3 MeV protons are used to bombard thin filter papers and up to four simultaneous techniques like PIXE, PIGE, RBS and ERDA will be applied to obtain (μg/g) concentrations for elements from hydrogen to lead. Generally low volume samplers are used to sample between 20-30 m 3 of air over a 24 hour period, this together with IBA's sensitivity means that concentrations down to 1 ng/m 3 of air sampled can be readily achieved with only a few minutes of proton irradiation. With these short irradiation times and low sensitivities for a broad range of elements in the periodic table, large numbers of samples can be obtained and analysed very quickly and easily. At ANSTO we have used IBA methods to acquire a database of over 50,000 filters from 85 different sites through Australia and Asia, each filter has been analysed for more than 21 different chemical species. Large databases extending over many years means that modern statistical techniques like positive matrix factorisation (PMF) can be used to define well characterised source fingerprints and source contributions for a range of different fine particle air pollutants. In this paper we will discuss these PMF techniques and show how they identify both natural sources like sea spray and windblown soils as well as anthropogenic sources like automobiles, biomass burning, coal-fired power stations and industrial emissions. These data are particularly useful for Governments, EPA's and managers of pollution to better understanding pollution sources and their relative contributions and hence to better manage air pollution. Current trends are to take these IBA and PMF techniques a step further and to combine them with wind speed and back trajectory data to better pin point and identify emission sources. We show how this is now being applied on both a local

  10. Currents trends in the application of IBA techniques to air pollution source fingerprinting and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, David; Stelcer, Ed.; Atanacio, Armand; Crawford, Jagoda [Australian Nuclear Science and Technology Organisation, Kirrawee DC (Australia)

    2013-07-01

    Full text: IBA techniques have been used for many years to characterise fine particle air pollution. This is not new the techniques are well established. Typically 2-3 MeV protons are used to bombard thin filter papers and up to four simultaneous techniques like PIXE, PIGE, RBS and ERDA will be applied to obtain (μg/g) concentrations for elements from hydrogen to lead. Generally low volume samplers are used to sample between 20-30 m{sup 3} of air over a 24 hour period, this together with IBA's sensitivity means that concentrations down to 1 ng/m{sup 3} of air sampled can be readily achieved with only a few minutes of proton irradiation. With these short irradiation times and low sensitivities for a broad range of elements in the periodic table, large numbers of samples can be obtained and analysed very quickly and easily. At ANSTO we have used IBA methods to acquire a database of over 50,000 filters from 85 different sites through Australia and Asia, each filter has been analysed for more than 21 different chemical species. Large databases extending over many years means that modern statistical techniques like positive matrix factorisation (PMF) can be used to define well characterised source fingerprints and source contributions for a range of different fine particle air pollutants. In this paper we will discuss these PMF techniques and show how they identify both natural sources like sea spray and windblown soils as well as anthropogenic sources like automobiles, biomass burning, coal-fired power stations and industrial emissions. These data are particularly useful for Governments, EPA's and managers of pollution to better understanding pollution sources and their relative contributions and hence to better manage air pollution. Current trends are to take these IBA and PMF techniques a step further and to combine them with wind speed and back trajectory data to better pin point and identify emission sources. We show how this is now being applied on both

  11. Modeling pollutant transport using a meshless-lagrangian particle model

    International Nuclear Information System (INIS)

    Carrington, D.B.; Pepper, D.W.

    2002-01-01

    A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons

  12. Local sources of pollution and their impacts in Alaska (Invited)

    Science.gov (United States)

    Molders, N.

    2013-12-01

    The movie 'Into the Wilde' evoke the impression of the last frontier in a great wide and pristine land. With over half a million people living in Alaska an area as larger as the distance from the US West to the East Coast, this idea comes naturally. The three major cities are the main emission source in an otherwise relative clean atmosphere. On the North Slope oil drilling and production is the main anthropogenic emission sources. Along Alaska's coasts ship traffic including cruises is another anthropogenic emission source that is expected to increase as sea-ice recedes. In summer, wildfires in Alaska, Canada and/or Siberia may cause poor air quality. In winter inversions may lead poor air quality and in spring. In spring, aged polluted air is often advected into Alaska. These different emission sources yield quite different atmospheric composition and air quality impacts. While this may make understanding Alaska's atmospheric composition at-large a challenging task, it also provides great opportunities to examine impacts without co-founders. The talk will give a review of the performed research, and insight into the challenges.

  13. On - road mobile source pollutant emissions : identifying hotspots and ranking roads.

    Science.gov (United States)

    2010-12-30

    A considerable amount of pollution to the air in the forms of hydrocarbons, carbon : monoxide (CO), nitrogen oxides (NOx), particulate matter (PM) and air toxics comes : from the on-road mobile sources. Estimation of the emissions of these pollutants...

  14. Development and application of a coupled bio-geochmical and hydrological model for point and non-point source river water pollution

    Science.gov (United States)

    Pohlert, T.

    2007-12-01

    The aim of this paper is to present recent developments of an integrated water- and N-balance model for the assessment of land use changes on water and N-fluxes for meso-scale river catchments. The semi-distributed water-balance model SWAT was coupled with algorithms of the bio-geochemical model DNDC as well as the model CropSyst. The new model that is further denoted as SWAT-N was tested with leaching data from a long- term lysimeter experiment as well as results from a 5-years sampling campaign that was conducted at the outlet of the meso-scale catchment of the River Dill (Germany). The model efficiency for N-load as well as the spatial representation of N-load along the river channel that was tested with results taken from longitudinal profiles show that the accuracy of the model has improved due to the integration of the aforementioned process-oriented models. After model development and model testing, SWAT-N was then used for the assessment of the EU agricultural policy (CAP reform) on land use change and consequent changes on N-fluxes within the Dill Catchment. giessen.de/geb/volltexte/2007/4531/

  15. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources.

    Science.gov (United States)

    Yang, Xiaoying; Tan, Lit; He, Ruimin; Fu, Guangtao; Ye, Jinyin; Liu, Qun; Wang, Guoqing

    2017-12-01

    It is increasingly recognized that climate change could impose both direct and indirect impacts on the quality of the water environment. Previous studies have mostly concentrated on evaluating the impacts of climate change on non-point source pollution in agricultural watersheds. Few studies have assessed the impacts of climate change on the water quality of river basins with complex point and non-point pollution sources. In view of the gap, this paper aims to establish a framework for stochastic assessment of the sensitivity of water quality to future climate change in a river basin with complex pollution sources. A sub-daily soil and water assessment tool (SWAT) model was developed to simulate the discharge, transport, and transformation of nitrogen from multiple point and non-point pollution sources in the upper Huai River basin of China. A weather generator was used to produce 50 years of synthetic daily weather data series for all 25 combinations of precipitation (changes by - 10, 0, 10, 20, and 30%) and temperature change (increases by 0, 1, 2, 3, and 4 °C) scenarios. The generated daily rainfall series was disaggregated into the hourly scale and then used to drive the sub-daily SWAT model to simulate the nitrogen cycle under different climate change scenarios. Our results in the study region have indicated that (1) both total nitrogen (TN) loads and concentrations are insensitive to temperature change; (2) TN loads are highly sensitive to precipitation change, while TN concentrations are moderately sensitive; (3) the impacts of climate change on TN concentrations are more spatiotemporally variable than its impacts on TN loads; and (4) wide distributions of TN loads and TN concentrations under individual climate change scenario illustrate the important role of climatic variability in affecting water quality conditions. In summary, the large variability in SWAT simulation results within and between each climate change scenario highlights the uncertainty of

  16. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    Science.gov (United States)

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).

  17. Energy utilization, environmental pollution and renewable energy sources in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ocak, M.; Ocak, Z.; Bilgen, S.; Keles, S.; Kaygusuz, K. [Karadeniz Technical University, Trabzon (Turkey). Dept. of Chemistry

    2004-04-01

    In this study, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and subsequent environmental issues in Turkey. Several aspects relating to energy utilization, renewable energy, energy efficiency, environment and sustainable development are examined from both current and future perspectives. Turkey is an energy importing country, more than half of the energy requirement has been supplied by imports. Domestic oil and lignite reserves are limited, and the lignites are characterised by high ash, sulfur and moisture content. Because of increasing energy consumption, environmental pollution is becoming a serious problem in the future for the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Especially hydropower, biomass, geothermal, solar and wind energy should be considered and seriously supported by governments and private sectors.

  18. Groundwater Pollution Sources Apportionment in the Ghaen Plain, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Vesali Naseh

    2018-01-01

    Full Text Available Although Iran’s Ghaen Plain provides saffron to much of the world, no regional groundwater quality (GQ assessment has yet been undertaken. Given the region’s potential for saltwater intrusion and heavy metal contamination, it is important to assess the GQ and determine its main probable source of pollution (MPSP. Such knowledge would allow for informed mitigation or elimination of the potential adverse health effects of this groundwater through its use as drinking water, or indirectly as a result of the consumption of groundwater-irrigated crops. Total dissolved solids, sodium, and chloride in the water of the majority of 16 wells sampled within the region exceeded World Health Organization and Iranian permissible standards for drinking water. The groundwater proved to only be suitable for irrigating salt tolerant crops under good drainage conditions. Due to the precipitation of calcium carbonate in the water supply facilities, the water from all wells was deemed unsuitable for industrial purposes. Heavy metal pollution and contamination indices showed no groundwater contamination. Analysis of ionic ratios and the application of principal components analysis indicated the MPSP to be saltwater intrusion, with the geology subtending the plain, and to a lesser extent, anthropogenic activities. Reducing groundwater withdrawals, particularly those for agricultural production by using high performance irrigation methods could reduce saltwater intrusion and improve GQ in the Ghaen Plain.

  19. Groundwater Pollution Sources Apportionment in the Ghaen Plain, Iran.

    Science.gov (United States)

    Vesali Naseh, Mohammad Reza; Noori, Roohollah; Berndtsson, Ronny; Adamowski, Jan; Sadatipour, Elaheh

    2018-01-22

    Although Iran's Ghaen Plain provides saffron to much of the world, no regional groundwater quality (GQ) assessment has yet been undertaken. Given the region's potential for saltwater intrusion and heavy metal contamination, it is important to assess the GQ and determine its main probable source of pollution (MPSP). Such knowledge would allow for informed mitigation or elimination of the potential adverse health effects of this groundwater through its use as drinking water, or indirectly as a result of the consumption of groundwater-irrigated crops. Total dissolved solids, sodium, and chloride in the water of the majority of 16 wells sampled within the region exceeded World Health Organization and Iranian permissible standards for drinking water. The groundwater proved to only be suitable for irrigating salt tolerant crops under good drainage conditions. Due to the precipitation of calcium carbonate in the water supply facilities, the water from all wells was deemed unsuitable for industrial purposes. Heavy metal pollution and contamination indices showed no groundwater contamination. Analysis of ionic ratios and the application of principal components analysis indicated the MPSP to be saltwater intrusion, with the geology subtending the plain, and to a lesser extent, anthropogenic activities. Reducing groundwater withdrawals, particularly those for agricultural production by using high performance irrigation methods could reduce saltwater intrusion and improve GQ in the Ghaen Plain.

  20. Snowmelt runoff: a new focus of urban nonpoint source pollution.

    Science.gov (United States)

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-11-30

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing constitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control.

  1. Energy utilization, environmental pollution and renewable energy sources in Turkey

    International Nuclear Information System (INIS)

    Ocak, M.; Ocak, Z.; Bilgen, S.; Keles, S.; Kaygusuz, K.

    2004-01-01

    In this study, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and subsequent environmental issues in Turkey. Several aspects relating to energy utilization, renewable energy, energy efficiency, environment and sustainable development are examined from both current and future perspectives. Turkey is an energy importing country, more than half of the energy requirement has been supplied by imports. Domestic oil and lignite reserves are limited, and the lignites are characterised by high ash, sulfur and moisture content. Because of increasing energy consumption, environmental pollution is becoming a serious problem in the future for the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Especially hydropower, biomass, geothermal, solar and wind energy should be considered and seriously supported by governments and private sectors

  2. Snowmelt Runoff: A New Focus of Urban Nonpoint Source Pollution

    Science.gov (United States)

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-01-01

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing cosntitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control. PMID:23202881

  3. Estimation of pollutant source contribution to the Pampanga River Basin using carbon and nitrogen isotopes

    International Nuclear Information System (INIS)

    Castaneda, Solidad S.; Sta Maria, Efren J.; Ramirez, Jennyvi D.; Collado, Mario B.; Samar, Edna D.

    2013-01-01

    This study assessed and estimated the percentage contribution of potential pollution sources in Pampanga River Basin using carbon and nitrogen isotopes as environmental tracers. The δ 13 C and δ 15 N values were determined in particulate organic matter, surface sediment, and plant tissue samples from point and non-point sources from several land use areas, namely domestic, croplands, livestock, fishery and forestry. Investigations were conducted in the wet and dry seasons (2012 and 2013). Some N sources do not have unique δ 15 N and there is overlapping among different N- sources type. δ 13 C data from the N sources provided an additional dimension which distinguished animal manure, human waste (septic and sewage), leaf litter, and synthetic fertilizer. Characterization of the non-point N-sources based on the isotopic fingerprints obtained from the point sources revealed that domestic, cropland, livestock, and fishery, influenced the isotopic composition of the materials but domestic and cropland land use provided the most significant influence. Livestock also contributed to a lesser extent. Isotope mixing model revealed that cropland sources generally contributed the most to pollutant loading during the wet season, from 22% to 98%, while domestic waste contributed higher in the dry season, from 55% to 65%. (author)

  4. Science, information, technology, and the changing character of public policy in non-point source pollution

    Science.gov (United States)

    King, John L.; Corwin, Dennis L.

    Information technologies are already delivering important new capabilities for scientists working on non-point source (NPS) pollution in the vadose zone, and more are expected. This paper focuses on the special contributions of modeling and network communications for enhancing the effectiveness of scientists in the realm of policy debates regarding NPS pollution mitigation and abatement. The discussion examines a fundamental shift from a strict regulatory strategy of pollution control characterized by a bureaucratic/technical alliance during the period through the 1970's and early 1980's, to a more recently evolving paradigm of pluralistic environmental management. The role of science and scientists in this shift is explored, with special attention to the challenges facing scientists working in NPS pollution in the vadose zone. These scientists labor under a special handicap in the evolving model because their scientific tools are often times incapable of linking NPS pollution with individuals responsible for causing it. Information can facilitate the effectiveness of these scientists in policy debates, but not under the usual assumptions in which scientific truth prevails. Instead, information technology's key role is in helping scientists shape the evolving discussion of trade-offs and in bringing citizens and policymakers closer to the routine work of scientists.

  5. Characterisation and quantification of the sources of PM10 during air pollution episodes in the UK

    International Nuclear Information System (INIS)

    Muir, David; Longhurst, J.W.S.; Tubb, A.

    2006-01-01

    Data for concentrations of PM 10 and gaseous pollutants from sites in the UK Automatic Urban and Rural Network have been examined during periods of elevated concentrations of PM 10 . The ratios of concentrations of PM 10 to those of the other pollutants were used to determine the most probable source of the additional particles. The hypothesis is that because the concentrations of PM 10 were divided by those of the other pollutants, the ratio should decrease when PM 10 and the other pollutants have a common source. Conversely, the ratio should increase when the sources are different. During episodes where road traffic was the most probable source of the additional particles, the ratios of concentrations of PM 10 to carbon monoxide and oxides of nitrogen did decrease, but the comparable ratios for sulphur dioxide and ozone increased. In contrast, during episodes known to have been caused by construction activity, all these ratios increased. This is taken to show that the basic hypothesis is valid. For prolonged episodes, it was possible to use data averaged over the total duration of the episode for the purposes of source identification. For sporadic construction, or other short-duration episodes, it was necessary to use time series data. The data have also been used to calculate the differences between hourly average concentrations of pollutants measured during episodes and long-term hourly average concentrations. These have been used to model the additional PM 10 during air pollution episodes associated with construction activities and road traffic emissions. This confirms the lack of relationship between PM 10 and other pollutants during construction works. During episodes arising from road traffic emissions, there was good agreement between measured and modelled additional concentrations of PM 10 when an appropriate factor, F, related to the contribution of road traffic emissions to PM 10 at different site types was applied. The values used were 0.2 (Suburban

  6. Influence of coal as an energy source on environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Balat, M. [University of Mahallesi, Trabzon (Turkey)

    2007-07-01

    This article considers the influence of coal energy on environmental pollution. Coal is undoubtedly part of the greenhouse problem. The main emissions from coal combustion are sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), particulates, carbon dioxide (CO{sub 2}), and mercury (Hg). Since 1980, despite a 36% increase in electricity generation and more than a 50% increase in coal use, electric utility SO{sub 2} and NOx emissions have declined significantly. Globally, the largest source of anthropogenic greenhouse gas (GHG) emissions is CO{sub 2} from the combustion of fossil fuels - around 75% of total GHG emissions covered under the Kyoto Protocol. At the present time, coal is responsible for 30-40% of world CO{sub 2} emission from fossil fuels.

  7. Groundwater Pollution Source Characterization of an Old Landfill

    DEFF Research Database (Denmark)

    Kjeldsen, Peter

    1993-01-01

    Only a few landfill investigations have focused on both the quantity and the quality of leachate as a source of groundwater pollution. The investigation of Vejen Landfill in Denmark included an introductionary historical survey (old maps, aerial photographs, interviews, etc.), leachate quality...... analysis, potential mapping of the groundwater surface below the landfill and leachate flow to surface waters and groundwater. The historical investigation showed that the original soil surface beneath the waste was a relatively heterogeneous mixture of boggy ground and sand soil areas. This indicated...... that the leaching from the landfill could be unevenly distributed. The main specific organic compounds observed in the leachate were aromatic hydrocarbons (mainly xylenes), phenols and the pesticide MCPP. Preliminary investigations of the leach from the landfill indicated, that both a northerly leach to a drainage...

  8. Development of a Coupled Ocean-Hydrologic Model to Simulate Pollutant Transport in Singapore Coastal Waters

    Science.gov (United States)

    Chua, V. P.

    2015-12-01

    Intensive agricultural, economic and industrial activities in Singapore and Malaysia have made our coastal areas under high risk of water pollution. A coupled ocean-hydrologic model is employed to perform three-dimensional simulations of flow and pollutant transport in Singapore coastal waters. The hydrologic SWAT model is coupled with the coastal ocean SUNTANS model by outputting streamflow and pollutant concentrations from the SWAT model and using them as inputs for the SUNTANS model at common boundary points. The coupled model is calibrated with observed sea surface elevations and velocities, and high correlation coefficients that exceed 0.97 and 0.91 are found for sea surface elevations and velocities, respectively. The pollutants are modeled as Gaussian passive tracers, and are released at five upstream locations in Singapore coastal waters. During the Northeast monsoon, pollutants released in Source 1 (Johor River), Source 2 (Tiram River), Source 3 (Layang River) and Source 4 (Layau River) enter the Singapore Strait after 4 days of release and reach Sentosa Island within 9 days. Meanwhile, pollutants released in Source 5 (Kallang River) reach Sentosa Island after 4 days. During the Southwest monsoon, the dispersion time is roughly doubled, with pollutants from Sources 1 - 4 entering the Singapore Strait only after 12 days of release due to weak currents.

  9. The Multimedia Environmental Pollutant Assessment System (MEPAS)reg-sign: Source-term release formulations

    International Nuclear Information System (INIS)

    Streile, G.P.; Shields, K.D.; Stroh, J.L.; Bagaasen, L.M.; Whelan, G.; McDonald, J.P.; Droppo, J.G.; Buck, J.W.

    1996-11-01

    This report is one of a series of reports that document the mathematical models in the Multimedia Environmental Pollutant Assessment System (MEPAS). Developed by Pacific Northwest National Laboratory for the US Department of Energy, MEPAS is an integrated impact assessment software implementation of physics-based fate and transport models in air, soil, and water media. Outputs are estimates of exposures and health risk assessments for radioactive and hazardous pollutants. Each of the MEPAS formulation documents covers a major MEPAS component such as source-term, atmospheric, vadose zone/groundwater, surface water, and health exposure/health impact assessment. Other MEPAS documentation reports cover the sensitivity/uncertainty formulations and the database parameter constituent property estimation methods. The pollutant source-term release component is documented in this report. MEPAS simulates the release of contaminants from a source, transport through the air, groundwater, surface water, or overland pathways, and transfer through food chains and exposure pathways to the exposed individual or population. For human health impacts, risks are computed for carcinogens and hazard quotients for noncarcinogens. MEPAS is implemented on a desktop computer with a user-friendly interface that allows the user to define the problem, input the required data, and execute the appropriate models for both deterministic and probabilistic analyses

  10. An improved risk-explicit interval linear programming model for pollution load allocation for watershed management.

    Science.gov (United States)

    Xia, Bisheng; Qian, Xin; Yao, Hong

    2017-11-01

    Although the risk-explicit interval linear programming (REILP) model has solved the problem of having interval solutions, it has an equity problem, which can lead to unbalanced allocation between different decision variables. Therefore, an improved REILP model is proposed. This model adds an equity objective function and three constraint conditions to overcome this equity problem. In this case, pollution reduction is in proportion to pollutant load, which supports balanced development between different regional economies. The model is used to solve the problem of pollution load allocation in a small transboundary watershed. Compared with the REILP original model result, our model achieves equity between the upstream and downstream pollutant loads; it also overcomes the problem of greatest pollution reduction, where sources are nearest to the control section. The model provides a better solution to the problem of pollution load allocation than previous versions.

  11. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion.

    Science.gov (United States)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong; Zhu, Xiaobin

    2016-07-01

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl(-) concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM(ZS) is used as sampling algorithm. Then, the predictive distribution of Cl(-) concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl(-) concentration. The results of model calibration and verification demonstrate that the DREAM(ZS) based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015-2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl(-) concentration of groundwater source field always vary between 175mg/l and 200mg/l. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The application of IBA techniques to air pollution source fingerprinting and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D., E-mail: dcz@ansto.gov.au; Stelcer, E.; Atanacio, A.; Crawford, J.

    2014-01-01

    IBA techniques have been used to measure elemental concentrations of more than 20 different elements found in fine particle (PM2.5) air pollution. These data together with their errors and minimum detectable limits were used in Positive Matrix Factorisation (PMF) analyses to quantitatively determine source fingerprints and their contributions to the total measured fine mass. Wind speed and direction back trajectory data from the global HYSPLIT codes were then linked to these PMF fingerprints to quantitatively identify the location of the sources.

  13. mathematical modelling of atmospheric dispersion of pollutants

    International Nuclear Information System (INIS)

    Mohamed, M.E.

    2002-01-01

    the main objectives of this thesis are dealing with environmental problems adopting mathematical techniques. in this respect, atmospheric dispersion processes have been investigated by improving the analytical models to realize the realistic physical phenomena. to achieve these aims, the skeleton of this work contained both mathematical and environmental topics,performed in six chapters. in chapter one we presented a comprehensive review study of most important informations related to our work such as thermal stability , plume rise, inversion, advection , dispersion of pollutants, gaussian plume models dealing with both radioactive and industrial contaminants. chapter two deals with estimating the decay distance as well as the decay time of either industrial or radioactive airborne pollutant. further, highly turbulent atmosphere has been investigated as a special case in the three main thermal stability classes namely, neutral, stable, and unstable atmosphere. chapter three is concerned with obtaining maximum ground level concentration of air pollutant. the variable effective height of pollutants has been considered throughout the mathematical treatment. as a special case the constancy of effective height has been derived mathematically and the maximum ground level concentration as well as its location have been established

  14. Modeling cellular effects of coal pollutants

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The goal of this project is to develop and test models for the dose and dose-rate dependence of biological effects of coal pollutants on mammalian cells in tissue culture. Particular attention is given to the interaction of pollutants with the genetic material (deoxyribonucleic acid, or NDA) in the cell. Unlike radiation, which can interact directly with chromatin, chemical pollutants undergo numerous changes before the ultimate carcinogen becomes covalently bound to the DNA. Synthetic vesicles formed from a phospholipid bilayer are being used to investigate chemical transformations that may occur during the transport of pollutants across cellular membranes. The initial damage to DNA is rapidly modified by enzymatic repair systems in most living organisms. A model has been developed for predicting the effects of excision repair on the survival of human cells exposed to chemical carcinogens. In addition to the excision system, normal human cells also have tolerance mechanisms that permit continued growth and division of cells without removal of the damage. We are investigating the biological effect of damage passed to daughter cells by these tolerance mechanisms

  15. Mathematical models for atmospheric pollutants. Appendix D. Available air quality models. Final report

    International Nuclear Information System (INIS)

    Drake, R.L.; McNaughton, D.J.; Huang, C.

    1979-08-01

    Models that are available for the analysis of airborne pollutants are summarized. In addition, recommendations are given concerning the use of particular models to aid in particular air quality decision making processes. The air quality models are characterized in terms of time and space scales, steady state or time dependent processes, reference frames, reaction mechanisms, treatment of turbulence and topography, and model uncertainty. Using these characteristics, the models are classified in the following manner: simple deterministic models, such as air pollution indices, simple area source models and rollback models; statistical models, such as averaging time models, time series analysis and multivariate analysis; local plume and puff models; box and multibox models; finite difference or grid models; particle models; physical models, such as wind tunnels and liquid flumes; regional models; and global models

  16. Sensitivity analysis of the relationship between disease occurrence and distance from a putative source of pollution

    Directory of Open Access Journals (Sweden)

    Emanuela Dreassi

    2008-05-01

    Full Text Available The relation between disease risk and a point source of pollution is usually investigated using distance from the source as a proxy of exposure. The analysis may be based on case-control data or on aggregated data. The definition of the function relating risk of disease and distance is critical, both in a classical and in a Bayesian framework, because the likelihood is usually very flat, even with large amounts of data. In this paper we investigate how the specification of the function relating risk of disease with distance from the source and of the prior distributions on the parameters of the function affects the results when case-control data and Bayesian methods are used. We consider different popular parametric models for the risk distance function in a Bayesian approach, comparing estimates with those derived by maximum likelihood. As an example we have analyzed the relationship between a putative source of environmental pollution (an asbestos cement plant and the occurrence of pleural malignant mesothelioma in the area of Casale Monferrato (Italy in 1987-1993. Risk of pleural malignant mesothelioma turns out to be strongly related to distance from the asbestos cement plant. However, as the models appeared to be sensitive to modeling choices, we suggest that any analysis of disease risk around a putative source should be integrated with a careful sensitivity analysis and possibly with prior knowledge. The choice of prior distribution is extremely important and should be based on epidemiological considerations.

  17. COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS

    Science.gov (United States)

    Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...

  18. Evaluation of environmental impact of air pollution sources

    Energy Technology Data Exchange (ETDEWEB)

    Holnicki, P. [Polish Academy of Science, Warsaw (Poland). Systems Research Inst.

    2004-10-15

    This paper addresses the problem of evaluation and comparison of environmental impact of emission sources in the case of a complex, multisource emission field. The analysis is based on the forecasts of a short-term, dynamic dispersion model. The aim is to get a quantitative evaluation of the contribution of the selected sources according to the predefined, environmental cost function. The approach utilizes the optimal control technique for distributed parameter systems. The adjoint equation, related to the main transport equation of the forecasting model, is applied to calculate the sensitivity of the cost function to the emission intensity of the specified sources. An example implementation of a regional-scale, multilayer dynamic model of SOx transport is discussed as the main forecasting tool. The test computations have been performed for a set of the major power plants in a selected industrial region of Poland.

  19. VESSEL-SOURCED POLLUTION: A SECURITY THREAT IN ...

    African Journals Online (AJOL)

    and some other conventions make provisions concerning protection of ma- ... the pollution of the marine in Malaysia, it appears that pollution by vessels .... pollution from ships and maritime safety; providing effective legal, technical and scientific ..... of the offence after the service of the notice on the offending ship through.

  20. Controlling Air Pollution; A Primer on Stationary Source Control Techniques.

    Science.gov (United States)

    Corman, Rena

    This companion document to "Air Pollution Primer" is written for the nonexpert in air pollution; however, it does assume a familiarity with air pollution problems. This work is oriented toward providing the reader with knowledge about current and proposed air quality legislation and knowledge about available technology to meet these standards for…

  1. Dynamics of a Stage Structured Pest Control Model in a Polluted Environment with Pulse Pollution Input

    OpenAIRE

    Liu, Bing; Xu, Ling; Kang, Baolin

    2013-01-01

    By using pollution model and impulsive delay differential equation, we formulate a pest control model with stage structure for natural enemy in a polluted environment by introducing a constant periodic pollutant input and killing pest at different fixed moments and investigate the dynamics of such a system. We assume only that the natural enemies are affected by pollution, and we choose the method to kill the pest without harming natural enemies. Sufficient conditions for global attractivity ...

  2. Mercury as a Global Pollutant: Sources, Pathways, and Effects

    Science.gov (United States)

    2013-01-01

    Mercury (Hg) is a global pollutant that affects human and ecosystem health. We synthesize understanding of sources, atmosphere-land-ocean Hg dynamics and health effects, and consider the implications of Hg-control policies. Primary anthropogenic Hg emissions greatly exceed natural geogenic sources, resulting in increases in Hg reservoirs and subsequent secondary Hg emissions that facilitate its global distribution. The ultimate fate of emitted Hg is primarily recalcitrant soil pools and deep ocean waters and sediments. Transfers of Hg emissions to largely unavailable reservoirs occur over the time scale of centuries, and are primarily mediated through atmospheric exchanges of wet/dry deposition and evasion from vegetation, soil organic matter and ocean surfaces. A key link between inorganic Hg inputs and exposure of humans and wildlife is the net production of methylmercury, which occurs mainly in reducing zones in freshwater, terrestrial, and coastal environments, and the subsurface ocean. Elevated human exposure to methylmercury primarily results from consumption of estuarine and marine fish. Developing fetuses are most at risk from this neurotoxin but health effects of highly exposed populations and wildlife are also a concern. Integration of Hg science with national and international policy efforts is needed to target efforts and evaluate efficacy. PMID:23590191

  3. Human waste: An underestimated source of nutrient pollution in coastal seas of Bangladesh, India and Pakistan.

    Science.gov (United States)

    Amin, Md Nurul; Kroeze, Carolien; Strokal, Maryna

    2017-05-15

    Many people practice open defecation in south Asia. As a result, lot of human waste containing nutrients such as nitrogen (N) and phosphorus (P) enter rivers. Rivers transport these nutrients to coastal waters, resulting in marine pollution. This source of nutrient pollution is, however, ignored in many nutrient models. We quantify nutrient export by large rivers to coastal seas of Bangladesh, India and Pakistan, and the associated eutrophication potential in 2000 and 2050. Our new estimates for N and P inputs from human waste are one to two orders of magnitude higher than earlier model calculations. This leads to higher river export of nutrients to coastal seas, increasing the risk of coastal eutrophication potential (ICEP). The newly calculated future ICEP, for instance, Godavori river is 3 times higher than according to earlier studies. Our modeling approach is simple and transparent and can easily be applied to other data-poor basins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Stream nitrogen sources apportionment and pollution control scheme development in an agricultural watershed in eastern China.

    Science.gov (United States)

    Chen, Dingjiang; Lu, Jun; Huang, Hong; Liu, Mei; Gong, Dongqin; Chen, Jiabo

    2013-08-01

    A modeling system that couples a land-usebased export coefficient model, a stream nutrient transport equation, and Bayesian statistics was developed for stream nitrogen source apportionment. It divides a watershed into several sub-catchments, and then considers the major landuse categories as stream nitrogen sources in each subcatchment. The runoff depth and stream water depth are considered as the major factors influencing delivery of nitrogen from land to downstream stream node within each sub-catchment. The nitrogen sources and delivery processes are lumped into several constant parameters that were calibrated using Bayesian statistics from commonly available stream monitoring and land-use datasets. This modeling system was successfully applied to total nitrogen (TN) pollution control scheme development for the ChangLe River watershed containing six sub-catchments and four land-use categories. The temporal (across months and years) and spatial (across sub-catchments and land-use categories) variability of nonpoint source (NPS) TN export to stream channels and delivery to the watershed outlet were assessed. After adjustment for in-stream TNretention, the time periods and watershed areas with disproportionately high-TN contributions to the stream were identified. Aimed at a target stream TN level of 2 mg L-1, a quantitative TN pollution control scheme was further developed to determine which sub-catchments, which land-use categories in a sub-catchment, which time periods, and how large of NPS TN export reduction were required. This modeling system provides a powerful tool for stream nitrogen source apportionment and pollution control scheme development at the watershed scale and has only limited data requirements.

  5. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    Science.gov (United States)

    Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  6. Spatial Regression and Prediction of Water Quality in a Watershed with Complex Pollution Sources.

    Science.gov (United States)

    Yang, Xiaoying; Liu, Qun; Luo, Xingzhang; Zheng, Zheng

    2017-08-16

    Fast economic development, burgeoning population growth, and rapid urbanization have led to complex pollution sources contributing to water quality deterioration simultaneously in many developing countries including China. This paper explored the use of spatial regression to evaluate the impacts of watershed characteristics on ambient total nitrogen (TN) concentration in a heavily polluted watershed and make predictions across the region. Regression results have confirmed the substantial impact on TN concentration by a variety of point and non-point pollution sources. In addition, spatial regression has yielded better performance than ordinary regression in predicting TN concentrations. Due to its best performance in cross-validation, the river distance based spatial regression model was used to predict TN concentrations across the watershed. The prediction results have revealed a distinct pattern in the spatial distribution of TN concentrations and identified three critical sub-regions in priority for reducing TN loads. Our study results have indicated that spatial regression could potentially serve as an effective tool to facilitate water pollution control in watersheds under diverse physical and socio-economical conditions.

  7. MSW: From pollution/degradation source to resource

    Directory of Open Access Journals (Sweden)

    Francesca Pirlone

    2016-08-01

    Full Text Available Municipal Solid Waste is one of the biggest challenges that cities are facing: MSW is considered of the main sources of energy consumption, urban degradation and pollution. This paper defines the major negative effects of MSW on cities and proposes new solutions to guide waste policies. Most contemporary waste management efforts are focused at regional government level and based on high tech waste disposal by methods such as landfill and incineration. However, these methods are becoming increasingly expensive, energy inefficient and pollutant: waste disposal is not sustainable and will have negative implications for future generations. In this paper are proposed all the principle solutions that could be undertaken. New policy instruments are presented updating and adapting policies and encouraging innovation for less wasteful systems. Waste management plans are fundamental to increase the ability of urban areas to effectively adapt to waste challenges. These plans have to give an outline of waste streams and treatment options and provide a scenario for the following years that significantly reduce landfills and incinerators in favor of prevention, reuse and recycling. The key aim of an urban waste management plan is to set out the work towards a zero waste economy as part of the transition to a sustainable economy. Other questions remain still opened: How to change people’s behavior? What is the role of environmental education and risk perception? It is sure that the involvement of the various stakeholders and the wider public in the planning process should aim at ensuring acceptance of the waste policy.

  8. Event-based nonpoint source pollution prediction in a scarce data catchment

    Science.gov (United States)

    Chen, Lei; Sun, Cheng; Wang, Guobo; Xie, Hui; Shen, Zhenyao

    2017-09-01

    Quantifying the rainfall-runoff-pollutant (R-R-P) process is key to regulating non-point source (NPS) pollution; however, the impacts of scarce measured data on R-R-P simulations have not yet been reported. In this study, we conducted a comprehensive study of scarce data that addressed both rainfall-runoff and runoff-pollutant processes, whereby the impacts of data scarcity on two commonly used methods, including Unit Hydrograph (UH) and Loads Estimator (LOADEST), were quantified. A case study was performed in a typical small catchment of the Three Gorges Reservoir Region (TGRR) of China. Based on our results, the classification of rainfall patterns should be carried out first when analyzing modeling results. Compared to data based on a missing rate and a missing location, key information generates more impacts on the simulated flow and NPS loads. When the scarcity rate exceeds a certain threshold (20% in this study), measured data scarcity level has clear impacts on the model's accuracy. As the model of total nitrogen (TN) always performs better under different data scarcity conditions, researchers are encouraged to pay more attention to continuous the monitoring of total phosphorus (TP) for better NPS-TP predictions. The results of this study serve as baseline information for hydrologic forecasting and for the further control of NPS pollutants.

  9. Chemometric Analysis for Pollution Source Assessment of Harbour Sediments in Arctic Locations

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Lejon, Tore; Jensen, Pernille Erland

    2015-01-01

    Pollution levels, pollutant distribution and potential source assessments based on multivariate analysis (chemometrics) were made for harbour sediments from two Arctic locations; Hammerfest in Norway and Sisimiut in Greenland. High levels of heavy metals were detected in addition to organic...... pollutants. Preliminary assessments based on principal component analysis (PCA) revealed different sources and pollutant distribution in the sediments of the two harbours. Tributyltin (TBT) was, however, found to originate from point source(s), and the highest concentrations of TBT in both harbours were...... indicated relation primarily to German, Russian and American mixtures in Hammerfest; and American, Russian and Japanese mixtures in Sisimiut. PCA was shown to be an important tool for identifying pollutant sources and differences in pollutant composition in relation to sediment characteristics....

  10. Correlation between co-exposures to noise and air pollution from traffic sources.

    NARCIS (Netherlands)

    Davies, H.W.; Vlaanderen, J.J.; Henderson, S.E.; Brauer, M.

    2009-01-01

    BACKGROUND: Both air and noise pollution associated with motor vehicle traffic have been associated with cardiovascular disease. Similarities in pollution source and health outcome mean that there is potential for noise to confound studies of air pollution and cardiovascular disease, and vice versa,

  11. The model for calculation of emission and imisson of air pollutants from vehicles with internal combustion engine

    International Nuclear Information System (INIS)

    Tashevski, Done; Dimitrovski, Mile

    1994-01-01

    The model for calculation of emission and immision of air pollutants from vehicles with internal combustion engine on the crossroads in urban environments, with substitution of a great number of exhaust-pipes with one chimney in the centre of the crossroad has been made. The whole calculation of the pollution sources mentioned above is, in the fact, the calculation of the emission and imisson of pollutants from point sources of pollution. (author)

  12. Intra-urban biomonitoring: Source apportionment using tree barks to identify air pollution sources.

    Science.gov (United States)

    Moreira, Tiana Carla Lopes; de Oliveira, Regiani Carvalho; Amato, Luís Fernando Lourenço; Kang, Choong-Min; Saldiva, Paulo Hilário Nascimento; Saiki, Mitiko

    2016-05-01

    It is of great interest to evaluate if there is a relationship between possible sources and trace elements using biomonitoring techniques. In this study, tree bark samples of 171 trees were collected using a biomonitoring technique in the inner city of São Paulo. The trace elements (Al, Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, Rb, S, Sr and Zn) were determined by the energy dispersive X-ray fluorescence (EDXRF) spectrometry. The Principal Component Analysis (PCA) was applied to identify the plausible sources associated with tree bark measurements. The greatest source was vehicle-induced non-tailpipe emissions derived mainly from brakes and tires wear-out and road dust resuspension (characterized with Al, Ba, Cu, Fe, Mn and Zn), which was explained by 27.1% of the variance, followed by cement (14.8%), sea salt (11.6%) and biomass burning (10%), and fossil fuel combustion (9.8%). We also verified that the elements related to vehicular emission showed different concentrations at different sites of the same street, which might be helpful for a new street classification according to the emission source. The spatial distribution maps of element concentrations were obtained to evaluate the different levels of pollution in streets and avenues. Results indicated that biomonitoring techniques using tree bark can be applied to evaluate dispersion of air pollution and provide reliable data for the further epidemiological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Source-specific fine particulate air pollution and systemic inflammation in ischaemic heart disease patients

    Science.gov (United States)

    Siponen, Taina; Yli-Tuomi, Tarja; Aurela, Minna; Dufva, Hilkka; Hillamo, Risto; Hirvonen, Maija-Riitta; Huttunen, Kati; Pekkanen, Juha; Pennanen, Arto; Salonen, Iiris; Tiittanen, Pekka; Salonen, Raimo O; Lanki, Timo

    2015-01-01

    Objective To compare short-term effects of fine particles (PM2.5; aerodynamic diameter <2.5 µm) from different sources on the blood levels of markers of systemic inflammation. Methods We followed a panel of 52 ischaemic heart disease patients from 15 November 2005 to 21 April 2006 with clinic visits in every second week in the city of Kotka, Finland, and determined nine inflammatory markers from blood samples. In addition, we monitored outdoor air pollution at a fixed site during the study period and conducted a source apportionment of PM2.5 using the Environmental Protection Agency's model EPA PMF 3.0. We then analysed associations between levels of source-specific PM2.5 and markers of systemic inflammation using linear mixed models. Results We identified five source categories: regional and long-range transport (LRT), traffic, biomass combustion, sea salt, and pulp industry. We found most evidence for the relation of air pollution and inflammation in LRT, traffic and biomass combustion; the most relevant inflammation markers were C-reactive protein, interleukin-12 and myeloperoxidase. Sea salt was not positively associated with any of the inflammatory markers. Conclusions Results suggest that PM2.5 from several sources, such as biomass combustion and traffic, are promoters of systemic inflammation, a risk factor for cardiovascular diseases. PMID:25479755

  14. Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Levy Jonathan I

    2007-05-01

    Full Text Available Abstract Background There has been growing interest among exposure assessors, epidemiologists, and policymakers in the concept of "hot spots", or more broadly, the "spatial extent" of impacts from traffic-related air pollutants. This review attempts to quantitatively synthesize findings about the spatial extent under various circumstances. Methods We include both the peer-reviewed literature and government reports, and focus on four significant air pollutants: carbon monoxide, benzene, nitrogen oxides, and particulate matter (including both ultrafine particle counts and fine particle mass. From the identified studies, we extracted information about significant factors that would be hypothesized to influence the spatial extent within the study, such as the study type (e.g., monitoring, air dispersion modeling, GIS-based epidemiological studies, focus on concentrations or health risks, pollutant under study, background concentration, emission rate, and meteorological factors, as well as the study's implicit or explicit definition of spatial extent. We supplement this meta-analysis with results from some illustrative atmospheric dispersion modeling. Results We found that pollutant characteristics and background concentrations best explained variability in previously published spatial extent estimates, with a modifying influence of local meteorology, once some extreme values based on health risk estimates were removed from the analysis. As hypothesized, inert pollutants with high background concentrations had the largest spatial extent (often demonstrating no significant gradient, and pollutants formed in near-source chemical reactions (e.g., nitrogen dioxide had a larger spatial extent than pollutants depleted in near-source chemical reactions or removed through coagulation processes (e.g., nitrogen oxide and ultrafine particles. Our illustrative dispersion model illustrated the complex interplay of spatial extent definitions, emission rates

  15. Modelling Pollutant Dispersion in a Street Network

    Science.gov (United States)

    Salem, N. Ben; Garbero, V.; Salizzoni, P.; Lamaison, G.; Soulhac, L.

    2015-04-01

    This study constitutes a further step in the analysis of the performances of a street network model to simulate atmospheric pollutant dispersion in urban areas. The model, named SIRANE, is based on the decomposition of the urban atmosphere into two sub-domains: the urban boundary layer, whose dynamics is assumed to be well established, and the urban canopy, represented as a series of interconnected boxes. Parametric laws govern the mass exchanges between the boxes under the assumption that the pollutant dispersion within the canopy can be fully simulated by modelling three main bulk transfer phenomena: channelling along street axes, transfers at street intersections, and vertical exchange between street canyons and the overlying atmosphere. Here, we aim to evaluate the reliability of the parametrizations adopted to simulate these phenomena, by focusing on their possible dependence on the external wind direction. To this end, we test the model against concentration measurements within an idealized urban district whose geometrical layout closely matches the street network represented in SIRANE. The analysis is performed for an urban array with a fixed geometry and a varying wind incidence angle. The results show that the model provides generally good results with the reference parametrizations adopted in SIRANE and that its performances are quite robust for a wide range of the model parameters. This proves the reliability of the street network approach in simulating pollutant dispersion in densely built city districts. The results also show that the model performances may be improved by considering a dependence of the wind fluctuations at street intersections and of the vertical exchange velocity on the direction of the incident wind. This opens the way for further investigations to clarify the dependence of these parameters on wind direction and street aspect ratios.

  16. The sources of trace element pollution of dry depositions nearby a drinking water source.

    Science.gov (United States)

    Guo, Xinyue; Ji, Hongbing; Li, Cai; Gao, Yang; Ding, Huaijian; Tang, Lei; Feng, Jinguo

    2017-02-01

    Miyun Reservoir is one of the most important drinking water sources for Beijing. Thirteen atmospheric PM sampling sites were established around this reservoir to analyze the mineral composition, morphological characteristics, element concentration, and sources of atmospheric PM pollution, using transmission electron microscope, X-ray diffraction, and inductively coupled plasma mass spectrometry analyses. The average monthly dry deposition flux of aerosols was 15.18 g/m 2 , with a range of 5.78-47.56 g/m 2 . The maximum flux season was winter, followed by summer, autumn, and spring. Zn and Pb pollution in this area was serious, and some of the sample sites had Cr, Co, Ni, and Cu pollution. Deposition fluxes of Zn/Pb in winter and summer reached 99.77/143.63 and 17.04/33.23 g/(hm 2 month), respectively. Principal component analysis showed two main components in the dry deposition; the first was Cr, Co, Ni, Cu, and Zn, and the other was Pb and Cd. Principal sources of the trace elements were iron mining and other anthropogenic activities in the surrounding areas and mountainous area north of the reservoir. Mineralogy analysis and microscopic conformation results showed many iron minerals and some unweathered minerals in dry deposition and atmospheric particulate matter, which came from an iron ore yard in the northern mountainous area of Miyun County. There was possible iron-rich dry deposition into Miyun Reservoir, affecting its water quality and harming the health of people living in areas around the reservoir and Beijing.

  17. Calculation and analysis of the non-point source pollution in the upstream watershed of the Panjiakou Reservoir, People's Republic of China

    Science.gov (United States)

    Zhang, S.; Tang, L.

    2007-05-01

    Panjiakou Reservoir is an important drinking water resource in Haihe River Basin, Hebei Province, People's Republic of China. The upstream watershed area is about 35,000 square kilometers. Recently, the water pollution in the reservoir is becoming more serious owing to the non-point pollution as well as point source pollution on the upstream watershed. To effectively manage the reservoir and watershed and develop a plan to reduce pollutant loads, the loading of non-point and point pollution and their distribution on the upstream watershed must be understood fully. The SWAT model is used to simulate the production and transportation of the non-point source pollutants in the upstream watershed of the Panjiakou Reservoir. The loadings of non-point source pollutants are calculated for different hydrologic years and the spatial and temporal characteristics of non-point source pollution are studied. The stream network and topographic characteristics of the stream network and sub-basins are all derived from the DEM by ArcGIS software. The soil and land use data are reclassified and the soil physical properties database file is created for the model. The SWAT model was calibrated with observed data of several hydrologic monitoring stations in the study area. The results of the calibration show that the model performs fairly well. Then the calibrated model was used to calculate the loadings of non-point source pollutants for a wet year, a normal year and a dry year respectively. The time and space distribution of flow, sediment and non-point source pollution were analyzed depending on the simulated results. The comparison of different hydrologic years on calculation results is dramatic. The loading of non-point source pollution in the wet year is relatively larger but smaller in the dry year since the non-point source pollutants are mainly transported through the runoff. The pollution loading within a year is mainly produced in the flood season. Because SWAT is a

  18. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    Directory of Open Access Journals (Sweden)

    M. Wang

    2015-05-01

    Full Text Available The conservation of drinking water source reservoirs has a close relationship between regional economic development and people’s livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool model. The model was adjusted to analyse the temporal-spatial distribution patterns of total nitrogen (TN and total phosphorus (TP. The results showed that the loss of TN and TP in the reservoir watershed were related to precipitation in flood season. And the annual changes showed an "M" shape. It was found that the contribution of loss of TN and TP accounted for 84.5% and 85.3% in high flow years, and for 70.3% and 69.7% in low flow years, respectively. The contributions in normal flow years were 62.9% and 63.3%, respectively. The TN and TP mainly arise from Wangtan town, Gulai town, and Wangyuan town, etc. In addition, it was found that the source of TN and TP showed consistency in space.

  19. Modeling pollutant dispersion within a tornadic thunderstorm

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W

    1982-01-01

    A three-dimensional numerical model has been developed to calculate ground-level air concentration and deposition of particles entrained in a tornadic thunderstorm. The rotational characteristics of the tornadic storm are within the larger mesoscale flow of the storm system and transported with the vortex. Turbulence exchange coefficients are based on empirical values. The quasi-Lagrangian method of moments is used to model the transport of concentration within a grid cell volume. Results indicate that updrafts and downdrafts, coupled with scavenging of particles by precipitation, account for most of the material being deposited closer to the site than anticipated. Approximately 5% of the pollutant is dispersed into the stratosphere.

  20. Assessment of air, water and land-based sources of pollution in the ...

    African Journals Online (AJOL)

    A quantitative assessment of air, water and land-based sources of pollution to the coastal zone of the Accra-Tema Metropolitan Area of Ghana was conducted by making an emission inventory from information on industrial, commercial and domestic activities. Three sources of air pollution were analysed, viz, emission from ...

  1. SOPHIE, a European data base on indoor air pollution sources: Marketing and organisational matters

    NARCIS (Netherlands)

    Bluyssen, P.M.; Oliveira Fernandes, E. de; Molina, J.L.

    1999-01-01

    As an outcome of a former project of the JOULE programme of the European Commission, the Database SOPHIE (Sources of Pollution for a Healthy and Comfortable Indoor Environment) represents an attempt to contribute to an objective, permanent and dynamic documentation of indoor air pollution sources.

  2. Land-based sources of pollution and environmental quality of Weija ...

    African Journals Online (AJOL)

    A survey of land-based sources of pollution was undertaken in the catchment area of Weija Lake. Activities that may influence the quality of the environment, and the sources, amounts and effects of the pollution of the water body were assessed. Water and precipitation chemistry showed that Na:Ca (0.48) and Na:K (2.0) ...

  3. Spatiotemporal patterns and source attribution of nitrogen pollution in a typical headwater agricultural watershed in Southeastern China.

    Science.gov (United States)

    Chen, Wenjun; He, Bin; Nover, Daniel; Duan, Weili; Luo, Chuan; Zhao, Kaiyan; Chen, Wen

    2018-01-01

    Excessive nitrogen (N) discharge from agriculture causes widespread problems in aquatic ecosystems. Knowledge of spatiotemporal patterns and source attribution of N pollution is critical for nutrient management programs but is poorly studied in headwaters with various small water bodies and mini-point pollution sources. Taking a typical small watershed in the low mountains of Southeastern China as an example, N pollution and source attribution were studied for a multipond system around a village using the Hydrological Simulation Program-Fortran (HSPF) model. The results exhibited distinctive spatio-seasonal variations with an overall seriousness rank for the three indicators: total nitrogen (TN) > nitrate/nitrite nitrogen (NO x - -N) > ammonia nitrogen (NH 3 -N), according to the Chinese Surface Water Quality Standard. TN pollution was severe for the entire watershed, while NO x - -N pollution was significant for ponds and ditches far from the village, and the NH 3 -N concentrations were acceptable except for the ponds near the village in summer. Although food and cash crop production accounted for the largest source of N loads, we discovered that mini-point pollution sources, including animal feeding operations, rural residential sewage, and waste, together contributed as high as 47% of the TN and NH 3 -N loads in ponds and ditches. So, apart from eco-fertilizer programs and concentrated animal feeding operations, the importance of environmental awareness building for resource management is highlighted for small farmers in headwater agricultural watersheds. As a first attempt to incorporate multipond systems into the process-based modeling of nonpoint source (NPS) pollution, this work can inform other hydro-environmental studies on scattered and small water bodies. The results are also useful to water quality improvement for entire river basins.

  4. AirPEx: Air Pollution Exposure Model

    NARCIS (Netherlands)

    Freijer JI; Bloemen HJTh; Loos S de; Marra M; Rombout PJA; Steentjes GM; Veen MP van; LBO

    1997-01-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The

  5. Mixed deterministic statistical modelling of regional ozone air pollution

    KAUST Repository

    Kalenderski, Stoitchko; Steyn, Douw G.

    2011-01-01

    formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate

  6. Comparison of point-source pollutant loadings to soil and groundwater for 72 chemical substances.

    Science.gov (United States)

    Yu, Soonyoung; Hwang, Sang-Il; Yun, Seong-Taek; Chae, Gitak; Lee, Dongsu; Kim, Ki-Eun

    2017-11-01

    Fate and transport of 72 chemicals in soil and groundwater were assessed by using a multiphase compositional model (CompFlow Bio) because some of the chemicals are non-aqueous phase liquids or solids in the original form. One metric ton of chemicals were assumed to leak in a stylized facility. Scenarios of both surface spills and subsurface leaks were considered. Simulation results showed that the fate and transport of chemicals above the water table affected the fate and transport of chemicals below the water table, and vice versa. Surface spill scenarios caused much less concentrations than subsurface leak scenarios because leaching amounts into the subsurface environment were small (at most 6% of the 1 t spill for methylamine). Then, simulation results were applied to assess point-source pollutant loadings to soil and groundwater above and below the water table, respectively, by multiplying concentrations, impact areas, and durations. These three components correspond to the intensity of contamination, mobility, and persistency in the assessment of pollutant loading, respectively. Assessment results showed that the pollutant loadings in soil and groundwater were linearly related (r 2  = 0.64). The pollutant loadings were negatively related with zero-order and first-order decay rates in both soil (r = - 0.5 and - 0.6, respectively) and groundwater (- 1.0 and - 0.8, respectively). In addition, this study scientifically defended that the soil partitioning coefficient (K d ) significantly affected the pollutant loadings in soil (r = 0.6) and the maximum masses in groundwater (r = - 0.9). However, K d was not a representative factor for chemical transportability unlike the expectation in chemical ranking systems of soil and groundwater pollutants. The pollutant loadings estimated using a physics-based hydrogeological model provided a more rational ranking for exposure assessment, compared to the summation of persistency and transportability scores in

  7. A Spatial and Temporal Assessment of Non-Point Groundwater Pollution Sources, Tutuila Island, American Samoa

    Science.gov (United States)

    Shuler, C. K.; El-Kadi, A. I.; Dulaiova, H.; Glenn, C. R.; Fackrell, J.

    2015-12-01

    The quality of municipal groundwater supplies on Tutuila, the main island in American Samoa, is currently in question. A high vulnerability for contamination from surface activities has been recognized, and there exists a strong need to clearly identify anthropogenic sources of pollution and quantify their influence on the aquifer. This study examines spatial relationships and time series measurements of nutrients and other tracers to identify predominant pollution sources and determine the water quality impacts of the island's diverse land uses. Elevated groundwater nitrate concentrations are correlated with areas of human development, however, the mixture of residential and agricultural land use in this unique village based agrarian setting makes specific source identification difficult using traditional geospatial analysis. Spatial variation in anthropogenic impact was assessed by linking NO3- concentrations and δ15N(NO3) from an extensive groundwater survey to land-use types within well capture zones and groundwater flow-paths developed with MODFLOW, a numerical groundwater model. Land use types were obtained from high-resolution GIS data and compared to water quality results with multiple-regression analysis to quantify the impact that different land uses have on water quality. In addition, historical water quality data and new analyses of δD and δ18O in precipitation, groundwater, and mountain-front recharge waters were used to constrain the sources and mechanisms of contamination. Our analyses indicate that groundwater nutrient levels on Tutuila are controlled primarily by residential, not agricultural activity. Also a lack of temporal variation suggests that episodic pollution events are limited to individual water sources as opposed to the entire aquifer. These results are not only valuable for water quality management on Tutuila, but also provide insight into the sustainability of groundwater supplies on other islands with similar hydrogeology and land

  8. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    Science.gov (United States)

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  9. Photovoltaic sources modeling

    CERN Document Server

    Petrone, Giovanni; Spagnuolo, Giovanni

    2016-01-01

    This comprehensive guide surveys all available models for simulating a photovoltaic (PV) generator at different levels of granularity, from cell to system level, in uniform as well as in mismatched conditions. Providing a thorough comparison among the models, engineers have all the elements needed to choose the right PV array model for specific applications or environmental conditions matched with the model of the electronic circuit used to maximize the PV power production.

  10. Report on air quality and contribution of individual sources on its pollution in the Slovak Republic, 2002

    International Nuclear Information System (INIS)

    Mitosinkova, M.; Kozakovic, L.; Zavodsky, D.; Sajtakova, E.; Szemesova, J.; Pukancikova, K.

    2003-01-01

    A report on air quality and contribution of individual sources on its pollution in the Slovak Republic in 2002 is presented. This report consists of two parts: (1) Pollutants part and (2) Emission part. Pollutants part is divided into the following chapters: Regional air pollution and quality of rainfall waters; Local air pollution; Atmospheric ozone. Emission part is divided into the following chapters: Inventory control of emissions and sources of pollution, Emission of greenhouse gases.

  11. Report on air quality and contribution of individual sources on its pollution in the Slovak Republic, 2004

    International Nuclear Information System (INIS)

    Mitosinkova, M.; Kozakovic, L.; Zavodsky, D.; Sajtakova, E.; Szemesova, J.; Pukancikova, K.

    2005-01-01

    A report on air quality and contribution of individual sources on its pollution in the Slovak Republic in 2004 is presented. This report consists of two parts: (1) Pollutants part and (2) Emission part. Pollutants part is divided into the following chapters: Regional air pollution and quality of rainfall waters; Local air pollution; Atmospheric ozone. Emission part is divided into the following chapters: Inventory control of emissions and sources of pollution, Emission of greenhouse gases

  12. Report on air quality and contribution of individual sources on its pollution in the Slovak Republic, 2003

    International Nuclear Information System (INIS)

    Mitosinkova, M.; Kozakovic, L.; Zavodsky, D.; Sajtakova, E.; Szemesova, J.; Pukancikova, K.

    2004-01-01

    A report on air quality and contribution of individual sources on its pollution in the Slovak Republic in 2003 is presented. This report consists of two parts: (1) Pollutants part and (2) Emission part. Pollutants part is divided into the following chapters: Regional air pollution and quality of rainfall waters; Local air pollution; Atmospheric ozone. Emission part is divided into the following chapters: Inventory control of emissions and sources of pollution, Emission of greenhouse gases

  13. Report on air quality and contribution of individual sources on its pollution in the Slovak Republic, 2001

    International Nuclear Information System (INIS)

    Mitosinkova, M.; Kozakovic, L.; Zavodsky, D.; Sajtakova, E.; Mareckova, K.; Pukancikova, K.

    2002-01-01

    A report on air quality and contribution of individual sources on its pollution in the Slovak Republic in 2001 is presented. This report consists of two parts: (1) Pollutants part and (2) Emission part. Pollutants part is divided into the following chapters: Regional air pollution and quality of precipitation; Local air pollution; Atmospheric ozone. Emission part is divided into the following chapters: Inventory control of emissions and sources of pollution, Emission of greenhouse gases. Emission limits are included

  14. Investigation on supervising and monitoring of major radioactive pollution source

    International Nuclear Information System (INIS)

    Zeng Yibing; Zhang Zongrang; Men Meng; Zhang Peng

    2005-01-01

    Objective: In order to optimize the supervisory monitoring proposal of the major radioactive enterprises. Methods: The authors have worked out the public doses within the range of 0-1 km as well as 1-2 km through monitoring analysis of the radioactive pollutant enterprises on the samples of its surrounding air, water, soil and organism. Results: Generally the pollutant range of the enterprises runs from 0 to 1.5 km. Conclusion: Unnecessary working hours can be shortened as long as we keep the routine supervisory monitor of pollutant enterprises within the range of 2 km. (authors)

  15. Measurement error in mobile source air pollution exposure estimates due to residential mobility during pregnancy.

    Science.gov (United States)

    Pennington, Audrey Flak; Strickland, Matthew J; Klein, Mitchel; Zhai, Xinxin; Russell, Armistead G; Hansen, Craig; Darrow, Lyndsey A

    2017-09-01

    Prenatal air pollution exposure is frequently estimated using maternal residential location at the time of delivery as a proxy for residence during pregnancy. We describe residential mobility during pregnancy among 19,951 children from the Kaiser Air Pollution and Pediatric Asthma Study, quantify measurement error in spatially resolved estimates of prenatal exposure to mobile source fine particulate matter (PM 2.5 ) due to ignoring this mobility, and simulate the impact of this error on estimates of epidemiologic associations. Two exposure estimates were compared, one calculated using complete residential histories during pregnancy (weighted average based on time spent at each address) and the second calculated using only residence at birth. Estimates were computed using annual averages of primary PM 2.5 from traffic emissions modeled using a Research LINE-source dispersion model for near-surface releases (RLINE) at 250 m resolution. In this cohort, 18.6% of children were born to mothers who moved at least once during pregnancy. Mobile source PM 2.5 exposure estimates calculated using complete residential histories during pregnancy and only residence at birth were highly correlated (r S >0.9). Simulations indicated that ignoring residential mobility resulted in modest bias of epidemiologic associations toward the null, but varied by maternal characteristics and prenatal exposure windows of interest (ranging from -2% to -10% bias).

  16. Mixed deterministic statistical modelling of regional ozone air pollution

    KAUST Repository

    Kalenderski, Stoitchko

    2011-03-17

    We develop a physically motivated statistical model for regional ozone air pollution by separating the ground-level pollutant concentration field into three components, namely: transport, local production and large-scale mean trend mostly dominated by emission rates. The model is novel in the field of environmental spatial statistics in that it is a combined deterministic-statistical model, which gives a new perspective to the modelling of air pollution. The model is presented in a Bayesian hierarchical formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate that the model vastly outperforms existing, simpler modelling approaches. Our study highlights the importance of simultaneously considering different aspects of an air pollution problem as well as taking into account the physical bases that govern the processes of interest. © 2011 John Wiley & Sons, Ltd..

  17. Effects of land-use changes and stormflow-detention basins on flooding and nonpoint-source pollution, in Irondequoit Creek basin, Monroe and Ontario counties, New York--application of a precipitation-runoff model

    Science.gov (United States)

    Coon, William F.; Johnson, Mark S.

    2005-01-01

    Urbanization of the 150-square-mile Irondequoit Creek basin in Monroe and Ontario Counties, N.Y., continues to spread southward and eastward from the City of Rochester, on the shore of Lake Ontario. Conversion of forested land to other uses over the past 40 years has increased to the extent that more than 50 percent of the basin is now developed. This expansion has increased flooding and impaired stream-water quality in the northern (downstream) half of the basin. A precipitation-runoff model of the Irondequoit Creek basin was developed with the model code HSPF (Hydrological Simulation Program--FORTRAN) to simulate the effects of land-use changes and stormflow-detention basins on flooding and nonpoint-source pollution on the basin. Model performance was evaluated through a combination of graphical comparisons and statistical tests, and indicated 'very good' agreement (mean error less than 10 percent) between observed and simulated daily and monthly streamflows, between observed and simulated monthly water temperatures, and between observed total suspended solids loads and simulated sediment loads. Agreement between monthly observed and simulated nutrient loads was 'very good' (mean error less than 15 percent) or 'good' (mean error between 15 and 25 percent). Results of model simulations indicated that peak flows and loads of sediment and total phosphorus would increase in a rural subbasin, where 10 percent of the basin was converted from forest and grassland to pervious and impervious developed areas. Subsequent simulation of a stormflow-detention basin at the mouth of this subbasin indicated that peak flows and constituent loads would decrease below those that were generated by the land-use-change scenario, and, in some cases, below those that were simulated by the original land-use scenario. Other results from model simulations of peak flows over a 30-year period (1970-2000), with and without simulation of 50-percent flow reductions at one existing and nine

  18. Analyse of pollution sources in Horna Nitra river basin using the system GeoEnviron such as instrument for groundwater and surface water pollution risk assessment

    International Nuclear Information System (INIS)

    Kutnik, P.

    2004-01-01

    In this presentation author deals with the analyse of pollution sources in Horna Nitra river basin using the system GeoEnviron such as instrument for groundwater and surface water pollution risk assessment

  19. Steady-state solution of the semi-empirical diffusion equation for area sources. [air pollution studies

    Science.gov (United States)

    Lebedeff, S. A.; Hameed, S.

    1975-01-01

    The problem investigated can be solved exactly in a simple manner if the equations are written in terms of a similarity variable. The exact solution is used to explore two questions of interest in the modelling of urban air pollution, taking into account the distribution of surface concentration downwind of an area source and the distribution of concentration with height.

  20. Impact of point source pollution on groundwater quality

    International Nuclear Information System (INIS)

    Gill, M.A.; Solehria, B.A.; Rai, N.I.

    2005-01-01

    The management of point source pollution (municipal and industrial waste water) is an important item on Brown Agenda confronting urban planners and policy makers. The industrial concerns and households produce enormous amount of waste water, which has to be disposed of through the municipal sewage system. Generally, municipal wastewater management is done on non-scientific lines, resulting in considerable social and economic loss and gradual degradation of the natural resources. The present study highlights that how the poor management practices, lack of infrastructure, and poor disposal system-comprising of mostly open, un-walled or partially lined drains, affect the groundwater quality and render it unfit for human consumption. Satiana Road sludge carrier at Faisalabad city, receiving effluents of about 67 textile units, 4 oil mills, 2 ice factories, 3 laundris and domestic waste water of Peoples Colony No.1, Maqbool Road and Ghulam Rasool Nagar was selected to derive quantitative and qualitative estimates of TDS, Na, Cl and heavy metals namely Fe, Cu and Pb of the waste water and their leaching around the sludge carrier. The measurement of leaching of TDS, Na/sup +/, and Cl/sup -1/ per 1000 m basis in lined section was 818, 550 and 228 tons, respectively. Where as in the unlined section, annual increase of TDS, Na/sup /+, and Cl/sup -/ was 2404,1615 and 669 tons per 1000 m respectively. In case of leaching of metals through the sludge carrier, Cu was at the top with 8.4 tons per annum per 1000 m followed by Fe and Pb with 6.66 and 1.2 tons per annum per 1000 m respectively. The concentration of all the salts/metals studied were higher in groundwater near the sludge carrier which decreased with increase in distance. The groundwater contamination in unlined portions is greater than lined portions, which might be due to higher seepage losses in unlined portions of the sludge carrier (4.9 % per 1000 m) as compared to relatively low seepage losses in lined portion of

  1. Research and information needs related to nonpoint source pollution and wetlands in the watershed: An EPA perspective

    International Nuclear Information System (INIS)

    Ethridge, B.J.; Olson, R.K.

    1992-01-01

    Two related Environmental Protection Agency (EPA) efforts, wetlands protection and nonpoint source pollution control, fail to fully consider landscape factors when making site-specific decisions. The paper discusses the relationship of the two programs and the use of created and natural wetlands to treat nonpoint source (NPS) pollution. Recommendations to improve the programs include increased technical transfer of existing information, and more research on construction methods and siting of created wetlands to effectively manage NPS pollution. Additional research is also needed to determine (1) the maximum pollutant loading rates to assure the biological integrity of wetlands, (2) the effectiveness of current land-use practices in protecting habitat and water quality functions, (3) wetland functions as pollutant sinks, (4) NPS pollution threats to wildlife, (5) practical watershed models, and (6) indicators and reference sites for monitoring wetland condition. Model watershed demonstrations, jointly implemented by the research and conservation communities, are recommended as a means of integrating research results. (Copyright (c) 1992 - Elsevier Science Publishers B.V.)

  2. Household Air Pollution: Sources and Exposure Levels to Fine Particulate Matter in Nairobi Slums

    Directory of Open Access Journals (Sweden)

    Kanyiva Muindi

    2016-07-01

    Full Text Available With 2.8 billion biomass users globally, household air pollution remains a public health threat in many low- and middle-income countries. However, little evidence on pollution levels and health effects exists in low-income settings, especially slums. This study assesses the levels and sources of household air pollution in the urban slums of Nairobi. This cross-sectional study was embedded in a prospective cohort of pregnant women living in two slum areas—Korogocho and Viwandani—in Nairobi. Data on fuel and stove types and ventilation use come from 1058 households, while air quality data based on the particulate matters (PM2.5 level were collected in a sub-sample of 72 households using the DustTrak™ II Model 8532 monitor. We measured PM2.5 levels mainly during daytime and using sources of indoor air pollutions. The majority of the households used kerosene (69.7% as a cooking fuel. In households where air quality was monitored, the mean PM2.5 levels were high and varied widely, especially during the evenings (124.6 µg/m3 SD: 372.7 in Korogocho and 82.2 µg/m3 SD: 249.9 in Viwandani, and in households using charcoal (126.5 µg/m3 SD: 434.7 in Korogocho and 75.7 µg/m3 SD: 323.0 in Viwandani. Overall, the mean PM2.5 levels measured within homes at both sites (Korogocho = 108.9 µg/m3 SD: 371.2; Viwandani = 59.3 µg/m3 SD: 234.1 were high. Residents of the two slums are exposed to high levels of PM2.5 in their homes. We recommend interventions, especially those focusing on clean cookstoves and lighting fuels to mitigate indoor levels of fine particles.

  3. The ``KILDER`` air pollution modelling system, version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Gram, F.

    1996-12-31

    This report describes the KILDER Air Pollution Modelling System, which is a system of small PC-programs for calculation of long-term emission, dispersion, concentration and exposure from different source categories. The system consists of three parts: (1) The dispersion models POI-KILD and ARE-KILD for point- and area-sources, respectively, (2) Meterological programs WINDFREC, STABFREC and METFREC, (3) Supporting programs for calculating emissions and exposure and for operating with binary data fields. The file structure is based on binary files with data fields. The data fields are matrices with different types of values and may be read into the computer or be calculated in other programs. 19 refs., 22 figs., 3 tabs.

  4. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junjie Ma

    2018-02-01

    Full Text Available Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  5. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    Science.gov (United States)

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  6. On the use of coprostanol to identify source of nitrate pollution in groundwater

    Science.gov (United States)

    Nakagawa, Kei; Amano, Hiroki; Takao, Yuji; Hosono, Takahiro; Berndtsson, Ronny

    2017-07-01

    Investigation of contaminant sources is indispensable for developing effective countermeasures against nitrate (NO3-) pollution in groundwater. Known major nitrogen (N) sources are chemical fertilizers, livestock waste, and domestic wastewater. In general, scatter diagrams of δ18O and δ15N from NO3- can be used to identify these pollution sources. However, this method can be difficult to use for chemical fertilizers and livestock waste sources due to the overlap of δ18O and δ15N ranges. In this study, we propose to use coprostanol as an indicator for the source of pollution. Coprostanol can be used as a fecal contamination indicator because it is a major fecal sterol formed by the conversion of cholesterol by intestinal bacteria in the gut of higher animals. The proposed method was applied to investigate NO3- pollution sources for groundwater in Shimabara, Nagasaki, Japan. Groundwater samples were collected at 33 locations from March 2013 to November 2015. These data were used to quantify relationships between NO3-N, δ15N-NO3-, δ18O-NO3-, and coprostanol. The results show that coprostanol has a potential for source identification of nitrate pollution. For lower coprostanol concentrations (conventional diagrams of isotopic ratios cannot distinguish pollution sources, coprostanol may be a useful tool.

  7. Atmospheric pollution. From processes to modelling

    International Nuclear Information System (INIS)

    Sportisse, B.

    2008-01-01

    Air quality, greenhouse effect, ozone hole, chemical or nuclear accidents.. All these phenomena are tightly linked to the chemical composition of atmosphere and to the atmospheric dispersion of pollutants. This book aims at supplying the main elements of understanding of 'atmospheric pollutions': stakes, physical processes involved, role of scientific expertise in decision making. Content: 1 - classifications and scales: chemical composition of the atmosphere, vertical structure, time scales (transport, residence); 2 - matter/light interaction: notions of radiative transfer, application to the Earth's atmosphere; 3 - some elements about the atmospheric boundary layer: notion of scales in meteorology, atmospheric boundary layer (ABL), thermal stratification and stability, description of ABL turbulence, elements of atmospheric dynamics, some elements about the urban climate; 4 - notions of atmospheric chemistry: characteristics, ozone stratospheric chemistry, ozone tropospheric chemistry, brief introduction to indoor air quality; 5 - aerosols, clouds and rains: aerosols and particulates, aerosols and clouds, acid rains and leaching; 6 - towards numerical simulation: equation of reactive dispersion, numerical methods for chemistry-transport models, numerical resolution of the general equation of aerosols dynamics (GDE), modern simulation chains, perspectives. (J.S.)

  8. The Environmental Pollution In Vietnam Source Impact And Remedies

    OpenAIRE

    Tuan Anh Hoang; Nam Xuan Chu; Trung Van Tran

    2017-01-01

    Currently the environmental problems is one of the urgent problems for all countries in the world. Vietnam is among of 10 countries with the most polluted air in the world the health of people is affected by the non-guaranteed air quality in Vietnam. According to the EPI in 2015 Vietnam ranked 79 in the total of 132 countries in the overall environmental assessment. However the air pollution index Vietnam ranked 123. On the burden of disease due to environment Vietnam ranked 77. Therefore the...

  9. Air pollution in Australia: review of costs, sources and potential solutions.

    Science.gov (United States)

    Robinson, Dorothy L

    2005-12-01

    Estimated health costs and principal sources of air pollution are reviewed, together with estimated costs of reducing pollution from major sources in Australia. Emissions data from the Australian National Pollutant Inventory were compared with published estimates of pollution costs and converted to the cost per kilogram of emissions. Costs per kg of emissions (and, for the two main sources of pollution, diesel vehicles and wood heaters, costs per heater and per vehicle) are relatively easy to understand, making it easier to compare health costs with costs of pollution-control strategies. Estimated annual costs of morbidity/mortality exceed $1,100 per diesel vehicle and $2,000 per wood heater. Costs of avoiding emissions (about $2.1/kg PM2.5 for phasing out wood heaters and upwards of $70/kg for reducing diesel emissions) are considerably less than the estimated health costs ($166/kg) of those emissions. In other countries, smokeless zones (for domestic heating), heavy vehicle low-emission zones, and lower registration charges for low-emission vehicles reduce pollution and improve health. Similar 'polluter-pays' taxes in Australia to encourage retrofitting of existing diesels and incentives to choose new ones with lowest emissions would provide substantial benefits. Adopting Christchurch's policy of phasing out wood heaters and 'polluter-pays' levies to discourage their use would be extremely cost-effective.

  10. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution.

    Science.gov (United States)

    Zhang, Xuyang; Liu, Xingmei; Zhang, Minghua; Dahlgren, Randy A; Eitzel, Melissa

    2010-01-01

    Vegetated buffers are a well-studied and widely used agricultural management practice for reducing nonpoint-source pollution. A wealth of literature provides experimental data on their mitigation efficacy. This paper aggregated many of these results and performed a meta-analysis to quantify the relationships between pollutant removal efficacy and buffer width, buffer slope, soil type, and vegetation type. Theoretical models for removal efficacy (Y) vs. buffer width (w) were derived and tested against data from the surveyed literature using statistical analyses. A model of the form Y = K x (1-e(-bxw)), (0 pollutant removal, where K reflects the maximum removal efficacy of the buffer and b reflects its probability to remove any single particle of pollutant in a unit distance. Buffer width alone explains 37, 60, 44, and 35% of the total variance in removal efficacy for sediment, pesticides, N, and P, respectively. Buffer slope was linearly associated with sediment removal efficacy either positively (when slope 10%). Buffers composed of trees have higher N and P removal efficacy than buffers composed of grasses or mixtures of grasses and trees. Soil drainage type did not show a significant effect on pollutant removal efficacy. Based on our analysis, a 30-m buffer under favorable slope conditions (approximately 10%) removes more than 85% of all the studied pollutants. These models predicting optimal buffer width/slope can be instrumental in the design, implementation, and modeling of vegetated buffers for treating agricultural runoff.

  11. European database on indoor air pollution sources in buildings: Current status of database structure and software

    NARCIS (Netherlands)

    Molina, J.L.; Clausen, G.H.; Saarela, K.; Plokker, W.; Bluyssen, P.M.; Bishop, W.; Oliveira Fernandes, E. de

    1996-01-01

    the European Joule II Project European Data Base for Indoor Air Pollution Sources in Buildings. The aim of the project is to produce a tool which would be used by designers to take into account the actual pollution of the air from the building elements and ventilation and air conditioning system

  12. On the calculation of atmospheric thermal pollution resulted from a flat area source

    International Nuclear Information System (INIS)

    Perkauskas, D.Ch.; Senuta, K.A.

    1984-01-01

    A spatial distribution of thermal atmospheric pollution from a flat area source - a great city or a lake-cooler of NPP was investigated. The numerical solution obtained lets to evaluate the horizontal and vertical spreading of the thermal atmospheric pollution by the different wind velocities in dependence of the inhomogeneities in humidity of the earth's surface

  13. NUMERICAL PREDICTION MODELS FOR AIR POLLUTION BY MOTOR VEHICLE EMISSIONS

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. Scientific work involves: 1 development of 3D numerical models that allow calculating the process of air pollution by motor vehicles emissions; 2 creation of models which would allow predicting the air pollution level in urban areas. Methodology. To solve the problem upon assessing the level of air pollution by motor vehicles emissions fundamental equations of aerodynamics and mass transfer are used. For the solution of differential equations of aerodynamics and mass transfer finite-difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximations is applied. The equation for the velocity potential written in differential form, splits into two equations, where at each step of splitting an unknown value of the velocity potential is determined by an explicit scheme of running computation, while the difference scheme is implicit one. For the numerical integration of the emissions dispersion equation in the atmosphere applies the implicit alternating-triangular difference scheme of splitting. Emissions from the road are modeled by a series of point sources of given intensity. Developed numerical models form is the basis of the created software package. Findings. 3D numerical models were developed; they belong to the class of «diagnostic models». These models take into account main physical factors that influence the process of dispersion of harmful substances in the atmosphere when emissions from vehicles in the city occur. Based on the constructed numerical models the computational experiment was conducted to assess the level of air pollution in the street. Originality. Authors have developed numerical models that allow to calculate the 3D aerodynamics of the wind flow in urban areas and the process of mass transfer emissions from the highway. Calculations to determine the area of contamination, which is formed near the buildings, located along the highway were

  14. Identification of sources and long term trends for pollutants in the arctic using isentropic trajectory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mahura, A.; Jaffe, D.; Harris, J.

    2003-07-01

    The understanding of factors driving climate and ecosystem changes in the Arctic requires careful consideration of the sources, correlation and trends for anthropogenic pollutants. The database from the NOAA-CMDL Barrow Observatory (71deg.17'N, 156deg.47'W) is the longest and most complete record of pollutant measurements in the Arctic. It includes observations of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), carbon monoxide (CO), ozone (O{sub 3}), aerosol scattering coefficient ({sigma}{sub sp}), aerosol number concentration (NC{sub asl}), etc. The objectives of this study are to understand the role of long-range transport to Barrow in explaining: (1) the year-to-year variations, and (2) the trends in the atmospheric chemistry record at the NOAA-CMDL Barrow observatory. The key questions we try to answer are: 1. What is the relationship between various chemical species measured at Barrow Observatory, Alaska and transport pathways at various altitudes? 2. What are the trends of species and their relation to transport patterns from the source regions? 3. What is the impact of the Prudhoe Bay emissions on the Barrow's records? To answer on these questions we apply the following main research tools. First, it is an isentropic trajectory model used to calculate the trajectories arriving at Barrow at three altitudes of 0.5, 1.5 and 3 km above sea level. Second - clustering procedure used to divide the trajectories into groups based on source regions. Third - various statistical analysis tools such as the exploratory data analysis, two component correlation analysis, trend analysis, principal components and factor analysis used to identify the relationship between various chemical species vs. source regions as a function of time. In this study, we used the chemical data from the NOAA-CMDL Barrow observatory in combination with isentropic backward trajectories from gridded ECMWF data to understand the importance of various pollutant source regions on

  15. Identification of sources and long term trends for pollutants in the arctic using isentropic trajectory analysis

    International Nuclear Information System (INIS)

    Mahura, A.; Jaffe, D.; Harris, J.

    2003-01-01

    The understanding of factors driving climate and ecosystem changes in the Arctic requires careful consideration of the sources, correlation and trends for anthropogenic pollutants. The database from the NOAA-CMDL Barrow Observatory (71deg.17'N, 156deg.47'W) is the longest and most complete record of pollutant measurements in the Arctic. It includes observations of carbon dioxide (CO 2 ), methane (CH 4 ), carbon monoxide (CO), ozone (O 3 ), aerosol scattering coefficient (σ sp ), aerosol number concentration (NC asl ), etc. The objectives of this study are to understand the role of long-range transport to Barrow in explaining: (1) the year-to-year variations, and (2) the trends in the atmospheric chemistry record at the NOAA-CMDL Barrow observatory. The key questions we try to answer are: 1. What is the relationship between various chemical species measured at Barrow Observatory, Alaska and transport pathways at various altitudes? 2. What are the trends of species and their relation to transport patterns from the source regions? 3. What is the impact of the Prudhoe Bay emissions on the Barrow's records? To answer on these questions we apply the following main research tools. First, it is an isentropic trajectory model used to calculate the trajectories arriving at Barrow at three altitudes of 0.5, 1.5 and 3 km above sea level. Second - clustering procedure used to divide the trajectories into groups based on source regions. Third - various statistical analysis tools such as the exploratory data analysis, two component correlation analysis, trend analysis, principal components and factor analysis used to identify the relationship between various chemical species vs. source regions as a function of time. In this study, we used the chemical data from the NOAA-CMDL Barrow observatory in combination with isentropic backward trajectories from gridded ECMWF data to understand the importance of various pollutant source regions on atmospheric composition in the Arctic. We

  16. Characterization of non point source pollutants and their dispersion ...

    African Journals Online (AJOL)

    EJIRO

    landing site in Uganda. N. Banadda. Agricultural and Bio-Systems Engineering Department, Makerere University, P. O. Box 7062, Kampala, Uganda. E-mail: banadda@agric.mak.ac.ug. Fax: +256-414-53.16.41. Accepted 5 January, 2011. The aim of this research is to characterize non point pollutants and their dispersion in ...

  17. Modelling an environmental pollutant transport from the stacks to and through the soil

    Directory of Open Access Journals (Sweden)

    Rushdi M.M. El-Kilani

    2010-07-01

    Full Text Available In this paper, a model is presented for predicting the transport of an environmental pollutant from the source to and through the soil. The model can predict the deposition of an environmental pollutant on the soil surface due to the pollutant being loaded on dust particles, which are later deposited on the soil surface. The model is a coupling of three models: a model for predicting the cumulative dust deposition from near and far field sources on a certain area; a canopy microclimate model for solving the energy partition within the canopy elements and so predicting the water convection stream for pollutant transport through the soil; and coupling the deposition of these pollutants on the soil surface to a model for its transport through the soil. The air pollution model uses the Gaussian model approach, superimposed for multiple emission sources, to elucidate the deposition of pollutant laden airborne particulates on the soil surface. A complete canopy layer model is used to calculate within the canopy energy fluxes. The retardation factor for the pollutant is calculated from an adsorption batch experiment. The model was used to predict the deposition of lead laden dust particles on the soil surface and lead's transport through the soil layers inside a metropolitan region for: (1 three large cement factories and (2 a large number of smelters. The results show that, due to the very high retardation values for lead movement through the soil, i.e. ranging from 4371 to 53,793 from previous data and 234 from the adsorption experiment in this paper, lead is immobile and all the lead added to the soil surface via deposited dust or otherwise, even if it is totally soluble, will remain mostly on the soil surface and not move downwards due to high affinity with the soil.

  18. Exposure to Mobile Source Air Pollution in Early-life and Childhood Asthma Incidence: The Kaiser Air Pollution and Pediatric Asthma Study.

    Science.gov (United States)

    Pennington, Audrey Flak; Strickland, Matthew J; Klein, Mitchel; Zhai, Xinxin; Bates, Josephine T; Drews-Botsch, Carolyn; Hansen, Craig; Russell, Armistead G; Tolbert, Paige E; Darrow, Lyndsey A

    2018-01-01

    Early-life exposure to traffic-related air pollution exacerbates childhood asthma, but it is unclear what role it plays in asthma development. The association between exposure to primary mobile source pollutants during pregnancy and during infancy and asthma incidence by ages 2 through 6 was examined in the Kaiser Air Pollution and Pediatric Asthma Study, a racially diverse birth cohort of 24,608 children born between 2000 and 2010 and insured by Kaiser Permanente Georgia. We estimated concentrations of mobile source fine particulate matter (PM2.5, µg/m), nitrogen oxides (NOX, ppb), and carbon monoxide (CO, ppm) at the maternal and child residence using a Research LINE source dispersion model for near-surface releases. Asthma was defined using diagnoses and medication dispensings from medical records. We used binomial generalized linear regression to model the impact of exposure continuously and by quintiles on asthma risk. Controlling for covariates and modeling log-transformed exposure, a 2.7-fold increase in first year of life PM2.5 was associated with an absolute 4.1% (95% confidence interval, 1.6%, 6.6%) increase in risk of asthma by age 5. Quintile analysis showed an increase in risk from the first to second quintile, but similar risk across quintiles 2-5. Risk differences increased with follow-up age. Results were similar for NOX and CO and for exposure during pregnancy and the first year of life owing to high correlation. Results provide limited evidence for an association of early-life mobile source air pollution with childhood asthma incidence with a steeper concentration-response relationship observed at lower levels of exposure.

  19. Application of source-receptor models to determine source areas of biological components (pollen and butterflies)

    OpenAIRE

    M. Alarcón; M. Àvila; J. Belmonte; C. Stefanescu; R. Izquierdo

    2010-01-01

    The source-receptor models allow the establishment of relationships between a receptor point (sampling point) and the probable source areas (regions of emission) through the association of concentration values at the receptor point with the corresponding atmospheric back-trajectories, and, together with other techniques, to interpret transport phenomena on a synoptic scale. These models are generally used in air pollution studies to determine the areas of origin of chemical compounds measured...

  20. MODELING OF OIL POLLUTION OF ARTIC SEA COASTAL AREAS

    Directory of Open Access Journals (Sweden)

    2017-01-01

    Full Text Available This article studies the elastic filtration oil drive of oil in a layer based on the estimation of risks of environmental oil pollution because of accidental releases. The model of oil spillage and resorption by the precoat is based on continuity equation and Darcy rule as well as on equations of state taking into account fluid compressibility due to pressure. Filtering area is a line between the precoat and air. Oil filtering area is limited by soil surface below and by free surface above, its equation is known beforehand and is to be defined. The case of soil pollution from the point source, which is the point of fracture of pipeline or borehole, is considered. Upper and approximate estimates of the oil pollution radius due to different types of underlying terrains and to oil characteristics as well as to environmental conditions. The dynamics of oil free sur- face depending on spillage radii is calculated and presented. The estimates of temporary duration of oil filtering by the pre- coat in terms of light ends and soil type are made. The thickness of the oil film and the square of the spill upon condition of constant speed of oil spillage, horizontal position of underlying terrain and the proximity of pressure to normal are deter- mined. For the numerical implementation of the model different cases of oil spillage were considered. Under given values of air temperature, soil porosity and filtration speed the pollution radii according to light end, the time from the moment of accident till the leakage suppression and the speed of oil spillage was calculated.

  1. Characterization of an old municipal landfill (Grindsted, Denmark) as a groundwater pollution source

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Grundtvig, Aase; Winther, Pia

    1998-01-01

    Investigations into the pollution of groundwater from old landfill have, in most cases, focused on delineating the pollution plume rather than on the landfill as a source of groundwater pollution. Landfills often cover large areas and spatial variations in leachate composition within the landfill...... may have great impact on the location of the main pollution plume in the downstream aquifer. The history of the Grindsted Landfill in Denmark was investigated using aerial photographs and interviews. On the basis of the aerial photographs, waste volume and age of the different areas of the landfill...

  2. Solving vertical transport and chemistry in air pollution models

    International Nuclear Information System (INIS)

    Berkvens, P.J.F.; Botchev, M.A.; Verwer, J.G.; Krol, M.C.; Peters, W.

    2000-01-01

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species. This complicates the chemistry solution, easily causing large errors for such species. In the framework of an operational global air pollution model, we focus on the problem formed by chemistry and vertical transport, which is based on diffusion, cloud-related vertical winds, and wet deposition. Its specific nature leads to full Jacobian matrices, ruling out standard implicit integration. We compare Strang operator splitting with two alternatives: source splitting and an (unsplit) Rosenbrock method with approximate matrix factorization, all having equal computational cost. The comparison is performed with real data. All methods are applied with half-hour time steps, and give good accuracies. Rosenbrock is the most accurate, and source splitting is more accurate than Strang splitting. Splitting errors concentrate in short-lived species sensitive to solar radiation and species with strong emissions and depositions. 30 refs

  3. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  4. Combining land use information and small stream sampling with PCR-based methods for better characterization of diffuse sources of human fecal pollution.

    Science.gov (United States)

    Peed, Lindsay A; Nietch, Christopher T; Kelty, Catherine A; Meckes, Mark; Mooney, Thomas; Sivaganesan, Mano; Shanks, Orin C

    2011-07-01

    Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters. To test this assertion, this study monitored nine headwatersheds over a two-year period potentially impacted by faulty septic systems and leaky sanitary sewer lines. Human fecal pollution was measured using three different human-associated qPCR methods and a positive significant correlation was seen between abundance of human-associated genetic markers and septic systems following wet weather events. In contrast, a negative correlation was observed with sanitary sewer line densities suggesting septic systems are the predominant diffuse source of human fecal pollution in the study area. These results demonstrate the advantages of combining water sampling, climate information, land-use computer-based modeling, and molecular biology disciplines to better characterize diffuse sources of human fecal pollution in environmental waters.

  5. A dynamic model of optimal reduction of marine oil pollution

    Energy Technology Data Exchange (ETDEWEB)

    Deissenberg, C. [CEFI-CNRS, Les Milles (France); Gottinger, H.W. [International Inst. for Environmental Economics and Management, Bad Waldsee (Germany); Gurman, V. [RAS, Program Systems Inst., Pereslavl-Zalessky (Russian Federation); Marinushkin, D. [Pereslavl Univ., Pereslavl-Zalessky (Russian Federation)

    2001-07-01

    This paper proposes a system of dynamic models to describe the interactive behaviour of different agents (polluters, inspectors, and a principal pollution control agency) involved in the processes of marine oil pollution and of its prevention and purification, under some realistic assumptions, In particular, short- and long-term economic responses of polluters to monitoring efforts, as well as possible collusions between polluters and inspectors, are taken into account. A numerical example is considered using the results of Deissenberg et al., (2001), which show the existence of optimal fines and inspector wage rates that minimize (along with other variables) a simple and visual 'social damage' criterion. (Author)

  6. A method to analyze "source-sink" structure of non-point source pollution based on remote sensing technology.

    Science.gov (United States)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-11-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the "source-sink" theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of "source" of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km(2) in 2008, and the "sink" was 172.06 km(2). The "source" of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the "sink" was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of "source" gets weaker along with the distance from the seas boundary increase, while "sink" gets stronger. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Natural sources of gaseous pollutants in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P

    1958-01-01

    Various gaseous pollutants including ozone, nitrous oxide, nitric oxide, nitrogen dioxide, methane, hydrogen, formaldehyde, ammonia, hydrogen sulfide, mercaptans, chlorine compounds and free radicals can be formed by natural processes such as ultraviolet photochemical processes in the upper atmosphere and microbiological processes. The modes of formation and destruction of these gases, especially of their concentrations in the atmosphere, and the various reactions in which these gases can participate with each other are discussed in detail. 114 references.

  8. Study of landscape patterns of variation and optimization based on non-point source pollution control in an estuary.

    Science.gov (United States)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui; Wu, Haiyan

    2014-10-15

    Appropriate increases in the "sink" of a landscape can reduce the risk of non-point source pollution (NPSP) to the sea at relatively lower costs and at a higher efficiency. Based on high-resolution remote sensing image data taken between 2003 and 2008, we analyzed the "source" and "sink" landscape pattern variations of nitrogen and phosphorus pollutants in the Jiulongjiang estuary region. The contribution to the sea and distribution of each pollutant in the region was calculated using the LCI and mGLCI models. The results indicated that an increased amount of pollutants was contributed to the sea, and the "source" area of the nitrogen NPSP in the study area increased by 32.75 km(2). We also propose a landscape pattern optimization to reduce pollution in the Jiulongjiang estuary in 2008 through the conversion of cultivated land with slopes greater than 15° and paddy fields near rivers, and an increase in mangrove areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system.

    Science.gov (United States)

    Xia, Fang; Qu, Liyin; Wang, Ting; Luo, Lili; Chen, Han; Dahlgren, Randy A; Zhang, Minghua; Mei, Kun; Huang, Hong

    2018-09-01

    Heavy metal pollution of aquatic environments in rapidly developing industrial regions is of considerable global concern due to its potential to cause serious harm to aquatic ecosystems and human health. This study assessed heavy metal contamination of sediments in a highly industrialized urban watershed of eastern China containing several historically unregulated manufacturing enterprises. Total concentrations and solid-phase fractionation of Cu, Zn, Pb, Cr and Cd were investigated for 39 river sediments using multivariate statistical analysis and geographically weighted regression (GWR) methods to quantitatively examine the relationship between land use and heavy metal pollution at the watershed scale. Results showed distinct spatial patterns of heavy metal contamination within the watershed, such as higher concentrations of Zn, Pb and Cd in the southwest and higher Cu concentration in the east, indicating links to specific pollution sources within the watershed. Correlation and PCA analyses revealed that Zn, Pb and Cd were dominantly contributed by anthropogenic activities; Cu originated from both industrial and agricultural sources; and Cr has been altered by recent pollution control strategies. The GWR model indicated that several heavy metal fractions were strongly correlated with industrial land proportion and this correlation varied with the level of industrialization as demonstrated by variations in local GWR R 2 values. This study provides important information for assessing heavy metal contaminated areas, identifying heavy metal pollutant sources, and developing regional-scale remediation strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. INTEGRATION OF RS/GIS FOR SURFACE WATER POLLUTION RISK MODELING. CASE STUDY: AL-ABRASH SYRIAN COASTAL BASIN

    Directory of Open Access Journals (Sweden)

    Y. Yaghi

    2017-09-01

    Full Text Available Recently the topic of the quality of surface water (rivers – lakes and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP and non-point Source pollution (NPSP. Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.

  11. Integration of Rs/gis for Surface Water Pollution Risk Modeling. Case Study: Al-Abrash Syrian Coastal Basin

    Science.gov (United States)

    Yaghi, Y.; Salim, H.

    2017-09-01

    Recently the topic of the quality of surface water (rivers - lakes) and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP) and non-point Source pollution (NPSP). Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers) and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.

  12. Control of emissions from stationary combustion sources: Pollutant detection and behavior in the atmosphere

    International Nuclear Information System (INIS)

    Licht, W.; Engel, A.J.; Slater, S.M.

    1979-01-01

    Stationary combustion resources continue to be significant sources of NOx and SOx pollutants in the ambient atmosphere. This volume considers four problem areas: (1) control of emissions from stationary combustion sources, particularly SOx and NOx (2) pollutant behavior in the atmosphere (3) advances in air pollution analysis and (4) air quality management. Topics of interest include carbon slurries for sulfur dioxide abatement, mass transfer in the Kellogg-Weir air quality control system, oxidation/inhibition of sulfite ion in aqueous solution, some micrometeorological methods of measuring dry deposition rates, Spanish moss as an indicator of airborne metal contamination, and air quality impacts from future electric power generation in Texas

  13. Ammonia pollution characteristics of centralized drinking water sources in China.

    Science.gov (United States)

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  14. Characterization of ambient air pollution for stochastic health models

    Energy Technology Data Exchange (ETDEWEB)

    Batterman, S.A.

    1981-08-01

    This research is an analysis of various measures of ambient air pollution useful in cross-sectional epidemiological investigations and rick assessments. The Chestnut Ridge area health effects investigation, which includes a cross-sectional study of respiratory symptoms in young children, is used as a case study. Four large coal-fired electric generating power plants are the dominant pollution sources in this area of western Pennsylvania. The air pollution data base includes four years of sulfur dioxide and five years of total suspended particulate concentrations at seventeen monitors. Some 70 different characterizations of pollution are constructed and tested. These include pollutant concentrations at various percentiles and averaging times, exceedence measures which show the amount of time a specified threshold concentration is exceeded, and several dosage measures which transform non-linear dose-response relationships onto pollutant concentrations.

  15. Current status of agricultural and rural non-point source Pollution assessment in China

    International Nuclear Information System (INIS)

    Ongley, Edwin D.; Zhang Xiaolan; Yu Tao

    2010-01-01

    Estimates of non-point source (NPS) contribution to total water pollution in China range up to 81% for nitrogen and to 93% for phosphorus. We believe these values are too high, reflecting (a) misuse of estimation techniques that were developed in America under very different conditions and (b) lack of specificity on what is included as NPS. We compare primary methods used for NPS estimation in China with their use in America. Two observations are especially notable: empirical research is limited and does not provide an adequate basis for calibrating models nor for deriving export coefficients; the Chinese agricultural situation is so different than that of the United States that empirical data produced in America, as a basis for applying estimation techniques to rural NPS in China, often do not apply. We propose a set of national research and policy initiatives for future NPS research in China. - Estimation techniques used in China for non-point source pollution are evaluated as a basis for recommending future policies and research in NPS studies in China.

  16. Source apportionment of air pollution exposures of rural Chinese women cooking with biomass fuels

    Science.gov (United States)

    Huang, Wei; Baumgartner, Jill; Zhang, Yuanxun; Wang, Yuqin; Schauer, James J.

    2015-03-01

    Particulate matter (PM) from different sources may differentially affect human health. Few studies have assessed the main sources of personal exposure to PM and their contributions among residents of developing countries, where pollution sources differ from those in higher-income settings. 116 daily (24-h) personal PM2.5 exposure samples were collected among 81 women cooking with biomass fuels in two villages in rural Yunnan, China. The PM samples were analyzed for mass and chemical composition, including water-soluble organic carbon (WSOC), black carbon (BC), and molecular markers. We found black carbon, n-alkanes and levoglucosan dominated the most abundant fractions of the total measured species and average personal PM2.5 exposure was higher in winter than that in summer in both villages. The composition data were then analyzed using a positive matrix factorization (PMF) receptor model to identify the main PM emission sources contributing to women's exposures and to assess their spatial (between villages) and seasonal variation in our study setting. The 6-factor solution provided reasonably stable profiles and was selected for further analysis. Our results show that rural Chinese women cooking with biomass fuels are exposed to a variety of sources. The identified factors include wood combustion (41.1%), a cooking source (35.6%), a mobile source (12.6%), plant waxes (6.7%), pyrolysis combustion (3.0%), and secondary organic aerosols (SOA; 1.0%). The mean source contributions of the mobile source, cooking source, and wood combustion factor to PM2.5 exposure were significantly different between women living in the two study villages, whereas the mean SOA, wood combustion, and plant waxes factors differed seasonally. There was no relationship between source contributions and questionnaire-based measurements of source-specific exposures, implying that the impacts of source contributions on exposure are affected by complex spatial, temporal and behavioral patterns

  17. Distribution and origin sources of Polycyclic Aromatic Hydrocarbons (PAHs) pollution in sediment of Sarawak coastal area

    International Nuclear Information System (INIS)

    Mohd Shuhaimi Elias; Abdul Khalik Wood; Zaleha Hashim; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Nazaratul Ashifa Abdullah Salim

    2010-01-01

    Alkyl and parent Polycyclic Aromatic Hydrocarbons (PAHs) compounds in marine sediment sample collected from ten locations along Sarawak coastal areas were extracted and analyzed by using gas chromatography-mass spectrometry. The source identification of PAH pollution in marine sediment of Sarawak coastal areas were identify by ratios technique of An/ An+phen, Fl/ Fl +Py, B[a]A/ (B[a]A+Chry) and total Methyl Phen/ Phen. The total alkyl and parent PAHs concentration varies from 36.5 - 277.4 ng/ g dry weight (d.w.) with a mean concentration of 138.2 ng/ g d.w. The ratio values of PAHs pollution in marine sediment of Sarawak coastal areas are clearly indicating the PAHs pollutions are originated from petroleum (petrogenic) and petroleum combustion (pyrolytic). However, the origin sources of PAHs pollution in a few stations were uncertain due to mixing sources of PAHs. (author)

  18. Tackling non-point source water pollution in British Columbia : an action plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    British Columbia`s approach to water quality management is discussed. The BC efforts include regulating `end of pipe` point discharges from industrial and municipal outfalls. The major remaining cause of water pollution is from non-point sources (NPS). NPS water pollution is caused by the release of pollutants from different and diffuse sources, mostly unregulated and associated with urbanization, agriculture and other forms of land development. The importance of dealing with such problems on an immediate basis to avoid a decline in water quality in the province is emphasized. Major sources of water pollution in British Columbia include: land development, agriculture, storm water runoff, onsite sewage systems, forestry, atmospheric deposition, and marine activities. 3 tabs.

  19. Variations of pollution sources of Cu in Jiaozhou Bay 1982-1986

    Science.gov (United States)

    Yang, Dongfang; Li, Haixia; Wang, Qi; Ding, Jun; Zhang, Longlei

    2017-12-01

    Cu pollution in marine bays has been one of the critical environmental issues in the whole world, and understanding the variations of the pollution sources is essential to environmental protection. This paper identified the sources of Cu in Jiaozhou Bay during 1982-1986, and revealed the variations of the sources. Results showed that there were five Cu sources during study years including marine current, stream flow, island top, overland runoff and marine traffic, respectively, whose source strengths were varying from 0.39-20.60 μg L-1, 0.37-10.57 μg L-1, 0.77-4.86 μg L-1, 2.28-3.56 μg L-1, 9.48 μg L-1, respectively. These findings were helpful information in decision-making of pollution control and environmental remediation practice.

  20. Long-Term Calculations with Large Air Pollution Models

    DEFF Research Database (Denmark)

    Ambelas Skjøth, C.; Bastrup-Birk, A.; Brandt, J.

    1999-01-01

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  1. Application of Parallel Algorithms in an Air Pollution Model

    DEFF Research Database (Denmark)

    Georgiev, K.; Zlatev, Z.

    1999-01-01

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  2. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China

    Science.gov (United States)

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-01-01

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution. PMID:26308032

  3. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China.

    Science.gov (United States)

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-08-21

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution.

  4. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI in the Multi-Provincial Boundary Region of the Taihu Basin, China

    Directory of Open Access Journals (Sweden)

    Hong Yao

    2015-08-01

    Full Text Available Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution.

  5. Generalized additive model of air pollution to daily mortality

    International Nuclear Information System (INIS)

    Kim, J.; Yang, H.E.

    2005-01-01

    The association of air pollution with daily mortality due to cardiovascular disease, respiratory disease, and old age (65 or older) in Seoul, Korea was investigated in 1999 using daily values of TSP, PM10, O 3 , SO 2 , NO 2 , and CO. Generalized additive Poisson models were applied to allow for the highly flexible fitting of daily trends in air pollution as well as nonlinear association with meteorological variables such as temperature, humidity, and wind speed. To estimate the effect of air pollution and weather on mortality, LOESS smoothing was used in generalized additive models. The findings suggest that air pollution levels affect significantly the daily mortality. (orig.)

  6. Potential Sources and Formations of the PM2.5 Pollution in Urban Hangzhou

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-07-01

    Full Text Available Continuous measurements of meteorological parameters, gaseous pollutants, particulate matters, and the major chemical species in PM2.5 were conducted in urban Hangzhou from 1 September to 30 November 2013 to study the potential sources and formations of PM2.5 pollution. The average PM2.5 concentration was 69 µg·m−3, ~97% higher than the annual concentration limit in the national ambient air quality standards (NAAQS of China. Relative humidity (RH and wind speed (WS were two important factors responsible for the increase of PM2.5 concentration, with the highest value observed under RH of 70%–90%. PM2.5 was in good correlation with both NO2 and CO, but not with SO2, and the potential source contribution function (PSCF results displayed that local emissions were important potential sources contributing to the elevated PM2.5 and NO2 in Hangzhou. Thus, local vehicle emission was suggested as a major contribution to the PM2.5 pollution. Concentrations of NO2 and CO significantly increased in pollution episodes, while the SO2 concentration even decreased, implying local emission rather than region transport was the major source contributing to the formation of pollution episodes. The sum of SO42−, NO3−, and NH4+ accounted for ~50% of PM2.5 in mass in pollution episodes and the NO3−/EC ratios were significantly elevated, revealing that the formation of secondary inorganic species, particularly NO3−, was an important contributor to the PM2.5 pollution in Hangzhou. This study highlights that controlling local pollution emissions was essential to reduce the PM2.5 pollution in Hangzhou, and the control of vehicle emission in particular should be further promoted in the future.

  7. Path-integral method for the source apportionment of photochemical pollutants

    Science.gov (United States)

    Dunker, A. M.

    2015-06-01

    A new, path-integral method is presented for apportioning the concentrations of pollutants predicted by a photochemical model to emissions from different sources. A novel feature of the method is that it can apportion the difference in a species concentration between two simulations. For example, the anthropogenic ozone increment, which is the difference between a simulation with all emissions present and another simulation with only the background (e.g., biogenic) emissions included, can be allocated to the anthropogenic emission sources. The method is based on an existing, exact mathematical equation. This equation is applied to relate the concentration difference between simulations to line or path integrals of first-order sensitivity coefficients. The sensitivities describe the effects of changing the emissions and are accurately calculated by the decoupled direct method. The path represents a continuous variation of emissions between the two simulations, and each path can be viewed as a separate emission-control strategy. The method does not require auxiliary assumptions, e.g., whether ozone formation is limited by the availability of volatile organic compounds (VOCs) or nitrogen oxides (NOx), and can be used for all the species predicted by the model. A simplified configuration of the Comprehensive Air Quality Model with Extensions (CAMx) is used to evaluate the accuracy of different numerical integration procedures and the dependence of the source contributions on the path. A Gauss-Legendre formula using three or four points along the path gives good accuracy for apportioning the anthropogenic increments of ozone, nitrogen dioxide, formaldehyde, and nitric acid. Source contributions to these increments were obtained for paths representing proportional control of all anthropogenic emissions together, control of NOx emissions before VOC emissions, and control of VOC emissions before NOx emissions. There are similarities in the source contributions from the

  8. Modeling of urban atmospheric pollution and impact on health

    International Nuclear Information System (INIS)

    Myrto, Valari

    2009-10-01

    The goal of this dissertation, is to develop a methodology that provides an improved knowledge of the associations between atmospheric contaminant concentrations and health impact. The propagation of uncertainties from input data to the output concentrations through a Chemistry Transport Model was first studied. The influence of the resolutions of meteorological parameters and emissions data were studied separately, and their relative role was compared. It was found that model results do not improve linearly with the resolution of emission input. A critical resolution was found, beyond which model error becomes higher and the model breaks down. Based on this first investigation concerning the direct down scaling, further research focused on sub grid scale modeling. Thus, a statistical down scaling approach was adopted for the modeling of sub grid-scale concentration variability due to heterogeneous surface emissions. Emission fractions released from different types of sources (industry, roads, residential, natural etc.) were calculated from a high-resolution emission inventory. Then emission fluxes were mapped on surfaces emitting source-specific species. Simulations were run independently over the defined micro-environments allowing the modeling of sub grid-scale concentration variability. Sub grid scale concentrations were therefore combined with demographic and human activity data to provide exposure estimates. The spatial distribution of human exposure was parameterized through a Monte-Carlo model. The new information concerning exposure variability was added to an existing epidemiological model to study relative health risks. A log-linear Poisson regression model was used for this purpose. The principal outcome of the investigation was that a new functionality was added to the regression model which allows the dissociation of the health risk associated with each pollutant (e.g. NO 2 and PM 2.5 ). (author)

  9. Source oriented modeling of the nitrat pollution of surface waters - application of the immission method for the reporting according to the EC nitrat guideline; Verursacherbezogene Modellierung der Nitratbelastung der Oberflaechengewaesser - Anwendung des Immissionsverfahrens zur Berichterstattung zur EU-Nitratrichtlinie

    Energy Technology Data Exchange (ETDEWEB)

    Behrendt, H.; Opitz, D. [Institut fuer Gewaesseroekologie und Binnenfischerei im Forschungsverbund Berlin e.V. (Germany); Bach, M. [Gesellschaft fuer Boden- und Gewaesserschutz e.V. (Germany); Pagenkopf, W.G. [Geodaten Integration und Analyse, Berlin (Germany)

    2000-09-20

    The observation of 152 monitoring stations of the German countries does not exceed the 50 mg/l target for nitrate. But a good water quality in relation to nitrate can be observed at only 14% of these monitoring stations. If variations in the nitrate concentrations caused by variation of runoff are neglected unique trends of the nitrate pollution from agriculture can not be detected since the mid of 80's. More detailed analysis were carried out for 15 EU monitoring stations. The average winter concentration of nitrate is for the half of these stations constant and a low reduction can be observed for the other half. A similar result shows the average winter concentrations at low flow conditions. The separation of the nitrogen sources into diffuse and point sources using the immission approach shows for both a small decrease for the period 1996-1999 in comparison with the previous period. In contrast to the situation in the mid of 80's the discharges from point sources are decreased and contribute to the total load only in a range of 9-24% in the different river basins. The immission method shows similar results as the emission model. In the mid of the nineties about 67% of the N-inputs into the surface waters of Germany are caused by agricultural activities. The dominant pathway was groundwater with about 48%. The total emissions were reduced by 24% mainly caused by point source reduction. The nitrogen surplus (area related balance) in the agricultural soils were estimated for Germany and for the German countries to show the causes of the nitrogen problem in agriculture. Since 1990 the N-surpluses are reduced and are at present in a range between 70 and 80 kg/ha agricultural area. For the new German countries the N-surplus showed a dramatic decrease in 1990/91 followed by a continuous increase. Contrary the N-surplus in the old German countries is characterised by a slow decrease over the whole time period since 1990. The influence of the order for the

  10. 75 FR 31317 - National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Paints and...

    Science.gov (United States)

    2010-06-03

    ... & Coating Manufacturing.. 325510 Area source facilities engaged in mixing pigments, solvents, and binders... repellant coatings for concrete and masonry. Adhesive Manufacturing......... 325520 Area source facilities... various areas of air pollution control. IV. Why are we amending the rule? Our intention in this area...

  11. Reduction of the environmental concentration of air pollutants by proper geometrical orientation of industrial line sources

    International Nuclear Information System (INIS)

    Tadmor, J.

    1980-01-01

    An account is given of an Israeli study of two line sources, one composed of 10 and the other of 20 individual sources. The height of release ranged from 15.7 to 39.6 m, with a uniform rate of release of a gaseous pollutant of 1 Ci/s for each source. Average pollutant concentration was plotted as a function of the rotation angle of the line sources. Reduction of pollutant concentration by a particular rotation of the line sources attained values of up to 50%. At certain rotation angles of the line sources, the environmental concentration was lower even as compared with a single high source. Results also depended on atmospheric conditions. It is suggested that considering the increase in cost of augmenting the height of release as a means of reducing the air pollutant concentration, determination of the optimum geometric orientation of the line sources should be considered as an economical means of improving environmental air quality. (U.K.)

  12. 78 FR 7487 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Science.gov (United States)

    2013-02-01

    ... small coal-fired units (i.e., with a design heat input capacity of less than 10 MMBtu/hr) are subject to... existing area source coal-fired boilers with heat input capacity of 10 MMBtu/hr or greater may need to... most emissions from area source boilers, two pollutants emitted by coal-fired boilers, POM as 7-PAH and...

  13. Air quality of Prague: traffic as a main pollution source.

    Science.gov (United States)

    Branis, Martin

    2009-09-01

    Political and economical transition in the Central and Eastern Europe at the end of eighties significantly influenced all aspects of life as well as technological infrastructure. Collapse of outdated energy demanding industry and adoption of environmental legislation resulted in seeming improvements of urban environmental quality. Hand in hand with modernization the newly adopted regulations also helped to phase out low quality coal frequently used for domestic heating. However, at the same time, the number of vehicles registered in the city increased. The two processes interestingly acted as parallel but antagonistic forces. To interpret the trends in urban air quality of Prague, Czech capital, monthly averages of PM(10), SO(2), NO(2), NO, O(3) and CO concentrations from the national network of automated monitoring stations were analyzed together with long term trends in fuel consumption and number of vehicles registered in Prague within a period of 1992-2005. The results showed that concentrations of SO(2) (a pollutant strongly related to fossil fuel burning) dropped significantly during the period of concern. Similarly NO(X) and PM(10) concentrations decreased significantly in the first half of the nineties (as a result of solid fuel use drop), but remained rather stable or increased after 2000, presumably reflecting rapid increase of traffic density. In conclusion, infrastructural changes in early nineties had a strong positive effect on Prague air quality namely in the first half of the period studied, nevertheless, the current trend in concentrations of automotive exhaust related pollutants (such as PM(10), NO(X)) needs adoption of stricter measures.

  14. Modelling Choice of Information Sources

    Directory of Open Access Journals (Sweden)

    Agha Faisal Habib Pathan

    2013-04-01

    Full Text Available This paper addresses the significance of traveller information sources including mono-modal and multimodal websites for travel decisions. The research follows a decision paradigm developed earlier, involving an information acquisition process for travel choices, and identifies the abstract characteristics of new information sources that deserve further investigation (e.g. by incorporating these in models and studying their significance in model estimation. A Stated Preference experiment is developed and the utility functions are formulated by expanding the travellers' choice set to include different combinations of sources of information. In order to study the underlying choice mechanisms, the resulting variables are examined in models based on different behavioural strategies, including utility maximisation and minimising the regret associated with the foregone alternatives. This research confirmed that RRM (Random Regret Minimisation Theory can fruitfully be used and can provide important insights for behavioural studies. The study also analyses the properties of travel planning websites and establishes a link between travel choices and the content, provenance, design, presence of advertisements, and presentation of information. The results indicate that travellers give particular credence to governmentowned sources and put more importance on their own previous experiences than on any other single source of information. Information from multimodal websites is more influential than that on train-only websites. This in turn is more influential than information from friends, while information from coachonly websites is the least influential. A website with less search time, specific information on users' own criteria, and real time information is regarded as most attractive

  15. Dispersion model computations of urban air pollution in Espoo, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Valkonen, E.; Haerkoenen, J.; Kukkonen, J.; Rantakrans, E.; Jalkanen, L.

    1997-12-31

    This report presents the numerical results of air quality studies of the city of Espoo in southern Finland. This city is one of the four cities in the Helsinki metropolitan area, having a total population of 850 000. A thorough emission inventory was made of both mobile and stationary sources in the Helsinki metropolitan area. The atmospheric dispersion was evaluated using an urban dispersion modelling system, including a Gaussian multiple-source plume model and a meteorological pre-processing model. The hourly time series of CO, NO{sub 2} and SO{sub 2} concentrations were predicted, using the emissions and meteorological data for the year 1990. The predicted results show a clear decrease in the yearly mean concentrations from southeast to northwest. This is due in part to the denser traffic in the southern parts of Espoo, and in part to pollution from the neighbouring cities of Helsinki and Vantaa, located east of Espoo. The statistical concentration parameters found for Espoo were lower than the old national air quality guidelines (1984); however, some occurrences of above-threshold values were found for NO{sub 2} in terms of the new guidelines (1996). The contribution of traffic to the total concentrations varies spatially from 30 to 90 % for NO{sub 2} from 1 to 65 % for SO{sub 2} while for CO it is nearly 100 %. The concentrations database will be further utilised to analyse the influence of urban air pollution on the health of children attending selected day nurseries in Espoo. The results of this study can also be applied in traffic and city planning. In future work the results will also be compared with data from the urban measurement network of the Helsinki Metropolitan Area Council. (orig.) 19 refs.

  16. Identification of Pollution Patterns and Sources in a Semi-Arid Urban Stream

    Directory of Open Access Journals (Sweden)

    Vassiliki Markogianni

    2018-03-01

    Full Text Available The impact and occurrence of human-induced pollution sources have been investigated in one of the few remaining urban streams located in Attica, Greece. Baseline information is provided on the presence and concentration of physicochemical parameters, nutrients, total coliforms, hydrocarbons and phenols in 12 key points along the Pikrodafni stream. The aim was to evaluate the relative importance of key water quality variables and their sources. Indicator substances (i.e. concentrations of nitrate, ammonium, phosphate and total coliforms in certain stations indicating wastewater exposure; PAHs indicating petroleum sources successfully related the water quality variables to pollution sources. Furthermore, a pollution pressure map has been developed with the activities identified from in-situ visits and Google Earth surveys, while the statistical analysis (CA and PCA has contributed to the further exploration of the relative magnitude of pollution sources effects. Our results underline initially the importance of diffuse pollution management accompanied by the necessity for continuous environmental monitoring and the application of legal and environmental restoration actions if water quality is to be improved according to WFD 2000/60/EC.

  17. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.

    Science.gov (United States)

    Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping

    2018-03-01

    The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide

  18. The phosphorus fertilizer production as a source of rare-earth elements pollution of the environment

    International Nuclear Information System (INIS)

    Volokh, A.A.; Gorbunov, A.V.; Revich, B.A.; Gundorina, S.F.; Frontas'eva, M.V.; Chen Sen Pal.

    1989-01-01

    This paper considers some peculiarities of the production of phosphorus fertilizers from the point of view of the pollution of the environment with rare-earth elements. The principal possibility is demonstrated of the determination of the influence of a given type of production on the environment by measuring the change in the rare-arth elements interrelationship in the show. The main source of industrial dust is identified. The distribution of pollutants in dependence on the size of aerosol particles is given. The data on the concentrations of the pollutants in agricultural plants, employees hair and hair of local residents are also reported. 8 refs.; 4 figs.; 4 tabs

  19. [Estimation of urban non-point source pollution loading and its factor analysis in the Pearl River Delta].

    Science.gov (United States)

    Liao, Yi-Shan; Zhuo, Mu-Ning; Li, Ding-Qiang; Guo, Tai-Long

    2013-08-01

    In the Pearl Delta region, urban rivers have been seriously polluted, and the input of non-point source pollution materials, such as chemical oxygen demand (COD), into rivers cannot be neglected. During 2009-2010, the water qualities at eight different catchments in the Fenjiang River of Foshan city were monitored, and the COD loads for eight rivulet sewages were calculated in respect of different rainfall conditions. Interesting results were concluded in our paper. The rainfall and landuse type played important roles in the COD loading, with greater influence of rainfall than landuse type. Consequently, a COD loading formula was constructed that was defined as a function of runoff and landuse type that were derived SCS model and land use map. Loading of COD could be evaluated and predicted with the constructed formula. The mean simulation accuracy for single rainfall event was 75.51%. Long-term simulation accuracy was better than that of single rainfall. In 2009, the estimated COD loading and its loading intensity were 8 053 t and 339 kg x (hm2 x a)(-1), and the industrial land was regarded as the main source of COD pollution area. The severe non-point source pollution such as COD in Fenjiang River must be paid more attention in the future.

  20. Association of air pollution sources and aldehydes with biomarkers of blood coagulation, pulmonary inflammation, and systemic oxidative stress.

    Science.gov (United States)

    Altemose, Brent; Robson, Mark G; Kipen, Howard M; Ohman Strickland, Pamela; Meng, Qingyu; Gong, Jicheng; Huang, Wei; Wang, Guangfa; Rich, David Q; Zhu, Tong; Zhang, Junfeng

    2017-05-01

    Using data collected before, during, and after the 2008 Summer Olympic Games in Beijing, this study examines associations between biomarkers of blood coagulation (vWF, sCD62P and sCD40L), pulmonary inflammation (EBC pH, EBC nitrite, and eNO), and systemic oxidative stress (urinary 8-OHdG) with sources of air pollution identified utilizing principal component analysis and with concentrations of three aldehydes of health concern. Associations between the biomarkers and the air pollution source types and aldehydes were examined using a linear mixed effects model, regressing through seven lag days and controlling for ambient temperature, relative humidity, gender, and day of week for the biomarker measurements. The biomarkers for pulmonary inflammation, particularly EBC pH and eNO, were most consistently associated with vehicle and industrial combustion, oil combustion, and vegetative burning. The biomarkers for blood coagulation, particularly vWF and sCD62p, were most consistently associated with oil combustion. Systemic oxidative stress biomarker (8-OHdG) was most consistently associated with vehicle and industrial combustion. The associations of the biomarkers were generally not significant or consistent with secondary formation of pollutants and with the aldehydes. The findings support policies to control anthropogenic pollution sources rather than natural soil or road dust from a cardio-respiratory health standpoint.

  1. Modeling personal exposure to traffic related air pollutants

    NARCIS (Netherlands)

    Montagne, D.R.

    2015-01-01

    The first part of this thesis is about the VE3SPA project. Land use regression (LUR) models are often used to predict the outdoor air pollution at the home address of study participants, to study long-term effects of air pollution. While several studies have documented that PM2.5 mass measured at a

  2. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China.

    Science.gov (United States)

    Zhang, Pengyan; Qin, Chengzhe; Hong, Xin; Kang, Guohua; Qin, Mingzhou; Yang, Dan; Pang, Bo; Li, Yanyan; He, Jianjian; Dick, Richard P

    2018-08-15

    The level of concentration of heavy metal in soil is detrimental to soil quality. The Heigangkou-Liuyuankou irrigation area in the lower-reach of Yellow River irrigation, as home to a large population and a major site to agricultural production, is vulnerable to heavy metal pollution. This study examined soil quality in Heigangkou-Liuyuankou irrigation areas of Kaifeng, China. Pollution in soil and potential risks introduced by heavy metal accumulation were assessed using Nemerow, Geoaccumulation, and Hakanson's ecological risk indices. Statistics and Geographic Information Systems (GIS) were used to model and present the spatiotemporal changes of the pollution sources and factors affecting the levels of pollution. The heavy metals found in the sampled soil are Cr, Ni, Cu, Zn, Cd, Pb, As, and Hg. Among them, Cd is more concentrated than the others. The southwestern region of the studied area confronts the most serious heavy metal pollution. There exist spatial disparities of low concentrations of different heavy metals in the study area. Hg and Cd are found to pose the highest potential ecological risks. However, their risk levels are not the same across the study area. Levels concentration of Ni, Cu, Zn, Cd, Pb, As, and Hg in soil are highly correlated. In combination, they post an additional threat to the ecological environment. Transportation, rural settlements, and water bodies are found to be the major sources of Cr, Ni, Cu, Zn, Cd, Pb, and Hg pollution in the soil; among the major sources, transportation is the most significant factor. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Rate Proposal for Remuneration of Air Pollutants Emissions From Stationary Sources Located in Bogota D.C.

    Directory of Open Access Journals (Sweden)

    Gabriel Herrera Torres

    2011-04-01

    Full Text Available The objective of this project is to develop a methodological proposal for the establishment of the retributive rate for the direct use of the atmosphere as the receptor of pollutant emissions that come from stationary resources on Bogotá D.C. By means of the emissions from stationary sources inventory and the air quality analysis, the pollutant that are emitted by the industries and the ones that are regulated by the network observations of the were identified selecting the particulated matter (PM10, sulfur oxides (SOx, and nitrogen oxides (NOx as the atmospheric pollutants that should be the object of payment in the retributive rate. Besides the selection of the pollutants that should be in the payment, the analysis of the retributive rate structure was made witch was based on the description or four key elements the generated fact, the tax base, the passive subject, and the fee of the rate. taking into account the social costs which are related to the investment being made by the district for the treatment of patients that present acute respiratory diseases ERA´s, associated and the costs of program control and monitoring of the air quality in Bogotá, the tariffs of the payment of the retributive rate were redefined in 281 $/Kg for the PM10, 2816 $/kg for the SOX and 2866 $/kg for NOX. Finally a new model of the payment was established, which is the result of the multiplication of the respective tariff for each of the pollutants that were selected as object of payment, expressed in ($/kg times, the charge of the pollutants emitted by the source expressed in (kg/ day.times the total number of days of the operation of the source emissions in a year.

  4. Activity patterns of Californians: Use of and proximity to indoor pollutant sources

    Science.gov (United States)

    Jenkins, Peggy L.; Phillips, Thomas J.; Mulberg, Elliot J.; Hui, Steve P.

    The California Air Resources Board funded a statewide survey of activity patterns of Californians over 11 years of age in order to improve the accuracy of exposure assessments for air pollutants. Telephone interviews were conducted with 1762 respondents over the four seasons from fall 1987 through summer 1988. In addition to completing a 24-h recall diary of activities and locations, participants also responded to questions about their use of and proximity to potential pollutant sources. Results are presented regarding time spent by Californians in different activities and locations relevant to pollutant exposure, and their frequency of use of or proximity to pollutant sources including cigarettes, consumer products such as paints and deodorizers, combustion appliances and motor vehicles. The results show that Californians spend, on average, 87% of their time indoors, 7% in enclosed transit and 6% outdoors. At least 62% of the population over 11 years of age and 46% of nonsmokers are near others' tobacco smoke at some time during the day. Potential exposure to different pollutant sources appears to vary among different gender and age groups. For example, women are more likely to use or be near personal care products and household cleaning agents, while men are more likely to be exposed to environmental tobacco smoke, solvents and paints. Data from this study can be used to reduce significantly the uncertainty associated with risk assessments for many pollutants.

  5. Biological and chemical diagnosis of damage to crops caused by air pollution and tracing the source of pollution

    Energy Technology Data Exchange (ETDEWEB)

    Van Raay, A

    1975-01-01

    This paper deals with the biological and chemical diagnosis of damage of crops caused by air pollution. Field observations were made as well as trials in fumigation chambers. The field work showed a great deal of fluoride contamination near industrial plants. A network of monitoring points was set up around the fluoride-emitting sources. The HF pollution was determined by the limed paper method, the fluoride content of plants, leaf necrosis in some plants, and an impinger and tubes filled with coated silver pellets, directed by a weather-vane. These investigations were carried out in two areas of New Zealand as well as near Delfzijl in Groningen. Fluoride was emitted by factories producing aluminum, superphosphate or sodium triphosphate.

  6. Modeling indoor air pollution of outdoor origin in homes of SAPALDIA subjects in Switzerland.

    Science.gov (United States)

    Meier, Reto; Schindler, Christian; Eeftens, Marloes; Aguilera, Inmaculada; Ducret-Stich, Regina E; Ineichen, Alex; Davey, Mark; Phuleria, Harish C; Probst-Hensch, Nicole; Tsai, Ming-Yi; Künzli, Nino

    2015-09-01

    Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution

    Science.gov (United States)

    Geoffrey H. Donovan; Sarah E. Jovan; Demetrios Gatziolis; Igor Burstyn; Yvonne L. Michael; Michael C. Amacher; Vicente J. Monleon

    2016-01-01

    Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting....

  8. Characterisation and quantification of the sources of PM{sub 10} during air pollution episodes in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Muir, David [Environmental Quality Unit, Department of Planning, Transport and Sustainable Development, Bristol City Council, The CREATE Centre, Smeaton Road, Bristol BS1 6XN (United Kingdom); Longhurst, J.W.S.; Tubb, A. [Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY (United Kingdom)

    2006-04-01

    Data for concentrations of PM{sub 10} and gaseous pollutants from sites in the UK Automatic Urban and Rural Network have been examined during periods of elevated concentrations of PM{sub 10}. The ratios of concentrations of PM{sub 10} to those of the other pollutants were used to determine the most probable source of the additional particles. The hypothesis is that because the concentrations of PM{sub 10} were divided by those of the other pollutants, the ratio should decrease when PM{sub 10} and the other pollutants have a common source. Conversely, the ratio should increase when the sources are different. During episodes where road traffic was the most probable source of the additional particles, the ratios of concentrations of PM{sub 10} to carbon monoxide and oxides of nitrogen did decrease, but the comparable ratios for sulphur dioxide and ozone increased. In contrast, during episodes known to have been caused by construction activity, all these ratios increased. This is taken to show that the basic hypothesis is valid. For prolonged episodes, it was possible to use data averaged over the total duration of the episode for the purposes of source identification. For sporadic construction, or other short-duration episodes, it was necessary to use time series data. The data have also been used to calculate the differences between hourly average concentrations of pollutants measured during episodes and long-term hourly average concentrations. These have been used to model the additional PM{sub 10} during air pollution episodes associated with construction activities and road traffic emissions. This confirms the lack of relationship between PM{sub 10} and other pollutants during construction works. During episodes arising from road traffic emissions, there was good agreement between measured and modelled additional concentrations of PM{sub 10} when an appropriate factor, F, related to the contribution of road traffic emissions to PM{sub 10} at different site types

  9. Modelling pollutant emissions in diesel engines, influence of biofuel on pollutant formation.

    Science.gov (United States)

    Petranović, Zvonimir; Bešenić, Tibor; Vujanović, Milan; Duić, Neven

    2017-12-01

    In order to reduce the harmful effect on the environment, European Union allowed using the biofuel blends as fuel for the internal combustion engines. Experimental studies have been carried on, dealing with the biodiesel influence on the emission concentrations, showing inconclusive results. In this paper numerical model for pollutant prediction in internal combustion engines is presented. It describes the processes leading towards the pollutant emissions, such as spray particles model, fuel disintegration and evaporation model, combustion and the chemical model for pollutant formation. Presented numerical model, implemented in proprietary software FIRE ® , is able to capture chemical phenomena and to predict pollutant emission concentration trends. Using the presented model, numerical simulations of the diesel fuelled internal combustion engine have been performed, with the results validated against the experimental data. Additionally, biodiesel has been used as fuel and the levels of pollutant emissions have been compared to the diesel case. Results have shown that the biodiesel blends release lower nitrogen oxide emissions than the engines powered with the regular diesel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cartographic modelling of aerotechnogenic pollution in snow cover in the landscapes of the Kola Peninsula.

    Science.gov (United States)

    Ratkin, N E; Asming, V E; Koshkin, V V

    2001-01-01

    The goal of this work was to develop computational techniques for sulphates, nickel and copper accumulation in the snow in the local pollution zone. The main task was to reveal the peculiarities of formation and pollution of snow cover on the region with complex cross-relief. A digital cartographic model of aerotechnogenic pollution of snow cover in the landscapes of the local zone has been developed, based on five-year experimental data. Data regarding annual emissions from the industrial complex, information about distribution of wind and the sum of precipitation from meteostation "Nikel" for the winter period, allowed the model to ensure: * material presentation in the form of maps of water capacity and accumulation of sulphates, nickel and copper in the snow over any winter period in retrospective; * calculation of water capacity and accumulation of pollutants for watersheds and other natural-territorial complexes; * solution of the opposite problem about the determination of the emissions of sulphates, nickel and copper from the enterprise by measuring snow pollution in datum points. The model can be used in other northern regions of the Russian Federation with similar physical-geographical and climatic conditions. The relationships between the sum of precipitation and water capacity in the landscapes of the same type and also the relationships between pollution content in snow and relief, pollution content in snow and distance from the source of emissions, were used as the basis for the model.

  11. Sources of Indoor Air Pollution and Respiratory Health in Preschool Children

    Directory of Open Access Journals (Sweden)

    Virginia Fuentes-Leonarte

    2009-01-01

    Full Text Available We carried out bibliographic searches in PubMed and Embase.com for the period from 1996 to 2008 with the aim of reviewing the scientific literature on the relationship between various sources of indoor air pollution and the respiratory health of children under the age of five. Those studies that included adjusted correlation measurements for the most important confounding variables and which had an adequate population size were considered to be more relevant. The results concerning the relationship between gas energy sources and children's respiratory health were heterogeneous. Indoor air pollution from biomass combustion in the poorest countries was found to be an important risk factor for lower respiratory tract infections. Solvents involved in redecorating, DYI work, painting, and so forth, were found to be related to an increased risk for general respiratory problems. The distribution of papers depending on the pollution source showed a clear relationship with life-style and the level of development.

  12. Sources of Indoor Air Pollution and Respiratory Health in Preschool Children

    International Nuclear Information System (INIS)

    Leonarte, V.F.; Ballester, F.; Leonarte, V.F.; Ballester, F.; Tenias, J.M.; Tenias, J.M.

    2010-01-01

    We carried out bibliographic searches in Pub Med and Embase.com for the period from 1996 to 2008 with the aim of reviewing the scientific literature on the relationship between various sources of indoor air pollution and the respiratory health of children under the age of five. Those studies that included adjusted correlation measurements for the most important confounding variables and which had an adequate population size were considered to be more relevant. The results concerning the relationship between gas energy sources and children's respiratory health were heterogeneous. Indoor air pollution from biomass combustion in the poorest countries was found to be an important risk factor for lower respiratory tract infections. Solvents involved in redecorating, DY work, painting, and so forth, were found to be related to an increased risk for general respiratory problems. The distribution of papers depending on the pollution source showed a clear relationship with life-style and the level of development.

  13. Preventing industrial pollution at its source: the final report of the Michigan source reduction initiative

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    This report describes a collaborative effort between NRDC, Dow Chemical, and Michigan Environmental Groups. The effort resulted in the identification and implementation of 17 pollution prevention projects that reduced substantial quantities of wastes and emissions and saved Dow considerable money.

  14. Preventing industrial pollution at its source: the final report of the Michigan source reduction initiative; FINAL

    International Nuclear Information System (INIS)

    None

    1999-01-01

    This report describes a collaborative effort between NRDC, Dow Chemical, and Michigan Environmental Groups. The effort resulted in the identification and implementation of 17 pollution prevention projects that reduced substantial quantities of wastes and emissions and saved Dow considerable money

  15. Validation of a two-dimensional pollutant dispersion model in an isolated street canyon

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.L.; Dong, G.; Leung, C.W.; Cheung, C.S. [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Research Centre for Combustion and Pollution Control, Department of Mechanical Engineering; Hung, W.T. [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Department of Civil and Structural Engineering

    2002-07-01

    A two-dimensional numerical model based on Reynolds-averaged Navier-Stokes equations coupled with a series of standard, Renormalization Group (RNG) and realizable k-{epsilon} turbulence models was developed to simulate the fluid-flow development and pollutant dispersion within an isolated street canyon using the FLUENT code. In the present study, the validation of the numerical model was evaluated using an extensive experimental database obtained from the atmospheric boundary layer wind tunnel at the Meteorological Institute of Hamburg University, Germany (J. Wind Eng. Ind. Aerodyn. 62 (1996) 37). Among the studied turbulence models, the RNG k-{epsilon} turbulence model was found to be the most optimum turbulence model coupled with the two-dimensional street canyon model developed in the present study. Both the calculated and measured dimensionless pollutant concentrations have been shown to be less dependent on the variation of wind speed and source strength conditions for the studied street canyon aspect ratio of the B/H=1 case. However, the street canyon configuration has significant influence on the pollutant dispersion. The wider street and lower height of the buildings are favorable to pollutant dilution within the street canyon. The fluid-flow development has demonstrated that the rotative vortex or vortices generated within the urban street canyon can transport the pollutants from a line source to the wall surfaces of the buildings. (author)

  16. Pollution

    NARCIS (Netherlands)

    Dürr, E.; Jaffe, R.; Nonini, D.M.

    2014-01-01

    This essay points to the role of pollution in understanding the social construction of hierarchies and urban space. Conceptualizations of pollution and approaches to waste management always reflect the Zeitgeist and tend to be politically charged. We argue that an ethnographic approach to pollution

  17. Laser Gas-Analyser for Monitoring a Source of Gas Pollution

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2015-01-01

    Full Text Available Currently, the problem of growing air pollution of the Earth is of relevance. Many countries have taken measures to protect the environment in order to limit the negative anthropogenic impacts.In such a situation an objective information on the actual content of pollutants in the atmosphere is of importance. For operational inspection of the pollutant concentrations and for monitoring pollution sources, it is necessary to create high-speed high-sensitivity gas analysers.Laser meters are the most effective to provide operational remote and local inspection of gas pollution of the Earth atmosphere.Laser meter for routine gas analysis should conduct operational analysis of the gas mixture (air. For this a development of appropriate information support is required.Such information support should include a database with absorption coefficients of pollutants (specific to potential sources of pollution at possible measuring wavelengths (holding data for a particular emitter of the laser meter and an efficient algorithms to search the measuring wavelengths and conduct a quantitative analysis of gas mixtures.Currently, the issues, important for practice and related to the development of information support for the laser gas analyzer to conduct important for practice routine measurements remain unclear.In this paper we develop an algorithm to provide an operational search of the measuring wavelengths of laser gas analyser and an algorithm to recover quantitively the gaseous component concentrations of controlled gas mixture from the laser multi-spectral measurements that take into account a priori information about the source-controlled gas pollution and do not require a large amount of computation. The method of mathematical simulation shows the effectiveness of the algorithms described both for seach of measuring wavelengths and for quantitative analysis of gas releases.

  18. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  19. Some important results from the air pollution distribution model STACKS (1988-1992)

    International Nuclear Information System (INIS)

    Erbrink, J.J.

    1993-01-01

    Attention is paid to the results of the study on the distribution of air pollutants by high chimney-stacks of electric power plants. An important product of the study is the integrated distribution model STACKS (Short Term Air-pollutant Concentrations Kema modelling System). The improvements and the extensions of STACKS are described in relation to the National Model, which has been used to estimate the environmental effects of individual chimney-stacks. The National Model shows unacceptable variations for high pollutant sources. Based on the results of STACKS revision of the National model has been taken into consideration. By means of the revised National Model a more realistic estimation of the environmental effects of electric power plants can be carried out

  20. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, Geoffrey H., E-mail: gdonovan@fs.fed.us [USDA Forest Service, PNW Research Station, 620 SW Main, Suite 400, Portland, OR 97205 (United States); Jovan, Sarah E., E-mail: sjovan@fs.fed.us [USDA Forest Service, PNW Research Station, 620 SW Main, Suite 400, Portland, OR 97205 (United States); Gatziolis, Demetrios, E-mail: dgatziolis@fs.fed.us [USDA Forest Service, PNW Research Station, 620 SW Main, Suite 400, Portland, OR 97205 (United States); Burstyn, Igor, E-mail: igor.burstyn@drexel.edu [Dornsife School of Public Health, Drexel University, Nesbitt Hall, 3215 Market St, Philadelphia, PA 19104 (United States); Michael, Yvonne L., E-mail: ylm23@drexel.edu [Dornsife School of Public Health, Drexel University, Nesbitt Hall, 3215 Market St, Philadelphia, PA 19104 (United States); Amacher, Michael C., E-mail: mcamacher1@outlook.com [USDA Forest Service, Logan Forest Sciences Laboratory, 860 North 1200 East, Logan, UT 84321 (United States); Monleon, Vicente J., E-mail: vjmonleon@fs.fed.us [USDA Forest Service, PNW Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331 (United States)

    2016-07-15

    Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting. We collected 346 samples of the moss Orthotrichum lyellii from deciduous trees in December, 2013 using a modified randomized grid-based sampling strategy across Portland, Oregon. We estimated a spatial linear model of moss cadmium levels and predicted cadmium on a 50 m grid across the city. Cadmium levels in moss were positively correlated with proximity to two stained-glass manufacturers, proximity to the Oregon–Washington border, and percent industrial land in a 500 m buffer, and negatively correlated with percent residential land in a 500 m buffer. The maps showed very high concentrations of cadmium around the two stained-glass manufacturers, neither of which were known to environmental regulators as cadmium emitters. In addition, in response to our findings, the Oregon Department of Environmental Quality placed an instrumental monitor 120 m from the larger stained-glass manufacturer in October, 2015. The monthly average atmospheric cadmium concentration was 29.4 ng/m{sup 3}, which is 49 times higher than Oregon's benchmark of 0.6 ng/m{sup 3}, and high enough to pose a health risk from even short-term exposure. Both stained-glass manufacturers voluntarily stopped using cadmium after the monitoring results were made public, and the monthly average cadmium levels precipitously dropped to 1.1 ng/m{sup 3} for stained-glass manufacturer #1 and 0.67 ng/m{sup 3} for stained-glass manufacturer #2. - Highlights: • Bio-indicators are a valid method for measuring atmospheric pollutants • We used moss to map atmospheric cadmium in Portland, Oregon • Using a spatial linear model, we identified two

  1. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution

    International Nuclear Information System (INIS)

    Donovan, Geoffrey H.; Jovan, Sarah E.; Gatziolis, Demetrios; Burstyn, Igor; Michael, Yvonne L.; Amacher, Michael C.; Monleon, Vicente J.

    2016-01-01

    Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting. We collected 346 samples of the moss Orthotrichum lyellii from deciduous trees in December, 2013 using a modified randomized grid-based sampling strategy across Portland, Oregon. We estimated a spatial linear model of moss cadmium levels and predicted cadmium on a 50 m grid across the city. Cadmium levels in moss were positively correlated with proximity to two stained-glass manufacturers, proximity to the Oregon–Washington border, and percent industrial land in a 500 m buffer, and negatively correlated with percent residential land in a 500 m buffer. The maps showed very high concentrations of cadmium around the two stained-glass manufacturers, neither of which were known to environmental regulators as cadmium emitters. In addition, in response to our findings, the Oregon Department of Environmental Quality placed an instrumental monitor 120 m from the larger stained-glass manufacturer in October, 2015. The monthly average atmospheric cadmium concentration was 29.4 ng/m"3, which is 49 times higher than Oregon's benchmark of 0.6 ng/m"3, and high enough to pose a health risk from even short-term exposure. Both stained-glass manufacturers voluntarily stopped using cadmium after the monitoring results were made public, and the monthly average cadmium levels precipitously dropped to 1.1 ng/m"3 for stained-glass manufacturer #1 and 0.67 ng/m"3 for stained-glass manufacturer #2. - Highlights: • Bio-indicators are a valid method for measuring atmospheric pollutants • We used moss to map atmospheric cadmium in Portland, Oregon • Using a spatial linear model, we identified two stained

  2. Model predictions of ambient pollution concentration | Olaniyan ...

    African Journals Online (AJOL)

    The results show that the emission loads of the pollutants associated with the use of industrial boiler and power generating plant are in decreasing order of magnitude as NOx > CO > TSP > SO2 > VOC > SO,sub>3 and NOx > TSP > CO > HC > SO2 respectively. The emission load of SO2 is 74.6% in power generating plant, ...

  3. Air pollution exposure modeling of individuals

    Science.gov (United States)

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...

  4. Spatio-Temporal Variations and Source Apportionment of Water Pollution in Danjiangkou Reservoir Basin, Central China

    Directory of Open Access Journals (Sweden)

    Pan Chen

    2015-05-01

    Full Text Available Understanding the spatio-temporal variation and the potential source of water pollution could greatly improve our knowledge of human impacts on the environment. In this work, data of 11 water quality indices were collected during 2012–2014 at 10 monitoring sites in the mainstream and major tributaries of the Danjiangkou Reservoir Basin, Central China. The fuzzy comprehensive assessment (FCA, the cluster analysis (CA and the discriminant analysis (DA were used to assess the water pollution status and analyze its spatio-temporal variation. Ten sites were classified by the high pollution (HP region and the low pollution (LP region, while 12 months were divided into the wet season and the dry season. It was found that the HP region was mainly in the small tributaries with small drainage areas and low average annual discharges, and it was also found that most of these rivers went through urban areas with industrial and domestic sewages input into the water body. Principal component analysis/factor analysis (PCA/FA was applied to reveal potential pollution sources, whereas absolute principal component score-multiple linear regression (APCS-MLR was used to identify their contributions to each water quality variable. The study area was found as being generally affected by industrial and domestic sewage. Furthermore, the HP region was polluted by chemical industries, and the LP region was influenced by agricultural and livestock sewage.

  5. [Characteristics and loads of key sources of pollutions discharged into Beishi River, Changzhou City].

    Science.gov (United States)

    Li, Chun-Ping; Jiang, Jian-Guo; Chen, Ai-Mei; Wu, Jia-Ling; Fan, Xiu-Juan; Ye, Bin

    2010-11-01

    Choosing the Beishi river, Changzhou City as the study area, the sewage generation, pollutants characteristics and sewage discharge in catchment area of Beishi river were conducted, detailed investigated and monitored. After using pollution coefficients, the yearly loads of all sources of pollutions were calculated to determine the highest sewage. The results showed that: except pH, the high concentration of SS, COD, BOD5, ammonia nitrogen, TN and TP discharged from MSW collecting houses, MSW transfer stations, public toilets and dining in Changzhou city far exceeded the "Integrated Wastewater Discharge Standard" (GB 8978-1996) and "Effluent Discharged into the City Sewer Water Quality Standards" (CJ 3082-1999). Among which: the highest concentration of COD discharged from MSW transfer stations was up to 51 700 mg/L, while the ammonia nitrogen and TN were as high as 1 616 mg/L and 2 044 mg/L in the toilet wastewater. In addition to this, the ratio of wastewater discharged directly into the river through storm water pipe network was higher from MSW houses, MSW transfer stations, public toilets, dining and other waste in Changzhou city. The 125.2 t/a of COD and 40.53 t/a of BOD5 were the two highest concentrations of various sources of pollution. The highest annual polluting loads discharged into Beishi river is dining, followed by the sanitation facilities. Therefore, cutting pollution control of food and sanitation facilities along the river is particularly urgent.

  6. The recovery of a time-dependent point source in a linear transport equation: application to surface water pollution

    International Nuclear Information System (INIS)

    Hamdi, Adel

    2009-01-01

    The aim of this paper is to localize the position of a point source and recover the history of its time-dependent intensity function that is both unknown and constitutes the right-hand side of a 1D linear transport equation. Assuming that the source intensity function vanishes before reaching the final control time, we prove that recording the state with respect to the time at two observation points framing the source region leads to the identification of the source position and the recovery of its intensity function in a unique manner. Note that at least one of the two observation points should be strategic. We establish an identification method that determines quasi-explicitly the source position and transforms the task of recovering its intensity function into solving directly a well-conditioned linear system. Some numerical experiments done on a variant of the water pollution BOD model are presented

  7. Mercury in products - a source of transboundary pollutant transport

    Energy Technology Data Exchange (ETDEWEB)

    Munthe, J; Kindbom, K [Swedish Environmental Research Inst., Stockholm (Sweden)

    1997-12-01

    The purpose of this report is to summarize current knowledge on product-related emissions of mercury to air on a European scale, and to estimate the contribution from mercury contained in products, to the total anthropogenic emissions of mercury to air and transboundary transport of mercury in Europe. Products included in this study are batteries, measuring and control instruments, light sources and electrical equipment, all intentionally containing mercury. The main result of this study is that product-related emission of mercury can contribute significantly to total emissions and transboundary transport of mercury in the European region and that measures to limit the use of mercury in products can contribute to an overall decrease of the environmental input of mercury in Europe. It is concluded that: -Mercury contained in products may be emitted to air during consumption, after disposal when incinerated or when volatilized from landfill. Mercury may also be emitted to air during recycling of scrap metal or when accumulated (stored) in society. -The amount of mercury consumed in batteries and in measuring and control instruments had decreased since the late 1980`s. The total use of mercury in light sources and electrical equipment has not changed significantly during the same time period. The contribution to total anthropogenic emissions of mercury to air in Europe in the mid 1990`s is estimated to be: for batteries 4%; for measuring and control instruments 3%; for lighting and electrical equipment 11%. -Mercury in products leads to significant wet deposition input in Scandinavia. The relative amount of the total deposition flux attributable to products is estimated to be 10-14% 26 refs, 4 figs, 10 tabs

  8. Application of integrated GIS and multimedia modeling on NPS pollution evaluation.

    Science.gov (United States)

    Lin, C E; Kao, C M; Lai, Y C; Shan, W L; Wu, C Y

    2009-11-01

    In Taiwan, nonpoint source (NPS) pollution is one of the major causes of the impairment of surface waters. I-Liao Creek, located in southern Taiwan, flows approximately 90 km and drains toward the Kaoping River. Field investigation results indicate that NPS pollution from agricultural activities is one of the main water pollution sources in the I-Liao Creek Basin. Assessing the potential of NPS pollution to assist in the planning of best management practice (BMP) is significant for improving pollution prevention and control in the I-Liao Creek Basin. In this study, land use identification in the I-Liao Creek Basin was performed by properly integrating the skills of geographic information system (GIS) and global positioning system (GPS). In this analysis, 35 types of land use patterns in the watershed area of the basin are classified with the aid of Erdas Imagine process system and ArcView GIS system. Results indicate that betel palm farms, orchard farms, and tea gardens dominate the farmland areas in the basin, and are scattered around on both sides of the river corridor. An integrated watershed management model (IWMM) was applied for simulating the water quality and evaluating NPS pollutant loads to the I-Liao Creek. The model was calibrated and verified with collected water quality and soil data, and was used to investigate potential NPS pollution management plans. Simulated results indicate that NPS pollution has significant contributions to the nutrient loads to the I-Liao Creek during the wet season. Results also reveal that NPS pollution plays an important role in the deterioration of downstream water quality and caused significant increase in nutrient loads into the basin's water bodies. Simulated results show that source control, land use management, and grassy buffer strip are applicable and feasible BMPs for NPS nutrient loads reduction. GIS system is an important method for land use identification and waste load estimation in the basin. Linking the

  9. Modeling of air pollution from the power plant ash dumps

    Science.gov (United States)

    Aleksic, Nenad M.; Balać, Nedeljko

    A simple model of air pollution from power plant ash dumps is presented, with emission rates calculated from the Bagnold formula and transport simulated by the ATDL type model. Moisture effects are accounted for by assumption that there is no pollution on rain days. Annual mean daily sedimentation rates, calculated for the area around the 'Nikola Tesla' power plants near Belgrade for 1987, show reasonably good agreement with observations.

  10. Modeling of air pollution from the power plant ash dumps

    Energy Technology Data Exchange (ETDEWEB)

    Aleksic, N M; Balac, N [Institute of Meteorology, Belgrade (Yugoslavia). College of Physics

    1991-01-01

    A simple model of air pollution from power plant ash dumps is presented, with emission rates calculated from the Bagnold formula and transport simulated by the ATDL (Atmospheric Turbulence and Diffusion Laboratory) type model. Moisture effects are accounted for by assumption that there is no pollution on rain days. Annual mean daily sedimentation rates, calculated for the area around the Nikola Tesla power plants near Belgrade for 1987, show reasonably good agreement with observations. 3 refs., 2 figs., 2 tabs.

  11. Impact of covariate models on the assessment of the air pollution-mortality association in a single- and multipollutant context.

    Science.gov (United States)

    Sacks, Jason D; Ito, Kazuhiko; Wilson, William E; Neas, Lucas M

    2012-10-01

    With the advent of multicity studies, uniform statistical approaches have been developed to examine air pollution-mortality associations across cities. To assess the sensitivity of the air pollution-mortality association to different model specifications in a single and multipollutant context, the authors applied various regression models developed in previous multicity time-series studies of air pollution and mortality to data from Philadelphia, Pennsylvania (May 1992-September 1995). Single-pollutant analyses used daily cardiovascular mortality, fine particulate matter (particles with an aerodynamic diameter ≤2.5 µm; PM(2.5)), speciated PM(2.5), and gaseous pollutant data, while multipollutant analyses used source factors identified through principal component analysis. In single-pollutant analyses, risk estimates were relatively consistent across models for most PM(2.5) components and gaseous pollutants. However, risk estimates were inconsistent for ozone in all-year and warm-season analyses. Principal component analysis yielded factors with species associated with traffic, crustal material, residual oil, and coal. Risk estimates for these factors exhibited less sensitivity to alternative regression models compared with single-pollutant models. Factors associated with traffic and crustal material showed consistently positive associations in the warm season, while the coal combustion factor showed consistently positive associations in the cold season. Overall, mortality risk estimates examined using a source-oriented approach yielded more stable and precise risk estimates, compared with single-pollutant analyses.

  12. Multi-scale dynamic modeling of atmospheric pollution in urban environment

    International Nuclear Information System (INIS)

    Thouron, Laetitia

    2017-01-01

    Urban air pollution has been identified as an important cause of health impacts, including premature deaths. In particular, ambient concentrations of gaseous pollutants such as nitrogen dioxide (NO 2 ) and particulate matter (PM10 and PM2.5) are regulated, which means that emission reduction strategies must be put in place to reduce these concentrations in places where the corresponding regulations are not respected. Besides, air pollution can contribute to the contamination of other media, for example through the contribution of atmospheric deposition to runoff contamination. The multifactorial and multi-scale aspects of urban make the pollution sources difficult to identify. Indeed, the urban environment is a heterogeneous space characterized by complex architectural structures (old buildings alongside a more modern building, residential, commercial, industrial zones, roads, etc.), non-uniform atmospheric pollutant emissions and therefore the population exposure to pollution is variable in space and time. The modeling of urban air pollution aims to understand the origin of pollutants, their spatial extent and their concentration/deposition levels. Some pollutants have long residence times and can stay several weeks in the atmosphere (PM2.5) and therefore be transported over long distances, while others are more local (NO x in the vicinity of traffic). The spatial distribution of a pollutant will therefore depend on several factors, and in particular on the surfaces encountered. Air quality depends strongly on weather, buildings (canyon-street) and emissions. The aim of this thesis is to address some of these aspects by modeling: (1) urban background pollution with a transport-chemical model (Polyphemus / POLAIR3D), which makes it possible to estimate atmospheric pollutants by type of urban surfaces (roofs, walls and roadways), (2) street-level pollution by explicitly integrating the effects of the building in a three-dimensional way with a multi-scale model of

  13. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.

    Science.gov (United States)

    Schauer, James J; Fraser, Matthew P; Cass, Glen R; Simoneit, Bernd R T

    2002-09-01

    A comprehensive organic compound-based receptor model is developed that can simultaneously apportion the source contributions to atmospheric gas-phase organic compounds, semivolatile organic compounds, fine particle organic compounds, and fine particle mass. The model is applied to ambient data collected at four sites in the south coast region of California during a severe summertime photochemical smog episode, where the model determines the direct primary contributions to atmospheric pollutants from 11 distinct air pollution source types. The 11 sources included in the model are gasoline-powered motor vehicle exhaust, diesel engine exhaust, whole gasoline vapors, gasoline headspace vapors, organic solvent vapors, whole diesel fuel, paved road dust, tire wear debris, meat cooking exhaust, natural gas leakage, and vegetative detritus. Gasoline engine exhaust plus whole gasoline vapors are the predominant sources of volatile organic gases, while gasoline and diesel engine exhaust plus diesel fuel vapors dominate the emissions of semivolatile organic compounds from these sources during the episode studied at all four air monitoring sites. The atmospheric fine particle organic compound mass was composed of noticeable contributions from gasoline-powered motor vehicle exhaust, diesel engine exhaust, meat cooking, and paved road dust with smaller but quantifiable contributions from vegetative detritus and tire wear debris. In addition, secondary organic aerosol, which is formed from the low-vapor pressure products of gas-phase chemical reactions, is found to be a major source of fine particle organic compound mass under the severe photochemical smog conditions studied here. The concentrations of secondary organic aerosol calculated in the present study are compared with previous fine particle source apportionment results for less intense photochemical smog conditions. It is shown that estimated secondary organic aerosol concentrations correlate fairly well with the

  14. Spatio-Temporal Patterns and Source Identification of Water Pollution in Lake Taihu (China

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-03-01

    Full Text Available Various multivariate methods were used to analyze datasets of river water quality for 11 variables measured at 20 different sites surrounding Lake Taihu from 2006 to 2010 (13,200 observations, to determine temporal and spatial variations in river water quality and to identify potential pollution sources. Hierarchical cluster analysis (CA grouped the 12 months into two periods (May to November, December to the next April and the 20 sampling sites into two groups (A and B based on similarities in river water quality characteristics. Discriminant analysis (DA was important in data reduction because it used only three variables (water temperature, dissolved oxygen (DO and five-day biochemical oxygen demand (BOD5 to correctly assign about 94% of the cases and five variables (petroleum, volatile phenol, dissolved oxygen, ammonium nitrogen and total phosphorus to correctly assign >88.6% of the cases. In addition, principal component analysis (PCA identified four potential pollution sources for Clusters A and B: industrial source (chemical-related, petroleum-related or N-related, domestic source, combination of point and non-point sources and natural source. The Cluster A area received more industrial and domestic pollution-related agricultural runoff, whereas Cluster B was mainly influenced by the combination of point and non-point sources. The results imply that comprehensive analysis by using multiple methods could be more effective for facilitating effective management for the Lake Taihu Watershed in the future.

  15. Designing a model for selection of air pollution control equipment using fuzzy logic

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2014-07-01

    Conclusion: Finally, the proposed model that is based on the Fuzzy Analytic Hierarchy Process indicates that the Baghouse Technique is the most appropriate technique for the purpose of dust filtration in major sources of air pollution spread in Shargh Cement Company.

  16. Air quality in a simulated office environment as a result of reducing pollution sources and increasing ventilation

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Bako-Biro, Zsolt; Clausen, Geo

    2002-01-01

    Air quality was studied in an office space classified as low-polluting and ventilated with outdoor air at a rate of 1 h-1. The pollution load in the space was changed by introducing or removing common building-related indoor pollution sources (linoleum, sealant and wooden shelves with books and p...

  17. Pollutants in drinking water: their sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2004-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemical and radionuclide etc. this is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication. Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  18. Tackling non-point source water pollution in British Columbia: An action plan

    Energy Technology Data Exchange (ETDEWEB)

    1998-01-01

    Efforts to protect British Columbia water quality by regulating point discharges from municipal and industrial sources have generally been successful, and it is recognized that the major remaining cause of water pollution in the province is from non-point sources. These sources are largely unregulated and associated with urbanization, agriculture, and other forms of land development. The first part of this report reviews the provincial commitment to clean water, the effects of non-point-source (NPS) pollution, and the management of NPS in the province. Part 2 describes the main causes of NPS in British Columbia: Land development, agriculture, stormwater runoff, on-site sewage systems, forestry and range activities, atmospheric deposition, and boating/marine activities. Finally, it presents key components of the province's NPS action plan: Education and training, prevention at site, land use planning and co-ordination, assessment and reporting, economic incentives, legislation and regulation, and implementation.

  19. Pollution Sources and Mortality Rates across Rural-Urban Areas in the United States

    Science.gov (United States)

    Hendryx, Michael; Fedorko, Evan; Halverson, Joel

    2010-01-01

    Purpose: To conduct an assessment of rural environmental pollution sources and associated population mortality rates. Methods: The design is a secondary analysis of county-level data from the Environmental Protection Agency (EPA), Department of Agriculture, National Land Cover Dataset, Energy Information Administration, Centers for Disease Control…

  20. BOOK REVIEW OF "ASSESSMENT AND CONTROL OF NONPOINT SOURCE POLLUTION OF AQUATIC ECOSYSTEMS: A PRACTICAL APPROACH"

    Science.gov (United States)

    This book is geared to environmental specialists and planners, heavy on the technical side. It goes beyond tranditional nonpoint source (NPS) approaches which typically only look at stormwater as athe sole NPS pollution driver. There is some overreaching material beyond the conte...

  1. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  2. Epidemiology, public health, and health surveillance around point sources of pollution

    International Nuclear Information System (INIS)

    Stebbings, J.H. Jr.

    1981-01-01

    In industrial society a large number of point sources of pollution exist, such as chemical plants, smelters, and nuclear power plants. Public concern has forced the practising epidemiologist to undertake health surveillance of the usually small populations living around point sources. Although not justifiable as research, such epidemiologic surveillance activities are becoming a routine part of public health practice, and this trend will continue. This introduction reviews concepts of epidemiologic surveillance, and institutional problems relating to the quality of such applied research

  3. Uncertainty characterization and quantification in air pollution models. Application to the ADMS-Urban model.

    Science.gov (United States)

    Debry, E.; Malherbe, L.; Schillinger, C.; Bessagnet, B.; Rouil, L.

    2009-04-01

    Evaluation of human exposure to atmospheric pollution usually requires the knowledge of pollutants concentrations in ambient air. In the framework of PAISA project, which studies the influence of socio-economical status on relationships between air pollution and short term health effects, the concentrations of gas and particle pollutants are computed over Strasbourg with the ADMS-Urban model. As for any modeling result, simulated concentrations come with uncertainties which have to be characterized and quantified. There are several sources of uncertainties related to input data and parameters, i.e. fields used to execute the model like meteorological fields, boundary conditions and emissions, related to the model formulation because of incomplete or inaccurate treatment of dynamical and chemical processes, and inherent to the stochastic behavior of atmosphere and human activities [1]. Our aim is here to assess the uncertainties of the simulated concentrations with respect to input data and model parameters. In this scope the first step consisted in bringing out the input data and model parameters that contribute most effectively to space and time variability of predicted concentrations. Concentrations of several pollutants were simulated for two months in winter 2004 and two months in summer 2004 over five areas of Strasbourg. The sensitivity analysis shows the dominating influence of boundary conditions and emissions. Among model parameters, the roughness and Monin-Obukhov lengths appear to have non neglectable local effects. Dry deposition is also an important dynamic process. The second step of the characterization and quantification of uncertainties consists in attributing a probability distribution to each input data and model parameter and in propagating the joint distribution of all data and parameters into the model so as to associate a probability distribution to the modeled concentrations. Several analytical and numerical methods exist to perform an

  4. Reducing mortality risk by targeting specific air pollution sources: Suva, Fiji.

    Science.gov (United States)

    Isley, C F; Nelson, P F; Taylor, M P; Stelcer, E; Atanacio, A J; Cohen, D D; Mani, F S; Maata, M

    2018-01-15

    Health implications of air pollution vary dependent upon pollutant sources. This work determines the value, in terms of reduced mortality, of reducing ambient particulate matter (PM 2.5 : effective aerodynamic diameter 2.5μm or less) concentration due to different emission sources. Suva, a Pacific Island city with substantial input from combustion sources, is used as a case-study. Elemental concentration was determined, by ion beam analysis, for PM 2.5 samples from Suva, spanning one year. Sources of PM 2.5 have been quantified by positive matrix factorisation. A review of recent literature has been carried out to delineate the mortality risk associated with these sources. Risk factors have then been applied for Suva, to calculate the possible mortality reduction that may be achieved through reduction in pollutant levels. Higher risk ratios for black carbon and sulphur resulted in mortality predictions for PM 2.5 from fossil fuel combustion, road vehicle emissions and waste burning that surpass predictions for these sources based on health risk of PM 2.5 mass alone. Predicted mortality for Suva from fossil fuel smoke exceeds the national toll from road accidents in Fiji. The greatest benefit for Suva, in terms of reduced mortality, is likely to be accomplished by reducing emissions from fossil fuel combustion (diesel), vehicles and waste burning. Copyright © 2017. Published by Elsevier B.V.

  5. [Urban non-point source pollution control by runoff retention and filtration pilot system].

    Science.gov (United States)

    Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia

    2011-09-01

    A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.

  6. [Characterization and source apportionment of pollutants in urban roadway runoff in Chongqing].

    Science.gov (United States)

    Zhang, Qian-Qian; Wang, Xiao-Ke; Hao, Li-Ling; Hou, Pei-Qiang; Ouyang, Zhi-Yun

    2012-01-01

    By investigating surface runoff from urban roadway in Chongqing, we assessed the characteristics of surface runoff pollution and the effect of rainfall intensity and antecedent dry weather period on water quality. Using multivariate statistical analysis of data of runoff quality, potential pollutants discharged from urban roadway runoff were identified. The results show that the roadway runoff has high levels of COD, TP and TN, the EMC were 60.83-208.03 mg x L(-1), 0.47-1.01 mg x L(-1) and 2.07-5.00 mg x L(-1) respectively, being the main pollutants; The peaks of pollutant concentration are ahead of or synchronous with the peak of runoff volume; the peaks of pollutant concentrations are mostly occurred within 10 minutes of rainfall. The heavy metal concentrations fluctuate dentately during runoff proceeding. Two potential pollution sources to urban roadway runoff apportioned by using principal component analysis are: vehicle's traffic loss and atmospheric dry and wet deposition, and municipal wastes.

  7. Prostate cancer and industrial pollution Risk around putative focus in a multi-source scenario.

    Science.gov (United States)

    Ramis, Rebeca; Diggle, Peter; Cambra, Koldo; López-Abente, Gonzalo

    2011-04-01

    Prostate cancer is the second most common type of cancer among men but its aetiology is still largely unknown. Different studies have proposed several risk factors such as ethnic origin, age, genetic factors, hormonal factors, diet and insulin-like growth factor, but the spatial distribution of the disease suggests that other environmental factors are involved. This paper studies the spatial distribution of prostate cancer mortality in an industrialized area using distances from each of a number of industrial facilities as indirect measures of exposure to industrial pollution. We studied the Gran Bilbao area (Spain) with a population of 791,519 inhabitants distributed in 657 census tracts. There were 20 industrial facilities within the area, 8 of them in the central axis of the region. We analysed prostate cancer mortality during the period 1996-2003. There were 883 deaths giving a crude rate of 14 per 100,000 inhabitants. We extended the standard Poisson regression model by the inclusion of a multiplicative non-linear function to model the effect of distance from an industrial facility. The function's shape combined an elevated risk close to the source with a neutral effect at large distance. We also included socio-demographic covariates in the model to control potential confounding. We aggregated the industrial facilities by sector: metal, mineral, chemical and other activities. Results relating to metal industries showed a significantly elevated risk by a factor of approximately 1.4 in the immediate vicinity, decaying with distance to a value of 1.08 at 12km. The remaining sectors did not show a statistically significant excess of risk at the source. Notwithstanding the limitations of this kind of study, we found evidence of association between the spatial distribution of prostate cancer mortality aggregated by census tracts and proximity to metal industrial facilities located within the area, after adjusting for socio-demographic characteristics at municipality

  8. Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed.

    Science.gov (United States)

    Ji, Xiaoliang; Xie, Runting; Hao, Yun; Lu, Jun

    2017-10-01

    Quantitative identification of nitrate (NO 3 - -N) sources is critical to the control of nonpoint source nitrogen pollution in an agricultural watershed. Combined with water quality monitoring, we adopted the environmental isotope (δD-H 2 O, δ 18 O-H 2 O, δ 15 N-NO 3 - , and δ 18 O-NO 3 - ) analysis and the Markov Chain Monte Carlo (MCMC) mixing model to determine the proportions of riverine NO 3 - -N inputs from four potential NO 3 - -N sources, namely, atmospheric deposition (AD), chemical nitrogen fertilizer (NF), soil nitrogen (SN), and manure and sewage (M&S), in the ChangLe River watershed of eastern China. Results showed that NO 3 - -N was the main form of nitrogen in this watershed, accounting for approximately 74% of the total nitrogen concentration. A strong hydraulic interaction existed between the surface and groundwater for NO 3 - -N pollution. The variations of the isotopic composition in NO 3 - -N suggested that microbial nitrification was the dominant nitrogen transformation process in surface water, whereas significant denitrification was observed in groundwater. MCMC mixing model outputs revealed that M&S was the predominant contributor to riverine NO 3 - -N pollution (contributing 41.8% on average), followed by SN (34.0%), NF (21.9%), and AD (2.3%) sources. Finally, we constructed an uncertainty index, UI 90 , to quantitatively characterize the uncertainties inherent in NO 3 - -N source apportionment and discussed the reasons behind the uncertainties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ship-Source Oil Pollution Fund annual report, 1991-1992

    International Nuclear Information System (INIS)

    1992-01-01

    The activities of the Ship-Source Oil Pollution Fund (SOPC) are reviewed for the fiscal year commencing 1 April 1991 and ending 31 March 1992. Topics covered include the Canadian compensation regime, activities of the International Oil Pollution Compensation Fund (to which the SOPC contributes), amendments to the Canada Shipping Act, United States legislation, the Haven incident, and the status of the fund. Twenty-three oil spill incidents are described along with actions taken, if any, by the SOPC and details of any claims paid by the SOPC or the international fund. 4 figs., 1 tab

  10. Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems

    International Nuclear Information System (INIS)

    Mostofa, Khan M.G.; Liu, Cong-Qiang; Vione, Davide; Gao, Kunshan; Ogawa, Hiroshi

    2013-01-01

    Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans. -- Review of sources, factors, mechanisms and possible remedial measures of key pollutants (contaminants, toxins, ship breaking, overfishing) in marine ecosystems

  11. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana

    International Nuclear Information System (INIS)

    Zhou, Zheng; Dionisio, Kathie L; Verissimo, Thiago G; Kerr, Americo S; Coull, Brent; Arku, Raphael E; Koutrakis, Petros; Spengler, John D; Vallarino, Jose; Hughes, Allison F; Agyei-Mensah, Samuel; Ezzati, Majid

    2013-01-01

    The highest levels of air pollution in the world now occur in developing country cities, where air pollution sources differ from high-income countries. We analyzed particulate matter (PM) chemical composition and estimated the contributions of various sources to particle pollution in poor and affluent neighborhoods of Accra, Ghana. Elements from earth’s crust were most abundant during the seasonal Harmattan period between late December and late January when Saharan dust is carried to coastal West Africa. During Harmattan, crustal particles accounted for 55 μg m −3 (37%) of fine particle (PM 2.5 ) mass and 128 μg m −3 (42%) of PM 10 mass. Outside Harmattan, biomass combustion, which was associated with higher black carbon, potassium, and sulfur, accounted for between 10.6 and 21.3 μg m −3 of fine particle mass in different neighborhoods, with its contribution largest in the poorest neighborhood. Other sources were sea salt, vehicle emissions, tire and brake wear, road dust, and solid waste burning. Reducing air pollution in African cities requires policies related to energy, transportation and urban planning, and forestry and agriculture, with explicit attention to impacts of each strategy in poor communities. Such cross-sectoral integration requires emphasis on urban environment and urban poverty in the post-2015 Development Agenda. (letter)

  12. Sources and levels of concentration of metal pollutants in Kubanni dam, Zaria, Nigeria

    Directory of Open Access Journals (Sweden)

    Butu, A.W.

    2013-06-01

    Full Text Available The paper looked at the sources and levels of concentration of metal pollutants in Kubanni dam, Zaria, Nigeria. The main sources of data for the study were sediment from four different sections of the long profile of the dam. The samples were prepared in the laboratory according to standard methods and the instrumental Neutron Activation Analysis (INAA technique was adopted in the analysis using Nigeria Research Reactor – 1 (NIRR – 1. The results of the analysis showed that 29 metal pollutants; Mg, Al, Ca, Ti, V, Mn, Dy, Na, K, As, La, Sm, Yb, U, Br, Sc, Cr, Fe, Co, Rb, Zn,Cs, Ba, Eu, Lu, Hf, Ta, Sb and Th currently exist in Kubanni dam in various levels of concentrations. The results showed that most of the metal pollutants in the dam are routed to anthropogenic activities within the dam catchment area while few are routed to geologic formation. The results further revealed that metal pollutants that their sources are traceable to refuse dumps, farmlands, public drains and effluents showed higher levels of concentration in the dam than the ones that are gradually released from the soil regolith system.

  13. Nonpoint source water pollution abatement and the feasibility of voluntary programs

    Science.gov (United States)

    Sawicki, David S.; Judd, Lynne B.

    1983-09-01

    This article details a case study of a voluntary, decentralized institutional arrangement for nonpint source water pollution control used in the Root River watershed in southeastern Wisconsin. This watershed was chosen because of its mix of urban, agricultural, and urbanizing land uses. The project objectives were to monitor and draw conclusions about the effectiveness of a voluntary, decentralized institutional system, to specify deficiencies of the approach and suggest means to correct them, and to use the conclusions to speculate about the need for regulations regarding nonpoint source pollution control or the appropriateness of financial incentives for nonpoint source control. Institutional factors considered include diversity of land uses in the watershed, educational needs, economic conditions, personality, water quality, number of agencies involved, definition of authority, and bureaucratic requirements

  14. Renewable energy for rural development to protect environmental pollution from energy sources

    International Nuclear Information System (INIS)

    Mathur, A.N.

    2001-01-01

    Energy is the key input for technological industrial, social and economical development of a nation. The present energy scenario is heavily biased towards the conventional energy sources, such as petroleum products, coal, atomic energy, etc., which are finite in nature and causes environmental pollution. The energy utilization pattern is also meant for the energy requirement in urban areas. To meet the growing energy requirement of rural areas through the conventional energy sources will cause serious harmful effect on the environmental pollution. The man's thurst to use more energy after about 150 thousand years ago, invention of wheel, use of petroleum products for power generation and invention of steam and coal has brought him to use the energy sources for his comfort irrespective of the environmental consideration. The extensive use of energy operated devices in domestic, industrial, transport and for agriculture sectors in urban and rural areas have resulted in economical development of the society

  15. Long-term effects of total and source-specific particulate air pollution on incident cardiovascular disease in Gothenburg, Sweden.

    Science.gov (United States)

    Stockfelt, Leo; Andersson, Eva M; Molnár, Peter; Gidhagen, Lars; Segersson, David; Rosengren, Annika; Barregard, Lars; Sallsten, Gerd

    2017-10-01

    Long-term exposure to air pollution increases cardiopulmonary morbidity and mortality, but it is not clear which components of air pollution are the most harmful, nor which time window of exposure is most relevant. Further studies at low exposure levels have also been called for. We analyzed two Swedish cohorts to investigate the effects of total and source-specific particulate matter (PM) on incident cardiovascular disease for different time windows of exposure. Two cohorts initially recruited to study predictors of cardiovascular disease (the PPS cohort and the GOT-MONICA cohort) were followed from 1990 to 2011. We collected data on residential addresses and assigned each individual yearly total and source-specific PM and Nitrogen Oxides (NO x ) exposures based on dispersion models. Using multivariable Cox regression models with time-dependent exposure, we studied the association between three different time windows (lag 0, lag 1-5, and exposure at study start) of residential PM and NO x exposure, and incidence of ischemic heart disease, stroke, heart failure and atrial fibrillation. During the study period, there were 2266 new-onset cases of ischemic heart disease, 1391 of stroke, 925 of heart failure and 1712 of atrial fibrillation. The majority of cases were in the PPS cohort, where participants were older. Exposure levels during the study period were moderate (median: 13µg/m 3 for PM 10 and 9µg/m 3 for PM 2.5 ), and similar in both cohorts. Road traffic and residential heating were the largest local sources of PM air pollution, and long distance transportation the largest PM source in total. In the PPS cohort, there were positive associations between PM in the last five years and both ischemic heart disease (HR: 1.24 [95% CI: 0.98-1.59] per 10µg/m 3 of PM 10 , and HR: 1.38 [95% CI: 1.08-1.77] per 5µg/m 3 of PM 2.5 ) and heart failure. In the GOT-MONICA cohort, there were positive but generally non-significant associations between PM and stroke (HR: 1

  16. Summary of Adsorption/Desorption Experiments for the European Database on Indoor Air Pollution Sources in Buildings

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte; Tirkkonen, T.

    1996-01-01

    Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings.......Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings....

  17. Nonpoint Source Pollution: Agriculture, Forestry, and Mining. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Buskirk, E. Drannon, Jr.

    Nonpoint sources of pollution have diffuse origins and are major contributors to water quality problems in both urban and rural areas. Addressed in this instructor's manual are the identification, assessment, and management of nonpoint source pollutants resulting from mining, agriculture, and forestry. The unit, part of the Working for Clean Water…

  18. Modelling of light pollution in suburban areas using remotely sensed imagery and GIS.

    Science.gov (United States)

    Chalkias, C; Petrakis, M; Psiloglou, B; Lianou, M

    2006-04-01

    This paper describes a methodology for modelling light pollution using geographical information systems (GIS) and remote sensing (RS) technology. The proposed approach attempts to address the issue of environmental assessment in sensitive suburban areas. The modern way of life in developing countries is conductive to environmental degradation in urban and suburban areas. One specific parameter for this degradation is light pollution due to intense artificial night lighting. This paper aims to assess this parameter for the Athens metropolitan area, using modern analytical and data capturing technologies. For this purpose, night-time satellite images and analogue maps have been used in order to create the spatial database of the GIS for the study area. Using GIS advanced analytical functionality, visibility analysis was implemented. The outputs for this analysis are a series of maps reflecting direct and indirect light pollution around the city of Athens. Direct light pollution corresponds to optical contact with artificial night light sources, while indirect light pollution corresponds to optical contact with the sky glow above the city. Additionally, the assessment of light pollution in different periods allows for dynamic evaluation of the phenomenon. The case study demonstrates high levels of light pollution in Athens suburban areas and its increase over the last decade.

  19. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution.

    Science.gov (United States)

    Donovan, Geoffrey H; Jovan, Sarah E; Gatziolis, Demetrios; Burstyn, Igor; Michael, Yvonne L; Amacher, Michael C; Monleon, Vicente J

    2016-07-15

    Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting. We collected 346 samples of the moss Orthotrichum lyellii from deciduous trees in December, 2013 using a modified randomized grid-based sampling strategy across Portland, Oregon. We estimated a spatial linear model of moss cadmium levels and predicted cadmium on a 50m grid across the city. Cadmium levels in moss were positively correlated with proximity to two stained-glass manufacturers, proximity to the Oregon-Washington border, and percent industrial land in a 500m buffer, and negatively correlated with percent residential land in a 500m buffer. The maps showed very high concentrations of cadmium around the two stained-glass manufacturers, neither of which were known to environmental regulators as cadmium emitters. In addition, in response to our findings, the Oregon Department of Environmental Quality placed an instrumental monitor 120m from the larger stained-glass manufacturer in October, 2015. The monthly average atmospheric cadmium concentration was 29.4ng/m(3), which is 49 times higher than Oregon's benchmark of 0.6ng/m(3), and high enough to pose a health risk from even short-term exposure. Both stained-glass manufacturers voluntarily stopped using cadmium after the monitoring results were made public, and the monthly average cadmium levels precipitously dropped to 1.1ng/m(3) for stained-glass manufacturer #1 and 0.67ng/m(3) for stained-glass manufacturer #2. Published by Elsevier B.V.

  20. Regional air pollution caused by a simultaneous destruction of major industrial sources during the 1999 air campaign in Yugoslavia

    International Nuclear Information System (INIS)

    Vukmirovic, Z.B.; Unkasevic, M.; Lazic, L.; Tosic, I.; Joksimovich, V.

    2002-01-01

    During NATO's 78 day Kosovo war, 24 March-10 June 1999, almost daily attacks on major industrial sources have caused numerous industrial accidents in Serbia. These accidents resulted in releases of many hazardous chemical substances including the persistent organic pollutants (POPs). Important detection of some POPs in fine aerosol form took place at Xanthi in Greece and reported to the scientific world. The paper focuses on two pollution episodes: (a) 6-8 April; and (b) 18-20 April. Using the Eta model trajectory analysis, the regional pollutant transport from industrial sites in northern Serbia (Novi Sad) and in the Belgrade vicinity (Pancevo), respectively, almost simultaneously bombed at midnight between 17 and 18 April, corroborated measurements at Xanthi. At the same time the pollutant puff was picked up at about 3000 m and transported to Bulgaria, Romania, Ukraine, Moldavia and the Black Sea. The low-level trajectories from Pancevo below 1000 m show pollutant transport towards Belgrade area in the first 12 hours. The POP washout in central and southern Serbia in the second episode was deemed to have constituted the principal removal mechanism. In this episode maximum POP wet deposition was found in central Serbia and along the 850 hPa trajectory towards south-eastern Serbia and the Bulgarian border. The most intensive bombing of major industrial sources was in April 1999 in which maximum number of days with precipitation (20-26 a month) was registered in central and south-western Serbia in comparison with the period of 1960-1990. Maximum monthly precipitation sums, higher than 100 mm, appeared in central and north-eastern Serbia, while a deficit, less than 50 mm, was registered in north-western and southern Serbia. (author)

  1. Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: Role of pollutant migration and soil physicochemical properties

    International Nuclear Information System (INIS)

    Zhang Changbo; Wu Longhua; Luo Yongming; Zhang Haibo; Christie, Peter

    2008-01-01

    Principal components analysis (PCA) and correlation analysis were used to estimate the contribution of four components related to pollutant sources on the total variation in concentrations of Cu, Zn, Pb, Cd, As, Se, Hg, Fe and Mn in surface soil samples from a valley in east China with numerous copper and zinc smelters. Results indicate that when carrying out source identification of inorganic pollutants their tendency to migrate in soils may result in differences between the pollutant composition of the source and the receptor soil, potentially leading to errors in the characterization of pollutants using multivariate statistics. The stability and potential migration or movement of pollutants in soils must therefore be taken into account. Soil physicochemical properties may offer additional useful information. Two different mechanisms have been hypothesized for correlations between soil heavy metal concentrations and soil organic matter content and these may be helpful in interpreting the statistical analysis. - Principal components analysis with Varimax rotation can help identify sources of soil inorganic pollutants but pollutant migration and soil properties can exert important effects

  2. Exposure to traffic pollution: comparison between measurements and a model.

    Science.gov (United States)

    Alili, F; Momas, I; Callais, F; Le Moullec, Y; Sacre, C; Chiron, M; Flori, J P

    2001-01-01

    French researchers from the Building Scientific and Technical Center have produced a traffic-exposure index. To achieve this, they used an air pollution dispersion model that enabled them to calculate automobile pollutant concentrations in front of subjects' residences and places of work. Researchers used this model, which was tested at 27 Paris canyon street sites, and compared nitrogen oxides measurements obtained with passive samplers during a 6-wk period and calculations derived from the model. There was a highly significant correlation (r = .83) between the 2 series of values; their mean concentrations were not significantly different. The results suggested that the aforementioned model could be a useful epidemiological tool for the classification of city dwellers by present-or even cumulative exposure to automobile air pollution.

  3. An Analysis of Ship-Source Marine Pollution in Nigeria Seaports

    Directory of Open Access Journals (Sweden)

    D. E. Onwuegbuchunam

    2017-08-01

    Full Text Available Existing studies indicate that marine pollution control in the ports of developing economies is marred by a lack of administrative control and inadequate provision of waste reception facilities. In Nigeria ports, ship generated waste control services and provision of waste reception facilities are outsourced to private companies with no requirement for an activity audit. Apart from the port authority, other government agencies are also involved in pollution monitoring and control. Hence, functions are duplicated and effective regulation is arguably weakened by conflicts of interest. A scientific based integrated model is therefore proposed to address the managerial problem posed in the control of marine pollution in Nigerian ports. In this paper, we conduct a physico-chemical and microbiological analysis of samples of ships’ wastewater to determine the status of marine pollution in the port environment. The samples were collected from randomly selected ships at berths in seaport locations. The outputs from the analysis are then integrated as inputs into an administrative framework model. The integrated model developed is proposed as an alternative administrative tool for monitoring and controlling pollution in seaports. The policy implications of the developed model are discussed.

  4. Pollution and economic growth in a model of overlapping generations

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Eric O`N. [Department of Economics, The Ohio State University, Columbus, OH (United States); Van Marrewijk, Charles [Department of Economics, Erasmus University, Rotterdam (Netherlands)

    1994-01-22

    We analyze a model of overlapping generations in which clean air, a pure public consumption good, is used as a private input into production. Although production exhibits constant returns to scale, endogenous growth can occur because the economy has tWO sectors. In a laissez-faire equilibrium, there is no market for pollution rights, and firms appropriate clean air in an arbitrary manner. Growth occurs only if the marginal propensity to save is high enough and the asymptotic share of pollution in the investment sector is zero. Firms generate quasi-rents that are the value of pollution rights. These quasi-rents crowd out investment and slow economic growth. A laissez- faire equilibrium may not support Pareto optimal allocations, but a Pigouvian tax with lump-sum distribution of the resulting revenues does. Hence, a pollution lax yields a double dividend because it can increase both the static efficiency of the economy and its growth rate. 1 fig., 20 refs.

  5. Pollution and economic growth in a model of overlapping generations

    International Nuclear Information System (INIS)

    Fisher, Eric O'N.; Van Marrewijk, Charles

    1994-01-01

    We analyze a model of overlapping generations in which clean air, a pure public consumption good, is used as a private input into production. Although production exhibits constant returns to scale, endogenous growth can occur because the economy has tWO sectors. In a laissez-faire equilibrium, there is no market for pollution rights, and firms appropriate clean air in an arbitrary manner. Growth occurs only if the marginal propensity to save is high enough and the asymptotic share of pollution in the investment sector is zero. Firms generate quasi-rents that are the value of pollution rights. These quasi-rents crowd out investment and slow economic growth. A laissez- faire equilibrium may not support Pareto optimal allocations, but a Pigouvian tax with lump-sum distribution of the resulting revenues does. Hence, a pollution lax yields a double dividend because it can increase both the static efficiency of the economy and its growth rate. 1 fig., 20 refs

  6. Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT.

    Science.gov (United States)

    Wang, Yu; Bian, Jianmin; Zhao, Yongsheng; Tang, Jie; Jia, Zhuo

    2018-02-05

    The source area of Liao River is a typical cold region in northeastern China, which experiences serious problems with agricultural nonpoint source pollution (NPS), it is important to understand future climate change impacts on NPS in the watershed. This issue has been investigated by coupling semi distributed hydrological model (SWAT), statistical downscaling model (SDSM) and global circulation model (GCMs). The results show that annual average temperature would rise by 2.1 °C (1.3 °C) in the 2080 s under scenario RCP8.5 (RCP4.5), and annual precipitation would increase by 67 mm (33 mm). The change in winter temperature and precipitation is most significant with an increase by 0.23 °C/10a (0.17 °C/10a) and 1.94 mm/10a (2.78 mm/10a). The future streamflow, TN and TP loads would decrease by 19.05% (10.59%), 12.27% (8.81%) and 10.63% (6.11%), respectively. Monthly average streamflow, TN and TP loads would decrease from March to November, and increase from December to February. This is because the increased precipitation and temperature in winter, which made the spring snowpack melting earlier. These study indicate the trends of nonpoint source pollution during the snowmelt period under climate change conditions, accordingly adaptation measures will be necessary.

  7. Source apportionment of Pb pollution in saltmarsh sediments from southwest England

    Science.gov (United States)

    Iurian, Andra-Rada; Millward, Geoffrey; Taylor, Alex; Marshall, William; Rodríguez, Javier; Gil Ibarguchi, José Ignacio; Blake, William H.

    2017-04-01

    The local availability of metal resources played a crucial role in Britain's development during the industrial revolution, but centuries of mining within Cornwall and Devon (UK) have left a legacy of contamination in river basin and estuary sediments. Improved knowledge of historical heavy metal sources, emissions and pathways will result in a better understanding of the contemporary pollution conditions and a better protection of the environment from legacy contaminants. Our study aims to trace historical sources of Pb pollution in the area of east Cornwall and west Devon, UK, using a multi proxy approach for contaminants stored in saltmarsh sediment columns from 3 systems characterized by different contamination patterns. Source apportionment investigations included the determination of Pb concentration and Pb isotopic composition (204Pb, 206Pb, 207Pb, and 208Pb) for selected down-core sediment samples, and for local ore and parent rock materials. General trends in pollutant loading (e.g. Pb) could be identified, with maximum inputs occurring in the middle of the 19th century and decreasing towards the present day, while an increase in the catchment disturbance was apparent for the last decades. The isotopic ratios of Pb further indicate that sediments with higher Pb content have a less radiogenic signature, these particular inputs being derived from Pb mining and smelting sources in the catchment area. Acknowledgements: Andra-Rada Iurian acknowledges the support of a Marie Curie Fellowship (H2020-MSCA-IF-2014, Grant Agreement number: 658863) within the Horizon 2020.

  8. Loading functions for assessment of water pollution from nonpoint sources. Final report

    International Nuclear Information System (INIS)

    McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W.

    1976-05-01

    Methods for evaluating the quantity of water pollutants generated from nonpoint sources including agriculture, silviculture, construction, mining, runoff from urban areas and rural roads, and terrestrial disposal are developed and compiled for use in water quality planning. The loading functions, plus in some instances emission values, permit calculation of nonpoint source pollutants from available data and information. Natural background was considered to be a source and loading functions were presented to estimate natural or background loads of pollutants. Loading functions/values are presented for average conditions, i.e., annual average loads expressed as metric tons/hectare/year (tons/acre/year). Procedures for estimating seasonal or 30-day maximum and minimum loads are also presented. In addition, a wide variety of required data inputs to loading functions, and delineation of sources of additional information are included in the report. The report also presents an evaluation of limitations and constraints of various methodologies which will enable the user to employ the functions realistically

  9. Variability of Surface pollutants and aerosol concentration over Abu Dhabi, UAE - sources, transport and current levels

    Science.gov (United States)

    Phanikumar, Devulapalli V.; Basha, Ghouse; Ouarda, Taha B. M. J.

    2015-04-01

    In the view of recent economic, industrial, and rapid development, Abu Dhabi (24.4oN; 54.4oE; 27m msl) has become one of the most populated regions in the world despite of extreme heat, frequent dust storms, and with distinctive topography. The major sources of air pollution are from the dust and sand storms, greenhouse gas emissions, and to some extent from industrial pollution. In order to realize the accurate and comprehensive understanding of air quality and plausible sources over this region, we have made a detailed analysis of three years simultaneous measurements during 2011-13 of pollutants such as O3, SO2, NO2, CO, and PM10 concentrations. Diurnal variation of meteorological parameters such as temperature and wind speed/relative humidity clearly shows daytime maximum/minimum in summer followed by pre-monsoon, post-monsoon and winter. The prevailing winds over this region are mostly from northwesterly direction (Shamal wind). Diurnal wind pattern showed a clear contrast with the majority of the wind pattern during nighttime and early morning is from the westerly/northwesterly and daytime is from southwesterly/southeasterly directions. The diurnal pattern of O3 shows minimum during 08 LT and increases thereafter reaching maximum at 17 LT and decreases during nighttime. However, the diurnal pattern of SO2 and NO2 show a peak at ~ 08 LT and dip at ~ 14 LT during all the seasons with some variability in each season. On the other hand, the diurnal pattern of CO shows a peculiar picture of elevated levels during daytime peaking at ~ 10 LT (prominent in summer and post-monsoon) followed by a sharp decrease and minimum is ~14 LT. PM10 concentration has an early morning peak at ~ 02 LT and then decreases to a minimum value at ~11 LT and again increases in the afternoon hours (maximum at ~17 LT) depicting a forenoon-afternoon asymmetry. Monthly variation of PM10 shows maximum in pre-monsoon season and minimum in winter. Our observations show the diurnal pattern of

  10. Performance of Air Pollution Models on Massively Parallel Computers

    DEFF Research Database (Denmark)

    Brown, John; Hansen, Per Christian; Wasniewski, Jerzy

    1996-01-01

    To compare the performance and use of three massively parallel SIMD computers, we implemented a large air pollution model on the computers. Using a realistic large-scale model, we gain detailed insight about the performance of the three computers when used to solve large-scale scientific problems...

  11. Cosmetic Functional Ingredients from Botanical Sources for Anti-Pollution Skincare Products

    Directory of Open Access Journals (Sweden)

    Claudia Juliano

    2018-02-01

    Full Text Available Air pollution is a rising problem in many metropolitan areas around the world. Airborne contaminants are predominantly derived from anthropogenic activities, and include carbon monoxide, sulfur dioxide, nitrogen oxides, volatile organic compounds, ozone and particulate matter (PM; a mixture of solid and liquid particles of variable size and composition, able to absorb and delivery a large number of pollutants. The exposure to these air pollutants is associated to detrimental effects on human skin, such as premature aging, pigment spot formation, skin rashes and eczema, and can worsen some skin conditions, such as atopic dermatitis. A cosmetic approach to this problem involves the topical application of skincare products containing functional ingredients able to counteract pollution-induced skin damage. Considering that the demand for natural actives is growing in all segments of global cosmetic market, the aim of this review is to describe some commercial cosmetic ingredients obtained from botanical sources able to reduce the impact of air pollutants on human skin with different mechanisms, providing a scientific rationale for their use.

  12. Reducing nonpoint source pollution through collaboration: policies and programs across the U.S. States.

    Science.gov (United States)

    Hardy, Scott D; Koontz, Tomas M

    2008-03-01

    Nonpoint source (NPS) pollution has emerged as the largest threat to water quality in the United States, influencing policy makers and resource managers to direct more attention toward NPS prevention and remediation. In response, the United States Environmental Protection Agency (USEPA) spent more than $204 million in fiscal year (FY) 2006 on the Clean Water Act's Section 319 program to combat NPS pollution, much of it on the development and implementation of watershed-based plans. State governments have also increasingly allocated financial and technical resources to collaborative watershed efforts within their own borders to fight NPS pollution. With increased collaboration among the federal government, states, and citizens to combat NPS pollution, more information is needed to understand how public resources are being used, by whom, and for what, and what policy changes might improve effectiveness. Analysis from a 50-state study suggests that, in addition to the average 35% of all Section 319 funds per state that are passed on to collaborative watershed groups, 35 states have provided financial assistance beyond Section 319 funding to support collaborative watershed initiatives. State programs frequently provide technical assistance and training, in addition to financial resources, to encourage collaborative partnerships. Such assistance is typically granted in exchange for requirements to generate a watershed action plan and/or follow a mutually agreed upon work plan to address NPS pollution. Program managers indicated a need for greater fiscal resources and flexibility to achieve water quality goals.

  13. Establishment and application of the estimation model for pollutant concentrfation in agriculture drain

    Science.gov (United States)

    Li, Qiangkun; Hu, Yawei; Jia, Qian; Song, Changji

    2018-02-01

    It is the key point of quantitative research on agricultural non-point source pollution load, the estimation of pollutant concentration in agricultural drain. In the guidance of uncertainty theory, the synthesis of fertilization and irrigation is used as an impulse input to the farmland, meanwhile, the pollutant concentration in agricultural drain is looked as the response process corresponding to the impulse input. The migration and transformation of pollutant in soil is expressed by Inverse Gaussian Probability Density Function. The law of pollutants migration and transformation in soil at crop different growth periods is reflected by adjusting parameters of Inverse Gaussian Distribution. Based on above, the estimation model for pollutant concentration in agricultural drain at field scale was constructed. Taking the of Qing Tong Xia Irrigation District in Ningxia as an example, the concentration of nitrate nitrogen and total phosphorus in agricultural drain was simulated by this model. The results show that the simulated results accorded with measured data approximately and Nash-Sutcliffe coefficients were 0.972 and 0.964, respectively.

  14. Transport and dispersion of pollutants in surface impoundments: a finite difference model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model by finite-difference (SIMFD) has been developed. SIMFD computes the flow rate, velocity field, and the concentration distribution of pollutants in surface impoundments with any number of islands located within the region of interest. Theoretical derivations and numerical algorithm are described in detail. Instructions for the application of SIMFD and listings of the FORTRAN IV source program are provided. Two sample problems are given to illustrate the application and validity of the model.

  15. A NONLINEAR MATHEMATICAL MODEL FOR ASTHMA: EFFECT OF ENVIRONMENTAL POLLUTION

    Directory of Open Access Journals (Sweden)

    NARESHA RAM

    2009-04-01

    Full Text Available In this paper, we explore a nonlinear mathematical model to study the spread of asthma due to inhaled pollutants from industry as well as tobacco smoke from smokers in a variable size population. The model is analyzed using stability theory of differential equations and computer simulation. It is shown that with an increase in the level of air pollutants concentration, the asthmatic (diseased population increases. It is also shown that along with pollutants present in the environment, smoking (active or passive also helps in the spread of asthma. Moreover, with the increase in the rate of interaction between susceptibles and smokers, the persistence of the spread of asthma is higher. A numerical study of the model is also performed to see the role of certain key parameters on the spread of asthma and to support the analytical results.

  16. The demand for environmental quality in driving transitions to low-polluting energy sources

    International Nuclear Information System (INIS)

    Fouquet, Roger

    2012-01-01

    The purpose of this paper is to understand the long run demand for energy-related environmental quality, its influence on legislation and on transitions to low polluting energy sources. It presents a series of episodes in British history where a demand for improvements in energy-related environmental quality existed. These episodes helped to identify a few cases where markets partially drove transitions to low polluting energy sources, in specific economic conditions. More generally, they showed that, when pushed, governments will introduce environmental legislation, although it tends to be weak and poorly enforced. In the case of air pollution, strong and binding legislation occurred roughly one hundred years later than was socially optimal. Based on this evidence, for a transition to a low carbon economy, governments will probably need to introduce focussed and binding legislation, and this cannot be expected without strong and sustained demand for climate stability. This demand will need to be spearheaded by pressure groups to introduce legislation, to enforce it and to avoid it being over-turned by future governments. - Highlights: ► Reviews demand for improvements in environmental quality in British history. ► In special cases, demand may drive transitions through markets. ► Demand will probably have to drive transitions to low polluting energy through legislation. ► Need for strong and sustained demand spearheaded through pressure groups.

  17. Air Pollution Exposure Modeling for Health Studies | Science ...

    Science.gov (United States)

    Dr. Michael Breen is leading the development of air pollution exposure models, integrated with novel personal sensor technologies, to improve exposure and risk assessments for individuals in health studies. He is co-investigator for multiple health studies assessing the exposure and effects of air pollutants. These health studies include participants with asthma, diabetes, and coronary artery disease living in various U.S. cities. He has developed, evaluated, and applied novel exposure modeling and time-activity tools, which includes the Exposure Model for Individuals (EMI), GPS-based Microenvironment Tracker (MicroTrac) and Exposure Tracker models. At this seminar, Dr. Breen will present the development and application of these models to predict individual-level personal exposures to particulate matter (PM) for two health studies in central North Carolina. These health studies examine the association between PM and adverse health outcomes for susceptible individuals. During Dr. Breen’s visit, he will also have the opportunity to establish additional collaborations with researchers at Harvard University that may benefit from the use of exposure models for cohort health studies. These research projects that link air pollution exposure with adverse health outcomes benefit EPA by developing model-predicted exposure-dose metrics for individuals in health studies to improve the understanding of exposure-response behavior of air pollutants, and to reduce participant

  18. Research on Nonpoint Source Pollution Assessment Method in Data Sparse Regions: A Case Study of Xichong River Basin, China

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2015-01-01

    Full Text Available The NPS pollution is difficult to manage and control due to its complicated generation and formation mechanism, especially in the data sparse area. Thus the ECM and BTOPMC were, respectively, adopted to develop an easy and practical assessment method, and a comparison between the outputs of them is then conducted in this paper. The literature survey and field data were acquired to confirm the export coefficients of the ECM, and the loads of TN and TP were statistically analyzed in the study area. Based on hydrological similarity, runoff data from nearby gauged sites were pooled to compensate for the lack of at-site data and the water quality submodel of BTOPMC was then applied to simulate the monthly pollutant fluxes in the two sections from 2010 to 2012. The results showed agricultural fertilizer, rural sewage, and livestock and poultry sewage were the main pollution sources, and under the consideration of self-purification capacity of river, the outputs of the two models were almost identical. The proposed method with a main thought of combining and comparing an empirical model and a mechanistic model can assess the water quality conditions in the study area scientifically, which indicated it has a good potential for popularization in other regions.

  19. Can We Manage Nonpoint-Source Pollution Using Nutrient Concentrations during Seasonal Baseflow?

    Directory of Open Access Journals (Sweden)

    James A. McCarty

    2016-05-01

    Full Text Available Nationwide, a substantial amount of resources has been targeted toward improving water quality, particularly focused on nonpoint-source pollution. This study was conducted to evaluate the relationship between nutrient concentrations observed during baseflow and runoff conditions from 56 sites across five watersheds in Arkansas. Baseflow and stormflow concentrations for each site were summarized using geometric mean and then evaluated for directional association. A significant, positive correlation was found for NO–N, total N, soluble reactive P, and total P, indicating that sites with high baseflow concentrations also had elevated runoff concentrations. Those landscape factors that influence nutrient concentrations in streams also likely result in increased runoff, suggesting that high baseflow concentrations may reflect elevated loads from the watershed. The results highlight that it may be possible to collect water-quality data during baseflow to help define where to target nonpoint-source pollution best management practices within a watershed.

  20. The use of Pb isotopes to differentiate between contemporary and ancient sources of pollution in Greece

    Science.gov (United States)

    Åberg, G.; Charalampides, G.; Fosse, G.; Hjelmseth, H.

    Stable lead isotopes are used to illustrate the relation source-receptor and to differentiate between sources of pollution in Greece. Air filters collected in the Kozani-Ptolemais lignite mining area, West Macedonia, point to an impact from gasoline lead as well as lead from the combustion of lignite. This is supported by lead isotope data of wheat grown on reclaimed land. Lead isotope analyses of contemporary teeth from the Lavrio sulphide mining area, southeast of Greece, show the imprint of previous mining activities as well as traffic emissions. Moreover, the Lavrio teeth can be distinguished from one tooth from Athens; the Athens tooth show a stronger impact of gasoline lead. Lead data also imply that the Greek top soil is contaminated by air pollution from earlier sulphide mining and smelting since Hellenic and Roman times.

  1. MODELLING OF CARBON MONOXIDE AIR POLLUTION IN LARG CITIES BY EVALUETION OF SPECTRAL LANDSAT8 IMAGES

    Directory of Open Access Journals (Sweden)

    M. Hamzelo

    2015-12-01

    Full Text Available Air pollution in large cities is one of the major problems that resolve and reduce it need multiple applications and environmental management. Of The main sources of this pollution is industrial activities, urban and transport that enter large amounts of contaminants into the air and reduces its quality. With Variety of pollutants and high volume manufacturing, local distribution of manufacturing centers, Testing and measuring emissions is difficult. Substances such as carbon monoxide, sulfur dioxide, and unburned hydrocarbons and lead compounds are substances that cause air pollution and carbon monoxide is most important. Today, data exchange systems, processing, analysis and modeling is of important pillars of management system and air quality control. In this study, using the spectral signature of carbon monoxide gas as the most efficient gas pollution LANDSAT8 images in order that have better spatial resolution than appropriate spectral bands and weather meters،SAM classification algorithm and Geographic Information System (GIS , spatial distribution of carbon monoxide gas in Tehran over a period of one year from the beginning of 2014 until the beginning of 2015 at 11 map have modeled and then to the model valuation ،created maps were compared with the map provided by the Tehran quality comparison air company. Compare involved plans did with the error matrix and results in 4 types of care; overall, producer, user and kappa coefficient was investigated. Results of average accuracy were about than 80%, which indicates the fit method and data used for modeling.

  2. Anthropogenic Air Pollution Observed Near Dust Source Regions in Northwestern China During Springtime 2008

    Science.gov (United States)

    Li, Can; Tsay, Si-Chee; Fu, Joshua S.; Dickerson, Russell R.; Ji, Qiang; Bell, Shaun W.; Gao, Yang; Zhang, Wu; Huang, Jianping; Li, Zhanqing; hide

    2010-01-01

    Trace gases and aerosols were measured in Zhangye (39.082degN, 100.276degE, 1460 m a.s. 1.), a rural site near the Gobi deserts in northwestern China during spring 2008. Primary trace gases (CO:265 ppb; SO2:3.4 ppb; NO(*y): 4.2 ppb; hereafter results given as means of hourly data) in the area were lower than in eastern China, but still indicative of marked anthropogenic emissions. Sizable aerosol mass concentration (153 micro-g/cu m) and light scattering (159/Mm at 500 nm) were largely attributable to dust emissions, and aerosol light absorption (10.3/Mm at 500 nm) was dominated by anthropogenic pollution. Distinct diurnal variations in meteorology and pollution were induced by the local valley terrain. Strong daytime northwest valley wind cleaned out pollution and was replaced by southeast mountain wind that allowed pollutants to build up overnight. In the afternoon, aerosols had single scattering albedo (SSA, 500 mn) of 0.95 and were mainly of supermicron particles, presumably dust, while at night smaller particles and SSA of 0.89-0.91 were related to Pollution. The diverse local emission sources were characterized: the CO/SO2, CO/NO(y), NO(y)/SO2 (by moles), and BC/CO (by mass) ratios for small point sources such as factories were 24.6-54.2, 25.8-35.9, 0.79-1.31, and 4.1-6.1 x 10(exp -3), respectively, compared to the corresponding inventory ratios of 43.7-71.9, 23.7-25.7, 1.84-2.79, and 3.4-4.0 x 10(exp -3) for the industrial sector in the area. The mixing between dust and pollution can be ubiquitous in this region. During a dust storm shown as an example, pollutants were observed to mix with dust, causing discernible changes in both SSA and aerosol size distribution. Further interaction between dust and pollutants during transport may modify the properties of dust particles that are critical for their large-scale impact on radiation, clouds, and global biogeochemical cycles.

  3. Atmospheric mercury dispersion modelling from two nearest hypothetical point sources

    Energy Technology Data Exchange (ETDEWEB)

    Al Razi, Khandakar Md Habib; Hiroshi, Moritomi; Shinji, Kambara [Environmental and Renewable Energy System (ERES), Graduate School of Engineering, Gifu University, Yanagido, Gifu City, 501-1193 (Japan)

    2012-07-01

    The Japan coastal areas are still environmentally friendly, though there are multiple air emission sources originating as a consequence of several developmental activities such as automobile industries, operation of thermal power plants, and mobile-source pollution. Mercury is known to be a potential air pollutant in the region apart from SOX, NOX, CO and Ozone. Mercury contamination in water bodies and other ecosystems due to deposition of atmospheric mercury is considered a serious environmental concern. Identification of sources contributing to the high atmospheric mercury levels will be useful for formulating pollution control and mitigation strategies in the region. In Japan, mercury and its compounds were categorized as hazardous air pollutants in 1996 and are on the list of 'Substances Requiring Priority Action' published by the Central Environmental Council of Japan. The Air Quality Management Division of the Environmental Bureau, Ministry of the Environment, Japan, selected the current annual mean environmental air quality standard for mercury and its compounds of 0.04 ?g/m3. Long-term exposure to mercury and its compounds can have a carcinogenic effect, inducing eg, Minamata disease. This study evaluates the impact of mercury emissions on air quality in the coastal area of Japan. Average yearly emission of mercury from an elevated point source in this area with background concentration and one-year meteorological data were used to predict the ground level concentration of mercury. To estimate the concentration of mercury and its compounds in air of the local area, two different simulation models have been used. The first is the National Institute of Advanced Science and Technology Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER) that estimates regional atmospheric concentration and distribution. The second is the Hybrid Single Particle Lagrangian Integrated trajectory Model (HYSPLIT) that estimates the atmospheric

  4. Physical and mathematical models for diffusion of thermal pollutants in water

    International Nuclear Information System (INIS)

    Pires, E.C.; Giorgetti, M.F.; Carajilescov, P.

    1983-01-01

    Mathematical models, such as the Fickian model and the model at PAILY and SAYRE, have been used in the analysis of thermal pollution. In the present work, experimental simulations of thermal dispersion were made using an artificial channel with injection of hat water and measurements of the temperature field were taken. The results were compared with the results given by the mentioned models, applying the image sources method. Due to the limitations of the model of PAILY and SAYRE, it was generalized for thermal sources posicioned at any place in the channel. The model of PAILY and SAYRE proved to be more satisfactory than the Fickian model and the image sources method was considered adequate. (Author) [pt

  5. Detection limits of pollutants in water for PGNAA using Am-Be source

    International Nuclear Information System (INIS)

    Khelifi, R.; Amokrane, A.; Bode, P.

    2007-01-01

    A basic PGNAA facility with an Am-Be neutron source is described to analyze the pollutants in water. The properties of neutron flux were determined by MCNP calculations. In order to determine the efficiency curve of a HPGe detector, the prompt-gamma rays from chlorine were used and an exponential curve was fitted. The detection limits for typical water sample are also estimated using the statistical fluctuations of the background level in the areas of recorded the prompt-gamma spectrum

  6. Prevention and Control of Agricultural Non-Point Source Pollutions in UK and Suggestions to China

    OpenAIRE

    Liu, Kun; Ren, Tianzhi; Wu, Wenliang; Meng, Fanquiao; Bellarby, Jessica; Smith, Laurence

    2016-01-01

    Currently, the world is facing challenges of maintaining food production growth while improving agricultural ecological environmental quality. The prevention and control of agricultural non-point source pollution, a key component of these challenges, is a systematic program which integrates many factors such as technology and its extension, relevant regulation and policies. In the project of UK-China Sustainable Agriculture Innovation Network, we undertook a comprehensive analysis of the prev...

  7. Sources, transport and deposition of heavy metals and persistent organic pollutants (POPs)

    Energy Technology Data Exchange (ETDEWEB)

    Pacyna, J M

    1996-01-01

    The conference paper deals with a study on the behaviour of heavy metals (HMs) and persistent organic pollutants (POPs) in the environment. The conclusion is that many of these compounds create serious problems due their toxicity and bioaccumulation in various environmental compartments. Several scientific questions have been posed for improved understanding of the nature and the extent of these problems. The present paper addresses questions related to sources, fluxes, and atmospheric pathways of HMs and POPs in Europe

  8. Arima and integrated arfima models for forecasting air pollution index in Shah Alam, Selangor

    International Nuclear Information System (INIS)

    Lim, Ying Siew; Lim, Ying Chin; Pauline, Mah Jin Wee

    2008-01-01

    Air pollution is one of the major issues that has been affecting human health, agricultural crops, forest species and ecosystems. Since 1980, Malaysia has had a series of haze episodes and the worst ever was reported in 1997. As a result, the government has established the Malaysia Air Quality Guidelines, the Air Pollution Index (API) and Haze Action Plan, to improve the air quality. The API was introduced as an index system for classifying and reporting the ambient air quality in Malaysia. The API for a given period is calculated based on the sub-index value (sub-API) for all the five air pollutants, namely sulphur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), ozone (O 3 ), carbon monoxide (CO) and particulate matter below 10 micron size (PM 10 ). The forecast of air pollution can be used for air pollution assessment and management. It can serve as information and warning to the public in cases of high air pollution levels and for policy management of many different chemical compounds. Hence, the objective of this project is to fit and illustrate the use of time series models in forecasting the API in Shah Alam, Selangor. The data used in this study consists of 70 monthly observations of API (from March 1998 to December 2003) published in the Annual Reports of the Department of Environment, Selangor. The time series models that were being considered were the Integrated Autoregressive Moving Average (ARIMA) and the Integrated Long Memory Model (ARFIMA) models. The lowest MAE, RMSE and MAPE values were used as the model selection criteria. Between these two models considered, the integrated ARFIMA model appears to be the better model as it has the lowest MAPE value. However, the actual value of May 2003 falls outside the 95% forecast interval, probably due to emissions from mobile sources (i.e., motor vehicles), industrial emissions, burning of solid wastes and forest fires. (author)

  9. Assessment of light extinction at a European polluted urban area during wintertime: Impact of PM1 composition and sources.

    Science.gov (United States)

    Vecchi, R; Bernardoni, V; Valentini, S; Piazzalunga, A; Fermo, P; Valli, G

    2018-02-01

    In this paper, results from receptor modelling performed on a well-characterised PM 1 dataset were combined to chemical light extinction data (b ext ) with the aim of assessing the impact of different PM 1 components and sources on light extinction and visibility at a European polluted urban area. It is noteworthy that, at the state of the art, there are still very few papers estimating the impact of different emission sources on light extinction as we present here, although being among the major environmental challenges at many polluted areas. Following the concept of the well-known IMPROVE algorithm, here a tailored site-specific approach (recently developed by our group) was applied to assess chemical light extinction due to PM 1 components and major sources. PM 1 samples collected separately during daytime and nighttime at the urban area of Milan (Italy) were chemically characterised for elements, major ions, elemental and organic carbon, and levoglucosan. Chemical light extinction was estimated and results showed that at the investigated urban site it is heavily impacted by ammonium nitrate and organic matter. Receptor modelling (i.e. Positive Matrix Factorization, EPA-PMF 5.0) was effective to obtain source apportionment; the most reliable solution was found with 7 factors which were tentatively assigned to nitrates, sulphates, wood burning, traffic, industry, fine dust, and a Pb-rich source. The apportionment of aerosol light extinction (b ext,aer ) according to resolved sources showed that considering all samples together nitrate contributed at most (on average 41.6%), followed by sulphate, traffic, and wood burning accounting for 18.3%, 17.8% and 12.4%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Spatial assessment and source identification of heavy metals pollution in surface water using several chemometric techniques.

    Science.gov (United States)

    Ismail, Azimah; Toriman, Mohd Ekhwan; Juahir, Hafizan; Zain, Sharifuddin Md; Habir, Nur Liyana Abdul; Retnam, Ananthy; Kamaruddin, Mohd Khairul Amri; Umar, Roslan; Azid, Azman

    2016-05-15

    This study presents the determination of the spatial variation and source identification of heavy metal pollution in surface water along the Straits of Malacca using several chemometric techniques. Clustering and discrimination of heavy metal compounds in surface water into two groups (northern and southern regions) are observed according to level of concentrations via the application of chemometric techniques. Principal component analysis (PCA) demonstrates that Cu and Cr dominate the source apportionment in northern region with a total variance of 57.62% and is identified with mining and shipping activities. These are the major contamination contributors in the Straits. Land-based pollution originating from vehicular emission with a total variance of 59.43% is attributed to the high level of Pb concentration in the southern region. The results revealed that one state representing each cluster (northern and southern regions) is significant as the main location for investigating heavy metal concentration in the Straits of Malacca which would save monitoring cost and time. The monitoring of spatial variation and source of heavy metals pollution at the northern and southern regions of the Straits of Malacca, Malaysia, using chemometric analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cd isotopes as a potential source tracer of metal pollution in river sediments

    International Nuclear Information System (INIS)

    Gao, Bo; Zhou, Haidong; Liang, Xirong; Tu, Xianglin

    2013-01-01

    Tracing the sources of heavy metals in water environment is key important for our understanding of their pollution behavior. In this present study, Cd concentrations and Cd isotopic compositions in sediments were determined to effectively identify possible Cd sources. Results showed that elevated concentrations and high enrichment factor for Cd were found in all sediments, suggesting anthropogenic Cd origin. Cd isotopic compositions in sediments yielded relative variations ranged from −0.35‰ to 0.07‰ in term of δ 114/110 Cd (the mean: −0.08‰). Large fractionated Cd was found in sediments collected from a smelter and an E-waste town. Cd isotopic compositions and Cd concentrations measured in sediments allowed the identification of three main origins (dust from metal refining (δ 114/110 Cd 114/110 Cd > 0), and those δ 114/110 Cd = 0, such as background and mining activity). According to the actual precision obtained, Cd isotopes could be a potential tool for tracing metal pollution sources in water environment. -- The information and application of Cd isotopic compositions will provide a new direction in tracing metal pollution in water environment

  12. Non-point Source Pollutants Loss of Planting Industry in the Yunnan Plateau Lake Basin, China

    Directory of Open Access Journals (Sweden)

    ZHAO Zu-jun

    2017-12-01

    Full Text Available Non-point source pollution of planting has become a major factor affecting the quality and safety of water environment in our country. In recent years, some studies show that the loss of nitrogen and phosphorus in agricultural chemical fertilizers has led to more serious non-point source pollution. By means of the loss coefficient method and spatial overlay analysis, the loss amount, loss of strength and its spatial distribution characteristics of total nitrogen, total phosphorus, ammonium nitrogen and nitrate nitrogen were analyzed in the Fuxian Lake, Xingyun Lake and Qilu Lake Basin in 2015. The results showed that:The loss of total nitrogen was the highest in the three basins, following by ammonium nitrogen, nitrate nitrogen and total phosphorus, which the loss of intensity range were 2.73~22.07, 0.003~3.52, 0.01~2.25 kg·hm-2 and 0.05~1.36 kg·hm-2, respectively. Total nitrogen and total phosphorus loss were mainly concentrated in the southwest of Qilu Lake, west and south of Xingyun Lake. Ammonium nitrogen and nitrate nitrogen loss mainly concentrated in the south of Qilu Lake, south and north of Xingyun Lake. The loss of nitrogen and phosphorus was mainly derived from cash crops and rice. Therefore, zoning, grading and phased prevention and control schemes were proposed, in order to provide scientific basis for controlling non-point source pollution in the study area.

  13. Organic micropollutants discharged by combined sewer overflows - Characterisation of pollutant sources and stormwater-related processes.

    Science.gov (United States)

    Launay, Marie A; Dittmer, Ulrich; Steinmetz, Heidrun

    2016-11-01

    To characterise emissions from combined sewer overflows (CSOs) regarding organic micropollutants, a monitoring study was undertaken in an urban catchment in southwest Stuttgart, Germany. The occurrence of 69 organic micropollutants was assessed at one CSO outfall during seven rain events as well as in the sewage network at the influent of the wastewater treatment plant (WWTP) and in the receiving water. Several pollutant groups like pharmaceuticals and personal care products (PPCPs), urban biocides and pesticides, industrial chemicals, organophosphorus flame retardants, plasticisers and polycyclic aromatic hydrocarbons (PAHs) were chosen for analysis. Out of the 69 monitored substances, 60 were detected in CSO discharges. The results of this study show that CSOs represent an important pathway for a wide range of organic micropollutants from wastewater systems to urban receiving waters. For most compounds detected in CSO samples, event mean concentrations varied between the different events in about one order of magnitude range. When comparing CSO concentrations with median wastewater concentrations during dry weather, two main patterns could be observed depending on the source of the pollutant: (i) wastewater is diluted by stormwater; (ii) stormwater is the most important source of a pollutant. Both wastewater and stormwater only play an important role in pollutant concentration for a few compounds. The proportion of stormwater calculated with the conductivity is a suitable indicator for the evaluation of emitted loads of dissolved wastewater pollutants, but not for all compounds. In fact, this study demonstrates that remobilisation of in-sewer deposits contributed from 10% to 65% to emissions of carbamazepine in CSO events. The contribution of stormwater to CSO emitted loads was higher than 90% for all herbicides as well as for PAHs. Regarding the priority substance di(2-ethylhexyl)phthalate (DEHP), this contribution varied between 39% and 85%. The PAH

  14. Source apportionment of fine particles and its chemical components over the Yangtze River Delta, China during a heavy haze pollution episode

    Science.gov (United States)

    Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.

    2015-12-01

    An extremely high PM2.5 pollution episode occurred over the eastern China in January 2013. In this paper, the particulate matter source apportionment technology (PSAT) method coupled within the Comprehensive air quality model with extensions (CAMx) is applied to study the source contributions to PM2.5 and its major components at six receptors (Urban Shanghai, Chongming, Dianshan Lake, Urban Suzhou, Hangzhou and Zhoushan) in the Yangtze River Delta (YRD) region. Contributions from 4 source areas (including Shanghai, South Jiangsu, North Zhejiang and Super-region) and 9 emission sectors (including power plants, industrial boilers and kilns, industrial processing, mobile source, residential, volatile emissions, dust, agriculture and biogenic emissions) to PM2.5 and its major components (sulfate, nitrate, ammonia, organic carbon and elemental carbon) at the six receptors in the YRD region are quantified. Results show that accumulation of local pollution was the largest contributor during this air pollution episode in urban Shanghai (55%) and Suzhou (46%), followed by long-range transport (37% contribution to Shanghai and 44% to Suzhou). Super-regional emissions play an important role in PM2.5 formation at Hangzhou (48%) and Zhoushan site (68%). Among the emission sectors contributing to the high pollution episode, the major source categories include industrial processing (with contributions ranging between 12.7 and 38.7% at different receptors), combustion source (21.7-37.3%), mobile source (7.5-17.7%) and fugitive dust (8.4-27.3%). Agricultural contribution is also very significant at Zhoushan site (24.5%). In terms of the PM2.5 major components, it is found that industrial boilers and kilns are the major source contributor to sulfate and nitrate. Volatile emission source and agriculture are the major contributors to ammonia; transport is the largest contributor to elemental carbon. Industrial processing, volatile emissions and mobile source are the most significant

  15. Air pollutant emission rates for sources at the Davis Canyon Repository site

    International Nuclear Information System (INIS)

    1985-11-01

    This document summarizes the air-quality source terms used for the Davis Canyon, Utah environmental assessment report and explains their derivation. The engineering data supporting these source terms appear as appendixes to the report and include summary equipment lists for the repository (December, 1984) and detailed equipment lists for the exploratory shaft (June and July, 1985). Although substantial work has been performed in establishing the current repository design, a greater effort will be required for the final design. Consequently, the repository emission rates presented here should be considered as preliminary estimates. Another set of air pollutant emission rates will be calculated after design data are more firmly established. 19 refs., 18 tabs

  16. Air pollutant emission rates for sources at the Deaf Smith County repository site

    International Nuclear Information System (INIS)

    1985-11-01

    This document summarizes the air-quality source terms used for the Deaf Smith County, Texas environmental assessment report and explains their derivation. The engineering data supporting these source terms appear as appendixes to this report and include summary equipment lists for the repository and detailed equipment lists for the exploratory shaft. Although substantial work has been performed in establishing the current repository design, a greater effort will be required for the final design. Consequently, the repository emission rates presented here should be considered as preliminary estimates. Another set of air pollution emission rates will be calculated after design data are more firmly established. 18 refs., 15 tabs

  17. Forewarning model for water pollution risk based on Bayes theory.

    Science.gov (United States)

    Zhao, Jun; Jin, Juliang; Guo, Qizhong; Chen, Yaqian; Lu, Mengxiong; Tinoco, Luis

    2014-02-01

    In order to reduce the losses by water pollution, forewarning model for water pollution risk based on Bayes theory was studied. This model is built upon risk indexes in complex systems, proceeding from the whole structure and its components. In this study, the principal components analysis is used to screen out index systems. Hydrological model is employed to simulate index value according to the prediction principle. Bayes theory is adopted to obtain posterior distribution by prior distribution with sample information which can make samples' features preferably reflect and represent the totals to some extent. Forewarning level is judged on the maximum probability rule, and then local conditions for proposing management strategies that will have the effect of transforming heavy warnings to a lesser degree. This study takes Taihu Basin as an example. After forewarning model application and vertification for water pollution risk from 2000 to 2009 between the actual and simulated data, forewarning level in 2010 is given as a severe warning, which is well coincide with logistic curve. It is shown that the model is rigorous in theory with flexible method, reasonable in result with simple structure, and it has strong logic superiority and regional adaptability, providing a new way for warning water pollution risk.

  18. Micro-simulation as a tool to assess policy concerning non-point source pollution: the case of ammonia in Dutch agriculture

    NARCIS (Netherlands)

    Kruseman, G.; Blokland, P.W.; Bouma, F.; Luesink, H.H.; Vrolijk, H.C.J.

    2008-01-01

    Non-point source pollution is notoriously difficult to asses. A relevant example is ammonia emissions in the Netherlands. Since the mid 1980s the Dutch government has sought to reduce emissions through a wide variety of measures, the effect of which in turn is monitored using modeling techniques.

  19. Modelling of pollution dispersion in atmosphere

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Stankiewicz, R.

    1994-01-01

    The paper contains the review of the mathematical foundation of atmospheric dispersion models. The atmospheric phenomena relevant to atmospheric dispersion model are discussed. In particular the parametrization of processes with time and space scales smaller than numerical grid size, limited by available computer power, is presented. The special attention was devoted to similarity theory and parametrization of boundary layer. The numerical methods are analysed and the drawbacks of the method are presented. (author). 99 refs, 15 figs, 3 tabs

  20. Novel human-associated Lachnospiraceae genetic markers improve detection of fecal pollution sources in urban waters.

    Science.gov (United States)

    Feng, Shuchen; Bootsma, Melinda; McLellan, Sandra L

    2018-05-04

    The human microbiome contains many organisms that could potentially be used as indicators of human fecal pollution. Here we report the development of two novel human-associated genetic marker assays that target organisms within the family Lachnospiraceae Next-generation sequencing of the V6 region of the 16S rRNA gene from sewage and animal stool samples identified 40 human-associated marker candidates with a robust signal in sewage and low or no occurrence in nonhuman hosts. Two were chosen for quantitative PCR (qPCR) assay development using longer sequences (V2 to V9 regions) generated from clone libraries. Validation of these assays, designated Lachno3 and Lachno12, was performed using fecal samples (n=55) from cat, dog, pig, cow, deer, and gull sources, and compared with established host-associated assays (Lachno2, and two Human Bacteroides assays; HB and HF183/BacR287). Each of the established assays cross-reacted with at least one other animal, including animals common in urban areas. Lachno3 and Lachno12 were primarily human-associated; however, Lachno12 demonstrated low levels of cross-reactivity with select cows, and non-specific amplification in pigs. This limitation may not be problematic when testing urban waters. These novel markers resolved ambiguous results from previous investigations in stormwater-impacted waters, demonstrating their utility. The complexity of the microbiome in humans and animals suggests no single organism is strictly specific to humans, and multiple complementary markers used in combination will provide the highest resolution and specificity for assessing fecal pollution sources. IMPORTANCE Traditional fecal indicator bacteria do not distinguish animal from human fecal pollution, which is necessary to evaluate health risks and mitigate pollution sources. Assessing urban areas is challenging since water can be impacted by sewage, which has a high likelihood of carrying human pathogens, as well as pet waste and urban wildlife. We

  1. Constraining recent lead pollution sources in the North Pacific using ice core stable lead isotopes

    Science.gov (United States)

    Gross, B. H.; Kreutz, K. J.; Osterberg, E. C.; McConnell, J. R.; Handley, M.; Wake, C. P.; Yalcin, K.

    2012-08-01

    Trends and sources of lead (Pb) aerosol pollution in the North Pacific rim of North America from 1850 to 2001 are investigated using a high-resolution (subannual to annual) ice core record recovered from Eclipse Icefield (3017 masl; St. Elias Mountains, Canada). Beginning in the early 1940s, increasing Pb concentration at Eclipse Icefield occurs coevally with anthropogenic Pb deposition in central Greenland, suggesting that North American Pb pollution may have been in part or wholly responsible in both regions. Isotopic ratios (208Pb/207Pb and 206Pb/207Pb) from 1970 to 2001 confirm that a portion of the Pb deposited at Eclipse Icefield is anthropogenic, and that it represents a variable mixture of East Asian (Chinese and Japanese) emissions transported eastward across the Pacific Ocean and a North American component resulting from transient meridional atmospheric flow. Based on comparison with source material Pb isotope ratios, Chinese and North American coal combustion have likely been the primary sources of Eclipse Icefield Pb over the 1970-2001 time period. The Eclipse Icefield Pb isotope composition also implies that the North Pacific mid-troposphere is not directly impacted by transpolar atmospheric flow from Europe. Annually averaged Pb concentrations in the Eclipse Icefield ice core record show no long-term trend during 1970-2001; however, increasing208Pb/207Pb and decreasing 206Pb/207Pb ratios reflect the progressive East Asian industrialization and increase in Asian pollutant outflow. The post-1970 decrease in North American Pb emissions is likely necessary to explain the Eclipse Icefield Pb concentration time series. When compared with low (lichen) and high (Mt. Logan ice core) elevation Pb data, the Eclipse ice core record suggests a gradual increase in pollutant deposition and stronger trans-Pacific Asian contribution with rising elevation in the mountains of the North Pacific rim.

  2. Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013

    Science.gov (United States)

    Sun, Yele; Jiang, Qi; Wang, Zifa; Fu, Pingqing; Li, Jie; Yang, Ting; Yin, Yan

    2014-04-01

    China experienced severe haze pollution in January 2013. Here we have a detailed characterization of the sources and evolution mechanisms of this haze pollution with a focus on four haze episodes that occurred during 10-14 January in Beijing. The main source of data analyzed is from submicron aerosol measurements by an Aerodyne Aerosol Chemical Speciation Monitor. The average PM1 mass concentration during the four haze episodes ranged from 144 to 300 µg m-3, which was more than 10 times higher than that observed during clean periods. All submicron aerosol species showed substantial increases during haze episodes with sulfate being the largest. Secondary inorganic species played enhanced roles in the haze formation as suggested by their elevated contributions during haze episodes. Positive matrix factorization analysis resolved six organic aerosol (OA) factors including three primary OA (POA) factors from traffic, cooking, and coal combustion emissions, respectively, and three secondary OA (SOA) factors. Overall, SOA contributed 41-59% of OA with the rest being POA. Coal combustion OA (CCOA) was the largest primary source, on average accounting for 20-32% of OA, and showed the most significant enhancement during haze episodes. A regional SOA (RSOA) was resolved for the first time which showed a pronounced peak only during the record-breaking haze episode (Ep3) on 12-13 January. The regional contributions estimated based on the steep evolution of air pollutants were found to play dominant roles for the formation of Ep3, on average accounting for 66% of PM1 during the peak of Ep3 with sulfate, CCOA, and RSOA being the largest fractions (> ~ 75%). Our results suggest that stagnant meteorological conditions, coal combustion, secondary production, and regional transport are four main factors driving the formation and evolution of haze pollution in Beijing during wintertime.

  3. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.

    Science.gov (United States)

    Wu, Lei; Long, Tian-Yu; Li, Chong-Ming

    2010-01-01

    Xiao-jiang, with a basin area of almost 5,276 km(2) and a length of 182.4 km, is located in the center of the Three Gorges Reservoir Area, and is the largest tributary of the central section in Three Gorges Reservoir Area, farmland accounts for a large proportion of Xiao-jiang watershed, and the hilly cropland of purple soil is much of the farmland of the watershed. After the second phase of water storage in the Three Gorges Reservoir, the majority of sub-rivers in the reservoir area experienced eutrophication phenomenon frequently, and non-point source (NPS) pollution has become an important source of pollution in Xiao-jiang Watershed. Because dissolved nitrogen and phosphorus non-point source pollution are related to surface runoff and interflow, using climatic, topographic and land cover data from the internet and research institutes, the Semi-Distributed Land-use Runoff Process (SLURP) hydrological model was introduced to simulate the complete hydrological cycle of the Xiao-jiang Watershed. Based on the SLURP distributed hydrological model, non-point source pollution annual output load models of land use and rural residents were respectively established. Therefore, using GIS technology, considering the losses of dissolved nitrogen and phosphorus in the course of transport, a dissolved non-point source pollution load dynamic model was established by the organic coupling of the SLURP hydrological model and land-use output model. Through the above dynamic model, the annual dissolved non-point source nitrogen and phosphorus pollution output as well as the load in different types were simulated and quantitatively estimated from 2001 to 2008, furthermore, the loads of Xiao-jiang Watershed were calculated and expressed by temporal and spatial distribution in the Three Gorges Reservoir Area. The simulation results show that: the temporal changes of dissolved nitrogen and phosphorus load in the watershed are close to the inter-annual changes of rainfall runoff, and the

  4. Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures.

    Science.gov (United States)

    Alexeeff, Stacey E; Carroll, Raymond J; Coull, Brent

    2016-04-01

    Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    Science.gov (United States)

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  6. The Mathematical modelling of environmental pollution using the ...

    African Journals Online (AJOL)

    In this paper environmental pollution has been modeled mathematically using the Freundlich non-linear contaminant transport formulation. An analytical solution of lower order perturbation of the concentration C(x,f) is obtained. Flow profiles for various values of molecular diffusion D and the velocity U are studied and the ...

  7. Solving vertical transport and chemistry in air pollution models

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, M.A.; Krol, M.C.; Peters, W.; Verwer, J.G.; Chock, David P.; Carmichael, Gregory R.; Brick, Patricia

    2002-01-01

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species.

  8. Solving Vertical Transport and Chemistry in Air Pollution Models

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, M.A.; Verwer, J.G.; Krol, M.C.; Peters, W.

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species.

  9. Impacts of urbanization on regional nonpoint source pollution: case study for Beijing, China.

    Science.gov (United States)

    Zhi, Xiaosha; Chen, Lei; Shen, Zhenyao

    2018-04-01

    Due to limits on available data, the effects of urban sprawl on regional nonpoint source pollution (NPS) have not been investigated over long time periods. In this paper, the characteristics of urban sprawl from 1999 to 2014 in Beijing were explored by analyzing historical land-use data. The Event Mean Concentration data have been collected from all available references, which were used to estimate the variation in urban NPSs. Moreover, the impacts of variation in urban sprawl on regional NPSs were qualified. The results indicated that the urbanization process showed different influences on pollutants, while COD and TN were identified as key NPS pollutants. Residential areas contributed more NPS pollutants than did roads, which played a tremendous role in the control of urban NPS. The results also suggested in part that the impact of urban sprawl on the variation of COD decreased while TN increased in Beijing during the study period. These results would provide insight into the impacts of urban sprawl on NPS variation over a long period, as well as the reference for reasonable urban planning directives.

  10. Multivariate analysis for source identification of pollution in sediment of Linggi River, Malaysia.

    Science.gov (United States)

    Elias, Md Suhaimi; Ibrahim, Shariff; Samuding, Kamarudin; Rahman, Shamsiah Ab; Wo, Yii Mei; Daung, Jeremy Andy Dominic

    2018-03-29

    Rapid socioeconomic development in the Linggi River Basin has contributed to the significant increase of pollution discharge into the Linggi River and its adjacent coastal areas. The toxic element contents and distributions in the sediment samples collected along the Linggi River were determined using neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS) techniques. The measured mean concentration of As, Cd, Pb, Sb, U, Th and Zn is relatively higher compared to the continental crust value of the respective element. Most of the elements (As, Cr, Fe, Pb, Sb and Zn) exceeded the freshwater sediment quality guideline-threshold effect concentration (FSQG-TEC) value. Downstream stations of the Linggi River showed that As concentrations in sediment exceeded the freshwater sediment quality guideline-probable effect concentration (FSQG-PEC) value. This indicates that the concentration of As will give an adverse effect to the growth of sediment-dwelling organisms. Generally, the Linggi River sediment can be categorised as unpolluted to strongly polluted and unpolluted to strongly to extremely polluted. The correlation matrix of metal-metal relationship, principle component analysis (PCA) and cluster analysis (CA) indicates that the pollution sources of Cu, Ni, Zn, Cd and Pb in sediments of the Linggi River originated from the industry of electronics and electroplating. Elements of As, Cr, Sb and Fe mainly originated from motor-vehicle workshops and metal work, whilst U and Th originated from natural processes such as terrestrial runoff and land erosion.

  11. Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-02-01

    Full Text Available Water pollution has become one of the leading causes of human health problems. Low molecular weight pollutants, even at trace concentrations in water sources, have aroused global attention due to their toxicity after long-time exposure. There is an increased demand for appropriate methods to detect these pollutants in aquatic systems. Aptamers, single-stranded DNA or RNA, have high affinity and specificity to each of their target molecule, similar to antigen-antibody interaction. Aptamers can be selected using a method called Systematic Evolution of Ligands by EXponential enrichment (SELEX. Recent years we have witnessed great progress in developing aptamer selection and aptamer-based sensors for low molecular weight pollutants in water sources, such as tap water, seawater, lake water, river water, as well as wastewater and its effluents. This review provides an overview of aptamer-based methods as a novel approach for detecting low molecular weight pollutants in water sources.

  12. Ship-source oil pollution fund : annual report 1997-1998

    International Nuclear Information System (INIS)

    1998-01-01

    The Ship-source Oil Pollution Fund (SOPF) receives reports of oil pollution caused by ships in Canadian waters. The reports come from a variety of sources, including individuals who wish to be advised whether they are entitled for consideration under the Canada Shipping Act as potential claimants as a result of oil pollution damage and expenses they have suffered. The SOPF fully investigates all such reports and inquiries. A summary of each investigation that fall within the SOPF purview is provided in this report. This recitation includes a number of references to incidents dating as far back as the 1970s, providing for each incident the name of the ship, a summary of the incident, the damage caused, and the claims received and paid out by the fund. The balance of the SOPF on March 31, 1998 was just over $268 million. As of April 1, 1998 the maximum liability of the SOPF is about $128 million for all claims in respect of any one oil spill. The amount of liability is indexed annually to the consumer price index. 1 fig., 1 tab

  13. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China.

    Science.gov (United States)

    Yang, Qingchun; Wang, Luchen; Ma, Hongyun; Yu, Kun; Martín, Jordi Delgado

    2016-09-01

    Ordos Basin is located in an arid and semi-arid region of northwestern China, which is the most important energy source bases in China. Salawusu Formation (Q3 s) is one of the most important aquifer systems of Ordos Basin, which is adjacent to Jurassic coalfield areas. A large-scale exploitation of Jurassic coal resources over ten years results in series of influences to the coal minerals, such as exposed to the oxidation process and dissolution into the groundwater due to the precipitation infiltration. Therefore, how these processes impact groundwater quality is of great concerns. In this paper, the descriptive statistical method, Piper trilinear diagram, ratios of major ions and canonical correspondence analysis are employed to investigate the hydrochemical evolution, determine the possible sources of pollution processes, and assess the controls on groundwater compositions using the monitored data in 2004 and 2014 (before and after large-scale coal mining). Results showed that long-term exploration of coal resources do not result in serious groundwater pollution. The hydrochemical types changed from HCO3(-)-CO3(2-) facies to SO4(2-)-Cl facies during 10 years. Groundwater hardness, nitrate and sulfate pollution were identified in 2014, which was most likely caused by agricultural activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Low levels of persistent organic pollutants (POPs) in New Zealand eels reflect isolation from atmospheric sources

    International Nuclear Information System (INIS)

    Holmqvist, Niklas; Stenroth, Patrik; Berglund, Olof; Nystroem, Per; Olsson, Karin; Jellyman, Don; McIntosh, Angus R.; Larsson, Per

    2006-01-01

    Polychlorinated biphenyls (PCBs) and organic pesticides (i.e., DDTs) were measured in long finned eels (Anguilla dieffenbachii) in 17 streams on the west coast of South Island, New Zealand. Very low levels of PCBs and low levels of ppDDE were found. The concentrations of PCBs and ppDDE were not correlated within sites indicating that different processes determined the levels of the two pollutants in New Zealand eels. The PCBs probably originate from atmospheric transport, ppDDE levels are determined by land use and are higher in agriculture areas. The low contamination level of these aquatic systems seems to be a function of a low input from both long and short-range transport as well as few local point sources. No correlation could be found between lipid content and persistent organic pollutants (POPs) concentration (as shown in previous studies) in the eels which could be explained by low and irregular intake of the pollutants. - Low levels of PCBs found in New Zealand eels reflect isolation from atmospheric sources while DDTs levels are determined by land use

  15. Population-production-pollution nexus based air pollution management model for alleviating the atmospheric crisis in Beijing, China.

    Science.gov (United States)

    Zeng, X T; Tong, Y F; Cui, L; Kong, X M; Sheng, Y N; Chen, L; Li, Y P

    2017-07-15

    In recent years, increscent emissions in the city of Beijing due to expanded population, accelerated industrialization and inter-regional pollutant transportation have led to hazardous atmospheric pollution issues. Although a number of anthropogenic control measures have been put into use, frequent/severe haze events have still challenged regional governments. In this study, a hybrid population-production-pollution nexus model (PPP) is proposed for air pollution management and air quality planning (AMP) with the aim to coordinate human activities and environmental protection. A fuzzy-stochastic mixed quadratic programming method (FSQ) is developed and introduced into a PPP for tackling atmospheric pollution issues with uncertainties. Based on the contribution of an index of population-production-pollution, a hybrid PPP-based AMP model that considers employment structure, industrial layout pattern, production mode, pollutant purification efficiency and a pollution mitigation scheme have been applied in Beijing. Results of the adjustment of employment structure, pollution mitigation scheme, and green gross domestic product under various environmental regulation scenarios are obtained and analyzed. This study can facilitate the identification of optimized policies for alleviating population-production-emission conflict in the study region, as well as ameliorating the hazardous air pollution crisis at an urban level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. High-resolution modelling of health impacts from air pollution using the integrated model system EVA

    Science.gov (United States)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Jensen, Steen S.; Ketzel, Matthias; Plejdrup, Marlene S.; Sigsgaard, Torben; Silver, Jeremy D.

    2014-05-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system has been further developed by implementing an air quality model with a 1 km x 1 km resolution covering the whole of Denmark. New developments of the integrated model system will be presented as well as results for health impacts and related external costs over several decades. Furthermore, the sensitivity of health impacts to model resolution will be studied. We have developed an integrated model system EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. In Brandt et al. (2013a; 2013b), the EVA system was used to assess the impacts in Europe and Denmark from the past, present and future total air pollution levels as well as the contribution from the major anthropogenic emission sectors. The EVA system was applied using the hemispheric chemistry-transport model, the Danish Eulerian Hemispheric Model (DEHM), with nesting capability for higher resolution over Europe (50 km x 50 km) and Northern Europe (16.7 km x 16.7 km). In this study an Urban Background Model (UBM) has been further developed to cover the whole of Denmark with a 1 km x 1 km resolution and the model has been implemented as a part of the integrated model system, EVA. The EVA system is based on the impact-pathway methodology. The site-specific emissions will result (via atmospheric transport and chemistry) in a concentration distribution, which together with detailed population data, are used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study

  17. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces.

    Science.gov (United States)

    Chau, N D G; Sebesvari, Z; Amelung, W; Renaud, F G

    2015-06-01

    Pollution of drinking water sources with agrochemicals is often a major threat to human and ecosystem health in some river deltas, where agricultural production must meet the requirements of national food security or export aspirations. This study was performed to survey the use of different drinking water sources and their pollution with pesticides in order to inform on potential exposure sources to pesticides in rural areas of the Mekong River delta, Vietnam. The field work comprised both household surveys and monitoring of 15 frequently used pesticide active ingredients in different water sources used for drinking (surface water, groundwater, water at public pumping stations, surface water chemically treated at household level, harvested rainwater, and bottled water). Our research also considered the surrounding land use systems as well as the cropping seasons. Improper pesticide storage and waste disposal as well as inadequate personal protection during pesticide handling and application were widespread amongst the interviewed households, with little overall risk awareness for human and environmental health. The results show that despite the local differences in the amount and frequency of pesticides applied, pesticide pollution was ubiquitous. Isoprothiolane (max. concentration 8.49 μg L(-1)), fenobucarb (max. 2.32 μg L(-1)), and fipronil (max. 0.41 μg L(-1)) were detected in almost all analyzed water samples (98 % of all surface samples contained isoprothiolane, for instance). Other pesticides quantified comprised butachlor, pretilachlor, propiconazole, hexaconazole, difenoconazole, cypermethrin, fenoxapro-p-ethyl, tebuconazole, trifloxystrobin, azoxystrobin, quinalphos, and thiamethoxam. Among the studied water sources, concentrations were highest in canal waters. Pesticide concentrations varied with cropping season but did not diminish through the year. Even in harvested rainwater or purchased bottled water, up to 12 different pesticides were detected at

  18. Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.

    Science.gov (United States)

    Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R

    2015-01-01

    When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. IN VIVO EVIDENCE OF FREE RADICAL FORMATION IN THE RAT LUNG AFTER EXPOSURE TO AN EMISSION SOURCE AIR POLLUTION PARTICLE

    Science.gov (United States)

    Exposure to air pollution particles can be associated with increased human morbidity and mortality. The mechanism(s) of lung injury remains unknown. We tested the hypothesis that lung exposure to oil fly ash (an emission source air pollution particle) causes in vivo free radical ...

  20. Effective pollutant emission heights for atmospheric transport modelling based on real-world information.

    Science.gov (United States)

    Pregger, Thomas; Friedrich, Rainer

    2009-02-01

    Emission data needed as input for the operation of atmospheric models should not only be spatially and temporally resolved. Another important feature is the effective emission height which significantly influences modelled concentration values. Unfortunately this information, which is especially relevant for large point sources, is usually not available and simple assumptions are often used in atmospheric models. As a contribution to improve knowledge on emission heights this paper provides typical default values for the driving parameters stack height and flue gas temperature, velocity and flow rate for different industrial sources. The results were derived from an analysis of the probably most comprehensive database of real-world stack information existing in Europe based on German industrial data. A bottom-up calculation of effective emission heights applying equations used for Gaussian dispersion models shows significant differences depending on source and air pollutant and compared to approaches currently used for atmospheric transport modelling.

  1. Monitoring an air pollution episode in Shenzhen by combining MODIS satellite images and the HYSPLIT model

    Science.gov (United States)

    Li, Lili; Liu, Yihong; Wang, Yunpeng

    2017-07-01

    Urban air pollution is influenced not only by local emission sources including industry and vehicles, but also greatly by regional atmospheric pollutant transportation from the surrounding areas, especially in developed city clusters, like the Pearl River Delta (PRD). Taking an air pollution episode in Shenzhen as an example, this paper investigates the occurrence and evolution of the pollution episode and identifies the transport pathways of air pollutants in Shenzhen by combining MODIS satellite images and HYSPLIT back trajectory analysis. Results show that this pollution episode is mainly caused by the local emission of pollutants in PRD and oceanic air masses under specific weather conditions.

  2. Risk assessment of water pollution sources based on an integrated k-means clustering and set pair analysis method in the region of Shiyan, China.

    Science.gov (United States)

    Li, Chunhui; Sun, Lian; Jia, Junxiang; Cai, Yanpeng; Wang, Xuan

    2016-07-01

    Source water areas are facing many potential water pollution risks. Risk assessment is an effective method to evaluate such risks. In this paper an integrated model based on k-means clustering analysis and set pair analysis was established aiming at evaluating the risks associated with water pollution in source water areas, in which the weights of indicators were determined through the entropy weight method. Then the proposed model was applied to assess water pollution risks in the region of Shiyan in which China's key source water area Danjiangkou Reservoir for the water source of the middle route of South-to-North Water Diversion Project is located. The results showed that eleven sources with relative high risk value were identified. At the regional scale, Shiyan City and Danjiangkou City would have a high risk value in term of the industrial discharge. Comparatively, Danjiangkou City and Yunxian County would have a high risk value in terms of agricultural pollution. Overall, the risk values of north regions close to the main stream and reservoir of the region of Shiyan were higher than that in the south. The results of risk level indicated that five sources were in lower risk level (i.e., level II), two in moderate risk level (i.e., level III), one in higher risk level (i.e., level IV) and three in highest risk level (i.e., level V). Also risks of industrial discharge are higher than that of the agricultural sector. It is thus essential to manage the pillar industry of the region of Shiyan and certain agricultural companies in the vicinity of the reservoir to reduce water pollution risks of source water areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Identification of pollutant sources in a rapidly developing urban river catchment in China

    Science.gov (United States)

    Huang, Jingshui; Yin, Hailong; Jomma, Seifeddine; Rode, Michael; Zhou, Qi

    2016-04-01

    Rapid economic development and urbanization worldwide cause serious ecological and environmental problems. A typical region that is in transition and requires systemic research for effective intervention is the rapidly developing city of Hefei in central P. R. China. In order to investigate the sources of pollutants over a one-year period in Nanfei River catchment that drains the city of Hefei, discharges were measured and water samples were taken and measured along the 14km river section at 10 sites for 4 times from 2013 to 2014. Overflow concentrations of combined sewer and separate storm drains were also measured by selecting 15 rain events in 4 typical drainage systems. Loads and budgets of water and different pollutant sources i.e., wastewater treatment plant (WWTP) effluent, urban drainage overflow, unknown wastewater were calculated. The water balance demonstrated that >70% of the discharge originated from WWTP effluent. Lack of clean upstream inflow thereby is threatening ecological safety and water quality. Furthermore, mass fluxes calculations revealed that >40% of the COD (Chemical Oxygen Demand) loads were from urban drainage overflow because of a large amount of discharge of untreated wastewater in pumping stations during rain events. WWTP effluent was the predominant source of the total nitrogen loads (>60%) and ammonia loads (>45%). However, the total phosphorous loads from three different sources are similar (˜1/3). Thus, our research provided a basis for appropriate and prior mitigation strategies (state-of-art of WWTP upgrade, sewer systems modification, storm water regulation and storage capacity improvement, etc.) for different precedence-controlled pollutants with the limited infrastructure investments in these rapidly developing urban regions.

  4. Who bears the environmental burden in China? An analysis of the distribution of industrial pollution sources

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chunbo [School of Agricultural and Resource Economics, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Western Australia (Australia)

    2010-07-15

    A remaining challenge for environmental inequality researchers is to translate the principles developed in the U.S. to China which is experiencing the staggering environmental impacts of its astounding economic growth and social changes. This study builds on U.S. contemporary environmental justice literature and examines the issue of environmental inequality in China through an analysis of the geographical distribution of industrial pollution sources in Henan province. This study attempts to answer two central questions: (1) whether environmental inequality exists in China and if it does, (2) what socioeconomic lenses can be used to identify environmental inequality. The study found that: (1) race and income - the two common lenses used in many U.S. studies play different roles in the Chinese context; (2) rural residents and especially rural migrants are disproportionately exposed to industrial pollution. (author)

  5. Use of multiple water surface flow constructed wetlands for non-point source water pollution control.

    Science.gov (United States)

    Li, Dan; Zheng, Binghui; Liu, Yan; Chu, Zhaosheng; He, Yan; Huang, Minsheng

    2018-05-02

    Multiple free water surface flow constructed wetlands (multi-FWS CWs) are a variety of conventional water treatment plants for the interception of pollutants. This review encapsulated the characteristics and applications in the field of ecological non-point source water pollution control technology. The roles of in-series design and operation parameters (hydraulic residence time, hydraulic load rate, water depth and aspect ratio, composition of influent, and plant species) for performance intensification were also analyzed, which were crucial to achieve sustainable and effective contaminants removal, especially the retention of nutrient. The mechanism study of design and operation parameters for the removal of nitrogen and phosphorus was also highlighted. Conducive perspectives for further research on optimizing its design/operation parameters and advanced technologies of ecological restoration were illustrated to possibly interpret the functions of multi-FWS CWs.

  6. Ship-Source Oil Pollution Fund annual report, 1992-1993

    International Nuclear Information System (INIS)

    1993-01-01

    The activities of the Ship-Source Oil Pollution Fund (SOPC) are reviewed for the fiscal year commencing 1 April 1992 and ending 31 March 1993. Topics covered include the Canadian compensation regime, activities of the International Oil Pollution Compensation Fund (to which the SOPC contributes), amendments to the Canada Shipping Act, major international incidents, the International Conference on the Revision of the 1969 Civil Liability Convention and the 1971 Fund Convention, the 1993 Oil Spill Conference, and the status of the fund. Twenty-nine oil spill incidents are described along with actions taken, if any, by the SOPC and details of any claims paid by the SOPC or the international fund. 3 figs

  7. Climatological variability in modeling of long-term regional transport and deposition of air pollutants

    International Nuclear Information System (INIS)

    Shannon, J.D.

    1984-01-01

    In a growing number of emission policy analyses, regulatory proceedings, and cost/benefit assessments, numerical models of long-range transport and deposition of air pollutants have been exercised to estimate source-receptor (S-R) relationships--for the particular meteorological conditions input to the model. The representativeness of the meteorological conditions, or the variability of the model estimates with climatological input from different years or corresponding seasons from different years, is seldom evaluated. Here, two full years (1980 and 1981) of meteorological data, as well as data from January and July of 1978, are used in the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model (Shannon, 1981), one of the eight Memorandum of Intent (MOI) models, to estimate deposition for the S-R matrix combination of eleven source regions and nine receptors used in the MOI reports. (S-R matrices of dimensions 40 by 9 were also examined in the MOI reports.) Improvements in the ASTRAP model and in the emission inventory since the earlier work require recalculation of the two-month 1978 simulation in order for the comparison to isolate the effect of meteorological variability. The source regions are listed, and the receptor regions are provide. For completeness, an additional source region, the western states and provinces, has been added, as well as a total for the 48 contiguous states and 10 provinces. 4 references, 9 tables

  8. Interpolating precipitation and its relation to runoff and non-point source pollution.

    Science.gov (United States)

    Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L

    2005-01-01

    When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.

  9. Modeling pollution formation in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  10. Assessment of Pressure Sources and Water Body Resilience: An Integrated Approach for Action Planning in a Polluted River Basin.

    Science.gov (United States)

    Mirauda, Domenica; Ostoich, Marco

    2018-02-23

    The present study develops an integrated methodology combining the results of the water-quality classification, according to the Water Framework Directive 2000/60/EC-WFD, with those of a mathematical integrity model. It is able to analyse the potential anthropogenic impacts on the receiving water body and to help municipal decision-makers when selecting short/medium/long-term strategic mitigation actions to be performed in a territory. Among the most important causes of water-quality degradation in a river, the focus is placed on pollutants from urban wastewater. In particular, the proposed approach evaluates the efficiency and the accurate localisation of treatment plants in a basin, as well as the capacity of its river to bear the residual pollution loads after the treatment phase. The methodology is applied to a sample catchment area, located in northern Italy, where water quality is strongly affected by high population density and by the presence of agricultural and industrial activities. Nearly 10 years of water-quality data collected through official monitoring are considered for the implementation of the system. The sample basin shows different real and potential pollution conditions, according to the resilience of the river and surroundings, together with the point and diffuse pressure sources acting on the receiving body.

  11. Assessment of Pressure Sources and Water Body Resilience: An Integrated Approach for Action Planning in a Polluted River Basin

    Directory of Open Access Journals (Sweden)

    Domenica Mirauda

    2018-02-01

    Full Text Available The present study develops an integrated methodology combining the results of the water-quality classification, according to the Water Framework Directive 2000/60/EC—WFD, with those of a mathematical integrity model. It is able to analyse the potential anthropogenic impacts on the receiving water body and to help municipal decision-makers when selecting short/medium/long-term strategic mitigation actions to be performed in a territory. Among the most important causes of water-quality degradation in a river, the focus is placed on pollutants from urban wastewater. In particular, the proposed approach evaluates the efficiency and the accurate localisation of treatment plants in a basin, as well as the capacity of its river to bear the residual pollution loads after the treatment phase. The methodology is applied to a sample catchment area, located in northern Italy, where water quality is strongly affected by high population density and by the presence of agricultural and industrial activities. Nearly 10 years of water-quality data collected through official monitoring are considered for the implementation of the system. The sample basin shows different real and potential pollution conditions, according to the resilience of the river and surroundings, together with the point and diffuse pressure sources acting on the receiving body.

  12. Monitoring Lead (Pb) Pollution and Identifying Pb Pollution Sources in Japan Using Stable Pb Isotope Analysis with Kidneys of Wild Rats.

    Science.gov (United States)

    Nakata, Hokuto; Nakayama, Shouta M M; Oroszlany, Balazs; Ikenaka, Yoshinori; Mizukawa, Hazuki; Tanaka, Kazuyuki; Harunari, Tsunehito; Tanikawa, Tsutomu; Darwish, Wageh Sobhy; Yohannes, Yared B; Saengtienchai, Aksorn; Ishizuka, Mayumi

    2017-01-10

    Although Japan has been considered to have little lead (Pb) pollution in modern times, the actual pollution situation is unclear. The present study aims to investigate the extent of Pb pollution and to identify the pollution sources in Japan using stable Pb isotope analysis with kidneys of wild rats. Wild brown ( Rattus norvegicus , n = 43) and black ( R. rattus , n = 98) rats were trapped from various sites in Japan. Mean Pb concentrations in the kidneys of rats from Okinawa (15.58 mg/kg, dry weight), Aichi (10.83), Niigata (10.62), Fukuoka (8.09), Ibaraki (5.06), Kyoto (4.58), Osaka (4.57), Kanagawa (3.42), and Tokyo (3.40) were above the threshold (2.50) for histological kidney changes. Similarly, compared with the previous report, it was regarded that even structural and functional kidney damage as well as neurotoxicity have spread among rats in Japan. Additionally, the possibility of human exposure to a high level of Pb was assumed. In regard to stable Pb isotope analysis, distinctive values of stable Pb isotope ratios (Pb-IRs) were detected in some kidney samples with Pb levels above 5.0 mg/kg. This result indicated that composite factors are involved in Pb pollution. However, the identification of a concrete pollution source has not been accomplished due to limited differences among previously reported values of Pb isotope composition in circulating Pb products. Namely, the current study established the limit of Pb isotope analysis for source identification. Further detailed research about monitoring Pb pollution in Japan and the demonstration of a novel method to identify Pb sources are needed.

  13. Stochastic modeling for river pollution of Sungai Perlis

    Energy Technology Data Exchange (ETDEWEB)

    Yunus, Nurul Izzaty Mohd.; Rahman, Haliza Abd. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia,81310 Johor Bahru, Johor (Malaysia); Bahar, Arifah [UTM-Centre of Industrial and Applied Mathematics (UTM-CIAM) Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-02-03

    River pollution has been recognized as a contributor to a wide range of health problems and disorders in human. It can pose health dangers to humans who come into contact with it, either directly or indirectly. Therefore, it is most important to measure the concentration of Biochemical Oxygen Demand (BOD) as a water quality parameter since the parameter has long been the basic means for determining the degree of water pollution in rivers. In this study, BOD is used as a parameter to estimate the water quality at Sungai Perlis. It has been observed that Sungai Perlis is polluted due to lack of management and improper use of resources. Therefore, it is of importance to model the Sungai Perlis water quality in order to describe and predict the water quality systems. The BOD concentration secondary data set is used which was extracted from the Drainage and Irrigation Department Perlis State website. The first order differential equation from Streeter – Phelps model was utilized as a deterministic model. Then, the model was developed into a stochastic model. Results from this study shows that the stochastic model is more adequate to describe and predict the BOD concentration and the water quality systems in Sungai Perlis by having smaller value of mean squared error (MSE)

  14. Stochastic modeling for river pollution of Sungai Perlis

    International Nuclear Information System (INIS)

    Yunus, Nurul Izzaty Mohd.; Rahman, Haliza Abd.; Bahar, Arifah

    2015-01-01

    River pollution has been recognized as a contributor to a wide range of health problems and disorders in human. It can pose health dangers to humans who come into contact with it, either directly or indirectly. Therefore, it is most important to measure the concentration of Biochemical Oxygen Demand (BOD) as a water quality parameter since the parameter has long been the basic means for determining the degree of water pollution in rivers. In this study, BOD is used as a parameter to estimate the water quality at Sungai Perlis. It has been observed that Sungai Perlis is polluted due to lack of management and improper use of resources. Therefore, it is of importance to model the Sungai Perlis water quality in order to describe and predict the water quality systems. The BOD concentration secondary data set is used which was extracted from the Drainage and Irrigation Department Perlis State website. The first order differential equation from Streeter – Phelps model was utilized as a deterministic model. Then, the model was developed into a stochastic model. Results from this study shows that the stochastic model is more adequate to describe and predict the BOD concentration and the water quality systems in Sungai Perlis by having smaller value of mean squared error (MSE)

  15. Study of short time effect on health of a local air pollution source. Epidemiological approach; Etude des effets a court terme sur la sante d'une source locale de pollution atmospherique. Approche epidemiologique

    Energy Technology Data Exchange (ETDEWEB)

    Guzzo, J.Ch. [Institut National de Veille Sanitaire, Reseau National de Sante Publique, 94 - Saint-Maurice (France)

    2000-07-01

    This document applies to health professionals who are facing with a problem of risks evaluation relative to a local source of air pollution and envisage to realize an epidemiological study. In this document, only the short term effects are considered and the situations of accidental pollution are not treated. Without being a methodological treatise it can be a tool to better understand the constraints and the limits of epidemiology to answer the difficult question of the impact evaluation on health of populations living near a local source of air pollution. (N.C.)

  16. Size distribution, directional source contributions and pollution status of PM from Chengdu, China during a long-term sampling campaign.

    Science.gov (United States)

    Shi, Guo-Liang; Tian, Ying-Ze; Ma, Tong; Song, Dan-Lin; Zhou, Lai-Dong; Han, Bo; Feng, Yin-Chang; Russell, Armistead G

    2017-06-01

    Long-term and synchronous monitoring of PM 10 and PM 2.5 was conducted in Chengdu in China from 2007 to 2013. The levels, variations, compositions and size distributions were investigated. The sources were quantified by two-way and three-way receptor models (PMF2, ME2-2way and ME2-3way). Consistent results were found: the primary source categories contributed 63.4% (PMF2), 64.8% (ME2-2way) and 66.8% (ME2-3way) to PM 10 , and contributed 60.9% (PMF2), 65.5% (ME2-2way) and 61.0% (ME2-3way) to PM 2.5 . Secondary sources contributed 31.8% (PMF2), 32.9% (ME2-2way) and 31.7% (ME2-3way) to PM 10 , and 35.0% (PMF2), 33.8% (ME2-2way) and 36.0% (ME2-3way) to PM 2.5 . The size distribution of source categories was estimated better by the ME2-3way method. The three-way model can simultaneously consider chemical species, temporal variability and PM sizes, while a two-way model independently computes datasets of different sizes. A method called source directional apportionment (SDA) was employed to quantify the contributions from various directions for each source category. Crustal dust from east-north-east (ENE) contributed the highest to both PM 10 (12.7%) and PM 2.5 (9.7%) in Chengdu, followed by the crustal dust from south-east (SE) for PM 10 (9.8%) and secondary nitrate & secondary organic carbon from ENE for PM 2.5 (9.6%). Source contributions from different directions are associated with meteorological conditions, source locations and emission patterns during the sampling period. These findings and methods provide useful tools to better understand PM pollution status and to develop effective pollution control strategies. Copyright © 2016. Published by Elsevier B.V.

  17. Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin: a case study of the town of Xueyan, China.

    Science.gov (United States)

    Zhu, Q D; Sun, J H; Hua, G F; Wang, J H; Wang, H

    2015-10-01

    Non-point source pollution is a significant environmental issue in small watersheds in China. To study the effects of rainfall on pollutants transported by runoff, rainfall was monitored in Xueyan town in the Taihu Lake Basin (TLB) for over 12 consecutive months. The concentrations of different forms of nitrogen (N) and phosphorus (P), and chemical oxygen demand, were monitored in runoff and river water across different land use types. The results indicated that pollutant loads were highly variable. Most N losses due to runoff were found around industrial areas (printing factories), while residential areas exhibited the lowest nitrogen losses through runoff. Nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4-N) were the dominant forms of soluble N around printing factories and hotels, respectively. The levels of N in river water were stable prior to the generation of runoff from a rainfall event, after which they were positively correlated to rainfall intensity. In addition, three sites with different areas were selected for a case study to analyze trends in pollutant levels during two rainfall events, using the AnnAGNPS model. The modeled results generally agreed with the observed data, which suggests that AnnAGNPS can be used successfully for modeling runoff nutrient loading in this region. The conclusions of this study provide important information on controlling non-point source pollution in TLB.

  18. Lessons Learned from OMI Observations of Point Source SO2 Pollution

    Science.gov (United States)

    Krotkov, N.; Fioletov, V.; McLinden, Chris

    2011-01-01

    The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. Although anthropogenic SO2 signals may not be detectable in a single OMI pixel, it is possible to see the source and determine its exact location by averaging a large number of individual measurements. We describe new techniques for spatial and temporal averaging that have been applied to the OMI SO2 data to determine the spatial distributions or "fingerprints" of SO2 burdens from top 100 pollution sources in North America. The technique requires averaging of several years of OMI daily measurements to observe SO2 pollution from typical anthropogenic sources. We found that the largest point sources of SO2 in the U.S. produce elevated SO2 values over a relatively small area - within 20-30 km radius. Therefore, one needs higher than OMI spatial resolution to monitor typical SO2 sources. TROPOMI instrument on the ESA Sentinel 5 precursor mission will have improved ground resolution (approximately 7 km at nadir), but is limited to once a day measurement. A pointable geostationary UVB spectrometer with variable spatial resolution and flexible sampling frequency could potentially achieve the goal of daily monitoring of SO2 point sources and resolve downwind plumes. This concept of taking the measurements at high frequency to enhance weak signals needs to be demonstrated with a GEOCAPE precursor mission before 2020, which will help formulating GEOCAPE measurement requirements.

  19. Hybrid Air Quality Modeling Approach for use in the Hear-road Exposures to Urban air pollutant Study(NEXUS)

    Science.gov (United States)

    The paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associa...

  20. Source and Assessment of Metal Pollution at Khetri Copper Mine Tailings and Neighboring Soils, Rajasthan, India.

    Science.gov (United States)

    Punia, Anita; Siddaiah, N Siva; Singh, Saurabh K

    2017-11-01

    We present here the results of the study on metal pollution by identifying source, abundance and distribution in soil and tailings of Khetri copper complex (KCC) mines, Rajasthan India. The region is highly contaminated by copper (Cu) with higher values in the soil near overburden material (1224 mg/kg) and tailings (111 mg/kg). The average Cu (231 mg/kg) concentration of soil is ~9, 5 and 32 times higher than upper crust, world average shale (WAS) and local background soil (LS), respectively. However this reaches to ~82, 46 and 280 times higher in case of tailing when compared. The correlation and principal component analysis for soil reveals that the source of Cu, Zn, Co, Ni, Mn and Fe is mining and Pb and Cd could be result of weathering of parent rocks and other anthropogenic activities. The source for Cr in soil is both mining activities and weathering of parent rocks. The values of index of geo-accumulation (I geo ) and pollution load index for soil using LS as background are higher compared to values calculated using WAS. The metal rich sulphide bearing overburden material as well as tailings present in the open environment at KCC mines region warrants a proper management to minimize their impact on the environment.

  1. Managing Nonpoint Source Pollution in Western Washington: Landowner Learning Methods and Motivations

    Science.gov (United States)

    Ryan, Clare M.

    2009-06-01

    States, territories, and tribes identify nonpoint source pollution as responsible for more than half of the Nation’s existing and threatened water quality impairments, making it the principal remaining cause of water quality problems across the United States. Combinations of education, technical and financial assistance, and regulatory measures are used to inform landowners about nonpoint source pollution issues, and to stimulate the use of best management practices. A mail survey of non-commercial riparian landowners investigated how they learn about best management practices, the efficacy of different educational techniques, and what motivates them to implement land management activities. Landowners experience a variety of educational techniques, and rank those that include direct personal contact as more effective than brochures, advertisements, radio, internet, or television. The most important motivations for implementing best management practices were linked with elements of a personal stewardship ethic, accountability, personal commitment, and feasibility. Nonpoint source education and social marketing campaigns should include direct interpersonal contacts, and appeal to landowner motivations of caring, responsibility, and personal commitment.

  2. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant

    Directory of Open Access Journals (Sweden)

    Zamani Abbas Ali

    2012-12-01

    Full Text Available Abstract The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP. Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs. Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  3. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant.

    Science.gov (United States)

    Zamani, Abbas Ali; Yaftian, Mohammad Reza; Parizanganeh, Abdolhossein

    2012-12-17

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  4. A cooperative reduction model for regional air pollution control in China that considers adverse health effects and pollutant reduction costs.

    Science.gov (United States)

    Xie, Yujing; Zhao, Laijun; Xue, Jian; Hu, Qingmi; Xu, Xiang; Wang, Hongbo

    2016-12-15

    How to effectively control severe regional air pollution has become a focus of global concern recently. The non-cooperative reduction model (NCRM) is still the main air pollution control pattern in China, but it is both ineffective and costly, because each province must independently fight air pollution. Thus, we proposed a cooperative reduction model (CRM), with the goal of maximizing the reduction in adverse health effects (AHEs) at the lowest cost by encouraging neighboring areas to jointly control air pollution. CRM has two parts: a model of optimal pollutant removal rates using two optimization objectives (maximizing the reduction in AHEs and minimizing pollutant reduction cost) while meeting the regional pollution control targets set by the central government, and a model that allocates the cooperation benefits (i.e., health improvement and cost reduction) among the participants according to their contributions using the Shapley value method. We applied CRM to the case of sulfur dioxide (SO 2 ) reduction in Yangtze River Delta region. Based on data from 2003 to 2013, and using mortality due to respiratory and cardiovascular diseases as the health endpoints, CRM saves 437 more lives than NCRM, amounting to 12.1% of the reduction under NCRM. CRM also reduced costs by US $65.8×10 6 compared with NCRM, which is 5.2% of the total cost of NCRM. Thus, CRM performs significantly better than NCRM. Each province obtains significant benefits from cooperation, which can motivate them to actively cooperate in the long term. A sensitivity analysis was performed to quantify the effects of parameter values on the cooperation benefits. Results shown that the CRM is not sensitive to the changes in each province's pollutant carrying capacity and the minimum pollutant removal capacity, but sensitive to the maximum pollutant reduction capacity. Moreover, higher cooperation benefits will be generated when a province's maximum pollutant reduction capacity increases. Copyright

  5. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    Science.gov (United States)

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. [Evaluation of treatment technology of odor pollution source in petrochemical industry].

    Science.gov (United States)

    Mu, Gui-Qin; Sui, Li-Hua; Guo, Ya-Feng; Ma, Chuan-Jun; Yang, Wen-Yu; Gao, Yang

    2013-12-01

    Using an environmental technology assessment system, we put forward the evaluation index system for treatment technology of the typical odor pollution sources in the petroleum refining process, which has been applied in the assessment of the industrial technology. And then the best available techniques are selected for emissions of gas refinery sewage treatment plant, headspace gas of acidic water jars, headspace gas of cold coke jugs/intermediate oil tank/dirty oil tank, exhaust of oxidative sweetening, and vapors of loading and unloading oil.

  7. Multiscale modeling of multi-decadal trends in air pollutant concentrations and their radiative properties: the role of models in an integrated observing system

    Science.gov (United States)

    Mathur, R.; Xing, J.; Szykman, J.; Gan, C. M.; Hogrefe, C.; Pleim, J. E.

    2015-12-01

    Air Pollution simulation models must address the increasing complexity arising from new model applications that treat multi-pollutant interactions across varying space and time scales. Setting and attaining lower ambient air quality standards requires an improved understanding and quantification of source attribution amongst the multiple anthropogenic and natural sources, on time scales ranging from episodic to annual and spatial scales ranging from urban to continental. Changing emission patterns over the developing regions of the world are likely to exacerbate the impacts of long-range pollutant transport on background pollutant levels, which may then impact the attainment of local air quality standards. Thus, strategies for reduction of pollution levels of surface air over a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Additionally, as short-lived climate forcers, aerosols and ozone exert regionally heterogeneous radiative forcing and influence regional climate trends. EPA's coupled WRF-CMAQ modeling system is applied over a domain encompassing the northern hemisphere for the period spanning 1990-2010. This period has witnessed significant reductions in anthropogenic emissions in North America and Europe as a result of implementation of control measures and dramatic increases across Asia associated with economic and population growth, resulting in contrasting trends in air pollutant distributions and transport patterns across the northern hemisphere. Model results (trends in pollutant concentrations, optical and radiative characteristics) across the northern hemisphere are analyzed in conjunction with surface, aloft and remote sensing measurements to contrast the differing trends in air pollution and aerosol-radiation interactions in these regions over the past two decades. Given the future LEO (Trop

  8. Monitoring Mediterranean marine pollution using remote sensing and hydrodynamic modelling

    Science.gov (United States)

    La Loggia, Goffredo; Capodici, Fulvio; Ciraolo, Giuseppe; Drago, Aldo; Maltese, Antonino

    2011-11-01

    Human activities contaminate both coastal areas and open seas, even though impacts are different in terms of pollutants, ecosystems and recovery time. In particular, Mediterranean offshore pollution is mainly related to maritime transport of oil, accounting for 25% of the global maritime traffic and, during the last 25 years, for nearly 7% of the world oil accidents, thus causing serious biological impacts on both open sea and coastal zone habitats. This paper provides a general review of maritime pollution monitoring using integrated approaches of remote sensing and hydrodynamic modeling; focusing on the main results of the MAPRES (Marine pollution monitoring and detection by aerial surveillance and satellite images) research project on the synergistic use of remote sensing, forecasting, cleanup measures and environmental consequences. The paper also investigates techniques of oil spill detection using SAR images, presenting the first results of "Monitoring of marine pollution due to oil slick", a COSMO-SkyMed funded research project where X-band SAR constellation images provided by the Italian Space Agency are used. Finally, the prospect of using real time observations of marine surface conditions is presented through CALYPSO project (CALYPSO-HF Radar Monitoring System and Response against Marine Oil Spills in the Malta Channel), partly financed by the EU under the Operational Programme Italia-Malta 2007-2013. The project concerns the setting up of a permanent and fully operational HF radar observing system, capable of recording surface currents (in real-time with hourly updates) in the stretch of sea between Malta and Sicily. A combined use of collected data and numerical models, aims to optimize intervention and response in the case of marine oil spills.

  9. Development of a distributed air pollutant dry deposition modeling framework

    International Nuclear Information System (INIS)

    Hirabayashi, Satoshi; Kroll, Charles N.; Nowak, David J.

    2012-01-01

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. - Highlights: ► A distributed air pollutant dry deposition modeling system was developed. ► The developed system enhances the functionality of i-Tree Eco. ► The developed system employs nationally available input datasets. ► The developed system is transferable to any U.S. city. ► Future planting and protection spots were visually identified in a case study. - Employing nationally available datasets and a GIS, this study will provide urban forest managers in U.S. cities a framework to quantify and visualize urban forest structure and its air pollution removal effect.

  10. Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods

    Directory of Open Access Journals (Sweden)

    Weili Duan

    2016-01-01

    Full Text Available Multivariate statistical methods including cluster analysis (CA, discriminant analysis (DA and component analysis/factor analysis (PCA/FA, were applied to explore the surface water quality datasets including 14 parameters at 28 sites of the Eastern Poyang Lake Basin, Jiangxi Province of China, from January 2012 to April