WorldWideScience

Sample records for source mass spectroscopy

  1. Negative-Ion source for mass selective photodetachment photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Kaesmaier, R.; Baemann, C.; Drechsler, G.; Boesl, U.

    1995-01-01

    We have designed and constructed a negative ion source for mass spectrometry and mass selective photodetachement photoelectron spectroscopy. The characteristics of the source are high anion densities and a large variety of accessible systems. Thus, mass spectra and photoelectron spectra of large unvolatile moelcules (biomolecules), of metal-organic compounds and of molecule water clusters, especially mentioned in this article, have been measured. Combining mass spectrometry, photoelectron spectroscopy (PES) and high resolution ZEKE (zero kinetic energy)-PES (1) should make the apparatus to an ideal diagnostic tool for structural assignment

  2. An RF ion source based primary ion gun for secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Menon, Ranjini; Nabhiraj, P.Y.; Bhandari, R.K.

    2011-01-01

    In this article we present the design, development and characterization of an RF plasma based ion gun as a primary ion gun for SIMS application. RF ion sources, in particular Inductively Coupled Plasma (ICP) ion sources are superior compared to LMIS and duoplasmtron ion sources since they are filamentless, can produce ions of gaseous elements. At the same time, ICP ion sources offer high angular current density which is an important factor in producing high current in small spot size on the target. These high current microprobes improve the signal to noise ratio by three orders as compared to low current ion sources such as LMIS. In addition, the high current microprobes have higher surface and depth profiling speeds. In this article we describe a simple ion source in its very basic form, two lens optical column and characteristics of microprobe

  3. Secondary ion mass spectroscopy (SIMS)

    International Nuclear Information System (INIS)

    Naik, P.K.

    1975-01-01

    Secondary Ion Mass Spectrometry (SIMS) which is primarily a method for investigating the chemical composition of the uppermost atomic layer of solid surfaces is explained. In this method, the specimen is bombarded with a primary positive ion beam of small current density monolayer. Positive and negative ions sputtered from the specimen are mass analysed to give the surface chemical composition. The analytical system which consists of a primary ion source, a target manipulator and a mass spectrometer housed in an ultrahigh vacuum system is described. This method can also be used for profile measurements in thin films by using higher current densities of the primary ions. Fields of application such as surface reactions, semiconductors, thin films emission processes, chemistry, metallurgy are touched upon. Various aspects of this method such as the sputtering process, instrumentation, and applications are discussed. (K.B.)

  4. PHOTOACOUSTIC SPECTROSCOPY USING A SYNCHROTRON LIGHT SOURCE

    International Nuclear Information System (INIS)

    JACKSON, R.S.; MICHAELIAN, K.H.; HOMES, C.C.

    2001-01-01

    We have investigated the use of a synchrotron as a source for infrared photoacoustic spectroscopy. A synchrotron has an intrinsically high radiance, which is beneficial when photoacoustic spectroscopy is applied to small samples, especially at long wavelengths

  5. Infrared spectroscopy of mass-selected carbocations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Michael A. [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States)

    2015-01-22

    Small carbocations are of longstanding interest in astrophysics, but there are few measurements of their infrared spectroscopy in the gas phase at low temperature. There are fewer-still measurements of spectra across the full range of IR frequencies useful to obtain an IR signature of these ions to detect them in space. We have developed a pulsed-discharge supersonic nozzle ion source producing high densities of small carbocations at low temperatures (50–70K). We employ mass-selected photodissociation spectroscopy and the method of rare gas “tagging”, together with new broadly tunable infrared OPO lasers, to obtain IR spectra for a variety of small carbocations including C{sub 2}H{sub 3}{sup +}, C{sub 3}H{sub 3}{sup +}, C{sub 3}H{sub 5}{sup +}, protonated benzene and protonated naphthalene. Spectra in the frequency range of 600–4500 cm{sup −1} provide new IR data for these ions and evidence for the presence of co-existing isomeric structures (e.g., C{sub 3}H{sub 3}{sup +} is present as both cyclopropenyl and propargyl). Protonated naphthalene has sharp bands at 6.2, 7.7 and 8.6 microns matching prominent features in the UIR spectra.

  6. Electric Propulsion Induced Secondary Mass Spectroscopy

    Science.gov (United States)

    Amini, Rashied; Landis, Geoffrey

    2012-01-01

    A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.

  7. Improved single ion cyclotron resonance mass spectroscopy

    International Nuclear Information System (INIS)

    Boyce, K.R.

    1993-01-01

    The author has improved the state of the art for precision mass spectroscopy of a mass doublet to below one part in 10 10 . By alternately loading single ions into a Penning trap, the author has determined the mass ratio M(CO + )/M(N + 2 ) = 0.999 598 887 74(11), an accuracy of 1 x 10 -10 . This is a factor of 4 improvement over previous measurements, and a factor of 10 better than the 1985 atomic mass table adjustment [WAA85a]. Much of the author's apparatus has been rebuilt, increasing the signal-to-noise ratio and improving the reliability of the machine. The typical time needed to make and cool a single ion has been reduced from about half an hour to under 5 minutes. This was done by a combination of faster ion-making and a much faster procedure for driving out ions of the wrong species. The improved S/N, in combination with a much better signal processing algorithm to extract the ion phase and frequency from the author's data, has substantially reduced the time required for the actual measurements. This is important now that the measurement time is a substantial fraction of the cycle time (the time to make a new ion and measure it). The improvements allow over 30 comparisons in one night, compared to 2 per night previously. This not only improves the statistics, but eliminates the possibility of large non-Gaussian errors due to sudden magnetic field shifts

  8. Intense Terahertz Sources for 2D Spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov

    in a molecular dynamics (MD) simulation. With this THz induced nonlinear responses and mode couplings in CsI and sucrose are investigated for increasing field strengths, and it is found that these occur for sucrose when the field strength is in the MV/cm range. THz sources based on LiNbO3, DAST, DSTMS and 2...... observed having a Gaussian beam profile. In addition to the intense THz pulses focused in free-space in order to achieve the highest possible field strength, it is shown that resonant microslit arrays can be used to enhance the THz field, and with the possibility of mounting crystalline samples inside...... the metallic slits, this is proposed as a combined spectroscopy system for investigating high-field phenomena. With a carefully optimized design, the slit resonance can be coupled to the lattice modes of the array structure to achieve a field enhancement of more than 35 times, which is approximately 60 % more...

  9. Spectroscopy of 186 Pb with mass identification

    International Nuclear Information System (INIS)

    Baxter, A.M.; Byrne, A.P.; Australian National Univ., Canberra, ACT; Dracoulis, G.D.; Janssens, R.V.F.; Bearden, I.G.; Henry, R.G.

    1993-10-01

    Transitions in the very neutron-deficient isotope 186 Pb have been identified in mass-gated, recoil-γ and recoil-γ-γ coincidence data obtained with a Fragment Mass Analyser and Compton-suppressed Ge-detector array. The results of the present work confirm and extend a band of levels tentatively proposed in earlier work done elsewhere, and provide a definitive mass assignment of the observed transitions. The band observed in 186 Pb bears a very close resemblance to the yrast band in the isotones 184 Hg, supporting the view that the 186 Pb band is built upon a prolate structure. 11 refs., 4 figs., 1 tab

  10. Tracing meteorite source regions through asteroid spectroscopy

    Science.gov (United States)

    Thomas, Cristina Ana

    By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives the best representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original solar system formation locations for different meteorite classes. To forge the first link between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-micron and 2-micron geometric band centers and their band area ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in the H, L, LL and HED meteorite classes. For each NEO spectrum, we assign a set of probabilities for it being related to each of these meteorite classes. Our NEO- meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. An apparent (significant at the 2.1-sigma level) source region signature is found for the H chondrites to be preferentially delivered to the inner solar system through the 3:1 mean motion resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites. The spectroscopy of asteroids is subject to several sources of inherent error. The source region model used a variety of S-type spectra without

  11. Nucleus spectroscopy: extreme masses and deformations

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2009-12-01

    The author proposes a synthesis of research activities performed since 1995 in the field of experimental nuclear physics, and more particularly in the investigation of two nucleus extreme states: deformation on the one hand, heavy and very heavy nuclei on the other hand. After a presentation of the context of investigations on deformation, rotation, and heavy nuclei, he gives an overview of developments regarding instruments (gamma spectrometers, detection of fission fragments, and detection at the focal plane of spectrometers or separators) and analysis techniques. Experiments and results are then reported and discussed, concerning super-deformed states with a high angular moment, spectroscopy of neutron-rich nuclei, very heavy nuclei close to nucleus map borders. He finally draws perspectives for middle and long term studies on the heaviest nuclei

  12. Dynamical twisted mass fermions and baryon spectroscopy

    International Nuclear Information System (INIS)

    Drach, V.

    2010-06-01

    The aim of this work is an ab initio computation of the baryon masses starting from quantum chromodynamics (QCD). This theory describes the interaction between quarks and gluons and has been established at high energy thanks to one of its fundamental properties: the asymptotic freedom. This property predicts that the running coupling constant tends to zero at high energy and thus that perturbative expansions in the coupling constant are justified in this regime. On the contrary the low energy dynamics can only be understood in terms of a non perturbative approach. To date, the only known method that allows the computation of observables in this regime together with a control of its systematic effects is called lattice QCD. It consists in formulating the theory on an Euclidean space-time and to evaluating numerically suitable functional integrals. First chapter is an introduction to the QCD in the continuum and on a discrete space time. The chapter 2 describes the formalism of maximally twisted fermions used in the European Twisted Mass (ETM) collaboration. The chapter 3 deals with the techniques needed to build hadronic correlator starting from gauge configuration. We then discuss how we determine hadron masses and their statistical errors. The numerical estimation of functional integral is explained in chapter 4. It is stressed that it requires sophisticated algorithm and massive parallel computing on Blue-Gene type architecture. Gauge configuration production is an important part of the work realized during my Ph.D. Chapter 5 is a critical review on chiral perturbation theory in the baryon sector. The two last chapter are devoted to the analysis in the light and strange baryon sector. Systematics and chiral extrapolation are extensively discussed. (author)

  13. Applications of spectroscopy with multiwavelength sources

    NARCIS (Netherlands)

    Hänsel, A.

    2018-01-01

    Spectroscopy is a powerful tool to investigate the physical properties of complex systems. The interaction of light with matter allows to get insights into the structure of it. Chapter 1 is dedicated to introduce this topic and to show the developments of the technologies that paved the way to its

  14. Barionic spectroscopy masses and hyperfine structure

    International Nuclear Information System (INIS)

    Vale, M.A.B. do.

    1986-01-01

    Using the Bethe-Salpeter equation in QCD, we obtain, in the nonrelativistic approximation, a quark-antiquark interaction potential. We include, in a phenomenological way, a confining term in the potential (V(qq-bar) = V QCD (qq-bar) + V sub (conf) (qq-bar)). Assuming that the three-quark interaction can be described in terms of pair interactions, and that the quark-quark interaction is related to the quark-antiquark interaction (v (qq)= 1/2 V(qq-bar)), we evaluate the baryon masses as three-quark bound states. We also calculate the relativistic corrections coming from the spin-spin interaction. Finally, our results are compared to the available experimental data. (author) [pt

  15. Calibration of sources for alpha spectroscopy systems

    International Nuclear Information System (INIS)

    Freitas, I.S.M.; Goncalez, O.L.

    1992-01-01

    This paper describes the calibration methodology for measuring the total alpha activity of plane and thin sources with the Alpha Spectrometer for Silicon Detector in the Nuclear Measures and Dosimetry laboratory at IEAv/CTA. (author)

  16. COMPLIS: COllinear spectroscopy Measurements using a Pulsed Laser Ion Source

    CERN Multimedia

    2002-01-01

    A Pulsed Laser spectroscopy experiment has been installed for the study of hyperfine structure and isotope shift of refractory and daughter elements from ISOLDE beams. It includes decelerated ion-implantation, element-selective laser ionization, magnetic and time-of-flight mass separation. The laser spectroscopy has been performed on the desorbed atoms in a set-up at ISOLDE-3 but later on high resolution laser collinear spectroscopy with the secondary pulsed ion beam is planned for the Booster ISOLDE set-up. During the first operation time of ISOLDE-3 we restricted our experiments to Doppler-limited resonant ionization laser and $\\gamma$-$\\gamma$ nuclear spectroscopy on neutron deficient platinum isotopes of even mass number down to A~=~186 and A~=~179 respectively. These isotopes have been produced by implantation of radioactive Hg and their subsequent $\\beta$-decay.

  17. Mass spectrometer with two ion sources

    International Nuclear Information System (INIS)

    Glickman, L.G.; Mit', A.G.

    2002-01-01

    Static mass spectrometer with mid-plane near which ions are moving is considered in this article. Two ion sources are used, their exit slits are perpendicular to the mid-plane. The simple method of the replacement of source is offered. Two concave two-electrode transaxial mirrors with two-plate electrodes are used for this aim. The mid-plane of these mirrors coincides with the mid-plane of the device. The exit slit of each source is located in the principal plane of the object space. The principal planes of the image space of the both mirrors coincide. The images of the exit slits of the sources are in these planes and coincide too. We used the mirrors making stigmatic images with the magnification one to one, in which the dispersion on energy and spherical aberrations of the second order are equal to zero. These images are the objects on which the ion-optical system of the mass spectrometer is tuned. When you choose one from two ion sources it is enough to switch the corresponding mirror

  18. Sample preparations for spark source mass spectrography

    International Nuclear Information System (INIS)

    Catlett, C.W.; Rollins, M.B.; Griffin, E.B.; Dorsey, J.G.

    1977-10-01

    Methods have been developed for the preparation of various materials for spark source mass spectrography. The essential features of these preparations (all which can provide adequate precision in a cost-effective manner) consist in obtaining spark-stable electrode sample pieces, a common matrix, a reduction of anomolous effects in the spark, the incorporation of a suitable internal standard for plate response normalization, and a reduction in time

  19. Mass spectroscopy of recoiled ions, secondary ion mass spectroscopy, and Auger electron spectroscopy investigation of Y2O3-stabilized ZrO2(100) and (110)

    International Nuclear Information System (INIS)

    Herman, G.S.; Henderson, M.A.; Starkweather, K.A.; McDaniel, E.P.

    1999-01-01

    We have studied the (100) and (110) surfaces of yttria-stabilized cubic ZrO 2 using Auger electron spectroscopy, low energy electron diffraction (LEED), direct recoil spectroscopy, mass spectroscopy of recoiled ions (MSRI), and secondary ion mass spectroscopy (SIMS). The concentration of yttrium at the surface was weakly influenced by the surface structure under the experimental conditions investigated. Both MSRI and SIMS indicated a more enhanced yttrium signal than zirconium signal at the surface compared to the respective bulk concentrations. The surfaces were not very well ordered as indicated by LEED. The yttria-stabilized cubic ZrO 2 single crystal surfaces may not be a suitable model material for pure phase ZrO 2 surfaces due to significant yttria concentrations at the surface. copyright 1999 American Vacuum Society

  20. Laser spectroscopy and laser ion source development at UNISOR

    International Nuclear Information System (INIS)

    Bingham, C.

    1991-01-01

    The development of the laser spectroscopy facility at UNISOR will be described. The method of collinear laser-atomic beams interaction is utilized to achieve atomic spectra essentially free of Doppler spreading. Measurement of resonance fluorescence via an efficient fiber-optic light collector is used to observe the atomic excitation by the laser beam. The system has been utilized to measure the atomic lifetime of the 6p 4 Ps/2 0 level in Xe II. In other experiment the relativistic Doppler effect was measured as a test of time dilation. Hyperfine structure and isotope shift measurements have been made for a series of Tl atoms ranging in mass from 187 to 205. Magnetic dipole and electric quadrupole moments were deduced for several of these isotopes; these quantities and the isotope shifts added greatly to our understanding of nuclear shapes in this transition region. Future directions will focus around more sensitive detection techniques and the development of purer beams in order to enable the study of nuclei farther from stability. The development of a laser ion source which operates in a completely cold mode and utilizes resonant absorption in the ionization process world facilitate the production of ultra-pure atomic beams

  1. IDENTIFICATIONS OF FIVE INTEGRAL SOURCES VIA OPTICAL SPECTROSCOPY

    International Nuclear Information System (INIS)

    Butler, Suzanne C.; Tomsick, John A.; Chaty, Sylvain; Heras, Juan A. Zurita; Rodriguez, Jerome; Walter, Roland; Kaaret, Philip; Kalemci, Emrah; Oezbey, Mehtap

    2009-01-01

    The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) is discovering hundreds of new hard X-ray sources, many of which remain unidentified. We report on optical spectroscopy of five such sources for which X-ray observations at lower energies (∼0.5-10 keV) and higher angular resolutions than INTEGRAL have allowed for unique optical counterparts to be located. We find that INTEGRAL Gamma-Ray (IGR) J16426+6536 and IGR J22292+6647 are Type 1 Seyfert active galactic nuclei (with IGR J16426+6536 further classified as a Seyfert 1.5) which have redshifts of z = 0.323 and z = 0.113, respectively. IGR J18308-1232 is identified as a cataclysmic variable (CV), and we confirm a previous identification of IGR J19267+1325 as a magnetic CV. IGR J18214-1318 is identified as an obscured high-mass X-ray binary (HMXB), which are systems thought to have a compact object embedded in the stellar wind of a massive star. We combine Chandra fluxes with distances based on the optical observations to calculate X-ray luminosities of the HMXB and CVs, finding L 0.3-10keV = 5 x 10 36 erg s -1 for IGR J18214-1318, L 0.3-10keV = 1.3 x 10 32 erg s -1 for IGR J18308-1232, and L 0.3-10keV = 6.7 x 10 32 erg s -1 for IGR J19267+1325.

  2. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  3. Spectroscopy with synchrotron radiation sources: challenges and opportunities

    International Nuclear Information System (INIS)

    Jagatap, B.N.

    2011-01-01

    Spectroscopy and energetics of atoms, molecules and cluster in ultra-violate (UV), vacuum ultra-violate (VUV) and soft X-ray region is one of the frontier topics of research today, These high energy photons allow us to prepare atomic and molecular systems in energy levels far away from their ground levels; the energy region that is characterized by the complex and highly degenerate energy level structure and multiple channels for reaction and energy dissipation. In this talk we provide a bird's eye view of the progress in this area, with a particular emphasis on spectroscopy research using Indian synchrotron sources. We shall also cover the avenues for collaborative research on Indus synchrotron sources, and the challenges and opportunities that await the Indian spectroscopy community

  4. Nuclear and x-ray spectroscopy with radioactive sources

    International Nuclear Information System (INIS)

    Fink, R.W.

    1977-01-01

    Research in nuclear chemistry for 1977 is reviewed. The greatest part of the effort was directed to nuclear spectroscopy (systematics, models, experimental studies), but some work was also done involving fast neutrons and x rays from radioactive sources. Isotopes of Tl, Hg, Au, and Eu were studied in particular. Personnel and publications lists are also included. 5 figures, 1 table

  5. Mass-selective Neutron Spectroscopy Beyond the Proton

    International Nuclear Information System (INIS)

    Krzystyniak, M; Seel, A G; Richards, S E; Gutmann, M J; Fernandez-Alonso, F

    2014-01-01

    We discuss ongoing methodological developments underpinning the determination of nuclear-momentum distributions from mass-resolved neutron Compton data of lightweight materials. To this end, two systems are considered in detail, namely, lithium hydride (including its deuterated counterpart) and squaric acid, an organic antiferroelectric material containing hydrogen, carbon, and oxygen. Beyond the usual case of the proton, our approach enables direct access to detailed line shape information associated with the underlying nuclear-momentum distributions of both deuterium and lithium. For oxygen and carbon, mean kinetic energies can also be obtained directly from the neutron data, as demonstrated by a detailed analysis of mass- resolved data from squaric acid. From an instrumentation point of view, this work provides a suitable platform for a detailed assessment of existing capabilities and future developments in mass-selective neutron spectroscopy on the VESUVIO spectrometer at ISIS

  6. Positron annihilation lifetime spectroscopy source correction determination: A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Gurmeet S.; Keeble, David J., E-mail: d.j.keeble@dundee.ac.uk

    2016-02-01

    Positron annihilation lifetime spectroscopy (PALS) can provide sensitive detection and identification of vacancy-related point defects in materials. These measurements are normally performed using a positron source supported, and enclosed by, a thin foil. Annihilation events from this source arrangement must be quantified and are normally subtracted from the spectrum before analysis of the material lifetime components proceeds. Here simulated PALS spectra reproducing source correction evaluation experiments have been systematically fitted and analysed using the packages PALSfit and MELT. Simulations were performed assuming a single lifetime material, and for a material with two lifetime components. Source correction terms representing a directly deposited source and various foil supported sources were added. It is shown that in principle these source terms can be extracted from suitably designed experiments, but that fitting a number of independent, nominally identical, spectra is recommended.

  7. Inductively coupled plasma source mass spectrometry

    International Nuclear Information System (INIS)

    Price Russ, G. III

    1993-01-01

    Inductively coupled plasma source mass spectrometry (ICP-MS) is a relatively new (5 y commercial availability) technique for simultaneously determining the concentration and isotopic composition of a large number of elements at trace levels. The principle advantages of ICP-MS are the ability to measure essentially all the metallic elements at concentrations as low as 1 part in 10 12 by weight, to analyse aqueous samples directly, to determine the isotopic composition of essentially all the metallic elements, and to analyse samples rapidly (minutes). The history of the development of ICP-MS and discussions of a variety of applications have been discussed in detail in Date and Gray (1988). Koppenaal (1988, 1990) has reviewed the ICP-MS literature. In that ICP-MS is a relatively new and still evolving technique, this chapter will discuss potential capability more than proven performance. (author). 24 refs

  8. Application of the mass-spectrometer MASHA for mass-spectrometry and laser-spectroscopy

    Science.gov (United States)

    Rodin, A. M.; Belozerov, A. V.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Sagaidak, R. N.; Salamatin, V. S.; Stepantsov, S. V.; Vanin, D. V.

    2010-02-01

    We report the present status of the mass-spectrometer MASHA (Mass-Analyzer of Supper Heavy Atoms) designed for determination of the masses of superheavy elements. The mass-spectrometer is connected to the U-400M cyclotron of the Flerov Laboratory for Nuclear Reactions (FLNR) JINR, Dubna. The first experiments on mass-measurements for 112 and 114 elements will be performed in the upcoming 2010. For this purpose a hot catcher, based on a graphite stopper, is constructed. The α-decay of the superheavy nuclides or spontaneous fission products will be detected with a silicon 192 strips detector. The experimental program of future investigations using the technique of a gas catcher is discussed. It should be regarded as an alternative of the classical ISOL technique. The possibilities are considered for using this mass-spectrometer for laser spectroscopy of nuclei far off-stability.

  9. Application of the mass-spectrometer MASHA for mass-spectrometry and laser-spectroscopy

    International Nuclear Information System (INIS)

    Rodin, A. M.; Belozerov, A. V.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Sagaidak, R. N.; Salamatin, V. S.; Stepantsov, S. V.; Vanin, D. V.

    2010-01-01

    We report the present status of the mass-spectrometer MASHA (Mass-Analyzer of Supper Heavy Atoms) designed for determination of the masses of superheavy elements. The mass-spectrometer is connected to the U-400M cyclotron of the Flerov Laboratory for Nuclear Reactions (FLNR) JINR, Dubna. The first experiments on mass-measurements for 112 and 114 elements will be performed in the upcoming 2010. For this purpose a hot catcher, based on a graphite stopper, is constructed. The α-decay of the superheavy nuclides or spontaneous fission products will be detected with a silicon 192 strips detector. The experimental program of future investigations using the technique of a gas catcher is discussed. It should be regarded as an alternative of the classical ISOL technique. The possibilities are considered for using this mass-spectrometer for laser spectroscopy of nuclei far off-stability.

  10. Application of the mass-spectrometer MASHA for mass-spectrometry and laser-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodin, A. M., E-mail: rodin@nrmail.jinr.ru; Belozerov, A. V.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Sagaidak, R. N.; Salamatin, V. S.; Stepantsov, S. V.; Vanin, D. V. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation)

    2010-02-15

    We report the present status of the mass-spectrometer MASHA (Mass-Analyzer of Supper Heavy Atoms) designed for determination of the masses of superheavy elements. The mass-spectrometer is connected to the U-400M cyclotron of the Flerov Laboratory for Nuclear Reactions (FLNR) JINR, Dubna. The first experiments on mass-measurements for 112 and 114 elements will be performed in the upcoming 2010. For this purpose a hot catcher, based on a graphite stopper, is constructed. The {alpha}-decay of the superheavy nuclides or spontaneous fission products will be detected with a silicon 192 strips detector. The experimental program of future investigations using the technique of a gas catcher is discussed. It should be regarded as an alternative of the classical ISOL technique. The possibilities are considered for using this mass-spectrometer for laser spectroscopy of nuclei far off-stability.

  11. Laser-based secondary neutral mass spectroscopy: Useful yield and sensitivity

    International Nuclear Information System (INIS)

    Young, C.E.; Pellin, M.J.; Calaway, W.F.; Joergensen, B.; Schweitzer, E.L.; Gruen, D.M.

    1986-01-01

    A variety of problems exist in order to optimally apply resonance ionization spectroscopy (RIS) to the detection of sputtered neutral atoms, however. Several of these problems and their solutions are examined in this paper. First, the possible useful yields obtainable and the dependence of useful yield on various laser parameters for this type of sputtered neutral mass spectrometer (SNMS) are considered. Second, the choice of a mass spectrometer and its effect on the instrumental useful yield is explored in light of the unique ionization region for laser based SNMS. Finally a brief description of noise sources and their effect on the instrumental sensitivity is discussed. 33 refs., 12 figs

  12. High-efficiency thermal ionization sources for mass spectrometry

    International Nuclear Information System (INIS)

    Olivares, Jose A.

    1996-01-01

    A version of the thermal ionization cavity (TIC) source developed specifically for use in mass spectrometry is presented. The performance of this ion source has been characterized extensively both with the use of an isotope separator and a quadrupole mass spectrometer. A detailed description of the TIC source for mass spectrometry is given along with the performance characteristics observed

  13. Cs+ ion source for secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Bentz, B.L.; Weiss, H.; Liebl, H.

    1981-12-01

    Various types of cesium ionization sources currently used in secondary ion mass spectrometry are briefly reviewed, followed by a description of the design and performance of a novel, thermal surface ionization Cs + source developed in this laboratory. The source was evaluated for secondary ion mass spectrometry applications using the COALA ion microprobe mass analyzer. (orig.)

  14. Laser photodissociation and spectroscopy of mass-separated biomolecular ions

    CERN Document Server

    Polfer, Nicolas C

    2014-01-01

    This lecture notes book presents how enhanced structural information of biomolecular ions can be obtained from interaction with photons of specific frequency - laser light. The methods described in the book ""Laser photodissociation and spectroscopy of mass-separated biomolecular ions"" make use of the fact that the discrete energy and fast time scale of photoexcitation can provide more control in ion activation. This activation is the crucial process producing structure-informative product ions that cannot be generated with more conventional heating methods, such as collisional activation. Th

  15. A source of antihydrogen for in-flight hyperfine spectroscopy

    CERN Document Server

    Kuroda, N; Murtagh, D J; Van Gorp, S; Nagata, Y; Diermaier, M; Federmann, S; Leali, M; Malbrunot, C; Mascagna, V; Massiczek, O; Michishio, K; Mizutani, T; Mohri, A; Nagahama, H; Ohtsuka, M; Radics, B; Sakurai, S; Sauerzopf, C; Suzuki, K; Tajima, M; Torii, H A; Venturelli, L; Wünschek, B; Zmeskal, J; Zurlo, N; Higaki, H; Kanai, Y; Lodi Rizzini, E; Nagashima, Y; Matsuda, Y; Widmann, E; Yamazaki, Y

    2014-01-01

    Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart—hydrogen—is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy.

  16. On-chip dual comb source for spectroscopy

    OpenAIRE

    Dutt, Avik; Joshi, Chaitanya; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L.; Lipson, Michal

    2016-01-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high-quality-factor microcavities has hindered the development of an on-chip dual comb source. Here, we report the first simultaneous generation of two microresonator comb...

  17. Pacific Islands Mass Communications; Selected Information Sources.

    Science.gov (United States)

    Richstad, Jim; McMillan, Michael

    1977-01-01

    Presents a bibliography of materials on such area of mass communications in the Pacific Islands as broadcasting, radio and television, cinema, communication research, mass media in education, Honululu Media Council, newspapers and newspapermen, and printing and satellite communication. (JEG)

  18. LEAD SLOWING DOWN SPECTROSCOPY FOR DIRECT Pu MASS MEASUREMENTS

    International Nuclear Information System (INIS)

    Ressler, Jennifer J.; Smith, Leon E.; Anderson, Kevin K.

    2008-01-01

    The direct measurement of Pu in previously irradiated fuel assemblies is a recognized need in the international safeguards community. A suitable technology could support more timely and independent material control and accounting (MC and A) measurements at nuclear fuel storage areas, the head-end of reprocessing facilities, and at the product-end of recycled fuel fabrication. Lead slowing down spectroscopy (LSDS) may be a viable solution for directly measuring not only the mass of 239Pu in fuel assemblies, but also the masses of other fissile isotopes such as 235U and 241Pu. To assess the potential viability of LSDS, an LSDS spectrometer was modeled in MCNP5 and 'virtual assays' of nominal PWR assemblies ranging from 0 to 60 GWd/MTU burnup were completed. Signal extraction methods, including the incorporation of nonlinear fitting to account for self-shielding effects in strong resonance regions, are described. Quantitative estimates of Pu uncertainty are given for simplistic and more realistic fuel isotopic inventories calculated using ORIGEN. A discussion of additional signal-perturbing effects that will be addressed in future work, and potential signal extraction approaches that could improve Pu mass uncertainties, are also discussed

  19. Application of optical emission spectroscopy to high current proton sources

    International Nuclear Information System (INIS)

    Castro, G; Mazzaglia, M; Nicolosi, D; Mascali, D; Reitano, R; Celona, L; Leonardi, O; Leone, F; Naselli, E; Neri, L; Torrisi, G; Gammino, S; Zaniol, B

    2017-01-01

    Optical Emission Spectroscopy (OES) represents a very reliable technique to carry out non-invasive measurements of plasma density and plasma temperature in the range of tens of eV. With respect to other diagnostics, it also can characterize the different populations of neutrals and ionized particles constituting the plasma. At INFN-LNS, OES techniques have been developed and applied to characterize the plasma generated by the Flexible Plasma Trap, an ion source used as 'testbench' of the proton source built for European Spallation Source. This work presents the characterization of the parameters of a hydrogen plasma in different conditions of neutral pressure, microwave power and magnetic field profile, along with perspectives for further upgrades of the OES diagnostics system. (paper)

  20. Ion source for a mass spectrometer

    International Nuclear Information System (INIS)

    Kappus, G.

    1980-01-01

    The ion source is used for electron impact ionisation and chemical ionisation of a gaseous or vapour test substance. In this type of operation, openings of different sizes are provided for the entry of electrons, the exit of ions and sample entry, because of different working pressures. Part of the source is made as a movable case or container floor with the ion exit opening being a shutter. (DG) [de

  1. Ion source for a mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, G.

    1980-07-24

    The ion source is used for electron impact ionisation and chemical ionisation of a gaseous or vapour test substance. In this type of operation, openings of different sizes are provided for the entry of electrons, the exit of ions and sample entry, because of different working pressures.

  2. On-chip dual-comb source for spectroscopy.

    Science.gov (United States)

    Dutt, Avik; Joshi, Chaitanya; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L; Lipson, Michal

    2018-03-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra, which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high quality-factor microcavities has hindered the development of on-chip dual combs. We report the simultaneous generation of two microresonator combs on the same chip from a single laser, drastically reducing experimental complexity. We demonstrate broadband optical spectra spanning 51 THz and low-noise operation of both combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (lasers or microwave oscillators. We demonstrate high signal-to-noise ratio absorption spectroscopy spanning 170 nm using the dual-comb source over a 20-μs acquisition time. Our device paves the way for compact and robust spectrometers at nanosecond time scales enabled by large beat-note spacings (>1 GHz).

  3. Role of stable isotope mass spectroscopy in hydrological sciences

    International Nuclear Information System (INIS)

    Keesari, Tirumalesh

    2017-01-01

    Isotope Ratio Mass Spectrometry (IRMS) is a specialized technique used to provide information about a given sample about its geographic, chemical, physical and biological origin. The ability to determine the source of water molecule stems from the relative isotopic abundances of its constituent elements, viz., hydrogen and oxygen or sometimes through its dissolved elements such as carbon, nitrogen and sulphur etc. Since the isotope ratios of carbon, hydrogen, oxygen, sulfur, and nitrogen can become locally enriched or depleted through a variety of kinetic and thermodynamic factors, measurement of the isotope ratios can be used to unravel the processes and differentiate water samples which otherwise exhibit similar chemical signatures. For brevity, this article focuses mainly on measurement of water isotopes, common notation for expressing isotope data and standards, theory of isotope hydrology, field applications and advances

  4. Chlorococcalean microalgae Ankistrodesmus convolutes biodiesel characterization with Fourier transform-infrared spectroscopy and gas chromatography mass spectroscopy techniques

    Directory of Open Access Journals (Sweden)

    Swati SONAWANE

    2015-12-01

    Full Text Available The Chlorococcalean microalgae Ankistrodesmus convolutes was found in fresh water Godawari reservoir, Ahmednagar district of Maharashtra State, India. Microalgae are modern biomass for the production of liquid biofuel due to its high solar cultivation efficiency. The collection, harvesting and drying processes were play vital role in converting algal biomass into energy liquid fuel. The oil extraction was the important step for the biodiesel synthesis. The fatty acid methyl ester (FAME synthesis was carried through base catalyzed transesterification method. The product was analyzed by using the hyphened techniques like Fourier Transform-Infrared spectroscopy (FT-IR and Gas Chromatography Mass Spectroscopy (GCMS. FT-IR Spectroscopy was results the ester as functional group of obtained product while the Gas Chromatography Mass Spectroscopy was results the six type of fatty acid methyl ester with different concentration. Ankistrodesmus convolutes biodiesel consist of 46.5% saturated and 49.14% unsaturated FAME.

  5. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 2002-2004

    International Nuclear Information System (INIS)

    2005-01-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 2002-2004 years: 1 - Foreword; 2 - Nuclear structure; 3 - EFIX: study of exotic nuclei-induced fission; 4 - Nuclear Astrophysics; 5 - Atomic mass; 6 - Solid state astrophysics; 7 - Accelerator-based mass spectroscopy; 8 - Solid State Physics; 9 - Physics and Chemistry of Irradiation; 10 - Activities of general interest; 11 - SEMIRAMIS (ion source and ion beam handling); 12 - Computer Department; 13 - Electronics Group; 14 - Mechanics Department; 15 - Health and safety; 16 - Permanent training; 17 - Seminars; 18 - PhDs; 19 - Staff

  6. Study of electron beam effects on surfaces using x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS)

    International Nuclear Information System (INIS)

    Gettings, M.; Coad, J.P.

    1976-02-01

    Discrepancies in the surface analyses of oxidised or heavily contaminated materials have been observed between X-ray Photoelectron Spectroscopy (XPS) and techniques using electron beams (primarily Auger Electron Spectroscopy (AES)). These discrepancies can be ascribed to the influence of the primary electron beam and to illustrate the various types of electron effects different materials were analysed using XPS and Secondary Ion Mass Spectroscopy (SIMS) before and after large area electron bombardment. The materials used included chrome and stainless steels, nickel, platinum, glass and brass. (author)

  7. Hyperfine structure of 147,149Sm measured using saturated absorption spectroscopy in combination with resonance-ionization mass spectroscopy

    International Nuclear Information System (INIS)

    Park, Hyunmin; Lee, Miran; Rhee, Yongjoo

    2003-01-01

    The hyperfine structures of four levels of the Sm isotopes have been measured by means of diode-laser-based Doppler-free saturated absorption spectroscopy in combination with a diode-laser-initiated resonance-ionization mass spectroscopy. It was demonstrated that combining the two spectroscopic methods was very effective for the identification and accurate measurement of the spectral lines of atoms with several isotopes, such as the rare-earth elements. From the obtained spectra, the hyperfine constants A and B for the odd-mass isotopes 147 Sm and 149 Sm were determined for four upper levels of the studied transitions.

  8. On-line high-resolution mass spectroscopy. Progress report, January 1, 1975--July 1, 1975

    International Nuclear Information System (INIS)

    Macfarlane, R.D.

    1975-01-01

    The report begins with a brief introduction, summary of activities, and lists of personnel, facilities used, publications, and presentations. Work on xanthine--tyrosine and sulfuric acid esters was completed in the project on 252 Cf-plasma desorption mass spectroscopy of involatile molecules. Work is continuing in the following areas: beta--gamma directional correlations and second-class currents in nuclear beta decay (mass-20 system), beta--neutrino directional correlations in mass 8, atomic mass measurements, and 252 Cf-plasma desorption mass spectroscopy of large biomolecules. (3 figures) (RWR)

  9. UV Photodissociation Action Spectroscopy of Haloanilinium Ions in a Linear Quadrupole Ion Trap Mass Spectrometer

    Science.gov (United States)

    Hansen, Christopher S.; Kirk, Benjamin B.; Blanksby, Stephen J.; O'Hair, Richard. A. J.; Trevitt, Adam J.

    2013-06-01

    UV-vis photodissociation action spectroscopy is becoming increasingly prevalent because of advances in, and commercial availability of, ion trapping technologies and tunable laser sources. This study outlines in detail an instrumental arrangement, combining a commercial ion-trap mass spectrometer and tunable nanosecond pulsed laser source, for performing fully automated photodissociation action spectroscopy on gas-phase ions. The components of the instrumentation are outlined, including the optical and electronic interfacing, in addition to the control software for automating the experiment and performing online analysis of the spectra. To demonstrate the utility of this ensemble, the photodissociation action spectra of 4-chloroanilinium, 4-bromoanilinium, and 4-iodoanilinium cations are presented and discussed. Multiple photoproducts are detected in each case and the photoproduct yields are followed as a function of laser wavelength. It is shown that the wavelength-dependent partitioning of the halide loss, H loss, and NH3 loss channels can be broadly rationalized in terms of the relative carbon-halide bond dissociation energies and processes of energy redistribution. The photodissociation action spectrum of (phenyl)Ag2 + is compared with a literature spectrum as a further benchmark.

  10. Phytochemical Profile of Erythrina variegata by Using High-Performance Liquid Chromatography and Gas Chromatography-Mass Spectroscopy Analyses

    OpenAIRE

    Suriyavathana Muthukrishnan; Subha Palanisamy; Senthilkumar Subramanian; Sumathi Selvaraj; Kavitha Rani Mari; Ramalingam Kuppulingam

    2016-01-01

    Natural products derived from plant sources have been utilized to treat patients with numerous diseases. The phytochemical constituents present in ethanolic leaf extract of Erythrina variegata (ELEV) were identified by using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectroscopy (GC-MS) analyses. Shade dried leaves were powdered and extracted with ethanol for analyses through HPLC to identify selected flavonoids and through GC-MS to identify other molecules. Th...

  11. Ion source with radiofrequency mass filter for sputtering purposes

    International Nuclear Information System (INIS)

    Sielanko, J.; Sowa, M.

    1990-01-01

    The Kaufman ion source with radiofrequency mass filter is described. The construction as well as operating characteristics of ion source are presented. The arrangement is suitable for range distribution measurements of implanted layers, where the sputtering rate has to be constant over the wide range of sputtering time. 4 figs., 17 refs. (author)

  12. Time dependent thermal treatment of oxidized MWCNTs studied by the electron and mass spectroscopy methods

    Czech Academy of Sciences Publication Activity Database

    Stobinski, L.; Lesiak, B.; Zemek, Josef; Jiříček, Petr

    2012-01-01

    Roč. 258, č. 20 (2012), s. 7912-7917 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z10100521 Keywords : MWCNTs * ox-MWCNTs * functional materials * electron spectroscopy * mass spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.112, year: 2012

  13. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 2001-2002

    International Nuclear Information System (INIS)

    2003-01-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 2001-2002 years: 1 - Foreword; 2 - Research topics: Nuclear structure; EFIX: study of exotic nuclei-induced fission; Nuclear Astrophysics; Accelerator-based mass spectroscopy; Solid State Astrophysics; Physics and Chemistry of Irradiation; Solid State Physics; SEMIRAMIS (ion source and ion beam handling); Digest science; 3 - Publications; 4 - Dissertations; 5 - Seminars; 6 - Technical services: Computer Department; Electronics Group; Mechanics Department; Permanent training; Health and safety; 7 - Staff

  14. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 1995-1997

    International Nuclear Information System (INIS)

    2003-01-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 1995-1997 years: 1 - Nuclear structure: structure of first well states, superdeformation, high-spin state populations of stable or neutron-rich nuclei, high-k isomers physics, theoretical works, technical developments; 2 - Nuclear astrophysics; 3 - Basic symmetries; 4 - Accelerator-based mass spectroscopy; 5 - Solid State Astrophysics; 6 - Physics and Chemistry of Irradiation; 7 - Solid State Physics; 8 - SEMIRAMIS (ion source and ion beam handling); 9 - Computer Department; 10 - Electronics Group; 11 - Mechanics Department; 12 - Permanent training; 13 - Health and safety; 14 - Seminars and communications; 15 - Dissertations; 16 - Publications; 17 - Staff

  15. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 1992-1994

    International Nuclear Information System (INIS)

    2003-01-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 1992-1994 years: 1 - Nuclear structure; 2 - Nuclear astrophysics; 3 - Basic symmetries; 4 - Accelerator-based mass spectroscopy; 5 - Solid State Astrophysics; 6 - Physics and Chemistry of Irradiation; 7 - Solid State Physics; 8 - SEMIRAMIS (ion source and ion beam handling); 9 - Computer Department; 10 - Electronics Group; 11 - Mechanics Department; 12 - Permanent training; 13 - Health and safety; 14 - Seminars; 15 - Dissertations; 16 - Publications; 17 - Staff

  16. Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Batalha, Natasha E. [Department of Astronomy and Astrophysics, Pennsylvania State University, State College, PA 16802 (United States); Kempton, Eliza M.-R. [Department of Physics, Grinnell College, 1116 8th Avenue, Grinnell, IA 50112 (United States); Mbarek, Rostom, E-mail: neb149@psu.edu [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-02-10

    MassSpec , a method for determining the mass of a transiting exoplanet from its transmission spectrum alone, was proposed by de Wit and Seager. The premise of this method relies on the planet’s surface gravity being extracted from the transmission spectrum via its effect on the atmospheric scale height, which in turn determines the strength of absorption features. Here, we further explore the applicability of MassSpec to low-mass exoplanets—specifically those in the super-Earth size range for which radial velocity determinations of the planetary mass can be extremely challenging and resource intensive. Determining the masses of these planets is of the utmost importance because their nature is otherwise highly unconstrained. Without knowledge of the mass, these planets could be rocky, icy, or gas-dominated. To investigate the effects of planetary mass on transmission spectra, we present simulated observations of super-Earths with atmospheres made up of mixtures of H{sub 2}O and H{sub 2}, both with and without clouds. We model their transmission spectra and run simulations of each planet as it would be observed with James Webb Space Telescope using the NIRISS, NIRSpec, and MIRI instruments. We find that significant degeneracies exist between transmission spectra of planets with different masses and compositions, making it impossible to unambiguously determine the planet’s mass in many cases.

  17. Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy

    International Nuclear Information System (INIS)

    Batalha, Natasha E.; Kempton, Eliza M.-R.; Mbarek, Rostom

    2017-01-01

    MassSpec , a method for determining the mass of a transiting exoplanet from its transmission spectrum alone, was proposed by de Wit and Seager. The premise of this method relies on the planet’s surface gravity being extracted from the transmission spectrum via its effect on the atmospheric scale height, which in turn determines the strength of absorption features. Here, we further explore the applicability of MassSpec to low-mass exoplanets—specifically those in the super-Earth size range for which radial velocity determinations of the planetary mass can be extremely challenging and resource intensive. Determining the masses of these planets is of the utmost importance because their nature is otherwise highly unconstrained. Without knowledge of the mass, these planets could be rocky, icy, or gas-dominated. To investigate the effects of planetary mass on transmission spectra, we present simulated observations of super-Earths with atmospheres made up of mixtures of H 2 O and H 2 , both with and without clouds. We model their transmission spectra and run simulations of each planet as it would be observed with James Webb Space Telescope using the NIRISS, NIRSpec, and MIRI instruments. We find that significant degeneracies exist between transmission spectra of planets with different masses and compositions, making it impossible to unambiguously determine the planet’s mass in many cases.

  18. Performance evaluation of wideband bio-impedance spectroscopy using constant voltage source and constant current source

    International Nuclear Information System (INIS)

    Mohamadou, Youssoufa; Oh, Tong In; Wi, Hun; Sohal, Harsh; Farooq, Adnan; Woo, Eung Je; McEwan, Alistair Lee

    2012-01-01

    Current sources are widely used in bio-impedance spectroscopy (BIS) measurement systems to maximize current injection for increased signal to noise while keeping within medical safety specifications. High-performance current sources based on the Howland current pump with optimized impedance converters are able to minimize stray capacitance of the cables and setup. This approach is limited at high frequencies primarily due to the deteriorated output impedance of the constant current source when situated in a real measurement system. For this reason, voltage sources have been suggested, but they require a current sensing resistor, and the SNR reduces at low impedance loads due to the lower current required to maintain constant voltage. In this paper, we compare the performance of a current source-based BIS and a voltage source-based BIS, which use common components. The current source BIS is based on a Howland current pump and generalized impedance converters to maintain a high output impedance of more than 1 MΩ at 2 MHz. The voltage source BIS is based on voltage division between an internal current sensing resistor (R s ) and an external sample. To maintain high SNR, R s is varied so that the source voltage is divided more or less equally. In order to calibrate the systems, we measured the transfer function of the BIS systems with several known resistor and capacitor loads. From this we may estimate the resistance and capacitance of biological tissues using the least-squares method to minimize error between the measured transimpedance excluding the system transfer function and that from an impedance model. When tested on realistic loads including discrete resistors and capacitors, and saline and agar phantoms, the voltage source-based BIS system had a wider bandwidth of 10 Hz to 2.2 MHz with less than 1% deviation from the expected spectra compared to more than 10% with the current source. The voltage source also showed an SNR of at least 60 dB up to 2.2 MHz

  19. Fissile mass estimation by pulsed neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Israelashvili, I., E-mail: israelashvili@gmail.com [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Dubi, C.; Ettedgui, H.; Ocherashvili, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Beck, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Roesgen, E.; Crochmore, J.M. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Ridnik, T.; Yaar, I. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel)

    2015-06-11

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  20. Rockets for Extended Source Soft X-ray Spectroscopy

    Science.gov (United States)

    McEntaffer, Randall

    The soft X-ray background surrounds our local galactic environment yet very little is known about the physical characteristics of this plasma. A high-resolution spectrum could unlock the properties of this million degree gas but the diffuse, low intensity nature of the background have made it difficult to observe, especially with a dispersive spectrograph. Previous observations have relied on X-ray detector energy resolution which produces poorly defined spectra that are poorly fit by complex plasma models. Here we propose a series of suborbital rocket flights that will begin the characterization of this elusive source through high-resolution X-ray grating spectroscopy. The rocket-based spectrograph can resolve individual emission lines over the soft X-ray band and place tight constraints on the temperature, density, abundance, ionization state and age of the plasma. These payloads will draw heavily from the heritage gained from previous rocket missions, while also benefiting from related NASA technology development programs. The Pennsylvania State University (PSU) team has a history of designing and flying spectrometer components onboard rockets while also being scientific leaders in the field of diffuse soft X-ray astronomy. The PSU program will provide hands-on training of young scientists in the techniques of instrumental and observational X-ray astronomy. The proposed rocket program will also expose these researchers to a full experiment cycle: design, fabrication, tolerance analysis, assembly, flight-qualification, calibration, integration, launch, and data analysis; using a combination of technologies suitable for adaptation to NASA's major missions. The PSU program in suborbital X-ray astronomy represents an exciting mix of compelling science, heritage, cutting-edge technology development, and training of future scientists.

  1. Fission fragment mass distributions via prompt γ-ray spectroscopy

    Indian Academy of Sciences (India)

    The distribution of fragment masses formed in nuclear fission is one of the most strik- ing features .... 80. 100. 120. 140. 160. 10. 3. 10. 4. Fragment Mass. Relative yield. Sn. Cd. Te. Pd ... the secondary fragment at Z = 50 and N = 82 shells, where the yields are depleted. Both ... More systematic experimental data are required.

  2. Mass analyzer ``MASHA'' high temperature target and plasma ion source

    Science.gov (United States)

    Semchenkov, A. G.; Rassadov, D. N.; Bekhterev, V. V.; Bystrov, V. A.; Chizov, A. Yu.; Dmitriev, S. N.; Efremov, A. A.; Guljaev, A. V.; Kozulin, E. M.; Oganessian, Yu. Ts.; Starodub, G. Ya.; Voskresensky, V. M.; Bogomolov, S. L.; Paschenko, S. V.; Zelenak, A.; Tikhonov, V. I.

    2004-05-01

    A new separator and mass analyzer of super heavy atoms (MASHA) has been created at the FLNR JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10-3. First experiments with the FEBIAD plasma ion source have been done and give an efficiency of ionization of up to 20% for Kr with a low flow test leak (6 particle μA). We suppose a magnetic field optimization, using the additional electrode (einzel lens type) in the extracting system, and an improving of the vacuum conditions in order to increase the ion source efficiency.

  3. Mass analyzer 'MASHA' high temperature target and plasma ion source

    International Nuclear Information System (INIS)

    Semchenkov, A.G.; Rassadov, D.N.; Bekhterev, V.V.; Bystrov, V.A.; Chizov, A.Yu.; Dmitriev, S.N.; Efremov, A.A.; Guljaev, A.V.; Kozulin, E.M.; Oganessian, Yu.Ts.; Starodub, G.Ya.; Voskresensky, V.M.; Bogomolov, S.L.; Paschenko, S.V.; Zelenak, A.; Tikhonov, V.I.

    2004-01-01

    A new separator and mass analyzer of super heavy atoms (MASHA) has been created at the FLNR JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3 . First experiments with the FEBIAD plasma ion source have been done and give an efficiency of ionization of up to 20% for Kr with a low flow test leak (6 particle μA). We suppose a magnetic field optimization, using the additional electrode (einzel lens type) in the extracting system, and an improving of the vacuum conditions in order to increase the ion source efficiency

  4. A high efficiency thermal ionization source adapted to mass spectrometers

    International Nuclear Information System (INIS)

    Chamberlin, E.P.; Olivares, J.A.

    1996-01-01

    A tungsten crucible thermal ionization source mounted on a quadrupole mass spectrometer is described. The crucible is a disposable rod with a fine hole bored in one end; it is heated by electron bombardment. The schematic design of the assembly, including water cooling, is described and depicted. Historically, the design is derived from that of ion sources used on ion separators at Los Alamos and Dubna, but the crucible is made smaller and simplified. 10 refs., 4 figs

  5. The development of mass spectroscopy: an historical account

    International Nuclear Information System (INIS)

    Beynon, J.H.; Morgan, R.P.

    1978-01-01

    The paper gives an historical account of the development of mass spectrometry starting from the experiments performed in the middle of the nineteenth century on the properties of electric discharges in gases. The authors consider J.J. Thompson's contributions with his apparatus for studying the e/m ratio for cathode rays and the positive rays. They then go on to deal with F.W. Aston's mass spectrograph and the various improvements made upto the present. (G.T.H.)

  6. Advances in fast-atom-bombardment mass spectroscopy

    International Nuclear Information System (INIS)

    Hemling, M.E.

    1986-01-01

    A comparison of fast atom bombardment and field desorption mass spectrometry was made to determine relative sensitivity and applicability. A series of glycosphingolipids and a series of protected oligonucleotides of known structure were analyzed to ascertain the potential utility of fast atom bombardment mass spectrometry in the structural elucidation of novel compounds in these classes. Negative ion mass markers were also developed. Fast atom bombardment was found to be one-to-two orders of magnitude more sensitive than field desorption based on the analysis of a limited number of compounds from several classes. Superior sensitivity was not universal and field desorption was clearly better in certain cases. In the negative ion mode in particular, fast atom bombardment was found to be a useful tool for the determination of the primary structure of glycosphingolipids and oligonucleotides. Carbohydrate sequence and branching information, and a fatty acid and lipid base composition were readily obtained from the mass spectra of glycosphingolipids while bidirectional nucleotide sequence, nucleotide base, and protecting group assignments were obtained for oligonucleotides. Based on this knowledge, a tentative structure of a human peripheral nervous system glycosphingolipid implicated in certain cases of disorders such as amyotrophic lateral sclerosis, Lou Gehrig's Disease, was proposed. Suitable negative ion mass markers were found in dispersions of poly(ethylene) and poly(propylene)glycols in a triethylenetetramine matrix, a matrix which also proved useful in the analysis of glycosphingolipids. These polyglycol dispersions provided ions for calibration to 2300 daltons

  7. Capillary filling of miniaturized sources for electrospray mass spectrometry

    International Nuclear Information System (INIS)

    Arscott, Steve; Gaudet, Matthieu; Brinkmann, Martin; Ashcroft, Alison E; Blossey, Ralf

    2006-01-01

    Capillary slot-based emitter tips are a novel tool for use in electrospray ionization-mass spectrometry of large biomolecules. We have performed a combined theoretical and experimental study of capillary filling in micron-sized slots with the aim of developing a rational design procedure for miniaturized electrospray sources, ultimately enabling the integration of ESI into laboratory-on-a-chip devices

  8. 2MASS Extended Source Catalog: Overview and Algorithms

    Science.gov (United States)

    Jarrett, T.; Chester, T.; Cutri, R.; Schneider, S.; Skrutskie, M.; Huchra, J.

    1999-01-01

    The 2 Micron All-Sky Survey (2MASS)will observe over one-million galaxies and extended Galactic sources covering the entire sky at wavelenghts between 1 and 2 m. Most of these galaxies, from 70 to 80%, will be newly catalogued objetcs.

  9. Mass measurement of 80Y by β-γ coincidence spectroscopy

    International Nuclear Information System (INIS)

    Barton, C.J.; Caprio, M.A.; Beausang, C.W.; Casten, R.F.; Cooper, J.R.; Kruecken, R.; Novak, J.R.; Pietralla, N.; Brenner, D.S.; Zamfir, N.V.; Aprahamian, A.; Wiescher, M.C.; Shawcross, M.; Teymurazyan, A.; Berant, Z.; Wolf, A.; Gill, R.L.

    2003-01-01

    The Q EC value of 80 Y has been measured by β-γ coincidence spectroscopy to be ≥8929(83) keV. Combining this result with the adopted mass excess of the daughter 80 Sr gives a mass excess for 80 Y of ≥-61 376(83) keV. Results are compared with other measurements, with Audi-Wapstra systematics, and with predictions of mass formulas. Implications of this measurement are considered for the rp process

  10. 15N sample preparation for mass spectroscopy analysis

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Salati, E.; Matsui, E.

    1973-01-01

    Technics for preparing 15 N samples to be analised is presented. Dumas method and oxidation by sodium hypobromite method are described in order to get the appropriate sample. Method to calculate 15 N ratio from mass spectrometry dates is also discussed [pt

  11. Study of water mass transfer dynamics in frescoes by dielectric spectroscopy

    International Nuclear Information System (INIS)

    Olmi, R.; Riminesi, C.

    2008-01-01

    The knowledge of moisture content (M C) is essential for determining the state of preservation of various types of hand-work: from building materials such as bricks and concrete, to objects of artistic value, in particular frescoes and mural paintings. In all above, moisture is the primary source of damages, as it affects the durability of porous materials. Dielectric properties of porous materials are strongly affected by the presence of water, suggesting dielectric spectroscopy as a suitable non-invasive diagnostic technique. The development of a quantitative relationship between M C and permittivity requires to investigate the dynamics of water mass transfer in porous media, and to determine its effect on the dielectric properties. In this paper a coupled mass transfer/dielectric problem is introduced and solved numerically, based on a finite element model. Results are compared to experimental dielectric measurements performed on plaster samples by the open coaxial method. The application of the dielectric technique to frescoes monitoring is proposed, showing the results obtained is an on-site study.

  12. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  13. Laser post-ionization secondary neutral mass spectroscopy

    International Nuclear Information System (INIS)

    Gruen, D.M.; Pellin, M.J.; Calaway, W.F.; Young, C.E.

    1987-01-01

    Three different instruments using laser ionization techniques will be described. Results from the SARISA instrument with a demonstrated figure of merit of .05 (atoms detected/atoms sputtered) for resonance ionization; detection of Fe at the sub-part-per-billion level in ultrapure Si; and features of the instrument such as energy and angle refocusing time-of-flight (EARTOF) mass spectrometer and multiplexing for simultaneous detection of secondary ions and neutrals. 12 refs., 3 figs

  14. Ultra-luminous X-ray sources and intermediate-mass black holes

    International Nuclear Information System (INIS)

    Cseh, David

    2012-01-01

    More than ten years ago, the discovery of Ultra-luminous X-ray sources (ULXs) has opened up an entirely new field in astrophysics. Many ideas were developed to explain the nature of these sources, like their emission mechanism, mass, and origin, without any strong conclusions. Their discovery boosted the fields of X-ray binaries, accretion physics, stellar evolution, cosmology, black hole formation and growth, due to the concept of intermediate-mass black holes (IMBHs). Since their discovery is related to the domain of X-ray astrophysics, there have been very few studies made in other wavelengths. This thesis focuses on the multiwavelength nature of Ultra-luminous X-ray sources and intermediate-mass black holes from various aspects, which help to overcome some difficulties we face today. First, I investigated the accretion signatures of a putative intermediate-mass black hole in a particular globular cluster. To this purpose, I characterized the nature of the innermost X-ray sources in the cluster. Then I calculated an upper limit on the mass of the black hole by studying possible accretion efficiencies and rates based on the dedicated X-ray and radio observations. The accreting properties of the source was described with standard spherical accretion and in the context of inefficient accretion. Secondly, I attempted to dynamically measure the mass of the black hole in a particular ULX via optical spectroscopy. I discovered that a certain emission line has a broad component that markedly shifts in wavelength. I investigated the possibility whether this line originates in the accretion disk, and thus might trace the orbital motion of the binary system. I also characterized the parameters of the binary system, such as the mass function, possible orbital separation, the size of the line-emitting region, and an upper limit on the mass of the black hole. Then I studied the environment of a number of ULXs that are associated with large-scale optical and radio nebulae. I

  15. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources

    Science.gov (United States)

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that “…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more” (Int. J. Mass Spectrom. 200: 459–478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451–4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that “super-atmospheric operation would be more preferable in space-charge-limited situations.”(Int. J. Mass Spectrom. 300: 182–193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper. PMID:26819912

  16. Spectroscopy of radio sources from the Parkes 2700 MHz survey

    International Nuclear Information System (INIS)

    Thompson, D.J.; Djorgovski, S.; De Carvalho, R.

    1990-01-01

    The results of long-slit CCD spectroscopy on 37 objects from the Parkes 2700 MHz survey are presented, with data for an additional two companion objects. Eight of the objects are quasars, six more are AGNs, and five more are radio galaxies. Seventeen of the objects observed are stars and, thus, probable misidentifications. Three objects show featureless spectra and are identified as possible BL Lac objects. Spectra are presented for a total of 20 objects. 20 refs

  17. Optical spectroscopy versus mass spectrometry: The race for fieldable isotopic analysis

    International Nuclear Information System (INIS)

    Barshick, C.M.; Young, J.P.; Shaw, R.W.

    1995-01-01

    Several techniques have been developed to provide on-site isotopic analyses, including decay-counting and mass spectrometry, as well as methods that rely on the accessibility of optical transitions for isotopic selectivity (e.g., laser-induced fluorescence and optogalvanic spectroscopy). The authors have been investigating both mass spectrometry and optogalvanic spectroscopy for several years. Although others have considered these techniques for isotopic analysis, the authors have focussed on the use of a dc glow discharge for atomization and ionization, and a demountable discharge cell for rapid sample exchange. The authors' goal is a fieldable instrument that provides useful uranium isotope ratio information

  18. Spectroscopy of electroproduced light to medium mass lambda hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Baturin, Pavlo [Florida Intl Univ., Miami, FL (United States)

    2010-01-01

    and at the same time performs a generalization of the above mentioned interaction for systems with a third quark flavor – strangeness [1]. Production reactions of Λ particles and hypernuclei, as well as spectroscopy and decay modes, provide valuable information on the hyperon interaction. For example, analysis of Λ and hypernuclear decay modes gives knowledge of the properties of weak interactions. The study of the energy of ground and excited states exposes the laws of baryon distribution inside of the nucleus. Investigation of ΛN and ΛΛ potentials is important for baryon-baryon theories that include strange quarks, e.g. SU(3). These potentials are more short-ranged than the ones for NN and therefore the additional degrees of freedom play an essential role.

  19. Polarisation modulated crosscorrelation spectroscopy on a pulsed neutron source

    International Nuclear Information System (INIS)

    Cywinski, R.; Williams, W.G.

    1984-07-01

    A crosscorrelation technique is introduced by which a total scattering polarisation analysis spectrometer on a pulsed neutron source can be modified to give full neutron polarisation and energy analysis without changing the physical configuration of the instrument. Its implementation on the proposed POLARIS spectrometer at the Rutherford Appleton Laboratory Spallation Neutron Source is described, and the expected dynamic (Q, ω) range and resolution evaluated. (author)

  20. Field desorption mass spectroscopy monitoring of changes in hydrocarbon type composition during petroleum biodegradation

    International Nuclear Information System (INIS)

    Huesemann, M.H.

    1995-01-01

    A comprehensive petroleum hydrocarbon characterization procedure involving group type separation, boiling point distribution, and hydrocarbon typing by field desorption mass spectroscopy (FDMS) has been developed to quantify changes in hydrocarbon type composition during bioremediation of petroleum-contaminated soils. FDMS is able to quantify the concentration of hundreds of specific hydrocarbon types based on their respective hydrogen deficiency (z-number) and molecular weight (carbon number). Analytical results from two bioremediation experiments involving soil contaminated with crude oil and motor oil indicate that alkanes and two-ring saturates (naphthenes) were readily biodegradable. In addition, low-molecular-weight hydrocarbons generally were biodegraded to a larger extent than those of high molecular weight. More importantly, it was found that the extent of biodegradation of specific hydrocarbon types was comparable between treatments and appeared to be unaffected by the petroleum contaminant source, soil type, or experimental conditions. It was therefore concluded that in these studies the extent of total petroleum hydrocarbon (TPH) biodegradation is primarily affected by the molecular composition of the petroleum hydrocarbons present in the contaminated soil

  1. Mass transfer in stellar X-ray sources

    International Nuclear Information System (INIS)

    Verbunt, F.

    1982-01-01

    This thesis deals with mass transfer in the binary stars that emit X-rays. Optical observations on two sources are presented: 2A0311-227 and Cen X-4. The transferred matter will often enter a gaseous disk around the compact star, and spiral inwards slowly through this disk. The conditions for the formation of such a disk are investigated and the equations governing its structure are presented. Different models are discussed and it is concluded that different models lead to very similar results for those regions of the disk where gas pressure is more important than radiative pressure, and that these results agree fairly well with observations. No consistent model has been constructed as yet for the region where radiative pressure is dominant. Theoretically one predicts that the optical light emitted by a disk around a neutron star is mainly caused by X-ray photons from the immediate surroundings of the neutron star that hit the outer disk surface, are absorbed, thermalised, and re-emitted in the optical and ultraviolet regions of the spectrum. This expectation is verified by comparison with the collected observational data of low-mass X-ray binaries. Finally the author investigates which mechanism is responsible for the mass transfer in systems where the mass-losing star is less massive than the sun. (Auth.)

  2. Ion desorption induced by charged particle beams: mechanisms and mass spectroscopy

    International Nuclear Information System (INIS)

    Silveira, E.F. da; Schweikert, E.A.

    1988-01-01

    Surface analysis, through desorption, induced by fast particles, is presented and discussed. The stopping of projectils is essentially made by collisions with the target electrons. The desorbed particles are generally emmited with kinetic energy from 0.1 to 20 eV. Mass, charge, velocity and emission angle give information about the surface components, its structure as well as beam-solid interaction processes. Time-of-flight mass spectroscopy of desorbed ions, determine the mass of organic macromolecules and biomolecules. (A.C.A.S.) [pt

  3. Early stages of methanol radiolysis from data of photoelectron spectroscopy and mass spectrometry

    International Nuclear Information System (INIS)

    Kalyazin, E.P.; Kovalev, G.V.

    1982-01-01

    Comparison of data on photoelectron spectroscopy and mass spectrometry permits to conclude that 4 types of molecular ions CH 3 O + H, H + CH 2 OH, H 3 C + OH and CH 3 O + H are initial products of methanol radiolysis. They start four parallel lines of methanol transformations. Mass spectrum of methanol can be evaluated according to the structural formula of methanol molecule. Composition of radiolysis products of gaseous methanol correlate satisfactorily with its mass spectrum. Reasons for the difference in compositions of radiolysis products of liquid and gaseous methanol are discussed

  4. 22 Na positron source for annihilation positron spectroscopy

    International Nuclear Information System (INIS)

    Cimpeanu, Catalina; Craciun, L.; Dragulescu, E.; Dudu, D.; Racolta, P.M.; Voiculescu, Dana; Miron, N.

    2002-01-01

    To extend the nuclear physics applications and to perform the study of vacancy - type defects in metals, semiconductors, polymers etc., we decided to promote positron annihilation techniques. In order to achieve this goal we started a project of dedicated positron sources produced at the IFIN-HH U-120 Cyclotron. We have used the nuclear reaction 24 Mg(d,α) 22 Na and deuterons of 13 MeV energy. The paper presents the main steps of this procedure like: general conditions required for 22 NaCl sources, reactive chamber and characteristics of Mg target, parameters for the irradiation, radiochemical procedures to separate Na from Mg after the irradiation and geometrical or mechanical requirements for dedicated NaCl source for positron annihilation spectrometry. In the e + lifetime measurements the e + 'death - stop' signals are always provided by γ - quanta generated by the e + e - annihilation and the 'birth - start' signals may be obtained from 'prompt' γ - quanta emitted from the NaCl source (the 1.275 MeV photons). The 22 NaCl stock solution obtained by radiochemical separation will be kept in the sealed quartz vials in dry places and will be dropped between the studied materials before use in positron spectrometry. (authors)

  5. 22 Na positron source for annihilation positron spectroscopy

    International Nuclear Information System (INIS)

    Cimpeanu, Catalina; Craciun, L.; Dragulescu, E.; Dudu, D.; Racolta, P. M.; Voiculescu, Dana; Miron, N.

    2003-01-01

    To extend the nuclear physics applications and to perform the study of vacancy - type defects in metals, semiconductors, polymers etc., we decided to promote positron annihilation techniques. In order to achieve this goal we started a project of dedicated positron sources produced at the IFIN-HH U-120 Cyclotron. We have used the nuclear reaction: 24 Mg(d,α) 22 Na with deuterons of 13 MeV energy. The paper presents the main characteristics of this procedure, as follows: general conditions asked for 22 NaCl sources, reactive chamber and characteristics of Mg target, parameters for the irradiation, radiochemical procedures for separating Na from Mg after the irradiation and geometrical or mechanical requirements for dedicated NaCl source for positron annihilation spectrometry. In the e + lifetime measurements, the e + end - start signals may be obtained from prompt γ -quanta emitted from the NaCl source (1. 275 MeV photons). The 22 NaCl stock solution obtained by radiochemical separation will be kept in quartz sealed ampoules in dry places and will be dropped between the study materials before the use in positron spectrometry. (authors)

  6. 22 Na positron source for annihilation positron spectroscopy

    International Nuclear Information System (INIS)

    Cimpeanu, Catalina; Craciun, Liviu; Dragulescu, Emilian; Dudu, Dorin; Racolta, Petre Mihai; Voiculescu, Dana; Miron, N.

    2005-01-01

    To extend the nuclear physics applications and to perform the study of vacancy - type defects in metals, semiconductors, polymers, etc., we developed new positron annihilation techniques. In line with this goal we started a project for production of positron sources at the IFIN-HH U-120 Cyclotron. We made use of the nuclear reaction: 24 Mg(d,α) 22 Na with deuterons of 13 MeV energy. The paper present the main steps of this procedure which are: establishing the conditions required for 22 NaCl sources, for the parameters of reaction chamber and the characteristics of Mg target, parameters for the irradiation, radiochemical procedures for separation of Na from Mg after irradiation as well as the geometrical and mechanical requirements for the NaCl source. In the e + lifetime measurements the e + 'stop' signals are always provided by gamma - quanta generated by the e + e - annihilation and the 'start' signals are obtained from 'prompt' gamma - quanta emitted by the NaCl source (1.275 MeV photons). The 22 NaCl stock solution obtained by radiochemical separation will be kept in quartz sealed ampoules. (authors)

  7. Optical emission spectroscopy of carbon laser plasma ion source

    Science.gov (United States)

    Balki, Oguzhan; Rahman, Md. Mahmudur; Elsayed-Ali, Hani E.

    2018-04-01

    Carbon laser plasma generated by an Nd:YAG laser (wavelength 1064 nm, pulse width 7 ns, fluence 4-52 J cm-2) is studied by optical emission spectroscopy and ion time-of-flight. Up to C4+ ions are detected with the ion flux strongly dependent on the laser fluence. The increase in ion charge with the laser fluence is accompanied by observation of multicharged ion lines in the optical spectra. The time-integrated electron temperature Te is calculated from the Boltzmann plot using the C II lines at 392.0, 426.7, and 588.9 nm. Te is found to increase from ∼0.83 eV for a laser fluence of 22 J cm-2 to ∼0.90 eV for 40 J cm-2. The electron density ne is obtained from the Stark broadened profiles of the C II line at 392 nm and is found to increase from ∼ 2 . 1 × 1017cm-3 for 4 J cm-2 to ∼ 3 . 5 × 1017cm-3 for 40 J cm-2. Applying an external electric field parallel to the expanding plume shows no effect on the line emission intensities. Deconvolution of ion time-of-flight signal with a shifted Maxwell-Boltzmann distribution for each charge state results in an ion temperature Ti ∼4.7 and ∼6.0 eV for 20 and 36 J cm-2, respectively.

  8. Frequency metrology of a photomixing source for gas phase spectroscopy

    Science.gov (United States)

    Hindle, Francis; Mouret, Gael; Yang, Chun; Cuisset, Arnaud; Bocquet, Robin; Lours, Michel; Rovera, Daniele

    2010-08-01

    The availability of frequency combs has opened new possibilities for the measurement of optical frequencies. Photomixing is an attractive solution for high resolution THz spectroscopy of gases due to the narrow spectral resolution and ability to access the 100 GHz to 3.5 THz range. One limitation of present photomixing spectrometers is the accuracy with which the THz frequency is established. Measurement of the centre frequency gas phase molecular transitions requires an accuracy better than 100 kHz in order to allow spectroscopic constants to be determined. Standard optical techniques like those employed in wavelength meters can only provide accuracies in the order of 50 MHz. We have used a turnkey fibre based frequency comb and a standard photomixing configuration to realize a THz synthesizer with an accuracy of around 50kHz. Two ECDLs used to pump the photomixer are phase locked onto the frequency comb and provide a tuning range of 10 MHz. In order to extend the tuning range an additional phase locked ECLD has been added to obtain a range in excess of 100 MHz. The absorption profiles of many Doppler limited transitions of carbonyl sulphide and formaldehyde have been measured to validate this instrument.

  9. In-source laser spectroscopy of mercury isotopes

    CERN Multimedia

    This proposal follows on from the Letter of Intent, I-153. The neutron-deficient mercury isotopes are one of the prime examples of shape coexistence anywhere in the nuclear chart. Wide-ranging and complementary experimental and theoretical approaches have been used to investigate their structure over the last few years, however mean-square charge radii are unknown for isotopes with $\\textit{A}$ < 181. It is proposed to measure the isotope shift (IS) and hyperfine structure (HFS) of the 253-nm transition in $^{177-182}$Hg in an attempt to study the propagation of the famous odd-even staggering behaviour. At the other end of the chain, no information exists on the optical spectroscopy of Hg isotopes beyond the $\\textit{N}$ = 126 shell closure. There is a well-known "kink" in mean-square charge radii beyond this point in the even $\\textit{Z}$ $\\geq$ 82 elements. It is proposed to measure the IS of $^{207,208}$Hg in order to provide the first information on this effect below $\\textit{Z}$ = 82.

  10. Ion source memory in {sup 36}Cl accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Merchel, Silke; Rugel, Georg [HZDR, Dresden (Germany); Arnold, Maurice; Aumaitre, Georges; Bourles, Didier; Martschini, Martin [ASTER, Aix-en-Provence (France); Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Steier, Peter [VERA, Vienna (Austria)

    2013-07-01

    Since the DREAMS (Dresden Accelerator Mass Spectrometry) facility went operational in 2011, constant effort was put into enabling routine measurements of long-lived radionuclides as {sup 10}Be, {sup 26}Al and {sup 41}Ca. For precise AMS-measurements of the volatile element Cl the key issue is the minimization of the long term memory effect. For this purpose one of the two original HVE sources was mechanically modified, allowing the usage of bigger cathodes with individual target apertures. Additionally a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, a small inter-laboratory comparison had been initiated. The long-term memory effect in the Cs sputter ion sources of the AMS facilities VERA, ASTER and DREAMS had been investigated by running samples of natural {sup 35}Cl/{sup 37}Cl-ratio and samples containing highly enriched {sup 35}Cl({sup 35}Cl/{sup 37}Cl > 500). Primary goals of the research are the time constants of the recovery from the contaminated sample ratio to the initial ratio of the sample and the level of the long-term memory effect in the sources.

  11. Laser sources and techniques for spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kung, A.H. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This program focuses on the development of novel laser and spectroscopic techniques in the IR, UV, and VUV regions for studying combustion related molecular dynamics at the microscopic level. Laser spectroscopic techniques have proven to be extremely powerful in the investigation of molecular processes which require very high sensitivity and selectivity. The authors approach is to use quantum electronic and non-linear optical techniques to extend the spectral coverage and to enhance the optical power of ultrahigh resolution laser sources so as to obtain and analyze photoionization, fluorescence, and photoelectron spectra of jet-cooled free radicals and of reaction products resulting from unimolecular and bimolecular dissociations. New spectroscopic techniques are developed with these sources for the detection of optically thin and often short-lived species. Recent activities center on regenerative amplification of high resolution solid-state lasers, development of tunable high power mid-IR lasers and short-pulse UV/VUV tunable lasers, and development of a multipurpose high-order suppressor crossed molecular beam apparatus for use with synchrotron radiation sources. This program also provides scientific and technical support within the Chemical Sciences Division to the development of LBL`s Combustion Dynamics Initiative.

  12. Chemical separation of plutonium from air filters and preparation of filaments for resonance ionization mass spectroscopy

    International Nuclear Information System (INIS)

    Eberhardt, K.; Erdmann, N.; Funk, H.; Herrmann, G.; Naehler, A.; Passler, G.; Trautmann, N.; Urban, F.

    1995-01-01

    Resonance ionization mass spectroscopy (RIMS) is used for the determination of plutonium in environmental samples. A chemical procedure based on an ion-exchange technique for the separation of plutonium from a polycarbonate filter is described. The overall yield is about 60% as determined by α-particle spectroscopy. A technique for the subsequent preparation of samples for RIMS measurements is developed. Plutonium is electrode-posited as hydroxide and covered with a thin metallic layer. While heating such a sandwich filament the plutonium hydroxide is reduced to the metal and an atomic beam is evaporated from the surface, as required for RIMS. copyright American Institute of Physics 1995

  13. Glow discharge lamp: a light source for optical emission spectroscopy

    International Nuclear Information System (INIS)

    Vishwanathan, K.S.; Srinivasan, V.; Nalini, S.; Mahalingam, T.R.

    1990-01-01

    A glow discharge lamp based on a modified version of the Grimm design has been fabricated. Its utility as a radiation source for optical emmission spectrography by standardising a method for the analysis of low alloy steels using a set of certified standards from DMRL, Hyderabad, has been demonstrated. A model has been proposed where the sputtering rates of different metals have been correlated with their heats of sublimation, metallic radii and densities. Sputtering rates of ten different metals obtained from literature have been used to test this model, and the correlation appears to be excellent. (author). 19 re fs., 13 figs., 2 tabs

  14. High-resolution in-source laser spectroscopy in perpendicular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinke, R., E-mail: reinhard.heinke@uni-mainz.de; Kron, T. [Universität Mainz, Institut für Physik (Germany); Raeder, S. [Helmholtz-Institut Mainz (Germany); Reich, T.; Schönberg, P. [Universität Mainz, Institut für Kernchemie (Germany); Trümper, M.; Weichhold, C.; Wendt, K. [Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    Operation of the novel laser ion source unit LIST (Laser Ion Source and Trap), operating at the on-line radioactive ion beam facility ISOLDE at CERN allowed for the production of ultra-pure beams of exotic isotopes far-off stability as well as direct isobar-free laser spectroscopy, giving access to the study of atomic and nuclear properties of so far inaccessible nuclides. We present a specific upgrade and adaption of the LIST targeted for high resolution spectroscopy with a Doppler-reduced perpendicular atom - laser beam geometry. With this PI-LIST (Perpendicularly Illuminated Laser Ion Source and Trap) setup, experimental linewidths below 100 MHz could be demonstrated in optical laser spectroscopy off-line, applying a pulsed injection-locked high repetition rate Ti:sapphire laser. A dual repeller configuration ensured highest suppression of isobaric interferences and almost background-free measurements on small samples in the order of 10{sup 11} atoms.

  15. [Discussion on diagenesis of Xilingang pluton-constrained by X-ray Fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy].

    Science.gov (United States)

    Tang, Yu-Kun; Chen, Guo-Neng; Zhang, Ke; Huang, Hai-Hua

    2013-05-01

    The results on Xilingang pluton, mainly consisting of red beds, granites containing numerous debris of red beds and granites, obtained by X-ray fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy show: (1) Xilingang pluton from red beds, granites containing numerous debris of red beds to granites has obvious characteristics of decreasing silicon and alkali content, and rising ignition loss, dark mineral content and oxidation index; (2) Chondrite-normalized REE distribution curves and primitive mantle-normalized spider diagram for trace elements of redbed, granites containing numerous debris of red beds and granites have a good consistency, the distribution characteristics of elements are similar to Nanling transformation-type granite; (3) The value of Raman spectrogram characteristic peak of quartz crystal in Xilingang granite decreased from the center of quartz crystal, and FWHM is steady. According to the above, the authors believe that Xilingang granite formed was related to in-situ melting of red beds and underlying strata and magma consolidation. Volatile components were discharged continuously, and oxidation index decreased gradually in the melting process. In the process of diagenesis, the top of pluton tend to be an ongoing silicon and alkali increase, while TFeO and MgO continue to migrate to bottom, and crystallization environment is a relatively closed and steady system.

  16. Chemical analysis of surfaces by resonance ionization mass spectroscopy associated to ionic pulverization

    International Nuclear Information System (INIS)

    Kern, P.

    1995-01-01

    This work shows that if resonance ionization mass spectroscopy was first applied in isotopic separation, it's also an analyzing method adapted to the study of semi-conductor materials and thin foils. We have improved this technic: a neodymium laser coupled with a dye laser, a new argon ions gun, a gallium ions gun and a new collection optic for the secondary ions quadrupole spectrometer to allow quantitative and selective measurements. (S.G.). 84 refs

  17. Dissociation mechanism of HNIW ions investigated by chemical ionization and electron impact mass spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rongjie; Xiao, Hemiao [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2006-04-15

    Chemical Ionization (CI) with Collision-Induced Dissociation (CID) spectroscopy and Electron Impacting (EI) with metastable Mass analyzed Ion Kinetic Energy (MIKE) spectroscopy have been applied to study ionic dissociations of Hexanitrohexaazaisowurtzitane (HNIW). Similarities and differences between EI/MIKE and CI/CID mass spectra of HNIW were analyzed. In EI mass spectra, the ions [HNIW-n NO{sub 2}]{sup +} (n=2-5), such as the ion at m/z 347, were less frequent (1-2% relative abundance), but in CI mass spectra, these ions were very abundant. For some ions of large molar mass from HNIW, their dissociations pathways from parent ions to daughter ions were built according to CID and MIKE spectra. Molecular ions of HNIW with a protonated nitro group at five-member ring seem more stable than at six-member ring. The HNIW ions losing five of six nitro groups are very stable based on CID spectra, which agrees with some research results for thermal decomposition of HNIW in literature. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  18. On-line high-resolution mass spectroscopy. Progress report, July 1, 1975--July 1, 1976

    International Nuclear Information System (INIS)

    Macfarlane, R.D.; Torgerson, D.F.

    1976-08-01

    The search for second-class currents in nuclear beta decay continued with measurements of beta--gamma correlations for the mirror decays 20 F(β - ) 20 Ne*(1.63) and 20 Na(β + ) 20 Ne*(1.63). The 20 F beta--gamma correlation was measured in beam, and the results are being compared with values obtained using the He-jet method. A careful analysis of ion velocity distributions emitted from fission fragment tracks in solids yielded new information on the nature of the process. The temperature of the microplasma formed by a fission fragment was determined to be of the order 10 4 K, and the temperature is dependent on the fission fragment's energy. A mass reflectron is being developed for high mass resolution using time-of-flight mass spectroscopy. The application of 252 Cf-PDMS (plasma desorption mass spectroscopy) to new classes of involatile compounds continued. Techniques are being studied for the routine analysis of involatile species of mass greater than 2000. The report is basically descriptive in nature. 5 figures, 1 table

  19. Resonance Ionization Mass Spectrometry (RIMS): applications in spectroscopy and chemical dynamics

    International Nuclear Information System (INIS)

    Naik, P.D.; Kumar, Awadhesh; Upadhyaya, Hari; Bajaj, P.N.

    2009-01-01

    Resonance ionization is a photophysical process wherein electromagnetic radiation is used to ionize atoms, molecules, transient species, etc., by exciting them through their quantum states. The number of photons required to ionize depends on the species being investigated and energy of the photon. Once a charged particle is produced, it is easy to detect it with high efficiency. With the advent of narrow band high power pulsed and cw tunable dye lasers, it has blossomed into a powerful spectroscopic and analytical technique, commonly known as resonance ionization spectroscopy (RIS)/resonance enhanced multiphoton ionization (REMPI). The alliance of resonance ionization with mass spectrometry has grown into a still more powerful technique, known as resonance ionization mass spectrometry (RIMS), which has made significant contributions in a variety of frontier areas of research and development, such as spectroscopy, chemical dynamics, analytical chemistry, cluster science, surface science, radiochemistry, nuclear physics, biology, environmental science, material science, etc. In this article, we shall describe the application of resonance ionization mass spectrometry to spectroscopy of uranium and chemical dynamics of polyatomic molecules

  20. Improving mass measurement accuracy in mass spectrometry based proteomics by combining open source tools for chromatographic alignment and internal calibration.

    Science.gov (United States)

    Palmblad, Magnus; van der Burgt, Yuri E M; Dalebout, Hans; Derks, Rico J E; Schoenmaker, Bart; Deelder, André M

    2009-05-02

    Accurate mass determination enhances peptide identification in mass spectrometry based proteomics. We here describe the combination of two previously published open source software tools to improve mass measurement accuracy in Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). The first program, msalign, aligns one MS/MS dataset with one FTICRMS dataset. The second software, recal2, uses peptides identified from the MS/MS data for automated internal calibration of the FTICR spectra, resulting in sub-ppm mass measurement errors.

  1. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 2007-2009

    International Nuclear Information System (INIS)

    2010-01-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 2007-2009 years: Nuclear Astrophysics; Solid State Astrophysics; Physics and Chemistry of Irradiation; Solid State Physics and cryogenic detectors; Solid State Physics, Condensed Matter and Irradiation; Structure of the Atomic Nucleus; Teaching and training activities; Spreading scientific culture; Administrative services; Electronics Group; Computer Department; Mechanics Department; RESET Service (Radiation-Environment-Safety- Maintenance-Work); SEMIRAMIS (ion source and ion beam handling)

  2. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 2010-2012

    International Nuclear Information System (INIS)

    2013-07-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 2010-2012 years: Nuclear Astrophysics; Solid State Astrophysics; Physics and Chemistry of Irradiation; Solid State Physics Group; Condensed Matter and Irradiation: from fundamental to functional; Structure of the Atomic Nucleus; Teaching activities; Spreading scientific culture; Administrative services; Electronics Group; Computer Department; Mechanics Department; RESET Service (Radiation-Environment-Safety- Maintenance-Work); SEMIRAMIS (ion source and ion beam handling)

  3. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-01-01

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ∼7 eV, delivering under typical conditions >10 12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  4. Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Md. Wahadoszamen

    2015-01-01

    Full Text Available A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.. The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent. We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm−1, which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 103.

  5. Efficient and tunable high-order harmonic light sources for photoelectron spectroscopy at surfaces

    International Nuclear Information System (INIS)

    Chiang, Cheng-Tien; Huth, Michael; Trützschler, Andreas; Schumann, Frank O.; Kirschner, Jürgen; Widdra, Wolf

    2015-01-01

    Highlights: • An overview of photoelectron spectroscopy using high-order harmonics is presented. • Photoemission spectra on Ag(0 0 1) using megahertz harmonics are shown. • A gas recycling system for harmonic generation is presented. • Non-stop operation of megahertz harmonics up to 76 h is demonstrated. • The bandwidth and pulse duration of the harmonics are discussed. - Abstract: With the recent progress in high-order harmonic generation (HHG) using femtosecond lasers, laboratory photoelectron spectroscopy with an ultrafast, widely tunable vacuum-ultraviolet light source has become available. Despite the well-established technique of HHG-based photoemission experiments at kilohertz repetition rates, the efficiency of these setups can be intrinsically limited by the space-charge effects. Here we present recent developments of compact HHG light sources for photoelectron spectroscopy at high repetition rates up to megahertz, and examples for angle-resolved photoemission experiments are demonstrated.

  6. Physicochemical effects of cosmic rays in solids: analyses by mass spectrometry and by infrared spectroscopy

    International Nuclear Information System (INIS)

    Silveira, Enio F. da

    2012-01-01

    Full text: Cosmic Rays (CR) are studied since their discovery by Victor Hess in the years 1911-1913. Interestingly, the beginning of research in Physics in Brazil started with experiments on CR. B. Gross (INT/ Rio), G. Wataghin and G. Occhialini (USP) started their investigation on CR in 1934. F.X. Roser, the founder of the Physics Institute of PUC-Rio, worked with Hess when he got the Nobel Prize in 1936. C. Lattes got in 1947 the experimental data in Chacaltaya that conducted to the discovery of the meson pi (C. Powell, Nobel Prize in 1950). Nowadays, the Auger Project deals with extremely high energy extragalactic particles. Except for these ones, the origin, the energy and mass distributions of CR constituents and their capability of producing elementary particles are well known. Nevertheless, there is an enormous lack of information on the effects caused by the CR on inorganic and biological materials. This motivates measurements of relevant physicochemical data, such as sputtering yields, cross sections for inducing chemical reactions and crystalline structure parameters. A fascinating question about CR is if they are/were the responsible for the transformation of inorganic into organic material, synthesizing therefore pre-biotic molecules in whole Universe. Nuclear Physics instrumentation is well suited to answer this question, providing ion sources and ion accelerators from keV to GeV. Time-of-flight mass spectrometry and FTIR infrared spectroscopy are techniques able to monitor the physicochemical modifications induced by the RC beam analogs. Data obtained in the GANIL (France) and Van de Graaff (PUC-Rio) accelerators are presented. Abundant inorganic molecular species in space, such as H 2 O, CO, CO 2 and NH 3 , are condensed in laboratory and bombarded by H to Fe ions, from 10 -3 to 10 3 MeV/u, covering the CR range. New chemical species are identified; sputtering yields (Y), formation (σf ) and destruction (σd) cross sections are measured. An

  7. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    Science.gov (United States)

    2009-12-19

    REPORT Development of an electron- positron source for positron annihilation lifetime spectroscopy : FINAL REPORT 14. ABSTRACT 16. SECURITY...to generate radiation, to accelerate particles, and to produce electrons and positrons from vacuum. From applications using existing high-repetition...theoretical directions. This report reviews work directed toward the application of positron generation from laser interaction with matter 1. REPORT DATE

  8. Non-Halal biomarkers identification based on Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques

    Science.gov (United States)

    Witjaksono, Gunawan; Saputra, Irwan; Latief, Marsad; Jaswir, Irwandi; Akmeliawati, Rini; Abdelkreem Saeed Rabih, Almur

    2017-11-01

    Consumption of meat from halal (lawful) sources is essential for Muslims. The identification of non-halal meat is one of the main issues that face consumers in meat markets, especially in non-Islamic countries. Pig is one of the non-halal sources of meat, and hence pig meat and its derivatives are forbidden for Muslims to consume. Although several studies have been conducted to identify the biomarkers for nonhalal meats like pig meat, these studies are still in their infancy stages, and as a result there is no universal biomarker which could be used for clear cut identification. The purpose of this paper is to use Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques to study fat of pig, cow, lamb and chicken to find possible biomarkers for pig fat (lard) identification. FTIR results showed that lard and chicken fat have unique peaks at wavenumbers 1159.6 cm-1, 1743.4 cm-1, 2853.1 cm-1 and 2922.5 cm-1 compared to lamb and beef fats which did not show peaks at these wavenumbers. On the other hand, GC/MS-TOF results showed that the concentration of 1,2,3-trimethyl-Benzene, Indane, and Undecane in lard are 250, 14.5 and 1.28 times higher than their concentrations in chicken fat, respectively, and 91.4, 2.3 and 1.24 times higher than their concentrations in cow fat, respectively. These initial results clearly indicate that there is a possibility to find biomarkers for non-halal identification.

  9. Method of N-15 analysis by mass-spectroscopy on ion implanter MPB-200

    International Nuclear Information System (INIS)

    Vo Van Thuan; Dang Duc Nhan; Nguyen Phuc; Nguyen Tien Dung; Nguyen Van Dach

    1993-01-01

    The industrial implanter MPB-200 has been modified to a light-isotope mass spectrometer. Mass-resolution has been improved by combination of quadrupole focusing system and a collimator with additional scattering shielding. Single beam method has been set up, in which mass-spectrum are obtained by scanning magnetic field of the separator. A start-stop control system has been added to operate automatically the magnet and registration system, from which signals are transferred to a XT/AT computer for saving and analysis. The mass-resolution is satisfactory for analysis of light isotopes with mass number A less than 40. A testing measurement has been done with standard samples of natural and enriched N-15 isotope, at acceleration energy of 50 keV, beam current less than 100 nA, vacuum of 4x10E-6 and collimator's shell of 1 mm. Obtained resolution and background condition allowed to achieve a good linear dependence of relative isotope ratio data vs real abundance in the range from natural 0.365% to 5.0% with a 3% error (96% of reliability). Routine N-15 may achieve (5-10)% accuracy by a 7-10 minutes measurement for every sample. Sensitivity of the mass-spectrometer is better almost by one order in comparing with one of emission spectrometers. The new mass-spectroscopy system is applied to research in agriculture, biology and environmental study. (author). 4 refs, 4 figs

  10. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  11. Trace analysis of plutonium in environmental samples by resonance ionization mass spectroscopy (RIMS)

    International Nuclear Information System (INIS)

    Erdmann, N.; Herrmann, G.; Huber, G.; Koehler, S.; Kratz, J.V.; Mansel, A.; Nunnemann, M.; Passler, G.; Trautmann, N.; Waldek, A.

    1997-01-01

    Trace amounts of plutonium in the environment can be detected by resonance ionization mass spectroscopy (RIMS). An atomic beam of plutonium is produced after its chemical separation and deposition on a filament. The atoms are ionized by a three-step excitation using pulsed dye-lasers. The ions are mass-selectively detected in a time-of-flight (TOF) mass spectrometer. With this setup a detection limit of 1·10 6 atoms of plutonium has been achieved. Furthermore, the isotopic composition can be determined. Different samples, including soil from the Chernobyl area, IAEA-certified sediments from the Mururoa Atoll and urine, have been investigated. copyright 1997 American Institute of Physics

  12. Optical emission and mass spectroscopy of plasma processes in reactive DC pulsed magnetron sputtering of aluminium oxide

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Bulíř, Jiří; Pokorný, Petr; Bočan, Jiří; Fitl, Přemysl; Lančok, Ján; Musil, Jindřich

    2010-01-01

    Roč. 12, č. 3 (2010), 697-700 ISSN 1454-4164 R&D Projects: GA AV ČR IAA100100718; GA AV ČR KAN400100653; GA ČR GP202/09/P324 Institutional research plan: CEZ:AV0Z10100522 Keywords : reactive magnetron sputtering * alumina * plasma spectroscopy * mass spectroscopy * optical emission spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.412, year: 2010

  13. In-source laser spectroscopy of polonium isotopes: From atomic physics to nuclear structure

    CERN Multimedia

    Rothe, S

    2014-01-01

    The Resonance Ionization Laser Ion Source RILIS [1] at the CERN-ISOLDE on-line radioactive ion beam facility is essential for ion beam production for the majority of experiments, but it is also powerful tool for laser spectroscopy of rare isotopes. A series of experiments on in-source laser spectroscopy of polonium isotopes [2, 3] revealed the nuclear ground state properties of 191;211;216;218Po. However, limitations caused by the isobaric background of surface-ionized francium isotopes hindered the study of several neutron rich polonium isotopes. The development of the Laser Ion Source and Trap (LIST) [4] and finally its integration at ISOLDE has led to a dramatic suppression of surface ions. Meanwhile, the RILIS laser spectroscopy capabilities have advanced tremendously. Widely tunable titanium:sapphire (Ti:Sa) lasers were installed to complement the established dye laser system. Along with a new data acquisition system [5], this more versatile laser setup enabled rst ever laser spectroscopy of the radioact...

  14. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    Science.gov (United States)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  15. Positron source based on the 48V isotope dedicated to positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Dryzek, Jerzy

    2009-01-01

    In the paper we consider application of the 48 V isotope as a source in the positron lifetime spectroscopy. The isotope was produced in the 48 Ti(p,n) 48 V reaction using 15 MeV proton beam. As a target the natural titanium thin plate was used. The measurements using the typical positron lifetime spectrometer have shown the usefulness of the source obtained for this application. Due to its properties, the source may be used for measurements of positron annihilation characteristics in high temperature or aggressive environments. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 1985-1986-1987

    International Nuclear Information System (INIS)

    2003-01-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 1985-1986-1987 years: 1 - Teams presentation; 2 - Abstracts: On the borderline of spectroscopy; Atomic spectroscopy and low-energy low-spin nuclear structure; high-energy high-spin nuclear structure; Theories and models; Nuclear astrophysics; Accelerator-based mass spectroscopy; Solid State Physics; Study of charged particles irradiation effects in astrophysics, geophysics and material sciences; Technical developments for the RF mass spectrometer and for Obelix; Technical developments for ion beams; Technical developments in electronics and their applications; CNSM's Computer Department; Developments in cryogenics; 3 - Staff and publications

  17. Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio

    CERN Document Server

    Hori, Masaki; Barna, Daniel; Andreas Dax,; Hayano, Ryugo; Friedreich, Susanne; Juhász, Bertalan; Pask, Thomas; Widmann, Eberhard; Horváth, Dezső; Venturelli, Luca; Zurlo, Nicola; 10.1038/nature10260

    2013-01-01

    Physical laws are believed to be invariant under the combined transformations of charge, parity and time reversal (CPT symmetry). This implies that an antimatter particle has exactly the same mass and absolute value of charge as its particle counterpart. Metastable antiprotonic helium ($\\bar{p}He^+$) is a three-body atom2 consisting of a normal helium nucleus, an electron in its ground state and an antiproton ($\\bar{p}$) occupying a Rydberg state with high principal and angular momentum quantum numbers, respectively n and l, such that n ≈ l + 1 ≈ 38. These atoms are amenable to precision laser spectroscopy, the results of which can in principle be used to determine the antiproton-to-electron mass ratio and to constrain the equality between the antiproton and proton charges and masses. Here we report two-photon spectroscopy of antiprotonic helium, in which $\\bar{p}^{3}He^{+}$ and $\\bar{p}^{4}He^{+}$ isotopes are irradiated by two counter-propagating laser beams. This excites nonlinear, two-phot...

  18. Advances in Methane Isotope Measurements via Direct Absorption Spectroscopy with Applications to Oil and Gas Source Characterization

    Science.gov (United States)

    Yacovitch, T. I.; Herndon, S. C.; Roscioli, J. R.; Petron, G.; Shorter, J. H.; Jervis, D.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Kolb, C. E., Jr.

    2015-12-01

    Instrumental developments in the measurement of multiple isotopes of methane (12CH4, 13CH4 and 12CH3D) are presented. A first generation 8-micron instrument quantifies 12CH4 and 13CH4 at a 1-second rate via tunable infrared direct absorption spectroscopy (TILDAS). A second generation instrument uses two 3-micron intraband cascade lasers in an Aerodyne dual laser chassis for simultaneous measurement of 12CH4, 13CH4 and 12CH3D. Sensitivity and noise performance improvements are examined. The isotopic signature of methane provides valuable information for emission source identification of this greenhouse gas. A first generation spectrometer has been deployed in the field on a mobile laboratory along with a sophisticated 4-tank calibration system. Calibrations are done on an agressive schedule, allowing for the correction of measured isotope ratios to an absolute isotope scale. Distinct isotopic signatures are found for a number of emission sources in the Denver-Julesburg Basin: oil and gas gathering stations, compressor stations and processing plants; a municipal landfill, and dairy/cattle operations. The isotopic signatures are compared with measured ethane/methane ratios. These direct absorption measurements have larger uncertainties than samples measured via gas chromatography-mass spectrometry, but have several advantages over canister sampling methods: individual sources of short duration are easier to isolate; calibrated isotope ratio results are available immediately; replicate measurements on a single source are easily performed; and the number of sources sampled is not limited by canister availability and processing time.

  19. I20; the Versatile X-ray Absorption spectroscopy beamline at Diamond Light Source

    International Nuclear Information System (INIS)

    Diaz-Moreno, S; Hayama, S; Amboage, M; Freeman, A; Sutter, J; Duller, G

    2009-01-01

    The Versatile Spectroscopy beamline at Diamond Light Source, I20, is currently under construction and aims to begin operation in late 2009 and early 2010. The beamline aims to cover applications from physics, chemistry and biology through materials, environmental and geological science. Three very distinctive modes of operation will be offered at the beamline: scanning X-ray Absorption spectroscopy (XAS), XAS in dispersive mode, and X-ray emission spectroscopy (XES). To achieve this, the beamline has been designed around two independent experimental end-stations operating from a pair of canted wigglers located in a 5m diamond straight section. One branch of the beamline will deliver monochromatic x-ray radiation of high spectral purity to one of the experimental hutches, whilst the other branch will constitute an energy dispersive spectrometer. The novel design of the beamline allows both branches to operate simultaneously.

  20. Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy

    Science.gov (United States)

    Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin

    2013-01-01

    Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985

  1. Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Kondo, Y.

    2016-06-01

    Large acceptance spectrometers at in-flight RI separators have played significant roles in investigating the structure of exotic nuclei. Such spectrometers are in particular useful for probing unbound states of exotic nuclei, using invariant mass spectroscopy with reactions at intermediate and high energies. We discuss here the key characteristic features of such spectrometers, by introducing the recently commissioned SAMURAI facility at the RIBF, RIKEN. We also investigate the issue of cross talk in the detection of multiple neutrons, which has become crucial for exploring further unbound states and nuclei beyond the neutron drip line. Finally we discuss future perspectives for large acceptance spectrometers at the new-generation RI-beam facilities.

  2. Rapid characterisation of Klebsiella oxytoca isolates from contaminated liquid hand soap using mass spectrometry, FTIR and Raman spectroscopy.

    Science.gov (United States)

    Dieckmann, Ralf; Hammerl, Jens Andre; Hahmann, Hartmut; Wicke, Amal; Kleta, Sylvia; Dabrowski, Piotr Wojciech; Nitsche, Andreas; Stämmler, Maren; Al Dahouk, Sascha; Lasch, Peter

    2016-06-23

    Microbiological monitoring of consumer products and the efficiency of early warning systems and outbreak investigations depend on the rapid identification and strain characterisation of pathogens posing risks to the health and safety of consumers. This study evaluates the potential of three rapid analytical techniques for identification and subtyping of bacterial isolates obtained from a liquid hand soap product, which has been recalled and reported through the EU RAPEX system due to its severe bacterial contamination. Ten isolates recovered from two bottles of the product were identified as Klebsiella oxytoca and subtyped using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI TOF MS), near-infrared Fourier transform (NIR FT) Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Comparison of the classification results obtained by these phenotype-based techniques with outcomes of the DNA-based methods pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) analysis of whole-genome sequencing (WGS) data revealed a high level of concordance. In conclusion, a set of analytical techniques might be useful for rapid, reliable and cost-effective microbial typing to ensure safe consumer products and allow source tracking.

  3. Low scale gravity as the source of neutrino masses?

    Energy Technology Data Exchange (ETDEWEB)

    Berezinsky, Veniamin [INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, AQ (Italy); Narayan, Mohan [INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, AQ (Italy); Vissani, Francesco [INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, AQ (Italy)

    2005-04-01

    We address the question whether low-scale gravity alone can generate the neutrino mass matrix needed to accommodate the observed phenomenology. In low-scale gravity the neutrino mass matrix in the flavor basis is characterized by one parameter (the gravity scale M{sub X}) and by an exact or approximate flavor blindness (namely, all elements of the mass matrix are of comparable size). Neutrino masses and mixings are consistent with the observational data for certain values of the matrix elements, but only when the spectrum of mass is inverted or degenerate. For the latter type of spectra the parameter M{sub ee} probed in double beta experiments and the mass parameter probed by cosmology are close to existing upper limits.

  4. Low scale gravity as the source of neutrino masses?

    International Nuclear Information System (INIS)

    Berezinsky, Veniamin; Narayan, Mohan; Vissani, Francesco

    2005-01-01

    We address the question whether low-scale gravity alone can generate the neutrino mass matrix needed to accommodate the observed phenomenology. In low-scale gravity the neutrino mass matrix in the flavor basis is characterized by one parameter (the gravity scale M X ) and by an exact or approximate flavor blindness (namely, all elements of the mass matrix are of comparable size). Neutrino masses and mixings are consistent with the observational data for certain values of the matrix elements, but only when the spectrum of mass is inverted or degenerate. For the latter type of spectra the parameter M ee probed in double beta experiments and the mass parameter probed by cosmology are close to existing upper limits

  5. Synchrotron radiation sources: their properties and applications for VUV and X-ray spectroscopy

    International Nuclear Information System (INIS)

    Koch, E.E.

    1976-09-01

    Synchrotron radiation from accelerators and storage rings offers far reaching possibilities for many fields of basic and applied physics. The properties of synchrotron radiation, existing and planned synchrotron radiation facilities, as well as instrumental aspects are discussed. In order to illustrate the usefulness of the synchrotron radiation sources a few highlights from atomic, molelucar, and solid state spectroscopy are presented and examples from x-ray experiments and from the field of applied physics are given. (orig.) [de

  6. Metrological-grade tunable coherent source in the mid-infrared for molecular precision spectroscopy

    Science.gov (United States)

    Insero, G.; Clivati, C.; D'Ambrosio, D.; Cancio Pastor, P.; Verde, M.; Schunemann, P. G.; Zondy, J.-J.; Inguscio, M.; Calonico, D.; Levi, F.; De Natale, P.; Santambrogio, G.; Borri, S.

    2018-02-01

    We report on a metrological-grade mid-IR source with a 10-14 short-term instability for high-precision spectroscopy. Our source is based on the combination of a quantum cascade laser and a coherent radiation obtained by difference-frequency generation in an orientation-patterned gallium phosphide (OP-GaP) crystal. The pump and signal lasers are locked to an optical frequency comb referenced to the primary frequency standard via an optical fiber link. We demonstrate the robustness of the apparatus by measuring a vibrational transition around 6 μm on a metastable state of CO molecuels with 11 digits of precision.

  7. Integrated Fourier transform infrared spectroscopy and gas chromatography tandem mass spectrometry for forensic engine lubricating oil and biodiesel analysis

    International Nuclear Information System (INIS)

    Shang, D.

    2009-01-01

    Gas chromatography/mass spectrometry(GC/MS) is commonly used for oil fingerprinting and provides investigators with good forensic data. However, new challenges face oil spill forensic chemistry with the growing use of biodiesel as well as the recycling and reprocessing of used oil, particularly lubricating oils. This paper demonstrated that Fourier transform infrared (FTIR) spectroscopy may be a fast, cost effective and complementary method for forensic analysis of biodiesels (fatty acid methyl esters) and lubricating oils. Attenuated total reflectance (ATR)-FTIR spectroscopy was shown to be an interesting analytic method because of its use in monitoring and quantifying minor chemical compounds in sample matrices and its ability to identify a broad range or organic compounds. Unlike chromatography, FTIR spectroscopy with ATR can provide results without compound separation or lengthy sample preparation steps. This study described the combined use of GC and ATR-FTIR in environmental oil spill identification through the matching of source lube oil samples with artificially weathered samples. Samples recovered from a biodiesel spill incident were also investigated. ATR-FTIR provided detailed spectral information for rapid lube oil differentiation. This study was part of a continuing effort to develop a methodology to deal with chemical spills of unknown origin, which is an important aspect in environmental protection and emergency preparedness. This method was only successfully applied to the short term artificially weathered and fresh lube oil characterization, and to limited cases of biodiesel spills. It was concluded that further validation tests are needed to determine if this method can be applied to real-world weather lube oil samples. 10 refs., 11 figs.

  8. Synergy of decay spectroscopy and mass spectrometry for the study of exotic nuclides

    CERN Document Server

    Stanja, Juliane

    With only two ingredients, atomic nuclei exhibit a rich structure depending on the ordering of the different proton- and neutron-occupied states. This ordering can give rise to excited states with exceptionally long half-lives, also known as isomers, especially near shell closures. On-line mass spectrometry can often be compromised by the existence of such states that may even be produced in higher proportion than the ground state. This thesis presents the first results obtained from a nuclear spectroscopy setup coupled with the high-resolution Penning-trap mass spectrometer ISOLTRAP, at CERN’s radioactive ion beam facility ISOLDE. The isomerism in the neutron-deficient thallium isotopes was investigated. The data on $^{184,190,193−195}$Tl allow an improvement of existing mass values as well as a mass-spin- state assignment in $^{ 190,193,194}$Tl. Due to the presence of the ground and isomeric state for $^{ 194}$Tl the excitation energy of the latter was determined for the first time experimentally. Syste...

  9. Synergy of decay spectroscopy and mass spectrometry for the study of exotic nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Stanja, Juliane

    2013-04-12

    With only two ingredients, atomic nuclei exhibit a rich structure depending on the ordering of the different proton- and neutron-occupied states. This ordering can give rise to excited states with exceptionally long half-lives, also known as isomers, especially near shell closures. On-line mass spectrometry can often be compromised by the existence of such states that may even be produced in higher proportion than the ground state. This thesis presents the first results obtained from a nuclear spectroscopy setup coupled with the high-resolution Penning-trap mass spectrometer ISOLTRAP, at CERN's radioactive ion beam facility ISOLDE. The isomerism in the neutron-deficient thallium isotopes was investigated. The data on {sup 184,190,193-195}Tl allow an improvement of existing mass values as well as a mass-spin-state assignment in {sup 190,193,194}Tl. Due to the presence of the ground and isomeric state for {sup 194}Tl the excitation energy of the latter was determined for the first time experimentally. Systematic trends in the vicinity of the Z = 82 shell closure have been discussed.

  10. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  11. Theoretical and instrumental aspects of preparation of radioactive sources for precise nuclear spectroscopy

    International Nuclear Information System (INIS)

    Babenkov, M.I.; Kadyrzhanov, K.K.; Zhdanov, V.S.

    2005-01-01

    Full text: Precise investigations of spectra from nuclear radiations are quite sensitive to quality of radiation sources used. In an ideal case a source should introduce no noticeable distortion into registered spectrum. In spectroscopy of low-energy gamma-quanta, electrons and alpha particles sample preparation quite frequently turns to be challenging independent scientific investigation. Source preparation is conventionally performed at two stages - extraction of activity from a target and its uniform distribution over a substrate. A general requirement to such radioactive layer is maximal total and specific activity. Unfortunately, there is no universal source preparation method currently available for precise spectroscopy. In a number of cases excellent results are provided by fractional sublimation method based on ability of some elements to evaporate from target material at heating. The method demonstrates a several advantages. The paper introduces a complex of experimental equipment for preparation of high-quality radioactive sources. This complex is arranged in a well-protected heavy box equipped with master-slave manipulators. Biological protection of the box makes it possible to handle activities up to 10 11 Bq. Main part of the complex is a special vacuum post that assures works with active samples in the vacuum up to 10 -7 mm Hg - the operations include fractional sublimation, thermal evaporation, thermal diffusion, evaporation by electron beam, etc. All units of the vacuum post arranged in the box are designed to work with master-slave manipulators. The post is mainly used for preparation of a high-quality beta sources and extraction of microamounts of radionuclides from reactor and cyclotron targets by the method of fractional sublimation. Another important unit of the complex is an equipment for selective chemisorption in vacuum. Complex comprises all required auxiliary equipment The entire complex operated at high rate of reliability. The paper pays

  12. Broadband integrated mid infrared light sources as enabling technology for point of care mid-infrared spectroscopy

    Science.gov (United States)

    2017-08-20

    AFRL-AFOSR-JP-TR-2017-0061 Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy Alex...mid-infrared light sources as enabling technology for point-of-care mid-infrared spectroscopy 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-16-1-4037...Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy ” Date: 16th August 2017 Name

  13. Characterisation of an ion source on the Helix MC Plus noble gas mass spectrometer - pressure dependent mass discrimination

    Science.gov (United States)

    Zhang, X.

    2017-12-01

    Characterisation of an ion source on the Helix MC Plusnoble gas mass spectrometer - pressure dependent mass discrimination Xiaodong Zhang* dong.zhang@anu.edu.au Masahiko Honda Masahiko.honda@anu.edu.au Research School of Earth Sciences, The Australian National University, Canberra, Australia To obtain reliable measurements of noble gas elemental and isotopic abundances in a geological sample it is essential that the mass discrimination (instrument-induced isotope fractionation) of the mass spectrometer remain constant over the working range of noble gas partial pressures. It is known, however, that there are pressure-dependent variations in sensitivity and mass discrimination in conventional noble gas mass spectrometers [1, 2, 3]. In this study, we discuss a practical approach to ensuring that the pressure effect in the Helix MC Plus high resolution, multi-collector noble gas mass spectrometer is minimised. The isotopic composition of atmospheric Ar was measured under a range of operating conditions to test the effects of different parameters on Ar mass discrimination. It was found that the optimised ion source conditions for pressure independent mass discrimination for Ar were different from those for maximised Ar sensitivity. The optimisation can be achieved by mainly adjusting the repeller voltage. It is likely that different ion source settings will be required to minimise pressure-dependent mass discrimination for different noble gases. A recommended procedure for tuning an ion source to reduce pressure dependent mass discrimination will be presented. References: Honda M., et al., Geochim. Cosmochim. Acta, 57, 859 -874, 1993. Burnard P. G., and Farley K. A., Geochemistry Geophysics Geosystems, Volume 1, 2000GC00038, 2000. Mabry J., et al., Journal of Analytical Atomic Spectrometry, 27, 1012 - 1017, 2012.

  14. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones.

    Science.gov (United States)

    Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M

    2018-04-01

    Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of

  15. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones

    Science.gov (United States)

    Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M.

    2018-04-01

    Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of

  16. A novel low cost pulse excitation source to study trap spectroscopy of persistent luminescent materials

    Science.gov (United States)

    Chandrasekhar, Ngangbam; Singh, Nungleppam Monorajan; Gartia, R. K.

    2018-04-01

    Luminescent techniques require one or the other source of excitations which may vary from high cost X-rays, γ-rays, β-rays etc. to low cost LED. Persistent luminescent materials or Glow-in-the-Dark phosphors are the optical harvesters which store the optical energy from day light illuminating a whole night. They are so sensitive that they can be excited even with the low light of firefly. Therefore, instead of using a high cost excitation source authors have developed a low cost functioning of excitation source controlling short pulses of LED to excite persistent phosphors with the aid of ExpEYES Junior (Hardware/software framework developed by IUAC, New Delhi). Using this, the authors have excited the sample under investigation upto 10 ms. Trap spectroscopy of the pre-excited sample with LED is studied using Thermoluminescence (TL) technique. In this communication, development of the excitation source is discussed and demonstrate the its usefulness in the study of trap spectroscopy of commercially available CaS:Eu2+, Sm3+. Trapping parameters are also evaluated using Computerized Glow Curve Deconvolution (CGCD) technique.

  17. Scientific opportunities in nuclear resonance spectroscopy from source-driven revolution

    Energy Technology Data Exchange (ETDEWEB)

    Shenoy, G. K., E-mail: gks@aps.anl.gov [Argonne National Laboratory (United States); Roehlsberger, R. [Deutsches Elektronen Synchrotron, DESY (Germany)

    2008-02-15

    From the beginning of its discovery the Moessbauer effect has continued to be one of the most powerful tools with broad applications in diverse areas of science and technology. With the advent of synchrotron radiation sources such as the Advanced Photon Source (APS), the European Synchrotron Radiation Facility (ESRF) and the Super Photon Ring-8 (SPring-8), the tool has enlarged its scope and delivered new capabilities. The popular techniques most generally used in the field of materials physics, chemical physics, geoscience, and biology are hyperfine spectroscopy via elastic nuclear forward scattering (NFS), vibrational spectroscopy via nuclear inelastic scattering (NRIXS), and, to a lesser extent, diffusional dynamics from quasielastic nuclear forward scattering (QNFS). As we look ahead, new storage rings with enhanced brilliance such as PETRA-III under construction at DESY, Hamburg, and PEP-III in its early design stage at SLAC, Stanford, will provide new and unique science opportunities. In the next two decades, x-ray free-electron lasers (XFELs), based both on self-amplified spontaneous emission (SASE-XFELs) and a seed (SXFELs), with unique time structure, coherence and a five to six orders higher average brilliance will truly revolutionize nuclear resonance applications in a major way. This overview is intended to briefly address the unique radiation characteristics of new sources on the horizon and to provide a glimpse of scientific prospects and dreams in the nuclear resonance field from the new radiation sources. We anticipate an expanded nuclear resonance research activity with applications such as spin and phonon mapping of a single nanostructure and their assemblies, interfaces, and surfaces; spin dynamics; nonequilibrium dynamics; photochemical reactions; excited-state spectroscopy; and nonlinear phenomena.

  18. Indigenous instrumentation for mass spectrometry: Part II - development of plasma source mass spectrometers. PD-5-3

    International Nuclear Information System (INIS)

    Nataraju, V.

    2007-01-01

    The growing demands from analytical community, for a precise isotope ratio and ultra trace concentration measurements, has lead to significant improvement in mass spectrometer instrumentation development with respect to sensitivity, detection limits, precision and accuracy. Among the many analytical techniques available, plasma source mass spectrometers like Inductively Coupled Plasma Mass Spectrometry (ICPMS), multi collector (MC) ICPMS and Glow Discharge Mass Spectrometry (GDMS), have matured into reliable tools for the above applications. Where as ICPMS is by far the most successful method for aqueous solutions, GDMS is being applied for bulk and impurity analysis of conducting as well non-conducting solids. VPID, BARC has been developing mass spectrometers for different inorganic applications of DAE users. Over the years expertise has been developed in all the aspects of mass spectrometry instrumentation. Part 1 of this indigenous instrumentation on mass spectrometry gives details of magnetic sector instruments with either EI or TI source for isotopic ratio analysis. The present paper is a continuation of that on plasma source and quadrupole mass spectrometers. This paper covers i) ICP-QMS, ii) MC-ICPMS, iii) GDMS and iv) QMS

  19. Determination And Characteristic Oil Biomarker Of Illegal Crude Oil Production Using Mass Spectroscopy in Musi Banyuasin District

    Directory of Open Access Journals (Sweden)

    Edhi suryanto

    2018-03-01

    Full Text Available South Sumatra is one of the largest petroleum producing provinces in Indonesia, especially in the region of Musi Banyuasin Petroleum resources other than legally cultivated by Pertamina as government representatives, but on the other hand the community also participate through Illegal Drilling activities. This study aims to determine the hydrocarbon content and characterization of petroleum produced illegally by communities in the Sangadesa, Babattoman and Keluang districts through the biomarker analysis of the distribution of n-Alkane C10-C34 (m/z: 57, pristane, phytane, sterane C27-C29 (m/z: 217,218,259 and specific biomarker using Gas Chromatography Mass Spectroscopy agilent GCMSD 6890/5973i with data analysis using MSD Chemstation F.01.01.2317 and Library Database NIST14. Petroleum samples taken from 10 illegal wells with a depth range of 80-250 meters and production period of 3 months until 3 years. Oil is produced through The illegal drilling is not the main oil source rock but the result of migration. Biomarkers Hydrocarbon analysis is one of the most widely used devices for exploration geochemistry, exploitation, production and forensic environment in the assessment and determination of sources of pollution related to petroleum material and derivatives very well.

  20. Topological sources of soliton mass and supersymmetry breaking

    Science.gov (United States)

    Haas, Patrick A.

    2018-06-01

    We derive the Smarr formulae for two five-dimensional solutions of supergravity, which are asymptotically ; in particular, one has a magnetic ‘bolt’ in its center, and one is a two-center solution. We show for both spacetimes that supersymmetry—and so the BPS-bound—is broken by the holonomy and how each topological feature of a space-like hypersurface enters Smarr’s mass formula, with emphasis on the ones that give rise to the stated violation of the BPS-bound. In this light, we question if any violating extra-mass term in a spacetime with such asymptotics is only evident in the ADM mass while the Komar mass per se ‘tries’ to preserve BPS. Finally, we derive the cohomological fluxes for each situation and examine in a more general fashion how the breaking of supersymmetry—and so the BPS-bound violation—is associated with their topologies. In the second (and more complicated) scenario, we especially focus on the compact cycle linking the centers, and the contribution of non-vanishing bulk terms in the mass formula to the breaking of supersymmetry.

  1. Investigating the influence of DNAPL spill characteristics on source zone architecture and mass removal in pool-dominated source zones

    Science.gov (United States)

    Wallace, K. A.; Abriola, L.; Chen, M.; Ramsburg, A.; Pennell, K. D.; Christ, J.

    2009-12-01

    Multiphase, compositional simulators were employed to investigate the spill characteristics and subsurface properties that lead to pool-dominated, dense non-aqueous phase liquid (DNAPL) source zone architectures. DNAPL pools commonly form at textural interfaces where low permeability lenses restrict the vertical migration of DNAPL, allowing for DNAPL to accumulate, reaching high saturation. Significant pooling has been observed in bench-scale experiments and field settings. However, commonly employed numerical simulations rarely predict the pooling suspected in the field. Given the importance of pooling on the efficacy of mass recovery and the down-gradient contaminant signal, it is important to understand the predominant factors affecting the creation of pool-dominated source zones and their subsequent mass discharge. In this work, contaminant properties, spill characteristics and subsurface permeability were varied to investigate the factors contributing to the development of a pool-dominated source zone. DNAPL infiltration and entrapment simulations were conducted in two- and three-dimensional domains using the University of Texas Chemical Compositional (UTCHEM) simulator. A modified version of MT3DMS was then used to simulate DNAPL dissolution and mass discharge. Numerical mesh size was varied to investigate the importance of numerical model parameters on simulations results. The temporal evolution of commonly employed source zone architecture metrics, such as the maximum DNAPL saturation, first and second spatial moments, and fraction of DNAPL mass located in pools, was monitored to determine how the source zone architecture evolved with time. Mass discharge was monitored to identify the link between source zone architecture and down-gradient contaminant flux. Contaminant characteristics and the presence of extensive low permeability lenses appeared to have the most influence on the development of a pool-dominated source zone. The link between DNAPL mass

  2. Inferring the Composition of Super-Jupiter Mass Companions of Pulsars with Radio Line Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Alak; Loeb, Abraham, E-mail: akr@tifr.res.in, E-mail: aloeb@cfa.harvard.edu [Institute of Theory and Computation, Center for Astrophysics, Harvard University 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-02-10

    We propose using radio line spectroscopy to detect molecular absorption lines (such as OH at 1.6–1.7 GHz) before and after the total eclipse of black widow and other short orbital period binary pulsars with low-mass companions. The companion in such a binary may be ablated away by energetic particles and high-energy radiation produced by the pulsar wind. The observations will probe the eclipsing wind being ablated by the pulsar and constrain the nature of the companion and its surroundings. Maser emission from the interstellar medium stimulated by a pulsar beam might also be detected from the intrabinary medium. The short temporal resolution allowed by the millisecond pulsars can probe this medium with the high angular resolution of the pulsar beam.

  3. Determination of the first ionization potential of actinides by resonance ionization mass spectroscopy

    International Nuclear Information System (INIS)

    Koehler, S.; Albus, F.; Dibenberger, R.; Erdmann, N.; Funk, H.; Hasse, H.; Herrmann, G.; Huber, G.; Kluge, H.; Nunnemann, M.; Passler, G.; Rao, P.M.; Riegel, J.; Trautmann, N.; Urban, F.

    1995-01-01

    Resonance ionization mass spectroscopy (RIMS) is used for the precise determination of the first ionization potential of transuranium elements. The first ionization potentials (IP) of americium and curium have been measured for the first time to IP Am =5.9738(2) and IP Cm =5.9913(8) eV, respectively, using only 10 12 atoms of 243 Am and 248 Cm. The same technique was applied to thorium, neptunium, and plutonium yielding IP T H =6.3067(2), IP N P =6.2655(2), and IP Pu =6.0257(8) eV. The good agreement of our results with the literature data proves the precision of the method which was additionally confirmed by the analysis of Rydberg seris of americium measured by RIMS. copyright American Institute of Physics 1995

  4. Study of the meson mass spectroscopy with a potential model inspired in the quantum chromodynamics

    International Nuclear Information System (INIS)

    Bernardini, Alex Eduardo de

    2001-01-01

    Since the discovery of QCD (Quantum Chromodynamics), there have been remarkable technical achievements in perturbative calculations applied to hadrons. However, it is difficult to use QCD directly to compute hadronic properties. In this context, phenomenological potential models have provided extremely satisfactory results on description of ordinary hadrons, more specifically about quark-antiquark bound states (mesons). In this work we propose and study the main aspects in the construction of a potential model and search a generalized description of meson spectroscopy, with emphasis in heavy quark bound states. We analyze important aspects in the choice of the treatment in good agreement with the dynamics of interacting particles, attempting to relativistic aspects as well as to the possibilities of nonrelativistic approximation analysis. Initially the 'soft QCD' is employed to determine effective potential terms establishing the asymptotic Coulomb term from one gluon exchange approximation. At the same time, a linear confinement term is introduced in accordance with QCD and phenomenological prescription. We perform the calculations of mass spectroscopy for particular sets of mesons and we verify whether the potential model could be extended to calculating the electronic transition rate (Γ(q q-bar → e - e + )). Finishing, we discuss the real physical possibilities of development of a generalized potential model (all quark flavors), its possible advantages relative to experimental parametrization, complexity in numerical calculations and in the description of physical reality in agreement with a quantum field theory (QCD). (author)

  5. A common source for neutrino and sparticle masses

    CERN Document Server

    Brignole, Andrea; Rossi, Anna

    2010-01-01

    We discuss supersymmetric scenarios in which neutrino masses arise from effective d=6 operators in the Kahler potential (including SUSY-breaking insertions). Simple explicit realizations of those Kahler operators are presented in the context of the type II seesaw. An appealing scenario emerges upon identifying the seesaw mediators with SUSY-breaking messengers.

  6. A very high yield electron impact ion source for analytical mass spectrometry

    International Nuclear Information System (INIS)

    Koontz, S.L.; Bonner Denton, M.

    1981-01-01

    A novel ion source designed for use in mass spectrometric determination of organic compounds is described. The source is designed around a low pressure, large volume, hot cathode Penning discharge. The source operates in the 10 -4 - 10 -7 torr pressure domain and is capable of producing focusable current densities several orders of magnitude greater than those produced by conventional Nier -type sources. Mass spectra of n-butane and octafluoro-2-butene are presented. An improved signal-to-noise ratio is demonstrated with a General Electric Monopole 300 mass spectrometer. (orig.)

  7. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... characterized by using phenotypic, API and Fourier transform infrared (FTIR) spectroscopy methods. One hundred and fifty-seven (157) strains were isolated from 13 cheese samples, and identification test was performed for 83 strains. At the end of the study, a total of 22 Lactococcus sp., 36 Enterecoccus ...

  8. Structural Characterization of Laboratory Made Tholins by IRMPD Action Spectroscopy and Ultrahigh Resolution Mass Spectrometry

    Science.gov (United States)

    Thissen, R.; Somogyi, A.; Vuitton, V.; Bégué, D.; Lemaire, J.; Steinmetz, V.

    2011-10-01

    The complex organic material that is found on the surface and within the haze layer of Titan is attributed to chemistry occurring in its thick N2/CH4 atmosphere. Although several groups are producing in various laboratory setting the socalled tholins which have been investigated by using analytical methods including UV/Vis, fluorescence, IR, and MS1-5, these very complex organic mixtures still hold many unanswered questions, especially related to the potentiality for their prebiotic chemistry. In addition to tholins characterization and analysis, we recently investigated quantitatively the hydrolysis kinetics of tholins in pure and NH3 containing water at different temperatures.7-8 Our groups at UJF (Grenoble) and at U of Arizona (Tucson) have been collaborating on mass spectral analyses of tholins samples for several years.9 Here, we report our most recent results on the structural characterization of tholins by infrared multiphoton dissociation (IRMPD) action spectroscopy10 and ultrahigh resolution MS. IRMPD action spectroscopy is a recently developed technique that uses IR photons of variable wavelengths to activate ions trapped inside an ion trap. When photons are absorbed at a given wavelength, the selected ion fragments and this fragmentation is monitored as a function of wavelength, analog to an absorption spectrum (impossible to record otherwise because of the much reduced density). This technique can, therefore, be used to determine IR spectra of ions in the gas phase, and provides with very acute structural information. IRMPD action spectroscopy is often used to distinguish between structural isomers of isobaric ions. The drawback is that it requests for high power lasers. Only two Free Electron Lasers (FEL) are available in the world and allow to record spectra with reasonable resolution (20-25 cm-1). IRMPD action spectra of selected ions from tholins will be presented and discussed together with observed fragmentation processes that reveal structural

  9. Nuclear and x-ray spectroscopy with radioactive sources. Fifteenth annual progress report

    International Nuclear Information System (INIS)

    Rink, R.W.; Wood, J.L.

    1979-01-01

    Research during the year is summarized briefly for the following areas: nuclear spectroscopy (including nuclear systematics and models and experimental studies of heavy-nucleus decays), x rays from radioactive sources (including L-subshell x-ray fluorescence and Coster-Kronig yields and the measurement of tailing corrections in low-energy coincidence intensity determinations), and miscellaneous topics concerning computer codes and equipment. One may assume publication of completed work in the usual channels. Lists of personnel, publications, etc., are included. 7 figures

  10. In vivo time-gated diffuse correlation spectroscopy at quasi-null source-detector separation.

    Science.gov (United States)

    Pagliazzi, M; Sekar, S Konugolu Venkata; Di Sieno, L; Colombo, L; Durduran, T; Contini, D; Torricelli, A; Pifferi, A; Mora, A Dalla

    2018-06-01

    We demonstrate time domain diffuse correlation spectroscopy at quasi-null source-detector separation by using a fast time-gated single-photon avalanche diode without the need of time-tagging electronics. This approach allows for increased photon collection, simplified real-time instrumentation, and reduced probe dimensions. Depth discriminating, quasi-null distance measurement of blood flow in a human subject is presented. We envision the miniaturization and integration of matrices of optical sensors of increased spatial resolution and the enhancement of the contrast of local blood flow changes.

  11. 2MASS extended sources in the zone of avoidance

    Science.gov (United States)

    Jarrett, T.; Chester, T.; Cutri, R.; Schneider, S.; Rosenberg, J.; Huchra, J.; Mader, J.

    2000-01-01

    A new high-resolution near-infrared mapping effort, the Two Micron All Sky Survey (2MASS), is now underway and will provide a complete census of galaxies as faint as 13.5 mag (3 mJy) at 2.2 mu m for most of the sky, and similar to 12.1 mag (10 mJy) for regions veiled by the Milky Way.

  12. Concurrent Mass Measurement and Laser Spectroscopy for Unambiguous Isomeric State Assignment

    Science.gov (United States)

    Lascar, Daniel; Babcock, Carla; Henderson, Jack; Pearson, Matt

    2017-09-01

    Recent work by the TITAN group at TRIUMF on isomeric state mass measurements of odd-A, neutron-rich cadmium nuclei has shown a disconnect between experiment and theory in 127 g , mCd. The spin and parity assignments of the ground and isomeric states are assigned as 3/2+ and 11/2-, respectively, primarily via systematic arguments. Conversely, state of the art shell model and ab initio calculations show a reversal of the states, predicting a ground state of 11/2- and a 3/2+ isomer. Penning Trap Mass Spectrometry (PTMS) can measure the energy separation between the ground state and the isomer without ambiguity but cannot, on its own, comment on the spin and parity. Collinear Laser Spectroscopy (CLS) experiments have been performed on 127Cd and have elegantly demonstrated the existence of both 3/2+ and 11/2- states. What CLS cannot do, on its own, is assign an ordering to those states. If, however, a PTMS and CLS experiment could be performed concurrently using identical beams from the same facility then there exists sufficient information shared between both experiments that a definitive assignment can be made. We present a concept for a new slate of measurements using existing experimental facilities simultaneously, with shared resources, to definitively assign spin and parity for ground and isomeric states in short-lived nuclei.

  13. Determining Mass and Persistence of a Reactive Brominated-Solvent DNAPL Source Using Mass Depletion-Mass Flux Reduction Relationships During Pumping

    Science.gov (United States)

    Johnston, C. D.; Davis, G. B.; Bastow, T.; Annable, M. D.; Trefry, M. G.; Furness, A.; Geste, Y.; Woodbury, R.; Rhodes, S.

    2011-12-01

    Measures of the source mass and depletion characteristics of recalcitrant dense non-aqueous phase liquid (DNAPL) contaminants are critical elements for assessing performance of remediation efforts. This is in addition to understanding the relationships between source mass depletion and changes to dissolved contaminant concentration and mass flux in groundwater. Here we present results of applying analytical source-depletion concepts to pumping from within the DNAPL source zone of a 10-m thick heterogeneous layered aquifer to estimate the original source mass and characterise the time trajectory of source depletion and mass flux in groundwater. The multi-component, reactive DNAPL source consisted of the brominated solvent tetrabromoethane (TBA) and its transformation products (mostly tribromoethene - TriBE). Coring and multi-level groundwater sampling indicated the DNAPL to be mainly in lower-permeability layers, suggesting the source had already undergone appreciable depletion. Four simplified source dissolution models (exponential, power function, error function and rational mass) were able to describe the concentration history of the total molar concentration of brominated organics in extracted groundwater during 285 days of pumping. Approximately 152 kg of brominated compounds were extracted. The lack of significant kinetic mass transfer limitations in pumped concentrations was notable. This was despite the heterogeneous layering in the aquifer and distribution of DNAPL. There was little to choose between the model fits to pumped concentration time series. The variance of groundwater velocities in the aquifer determined during a partitioning inter-well tracer test (PITT) were used to parameterise the models. However, the models were found to be relatively insensitive to this parameter. All models indicated an initial source mass around 250 kg which compared favourably to an estimate of 220 kg derived from the PITT. The extrapolated concentrations from the

  14. Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects

    Science.gov (United States)

    Zarafshani, Ali; Bach, Thomas; Chatwin, Chris; Xiang, Liangzhong; Zheng, Bin

    2017-03-01

    Electrical Impedance Spectroscopy (EIS) has emerged as a non-invasive imaging modality to detect and quantify functional or electrical properties related to the suspicious tumors in cancer screening, diagnosis and prognosis assessment. A constraint on EIS systems is that the current excitation system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIS is an ill-posed inverse problem which depends on the noise level in EIS measured data and regularization parameter in the reconstruction algorithm. There is high complexity in the design of stable current sources, with stray capacitance reducing the output impedance and bandwidth of the system. To confront this, we have designed an EIS current source which eliminates the effect of stray capacitance and other impacts of the capacitance via a variable inductance. In this paper, we present a combination of operational CCII based on a generalized impedance converter (OCCII-GIC) with a current source. The aim of this study is to use the EIS system as a biomedical imaging technique, which is effective in the early detection of breast cancer. This article begins with the theoretical description of the EIS structure, current source topologies and proposes a current conveyor in application of a Gyrator to eliminate the current source limitations and its development followed by simulation and experimental results. We demonstrated that the new design could achieve a high output impedance over a 3MHz frequency bandwidth when compared to other types of GIC circuits combined with an improved Howland topology.

  15. Advances in Mineral Dust Source Composition Measurement with Imaging Spectroscopy at the Salton Sea, CA

    Science.gov (United States)

    Green, R. O.; Realmuto, V. J.; Thompson, D. R.; Mahowald, N. M.; Pérez García-Pando, C.; Miller, R. L.; Clark, R. N.; Swayze, G. A.; Okin, G. S.

    2015-12-01

    Mineral dust emitted from the Earth's surface is a principal contributor to direct radiative forcing over the arid regions, where shifts in climate have a significant impact on agriculture, precipitation, and desert encroachment around the globe. Dust particles contribute to both positive and negative forcing, depending on the composition of the particles. Particle composition is a function of the surface mineralogy of dust source regions, but poor knowledge of surface mineralogy on regional to global scales limits the skill of Earth System models to predict shifts in regional climate around the globe. Earth System models include the source, emission, transport and deposition phases of the dust cycle. In addition to direct radiative forcing contributions, mineral dust impacts include indirect radiative forcing, modification of the albedo and melting rates of snow and ice, kinetics of tropospheric photochemistry, formation and deposition of acidic aerosols, supply of nutrients to aquatic and terrestrial ecosystems, and impact on human health and safety. We demonstrate the ability to map mineral dust source composition in the Salton Sea dust source region with imaging spectroscopy measurements acquired as part of the NASA HyspIRI preparatory airborne campaign. These new spectroscopically derived compositional measurements provide a six orders of magnitude improvement over current atlases for this dust source region and provide a pathfinder example for a remote measurement approach to address this critical dust composition gap for global Earth System models.

  16. Development of resonant detectors for epithermal neutron spectroscopy at pulsed neutron sources

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Senesi, R.; Andreani, C.; Gorini, G.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are opened by the development of new detectors for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank planned to be delivered, within the next 4 years, within the eVERDI project, on the neutron spectrometer VESUVIO, at the ISIS pulsed neutron source (UK). VLAD will extend the (q,ω) kinematical region for neutron scattering to low wavefactor transfer (q -1 ) still keeping energy transfer >1 eV, thus allowing the investigations of new experimental studies in condensed matter systems. The technique being developed for detection of epithermal neutrons, within this low q and high-energy transfer region, is the Resonance Detection Technique. In this work, the state of the detector development will be presented with special focus on the results obtained with some prototype detectors, namely YAP scintillators and cadmium-zinc-telluride semiconductors

  17. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    International Nuclear Information System (INIS)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mächler, Jean-Pierre; Jordan, Inga; Wörner, Hans Jakob; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto; Bokhoven, Jeroen A. van

    2013-01-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented

  18. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions.

    Science.gov (United States)

    Brown, Matthew A; Redondo, Amaia Beloqui; Jordan, Inga; Duyckaerts, Nicolas; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Müächler, Jean-Pierre; Birrer, Mario; Honegger, Juri; Wetter, Reto; Wörner, Hans Jakob; van Bokhoven, Jeroen A

    2013-07-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  19. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mächler, Jean-Pierre [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland); Jordan, Inga; Wörner, Hans Jakob [Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich (Switzerland); Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Bokhoven, Jeroen A. van [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland); Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2013-07-15

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  20. GPI Spectroscopy of the Mass, Age, and Metallicity Benchmark Brown Dwarf HD 4747 B

    Science.gov (United States)

    Crepp, Justin R.; Principe, David A.; Wolff, Schuyler; Giorla Godfrey, Paige A.; Rice, Emily L.; Cieza, Lucas; Pueyo, Laurent; Bechter, Eric B.; Gonzales, Erica J.

    2018-02-01

    The physical properties of brown dwarf companions found to orbit nearby, solar-type stars can be benchmarked against independent measures of their mass, age, chemical composition, and other parameters, offering insights into the evolution of substellar objects. The TRENDS high-contrast imaging survey has recently discovered a (mass/age/metallicity) benchmark brown dwarf orbiting the nearby (d = 18.69 ± 0.19 pc), G8V/K0V star HD 4747. We have acquired follow-up spectroscopic measurements of HD 4747 B using the Gemini Planet Imager to study its spectral type, effective temperature, surface gravity, and cloud properties. Observations obtained in the H-band and K 1-band recover the companion and reveal that it is near the L/T transition (T1 ± 2). Fitting atmospheric models to the companion spectrum, we find strong evidence for the presence of clouds. However, spectral models cannot satisfactorily fit the complete data set: while the shape of the spectrum can be well-matched in individual filters, a joint fit across the full passband results in discrepancies that are a consequence of the inherent color of the brown dwarf. We also find a 2σ tension in the companion mass, age, and surface gravity when comparing to evolutionary models. These results highlight the importance of using benchmark objects to study “secondary effects” such as metallicity, non-equilibrium chemistry, cloud parameters, electron conduction, non-adiabatic cooling, and other subtleties affecting emergent spectra. As a new L/T transition benchmark, HD 4747 B warrants further investigation into the modeling of cloud physics using higher resolution spectroscopy across a broader range of wavelengths, polarimetric observations, and continued Doppler radial velocity and astrometric monitoring.

  1. Improving the Selectivity of the ISOLDE Resonance Ionization Laser Ion Source and In-Source Laser Spectroscopy of Polonium

    CERN Document Server

    Fink, Daniel Andreas; Jochim, Selim

    Exotic atomic nuclei far away from stability are fascinating objects to be studied in many scientic elds such as atomic-, nuclear-, and astrophysics. Since these are often short-lived isotopes, it is necessary to couple their production with immediate extraction and delivery to an experiment. This is the purpose of the on-line isotope separator facility, ISOLDE, at CERN. An essential aspect of this laboratory is the Resonance Ionization Laser Ion Source (RILIS) because it provides a fast and highly selective means of ionizing the reaction products. This technique is also a sensitive laser-spectroscopy tool for the development and improvement of electron excitation schemes for the resonant laser photoionization and the study of the nuclear structure or fundamental atomic physics. Each of these aspects of the RILIS applications are subjects of this thesis work: a new device for the suppression of unwanted surface ionized contaminants in RILIS ion beams, known as the Laser Ion Source and Trap (LIST), was impleme...

  2. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  3. Toward Femtosecond X-ray Spectroscopy at the Advanced Light Source

    International Nuclear Information System (INIS)

    Chong, Henry Herng Wei

    2004-01-01

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates ∼100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a ΔS = 2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented

  4. Mass conservation for instantaneous sources in FEM3 simulations of material dispersion

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1987-11-01

    This report presents the results of a systematic study in which it is shown that the numerical integration errors in determining material mass content are negligible; the material phase-change model by itself is not a cause of material mass variation; and a linear relation between fractional mass change and fractional density change at the source center for given mesh and source geometries exists over a range of values from 10 -5 to 10 -1 . This suggests that the omission of the ∂ rho/∂t term from the mass conservation equation is the cause of the observed non-conservation of mass by FEM3. It is shown that these mass variations can be minimized by minimizing the initial density gradients in the source region. 5 refs., 18 figs., 4 tabs

  5. Analysis of the image of pion-emitting sources in the source center-of-mass frame

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yanyu; Feng, Qichun; Huo, Lei; Zhang, Jingbo; Liu, Jianli; Tang, Guixin [Harbin Institute of Technology, Department of Physics, Harbin, Heilongjiang (China); Zhang, Weining [Harbin Institute of Technology, Department of Physics, Harbin, Heilongjiang (China); Dalian University of Technology, School of Physics and Optoelectronic Technology, Dalian, Liaoning (China)

    2017-08-15

    In this paper, we try a method to extract the image of pion-emitting source function in the center-of-mass frame of the source (CMFS). We choose identical pion pairs according to the difference of their energy and use these pion pairs to build the correlation function. The purpose is to reduce the effect of ΔEΔt, thus the corresponding imaging result can tend to the real source function. We examine the effect of this method by comparing its results with real source functions extracted from models directly. (orig.)

  6. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    Science.gov (United States)

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-09

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  7. Phytochemical Profile of Erythrina variegata by Using High-Performance Liquid Chromatography and Gas Chromatography-Mass Spectroscopy Analyses.

    Science.gov (United States)

    Muthukrishnan, Suriyavathana; Palanisamy, Subha; Subramanian, Senthilkumar; Selvaraj, Sumathi; Mari, Kavitha Rani; Kuppulingam, Ramalingam

    2016-08-01

    Natural products derived from plant sources have been utilized to treat patients with numerous diseases. The phytochemical constituents present in ethanolic leaf extract of Erythrina variegata (ELEV) were identified by using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectroscopy (GC-MS) analyses. Shade dried leaves were powdered and extracted with ethanol for analyses through HPLC to identify selected flavonoids and through GC-MS to identify other molecules. The HPLC analysis of ELEV showed the presence of gallic and caffeic acids as the major components at concentrations of 2.0 ppm and 0.1 ppm, respectively, as well as other components. GC-MS analysis revealed the presence of 3-eicosyne; 3,7,11,15-tetramethyl-2-hexadecen-1-ol; butanoic acid, 3-methyl-3,7-dimethyl-6-octenyl ester; phytol; 1,2-benzenedicarboxylic acid, diundecyl ester; 1-octanol, 2-butyl-; squalene; and 2H-pyran, 2-(7-heptadecynyloxy) tetrahydro-derivative. Because pharmacopuncture is a new evolving natural mode that uses herbal extracts for treating patients with various ailments with minimum pain and maximum effect, the results of this study are particularly important and show that ELEV possesses a wide range of phytochemical constituents, as indicated above, as effective active principle molecules that can be used individually or in combination to treat patients with various diseases. Copyright © 2016. Published by Elsevier B.V.

  8. Comparison between proton transfer reaction mass spectrometry and near infrared spectroscopy for the authentication of Brazilian coffee

    NARCIS (Netherlands)

    Monteiro, Pablo Inocêncio; Santos, Jânio Sousa; Alvarenga Brizola, Vitor Rafael; Pasini Deolindo, Carolina Turnes; Koot, Alex; Boerrigter-Eenling, Rita; Ruth, van Saskia; Georgouli, Konstantia; Koidis, Anastasios; Granato, Daniel

    2018-01-01

    In this study, proton-transfer reaction mass spectrometry (PTR-MS) and near-infrared spectroscopy (NIRS) were compared for the authentication of geographical and farming system origins of Brazilian coffees. For this purpose, n = 19 organic (ORG) and n = 26 conventional (CONV) coffees from

  9. Characterization of tunable light source by optical parametric oscillator for high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. W. [Ewha Womens Univ., Seoul (Korea); Rhee, B. G. [Sejong Univ., Seoul (Korea); Park, S. W. [Yonsei Univ., Seoul (Korea); Noh, J. W. [Inha Univ., Incheon (Korea)

    1998-04-01

    A tunable light source is developed by the optical parametric oscillator, which is very useful for a high resolution spectroscopy. The electronic structure of molecules and atoms can be examined by a proper coherent light source. Optical parametric oscillator provides light sources stable and widely tunable. In this work, the characteristics of the parametric optical generation are examined in the LiNbO{sub 3}. The theoretical analysis as well as the experimental measurement is performed. The pump laser is a second harmonic of Nd:YAG laser, and the parametric gain is measured. The characteristics of singly resonant oscillator and doubly resonant oscillator is studied as a function of temperature. It is found that 1mole% MgO:LiNbO{sub 3} crystal provides the tunability from 0.6{mu}m to 3.0{mu}m wavelength. Both the critical and noncritical phase matching are studied. The optical damage occurring in a congruent LiNbO{sub 3} crystal was not observed in 1mole% MgO:LiNbO{sub 3} crystal, opening a possibility for a high power optical parametric oscillation generation. The current work can be extended to an experiment employing the fundamental Nd:YAG as pump to provide a coherent light source for the study of molecular vibrations. 28 refs., 14 figs., 3 tabs. (Author)

  10. VUV absorption spectroscopy of a Penning surface-plasma H- source

    International Nuclear Information System (INIS)

    Pitcher, E.J.

    1992-01-01

    Because H - is efficiently neutralized at high energies, these beams are ideally suited to applications where energetic neutral beams of particles are required to propagate across magnetic fields. A class of sources that holds great promise for meeting the stringent requirements for these beams is the surface-plasma source (SPS), and in particular, the Penning type of SPS. It has been conjectured that atomic hydrogen plays an important role in both H - formation and transport in these sources. Understanding the interdependence of atomic hydrogen properties and those of H - , and how this relationship might be exploited to improve source performance is the motivation for this research. An overview of SPS's is presented. Previous measurements on the discharge are reviewed. Absorption spectroscopy is discussed. Techniques that may potentially be used to measure the properties of H - in the discharge are discussed. The two absorption spectrometers used in this experiment are described. Measurements of ground-state atomic hydrogen density and temperature in a Penning SPS are presented. These measurements are the first of this kind for this type of discharge. An upper limit on the H - density in the extraction region of the source is measured by the application of a novel diagnostic technique: the hydrogen atom density following H - photodetachment by a Nd:YAG beam is measured and compared to the equilibrium atomic density. A simple model is derived that describes the dependence of the atomic temperature on the externally-controlled parameters of discharge current and H 2 gas flow. The measured atomic density is considered in light of the widely-accepted hypothesis of the mechanism for H - formation. The measured upper limit of the H - density is used to infer the potential of the discharge plasma relative to the source anode

  11. Gas chromatography with simultaneous detection: Ultraviolet spectroscopy, flame ionization, and mass spectrometry.

    Science.gov (United States)

    Gras, Ronda; Luong, Jim; Haddad, Paul R; Shellie, Robert A

    2018-05-08

    An effective analytical strategy was developed and implemented to exploit the synergy derived from three different detector classes for gas chromatography, namely ultraviolet spectroscopy, flame ionization, and mass spectrometry for volatile compound analysis. This strategy was achieved by successfully hyphenating a user-selectable multi-wavelength diode array detector featuring a positive temperature coefficient thermistor as an isothermal heater to a gas chromatograph. By exploiting the non-destructive nature of the diode array detector, the effluent from the detector was split to two parallel detectors; namely a quadrupole mass spectrometer and a flame ionization detector. This multi-hyphenated configuration with the use of three detectors is a powerful approach not only for selective detection enhancement but also for improvement in structural elucidation of volatile compounds where fewer fragments can be obtained or for isomeric compound analysis. With the diode array detector capable of generating high resolution gas phase spectra, the information collected provides useful confirmatory information without a total dependence on the chromatographic separation process which is based on retention time. This information-rich approach to chromatography is achieved without incurring extra analytical time, resulting in improvements in compound identification accuracy, analytical productivity, and cost. Chromatographic performance obtained from model compounds was found to be acceptable with a relative standard deviation of the retention times of less than 0.01% RSD, and a repeatability at two levels of concentration of 100 and 1000 ppm (v/v) of less than 5% (n = 10). With this configuration, correlation of data between the three detectors was simplified by having near identical retention times for the analytes studied. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Quantitative determination of minor and trace elements in rocks and soils by spark source mass spectrometry

    International Nuclear Information System (INIS)

    Ure, A.M.; Bacon, J.R.

    1978-01-01

    Experimental details are given of the quantitative determination of minor and trace elements in rocks and soils by spark source mass spectrometry. The effects of interfering species, and corrections that can be applied, are discussed. (U.K.)

  13. Analysis of a Fossil Bone from Malu Rosu - Giurgiu by Accelerator Mass Spectroscopy

    International Nuclear Information System (INIS)

    Olariu, Agata; Popescu, I.V.; Hellborg, Ragnar; Stenstroem, Kristina; Skog, Goeran; Alexandrescu, E.

    2000-01-01

    In the present work we studied a fossil bone found in the archaeological site at Malu Rosu, near Giurgiu. Other specimens of fossil bones from Malu Rosu had been earlier dated by a chemical method, considering the content of the fluorine by neutron activation analysis. In this paper we have determined the age of a bone from Malu Rosu by the method of radiocarbon using the AMS (accelerator mass spectroscopy) technique. The measurement has been performed at 3 MeV Pelletron accelerator of the Lund University. The preparation of the bone sample was done in 2 steps: extraction of collagen from the structure of the bone by a chemical pretreatment, and then the transformation of collagen to pure carbon. The conversion to the elemental carbon is done also in two steps: formation of CO 2 by collagen combustion, and then the reduction of CO 2 to pure carbon. The sample of bone, as pure carbon is put in a copper holder and is arranged in a wheel in the following sequence: 5 carbon samples and 3 standards (1 standard of anthracite and 2 standards of oxalic acid). The anthracite being a very old coal is considered to have no 14 C traces and by its measurement one gets the background for 14 C both of the accelerator and of preparation installation of samples. Oxalic acid is a standard SRM prepared by USA National Bureau of Standards, with a well known activity of 14 C, measured in the Radiocarbon Dating Laboratory, Lund University, used to normalize the value of the 14 C counting rate, for the sample measured in the same conditions of beam current and time as the standard. The wheel with samples and standards are put in the ion source of the accelerator. The central part of the Lund AMS system is a Pelletron tandem accelerator (model 3UDH, produced by NEC, Wisconsin USA). The accelerator is run at 2.4 MV during AMS experiments, which is optimal for the C 3+ charge state. On the experimental beam line a magnetic quadrupole triplet, a velocity selector and a second analyzing

  14. The characterisation of molecular boric acid by mass spectrometry and matrix isolation-infrared spectroscopy

    International Nuclear Information System (INIS)

    Ogden, J.S.; Young, N.A.; Bowsher, B.R.

    1987-10-01

    Boric acid (H 3 BO 3 ) is used as a soluble neutron absorber in the coolant of pressurised water reactors and will be an important species in defining the fission product chemistry of severe reactor accidents. Mass spectrometry and matrix isolation-infrared spectroscopy have been used to characterise boric acid in the vapour phase and hence assess the implications of any chemical interactions. Crystalline orthoboric acid vaporises to yield molecular H 3 BO 3 when heated in vacuum to approximately 40 0 C. The infrared spectrum of the vapour species isolated in low-temperature nitrogen matrices shows characteristic absorptions at 3668.5 (E'), 1426.2 (E'), 1009.9 (E'), 675.0 (A''), 513.8 (A'') and 448.9 (E') cm -1 , consistent with C 3h symmetry. These spectral assignments are supported by extensive isotope labelling, and by a partial normal co-ordinate analysis. These data will be used to quantify specific thermodynamic functions and hence assist in determining the magnitude of reactions such as boric acid with caesium iodide. (author)

  15. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry

    International Nuclear Information System (INIS)

    Spur, Eva-Margarete; Decelle, Emily A.; Cheng, Leo L.

    2013-01-01

    Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases. (orig.)

  16. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Spur, Eva-Margarete [Massachusetts General Hospital, Harvard Medical School, Department of Pathology, Boston, MA (United States); Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States); Charite Universitaetsmedizin, Berlin (Germany); Decelle, Emily A.; Cheng, Leo L. [Massachusetts General Hospital, Harvard Medical School, Department of Pathology, Boston, MA (United States); Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2013-07-15

    Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases. (orig.)

  17. 5 years of ambient pressure photoelectron spectroscopy (APPES) at the Swiss Light Source (SLS)

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, Giorgia [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093, Zurich (Switzerland); Giorgi, Javier B. [Department of Chemistry and Biomolecular Sciences, and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Green, Richard G. [Measurement Science and Standards, National Research Council Canada, Ottawa, Ontario K1A 0R6 (Canada); Brown, Matthew A., E-mail: matthew.brown@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093, Zurich (Switzerland)

    2017-04-15

    Highlights: • A review of the ongoing research using the APPES endstation of the Swiss Light Source is presented. • Research interests include the liquid-vapor, liquid-nanoparticle and vapor-solid interfaces. • An outlook to the next five years of research at the Swiss Light Source is presented. - Abstract: In March of 2012 an endstation dedicated to ambient pressure photoelectron spectroscopy (APPES) was installed at the Swiss Light Source (SLS) synchrotron radiation facility on the campus of the Paul Scherrer Institute (PSI). The endstation is mobile and operated at the vacuum ultraviolet (VUV), Surfaces/Interfaces: Microscopy (SIM) and Phoenix beamlines, which together afford a nearly continuous photon energy range from 5−8000 eV. This broad energy range is by far the widest available to a single currently operational APPES endstation. During its first five years of operation this endstation has been used to address challenging fundamental problems in the areas of soft-matter colloidal nanoscience, environmental science and energy storage—research that encompasses the liquid-nanoparticle, liquid-vapor (or vacuum) and solid-vapor interfaces. Here we present select highlights of these results and offer an outlook to the next five years of APPES research at the SLS.

  18. Effects of improper source coupling in frequency-domain near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Noponen, T E J [Turku PET Centre, Turku University Hospital, PO BOX 52, 20521 Turku (Finland); Kotilahti, K; Nissilae, I; Merilaeinen, P T [Department of Biomedical Engineering and Computational Science, Aalto University, PO BOX 12200, 00076 Aalto (Finland); Kajava, T, E-mail: tommi.noponen@tyks.f [Department of Applied Physics, Aalto University, PO Box 15100, 00076 Aalto (Finland)

    2010-05-21

    Currently, there is no widely used method to assess the reliability of contact between optodes and tissue in near-infrared spectroscopy (NIRS). In this study we observe a high linear dependence (R{sup 2} {approx} 0.99) of the logarithmic modulation amplitude (ln(I{sub AC})), average intensity (ln(I{sub DC})) and phase ({phi}) on the source-detector distance (SDD) ranging from {approx}20 to 50 mm on human forehead measurements. The regression of {phi} is clearly reduced in measurements where light leakage occurs, mainly due to insufficient contact between the source optode and tissue. Utilizing this observation, a novel criterion to detect light leakage is developed. The criterion is applied to study the reliability of hemodynamic responses measured on the human forehead when breathing carbon dioxide-enriched air and during hyperventilation. The contrast of the signals is significantly lower in measurements which were adversely affected by light leakage. Furthermore, such unreliable signals at SDDs {>=} 50 mm correlate significantly (for [HbO{sub 2}] p < 0.01 and for [HbR] p < 0.001) better with the signals measured at SDDs < 20 mm. Using this method, poor contact between the source optode and tissue can be detected and corrected before the actual measurement, which enables us to avoid the acquisition of low contrast cortical signals.

  19. Shifted excitation resonance Raman difference spectroscopy using a microsystem light source at 488 nm

    Science.gov (United States)

    Maiwald, M.; Sowoidnich, K.; Schmidt, H.; Sumpf, B.; Erbert, G.; Kronfeldt, H.-D.

    2010-04-01

    Experimental results in shifted excitation resonance Raman difference spectroscopy (SERRDS) at 488 nm will be presented. A novel compact diode laser system was used as excitation light source. The device is based on a distributed feedback (DFB) diode laser as a pump light source and a nonlinear frequency doubling using a periodically poled lithium niobate (PPLN) waveguide crystal. All elements including micro-optics are fixed on a micro-optical bench with a footprint of 25 mm × 5 mm. An easy temperature management of the DFB laser and the crystal was used for wavelength tuning. The second harmonic generation (SHG) provides an additional suppression of the spontaneous emission. Raman spectra of polystyrene demonstrate that no laser bandpass filter is needed for the Raman experiments. Resonance-Raman spectra of the restricted food colorant Tartrazine (FD&C Yellow 5, E 102) in distilled water excited at 488 nm demonstrate the suitability of this light source for SERRDS. A limit of detection (LOD) of 0.4 μmol.l-1 of E102 enables SERRDS at 488 nm for trace detection in e.g. food safety control as an appropriate contactless spectroscopic technique.

  20. AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source

    Science.gov (United States)

    Nightingale, J. W.; Dye, S.; Massey, Richard J.

    2018-05-01

    This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

  1. Some thoughts on source monochromation and the implications for electron energy loss spectroscopy

    CERN Document Server

    Brydson, R; Brown, A

    2003-01-01

    We briefly outline the factors determining the intrinsic widths of features in electron energy loss near edge structure (ELNES) measured by electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM). We have made estimates of the differing contributions of both the initial and final state lifetime effects in the ELNES ionisation processes and also show how these may be combined with the instrumental energy resolution. We discuss the potential benefits of source monochromation for ELNES measurements via a comparison of these theoretical estimates with experimental spectra from the literature. We show that for certain core level excitations, solid state broadening mechanisms may be the fundamental limiting factor for resolving fine detail in ELNES. (orig.)

  2. I18--the microfocus spectroscopy beamline at the Diamond Light Source.

    Science.gov (United States)

    Mosselmans, J Frederick W; Quinn, Paul D; Dent, Andrew J; Cavill, Stuart A; Moreno, Sofia Diaz; Peach, Andrew; Leicester, Peter J; Keylock, Stephen J; Gregory, Simon R; Atkinson, Kirk D; Rosell, Josep Roque

    2009-11-01

    The design and performance of the microfocus spectroscopy beamline at the Diamond Light Source are described. The beamline is based on a 27 mm-period undulator to give an operable energy range between 2 and 20.7 keV, enabling it to cover the K-edges of the elements from P to Mo and the L(3)-edges from Sr to Pu. Micro-X-ray fluorescence, micro-EXAFS and micro-X-ray diffraction have all been achieved on the beamline with a spot size of approximately 3 microm. The principal optical elements of the beamline consist of a toroid mirror, a liquid-nitrogen-cooled double-crystal monochromator and a pair of bimorph Kirkpatrick-Baez mirrors. The performance of the optics is compared with theoretical values and a few of the early experimental results are summarized.

  3. Magnetic dipole moments of 58Cu and 59Cu by in-source laser spectroscopy

    International Nuclear Information System (INIS)

    Stone, N. J.; Koester, U.; Stone, J. Rikovska; Fedorov, D. V.; Fedoseyev, V. N.; Flanagan, K. T.; Hass, M.; Lakshmi, S.

    2008-01-01

    Online measurements of the magnetic dipole moments and isotope shifts of 58 Cu and 59 Cu by the in-source laser spectroscopy method are reported. The results for the magnetic moments are μ ( 58 Cu) =+0.52(8) μ N ,μ( 59 Cu) =+1.84(3) μ N and for the isotope shifts δν 59,65 =1.72(22) GHz and δν 58,65 =1.99(30) GHz in the transition from the 3d 10 4s 2 S 1/2 ground state to the 3d 10 4p 2 P 1/2 state in Cu I. The magnetic moment of 58 Cu is discussed in the context of the strength of the subshell closure at 56 Ni, additivity rules and large-scale shell model calculations

  4. Nuclear chemistry research and spectroscopy with radioactive sources. Nineteenth annual progress report

    International Nuclear Information System (INIS)

    Fink, R.W.

    1983-01-01

    Our effort is centered on radioactive decay studies of far-from-stable nuclides produced with heavy ions from the Holifield Heavy Ion Research Facility (HHIRF) and studied on-line with the University Isotope Separator at Oak Ridge (UNISOR). Progress is reported on the following studies: lifetime of the g/sub 7/2/ level in 109 Ag; halflife of the h/sub 9/2/ level in 187 Au; decay of 8.4 min 187 Au → 187 Pt; orbital EC probabilities and decay energy of 207 Bi; decay of 9 min /sup 201m/Po and 16 min /sup 201g/Po; decay of 2.5 min 125 Ba; decay of 7.4 min 203 At; exploration of neutron-deficient Sm, Pm, and Nd nuclides; preparation of thoron active deposit conversion electron sources; inception of nuclear laser spectroscopy at UNISOR; and nuclear structure calculations with nuclear models. Publications are listed

  5. Soft x-ray spectroscopy undulator beamline at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Randall, K.J.; Xu, Z.; Moore, J.F.; Gluskin, E.

    1997-09-01

    Construction of the high-resolution soft x ray spectroscopy undulator beamline, 2ID-C, at the Advanced Photon Source (APS) has been completed. The beamline, one of two soft x ray beamlines at the APS, will cover the photon energy range from 500 to 3,000 eV, with a maximum resolving power between 7,000 and 14,000. The optical design is based on a spherical grating monochromator (SGM) giving both high resolution and high flux throughput. Photon flux is calculated to be approximately 10{sup 12}--10{sup 13} photons per second with a beam size of approximately 1 x 1 mm{sup 2} at the sample.

  6. An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments.

    Science.gov (United States)

    Materassi, Donatello; Baschieri, Paolo; Tiribilli, Bruno; Zuccheri, Giampaolo; Samorì, Bruno

    2009-08-01

    We describe the realization of an atomic force microscope architecture designed to perform customizable experiments in a flexible and automatic way. Novel technological contributions are given by the software implementation platform (RTAI-LINUX), which is free and open source, and from a functional point of view, by the implementation of hard real-time control algorithms. Some other technical solutions such as a new way to estimate the optical lever constant are described as well. The adoption of this architecture provides many degrees of freedom in the device behavior and, furthermore, allows one to obtain a flexible experimental instrument at a relatively low cost. In particular, we show how such a system has been employed to obtain measures in sophisticated single-molecule force spectroscopy experiments [Fernandez and Li, Science 303, 1674 (2004)]. Experimental results on proteins already studied using the same methodologies are provided in order to show the reliability of the measure system.

  7. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  8. Characterization of a Distributed Plasma Ionization Source (DPIS) for Ion Mobility Spectrometry and Mass Spectrometry

    International Nuclear Information System (INIS)

    Waltman, Melanie J.; Dwivedi, Prabha; Hill, Herbert; Blanchard, William C.; Ewing, Robert G.

    2008-01-01

    A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry and ion mobility spectrometry. The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions depending on the polarity of the applied potential. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3-, NO3-, NO2-, O3- and O2- of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and environmental pollutants were selected to evaluate the new ionization source. The source was operated continuously for several months and although deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions. The results indicated that the DPIS may have a longer operating life than a conventional corona discharge.

  9. Characterization of Nuclear Materials Using Complex of Non-Destructive and Mass-Spectroscopy Methods of Measurements

    International Nuclear Information System (INIS)

    Gorbunova, A.; Kramchaninov, A.

    2015-01-01

    Information and Analytical Centre for nuclear materials investigations was established in Russian Federation in the February 2 of 2009 by ROSATOM State Atomic Energy Corporation (the order #80). Its purpose is in preventing unauthorized access to nuclear materials and excluding their illicit traffic. Information and Analytical Centre includes analytical laboratory to provide composition and properties of nuclear materials of unknown origin for their identification. According to Regulation the Centre deals with: · identification of nuclear materials of unknown origin to provide information about their composition and properties; · arbitration analyzes of nuclear materials; · comprehensive research of nuclear and radioactive materials for developing techniques characterization of materials; · interlaboratory measurements; · measurements for control and accounting; · confirmatory measurements. Complex of non-destructive and mass-spectroscopy techniques was developed for the measurements. The complex consists of: · gamma-ray techniques on the base of MGAU, MGA and FRAM codes for uranium and plutonium isotopic composition; · gravimetrical technique with gamma-spectroscopy in addition for uranium content; · calorimetric technique for plutonium mass; · neutron multiplicity technique for plutonium mass; · measurement technique on the base of mass-spectroscopy for uranium isotopic composition; · measurement technique on the base of mass-spectroscopy for metallic impurities. Complex satisfies the state regulation requirements of ensuring the uniformity of measurements including the Russian Federation Federal Law on Ensuring the Uniformity of Measurements #102-FZ, Interstate Standard GOST R ISO/IEC 17025-2006, National Standards of Russian Federation GOST R 8.563-2009, GOST R 8.703-2010, Federal Regulations NRB-99/2009, OSPORB 99/2010. Created complex is provided in reference materials, equipment end certificated techniques. The complex is included in accredited

  10. Reference masses for precision mass spectrometry design and implementation of a Pierce geometry to the cluster Ion source at ISOLTRAP

    CERN Document Server

    Lommen, Jonathan

    At the mass spectrometer ISOLTRAP carbon clusters ($^{12}$Cn, 1$\\leqslant$n$\\leqslant$25) are provided as reference masses, which are of particular importance in higher mass ranges (m $\\geqslant$ 200u). In this mass range the measurlment uncertainty is increasingly dominated by the difference of the reference mass and the mass of the ion of interest. Using carbon clusters instead of the common $^{133}$Cs ions, this difference decreases. The carbon clusters are produced in a laser ion source which has been improved in the frame of this thesis. The fluctuations of the count rate have been investigated as a function of the laser energy. Furthermore, the energy density at the target has been increased by implementation of a telescope into the laser beam line, which leads to a more narrow energy distribution of the ions. Through the exact adjustment of timing and length of a pulsed cavity an energy range with constant count rate could be selected. In order to provide ideal starting conditions during and after the ...

  11. Comparison of different source calculations in two-nucleon channel at large quark mass

    Science.gov (United States)

    Yamazaki, Takeshi; Ishikawa, Ken-ichi; Kuramashi, Yoshinobu

    2018-03-01

    We investigate a systematic error coming from higher excited state contributions in the energy shift of light nucleus in the two-nucleon channel by comparing two different source calculations with the exponential and wall sources. Since it is hard to obtain a clear signal of the wall source correlation function in a plateau region, we employ a large quark mass as the pion mass is 0.8 GeV in quenched QCD. We discuss the systematic error in the spin-triplet channel of the two-nucleon system, and the volume dependence of the energy shift.

  12. Chemical mass balance source apportionment of fine and PM10 in the Desert Southwest, USA

    Directory of Open Access Journals (Sweden)

    Andrea L. Clements

    2016-03-01

    Full Text Available The Desert Southwest Coarse Particulate Matter Study was undertaken in Pinal County, Arizona, to better understand the origin and impact of sources of fine and coarse particulate matter (PM in rural, arid regions of the U.S. southwestern desert. The desert southwest experiences some of the highest PM10 mass concentrations in the country. To augment previously reported results, 6-week aggregated organic speciation data that included ambient concentrations of n-alkanes, polycyclic aromatic hydrocarbons, organic acids, and saccharides were used in chemical mass balance modeling (CMB. A set of re-suspended soil samples were analyzed for specific marker species to provide locally-appropriate source profiles for the CMB analysis. These profiles, as well as previously collected plant and fungal spore profiles from the region, were combined with published source profiles for other relevant sources and used in the CMB analysis. The six new region-specific source profiles included both organic and inorganic species for four crustal material sources, one plant detritus source, and one fungal spore source.Results indicate that up to half of the ambient PM2.5 was apportioned to motor vehicles with the highest regional contribution observed in the small urban center of Casa Grande. Daily levels of apportioned crustal material accounted for up to 50% of PM2.5 mass with the highest contributions observed at the sites closest to active agricultural areas. Apportioned secondary PM, biomass burning, and road dust typically contributed less than 35% as a group to the apportioned PM2.5 mass. Crustal material was the primary source apportioned to PM10 and accounted for between 50–90% of the apportioned mass. Of the other sources apportioned to PM10, motor vehicles and road dust were the largest contributors at the urban and one of the rural sites, whereas road dust and meat cooking operations were the largest contributors at the other rural site.

  13. A compact time-of-flight mass spectrometer for ion source characterization

    International Nuclear Information System (INIS)

    Chen, L.; Wan, X.; Jin, D. Z.; Tan, X. H.; Huang, Z. X.; Tan, G. B.

    2015-01-01

    A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study the mass to charge composition of plasma with wide range of parameters

  14. Applications of photon-in, photon-out spectroscopy with third-generation, synchrotron-radiation sources

    International Nuclear Information System (INIS)

    Lindle, D.W.; Perera, R.C.C.

    1991-01-01

    This report discusses the following topics: Mother nature's finest test probe; soft x-ray emission spectroscopy with high-brightness synchrotron radiation sources; anisotropy and polarization of x-ray emission from atoms and molecules; valence-hole fluorescence from molecular photoions as a probe of shape-resonance ionization: progress and prospects; structural biophysics on third-generation synchrotron sources; ultra-soft x-ray fluorescence-yield XAFS: an in situ photon-in, photon-out spectroscopy; and x-ray microprobe: an analytical tool for imaging elemental composition and microstructure

  15. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    Science.gov (United States)

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  16. TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil

    KAUST Repository

    Elbaz, Ayman M.

    2015-11-12

    There is an increasing interest in the comprehensive study of heavy fuel oil (HFO) due to its growing use in furnaces, boilers, marines, and recently in gas turbines. In this work, the thermal combustion characteristics and chemical composition of HFO were investigated using a range of techniques. Thermogravimetric analysis (TGA) was conducted to study the nonisothermal HFO combustion behavior. Chemical characterization of HFO was accomplished using various standard methods in addition to direct infusion atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (APCI-FTICR MS), high resolution 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional heteronuclear multiple bond correlation (HMBC) spectroscopy. By analyzing thermogravimetry and differential thermogravimetry (TG/DTG) results, three different reaction regions were identified in the combustion of HFO with air, specifically, low temperature oxidation region (LTO), fuel deposition (FD), and high temperature oxidation (HTO) region. At the high end of the LTO region, a mass transfer resistance (skin effect) was evident. Kinetic analysis in LTO and HTO regions was conducted using two different kinetic models to calculate the apparent activation energy. In both models, HTO activation energies are higher than those for LTO. The FT-ICR MS technique resolved thousands of aromatic and sulfur containing compounds in the HFO sample and provided compositional details for individual molecules of three major class species. The major classes of compounds included species with one sulfur atom (S1), with two sulfur atoms (S2), and purely hydrocarbons (HC). The DBE (double bond equivalent) abundance plots established for S1 and HC provided additional information on their distributions in the HFO sample. The 1H NMR and 13C NMR results revealed that nearly 59% of the 1H nuclei were distributed as paraffinic CH2 and 5% were in aromatic groups. Nearly 21% of 13C nuclei were

  17. Plans for laser ablation of actinides into an ECRIS for accelerator mass spectroscopy

    International Nuclear Information System (INIS)

    Pardo, R.C.; Kondev, F.G.; Kondrashev, S.; Nair, C.; Palchan, T.; Rehm, E.; Scott, R.; Vondrasek, R.; Paul, M.; Collon, P.; Youinou, G.; Salvatores, M.; Palmotti, G.; McGrath, C.; Imel, G.

    2012-01-01

    A project using Accelerator Mass Spectrometry (AMS) at the ATLAS facility to measure neutron capture rates on a wide range of actinides in a reactor environment is underway. This project will require the measurement of many samples with high precision and accuracy. The AMS technique at ATLAS is based on production of highly-charged positive ions in an electron cyclotron resonance ion source (ECRIS) followed by linear acceleration. We have chosen to use laser ablation as the best means of feeding the actinide material into the ion source because we believe this technique will have more efficiency and lower chamber contamination thus reducing 'cross talk' between samples. In addition construction of a new multi-sample holder/changer to allow quick change between multiple samples is part of the project. The status of the project, design, and goals for initial offline ablation tests will be discussed as well as the overall project schedule. The paper is followed by the associated poster. (authors)

  18. Electromagnetic diagnostics of ECR-Ion Sources plasmas: optical/X-ray imaging and spectroscopy

    Science.gov (United States)

    Mascali, D.; Castro, G.; Altana, C.; Caliri, C.; Mazzaglia, M.; Romano, F. P.; Leone, F.; Musumarra, A.; Naselli, E.; Reitano, R.; Torrisi, G.; Celona, L.; Cosentino, L. G.; Giarrusso, M.; Gammino, S.

    2017-12-01

    Magnetoplasmas in ECR-Ion Sources are excited from gaseous elements or vapours by microwaves in the range 2.45-28 GHz via Electron Cyclotron Resonance. A B-minimum, magnetohydrodynamic stable configuration is used for trapping the plasma. The values of plasma density, temperature and confinement times are typically ne= 1011-1013 cm-3, 01 eVSilicon Drift detectors with high energy resolution of 125 eV at 5.9 keV have been used for the characterization of plasma emission at 02spectroscopy with a spatial resolution down to 30 μm and an energy resolution down to 140 eV at 5.9 keV . In parallel, imaging in the optical range and spectroscopic measurements have been carried out. Relative abundances of H/H2 atoms/molecules in the plasmas have been measured for different values of neutral pressure, microwave power and magnetic field profile (they are critical for high-power proton sources).

  19. Detailed Source-Specific Molecular Composition of Ambient Aerosol Organic Matter Using Ultrahigh Resolution Mass Spectrometry and 1H NMR

    Directory of Open Access Journals (Sweden)

    Amanda S. Willoughby

    2016-06-01

    Full Text Available Organic aerosols (OA are universally regarded as an important component of the atmosphere that have far-ranging impacts on climate forcing and human health. Many of these impacts are related to OA molecular characteristics. Despite the acknowledged importance, current uncertainties related to the source apportionment of molecular properties and environmental impacts make it difficult to confidently predict the net impacts of OA. Here we evaluate the specific molecular compounds as well as bulk structural properties of total suspended particulates in ambient OA collected from key emission sources (marine, biomass burning, and urban using ultrahigh resolution mass spectrometry (UHR-MS and proton nuclear magnetic resonance spectroscopy (1H NMR. UHR-MS and 1H NMR show that OA within each source is structurally diverse, and the molecular characteristics are described in detail. Principal component analysis (PCA revealed that (1 aromatic nitrogen species are distinguishing components for these biomass burning aerosols; (2 these urban aerosols are distinguished by having formulas with high O/C ratios and lesser aromatic and condensed aromatic formulas; and (3 these marine aerosols are distinguished by lipid-like compounds of likely marine biological origin. This study provides a unique qualitative approach for enhancing the chemical characterization of OA necessary for molecular source apportionment.

  20. Evaluation of Long-term Performance of Enhanced Anaerobic Source Zone Bioremediation using mass flux

    Science.gov (United States)

    Haluska, A.; Cho, J.; Hatzinger, P.; Annable, M. D.

    2017-12-01

    Chlorinated ethene DNAPL source zones in groundwater act as potential long term sources of contamination as they dissolve yielding concentrations well above MCLs, posing an on-going public health risk. Enhanced bioremediation has been applied to treat many source zones with significant promise, but long-term sustainability of this technology has not been thoroughly assessed. This study evaluated the long-term effectiveness of enhanced anaerobic source zone bioremediation at chloroethene contaminated sites to determine if the treatment prevented contaminant rebound and removed NAPL from the source zone. Long-term performance was evaluated based on achieving MCL-based contaminant mass fluxes in parent compound concentrations during different monitoring periods. Groundwater concertation versus time data was compiled for 6-sites and post-remedial contaminant mass flux data was then measured using passive flux meters at wells both within and down-gradient of the source zone. Post-remedial mass flux data was then combined with pre-remedial water quality data to estimate pre-remedial mass flux. This information was used to characterize a DNAPL dissolution source strength function, such as the Power Law Model and the Equilibrium Stream tube model. The six-sites characterized for this study were (1) Former Charleston Air Force Base, Charleston, SC; (2) Dover Air Force Base, Dover, DE; (3) Treasure Island Naval Station, San Francisco, CA; (4) Former Raritan Arsenal, Edison, NJ; (5) Naval Air Station, Jacksonville, FL; and, (6) Former Naval Air Station, Alameda, CA. Contaminant mass fluxes decreased for all the sites by the end of the post-treatment monitoring period and rebound was limited within the source zone. Post remedial source strength function estimates suggest that decreases in contaminant mass flux will continue to occur at these sites, but a mass flux based on MCL levels may never be exceeded. Thus, site clean-up goals should be evaluated as order

  1. Making Mass Spectrometry See the Light: The Promises and Challenges of Cryogenic Infrared Ion Spectroscopy as a Bioanalytical Technique.

    Science.gov (United States)

    Cismesia, Adam P; Bailey, Laura S; Bell, Matthew R; Tesler, Larry F; Polfer, Nicolas C

    2016-05-01

    The detailed chemical information contained in the vibrational spectrum of a cryogenically cooled analyte ion would, in principle, make infrared (IR) ion spectroscopy a gold standard technique for molecular identification in mass spectrometry. Despite this immense potential, there are considerable challenges in both instrumentation and methodology to overcome before the technique is analytically useful. Here, we discuss the promise of IR ion spectroscopy for small molecule analysis in the context of metabolite identification. Experimental strategies to address sensitivity constraints, poor overall duty cycle, and speed of the experiment are intimately tied to the development of a mass-selective cryogenic trap. Therefore, the most likely avenues for success, in the authors' opinion, are presented here, alongside alternative approaches and some thoughts on data interpretation.

  2. Sources and composition of submicron organic mass in marine aerosol particles

    Science.gov (United States)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-01

    The sources and composition of atmospheric marine aerosol particles (aMA) have been investigated with a range of physical and chemical measurements from open-ocean research cruises. This study uses the characteristic functional group composition (from Fourier transform infrared spectroscopy) of aMA from five ocean regions to show the following: (i) The organic functional group composition of aMA that can be identified as mainly atmospheric primary marine (ocean derived) aerosol particles (aPMA) is 65 ± 12% hydroxyl, 21 ± 9% alkane, 6 ± 6% amine, and 7 ± 8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. (ii) The organic composition of aPMA is nearly identical to model-generated primary marine aerosol particles from bubbled seawater (gPMA, which has 55 ± 14% hydroxyl, 32 ± 14% alkane, and 13 ± 3% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the gPMA remained nearly constant over a broad range of chlorophyll a concentrations, the gPMA alkane group fraction appeared to increase with chlorophyll a concentrations (r = 0.66). gPMA from productive seawater had a larger fraction of alkane functional groups (42 ± 9%) compared to gPMA from nonproductive seawater (22 ± 10%), perhaps due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of

  3. Gas Phase Thz Spectroscopy of Organosulfide and Organophosphorous Compounds Using a Synchrotron Source

    Science.gov (United States)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2011-06-01

    This study concerns the gas phase rovibrational spectroscopy of organosulfide and organophosphorous which are considered as non toxic model compounds in the analysis of chemical weapon materials, high pathogenic and mutagenic agents, and other environmentally interesting air-borne species. The coupling of the synchrotron radiation with multipass cells and the FTIR spectrometer allowed to obtain very conclusive results in term of sensitivity and resolution and improved the previous results obtained with classical sources. For DMSO, using an optical path of 150 m the spectra have been recorded at the ultimate resolution of 0.001 Cm-1 allowing to fully resolve the rotational structure of the lowest vibrational modes observed in the THz region. In the 290 - 420 Cm-1 region, the rovibrational spectrum of the "perpendicular" and "parallel" vibrational bands associated with, respectively, the asymmetric ν23 and symmetric ν11 bending modes of DMSO have been recorded with a resolution of 1.5× 10-3 Cm-1. The gas phase vibrational spectra of organophosphorous compounds were measured by FTIR spectroscopy using the vapor pressure of the compounds. Except for TBP, the room temperature vapor pressure was sufficient to detect all active vibrational modes from THz to NIR domain. Contrary to DMSO, the rotational patterns of alkyl phosphates and alkyl phosphonates could not be resolved; only a vibrational analysis may be performed. Nevertheless, the spectral fingerprints observed in the THz region allowed a clear discrimination between the molecules and between the different molecular conformations. A. Cuisset, G. Mouret, O. Pirali, P. Roy, F. Cazier, H. Nouali, J. Demaison, J. Phys. Chem. B, 2008, 112:, 12516-12525 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy and D. A. Sadovskií, Chem. Phys. Lett., 2010, 492: 30-34 I. Smirnova, A. Cuisset, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, J. Phys. Chem. B, 2010, 114: 16936-16947.

  4. FRAGMENTATION STUDIES OF D6,7-ANHIDROERITROMISIN-A BY LIQUID CHROMATOGRAPHY-MASS SPECTROSCOPY (LC-MS

    Directory of Open Access Journals (Sweden)

    Khairan Khairan

    2010-06-01

    Full Text Available Semisynthesis of D6,7-Anhydroerythromycin-A was done by biomodification technique by addition of 0.2% INH into a culture fermentation of Saccharopolyspora erythraea ATCC 11635 in medium Hutchinson. The aim of this research is to studies of fragmentation pattern from new matabolite of D6,7-Anhydroerythromycin-A by Liquid Chromatography-Mass Spectroscopy (LC-MS and the ionization of mass spectroscopy is use by ESI (Electrospray Ionization pattern. The FT-IR spectrometric analyzes showed a stretching vibration of C=C conjugated group at wave number 1602.7 cm-1. This C=C conjugated vibration indicated the existence of double bond between C6 and C7 (D6,7, this confirmed that isolate contained D6,7-Anhydroerythromycin-A (the possibility of D6,7 was positive. For complementation, a LC-MS (Liquid Chromatography-Mass Spectroscopy analyzes using ESI-MS (Electrospray Ionization-Mass Spectroscopy ionization pattern was conducted to the isolate which resulted Quassimolecular ions [M+H]+ of D7,8- and D6,7-Anhydroerythromycin-A. LC-MS spectrogram of the isolate, which gave two peaks of m/z 732.2460 and m/z 716.2522, confirmed that the m/z 732.2460 possibly was D7,8-Anhydroerythromycin-A, while the m/z 716.2502 and m/z 715.2522 possibly were D6,7-Anhydroerythromycin-A.   Keywords: isoniazid, enoyl reduction, D6,7-Anhidroeritromisin-A, fragmentation, LC-MS.

  5. Determination of the antiproton-to-electron mass ratio by precision laser spectroscopy of $\\overline{p}He^{+}$

    CERN Document Server

    Hori, M; Eades, John; Gomikawa, K; Hayano, R S; Ono, N; Pirkl, Werner; Widmann, E; Torii, H A; Juhász, B; Barna, D; Horváth, D

    2006-01-01

    A femtosecond optical frequency comb and continuous-wave pulse- amplified laser were used to measure 12 transition frequencies of antiprotonic helium to fractional precisions of (9-16) 10/sup -9lifetimes hitherto unaccessible to our precision laser spectroscopy method. Comparisons with three-body QED calculations yielded an antiproton-to-electron mass ratio of M/sub pmacron//m/sub e/=1836.152 674(5).

  6. Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, Hendrik; Andersson, Klas J.; Araki, Tohru; Benzerara, Karim; Brown, Gordon E.; Dynes, Jay J.; Ghosal, Sutapa; Gilles, Mary K.; Hansen, Hans C.; Hemminger, J. C.; Hitchcock, Adam P.; Ketteler, Guido; Kilcoyne, Arthur L.; Kneedler, Eric M.; Lawrence, John R.; Leppard, Gary G.; Majzlam, Juraj; Mun, B. S.; Myneni, Satish C.; Nilsson, Anders R.; Ogasawara, Hirohito; Ogletree, D. F.; Pecher, Klaus H.; Salmeron, Miquel B.; Shuh, David K.; Tonner, Brian; Tyliszczak, Tolek; Warwick, Tony; Yoon, T. H.

    2006-02-01

    We present examples of the application of synchrotron-based spectroscopies and microscopies to environmentally-relevant samples. The experiments were performed at the Molecular Environmental Science beamline (11.0.2) at the Advanced Light Source, Lawrence Berkeley National Laboratory. Examples range from the study of water monolayers on Pt(111) single crystal surfaces using X-ray emission spectroscopy and the examination of alkali halide solution/water vapor interfaces using ambient pressure photoemission spectroscopy, to the investigation of actinides, river-water biofilms, Al-containing colloids and mineral-bacteria suspensions using scanning transmission X-ray spectromicroscopy. The results of our experiments show that spectroscopy and microscopy in the soft X-ray energy range are excellent tools for the investigation of environmentally relevant samples under realistic conditions, i.e. with water or water vapor present at ambient temperature.

  7. Sample presentation, sources of error and future perspectives on the application of vibrational spectroscopy in the wine industry.

    Science.gov (United States)

    Cozzolino, Daniel

    2015-03-30

    Vibrational spectroscopy encompasses a number of techniques and methods including ultra-violet, visible, Fourier transform infrared or mid infrared, near infrared and Raman spectroscopy. The use and application of spectroscopy generates spectra containing hundreds of variables (absorbances at each wavenumbers or wavelengths), resulting in the production of large data sets representing the chemical and biochemical wine fingerprint. Multivariate data analysis techniques are then required to handle the large amount of data generated in order to interpret the spectra in a meaningful way in order to develop a specific application. This paper focuses on the developments of sample presentation and main sources of error when vibrational spectroscopy methods are applied in wine analysis. Recent and novel applications will be discussed as examples of these developments. © 2014 Society of Chemical Industry.

  8. PREFACE: 6th Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources (WIRMS11)

    Science.gov (United States)

    Lupi, Stefano; Perucchi, Andrea

    2012-05-01

    This volume of Journal of Physics: Conference Series is dedicated to a subset of papers related to the work presented at the 6th edition of the international Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources (WIRMS), held in Trieste, Italy, September 4-8 2011. Previous editions of the conference were held in Porquerolles (France), Lake Tahoe (USA), Rathen (Germany), Awaji (Japan), and Banff (Canada). This edition was organized and chaired by Stefano Lupi (Roma La Sapienza) and co-chaired by Andrea Perucchi (Elettra), with the support of the Italian Synchrotron Light Laboratory ELETTRA, which was honored to host the WIRMS workshop in its tenth anniversary. The 6th WIRMS edition addressed several different topics, ranging from biochemistry to strongly correlated materials, from geology to conservation science, and from forensics to the study of cometary dusts. Representatives from the infrared scientific programs at synchrotron light sources and free-electron-laser facilities. This edition was attended by 88 participants, including representatives from the infrared scientific programs at synchrotron light sources and free-electron-laser facilities, who enjoyed the stimulating scientific presentations, several detailed discussions, and the beautiful weather and scenery of the Trieste gulf. Participants came from 16 different nations and four continents, including many young scientists, six of which were supported by the organizers. There were 45 scientific talks divided in 11 sessions: Facilities, Microspectroscopy (I, II, III), Time-Resolved Spectroscopies, Extreme Conditions, Condensed Matter, Near-Field, Imaging, THz Techniques and High-Resolution Spectroscopy. 37 posters were also presented at two very lively evening poster sessions. We would like to use the opportunity of writing this preface to thank all the participants of the workshop for the very high level of their scientific contribution and for the very friendly atmosphere

  9. Prospects for detection of intermediate-mass black holes in globular clusters using integrated-light spectroscopy

    Science.gov (United States)

    de Vita, R.; Trenti, M.; Bianchini, P.; Askar, A.; Giersz, M.; van de Ven, G.

    2017-06-01

    The detection of intermediate-mass black holes (IMBHs) in Galactic globular clusters (GCs) has so far been controversial. In order to characterize the effectiveness of integrated-light spectroscopy through integral field units, we analyse realistic mock data generated from state-of-the-art Monte Carlo simulations of GCs with a central IMBH, considering different setups and conditions varying IMBH mass, cluster distance and accuracy in determination of the centre. The mock observations are modelled with isotropic Jeans models to assess the success rate in identifying the IMBH presence, which we find to be primarily dependent on IMBH mass. However, even for an IMBH of considerable mass (3 per cent of the total GC mass), the analysis does not yield conclusive results in one out of five cases, because of shot noise due to bright stars close to the IMBH line of sight. This stochastic variability in the modelling outcome grows with decreasing BH mass, with approximately three failures out of four for IMBHs with 0.1 per cent of total GC mass. Finally, we find that our analysis is generally unable to exclude at 68 per cent confidence an IMBH with mass of 103 M⊙ in snapshots without a central BH. Interestingly, our results are not sensitive to GC distance within 5-20 kpc, nor to misidentification of the GC centre by less than 2 arcsec (<20 per cent of the core radius). These findings highlight the value of ground-based integral field spectroscopy for large GC surveys, where systematic failures can be accounted for, but stress the importance of discrete kinematic measurements that are less affected by stochasticity induced by bright stars.

  10. Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study

    Science.gov (United States)

    Kokkinaki, A.; Sleep, B. E.

    2011-12-01

    The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and

  11. The optimisation of an intense Z-pinch discharge as a plasma source for absorption spectroscopy investigations

    International Nuclear Information System (INIS)

    Sandolache, Gabriela; Zoita, Vasile; Iova, Iancu; Fleurier, Claude; Hong, Dunpin; Bauchire, Jean Marc

    2002-01-01

    The characterisation of the low voltage circuit breaker arc from the optical and plasma physics points of view represents an element of importance for understanding the operating mechanism and the current interruption process. The development of the broad band optical absorption spectroscopy method seems to be well adapted in order to perform the circuit breaker arc analysis. A pulsed power device based on a Z-pinch type discharge has been developed as a plasma source for absorption spectroscopy investigations. The spatial extension of this radiation source, its brightness, reproducibility are well adapted to characterize the circuit-breaker arc. In addition, a very short emission period compared to the lifetime of the arc discharge provides an excellent time resolution for the absorption spectroscopy method. The first compression phase of the linear pinch produced in argon has been studied from the point of view of its use as a light source. The initial pressure of argon was varied from 0.5 to 2 mbar and the condenser bank energy from 5.1 to 8.7 kJ. The characterization of the emitted radiation, especially the influence of the condenser bank voltage and the argon pressure on the discharge has been studied. Collapse dynamics of the argon compressional pinch and the spectrally resolved continuum emission at the time of maximum compression have been observed. A very satisfactory plasma source optimisation has been achieved that fulfils the conditions required for the absorption spectroscopy method. (authors)

  12. Observations of Intermediate-mass Black Holes and Ultra-Luminous X-ray sources

    Science.gov (United States)

    Colbert, E. J. M.

    2003-12-01

    I will review various observations that suggest that intermediate-mass black holes (IMBHs) with masses ˜102-104 M⊙ exist in our Universe. I will also discuss some of the limitations of these observations. HST Observations of excess dark mass in globular cluster cores suggest IMBHs may be responsible, and some mass estimates from lensing experiments are nearly in the IMBH range. The intriguing Ultra-Luminous X-ray sources (ULXs, or IXOs) are off-nuclear X-ray point sources with X-ray luminosities LX ≳ 1039 erg s-1. ULXs are typically rare (1 in every 5 galaxies), and the nature of their ultra-luminous emission is currently debated. I will discuss the evidence for IMBHs in some ULXs, and briefly outline some phenomenology. Finally, I will discuss future observations that can be made to search for IMBHs.

  13. Stellar-mass black holes and ultraluminous x-ray sources.

    Science.gov (United States)

    Fender, Rob; Belloni, Tomaso

    2012-08-03

    We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.

  14. Resistivity analysis of epitaxially grown, doped semiconductors using energy dependent secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Burnham, Shawn D.; Thomas, Edward W.; Doolittle, W. Alan

    2006-01-01

    A characterization technique is discussed that allows quantitative optimization of doping in epitaxially grown semiconductors. This technique uses relative changes in the host atom secondary ion (HASI) energy distribution from secondary ion mass spectroscopy (SIMS) to indicate relative changes in conductivity of the material. Since SIMS is a destructive process due to sputtering through a film, a depth profile of the energy distribution of sputtered HASIs in a matrix will contain information on the conductivity of the layers of the film as a function of depth. This process is demonstrated with Mg-doped GaN, with the Mg flux slowly increased through the film. Three distinct regions of conductivity were observed: one with Mg concentration high enough to cause compensation and thus high resistivity, a second with moderate Mg concentration and low resistivity, and a third with little to no Mg doping, causing high resistivity due to the lack of free carriers. During SIMS analysis of the first region, the energy distributions of sputtered Ga HASIs were fairly uniform and unchanging for a Mg flux above the saturation, or compensation, limit. For the second region, the Ga HASI energy distributions shifted and went through a region of inconsistent energy distributions for Mg flux slightly below the critical flux for saturation, or compensation. Finally, for the third region, the Ga HASI energy distributions then settled back into another fairly unchanging, uniform pattern. These three distinct regions were analyzed further through growth of Mg-doped step profiles and bulk growth of material at representative Mg fluxes. The materials grown at the two unchanging, uniform regions of the energy distributions yielded highly resistive material due to too high of Mg concentration and low to no Mg concentration, respectively. However, material grown in the transient energy distribution region with Mg concentration between that of the two highly resistive regions yielded low

  15. Resistivity analysis of epitaxially grown, doped semiconductors using energy dependent secondary ion mass spectroscopy

    Science.gov (United States)

    Burnham, Shawn D.; Thomas, Edward W.; Doolittle, W. Alan

    2006-12-01

    A characterization technique is discussed that allows quantitative optimization of doping in epitaxially grown semiconductors. This technique uses relative changes in the host atom secondary ion (HASI) energy distribution from secondary ion mass spectroscopy (SIMS) to indicate relative changes in conductivity of the material. Since SIMS is a destructive process due to sputtering through a film, a depth profile of the energy distribution of sputtered HASIs in a matrix will contain information on the conductivity of the layers of the film as a function of depth. This process is demonstrated with Mg-doped GaN, with the Mg flux slowly increased through the film. Three distinct regions of conductivity were observed: one with Mg concentration high enough to cause compensation and thus high resistivity, a second with moderate Mg concentration and low resistivity, and a third with little to no Mg doping, causing high resistivity due to the lack of free carriers. During SIMS analysis of the first region, the energy distributions of sputtered Ga HASIs were fairly uniform and unchanging for a Mg flux above the saturation, or compensation, limit. For the second region, the Ga HASI energy distributions shifted and went through a region of inconsistent energy distributions for Mg flux slightly below the critical flux for saturation, or compensation. Finally, for the third region, the Ga HASI energy distributions then settled back into another fairly unchanging, uniform pattern. These three distinct regions were analyzed further through growth of Mg-doped step profiles and bulk growth of material at representative Mg fluxes. The materials grown at the two unchanging, uniform regions of the energy distributions yielded highly resistive material due to too high of Mg concentration and low to no Mg concentration, respectively. However, material grown in the transient energy distribution region with Mg concentration between that of the two highly resistive regions yielded low

  16. The Grism Lens-amplified Survey from Space (GLASS). IV. Mass Reconstruction of the Lensing Cluster Abell 2744 from Frontier Field Imaging and GLASS Spectroscopy

    Science.gov (United States)

    Wang, X.; Hoag, A.; Huang, K.-H.; Treu, T.; Bradač, M.; Schmidt, K. B.; Brammer, G. B.; Vulcani, B.; Jones, T. A.; Ryan, R. E., Jr.; Amorín, R.; Castellano, M.; Fontana, A.; Merlin, E.; Trenti, M.

    2015-09-01

    We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Fields (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain five high-confidence spectroscopic redshifts and two tentative ones. We confirm one strongly lensed system by detecting the same emission lines in all three multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometric redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.

  17. THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). IV. MASS RECONSTRUCTION OF THE LENSING CLUSTER ABELL 2744 FROM FRONTIER FIELD IMAGING AND GLASS SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Schmidt, K. B.; Jones, T. A. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Hoag, A.; Huang, K.-H.; Bradac, M. [Department of Physics, University of California, Davis, CA 95616 (United States); Treu, T. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Brammer, G. B.; Ryan, R. E. Jr. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Vulcani, B. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), the University of Tokyo, Kashiwa, 277-8582 (Japan); Amorín, R.; Castellano, M.; Fontana, A.; Merlin, E. [INAF—Osservatorio Astronomico di Roma Via Frascati 33, I-00040 Monte Porzio Catone (Italy); Trenti, M., E-mail: xinwang@physics.ucsb.edu [School of Physics, The University of Melbourne, VIC 3010 (Australia)

    2015-09-20

    We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Fields (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain five high-confidence spectroscopic redshifts and two tentative ones. We confirm one strongly lensed system by detecting the same emission lines in all three multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometric redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.

  18. Investigation of the spectroscopy and relaxation dynamics of benzaldehyde using molecular orbital calculations and laser ionization time-of-flight mass spectroscopy

    Science.gov (United States)

    da Silva, Maria Cristina Rodrigues

    1998-11-01

    Molecular orbital methods and laser ionization mass spectrometry measurements are used to investigate the spectroscopy and relaxation dynamics of benzaldehyde following excitation to its S2(/pi/pi/sp/*) state. Energies, equilibrium geometries and vibrational frequencies of ground and low-lying excited states of benzaldehyde neutral and cation determined by ab initio calculations provide a theoretical description of the electronic spectroscopy of benzaldehyde and of the changes occurring on excitation and ionization. The S2(/pi/pi/sp/*)[/gets]S0 excitation spectrum of jet-cooled benzaldehyde acquired using two-color laser ionization mass spectrometry techniques is interpreted with the aid of these calculations. The spectrum is dominated by the origin band and by transitions involving some of the ring modes consistent with the results of the molecular orbital calculations that indicate that the major geometric changes on excitation to S2 are located in the aromatic ring. Ten fundamental vibrations of the S2(/pi/pi/sp/*) state are assigned. The dissociation dynamics of benzaldehyde into benzene and carbon monoxide following excitation to its S2(/pi/pi/sp/*) state are investigated under jet- cooled conditions by two-color laser ionization mass spectrometry using a pump-probe technique. This experimental arrangement allows monitoring the benzaldehyde reactant and the benzene product ion signals as a function of the time delay between the excitation and ionization steps. A kinetic model is proposed to explain the observed biexponential decay of the benzaldehyde signal and the single exponential growth of the benzene product signal in terms of a sequential decay of two excited states of benzaldehyde, one of which leads to formation of benzene molecules in its lowest triplet state. Reactant disappearance and product appearance rates are determined for a number of vibronic transitions of the S2 state. They are found to increase with excitation energy without any indication

  19. Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer

    Science.gov (United States)

    Poltash, Michael L.; McCabe, Jacob W.; Patrick, John W.; Laganowsky, Arthur; Russell, David H.

    2018-05-01

    As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase.

  20. A review of the applications to solids of the laser ion source in mass spectrometry

    International Nuclear Information System (INIS)

    Conzemius, R.J.; Capellen, J.M.

    1980-01-01

    The review is intended to provide a panoramic view of the broadening applications of the laser ion source in mass spectrometry. In these applications a laser beam has been used to excite a solid specimen to the ionized state or to the vaporized state in the ion source of a mass spectrometer. The review is divided into two main sections: Analytical features and applications. The analytical features section has been subdivided into five areas: Detection sensitivity, ionisation efficiency, collection efficiency, quantification, and crater-depth analysis. Applications have been separated into ten different areas: Biological, carbon, fossil fuels, gaseous impurities, geological, inorganics, isotopic analysis, metals, organics and polymers. (EBE)

  1. High-pressure synchrotron infrared spectroscopy at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hemley, R.J.; Goncharov, A.F.; Lu, R.; Struzhkin, V.V.; Li, M.; Mao, H.K.

    1998-01-01

    The paper describes a synchrotron infrared facility for high-pressure spectroscopy and microspectroscopy at the National Synchrotron Light-Source (NSLS). Located at beamline U2B on the VUV ring of the NSLS, the facility utilizes a commercial FT-IR together with custom-built microscope optics designed for a variety of diamond anvil cell experiments, including low- and high- temperature studies. The system contains an integrated laser optical/grating spectrometer for concurrent optical experiments. The facility has been used to characterize a growing number of materials to ultrahigh pressure and has been instrumental of new high-pressure phenomena. Experiments on dense hydrogen to >200 GPa have led to the discovery of numerous unexpected properties of this fundamental system. The theoretically predicted molecular-atomic transition of H 2 O ice to the symmetric hydrogen-bonded structure has been identified, and new classes of high-density clathrates and molecular compounds have been characterized. Experiments on natural and synthetic mineral samples have been performed to study hydrogen speciation, phase transformations, and microscopic inclusions in multiphase assemblages. Detailed information on the behavior of new materials, including novel high-pressure glasses and ceramics, has also been obtained

  2. Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy

    Science.gov (United States)

    Kapsalidis, Filippos; Shahmohammadi, Mehran; Süess, Martin J.; Wolf, Johanna M.; Gini, Emilio; Beck, Mattias; Hundt, Morten; Tuzson, Béla; Emmenegger, Lukas; Faist, Jérôme

    2018-06-01

    We report on the design, fabrication, and performance of dual-wavelength distributed-feedback (DFB) quantum cascade lasers (QCLs) emitting at several wavelengths in the mid-infrared (mid-IR) spectrum. In this work, two new designs are presented: for the first one, called "Neighbour" DFB, two single-mode DFB QCLs are fabricated next to each other, with minimal lateral distance, to allow efficient beam-coupling into multi-pass gas cells. In addition, the minimal distance allows either laser to be used as an integrated heater for the other, allowing to extend the tuning range of its neighbour without any electrical cross-talk. For the second design, the Vernier effect was used to realize a switchable DFB laser, with two target wavelengths which are distant by about 300 cm^{-1}. These devices are promising laser sources for Tunable Diode Laser Absorption Spectroscopy applications targeting simultaneous detection of multiple gasses, with distant spectral features, in compact and mobile setups.

  3. Implementation of the Fissile Mass Flow Monitor Source Verification and Confirmation

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, Taner [ORNL; March-Leuba, Jose A [ORNL; Powell, Danny H [ORNL; Nelson, Dennis [Sandia National Laboratories (SNL); Radev, Radoslav [Lawrence Livermore National Laboratory (LLNL)

    2007-12-01

    This report presents the verification procedure for neutron sources installed in U.S. Department of Energy equipment used to measure fissile material flow. The Fissile Mass Flow Monitor (FMFM) equipment determines the {sup 235}U fissile mass flow of UF{sub 6} gas streams by using {sup 252}Cf neutron sources for fission activation of the UF{sub 6} gas and by measuring the fission products in the flow. The {sup 252}Cf sources in each FMFM are typically replaced every 2 to 3 years due to their relatively short half-life ({approx} 2.65 years). During installation of the new FMFM sources, the source identity and neutronic characteristics provided by the manufacturer are verified with the following equipment: (1) a remote-control video television (RCTV) camera monitoring system is used to confirm the source identity, and (2) a neutron detection system (NDS) is used for source-strength confirmation. Use of the RCTV and NDS permits remote monitoring of the source replacement process and eliminates unnecessary radiation exposure. The RCTV, NDS, and the confirmation process are described in detail in this report.

  4. Implementation of the Fissile Mass Flow Monitor Source Verification and Confirmation

    International Nuclear Information System (INIS)

    Uckan, Taner; March-Leuba, Jose A.; Powell, Danny H.; Nelson, Dennis; Radev, Radoslav

    2007-01-01

    This report presents the verification procedure for neutron sources installed in U.S. Department of Energy equipment used to measure fissile material flow. The Fissile Mass Flow Monitor (FMFM) equipment determines the 235 U fissile mass flow of UF 6 gas streams by using 252 Cf neutron sources for fission activation of the UF 6 gas and by measuring the fission products in the flow. The 252 Cf sources in each FMFM are typically replaced every 2 to 3 years due to their relatively short half-life (∼ 2.65 years). During installation of the new FMFM sources, the source identity and neutronic characteristics provided by the manufacturer are verified with the following equipment: (1) a remote-control video television (RCTV) camera monitoring system is used to confirm the source identity, and (2) a neutron detection system (NDS) is used for source-strength confirmation. Use of the RCTV and NDS permits remote monitoring of the source replacement process and eliminates unnecessary radiation exposure. The RCTV, NDS, and the confirmation process are described in detail in this report.

  5. Determination of trace amounts of impurities in molybdenum by spark source and glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Saito, Morimasa

    1994-01-01

    For the determination of trace and ultra-trace amounts of impurities in high-purity molybdenum, spark source mass spectrometry and glow discharge mass spectrometry were studied. In spark source mass spectrometry using the metal probe method, the liquid-helium cryogenic pump was used in order to protect the surface of the samples from oxidation. The theoretical relative sensitivity factors (Mo=1) calculated from physical properties were used. The analytical results obtained for molybdenum tablet and high-purity molybdenum were in good agreement with those obtained by other methods (atomic absorption spectrometry and others). In glow discharge mass spectrometry, the relative sensitivity factors were calculated by using the results obtained by spark source mass spectrometry and atomic absorption spectrometry, and this method was applied to the determination of ultra-trace amounts of impurities in ultra high-purity molybdenum and gave the satisfactory results. The detection limits (2σ, n=10) in the integration time of 600 s for U and Th were 0.6 ppb and 0.3 ppb, and the values for Al, Si, Cr, Mn and Cu were in the range of 10 ppb to 0.5 ppb. (author)

  6. The optimization of some of the conditions for analysis by spark-source mass spectrometry

    International Nuclear Information System (INIS)

    Pearton, D.C.P.; Sobiecki, A.

    1980-01-01

    The need for improved precision in spark-source mass spectrometry is highlighted. Several parameters, such as photoplate-development technique, instrumental stability and focus, and sparking conditions, were optimized. Measurements made under these optimum conditions attained precisions of more than 12 per cent

  7. ''Anomalous'' air showers from point sources: Mass limits and light curves

    International Nuclear Information System (INIS)

    Domokos, G.; Elliott, B.; Kovesi-Domokos, S.

    1993-01-01

    We describe a method to obtain upper limits on the mass of the primaries of air showers associated with point sources. One also obtains the UHE pulse shape of a pulsar if its period is observed in the signal. As an example, we analyze the data obtained during a recent burst of Hercules-X1

  8. MSQuant, an Open Source Platform for Mass Spectrometry-Based Quantitative Proteomics

    DEFF Research Database (Denmark)

    Mortensen, Peter; Gouw, Joost W; Olsen, Jesper V

    2010-01-01

    Mass spectrometry-based proteomics critically depends on algorithms for data interpretation. A current bottleneck in the rapid advance of proteomics technology is the closed nature and slow development cycle of vendor-supplied software solutions. We have created an open source software environment...

  9. Commissioning of an automated microphotometer used in spark-source mass spectrometry

    International Nuclear Information System (INIS)

    Pearton, D.C.G.; Heron, C.

    1983-01-01

    A description of the automated microphotometer and its operation is given, which includes measurement under computer control. Speed and precision tests indicate that the system is superior in every respect to that in which an analyst reads photoplates in spark-source mass spectrometry

  10. Effect of heating on the behaviors of hydrogen in C-TiC films with auger electron spectroscopy and secondary ion mass spectroscopy analyses

    International Nuclear Information System (INIS)

    Zou, Y.; Wang, L.W.; Huang, N.K.

    2007-01-01

    C-TiC films with a content of 75% TiC were prepared with magnetron sputtering deposition followed by Ar + ion bombardment. Effect of heating on the behaviors of hydrogen in C-TiC films before and after heating was studied with Auger Electron Spectroscopy and Secondary Ion Mass Spectroscopy (SIMS) analyses. SIMS depth profiles of hydrogen after H + ion implantation and thermal treatment show different hydrogen concentrations in C-TiC coatings and stainless steel. SIMS measurements show the existence of TiH, TiH 2 , CH 3 , CH 4 , C 2 H 2 bonds in the films after H + ion irradiation and the changes in the Ti LMM, Ti LMV and C KLL Auger line shape reveal that they have a good hydrogen retention ability after heating up to the temperature 393 K. All the results show that C-TiC coatings can be used as a hydrogen retainer or hydrogen permeable barrier on stainless steel to protect it from hydrogen brittleness

  11. An all-solid state laser system for the laser ion source RILIS and in-source laser spectroscopy of astatine at ISOLDE, CERN

    CERN Document Server

    Rothe, Sebastian; Nörtershäuser, W

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at ISOLDE, CERN, by the addition of an all-solid state tuneable titanium: sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE, CERN, and at ISAC, TRIUMF, radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  12. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    International Nuclear Information System (INIS)

    Rothe, Sebastian

    2012-01-01

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  13. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian

    2012-09-24

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  14. Body cell mass measured by bioimpedance spectroscopy as a nutritional marker.

    Directory of Open Access Journals (Sweden)

    Aleksandra Rymarz

    2012-06-01

    Full Text Available Body Cell Mass (BCM is a sum of all metabolically active cells of the body. Aim of the study was to compare BCM with other nutritional and inflammatory markers in patients with chronic kidney disease (CKD stage 4-5 (NKF without dialysis treatment and in hemodialysis patients(HD. We included 45 adult patients with CKD and eGFR<30 ml/min not treated with dialysis (26 male, age: 59,7±16,8 and 39 adults treated with HD three times a week, for more than three months (26 male, 5 diabetics, age: 59,8 ±16. Body composition was measured using multifrequency biopimpedance spectroscopy: Body Composition Monitor - FMC. We used BCM index (BCMI defined as BCM divided by height to the power of 2. To measure hand grip strength (HGS we used dynamometr Jamar. In statistics analysis we used Pearson correlations (SPSS v18. Predialysis group: BCMI: 7,1 ±1,6 kg/m², Lean Tissue Index (LTI: 12,9 ±2,4 kg/m², Fat Tissue Index (FTI: 14,7 ±5,4 kg/m², BMI: 28,2 ±5 kg/m², serum creatinine level (SCr: 3,9 ±2,1 mg/dl, eGFR: 18,3 ±7,0034 ml/min/1,73 m², albumin (SA: 3,9 ±0,3 g/dl, prealbumin (PA: 32,8 ±8,8 mg/dl, CRP: 0,5 ±0,3 mg/dl. A positive correlation was found with BCMI and HGS (r = 0,55; p=0,001, PA (r = 0,41; p=0,004 and SCr (r =0,37; p=0,012. A negative correlation was found between BCMI and age (r = -0,48; p=0,006, CRP (r = -0,33; p=0,028. We do not observed correlation with BMI and SA. HD group: BCMI: 6,4±1,7 kg/m², LTI: 12,1±2,3 kg/m², FTI: 12 ±6 kg/m², BMI: 24,8 ±4,8, SCr: 8,9 ±2,6 mg/dl, TP: 6,7 ±0,6 g/dl, SA: 3,9 ±0,47 g/dl, PA 33,8 ±11,4 g/dl, CRP: 1,1 ±1,4 mg/dl. A positive, significant correlation was found between BCMI and HGS (r = 0,47; p=0,003. A negative correlation was found with BCMI and age (r = -0,55; p=0,0005 and with CRP (r = -0,31, but not statistically significant. We do not observed correlation between BCMI and BMI, SCr, TP, SA, PA, hemodialysis vintage, Kt/V. Assessment of body compartments is

  15. Invited Article: Characterization of background sources in space-based time-of-flight mass spectrometers

    International Nuclear Information System (INIS)

    Gilbert, J. A.; Gershman, D. J.; Gloeckler, G.; Lundgren, R. A.; Zurbuchen, T. H.; Orlando, T. M.; McLain, J.; Steiger, R. von

    2014-01-01

    For instruments that use time-of-flight techniques to measure space plasma, there are common sources of background signals that evidence themselves in the data. The background from these sources may increase the complexity of data analysis and reduce the signal-to-noise response of the instrument, thereby diminishing the science value or usefulness of the data. This paper reviews several sources of background commonly found in time-of-flight mass spectrometers and illustrates their effect in actual data using examples from ACE-SWICS and MESSENGER-FIPS. Sources include penetrating particles and radiation, UV photons, energy straggling and angular scattering, electron stimulated desorption of ions, ion-induced electron emission, accidental coincidence events, and noise signatures from instrument electronics. Data signatures of these sources are shown, as well as mitigation strategies and design considerations for future instruments

  16. Angular and mass resolved energy distribution measurements with a gallium liquid metal ion source

    International Nuclear Information System (INIS)

    Marriott, Philip

    1987-06-01

    Ionisation and energy broadening mechanisms relevant to liquid metal ion sources are discussed. A review of experimental results giving a picture of source operation and a discussion of the emission mechanisms thought to occur for the ionic species and droplets emitted is presented. Further work is suggested by this review and an analysis system for angular and mass resolved energy distribution measurements of liquid metal ion source beams has been constructed. The energy analyser has been calibrated and a series of measurements, both on and off the beam axis, of 69 Ga + , Ga ++ and Ga 2 + ions emitted at various currents from a gallium source has been performed. A comparison is made between these results and published work where possible, and the results are discussed with the aim of determining the emission and energy spread mechanisms operating in the gallium liquid metal ion source. (author)

  17. Theory and technique of spark source mass spectrometry; Theorie et technique de la spectrometrie de masse a etincelles

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    Trace analysis in solids by spark source mass spectrometry involves complicated phenomena: element ionization in spark and blacking of sensitive emulsion by focused ion beam. However the principal risk of selectivity lies in analyser system, which realizes double focusing only for a part of the ions. Therefore, each analyst has to known ionic optics of his apparatus, for ensuring the transmission of mean energetic ions, which are representative of sample composition. By a careful photometry of mass spectrum, good reproducibility can be obtained. Thereafter accuracy depends on the knowledge of sensitivity coefficients proper to this apparatus. (author) [French] L'analyse de traces dans les solides par spectrometrie de masse a etincelles met en jeu des phenomenes complexes qui sont l'ionisation des elements dans l'etincelle, et le noircissement de l'emulsion sensible par les faisceaux ioniques focalises. Cependant, le risque majeur de selectivite provient de l'ensemble analyseur, qui realise la double focalisation sur une fraction seulement du faisceau d'ions. L'analyste doit donc connaitre en detail l'optique ionique de son appareil, pour assurer le passage de la bande d'energie moyenne des ions, qui seule caracterise quantitativement la composition chimique de l'echantillon. Une exploitation photometrique soignee du spectrogramme donne alors des resultats reproductibles, dont la justesse ne depend plus que des coefficients de sensibilite propres a ce type d'instrument. (auteur)

  18. Determination of void fraction from source range monitor and mass flow rate data

    International Nuclear Information System (INIS)

    McCormick, R.D.

    1986-09-01

    This is a report on the calculation of the TMI-2 primary coolant system local void fraction from source range neutron flux monitor data and from hot leg mass flowrate meter data during the first 100 minutes of the accident. The methods of calculation of void fraction from the two data sources is explained and the results are compared. It is indicated that the void fraction determined using the mass flowrate data contained an error of unknown magnitude due to the assumption of constant homogeneous volumetric flowrate used in the calculation and required further work. Void fraction determined from the source range monitor data is felt to be usable although an uncertainty analysis has not been performed

  19. Silicon oxide particle formation in RF plasmas investigated by infrared absorption spectroscopy and mass spectrometry

    NARCIS (Netherlands)

    Hollenstein, Ch.; Howling, A.A.; Courteille, C.; Magni, D.; Scholz, S.M.; Kroesen, G.M.W.; Simons, N.; de Zeeuw, W.; Schwarzenbach, W.

    1998-01-01

    In situ Fourier transform infrared absorption spectroscopy has been used to study the composition of particles formed and suspended in radio-frequency discharges of silane - oxygen-argon gas mixtures. The silane gas consumption was observed by infrared absorption. The stoichiometry of the produced

  20. Precision spectroscopy of molecular hydrogen ions : Towards frequency metrology of particle masses

    NARCIS (Netherlands)

    Roth, B.; Koelemeij, J.; Schiller, S.; Hilico, L.; Karr, Jean Philippe; Korobov, V.I.; Bakalov, D.

    2008-01-01

    We describe the current status of high-precision ab initio calculations of the spectra of molecular hydrogen ions (H2+ and HD+) and of two experiments for vibrational spectroscopy. The perspectives for a comparison between theory and experiment at a level of 1 part in 109 are considered.

  1. Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source

    International Nuclear Information System (INIS)

    Cool, Terrill A.; McIlroy, Andrew; Qi, Fei; Westmoreland, Phillip R.; Poisson, Lionel; Peterka, Darcy S.; Ahmed, Musahid

    2005-01-01

    A flame-sampling molecular-beam photoionization mass spectrometer, recently designed and constructed for use with a synchrotron-radiation light source, provides significant improvements over previous molecular-beam mass spectrometers that have employed either electron-impact ionization or vacuum ultraviolet laser photoionization. These include superior signal-to-noise ratio, soft ionization, and photon energies easily and precisely tunable [E/ΔE(FWHM)≅250-400] over the 7.8-17-eV range required for quantitative measurements of the concentrations and isomeric compositions of flame species. Mass resolution of the time-of-flight mass spectrometer is m/Δm=400 and sensitivity reaches ppm levels. The design of the instrument and its advantages for studies of flame chemistry are discussed

  2. Halide ions complex and deprotonate dipicolinamides and isophthalamides: assessment by mass spectrometry and UV-visible spectroscopy.

    Science.gov (United States)

    Carasel, I Alexandru; Yamnitz, Carl R; Winter, Rudolph K; Gokel, George W

    2010-12-03

    The F(-), Cl(-), and Br(-) binding selectivity of bis(p-nitroanilide)s of dipicolinic and isophthalic acids was studied by using competitive electrospray mass spectrometry and UV-Visible spectroscopy. Both hosts prefer binding Cl(-) over either F(-) or Br(-). Host deprotonation was observed to some extent in all experiments in which the host was exposed to halide ions. When F(-) was present, host deprotonation was often the major process, whereas little deprotonation was observed by Cl(-) or Br(-), which preferred complexation. A solution of either host changed color when mixed with a F(-), H(2)PO(4)(-), di- or triphenylacetate solution.

  3. OXSA: An open-source magnetic resonance spectroscopy analysis toolbox in MATLAB.

    Directory of Open Access Journals (Sweden)

    Lucian A B Purvis

    Full Text Available In vivo magnetic resonance spectroscopy provides insight into metabolism in the human body. New acquisition protocols are often proposed to improve the quality or efficiency of data collection. Processing pipelines must also be developed to use these data optimally. Current fitting software is either targeted at general spectroscopy fitting, or for specific protocols. We therefore introduce the MATLAB-based OXford Spectroscopy Analysis (OXSA toolbox to allow researchers to rapidly develop their own customised processing pipelines. The toolbox aims to simplify development by: being easy to install and use; seamlessly importing Siemens Digital Imaging and Communications in Medicine (DICOM standard data; allowing visualisation of spectroscopy data; offering a robust fitting routine; flexibly specifying prior knowledge when fitting; and allowing batch processing of spectra. This article demonstrates how each of these criteria have been fulfilled, and gives technical details about the implementation in MATLAB. The code is freely available to download from https://github.com/oxsatoolbox/oxsa.

  4. OXSA: An open-source magnetic resonance spectroscopy analysis toolbox in MATLAB.

    Science.gov (United States)

    Purvis, Lucian A B; Clarke, William T; Biasiolli, Luca; Valkovič, Ladislav; Robson, Matthew D; Rodgers, Christopher T

    2017-01-01

    In vivo magnetic resonance spectroscopy provides insight into metabolism in the human body. New acquisition protocols are often proposed to improve the quality or efficiency of data collection. Processing pipelines must also be developed to use these data optimally. Current fitting software is either targeted at general spectroscopy fitting, or for specific protocols. We therefore introduce the MATLAB-based OXford Spectroscopy Analysis (OXSA) toolbox to allow researchers to rapidly develop their own customised processing pipelines. The toolbox aims to simplify development by: being easy to install and use; seamlessly importing Siemens Digital Imaging and Communications in Medicine (DICOM) standard data; allowing visualisation of spectroscopy data; offering a robust fitting routine; flexibly specifying prior knowledge when fitting; and allowing batch processing of spectra. This article demonstrates how each of these criteria have been fulfilled, and gives technical details about the implementation in MATLAB. The code is freely available to download from https://github.com/oxsatoolbox/oxsa.

  5. Role of excipients in hydrate formation kinetics of theophylline in wet masses studied by near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Jørgensen, Anna C; Airaksinen, Sari; Karjalainen, Milja

    2004-01-01

    . Anhydrous theophylline was chosen as the hydrate-forming model drug compound and two excipients, silicified microcrystalline cellulose (SMCC) and alpha-lactose monohydrate, with different water absorbing properties, were used in formulation. An early stage of wet massing was studied with anhydrous...... theophylline and its 1:1 (w/w) mixtures with alpha-lactose monohydrate and SMCC with 0.1g/g of purified water. The changes in the state of water were monitored using near-infrared spectroscopy, and the conversion of the crystal structure was verified using X-ray powder diffraction (XRPD). SMCC decreased...... the hydrate formation rate by absorbing water, but did not inhibit it. The results suggest that alpha-lactose monohydrate slightly increased the hydrate formation rate in comparison with a mass comprising only anhydrous theophylline....

  6. Forensic Sampling and Analysis from a Single Substrate: Surface-Enhanced Raman Spectroscopy Followed by Paper Spray Mass Spectrometry.

    Science.gov (United States)

    Fedick, Patrick W; Bills, Brandon J; Manicke, Nicholas E; Cooks, R Graham

    2017-10-17

    Sample preparation is the most common bottleneck in the analysis and processing of forensic evidence. Time-consuming steps in many forensic tests involve complex separations, such as liquid and gas chromatography or various types of extraction techniques, typically coupled with mass spectrometry (e.g., LC-MS). Ambient ionization ameliorates these slow steps by reducing or even eliminating sample preparation. While some ambient ionization techniques have been adopted by the forensic community, there is significant resistance to discarding chromatography as most forensic analyses require both an identification and a confirmation technique. Here, we describe the use of a paper substrate, the surface of which has been inkjet printed with silver nanoparticles, for surface enhanced Raman spectroscopy (SERS). The same substrate can also act as the paper substrate for paper spray mass spectrometry. The coupling of SERS and paper spray ionization creates a quick, forensically feasible combination.

  7. Assessment of cadmium and lead mobility in the rhizosphere using voltammetry and electrospray ionization mass spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Šestáková, Ivana; Jaklová Dytrtová, Jana; Jakl, M.; Navrátil, Tomáš

    2011-01-01

    Roč. 5, č. 3 (2011), s. 347-355 ISSN 1109-9577 R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40550506 Keywords : cadmium * electrochemical impedance spectroscopy (EIS) * oxalic acid Subject RIV: CG - Electrochemistry http://www.library.sk/i2/i2.entry.cls?ictx=cav&language=2&op=esearch

  8. Interlaboratory study of the ion source memory effect in {sup 36}Cl accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pavetich, Stefan, E-mail: s.pavetich@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01314 Dresden (Germany); Akhmadaliev, Shavkat [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01314 Dresden (Germany); Arnold, Maurice; Aumaître, Georges; Bourlès, Didier [Aix-Marseille Université, CEREGE CNRS-IRD, F-13545 Aix-en-Provence (France); Buchriegler, Josef [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01314 Dresden (Germany); University of Vienna, Faculty of Physics, VERA Laboratory, Währingerstraße 17, 1090 Vienna (Austria); Golser, Robin [University of Vienna, Faculty of Physics, VERA Laboratory, Währingerstraße 17, 1090 Vienna (Austria); Keddadouche, Karim [Aix-Marseille Université, CEREGE CNRS-IRD, F-13545 Aix-en-Provence (France); Martschini, Martin [University of Vienna, Faculty of Physics, VERA Laboratory, Währingerstraße 17, 1090 Vienna (Austria); Merchel, Silke; Rugel, Georg [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01314 Dresden (Germany); Steier, Peter [University of Vienna, Faculty of Physics, VERA Laboratory, Währingerstraße 17, 1090 Vienna (Austria)

    2014-06-01

    Highlights: • Long-term memory effect in negative ion sources investigated for chlorine isotopes. • Interlaboratory comparison of four up-to date negative ion sources. • Ion source improvement at DREAMS for minimization of long-term memory effect. • Long-term memory effect is the limitation for precise AMS data of volatile elements. • Findings to be considered for samples with highly variable ratios of {sup 36}Cl/Cl and {sup 129}I/I. - Abstract: Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural {sup 35}Cl/{sup 37}Cl-ratio and samples highly-enriched in {sup 35}Cl ({sup 35}Cl/{sup 37}Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion

  9. Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Martschini, Martin; Merchel, Silke; Rugel, Georg; Steier, Peter

    2014-01-01

    Highlights: • Long-term memory effect in negative ion sources investigated for chlorine isotopes. • Interlaboratory comparison of four up-to date negative ion sources. • Ion source improvement at DREAMS for minimization of long-term memory effect. • Long-term memory effect is the limitation for precise AMS data of volatile elements. • Findings to be considered for samples with highly variable ratios of 36 Cl/Cl and 129 I/I. - Abstract: Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural 35 Cl/ 37 Cl-ratio and samples highly-enriched in 35 Cl ( 35 Cl/ 37 Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion sources were widely spread between

  10. In-Source Laser Spectroscopy with the Laser Ion Source and Trap: First Direct Study of the Ground-State Properties of ^{217,219}Po

    Directory of Open Access Journals (Sweden)

    D. A. Fink

    2015-02-01

    Full Text Available A Laser Ion Source and Trap (LIST for a thick-target, isotope-separation on-line facility has been implemented at CERN ISOLDE for the production of pure, laser-ionized, radioactive ion beams. It offers two modes of operation, either as an ion guide, which performs similarly to the standard ISOLDE resonance ionization laser ion source (RILIS, or as a more selective ion source, where surface-ionized ions from the hot ion-source cavity are repelled by an electrode, while laser ionization is done within a radio-frequency quadrupole ion guide. The first physics application of the LIST enables the suppression of francium contamination in ion beams of neutron-rich polonium isotopes at ISOLDE by more than 1000 with a reduction in laser-ionization efficiency of only 20. Resonance ionization spectroscopy is performed directly inside the LIST device, allowing the study of the hyperfine structure and isotope shift of ^{217}Po for the first time. Nuclear decay spectroscopy of ^{219}Po is performed for the first time, revealing its half-life, α-to-β-decay branching ratio, and α-particle energy. This experiment demonstrates the applicability of the LIST at radioactive ion-beam facilities for the production and study of pure beams of exotic isotopes.

  11. An ion source for radiofrequency-pulsed glow discharge time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    González Gago, C.; Lobo, L.; Pisonero, J.; Bordel, N.; Pereiro, R.; Sanz-Medel, A.

    2012-01-01

    A Grimm-type glow discharge (GD) has been designed and constructed as an ion source for pulsed radiofrequency GD spectrometry when coupled to an orthogonal time of flight mass spectrometer. Pulse shapes of argon species and analytes were studied as a function of the discharge conditions using a new in-house ion source (UNIOVI GD) and results have been compared with a previous design (PROTOTYPE GD). Different behavior and shapes of the pulse profiles have been observed for the two sources evaluated, particularly for the plasma gas ionic species detected. In the more analytically relevant region (afterglow), signals for 40 Ar + with this new design were negligible, while maximum intensity was reached earlier in time for 41 (ArH) + than when using the PROTOTYPE GD. Moreover, while maximum 40 Ar + signals measured along the pulse period were similar in both sources, 41 (ArH) + and 80 (Ar 2 ) + signals tend to be noticeable higher using the PROTOTYPE chamber. The UNIOVI GD design was shown to be adequate for sensitive direct analysis of solid samples, offering linear calibration graphs and good crater shapes. Limits of detection (LODs) are in the same order of magnitude for both sources, although the UNIOVI source provides slightly better LODs for those analytes with masses slightly higher than 41 (ArH) + . - Highlights: ► A new RF-pulsed GD ion source (UNIOVI GD) coupled to TOFMS has been characterized. ► Linear calibration graphs and LODs in the low ppm range are achieved. ► Craters with flat bottoms and vertical walls are obtained. ► UNIOVI source can be easily cleaned as it does not require flow tube. ► UNIOVI GD has a simple design and thus its manufacture is easy and cheap.

  12. TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil

    KAUST Repository

    Elbaz, Ayman M.; Abdul Jameel, Abdul Gani; Hourani, Nadim; Emwas, Abdul-Hamid M.; Sarathy, Mani; Roberts, William L.

    2015-01-01

    infusion atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (APCI-FTICR MS), high resolution 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional heteronuclear multiple bond correlation (HMBC

  13. Interlaboratory determinations of isotopically enriched metals by field desorption mass spectroscopy

    International Nuclear Information System (INIS)

    Bahr, U.; Schulten, H.R.; Achenbach, C.; Ziskoven, R.

    1982-01-01

    The isotopic distribution of stable isotopes in six enriched metals (calcium, copper, barium, rubidium, strontium and thallium) has been determined by field desorption mass spectrometry. A first evaluation of the interlaboratory reproducibility of the application of this method for trace determination of metals was made using three different types of mass spectrometers in three different laboratories. The standard deviations for the most abundant isotopes of the metals investigated are between +-0.1 and +-0.5%. Within these standard deviations, the values obtained by the three mass spectrometry groups are the same. To support the accuracy of our quantification, thermal ionization mass spectrometry has been employed and confirms the results of the field desorption method. (orig.) [de

  14. Self-compensation in ZnO thin films: An insight from X-ray photoelectron spectroscopy, Raman spectroscopy and time-of-flight secondary ion mass spectroscopy analyses

    International Nuclear Information System (INIS)

    Saw, K.G.; Ibrahim, K.; Lim, Y.T.; Chai, M.K.

    2007-01-01

    As-grown ZnO typically exhibits n-type conductivity and the difficulty of synthesizing p-type ZnO for the realization of ZnO-based optoelectronic devices is mainly due to the compensation effect of a large background n-type carrier concentration. The cause of this self-compensation effect has not been conclusively identified although oxygen vacancies, zinc interstitials and hydrogen have been suggested. In this work, typical n-type ZnO thin films were prepared by sputtering and investigated using X-ray photoelectron spectroscopy, Raman spectroscopy and time-of-flight secondary ion mass spectroscopy to gain an insight on the possible cause of the self-compensation effect. The analyses found that the native defect that most likely behaved as the donor was zinc interstitial but some contribution of n-type conductivity could also come from the electronegative carbonates or hydrogen carbonates incorporated in the ZnO thin films

  15. Characterization of TiAlN thin film annealed under O2 by in situ time of flight direct recoil spectroscopy/mass spectroscopy of recoiled ions and ex situ x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Tempez, A.; Bensaoula, A.; Schultz, A.

    2002-01-01

    The oxidation of an amorphous TiAlN coating has been studied by in situ direct recoil spectroscopy (DRS) and mass spectroscopy of recoiled ions (MSRI) and ex situ x-ray photoelectron spectroscopy (XPS). DRS and MSRI monitored the changes in surface composition as the sample was heated to 460 deg. C under an 18 O 2 pressure of 10 -6 Torr. Angular resolved XPS data were acquired for thickness-dependence information. The initial surface was partially oxidized from air exposure. Both DRS and XPS showed the Al-rich near surface and the presence of N in the subsurface. As shown by DRS and MSRI, oxidation at elevated temperatures yielded surface nitrogen loss and Ti enrichment. XPS confirmed the preferential formation of TiO 2 on the surface. This study also provides a comparison between the direct recoil (neutrals and ions) and the ionic recoil signals. In our conditions, the negative ionic fraction of all elements except H tracks their true surface content variations given by DRS. The results were compared with early work performed on identical samples. In this case the TiAlN film was oxidized with an O 2 pressure in the mTorr range and the surface changes are followed in situ by positive MSRI and XPS. This experiment also indicates that Al and N are buried under TiO 2 but from 600 deg. C

  16. Mass spectrometric characterization of a pyrolytic radical source using femtosecond ionization

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H M; Beaud, P; Mischler, B; Radi, P P; Tzannis, A P; Gerber, T [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Radicals play, as reactive species, an important role in the chemistry of combustion. In contrast to atmospheric flames where spectra are congested due to high vibrational and rotational excitation, experiments in the cold environment of a molecular beam (MB) yield clean spectra that can be easily attributed to one species by Resonantly Enhanced Multi Photon Ionization (REMP). A pyrolytic radical source has been set up. To characterize the efficiency of the source `soft` ionization with femto second pulses is applied which results in less fragmentation, simplifying the interpretation of the mass spectrum. (author) figs., tabs., refs.

  17. Validation of botanical origins and geographical sources of some Saudi honeys using ultraviolet spectroscopy and chemometric analysis.

    Science.gov (United States)

    Ansari, Mohammad Javed; Al-Ghamdi, Ahmad; Khan, Khalid Ali; Adgaba, Nuru; El-Ahmady, Sherweit H; Gad, Haidy A; Roshan, Abdulrahman; Meo, Sultan Ayoub; Kolyali, Sevgi

    2018-02-01

    This study aims at distinguishing honey based on botanical and geographical sources. Different floral honey samples were collected from diverse geographical locations of Saudi Arabia. UV spectroscopy in combination with chemometric analysis including Hierarchical Cluster Analysis (HCA), Principal Component Analysis (PCA), and Soft Independent Modeling of Class Analogy (SIMCA) were used to classify honey samples. HCA and PCA presented the initial clustering pattern to differentiate between botanical as well as geographical sources. The SIMCA model clearly separated the Ziziphus sp. and other monofloral honey samples based on different locations and botanical sources. The results successfully discriminated the honey samples of different botanical and geographical sources validating the segregation observed using few physicochemical parameters that are regularly used for discrimination.

  18. Molecular spectroscopy

    International Nuclear Information System (INIS)

    Kokh, Eh.; Zonntag, B.

    1981-01-01

    The latest investigation results on molecular spectroscopy with application of synchrotron radiation in the region of vacuum ultraviolet are generalized. Some results on investigation of excited, superexcited and ionized molecule states with the use of adsorption spectroscopy, photoelectron spectroscopy, by fluorescent and mass-spectrometric methods are considered [ru

  19. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  20. Analysis of solids by spark-source mass spectrometry; Analyse des solides au spectrometre de masse a etincelles

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, R; Desjardins, M; Brun, J C; Cornu, A; Bourguillot, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-07-01

    Spark source mass spectrometer MS7 has been designed to determine traces of impurities in solids without standards. An atlas of 12 000 lines, assembled in the Grenoble laboratory, allows a quick investigation of mass spectra, notwithstanding their complexity due to multiply charged and polyatomic darkening. Photometric measurements increase accuracy calibration curve is known for each photo-plate. Further, reproducibility is better, if random fluctuations of matrix line darkening are corrected. So far, in a concentration range of 0,01 to 1 000 ppm (atomic), reproducibility is approximately 20 per cent, but absolute value of results depends on 'sensitivity coefficients'. (authors) [French] Le spectrometre de masse a etincelles, de type MS7, est destine a l'analyse chimique de traces dans les solides, sans echantillons etalons. L'emploi de catalogues de 12 000 raies, elabores au laboratoire, permet un depouillement rapide des spectres, malgre leur complexite due aux ionisations multiples et aux associations d'atomes. Le niveau d'apparition d'une impurete donne une estimation de sa teneur, mais la valeur du renseignement depend de la preparation des electrodes et de la connaissance plus ou moins approfondie des processus d'ionisation dans l'etincelle et de noircissement des emulsions photographiques. Les mesures photometriques augmentent la precision des resultats, si l'on determine systematiquement la courbe de noircissement de chaque plaque. De meme la reproductibilite est amelioree si l'on tient compte des fluctuations statistiques du noircissement de l'emulsion par les ions de la matrice. Actuellement, les concentrations mesurees dans le domaine de 0,01 a 1000 ppm atomiques sont reproductibles a 20 pour cent pres, mais leur valeur absolue n'est assuree qu'a un coefficient 3 pres. Des etudes sont en cours pour calibrer l'appareil en valeur absolue, par une determination des coefficients de sensibilite a partir d'echantillons etalons. (auteurs)

  1. Heat and mass release for some transient fuel source fires: A test report

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1986-10-01

    Nine fire tests using five different trash fuel source packages were conducted by Sandia National Laboratories. This report presents the findings of these tests. Data reported includes heat and mass release rates, total heat and mass release, plume temperatures, and average fuel heat of combustion. These tests were conducted as a part of the US Nuclear Regulatory Commission sponsored fire safety research program. Data from these tests were intended for use in nuclear power plant probabilistic risk assessment fire analyses. The results were also used as input to a fire test program at Sandia investigating the vulnerability of electrical control cabinets to fire. The fuel packages tested were chosen to be representative of small to moderately sized transient trash fuel sources of the type that would be found in a nuclear power plant. The highest fire intensity encountered during these tests was 145 kW. Plume temperatures did not exceed 820 0 C

  2. Review and evaluation of spark source mass spectrometry as an analytical method

    International Nuclear Information System (INIS)

    Beske, H.E.

    1981-01-01

    The analytical features and most important fields of application of spark source mass spectrometry are described with respect to the trace analysis of high-purity materials and the multielement analysis of technical alloys, geochemical and cosmochemical, biological and radioactive materials, as well as in environmental analysis. Comparisons are made to other analytical methods. The distribution of the method as well as opportunities for contract analysis are indicated and developmental tendencies discussed. (orig.) [de

  3. Alternative method to trace sediment sources in a subtropical rural catchment of southern Brazil by using near-infrared spectroscopy

    Science.gov (United States)

    Tiecher, Tales; Caner, Laurent; Gomes Minella, Jean Paolo; Henrique Ciotti, Lucas; Antônio Bender, Marcos; dos Santos Rheinheimer, Danilo

    2014-05-01

    Conventional fingerprinting methods based on geochemical composition still require a time-consuming and critical preliminary sample preparation. Thus, fingerprinting characteristics that can be measured in a rapid and cheap way requiring a minimal sample preparation, such as spectroscopy methods, should be used. The present study aimed to evaluate the sediment sources contribution in a rural catchment by using conventional method based on geochemical composition and on an alternative method based on near-infrared spectroscopy. This study was carried out in a rural catchment with an area of 1,19 km2 located in southern Brazil. The sediment sources evaluated were crop fields (n=20), unpaved roads (n=10) and stream channels (n=10). Thirty suspended sediment samples were collected from eight significant storm runoff events between 2009 and 2011. Sources and sediment samples were dried at 50oC and sieved at 63 µm. The total concentration of Ag, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sr, Ti, Tl, V and Zn were estimated by ICP-OES after microwave assisted digestion with concentrated HNO3 and HCl. Total organic carbon (TOC) was estimated by wet oxidation with K2Cr2O7 and H2SO4. The near-infrared spectra scan range was 4000 to 10000 cm-1 at a resolution of 2 cm-1, with 100 co added scans per spectrum. The steps used in the conventional method were: i) tracer selection based on Kruskal-Wallis test, ii) selection of the best set of tracers using discriminant analyses and finally iii) the use of a mixed linear model to calculate the sediment sources contribution. The steps used in the alternative method were i) principal component analyses to reduce the number of variables, ii) discriminant analyses to determine the tracer potential of the near-infrared spectroscopy, and finally iii) the use of past least square based on 48 mixtures of the sediment sources in various weight proportions to calculate the sediment sources

  4. Attempt of absolute analysis with spark source mass spectrometry; Essai d'analyse absolue par spectrometrie de masse a etincelles

    Energy Technology Data Exchange (ETDEWEB)

    Desjardins, M [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-10-01

    By means of a graphical method developed in our laboratory, we have studied the linearity of the response of the MS-7 mass spectrometer for impurity determinations over a concentration range of 1 to 1000 ppm (parts per million of atoms). This method consist in transforming optical density measurements into 'true intensities', which are plotted on a logarithm-scale paper against the exposures. A moving transparent ruler graduated at the inverse scale of the exposures allows us to determine directly on the graph, the concentration of impurities in ppm. We have used this method for the determination of sensitivity coefficients in standard samples such as Al, Fe, Cu, Ni, Zr, and non conducting powders like SiO{sub 2} and Al{sub 2}O{sub 3}. This study shows that, for the samples studied, the sensitivity coefficients are practically independent of the matrix and the concentration. Moreover the results show the possibility of obtaining an absolute analysis by spark source mass spectrometry. (author) [French] Au moyen d'une methode graphique developpee ou laboratoire, nous avons etudie la linearite des determinations d'impuretes au spectrometre de masse, type MS-7, dans un domaine de concentration allont de 1 a 1000 ppm. Cette methode consiste en la transformation des mesures de densite optique en 'intensite vraie'. Ces dernieres mesures sont portees sur un graphique logarithmique et une reglette transparente graduee a l'inverse de l'echelle des expositions nous permet de determiner directement la teneur des impuretes en ppm (partie par million d'atomes). Nous avons utilise cette methode pour la determination des coefficients de sensibilite dans des echantillons etalons tels que Al, Fe, Cu, Ni, Zr, et des poudres non conductrices genre SiO{sub 2}, Al{sub 2}O{sub 3}. Cette etude a montre que, pour les echantillons etudies, les coefficients de sensibilite sont pratiquement independants de la matrice et de la concentration. De plus, les resultats obtenus montrent la

  5. The mass of $^{22}$Mg and a concept for a novel laser ion source trap

    CERN Document Server

    Mukherjee, Manas

    Clean and high-quality radioactive ion beams can be prepared by combining ion trap and resonance laser ionization techniques. A feasibility study for such a laser ion source trap has been carried out which shows enormous improvement in the beam emittance, purity, and in addition allows for a variation of the ion beam time structure. Direct high-precision mass measurements around mass number A=22 are of utmost importance. First, the masses of the superallowed $\\beta$-emitter $^{22}$Mg and its daughter $^{22}$Na are needed to test the conserved-vector-current(CVC) hypothesis and the Cabibbo-Kobayashi-Maskawa(CKM) matrix unitarity, both being predictions of the Standard Model. Second, to calculate the reaction rate of $^{21}$Na($p,\\gamma$)$^{22}$Mg the involved masses are required very accurately. This rate is needed in order to extract an upper limit on the amount of a characteristic $\\gamma$-radiation emitted from classical nova bursts which has been searched for but not yet detected. At the triple trap mass s...

  6. Investigation of gas discharge ion sources for on-line mass separation

    International Nuclear Information System (INIS)

    Kirchner, R.

    1976-03-01

    The development of efficient gas discharge ion sources with axial beam extraction for on-line mass separation is described. The aim of the investigation was to increase the ion source temperature, the lifetime and the ionisation yield in comparison to present low-pressure are discharge ion sources and to reduce the ion current density from usually 1 to 100 mA/cm 3 . In all ion sources the pressure range below the minimal ignition pressure of the arc discharge was investigated. As a result an ion source was developed which works at small changes in geometry and in electric device of a Nielsen source with high ionization yield (up to 50% for xenon) stabil and without ignition difficulties up to 10 -5 Torr. At a typical pressure of 3 x 10 -5 Torr ion current and ion current density are about 1 μA and 0.1 mA/cm 3 respectively besides high yield and a great emission aperture (diameter 1.2 mm). (orig.) [de

  7. Precision determination of pion mass using X-ray CCD spectroscopy

    CERN Document Server

    Nelms, N; Augsburger, M A; Borchert, G; Chatellard, D; Daum, M; Egger, J P; Gotta, D; Hauser, P; Indelicato, P J; Jeannet, E; Kirch, K; Schult, O W B; Siems, T; Simons, L M; Wells, A

    2002-01-01

    An experiment is described which aims to determine the charged pion mass to 1 ppm or better, from which a new determination of the upper limit of the muon neutrino mass is anticipated. The experimental approach uses a high-intensity negative pion beam (produced at the PSI 590 MeV proton cyclotron), injected into a cyclotron trap and stopped inside a gas-filled target chamber, to form highly excited exotic atoms of pionic nitrogen and muonic oxygen. The energy of photons, emitted during de-excitation, is directly proportional to the mass of the pion or muon. These soft X-ray emission spectra are measured using a high-precision crystal spectrometer, with an array of six, high quantum efficiency X-ray position resolving CCDs at the focus. To achieve sub-ppm accuracy, simultaneous calibration of the pionic nitrogen line is provided by measurement of an adjacent muonic oxygen line, whose energy is known to 0.3 ppm. The high precision of the experiment offers a new opportunity to determine the pion mass to the leve...

  8. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    Science.gov (United States)

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  9. Synchrotron radiation sources for photobiology and ultraviolet, visible and infrared spectroscopy

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1980-01-01

    The advantages of synchrotron radiation in several types of spectroscopy, microscopy and diffraction studies are clear. The availability of synchrotron radiation will expand rapidly in the early 1980's as experimental programs start at the new generation of dedicated storage rings

  10. Source attribution of Bornean air masses by back trajectory analysis during the OP3 project

    Directory of Open Access Journals (Sweden)

    N. H. Robinson

    2011-09-01

    Full Text Available Atmospheric composition affects the radiative balance of the Earth through the creation of greenhouse gases and the formation of aerosols. The latter interact with incoming solar radiation, both directly and indirectly through their effects on cloud formation and lifetime. The tropics have a major influence on incoming sunlight however the tropical atmosphere is poorly characterised, especially outside Amazonia. The origins of air masses influencing a measurement site in a protected rainforest in Borneo, South East Asia, were assessed and the likely sources of a range of trace gases and particles were determined. This was conducted by interpreting in situ measurements made at the site in the context of ECMWF backwards air mass trajectories. Two different but complementary methods were employed to interpret the data: comparison of periods classified by cluster analysis of trajectories, and inspection of the dependence of mean measured values on geographical history of trajectories. Sources of aerosol particles, carbon monoxide and halocarbons were assessed. The likely source influences include: terrestrial organic biogenic emissions; long range transport of anthropogenic emissions; biomass burning; sulphurous emissions from marine phytoplankton, with a possible contribution from volcanoes; marine production of inorganic mineral aerosol; and marine production of halocarbons. Aerosol sub- and super-saturated water affinity was found to be dependent on source (and therefore composition, with more hygroscopic aerosol and higher numbers of cloud condensation nuclei measured in air masses of marine origin. The prevailing sector during the majority of measurements was south-easterly, which is from the direction of the coast closest to the site, with a significant influence inland from the south-west. This analysis shows that marine and terrestrial air masses have different dominant chemical sources. Comparison with the AMAZE-08 project in the Amazon

  11. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Wortham, H.; Marchand, N. [Univ Aix Marseille, CNRS, Lab Chim Provence, Equipe Instrumentat and React Atmospher, UMR 6264, F-13331 Marseille 3 (France); Jaffrezo, J.L. [Univ Grenoble 1, CNRS, UMR 5183, Lab Glaciol and Geophys Environm, F-38402 St Martin Dheres (France)

    2010-07-01

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCIMS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R' respectively) and precursor ion (nitro groups, R-NO{sub 2}) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalization rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional

  12. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Dron

    2010-08-01

    Full Text Available The functional group composition of various organic aerosols (OA is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS. The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R´ respectively and precursor ion (nitro groups, R-NO2 scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular to 13.5% (o-xylene photooxidation of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60

  13. The Initial-Final Mass Relationship: Spectroscopy of White Dwarfs in NGC 2099 (M37)

    Science.gov (United States)

    Kalirai, Jasonjot Singh; Richer, Harvey B.; Reitzel, David; Hansen, Brad M. S.; Rich, R. Michael; Fahlman, Gregory G.; Gibson, Brad K.; von Hippel, Ted

    2005-01-01

    We present new observations of very faint white dwarfs (WDs) in the rich open star cluster NGC 2099 (M37). Following deep, wide-field imaging of the cluster using the Canada-France-Hawaii Telescope, we have now obtained spectroscopic observations of candidate WDs using both the Gemini Multi-Object Spectrograph on Gemini North and the Low-Resolution Imaging Spectrometer on Keck. Of our 24 WD candidates (all fainter than V=22.4), 21 are spectroscopically confirmed to be bona fide WDs, four or five of which are most likely field objects. Fitting 18 of the 21 WD spectra with model atmospheres, we find that most WDs in this cluster are quite massive (0.7-0.9 Msolar), as expected given the cluster's young age (650 Myr) and, hence, high turnoff mass (~2.4 Msolar). We determine a new initial-final mass relationship and almost double the number of existing data points from previous studies. The results indicate that stars with initial masses between 2.8 and 3.4 Msolar lose 70%-75% of their mass through stellar evolution. For the first time, we find some evidence of a metallicity dependence on the initial-final mass relationship. Based on observations with Gemini (run ID GN-2002B-Q-11) and Keck. Gemini is an international partnership managed by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation. The W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, was made possible by the generous financial support of the W. M. Keck Foundation.

  14. NEAR-INFRARED SPECTROSCOPY OF LOW-MASS X-RAY BINARIES: ACCRETION DISK CONTAMINATION AND COMPACT OBJECT MASS DETERMINATION IN V404 Cyg AND Cen X-4

    International Nuclear Information System (INIS)

    Khargharia, Juthika; Froning, Cynthia S.; Robinson, Edward L.

    2010-01-01

    We present near-infrared (NIR) broadband (0.80-2.42 μm) spectroscopy of two low-mass X-ray binaries: V404 Cyg and Cen X-4. One important parameter required in the determination of the mass of the compact objects in these systems is the binary inclination. We can determine the inclination by modeling the ellipsoidal modulations of the Roche-lobe filling donor star, but the contamination of the donor star light from other components of the binary, particularly the accretion disk, must be taken into account. To this end, we determined the donor star contribution to the infrared flux by comparing the spectra of V404 Cyg and Cen X-4 to those of various field K-stars of known spectral type. For V404 Cyg, we determined that the donor star has a spectral type of K3 III. We determined the fractional donor contribution to the NIR flux in the H and K bands as 0.98 ± 0.05 and 0.97 ± 0.09, respectively. We remodeled the H-band light curve from Sanwal et al. after correcting for the donor star contribution to obtain a new value for the binary inclination. From this, we determined the mass of the black hole in V404 Cyg to be M BH = 9.0 +0.2 -0.6 M sun . We performed the same spectral analysis for Cen X-4 and found the spectral type of the donor star to be in the range K5-M1 V. The donor star contribution in Cen X-4 is 0.94 ± 0.14 in the H band while in the K band, the accretion disk can contribute up to 10% of the infrared flux. We remodeled the H-band light curve from Shahbaz et al., again correcting for the fractional contribution of the donor star to obtain the inclination. From this, we determined the mass of the neutron star as M NS = 1.5 +0.1 -0.4 M sun . However, the masses obtained for both systems should be viewed with some caution since contemporaneous light curve and spectral data are required to obtain definitive masses.

  15. Spectroscopy of Luminous z > 7 Galaxy Candidates and Sources of Contamination in z > 7 Galaxy Searches

    Science.gov (United States)

    Capak, P.; Mobasher, B.; Scoville, N. Z.; McCracken, H.; Ilbert, O.; Salvato, M.; Menéndez-Delmestre, K.; Aussel, H.; Carilli, C.; Civano, F.; Elvis, M.; Giavalisco, M.; Jullo, E.; Kartaltepe, J.; Leauthaud, A.; Koekemoer, A. M.; Kneib, J.-P.; LeFloch, E.; Sanders, D. B.; Schinnerer, E.; Shioya, Y.; Shopbell, P.; Tanaguchi, Y.; Thompson, D.; Willott, C. J.

    2011-04-01

    We present three bright z +-dropout candidates selected from deep near-infrared (NIR) imaging of the COSMOS 2 deg2 field. All three objects match the 0.8-8 μm colors of other published z > 7 candidates but are 3 mag brighter, facilitating further study. Deep spectroscopy of two of the candidates covering 0.64-1.02 μm with Keck-DEIMOS and all three covering 0.94-1.10 μm and 1.52-1.80 μm with Keck-NIRSPEC detects weak spectral features tentatively identified as Lyα at z = 6.95 and z = 7.69 in two of the objects. The third object is placed at z ~ 1.6 based on a 24 μm and weak optical detection. A comparison with the spectral energy distributions of known z 1 μm properties of all three objects can be matched to optically detected sources with photometric redshifts at z ~ 1.8, so the non-detection in the i + and z + bands is the primary factor which favors a z > 7 solution. If any of these objects are at z ~ 7, the bright end of the luminosity function is significantly higher at z > 7 than suggested by previous studies, but consistent within the statistical uncertainty and the dark matter halo distribution. If these objects are at low redshift, the Lyman break selection must be contaminated by a previously unknown population of low-redshift objects with very strong breaks in their broadband spectral energy distributions and blue NIR colors. The implications of this result on luminosity function evolution at high redshift are discussed. We show that the primary limitation of z > 7 galaxy searches with broad filters is the depth of the available optical data. Based on observations with the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration and made possible by the generous financial support of the W. M. Keck Foundation; the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California

  16. In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.

  17. Proposal for the determination of nuclear masses by high-precision spectroscopy of Rydberg states

    International Nuclear Information System (INIS)

    Wundt, B J; Jentschura, U D

    2010-01-01

    The theoretical treatment of Rydberg states in one-electron ions is facilitated by the virtual absence of the nuclear-size correction, and fundamental constants like the Rydberg constant may be in the reach of planned high-precision spectroscopic experiments. The dominant nuclear effect that shifts transition energies among Rydberg states therefore is due to the nuclear mass. As a consequence, spectroscopic measurements of Rydberg transitions can be used in order to precisely deduce nuclear masses. A possible application of this approach to hydrogen and deuterium, and hydrogen-like lithium and carbon is explored in detail. In order to complete the analysis, numerical and analytic calculations of the quantum electrodynamic self-energy remainder function for states with principal quantum number n = 5, ..., 8 and with angular momentum l = n - 1 and l = n - 2 are described (j = l +- 1/2).

  18. Proposal for the determination of nuclear masses by high-precision spectroscopy of Rydberg states

    Energy Technology Data Exchange (ETDEWEB)

    Wundt, B J; Jentschura, U D [Department of Physics, Missouri University of Science and Technology, Rolla, MO 65409-0640 (United States)

    2010-06-14

    The theoretical treatment of Rydberg states in one-electron ions is facilitated by the virtual absence of the nuclear-size correction, and fundamental constants like the Rydberg constant may be in the reach of planned high-precision spectroscopic experiments. The dominant nuclear effect that shifts transition energies among Rydberg states therefore is due to the nuclear mass. As a consequence, spectroscopic measurements of Rydberg transitions can be used in order to precisely deduce nuclear masses. A possible application of this approach to hydrogen and deuterium, and hydrogen-like lithium and carbon is explored in detail. In order to complete the analysis, numerical and analytic calculations of the quantum electrodynamic self-energy remainder function for states with principal quantum number n = 5, ..., 8 and with angular momentum l = n - 1 and l = n - 2 are described (j = l {+-} 1/2).

  19. Diode laser based resonance ionization mass spectrometry for spectroscopy and trace analysis of uranium isotopes

    International Nuclear Information System (INIS)

    Hakimi, Amin

    2013-01-01

    In this doctoral thesis, the upgrade and optimization of a diode laser system for high-resolution resonance ionization mass spectrometry is described. A frequency-control system, based on a double-interferometric approach, allowing for absolute stabilization down to 1 MHz as well as frequency detunings of several GHz within a second for up to three lasers in parallel was optimized. This laser system was used for spectroscopic studies on uranium isotopes, yielding precise and unambiguous level energies, total angular momenta, hyperfine constants and isotope shifts. Furthermore, an efficient excitation scheme which can be operated with commercial diode lasers was developed. The performance of the complete laser mass spectrometer was optimized and characterized for the ultra-trace analysis of the uranium isotope 236 U, which serves as a neutron flux dosimeter and tracer for radioactive anthropogenic contaminations in the environment. Using synthetic samples, an isotope selectivity of ( 236 U)/( 238 U) = 4.5(1.5) . 10 -9 was demonstrated.

  20. Mass Spectrometry and Fourier Transform Infrared Spectroscopy for Analysis of Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Timothy J. [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55% (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the eight week study, cecal and distal-colon contents samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic treated subgroups were well classified for cecal samples and modestly separated for distal-colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.

  1. An electrostatic beam line for accelerator mass spectroscopy of exotic particles

    International Nuclear Information System (INIS)

    Elmore, D.; Kubik, P.W.; Hemmick, T.; Teng, R.; Kagan, H.; Haas, P.; Boyd, R.N.; Turner, R.; Nitz, D.; Ciampa, D.; Olsen, S.L.; Gentile, T.; Haelen, T.

    1985-01-01

    An all-electrostatic charged particle spectrometer has been constructed to perform high sensitivity searches for exotic states of matter. This spectrometer consists of an electrosatic beam line capable of mass independent charged particle transport and selection together with time-of-flight, energy loss and total energy detectors. This system has been used in conjunction with the tandem electrostatic accelerator at the Nuclear Structure Research Laboratory of the University of Rochester to search for fractionally charged or anomalously heavy particles. (orig.)

  2. Polyquant CT: direct electron and mass density reconstruction from a single polyenergetic source

    Science.gov (United States)

    Mason, Jonathan H.; Perelli, Alessandro; Nailon, William H.; Davies, Mike E.

    2017-11-01

    Quantifying material mass and electron density from computed tomography (CT) reconstructions can be highly valuable in certain medical practices, such as radiation therapy planning. However, uniquely parameterising the x-ray attenuation in terms of mass or electron density is an ill-posed problem when a single polyenergetic source is used with a spectrally indiscriminate detector. Existing approaches to single source polyenergetic modelling often impose consistency with a physical model, such as water-bone or photoelectric-Compton decompositions, which will either require detailed prior segmentation or restrictive energy dependencies, and may require further calibration to the quantity of interest. In this work, we introduce a data centric approach to fitting the attenuation with piecewise-linear functions directly to mass or electron density, and present a segmentation-free statistical reconstruction algorithm for exploiting it, with the same order of complexity as other iterative methods. We show how this allows both higher accuracy in attenuation modelling, and demonstrate its superior quantitative imaging, with numerical chest and metal implant data, and validate it with real cone-beam CT measurements.

  3. The Grism Lens-Amplified Survey from Space (GLASS). VI. Comparing the Mass and Light in MACS J0416.1-2403 Using Frontier Field Imaging and GLASS Spectroscopy

    Science.gov (United States)

    Hoag, A.; Huang, K.-H.; Treu, T.; Bradač, M.; Schmidt, K. B.; Wang, X.; Brammer, G. B.; Broussard, A.; Amorin, R.; Castellano, M.; Fontana, A.; Merlin, E.; Schrabback, T.; Trenti, M.; Vulcani, B.

    2016-11-01

    We present a model using both strong and weak gravitational lensing of the galaxy cluster MACS J0416.1-2403, constrained using spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) and Hubble Frontier Fields (HFF) imaging data. We search for emission lines in known multiply imaged sources in the GLASS spectra, obtaining secure spectroscopic redshifts of 30 multiple images belonging to 15 distinct source galaxies. The GLASS spectra provide the first spectroscopic measurements for five of the source galaxies. The weak lensing signal is acquired from 884 galaxies in the F606W HFF image. By combining the weak lensing constraints with 15 multiple image systems with spectroscopic redshifts and nine multiple image systems with photometric redshifts, we reconstruct the gravitational potential of the cluster on an adaptive grid. The resulting map of total mass density is compared with a map of stellar mass density obtained from the deep Spitzer Frontier Fields imaging data to study the relative distribution of stellar and total mass in the cluster. We find that the projected stellar mass to total mass ratio, f ⋆, varies considerably with the stellar surface mass density. The mean projected stellar mass to total mass ratio is =0.009+/- 0.003 (stat.), but with a systematic error as large as 0.004-0.005, dominated by the choice of the initial mass function. We find agreement with several recent measurements of f ⋆ in massive cluster environments. The lensing maps of convergence, shear, and magnification are made available to the broader community in the standard HFF format.

  4. A Bayesian geostatistical approach for evaluating the uncertainty of contaminant mass discharges from point sources

    Science.gov (United States)

    Troldborg, M.; Nowak, W.; Binning, P. J.; Bjerg, P. L.

    2012-12-01

    Estimates of mass discharge (mass/time) are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Mass discharge estimates are, however, prone to rather large uncertainties as they integrate uncertain spatial distributions of both concentration and groundwater flow velocities. For risk assessments or any other decisions that are being based on mass discharge estimates, it is essential to address these uncertainties. We present a novel Bayesian geostatistical approach for quantifying the uncertainty of the mass discharge across a multilevel control plane. The method decouples the flow and transport simulation and has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is based on conditional geostatistical simulation and accounts for i) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics (including the uncertainty in covariance functions), ii) measurement uncertainty, and iii) uncertain source zone geometry and transport parameters. The method generates multiple equally likely realizations of the spatial flow and concentration distribution, which all honour the measured data at the control plane. The flow realizations are generated by analytical co-simulation of the hydraulic conductivity and the hydraulic gradient across the control plane. These realizations are made consistent with measurements of both hydraulic conductivity and head at the site. An analytical macro-dispersive transport solution is employed to simulate the mean concentration distribution across the control plane, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed

  5. Testing the Paradigm that Ultraluminous X-Ray Sources as a Class Represent Accreting Intermediate-Mass Black Holes

    Science.gov (United States)

    Berghea, C. T.; Weaver, K. A.; Colbert, E. J. M.; Roberts, T. P.

    2008-11-01

    To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting intermediate-mass black holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the Chandra archive. We establish as a general property of ULXs that the most X-ray-luminous objects possess the flattest X-ray spectra (in the Chandra bandpass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity >=5 × 1039 erg s-1) and is in line with recent models arguing that ULXs are actually stellar mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs—i.e., the "simple IMBH model"—is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to a large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the XMM-Newton work in a broader sense with independent X-ray data. We find that (1) cool-disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) cool-disk components extend below the standard ULX luminosity cutoff of 1039 erg s-1, down to our sample limit of 1038.3 erg s-1. The fact that cool-disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which strong statistical support was never found.

  6. Microplasma discharge vacuum ultraviolet photoionization source for atmospheric pressure ionization mass spectrometry.

    Science.gov (United States)

    Symonds, Joshua M; Gann, Reuben N; Fernández, Facundo M; Orlando, Thomas M

    2014-09-01

    In this paper, we demonstrate the first use of an atmospheric pressure microplasma-based vacuum ultraviolet (VUV) photoionization source in atmospheric pressure mass spectrometry applications. The device is a robust, easy-to-operate microhollow cathode discharge (MHCD) that enables generation of VUV photons from Ne and Ne/H(2) gas mixtures. Photons were detected by excitation of a microchannel plate detector and by analysis of diagnostic sample ions using a mass spectrometer. Reactive ions, charged particles, and metastables produced in the discharge were blocked from entering the ionization region by means of a lithium fluoride window, and photoionization was performed in a nitrogen-purged environment. By reducing the output pressure of the MHCD, we observed heightened production of higher-energy photons, making the photoionization source more effective. The initial performance of the MHCD VUV source has been evaluated by ionizing model analytes such as acetone, azulene, benzene, dimethylaniline, and glycine, which were introduced in solid or liquid phase. These molecules represent species with both high and low proton affinities, and ionization energies ranging from 7.12 to 9.7 eV.

  7. Isotope ratio mass spectrometry as a tool for source inference in forensic science: A critical review.

    Science.gov (United States)

    Gentile, Natacha; Siegwolf, Rolf T W; Esseiva, Pierre; Doyle, Sean; Zollinger, Kurt; Delémont, Olivier

    2015-06-01

    Isotope ratio mass spectrometry (IRMS) has been used in numerous fields of forensic science in a source inference perspective. This review compiles the studies published on the application of isotope ratio mass spectrometry (IRMS) to the traditional fields of forensic science so far. It completes the review of Benson et al. [1] and synthesises the extent of knowledge already gathered in the following fields: illicit drugs, flammable liquids, human provenancing, microtraces, explosives and other specific materials (packaging tapes, safety matches, plastics, etc.). For each field, a discussion assesses the state of science and highlights the relevance of the information in a forensic context. Through the different discussions which mark out the review, the potential and limitations of IRMS, as well as the needs and challenges of future studies are emphasized. The paper elicits the various dimensions of the source which can be obtained from the isotope information and demonstrates the transversal nature of IRMS as a tool for source inference. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Secondary ions mass spectroscopy measurements of dopant impurities in highly stressed InGaN laser diodes

    International Nuclear Information System (INIS)

    Marona, L.; Suski, T.; Perlin, P.; Czernecki, R.; Leszczynski, M.; Bockowski, M.; Jakiela, R.; Najda, S. P.

    2011-01-01

    We performed a systematic secondary ions mass spectroscopy (SIMS) study of dopant impurities in life-time stressed InGaN laser devices in order to investigate the main degradation mechanism that is observed in nitride laser diodes. A continuous wave (cw) current density of 3 kA/cm 2 was applied to InGaN laser diodes over an extended period of time and we observed the characteristic square root degradation of optical power. We compared the SIMS profiles of Mg, H, and Si impurities in the aged devices and observe that the impurities are remarkably stable over 10 000 h of cw operation. Nor is there any SIMS evidence of p-contact metals penetrating into the semiconductor material. Thus our SIMS results are contrary to what one would expect for impurity diffusion causing the observed square root degradation characteristic.

  9. H passivation of Li on Zn-site in ZnO: Positron annihilation spectroscopy and secondary ion mass spectrometry

    Science.gov (United States)

    Johansen, K. M.; Zubiaga, A.; Tuomisto, F.; Monakhov, E. V.; Kuznetsov, A. Yu.; Svensson, B. G.

    2011-09-01

    The interaction of hydrogen (H) with lithium (Li) and zinc vacancies (VZn) in hydrothermally grown n-type zinc oxide (ZnO) has been investigated by positron annihilation spectroscopy (PAS) and secondary ion mass spectrometry. Li on Zn-site (LiZn) is found to be the dominant trap for migrating H atoms, while the trapping efficiency of VZn is considerably smaller. After hydrogenation, where the LiZn acceptor is passivated via formation of neutral LiZn-H pairs, VZn occurs as the prime PAS signature and with a concentration similar to that observed in nonhydrogenated Li-poor samples. Despite a low efficiency as an H trap, the apparent concentration of VZn in Li-poor samples decreases after hydrogenation, as detected by PAS, and evidence for formation of the neutral VZnH2 complex is presented.

  10. Possibility of content change in bioethanol gasoline during pre-treatment process for using accelerator mass spectroscopy

    International Nuclear Information System (INIS)

    Saito, Masaaki; Yunoki, Shunji; Suzuki, Takashi

    2010-01-01

    We attempted to determine the bioethanol content of E3 gasoline by applying ASTM D6866 method B. In the pre-treatment process using accelerator mass spectroscopy(AMS), the graphite samples were prepared from E3 gasoline. Three portions of the same graphite sample were measured, and the contents agreed within the measurement error of AMS. The graphite samples prepared from eight portions of the same E3 gasoline sample were measured, but the accuracy was insufficient. There are many kinds of hydrocarbon compounds in the gasoline and their boiling points are different. The content of bioethanol was found to decrease with vaporization when E3 gasoline was placed in open air. A very small amount of E3 gasoline is pre-treated for AMS and the volatile loss cannot be ignored. It seems that the content change of bioethanol was caused by vaporization of E3 gasoline during the pre-treatment process. (author)

  11. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    Science.gov (United States)

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  12. Study of Polymer Material Aging by Laser Mass Spectrometry, UV-Visible Spectroscopy, and Environmental Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Junien Exposito

    2007-01-01

    Full Text Available Dyed natural rubber (NR and styrene butadiene rubber (SBR, designed for outdoor applications, were exposed to an accelerated artificial aging in xenon light. The aging results in the deterioration of the exposed surface material properties. The ability of dyed polymers to withstand prolonged sunlight exposure without fading or undergoing any physical deterioration is largely determined not only by the photochemical characteristics of the absorbing dyestuff itself but also by the polymer structure and fillers. Results obtained by laser mass spectrometry, UV-visible spectroscopy, and environmental scanning electron microscopy indicate that dyed filled NR and SBR samples behave differently during the photo-oxidation. The fading of the dyed polymers was found to be promoted in the NR sample. This can be correlated with LDI-FTICRMS results, which show the absence of [M-H]− orange pigment pseudomolecular ion and also its fragment ions after aging. This is confirmed by both EDX and UV/Vis spectroscopy. EDX analysis indicates a concentration of chlorine atoms, which can be considered as a marker of orange pigment or its degradation products, only at the surface of SBR flooring after aging. Reactivity of radicals formed during flooring aging has been studied and seems to greatly affect the behavior of such organic pigments.

  13. Nuclear-chemistry research and spectroscopy with radioactive sources. Eighteenth annual progress report

    International Nuclear Information System (INIS)

    Fink, R.W.

    1982-01-01

    Progress is reported on nuclear spectroscopy studies including lifetimes of the g/sub 7/2/ shell-model intruder states in 107 109 Ag, lifetime of the new /sup 187m/Au isomer, the decay of 187 Au - 187 Pt, decay of /sup 201m,g/Po, 203 At, and 125 Ba, and L-shell orbital EC probability and decay energy in 207 Bi decay. Also progress on nuclear model calculations of nuclear structure is reported

  14. Extrinsic Sources of Scatter in the Richness-Mass Relation of Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Rozo, Eduardo; /Chicago U. /Chicago U., KICP; Rykoff, Eli; /LBL, Berkeley; Koester, Benjamin; /Chicago U., Astron. Astrophys. Ctr.; Nord, Brian; /Michigan U.; Wu, Hao-Yi; /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Evrard, August; /Michigan U.; Wechsler, Risa; /KIPAC, Menlo Park /Stanford U., Phys. Dept.

    2012-03-27

    Maximizing the utility of upcoming photometric cluster surveys requires a thorough understanding of the richness-mass relation of galaxy clusters. We use Monte Carlo simulations to study the impact of various sources of observational scatter on this relation. Cluster ellipticity, photometric errors, photometric redshift errors, and cluster-to-cluster variations in the properties of red-sequence galaxies contribute negligible noise. Miscentering, however, can be important, and likely contributes to the scatter in the richness - mass relation of galaxy maxBCG clusters at the low mass end, where centering is more difficult. We also investigate the impact of projection effects under several empirically motivated assumptions about cluster environments. Using SDSS data and the maxBCG cluster catalog, we demonstrate that variations in cluster environments can rarely ({approx} 1%-5% of the time) result in significant richness boosts. Due to the steepness of the mass/richness function, the corresponding fraction of optically selected clusters that suffer from these projection effects is {approx} 5%-15%. We expect these numbers to be generic in magnitude, but a precise determination requires detailed, survey-specific modeling.

  15. EXTRINSIC SOURCES OF SCATTER IN THE RICHNESS-MASS RELATION OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Rozo, Eduardo; Koester, Benjamin; Rykoff, Eli; Nord, Brian; Evrard, August; Wu Haoyi; Wechsler, Risa

    2011-01-01

    Maximizing the utility of upcoming photometric cluster surveys requires a thorough understanding of the richness-mass relation of galaxy clusters. We use Monte Carlo simulations to study the impact of various sources of observational scatter on this relation. Cluster ellipticity, photometric errors, photometric redshift errors, and cluster-to-cluster variations in the properties of red-sequence galaxies contribute negligible noise. Miscentering, however, can be important, and likely contributes to the scatter in the richness-mass relation of galaxy maxBCG clusters at the low-mass end, where centering is more difficult. We also investigate the impact of projection effects under several empirically motivated assumptions about cluster environments. Using Sloan Digital Sky Survey data and the maxBCG cluster catalog, we demonstrate that variations in cluster environments can rarely (∼1%-5% of the time) result in significant richness boosts. Due to the steepness of the mass/richness function, the corresponding fraction of optically selected clusters that suffer from these projection effects is ∼5%-15%. We expect these numbers to be generic in magnitude, but a precise determination requires detailed, survey-specific modeling.

  16. The hydroxylation of passive oxide films on X-70 steel by dissolved hydrogen studied by nuclear reaction analysis, Auger electron spectroscopy, X-ray photoelectron spectroscopy and secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Zhang Chunsi; Luo Jingli; Munoz-Paniagua, David; Norton, Peter R.

    2006-01-01

    Dissolved hydrogen is known to reduce the corrosion resistance of a passive oxide film on iron and its alloys, especially towards pitting corrosion. Electrochemical techniques have been used to show that the passive films are changed by dissolved hydrogen in an alloy substrate, but direct confirmation of the chemical and compositional profiles and changes has been missing. In this paper we report the direct profiling and compositional analysis of the 4 nm passive film on X-70 steel by Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and nuclear reaction analysis (NRA) while hydrogen (deuterium) is charged into the alloy samples from the reverse, unpassivated side. The only route for D to the passive film is therefore by dissolution and diffusion. We show that the original duplex structure of the passive film is converted to a more continuous film containing hydroxyl groups, by reaction with the dissolved hydrogen. This conversion of the oxide ions to hydroxyl groups can lead to more rapid reaction and replacement with (e.g.) Cl - , which is known to enhance pitting. These results are entirely consistent with previous electrochemical studies and provide the first direct confirmation of models on the formation and role of hydroxyl groups derived from these earlier studies

  17. Micro-spectrochemical analysis of document paper and gel inks by laser ablation inductively coupled plasma mass spectrometry and laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trejos, Tatiana, E-mail: trejost@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); International Forensic Research Institute (IFRI), Florida International University, Miami, FL 3319 (United States); Flores, Alejandra, E-mail: aflor017@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); Almirall, Jose R., E-mail: almirall@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); International Forensic Research Institute (IFRI), Florida International University, Miami, FL 3319 (United States)

    2010-11-15

    Current methods used in document examinations are not suitable to associate or discriminate between sources of paper and gel inks with a high degree of certainty. Nearly non-destructive, laser-based methods using laser induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to improve the forensic comparisons of gel inks, ballpoint inks and document papers based on similarities in elemental composition. Some of the advantages of these laser-based methods include minimum sample consumption/destruction, high sensitivity, high selectivity and excellent discrimination between samples from different origins. Figures of merit are reported including limits of detection, precision, homogeneity at a micro-scale and linear dynamic range. The variation of the elemental composition in paper was studied within a single sheet, between pages from the same ream, between papers produced by the same plant at different time intervals and between seventeen paper sources produced by ten different plants. The results show that elemental analysis of paper by LIBS and LA-ICP-MS provides excellent discrimination (> 98%) between different sources. Batches manufactured at weekly and monthly intervals in the same mill were also differentiated. The ink of more than 200 black pens was analyzed to determine the variation of the chemical composition of the ink within a single pen, between pens from the same package and between brands of gel inks and ballpoint inks. Homogeneity studies show smaller variation of elemental compositions within a single source than between different sources (i.e. brands and types). It was possible to discriminate between pen markings from different brands and between pen markings from the same brand but different model. Discrimination of {approx} 96-99% was achieved for sets that otherwise would remain inseparable by conventional methods. The results show that elemental analysis, using either LA

  18. Micro-spectrochemical analysis of document paper and gel inks by laser ablation inductively coupled plasma mass spectrometry and laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Trejos, Tatiana; Flores, Alejandra; Almirall, Jose R.

    2010-01-01

    Current methods used in document examinations are not suitable to associate or discriminate between sources of paper and gel inks with a high degree of certainty. Nearly non-destructive, laser-based methods using laser induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to improve the forensic comparisons of gel inks, ballpoint inks and document papers based on similarities in elemental composition. Some of the advantages of these laser-based methods include minimum sample consumption/destruction, high sensitivity, high selectivity and excellent discrimination between samples from different origins. Figures of merit are reported including limits of detection, precision, homogeneity at a micro-scale and linear dynamic range. The variation of the elemental composition in paper was studied within a single sheet, between pages from the same ream, between papers produced by the same plant at different time intervals and between seventeen paper sources produced by ten different plants. The results show that elemental analysis of paper by LIBS and LA-ICP-MS provides excellent discrimination (> 98%) between different sources. Batches manufactured at weekly and monthly intervals in the same mill were also differentiated. The ink of more than 200 black pens was analyzed to determine the variation of the chemical composition of the ink within a single pen, between pens from the same package and between brands of gel inks and ballpoint inks. Homogeneity studies show smaller variation of elemental compositions within a single source than between different sources (i.e. brands and types). It was possible to discriminate between pen markings from different brands and between pen markings from the same brand but different model. Discrimination of ∼ 96-99% was achieved for sets that otherwise would remain inseparable by conventional methods. The results show that elemental analysis, using either LA-ICP-MS or

  19. Direct metabolic fingerprinting of commercial herbal tinctures by nuclear magnetic resonance spectroscopy and mass spectrometry.

    Science.gov (United States)

    Politi, Matteo; Zloh, Mire; Pintado, Manuela E; Castro, Paula M L; Heinrich, Michael; Prieto, Jose M

    2009-01-01

    Tinctures are widely used liquid pharmaceutical preparations traditionally obtained by maceration of one or more medicinal plants in ethanol-water solutions. Such a process results in the extraction of virtually hundreds of structurally diverse compounds with different polarities. Owing to the large chemical diversity of the constituents present in the herbal tinctures, the analytical tools used for the quality control of tinctures are usually optimised only for the detection of single chemical entities or specific class of compounds. In order to overcome the major limitations of the current methods used for analysis of tinctures, a new methodological approach based on NMR spectroscopy and MS spectrometry has been tested with different commercial tinctures. Diffusion-edited 1H-NMR (1D DOSY) and 1H-NMR with suppression of the ethanol and water signals have been applied here for the first time to the direct analysis of commercial herbal tinctures derived from Echinacea purpurea, Hypericum perforatum, Ginkgo biloba and Valeriana officinalis. The direct injection of the tinctures in the MS detector in order to obtain the corresponding metabolic profiles was also performed. Using both NMR and MS methods it was possible, without evaporation or separation steps, to obtain a metabolic fingerprint able to distinguish between tinctures prepared with different plants. Batch-to-batch homogeneity, as well as degradation after the expiry date of a batch, was also investigated. The techniques proposed here represent fast and convenient direct analyses of medicinal herbal tinctures.

  20. Photoion mass spectroscopy and valence photoionization of hypoxanthine, xanthine and caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Feyer, Vitaliy, E-mail: vitaliy.feyer@elettra.trieste.it [Sincrotrone Trieste, in Area Science Park, I-34012 Basovizza (Trieste) (Italy); Plekan, Oksana [Sincrotrone Trieste, in Area Science Park, I-34012 Basovizza (Trieste) (Italy)] [Institute of Electron Physics, 21 Universitetska St., 88017 Uzhgorod (Ukraine); Richter, Robert [Sincrotrone Trieste, in Area Science Park, I-34012 Basovizza (Trieste) (Italy); Coreno, Marcello [CNR-IMIP, Area della Ricerca di Roma 1, CP10, I-00016 Monterotondo Scalo (Italy)] [CNR-Laboratorio Nazionale TASC-INFM, I-34012 Basovizza (Trieste) (Italy); Prince, Kevin C. [Sincrotrone Trieste, in Area Science Park, I-34012 Basovizza (Trieste) (Italy)] [CNR-Laboratorio Nazionale TASC-INFM, I-34012 Basovizza (Trieste) (Italy)

    2009-03-30

    Photoionization mass spectra of hypoxanthine, xanthine and caffeine were measured using the photoelectron-photoion coincidence technique and noble gas resonance radiation at energies from 8.4 to 21.2 eV for ionization. The fragmentation patterns for these compounds show that hydrogen cyanide is the main neutral loss species at higher photon energies, while photoionization below 16.67 eV led predominantly to the parent ion. The valence photoelectron spectra of this family of molecules were measured over an extended energy range, including the inner C, N and O 2s valence orbitals. The observed ion fragments were related to ionization of the valence orbitals.

  1. Bibliography of mass spectroscopy literature for 1973 compiled by a computer method. Bibliography and author index

    International Nuclear Information System (INIS)

    Capellen, J.; Svec, H.J.; Sage, C.R.; Sun, R.

    1976-06-01

    This report covers the year 1973, and lists approximately 8,000 articles of interest to mass spectroscopists. This report consists of three sections, a Bibliography section, an Author Index section and a Key Word Out of Context Index (KWOC Index) section. The Bibliography section lists the authors, the title and the publication data for each article. The Author Index lists the authors' names and the reference numbers of their articles. The KWOC Index lists the key words, the reference numbers of the articles in which the key word appears and the first 100 characters of the title

  2. High-Resolution, Long-Slit Spectroscopy of VY Canis Majoris: The Evidence for Localized High Mass Loss Events

    Science.gov (United States)

    Humphreys, Roberta M.; Davidson, Kris; Ruch, Gerald; Wallerstein, George

    2005-01-01

    High spatial and spectral resolution spectroscopy of the OH/IR supergiant VY CMa and its circumstellar ejecta reveals evidence for high mass loss events from localized regions on the star occurring over the past 1000 yr. The reflected absorption lines and the extremely strong K I emission lines show a complex pattern of velocities in the ejecta. We show that the large, dusty northwest arc, expanding at ~50 km s-1 with respect to the embedded star, is kinematically distinct from the surrounding nebulosity and was ejected about 400 yr ago. Other large, more filamentary loops were probably expelled as much as 800-1000 yr ago, whereas knots and small arcs close to the star resulted from more recent events 100-200 yr ago. The more diffuse, uniformly distributed gas and dust is surprisingly stationary, with little or no velocity relative to the star. This is not what we would expect for the circumstellar material from an evolved red supergiant with a long history of mass loss. We therefore suggest that the high mass loss rate for VY CMa is a measure of the mass carried out by these specific ejections accompanied by streams or flows of gas through low-density regions in the dust envelope. VY CMa may thus be our most extreme example of stellar activity, but our results also bring into question the evolutionary state of this famous star. In a separate appendix, we discuss the origin of the very strong K I and other rare emission lines in its spectrum.

  3. Contribution of a non-β-cell source to β-cell mass during pregnancy.

    Directory of Open Access Journals (Sweden)

    Chiara Toselli

    Full Text Available β-cell mass in the pancreas increases significantly during pregnancy as an adaptation to maternal insulin resistance. Lineage tracing studies in rodents have presented conflicting evidence on the role of cell duplication in the formation of new β-cells during gestation, while recent human data suggest that new islets are a major contributor to increased β-cell mass in pregnancy. Here, we aim to: 1 determine whether a non-β-cell source contributes to the appearance of new β-cells during pregnancy and 2 investigate whether recapitulation of the embryonic developmental pathway involving high expression of neurogenin 3 (Ngn3 plays a role in the up-regulation of β-cell mass during pregnancy. Using a mouse β-cell lineage-tracing model, which labels insulin-producing β-cells with red fluorescent protein (RFP, we found that the percentage of labeled β-cells dropped from 97% prior to pregnancy to 87% at mid-pregnancy. This suggests contribution of a non-β-cell source to the increase in total β-cell numbers during pregnancy. In addition, we observed a population of hormone-negative, Ngn3-positive cells in islets of both non-pregnant and pregnant mice, and this population dropped from 12% of all islets cells in the non-pregnant mice to 5% by day 8 of pregnancy. Concomitantly, a decrease in expression of Ngn3 and changes in its upstream regulatory network (Sox9 and Hes-1 as well as downstream targets (NeuroD, Nkx2.2, Rfx6 and IA1 were also observed during pregnancy. Our results show that duplication of pre-existing β-cells is not the sole source of new β-cells during pregnancy and that Ngn3 may be involved in this process.

  4. MzJava: An open source library for mass spectrometry data processing.

    Science.gov (United States)

    Horlacher, Oliver; Nikitin, Frederic; Alocci, Davide; Mariethoz, Julien; Müller, Markus; Lisacek, Frederique

    2015-11-03

    Mass spectrometry (MS) is a widely used and evolving technique for the high-throughput identification of molecules in biological samples. The need for sharing and reuse of code among bioinformaticians working with MS data prompted the design and implementation of MzJava, an open-source Java Application Programming Interface (API) for MS related data processing. MzJava provides data structures and algorithms for representing and processing mass spectra and their associated biological molecules, such as metabolites, glycans and peptides. MzJava includes functionality to perform mass calculation, peak processing (e.g. centroiding, filtering, transforming), spectrum alignment and clustering, protein digestion, fragmentation of peptides and glycans as well as scoring functions for spectrum-spectrum and peptide/glycan-spectrum matches. For data import and export MzJava implements readers and writers for commonly used data formats. For many classes support for the Hadoop MapReduce (hadoop.apache.org) and Apache Spark (spark.apache.org) frameworks for cluster computing was implemented. The library has been developed applying best practices of software engineering. To ensure that MzJava contains code that is correct and easy to use the library's API was carefully designed and thoroughly tested. MzJava is an open-source project distributed under the AGPL v3.0 licence. MzJava requires Java 1.7 or higher. Binaries, source code and documentation can be downloaded from http://mzjava.expasy.org and https://bitbucket.org/sib-pig/mzjava. This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Separation of uranium and plutonium isotopes for measurement by multi collector inductively coupled plasma mass spectroscopy

    International Nuclear Information System (INIS)

    Martinelli, R.E.; Hamilton, T.F.; Kehl, S.R.; Williams, R.W.

    2009-01-01

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with 233 U and 242 Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA R column coupled to a UTEVA R column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of 234 U/ 235 U, 238 U/ 235 U, 236 U/ 235 U, and 240 Pu/ 239 Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment. (author)

  6. An experiment to measure the electron neutrino mass using a cryogenic tritium source

    International Nuclear Information System (INIS)

    Fackler, O.; Jeziorski, B.; Kolos, W.; Monkhorst, H.; Mugge, M.; Sticker, H.; Szalewicz, K.; White, R.M.; Woerner, R.

    1985-01-01

    An experiment has been performed to determine the electron neutrino mass with the precision of a few eV by measuring the tritium beta decay energy distribution near the endpoint. Key features of the experiment are a 2 eV resolution electrostatic spectrometer and a high-activity frozen tritium source. It is important that the source have electronic wavefunctions which can be accurately calculated. These calculations have been made for tritium and the HeT + daughter ion and allow determination of branching fractions to 0.1% and energy of the excited states to 0.1 eV. The excited final molecular state calculations and the experimental apparatus are discussed. 4 refs., 5 figs

  7. Accelerator mass spectrometry of 41Ca with a positive-ion source and the UNILAC accelerator

    International Nuclear Information System (INIS)

    Steinhof, A.; Henning, W.; Mueller, M.; Roeckl, E.; Schuell, D.; Korschinek, G.; Nolte, E.; Paul, M.

    1987-06-01

    We have made first tests investigating the performance characteristics of the UNILAC accelerator system at GSI, in order to explore the sensitivity achievable in accelerator mass spectrometry (AMS) of 41 Ca with high-current positive-ion sources. Positively charged Ca 3+ ions of up to about 100 micro-amperes electrical current were injected from a penning-sputter source and, after further stripping to Ca 9+ , accelerated to 14.3 MeV/nucleon. The combination of velocity-focussing accelerator and magnetic ion-beam transport system completely eliminated background from the other calcium isotopes. Full-stripping and detection of 41 Ca 20+ ions with a magnetic spectrograph provides separation from isobaric 41 K and, at present, a level of sensitivity of 41 Ca/Ca ≅ 2x10 -15 . Future improvements and implications for dating of Pleistoscene samples will be discussed. (orig.)

  8. Ion-induced molecular emission of polymers: analytical potentialities of FTIR and mass spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Picq, V.; Balanzat, E. E-mail: balanzat@ganil.fr

    1999-05-02

    The release of small gaseous molecules is a general phenomenon of irradiated polymers. Polyethylene (PE), polypropylene (PP) and polybutene (PB) were irradiated with ions of different electronic stopping power. We show that the gas emission can provide important information on the damage process if a reliable chemical identification of the molecules released and accurate yield values are obtained. The outgassing products were analysed by two techniques: (1) by a novel set-up using a Fourier Transform Infrared (FTIR) analysis of the gas mixture released from the polymer film and (2) by residual gas analysis (RGA) with a quadrupole mass spectrometer. Comparing the analytical potentialities of both methods we come to the conclusion that the FTIR method gives a more straightforward and accurate determination of the chemical nature and of the yield of most of the released molecules. However, RGA provides complementary information on the gas release kinetics and also on the release of heavy hydrocarbon molecules and symmetric molecules like molecular hydrogen.

  9. A novel method for active fissile mass estimation with a pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Dubi, C., E-mail: chendb331@gmail.com [Physics Department, Nuclear Research Center of the Negev, POB 9001, Beer Sheva (Israel); Ridnik, T.; Israelashvili, I. [Physics Department, Nuclear Research Center of the Negev, POB 9001, Beer Sheva (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Via E. Fermi, 2749 JRC, Ispra (Italy)

    2013-07-01

    Neutron interrogation facilities for mass evaluation of Special Nuclear Materials (SNM) samples are divided into two main categories: passive interrogation, where all neutron detections are due to spontaneous events, and active interrogation, where fissions are induced on the tested material by an external neutron source. While active methods are, in general, faster and more effective, their analysis is much harder to carry out. In the paper, we will introduce a new formalism for analyzing the detection signal generated by a pulsed source active interrogation facility. The analysis is aimed to distinct between fission neutrons from the main neutron source in the system, and the surrounding “neutron noise”. In particular, we derive analytic expressions for the first three central moments of the number of detections in a given time interval, in terms of the different neutron sources. While the method depends on exactly the same physical assumptions as known models, the simplicity of the suggested formalism allows us to take into account the variance of the external neutron source—an effect that was so far neglected.

  10. A novel method for active fissile mass estimation with a pulsed neutron source

    International Nuclear Information System (INIS)

    Dubi, C.; Ridnik, T.; Israelashvili, I.; Pedersen, B.

    2013-01-01

    Neutron interrogation facilities for mass evaluation of Special Nuclear Materials (SNM) samples are divided into two main categories: passive interrogation, where all neutron detections are due to spontaneous events, and active interrogation, where fissions are induced on the tested material by an external neutron source. While active methods are, in general, faster and more effective, their analysis is much harder to carry out. In the paper, we will introduce a new formalism for analyzing the detection signal generated by a pulsed source active interrogation facility. The analysis is aimed to distinct between fission neutrons from the main neutron source in the system, and the surrounding “neutron noise”. In particular, we derive analytic expressions for the first three central moments of the number of detections in a given time interval, in terms of the different neutron sources. While the method depends on exactly the same physical assumptions as known models, the simplicity of the suggested formalism allows us to take into account the variance of the external neutron source—an effect that was so far neglected

  11. Phase-Resolved Spectroscopy of the Low-Mass X-ray Binary V801 Ara

    Science.gov (United States)

    Brauer, Kaley; Vrtilek, Saeqa Dil; Peris, Charith; McCollough, Michael

    2018-06-01

    We present phase-resolved optical spectra of the low mass X-ray binary system V801 Ara. The spectra, obtained in 2014 with IMACS on the Magellan/Baade telescope at Las Campanas Observatory, cover the full binary orbit of 3.8 hours. They contain strong emission features allowing us to map the emission of Hα, Hβ, He II λ4686, and the Bowen blend at λ4640. The radial velocity curves of the Bowen blend shows significantly stronger modulation at the orbital period than Hα as expected for the former originating on the secondary with the latter consistent with emission dominated by the disk. Our tomograms of Hα and Hβ are the most detailed studies of these lines for V801 to date and they clearly detect the accretion disk. The Hβ emission extends to higher velocities than Hα, suggesting emission from closer to the neutron star and differentiating temperature variance in the accretion disk for the first time. The center of the accretion disk appears offset from the center-of-mass of the neutron star as has been seen in several other X-ray binaries. This is often interpreted to imply disk eccentricity. Our tomograms do not show strong evidence for a hot spot at the point where the accretion stream hits the disk. This could imply a reduced accretion rate or could be due to the spot being drowned out by bright accretion flow around it. There is enhanced emission further along the disk, however, which implies gas stream interaction downstream of the hot spot.

  12. Subaru Weak-Lensing Survey II: Multi-Object Spectroscopy and Cluster Masses

    Science.gov (United States)

    Hamana, Takashi; Miyazaki, Satoshi; Kashikawa, Nobunari; Ellis, Richard S.; Massey, Richard J.; Refregier, Alexandre; Taylor, James E.

    2009-08-01

    We present the first results of a multi-object spectroscopic campaign to follow up cluster candidates located via weak lensing. Our main goals are to search for spatial concentrations of galaxies that are plausible optical counterparts of the weak-lensing signals, and to determine the cluster redshifts from those of member galaxies. Around each of 36 targeted cluster candidates, we obtained 15-32 galaxy redshifts. For 28 of these targets, we confirmed a secure cluster identification, with more than five spectroscopic galaxies within a velocity of ±3000km s-1. This includes three cases where two clusters at different redshifts are projected along the same line-of-sight. In 6 of the 8 unconfirmed targets, we found multiple small galaxy concentrations at different redshifts, each containing at least three spectroscopic galaxies. The weak-lensing signal around those systems was thus probably created by the projection of groups or small clusters along the same line-of-sight. In both of the remaining two targets, a single small galaxy concentration was found. In some candidate super-cluster systems, we found additional evidence of filaments connecting the main density peak to an additional nearby structure. For a subsample of our most cleanly measured clusters, we investigated the statistical relation between their weak-lensing mass (MNFW, σSIS) and the velocity dispersion of their member galaxies (σv), comparing our sample with optically and X-ray selected samples from the literature. Our lensing-selected clusters are consistent with σv = σSIS, with a similar scatter to that of optically and X-ray selected clusters. We also derived an empirical relation between the cluster mass and the galaxy velocity dispersion, M200E(z) = 11.0 × 1014 × (σv/1000km s-1)3.0 h-1 Modot, which is in reasonable agreement with predictions of N-body simulations in the Λ CDM cosmology.

  13. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    International Nuclear Information System (INIS)

    Nakano, H.; Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-01-01

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure

  14. CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY

    International Nuclear Information System (INIS)

    Pueyo, Laurent; Hillenbrand, Lynne; Hinkley, Sasha; Dekany, Richard; Roberts, Jenny; Vasisht, Gautam; Roberts, Lewis C. Jr.; Shao, Mike; Burruss, Rick; Cady, Eric; Oppenheimer, Ben R.; Brenner, Douglas; Zimmerman, Neil; Monnier, John D.; Crepp, Justin; Parry, Ian; Beichman, Charles; Soummer, Rémi

    2012-01-01

    We report low-resolution near-infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph (IFS) Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0.''5 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J- and H-band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low-resolution near-infrared spectrum in conjunction with 10.2 μm interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A V = 8-12, with an effective temperature of ∼4000-6500 K. Finally, we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary system.

  15. CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Laurent [Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center 3400 N. Charles Street, Baltimore, MD 21218 (United States); Hillenbrand, Lynne; Hinkley, Sasha; Dekany, Richard; Roberts, Jenny [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Vasisht, Gautam; Roberts, Lewis C. Jr.; Shao, Mike; Burruss, Rick; Cady, Eric [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Oppenheimer, Ben R.; Brenner, Douglas; Zimmerman, Neil [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Monnier, John D. [Department of Astronomy, University of Michigan, 941 Dennison Building, 500 Church Street, Ann Arbor, MI 48109-1090 (United States); Crepp, Justin [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Parry, Ian [University of Cambridge, Institute of Astronomy, Madingley Road, Cambridge, CB3, OHA (United Kingdom); Beichman, Charles [NASA Exoplanet Science Institute, 770 South Wilson Avenue, Pasadena, CA 91225 (United States); Soummer, Remi [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-09-20

    We report low-resolution near-infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph (IFS) Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0.''5 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J- and H-band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low-resolution near-infrared spectrum in conjunction with 10.2 {mu}m interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A{sub V} = 8-12, with an effective temperature of {approx}4000-6500 K. Finally, we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary system.

  16. SPITZER SPECTROSCOPY OF THE CIRCUMPRIMARY DISK IN THE BINARY BROWN DWARF 2MASS J04414489+2301513

    International Nuclear Information System (INIS)

    Adame, Lucia; Calvet, Nuria; McClure, M. K.; Hartmann, Lee; Luhman, K. L.; D'Alessio, Paola; Furlan, Elise; Forrest, William J.; Watson, Dan M.

    2011-01-01

    Using the Spitzer Infrared Spectrograph, we have performed mid-infrared spectroscopy on the young binary brown dwarf 2MASS J04414489+2301513 (15 AU) in the Taurus star-forming region. The spectrum exhibits excess continuum emission that likely arises from a circumstellar disk around the primary. Silicate emission is not detected in these data, indicating the presence of significant grain growth. This is one of the few brown dwarf disks at such a young age (∼1 Myr) that has been found to lack silicate emission. To quantitatively constrain the properties of the disk, we have compared the spectral energy distribution of 2MASS J04414489+2301513 to the predictions of our vertical structure codes for irradiated accretion disks. Our models suggest that the remaining atmospheric grains of moderately depleted layers may have grown to a size of ∼>5 μm. In addition, our model fits indicate an outer radius of 0.2-0.3 AU for the disk. The small size of this circumprimary disk could be due to truncation by the secondary. The absence of an outer disk containing a reservoir of small, primordial grains, combined with a weak turbulent mechanism, may be responsible for the advanced grain growth in this disk.

  17. Characterization of direct current He-N{sub 2} mixture plasma using optical emission spectroscopy and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Flores, O.; Castillo, F.; Martinez, H. [Laboratorio de Espectroscopia, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Villa, M.; Reyes, P. G. [Facultad de Ciencias, Universidad Autónoma del Estado de México, Estado de México (Mexico); Villalobos, S. [Laboratorio de Espectroscopia, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Facultad de Ingeniería, Universidad Nacional Autónoma de México, México D.F. (Mexico)

    2014-05-15

    This study analyses the glow discharge of He and N{sub 2} mixture at the pressure of 2.0 Torr, power of 10 W, and flow rate of 16.5 l/min, by using optical emission spectroscopy and mass spectrometry. The emission bands were measured in the wavelength range of 200–1100 nm. The principal species observed were N{sub 2}{sup +} (B{sup 2}Σ{sup +}{sub u}→X{sup 2}Σ{sup +}{sub g}), N{sub 2} (C{sup 3}Π{sub u}→B{sup 3}Π{sub g}), and He, which are in good agreement with the results of mass spectrometry. Besides, the electron temperature and ion density were determined by using a double Langmuir probe. Results indicate that the electron temperature is in the range of 1.55–2.93 eV, and the electron concentration is of the order of 10{sup 10} cm{sup −3}. The experimental results of electron temperature and ion density for pure N{sub 2} and pure He are in good agreement with the values reported in the literature.

  18. Open source libraries and frameworks for mass spectrometry based proteomics: A developer's perspective☆

    Science.gov (United States)

    Perez-Riverol, Yasset; Wang, Rui; Hermjakob, Henning; Müller, Markus; Vesada, Vladimir; Vizcaíno, Juan Antonio

    2014-01-01

    Data processing, management and visualization are central and critical components of a state of the art high-throughput mass spectrometry (MS)-based proteomics experiment, and are often some of the most time-consuming steps, especially for labs without much bioinformatics support. The growing interest in the field of proteomics has triggered an increase in the development of new software libraries, including freely available and open-source software. From database search analysis to post-processing of the identification results, even though the objectives of these libraries and packages can vary significantly, they usually share a number of features. Common use cases include the handling of protein and peptide sequences, the parsing of results from various proteomics search engines output files, and the visualization of MS-related information (including mass spectra and chromatograms). In this review, we provide an overview of the existing software libraries, open-source frameworks and also, we give information on some of the freely available applications which make use of them. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. PMID:23467006

  19. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography

    Science.gov (United States)

    Winter, Gregory T.; Wilhide, Joshua A.; LaCourse, William R.

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.

  20. Open source libraries and frameworks for mass spectrometry based proteomics: a developer's perspective.

    Science.gov (United States)

    Perez-Riverol, Yasset; Wang, Rui; Hermjakob, Henning; Müller, Markus; Vesada, Vladimir; Vizcaíno, Juan Antonio

    2014-01-01

    Data processing, management and visualization are central and critical components of a state of the art high-throughput mass spectrometry (MS)-based proteomics experiment, and are often some of the most time-consuming steps, especially for labs without much bioinformatics support. The growing interest in the field of proteomics has triggered an increase in the development of new software libraries, including freely available and open-source software. From database search analysis to post-processing of the identification results, even though the objectives of these libraries and packages can vary significantly, they usually share a number of features. Common use cases include the handling of protein and peptide sequences, the parsing of results from various proteomics search engines output files, and the visualization of MS-related information (including mass spectra and chromatograms). In this review, we provide an overview of the existing software libraries, open-source frameworks and also, we give information on some of the freely available applications which make use of them. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Dual Source Time-of-flight Mass Spectrometer and Sample Handling System

    Science.gov (United States)

    Brinckerhoff, W.; Mahaffy, P.; Cornish, T.; Cheng, A.; Gorevan, S.; Niemann, H.; Harpold, D.; Rafeek, S.; Yucht, D.

    We present details of an instrument under development for potential NASA missions to planets and small bodies. The instrument comprises a dual ionization source (laser and electron impact) time-of-flight mass spectrometer (TOF-MS) and a carousel sam- ple handling system for in situ analysis of solid materials acquired by, e.g., a coring drill. This DSTOF instrument could be deployed on a fixed lander or a rover, and has an open design that would accommodate measurements by additional instruments. The sample handling system (SHS) is based on a multi-well carousel, originally de- signed for Champollion/DS4. Solid samples, in the form of drill cores or as loose chips or fines, are inserted through an access port, sealed in vacuum, and transported around the carousel to a pyrolysis cell and/or directly to the TOF-MS inlet. Samples at the TOF-MS inlet are xy-addressable for laser or optical microprobe. Cups may be ejected from their holders for analyzing multiple samples or caching them for return. Samples are analyzed with laser desorption and evolved-gas/electron-impact sources. The dual ion source permits studies of elemental, isotopic, and molecular composition of unprepared samples with a single mass spectrometer. Pulsed laser desorption per- mits the measurement of abundance and isotope ratios of refractory elements, as well as the detection of high-mass organic molecules in solid samples. Evolved gas analysis permits similar measurements of the more volatile species in solids and aerosols. The TOF-MS is based on previous miniature prototypes at JHU/APL that feature high sensitivity and a wide mass range. The laser mode, in which the sample cup is directly below the TOF-MS inlet, permits both ablation and desorption measurements, to cover elemental and molecular species, respectively. In the evolved gas mode, sample cups are raised into a small pyrolysis cell and heated, producing a neutral gas that is elec- tron ionized and pulsed into the TOF-MS. (Any imaging

  2. Mass

    International Nuclear Information System (INIS)

    Quigg, Chris

    2007-01-01

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  3. ESA Gaia & the multifrequency behavior of high-energy sources with ultra-low dispersion spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Šimon, Vojtěch; Hudec, L.; Hudcová, Věra

    2012-01-01

    Roč. 83, č. 1 (2012), s. 342-346 ISSN 0037-8720. [Workshop on multifrequency behaviour of high energy cosmic sources. Vulcano, 23.05.2011-28.05.2011] R&D Projects: GA ČR GA205/08/1207 Institutional research plan: CEZ:AV0Z10030501 Keywords : X-rays * high-energy sources * satellites Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  4. Source modulation-correlation measurement for fissile mass flow in gas or liquid fissile streams

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; March-Leuba, J.A.; Valentine, T.E.; Abston, R.A.; Mattingly, J.K.; Mullens, J.A.

    1996-01-01

    The method of monitoring fissile mass flow on all three legs of a blending point, where the input is high-enriched uranium (HEU) and low-enriched uranium (LEU) and the product is PEU, can yield the fissile stream velocity and, with calibration, the [sup235]U content. The product of velocity and content integrated over the pipe gives the fissile mass flow in each leg. Also, the ratio of fissile contents in each pipe: HEU/LEU, HEU/PEU, and PEU/LEU, are obtained. By modulating the source on the input HEU pipe differently from that on the output pipe, the HEU gas can be tracked through the blend point. This method can be useful for monitoring flow velocity, fissile content, and fissile mass flow in HEU blenddown of UF[sub 6] if the pressures are high enough to contain some of the induced fission products. This method can also be used to monitor transfer of fissile liquids and other gases and liquids that emit radiation delayed from particle capture. These preliminary experiments with the Oak Ridge apparatus show that the method will work and the modeling is adequate

  5. Characterization of Low-mass K2 planet hosts using Near-Infrared Spectroscopy

    Science.gov (United States)

    Rodríguez-Martínez, Romy; Ballard, Sarah

    2017-01-01

    The raw number of discovered exoplanets now exceeds several thousand, but we must understand the stars if we aim to understand their planets in detail. Of particular interest are M dwarf stars, which are often favored for exoplanet study because (1) they host small planets in greatest abundance, (2) they make up about 70% of stars in our galaxy, and (3) the planets that orbit them that are comparatively easier to find and study than planets around larger stars. Our work aims to characterize the infrared spectra of 50 M dwarfs with new and unstudied transiting planets discovered by NASA’s K2 Mission. We employ empirical relations from the literature with magnesium, aluminum and sodium absorption lines in H and K band to determine the temperatures, radii and luminosities. In addition, we measure the deformation of the spectra in K band by water (another empirical metric for M dwarfs) which, in tandem with absorption features, is linked to [Fe/H] metallicity. We have found from a preliminary sample of 36 stars, that the temperatures range from 2,900 to 4,100 K, with radii between 0.2 R⊙ to 0.6R⊙ and log(L/L⊙) values from -3.4 to -0.5. The determination of all these properties improves our understanding of the planet’s properties, such as its size, mass, and surface temperature, and provides clues about the formation of the star and its planets.

  6. Rapid identification and source-tracking of Listeria monocytogenes using MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Jadhav, Snehal; Gulati, Vandana; Fox, Edward M; Karpe, Avinash; Beale, David J; Sevior, Danielle; Bhave, Mrinal; Palombo, Enzo A

    2015-06-02

    Listeria monocytogenes is an important foodborne pathogen responsible for the sometimes fatal disease listeriosis. Public health concerns and stringent regulations associated with the presence of this pathogen in food and food processing environments underline the need for rapid and reliable detection and subtyping techniques. In the current study, the application of matrix assisted laser desorption/ionisation-time-of-flight mass spectrometry (MALDI-TOF MS) as a single identification and source-tracking tool for a collection of L. monocytogenes isolates, obtained predominantly from dairy sources within Australia, was explored. The isolates were cultured on different growth media and analysed using MALDI-TOF MS at two incubation times (24 and 48 h). Whilst reliable genus-level identification was achieved from most media, identification at the species level was found to be dependent on culture conditions. Successful speciation was highest for isolates cultured on the chromogenic Agar Listeria Ottaviani Agosti agar (ALOA, 91% of isolates) and non-selective horse blood agar (HBA, 89%) for 24h. Chemometric statistical analysis of the MALDI-TOF MS data enabled source-tracking of L. monocytogenes isolates obtained from four different dairy sources. Strain-level discrimination was also observed to be influenced by culture conditions. In addition, t-test/analysis of variance (ANOVA) was used to identify potential biomarker peaks that differentiated the isolates according to their source of isolation. Source-tracking using MALDI-TOF MS was compared and correlated with the gold standard pulsed-field gel electrophoresis (PFGE) technique. The discriminatory index and the congruence between both techniques were compared using the Simpsons Diversity Index and adjusted Rand and Wallace coefficients. Overall, MALDI-TOF MS based source-tracking (using data obtained by culturing the isolates on HBA) and PFGE demonstrated good congruence with a Wallace coefficient of 0.71 and

  7. Source identification and mass balance studies of mercury in Lake An-dong, S. Korea

    Science.gov (United States)

    Han, J.; Byeon, M.; Yoon, J.; Park, J.; Lee, M.; Huh, I.; Na, E.; Chung, D.; Shin, S.; Kim, Y.

    2009-12-01

    In this study, mercury and methylmercury were measured in atmospheric, tributary, open-lake water column, sediment, planktons and fish samples in the catchments area of Lake An-dong, S. Korea. Lake An-dong, an artificial freshwater lake is located on the upstream of River Nak-dong. It has 51.5 km2 of open surface water and 1.33 year of hydraulic residence time. It is a source of drinking water for 0.3 million S. Koreans. Recently, the possibilities of its mercury contamination became an issue since current studies showed that the lake had much higher mercury level in sediment and certain freshwater fish species than any other lakes in S. Korea. This catchments area has the possibilities of historical mercury pollution by the location of more than 50 abandoned gold mines and Young-poong zinc smelter. The objective of this study was to develop a mercury mass balance and identify possible mercury sources in the lake. The results of this study are thus expected to offer valuable insights for the sources of mercury loading through the watershed. In order to estimate the mercury flux, TGM, RGM and particulate mercury were measured using TEKRAN 2537 at the five sites surrounding Lake An-dong from May, 2009 with wet and dry deposition. The fate and transport of mercury in water body were predicted by using EFDC (Environmental Dynamic Fluid Code) and Mercury module in WASP7 (Water quality analysis program) after subsequent distribution into water body, sediments, followed by bioaccumulation and ultimate uptake by humans. The mercury mass balance in Young-poong zinc smelter was also pre-estimated by measuring mercury content in zinc ores, emission gases, sludge, wastewater and products.

  8. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy

    Science.gov (United States)

    Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.

    2018-04-01

    Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.

  9. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy

    Science.gov (United States)

    Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.

    2018-06-01

    Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.

  10. Random pulsing of neutron source for inelastic neutron scattering gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Hertzog, R.C.

    1981-01-01

    Method and apparatus are described for use in the detection of inelastic neutron scattering gamma ray spectroscopy. Data acquisition efficiency is enhanced by operating a neutron generator such that a resulting output burst of fast neutrons is maintained for as long as practicably possible until a gamma ray is detected. Upon the detection of a gamma ray the generator burst output is terminated. Pulsing of the generator may be accomplished either by controlling the burst period relative to the burst interval to achieve a constant duty cycle for the operation of the generator or by maintaining the burst period constant and controlling the burst interval such that the resulting mean burst interval corresponds to a burst time interval which reduces contributions to the detected radiation of radiation occasioned by other than the fast neutrons

  11. Method validation in plasma source optical emission spectroscopy (ICP-OES) - From samples to results

    International Nuclear Information System (INIS)

    Pilon, Fabien; Vielle, Karine; Birolleau, Jean-Claude; Vigneau, Olivier; Labet, Alexandre; Arnal, Nadege; Adam, Christelle; Camilleri, Virginie; Amiel, Jeanine; Granier, Guy; Faure, Joel; Arnaud, Regine; Beres, Andre; Blanchard, Jean-Marc; Boyer-Deslys, Valerie; Broudic, Veronique; Marques, Caroline; Augeray, Celine; Bellefleur, Alexandre; Bienvenu, Philippe; Delteil, Nicole; Boulet, Beatrice; Bourgarit, David; Brennetot, Rene; Fichet, Pascal; Celier, Magali; Chevillotte, Rene; Klelifa, Aline; Fuchs, Gilbert; Le Coq, Gilles; Mermet, Jean-Michel

    2017-01-01

    Even though ICP-OES (Inductively Coupled Plasma - Optical Emission Spectroscopy) is now a routine analysis technique, requirements for measuring processes impose a complete control and mastering of the operating process and of the associated quality management system. The aim of this (collective) book is to guide the analyst during all the measurement validation procedure and to help him to guarantee the mastering of its different steps: administrative and physical management of samples in the laboratory, preparation and treatment of the samples before measuring, qualification and monitoring of the apparatus, instrument setting and calibration strategy, exploitation of results in terms of accuracy, reliability, data covariance (with the practical determination of the accuracy profile). The most recent terminology is used in the book, and numerous examples and illustrations are given in order to a better understanding and to help the elaboration of method validation documents

  12. One-photon mass-analyzed threshold ionization (MATI) spectroscopy of pyridine: Determination of accurate ionization energy and cationic structure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu Ran; Kang, Do Won; Kim, Hong Lae, E-mail: chkwon@kangwon.ac.kr, E-mail: hlkim@kangwon.ac.kr; Kwon, Chan Ho, E-mail: chkwon@kangwon.ac.kr, E-mail: hlkim@kangwon.ac.kr [Department of Chemistry and Institute for Molecular Science and Fusion Technology, College of Natural Sciences, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2014-11-07

    Ionization energies and cationic structures of pyridine were intensively investigated utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The present one-photon high-resolution MATI spectrum of pyridine demonstrated a much finer and richer vibrational structure than that of the previously reported two-photon MATI spectrum. From the MATI spectrum and photoionization efficiency curve, the accurate ionization energy of the ionic ground state of pyridine was confidently determined to be 73 570 ± 6 cm{sup −1} (9.1215 ± 0.0007 eV). The observed spectrum was almost completely assigned by utilizing Franck-Condon factors and vibrational frequencies calculated through adjustments of the geometrical parameters of cationic pyridine at the B3LYP/cc-pVTZ level. A unique feature unveiled through rigorous analysis was the prominent progression of the 10 vibrational mode, which corresponds to in-plane ring bending, and the combination of other totally symmetric fundamentals with the ring bending overtones, which contribute to the geometrical change upon ionization. Notably, the remaining peaks originate from the upper electronic state ({sup 2}A{sub 2}), as predicted by high-resolution photoelectron spectroscopy studies and symmetry-adapted cluster configuration interaction calculations. Based on the quantitatively good agreement between the experimental and calculated results, it was concluded that upon ionization the pyridine cation in the ground electronic state should have a planar structure of C{sub 2v} symmetry through the C-N axis.

  13. Electron volt spectroscopy on a pulsed neutron source using resonance absorption filters

    International Nuclear Information System (INIS)

    Newport, R.J.; Williams, W.G.

    1983-05-01

    The design aspects of an inelastic neutron spectrometer based on energy selection by the resonance absorption filter difference method are discussed. Detailed calculations of the accessible dynamical range (Q, ω), energy and momentum transfer resolutions and representative count rates are presented for Sm and Ta resonance filters in an inverse geometry spectrometer on a high intensity pulsed source such as the RAL Spallation Neutron Source (SNS). A discussion is given of the double-difference method, which provides a means of improving the resonance attenuation peak shape. As a result of this study, as well as preliminary experimental results, recommendations are made for the future development of the technique. (author)

  14. Using Mass Spectroscopy to Examine Wetland Carbon Flow from Plants to Methane

    Science.gov (United States)

    Waldo, N.; Tfaily, M. M.; Moran, J.; Hu, D.; Cliff, J. B.; Gough, H. L.; Chistoserdova, L.; Beck, D.; Neumann, R. B.

    2017-12-01

    In the anoxic soil of wetlands, microbes produce methane (CH4), a greenhouse gas. Prior studies have documented an increase in CH4 emissions as plant productivity increases, likely due to plants releasing more labile organic carbon from roots. But in the field, it is difficult to separate changes in plant productivity and root carbon exudation from other seasonal changes that can affect methane emissions, e.g. temperature. Clarifying the role that root exudation plays in fueling methane production is important because increasing atmospheric temperatures and CO2 levels are projected to increase plant productivity and exudation. To advance understanding of climate-methane feedbacks, this study tracked the flow of carbon from plants into the wetland rhizosphere as plant productivity increased in controlled laboratory conditions. We grew Carex aquatilis, a wetland sedge, in peat-filled rootboxes. Both early and late during the plant growth cycle, we exposed plants to headspace 13CO2, which the plants fixed. Some of this labeled carbon was exuded by the roots and used by rhizosphere microbes. We tracked the isotope ratio of emitted CH4 to establish the time required for plant-released carbon to fuel methanogenesis, and to determine the relative contribution of plant-derived carbon to total CH4 emission. We destructively harvested root and rhizosphere samples from various locations that we characterized by isotope ratio mass spectrometry (MS) to determine isotopic enrichment and therefore relative abundance of root exudates. We analyzed additional aliquots of rhizosphere soil by Fourier transform ion cyclotron resonance MS to track chemical changes in soil carbon as root exudates were converted into methane. To advance mechanistic understanding of the synergistic and competitive microbial interactions that affect methane dynamics in the wetland rhizosphere, we used fluorescence in-situ hybridization to visualize microbial community composition and spatial associations

  15. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 2. Groundwater contaminant mass discharge reduction

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Bjerg, Poul Løgstrup

    2012-01-01

    The impact of source mass depletion on the down-gradient contaminant mass discharge was monitored for a 19-month period as a part of a field demonstration of the ZVI-Clay soil mixing remediation technology. Groundwater samples were collected from conventional monitoring wells (120 samples) and a ...... down-gradient contaminant mass discharge reduction (76%) for the parent compound (PCE), while the overall reduction of chlorinated ethenes was smaller (21%)....

  16. Dehydration of Methylcyclohexanol Isomers in the Undergraduate Organic Laboratory and Product Analysis by Gas Chromatography-Mass Spectroscopy (GC-MS)

    Science.gov (United States)

    Clennan, Malgorzata M.; Clennan, Edward L.

    2011-01-01

    Dehydrations of "cis"- and "trans"-2-methylcyclohexanol mixtures were carried out with 60% sulfuric acid at 78-80 [degrees]C as a function of time and the products were identified by gas chromatography-mass spectroscopy (GC-MS) analysis. The compounds identified in the reaction mixtures include alkenes, 1-, 3-, and 4-methylcyclohexenes and…

  17. Demonstrating the Likely Neutron Star Nature of Five M31 Globular Cluster Sources with Swift-NuSTAR Spectroscopy

    Science.gov (United States)

    Maccarone, Thomas J.; Yukita, Mihoko; Hornschemeier, Ann; Lehmer, Bret D.; Antoniou, Vallia; Ptak, Andrew; Wik, Daniel R.; Zezas, Andreas; Boyd, Padi; Kennea, Jamie; hide

    2016-01-01

    We present the results of a joint Swift-NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6-8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM-Newton. We show that the other three sources are also likely to be bright neutron star X-ray binaries, rather than black hole X-ray binaries. We discuss why it should already have been realized that it was unlikely that these objects were black holes on the basis of their being persistent sources, and we re-examine past work which suggested that tidal capture products would be persistently bright X-ray emitters. We discuss how this problem is likely due to neglecting disc winds in older work that predict which systems will be persistent and which will be transient.

  18. Infrared spectroscopy of the superluminal Galactic source GRS 1915+105 during the 1994 September outburst

    DEFF Research Database (Denmark)

    CastroTirado, A.J.; Geballe, T.R.; Lund, Niels

    1996-01-01

    observed in SS 433, suggesting that the ionized regions in the new source are not related to the twin beams of energetic particles that are believed to be responsible for the observed radio lobes. In contrast to Cygnus X-3, where the companion is likely to be a Wolf-Rayet star, we suggest that GRS 1915...

  19. IMAGING SPECTROSCOPY ON PREFLARE CORONAL NONTHERMAL SOURCES ASSOCIATED WITH THE 2002 JULY 23 FLARE

    International Nuclear Information System (INIS)

    Asai, Ayumi; Nakajima, Hiroshi; Shimojo, Masumi; Yokoyama, Takaaki; Masuda, Satoshi; Krucker, Saem

    2009-01-01

    We present a detailed examination on the coronal nonthermal emissions during the preflare phase of the X4.8 flare that occurred on 2002 July 23. The microwave (17 GHz and 34 GHz) data obtained with Nobeyama Radioheliograph, at Nobeyama Solar Radio Observatory and the hard X-ray (HXR) data taken with RHESSI obviously showed nonthermal sources that are located above the flare loops during the preflare phase. We performed imaging spectroscopic analyses on the nonthermal emission sources both in microwaves and in HXRs, and confirmed that electrons are accelerated from several tens of keV to more than 1 MeV even in this phase. If we assume the thin-target model for the HXR emission source, the derived electron spectral indices (∼4.7) is the same value as that from microwaves (∼4.7) within the observational uncertainties, which implies that the distribution of the accelerated electrons follows a single power law. The number density of the microwave-emitting electrons is, however, larger than that of the HXR-emitting electrons, unless we assume low-ambient plasma density of about 1.0 x 10 9 cm -3 for the HXR-emitting region. If we adopt the thick-target model for the HXR emission source, on the other hand, the electron spectral index (∼6.7) is much different, while the gap of the number density of the accelerated electrons is somewhat reduced.

  20. Far infrared spectroscopy of high-Tc superconductors at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Perkowitz, S.; Williams, G.P.

    1989-01-01

    This paper reports the first far infrared transmission spectra for micron-thick films of high-T c rare-earth superconductors such as DyBaCuO, with implications for the superconducting gap. Spectra were obtained at Brookhaven's National Synchrotron Light Source, a new high-intensity, broad-band millimeter to infrared source. The National Synchrotron Light Source at Brookhaven National Laboratory, known for powerful X-ray and UV output, is also a high-intensity (10 to 1000 times above a black body), high-brightness (intensity per solid angle), broad-band, picosecond, millimeter to infrared source. These features make it valuable for far-infrared condensed matter experiments, especially those in highly absorbing or extremely small systems. A first application has been to measure very small infrared transmissions through thick bulk-like high-T c superconducting films. Preliminary measurements through films of the conventional superconductor Nb 3 Ge established techniques. These were followed by the first measurements (to the author's knowledge) through micron-thick films of high-T c rare-earth superconductors such as DyBaCuO over 10-300 cm -1 , which includes the superconducting gap according to BCS or moderately strong-coupled theory. The authors discuss the transmission evidence bearing on the existence of a gap and other important features of high-T c superconductors, and describe the synchrotron and instrumentation features which make possible these unusual measurements

  1. Atomic and molecular spectroscopy with optical-frequency-comb-referenced IR coherent sources

    International Nuclear Information System (INIS)

    Cancio, P.; Bartalini, S.; De Rosa, M.; Giusfredi, G.; Mazzotti, D.; Maddaloni, P.; Vitiello, M. S.; De Natale, P.

    2013-01-01

    We provide a review of progress in the development of metrological-grade measurements in atomic and molecular systems through the extension, in the mid-infrared and far-infrared range, of optical frequency combs (OFCs) and the introduction of new techniques and highly coherent sources. (authors)

  2. Dipole and Coulomb forces in electron capture dissociation and electron transfer dissociation mass spectroscopy.

    Science.gov (United States)

    Świerszcz, Iwona; Skurski, Piotr; Simons, Jack

    2012-02-23

    Ab initio electronic structure calculations were performed on a doubly charged polypeptide model H(+)-Lys(Ala)(19)-CO-CH(NH(2))-CH(2)-SS-CH(2)-(NH(2))CH-CO-(Ala)(19)-Lys-H(+) consisting of a C-terminal protonated Lys followed by a 19-Ala α-helix with a 20th Ala-like unit whose side chain is linked by a disulfide bond to a corresponding Ala-like unit connected to a second 19-Ala α-helix terminated by a second C-terminal-protonated Lys. The Coulomb potentials arising from the two charged Lys residues and dipole potentials arising from the two oppositely directed 72 D dipoles of the α-helices act to stabilize the SS bond's σ* orbital. The Coulomb potentials provide stabilization of 1 eV, while the two large dipoles generate an additional 4 eV. Such stabilization allows the SS σ* orbital to attach an electron and thereby generate disulfide bond cleavage products. Although calculations are performed only on SS bond cleavage, discussion of N-C(α) bond cleavage caused by electron attachment to amide π* orbitals is also presented. The magnitudes of the stabilization energies as well as the fact that they arise from Coulomb and dipole potentials are supported by results on a small model system consisting of a H(3)C-SS-CH(3) molecule with positive and negative fractional point charges to its left and right designed to represent (i) two positive charges ca. 32 Å distant (i.e., the two charged Lys sites of the peptide model) and (ii) two 72 D dipoles (i.e., the two α-helices). Earlier workers suggested that internal dipole forces in polypeptides could act to guide incoming free electrons (i.e., in electron capture dissociation (ECD)) toward the positive end of the dipole and thus affect the branching ratios for cleaving various bonds. Those workers argued that, because of the huge mass difference between an anion donor and a free electron, internal dipole forces would have a far smaller influence over the trajectory of a donor (i.e., in electron transfer dissociation

  3. Sources and fate of chromophoric dissolved organic matter and water mass ventilation in the upper Arctic Ocean

    Science.gov (United States)

    Walker, S. A.; Amon, R. M.; Stedmon, C. A.

    2011-12-01

    The majority of high latitude soil organic carbon is stored within vast permafrost regions surrounding the Arctic, which are highly susceptible to climate change. As global warming persists increased river discharge combined with permafrost erosion and extended ice free periods will increase the supply of soil organic carbon to the Arctic Ocean. Increased river discharge to the Arctic will also have a significant impact its hydrological cycle and could potentially be critical to sea ice formation. This impact is due to freshwater discharge to the Arctic which has been shown to help sustain halocline formation, a critical water mass that acts as an insulator trapping heat from inflowing Atlantic waters from ice at the surface. As the climate warms it is therefore important to identify halocline source waters and to determine fluctuations in their contribution to this critical water mass. To better understand dissolved organic matter (DOM) quality and its fate within the Arctic as well as runoff distributions across the basin the optical properties of chromophoric dissolved organic carbon (CDOM) were evaluated during a trans-Arctic expedition, AOS 2005. This cruise is unique because it is the first time fluorescence data have been obtained from all basins in the Arctic. Excitation/Emission Matrix Spectroscopy (EEM's) coupled to Parallel Factor Analysis (PARAFAC) was used to decompose the combined CDOM fluorescence signal into six independent components that can be traced to a source. Three humic-like CDOM components were isolated and linked to runoff waters using Principal Component Analysis (PCA). Inherent differences were observed between Eurasian (EB) and Canadian (CB) basin surface waters in terms of DOM quality and freshwater distributions. In EB surface waters (0-50m) the humic-like CDOM components explained roughly half of the variance in the DOC pool and were strongly related to lignin phenol concentrations. These results indicate CDOM in Trans-Polar Drift

  4. Investigations on microbial leaching of zircon by means of spark source mass spectrometry

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.; Bullmann, M.; Iske, U.

    1985-01-01

    Spark source mass spectrometry is a useful method for chemical element analysis of geological and biological samples. This sensitive technique (detection limit down to the ppb-range) is used to analyze leaching processes by means of several microorganisms. The problem of microbial leaching of chemical resistent materials was tested under laboratory condition with regard to possible analytical and technical applications. Leaching of metalls with chemolithotrophic and heterotrophic, organic acids producing microorganisms has been investigated with zircon from Baltic Shield containing 0.7% rare earth elements and 1.67% hafnium. When zircon is leached with strains of Thiobacillus ferroxidans the rare earth elements, Hf, Th, and U mostly (about 80%) can be recovered. (author)

  5. Raman spectroscopy and single-photon source in an ion-cavity system

    International Nuclear Information System (INIS)

    Goncalves de Barros, H.

    2010-01-01

    The work presented in this thesis explores the interaction between a single trapped 40Ca+ ion and the electromagnetic field inside a high-finesse optical cavity. The coupling takes place via the use of a vacuum stimulated Raman transition, which transfers atomic population from the S1/2 to the D3/2 manifolds of the calcium ion producing a photon in the cavity. This photon is measured and properties of the system are evaluated. Spectroscopy measurements of the Raman transitions are performed and all possible transitions are identified for different polarizations of both drive laser and cavity fields. The system is also used to deterministically produce single photons. Simulation curves quantitatively match the experimental results within calibration error bars. The single-photon creation efficiency obtained in this work overcomes previous ion-cavity setups and is comparable to state-of-the-art systems composed of a neutral atom and a cavity operating in the strong coupling regime. (author)

  6. In-Source laser ionization spectroscopy of 181,182Hg

    CERN Document Server

    AUTHOR|(CDS)2096834

    The mean square charge radii of the mercury isotopes exhibit a large odd-even staggering for the neutron-deficient mercury isotopes, which is suggested to be a manifestation of shape coexistence. Shape coexistence is the phenomenon in which two (or more) distinct types of deformation occur at low energy in one and the same atomic nucleus. Understanding the occurrence of shape coexistence in atomic nuclei is a challenge faced by theories of nuclear structure. The investigation of the neutron-deficient mercury isotopes (Z = 80) plays an important role in the understanding of shape coexistence in this region of the nuclear chart. The theoretical description of shape coexistence is discussed in chapter 1. In a recent laser-spectroscopy experiment performed at the ISOLDE facility in CERN, the hyperfine spectra were measured for 15 different mercury isotopes ranging from $^{177}$Hg to $^{208}$Hg. One of the main goals of this experiment was to extend the currently existing knowledge of the mean square charge radius...

  7. High-resolution inner-shell spectroscopies of free atoms and molecules using soft-x-ray beamlines at the third-generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2003-01-01

    This article reviews the current status of inner-shell spectroscopies of free atoms and molecules using high-resolution soft-x-ray monochromators installed in the soft-x-ray beamlines at the third-generation synchrotron radiation facilities. Beamlines and endstations devoted to atomic and molecular inner-shell spectroscopies and various types of experimental techniques, such as ion yield spectroscopy, resonant photoemission spectroscopy and multiple-coincidence momentum imaging, are described. Experimental results for K-shell excitation of Ne, O K-shell excitation of H 2 O and CO 2 , C K-shell excitation and ionization of CO 2 and B K-shell excitation of BF 3 , obtained at beamline 27SU of SPring-8 in Japan, are discussed as examples of atomic and molecular inner-shell spectroscopies using the third-generation synchrotron radiation sources. (topical review)

  8. Validating the absolute reliability of a fat free mass estimate equation in hemodialysis patients using near-infrared spectroscopy.

    Science.gov (United States)

    Kono, Kenichi; Nishida, Yusuke; Moriyama, Yoshihumi; Taoka, Masahiro; Sato, Takashi

    2015-06-01

    The assessment of nutritional states using fat free mass (FFM) measured with near-infrared spectroscopy (NIRS) is clinically useful. This measurement should incorporate the patient's post-dialysis weight ("dry weight"), in order to exclude the effects of any change in water mass. We therefore used NIRS to investigate the regression, independent variables, and absolute reliability of FFM in dry weight. The study included 47 outpatients from the hemodialysis unit. Body weight was measured before dialysis, and FFM was measured using NIRS before and after dialysis treatment. Multiple regression analysis was used to estimate the FFM in dry weight as the dependent variable. The measured FFM before dialysis treatment (Mw-FFM), and the difference between measured and dry weight (Mw-Dw) were independent variables. We performed Bland-Altman analysis to detect errors between the statistically estimated FFM and the measured FFM after dialysis treatment. The multiple regression equation to estimate the FFM in dry weight was: Dw-FFM = 0.038 + (0.984 × Mw-FFM) + (-0.571 × [Mw-Dw]); R(2)  = 0.99). There was no systematic bias between the estimated and the measured values of FFM in dry weight. Using NIRS, FFM in dry weight can be calculated by an equation including FFM in measured weight and the difference between the measured weight and the dry weight. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.

  9. Development of visible spectroscopy diagnostics for W sources assessment in WEST

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, O., E-mail: olivier.meyer@cea.fr; Giacalone, J. C.; Pascal, J. Y.; Raulin, D.; Aumeunier, M. H.; Gil, C.; Hatchressian, J.-C.; Larroque, S.; Lotte, Ph.; Moreau, Ph.; Pégourié, B.; Vartanian, S. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Jones, O. M.; Baude, R.; Escarguel, A. [PIIM, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20 (France); Xu, H. [ASIPP, 350 Shushanhu Road, Hefei, Anhui 230031 (China); Harris, J. H.; Klepper, C. C. [ORNL, Oak Ridge, Tennessee 37831-6169 (United States)

    2016-11-15

    The present work concerns the development of a W sources assessment system in the framework of the tungsten-W environment in steady state tokamak project that aims at equipping the existing Tore Supra device with a tungsten divertor in order to test actively cooled tungsten Plasma Facing Components (PFCs) in view of preparing ITER operation. The goal is to assess W sources and D recycling with spectral, spatial, and temporal resolution adapted to the PFCs observed. The originality of the system is that all optical elements are installed in the vacuum vessel and compatible with steady state operation. Our system is optimized to measure radiance as low as 10{sup 16} Ph/(m{sup 2} s sr). A total of 240 optical fibers will be deployed to the detection systems such as the “Filterscope,” developed by Oak Ridge National Laboratory (USA) and consisting of photomultiplier tubes and filters, or imaging spectrometers dedicated to Multiview analysis.

  10. Spectroscopy for identification of plasma sources for lithography and water window imaging

    International Nuclear Information System (INIS)

    O'Sullivan, Gerry; Dunne, Padraig; Liu, Luning; Lokasani, Ragava; Long, Elaine; O'Reilly, Fergal; Sheridan, Paul; Sokell, Emma; Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Ohashi, Hayato; Suzuki, Chihiro

    2015-01-01

    The identification of sources for applications that include nanolithography, surface patterning and high resolution imaging is the focus of a considerable activity in the extreme ultraviolet (EUV) or soft x-ray (SXR) spectral regions. We report on the result of a study of the spectra from laser produced plasmas of a number of medium and high Z metals undertaken in order to identify potential sources for use with available multilayer mirrors. The main focus was the study of unresolved transition arrays emitted from ions with 3d, 4d and 4f valence subshells that emit strongly in the water window (2.34-4.38 nm).and that could be used for biological imaging or cell tomography. (paper)

  11. Condensed matter and materials research using neutron diffraction and spectroscopy: reactor and pulsed neutron sources

    International Nuclear Information System (INIS)

    Bisanti, Paola; Lovesey, S.W.

    1987-05-01

    The paper provides a short, and partial view of the neutron scattering technique applied to condensed matter and materials research. Reactor and accelerator-based neutron spectrometers are discussed, together with examples of research projects that illustrate the puissance and modern applications of neutron scattering. Some examples are chosen to show the range of facilities available at the medium flux reactor operated by Casaccia ENEA, Roma and the advanced, pulsed spallation neutron source at the Rutherford Appleton Laboratory, Oxfordshire. (author)

  12. Urban airborne lead: X-ray absorption spectroscopy establishes soil as dominant source.

    Directory of Open Access Journals (Sweden)

    Nicholas E Pingitore

    Full Text Available BACKGROUND: Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008 US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds of lead in recent ambient airborne particulate matter collected in El Paso, TX, USA. METHODOLOGY/PRINCIPAL FINDINGS: We used synchrotron-based XAFS (x-ray absorption fine structure to identify and quantify the major Pb species. XAFS provides molecular-level structural information about a specific element in a bulk sample. Pb-humate is the dominant form of lead in contemporary El Paso air. Pb-humate is a stable, sorbed complex produced exclusively in the humus fraction of Pb-contaminated soils; it also is the major lead species in El Paso soils. Thus such soil must be the dominant source, and its resuspension into the air, the transfer process, providing lead particles to the local air. CONCLUSIONS/SIGNIFICANCE: Current industrial and commercial activity apparently is not a major source of airborne lead in El Paso, and presumably other locales that have eliminated such traditional sources as leaded gasoline. Instead, local contaminated soil, legacy of earlier anthropogenic Pb releases, serves as a long-term reservoir that gradually leaks particulate lead to the atmosphere. Given the difficulty and expense of large-scale soil remediation or removal, fugitive soil likely constrains a lower limit for airborne lead levels in many urban settings.

  13. Urban Airborne Lead: X-Ray Absorption Spectroscopy Establishes Soil as Dominant Source

    OpenAIRE

    Pingitore, Nicholas E.; Clague, Juan W.; Amaya, Maria A.; Maciejewska, Beata; Reynoso, Jes?s J.

    2009-01-01

    BACKGROUND: Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008) US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds) of lead in recent ambient airborne particulate matter collected...

  14. Urban airborne lead: X-ray absorption spectroscopy establishes soil as dominant source.

    Science.gov (United States)

    Pingitore, Nicholas E; Clague, Juan W; Amaya, Maria A; Maciejewska, Beata; Reynoso, Jesús J

    2009-01-01

    Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008) US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds) of lead in recent ambient airborne particulate matter collected in El Paso, TX, USA. We used synchrotron-based XAFS (x-ray absorption fine structure) to identify and quantify the major Pb species. XAFS provides molecular-level structural information about a specific element in a bulk sample. Pb-humate is the dominant form of lead in contemporary El Paso air. Pb-humate is a stable, sorbed complex produced exclusively in the humus fraction of Pb-contaminated soils; it also is the major lead species in El Paso soils. Thus such soil must be the dominant source, and its resuspension into the air, the transfer process, providing lead particles to the local air. Current industrial and commercial activity apparently is not a major source of airborne lead in El Paso, and presumably other locales that have eliminated such traditional sources as leaded gasoline. Instead, local contaminated soil, legacy of earlier anthropogenic Pb releases, serves as a long-term reservoir that gradually leaks particulate lead to the atmosphere. Given the difficulty and expense of large-scale soil remediation or removal, fugitive soil likely constrains a lower limit for airborne lead levels in many urban settings.

  15. Single-particle and collective properties around closed shells probed by in-source laser spectroscopy

    CERN Document Server

    Cocolios, Thomas Elias; Van Duppen, P

    2010-01-01

    Resonant laser ionisation is a very versatile tool in nuclear physics, used for the production of clean radioactive ion beams as well as for the study of ground-state and isomer properties. In this Ph.D. work, many aspects of resonant laser ionisation are investigated, from improving the performance of laser ion sources at ISOL facilities to the measurement of magnetic dipole moments and charge radii. The LISOL gas catcher ion source relies on resonant laser ionisation for increased efficiency and selectivity. Using a $^{252}$Cf fission source, the element dependence of the non-resonant contribution to the ion beam has been investigated. The efficiency of extraction for a non-laser-ionised element ranges from 0.03% for krypton to 74% for ceasium. A relationship with the ionisation potential is proposed, although a few elements like rubidium and cerium do not verify this relationship. In order to suppress those non-resonantly-ionised elements, two new approaches are proposed. First, the dual-chamber gas catche...

  16. High-throughput flow injection analysis mass spectroscopy with networked delivery of color-rendered results. 2. Three-dimensional spectral mapping of 96-well combinatorial chemistry racks.

    Science.gov (United States)

    Görlach, E; Richmond, R; Lewis, I

    1998-08-01

    For the last two years, the mass spectroscopy section of the Novartis Pharma Research Core Technology group has analyzed tens of thousands of multiple parallel synthesis samples from the Novartis Pharma Combinatorial Chemistry program, using an in-house developed automated high-throughput flow injection analysis electrospray ionization mass spectroscopy system. The electrospray spectra of these samples reflect the many structures present after the cleavage step from the solid support. The overall success of the sequential synthesis is mirrored in the purity of the expected end product, but the partial success of individual synthesis steps is evident in the impurities in the mass spectrum. However this latter reaction information, which is of considerable utility to the combinatorial chemist, is effectively hidden from view by the very large number of analyzed samples. This information is now revealed at the workbench of the combinatorial chemist by a novel three-dimensional display of each rack's complete mass spectral ion current using the in-house RackViewer Visual Basic application. Colorization of "forbidden loss" and "forbidden gas-adduct" zones, normalization to expected monoisotopic molecular weight, colorization of ionization intensity, and sorting by row or column were used in combination to highlight systematic patterns in the mass spectroscopy data.

  17. Developing a Vacuum Electrospray Source To Implement Efficient Atmospheric Sampling for Miniature Ion Trap Mass Spectrometer.

    Science.gov (United States)

    Yu, Quan; Zhang, Qian; Lu, Xinqiong; Qian, Xiang; Ni, Kai; Wang, Xiaohao

    2017-12-05

    The performance of a miniature mass spectrometer in atmospheric analysis is closely related to the design of its sampling system. In this study, a simplified vacuum electrospray ionization (VESI) source was developed based on a combination of several techniques, including the discontinuous atmospheric pressure interface, direct capillary sampling, and pneumatic-assisted electrospray. Pulsed air was used as a vital factor to facilitate the operation of electrospray ionization in the vacuum chamber. This VESI device can be used as an efficient atmospheric sampling interface when coupled with a miniature rectilinear ion trap (RIT) mass spectrometer. The developed VESI-RIT instrument enables regular ESI analysis of liquid, and its qualitative and quantitative capabilities have been characterized by using various solution samples. A limit of detection of 8 ppb could be attained for arginine in a methanol solution. In addition, extractive electrospray ionization of organic compounds can be implemented by using the same VESI device, as long as the gas analytes are injected with the pulsed auxiliary air. This methodology can extend the use of the proposed VESI technique to rapid and online analysis of gaseous and volatile samples.

  18. Robotics-assisted mass spectrometry assay platform enabled by open-source electronics.

    Science.gov (United States)

    Chiu, Shih-Hao; Urban, Pawel L

    2015-02-15

    Mass spectrometry (MS) is an important analytical technique with numerous applications in clinical analysis, biochemistry, environmental analysis, geology and physics. Its success builds on the ability of MS to determine molecular weights of analytes, and elucidate their structures. However, sample handling prior to MS requires a lot of attention and labor. In this work we were aiming to automate processing samples for MS so that analyses could be conducted without much supervision of experienced analysts. The goal of this study was to develop a robotics and information technology-oriented platform that could control the whole analysis process including sample delivery, reaction-based assay, data acquisition, and interaction with the analyst. The proposed platform incorporates a robotic arm for handling sample vials delivered to the laboratory, and several auxiliary devices which facilitate and secure the analysis process. They include: multi-relay board, infrared sensors, photo-interrupters, gyroscopes, force sensors, fingerprint scanner, barcode scanner, touch screen panel, and internet interface. The control of all the building blocks is achieved through implementation of open-source electronics (Arduino), and enabled by custom-written programs in C language. The advantages of the proposed system include: low cost, simplicity, small size, as well as facile automation of sample delivery and processing without the intervention of the analyst. It is envisaged that this simple robotic system may be the forerunner of automated laboratories dedicated to mass spectrometric analysis of biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Determination of impurity elements in steel by spark source mass spectrometry using powdered salts

    International Nuclear Information System (INIS)

    Saito, Morimasa; Sudo, Emiko

    1975-01-01

    Determination of impurity elements in steel by speak source mass spectrometry using powdered salts sample electrode was studied. The instrument used in this study was an AEI MS-7 mass spectrograph and the ion detector was Ilford Q2 photograph. Sample, (0.5--1) gram, was dissolved in hydrochloric acid (1 : 1) or nitric acid (1 : 1) together with yttrium of 1 microgram as the internal standard and then the solution was evaporated to dryness without baking. The salt residues were dried at 70 0 C for 30 minutes under vacuum. They were mixed with an equal amount of graphite powder for 5 minutes in a mixer mill, and then pressed into electrodes. When the relative sensitivity coefficient (Fe=1) was determined by using NBS 460 series standard samples, the results obtained by the proposed method for elements of Mo, Sn, Cu, Cr, Co, Ni, Mn, V, P, Si, and B were in good agreement with those obtained by the conventional method using solid sample electrodes (the solid method) and the precision of this method for 11 elements mentioned above was about 10% better than those of the solid method. However, both the accuracy and precision for elements of Nb, Ti, S and W were not good. This method was applied to the determination of impurities in NBS stainless steel and others. The relative standard deviations were within 20%. (auth.)

  20. Tomography feasibility study on the optical emission spectroscopy diagnostic for the negative ion source of the ELISE test facility

    International Nuclear Information System (INIS)

    Bonomo, F; Agostini, M; Brombin, M; Pasqualotto, R; Fantz, U; Franzen, P; Wünderlich, D

    2014-01-01

    A feasibility study of a spectroscopic tomographic diagnostic for the emissivity reconstruction of the plasma parameters in the large negative ion source of the test facility ELISE is described. Tomographic tools are developed to be applied to the measurements of the ELISE optical emission spectroscopy (OES) diagnostic, in order to reconstruct the emissivity distribution from hydrogen (or deuterium) plasma close to the plasma grid, where negative ions are produced and extracted to be accelerated. Various emissivity phantoms, both symmetric and asymmetric, reproducing different plasma experimental conditions have been simulated to test the tomographic algorithm. The simultaneous algebraic reconstruction technique has been applied, accounting for the OES geometrical layout together with a suitable pixel representation. Even with a limited number of 14 lines of sight (LoSs), the plasma emissivity distribution expected on the ELISE source can be successfully reconstructed. In particular, asymmetries in the emissivity pattern can be detected and reproduced with low errors. A systematic investigation of different geometrical layouts of the LoSs as well as of the pixel arrangements has been carried out, and a final configuration has been identified. Noise on the simulated experimental spectroscopic measurements has been tested, confirming the reliability of the adopted tomographic tools for the plasma emissivity reconstructions of the source plasma in ELISE with the actual OES diagnostic system. (paper)

  1. Mössbauer and Raman spectroscopy characterization of concretes used in the conditioning of spent radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Monroy-Guzman, F., E-mail: fabiola.monroy@inin.gob.mx; González-Neri, M.; González-Díaz, R. C.; Ortíz-Arcivar, G.; Corona-Pérez, I. J. [Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca s/n, La Marquesa, Ocoyoacac (Mexico); Nava, N. [Instituto Mexicano del Petroleo (Mexico); Cabral-Prieto, A.; Escobar-Alarcón, L. [Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca s/n, La Marquesa, Ocoyoacac (Mexico)

    2015-06-15

    Spent radioactive sources are considered a type of radioactive waste which must be stored properly. These sources are usually conditioned in concrete that functions as shield and physical barrier to prevent the potential migration of radionuclides, and must have suitable properties: mechanical, thermal or irradiation resistance. Concretes used in the conditioning of spent radioactive source in Mexico were tested, preparing concrete test specimens with Portland cement CPC 30RS EXTRA CEMEX and aggregates, and subjected to compression strength, γ-ray-irradiation and thermal resistance assays and subsequently analyzed by Mössbauer and Raman Spectroscopies as well as by Scanning Electron Microscopy, in order to correlate the radiation and temperature effects on the compressive strengths, the oxidation states of iron and the structural features of the concrete. Iron was found in the concrete in Fe {sup 2+} and Fe {sup 3+} in the tetrahedral (T) and two octahedral positions (O1, O2). Radiolysis of water causes the dehydratation (200-600 kGy) and rehydratation (1000-10000 kGy) of calcium silicate hydrates (C-S-H) and ferric hydrate phases in concretes and structural distortion around the iron sites in concretes. The compressive strength of concretes are not significantly affected by γ-radiation or heat.

  2. Action spectroscopy of SrCl{sup +} using an integrated ion trap time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Puri, Prateek, E-mail: teek24@ucla.edu; Schowalter, Steven J.; Hudson, Eric R. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Kotochigova, Svetlana; Petrov, Alexander [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2014-07-07

    The photodissociation cross-section of SrCl{sup +} is measured in the spectral range of 36 000–46 000 cm{sup −1} using a modular time-of-flight mass spectrometer (TOF-MS). By irradiating a sample of trapped SrCl{sup +} molecular ions with a pulsed dye laser, X{sup 1}Σ{sup +} state molecular ions are electronically excited to the repulsive wall of the A{sup 1}Π state, resulting in dissociation. Using the TOF-MS, the product fragments are detected and the photodissociation cross-section is determined for a broad range of photon energies. Detailed ab initio calculations of the SrCl{sup +} molecular potentials and spectroscopic constants are also performed and are found to be in good agreement with experiment. The spectroscopic constants for SrCl{sup +} are also compared to those of another alkaline earth halogen, BaCl{sup +}, in order to highlight structural differences between the two molecular ions. This work represents the first spectroscopy and ab initio calculations of SrCl{sup +}.

  3. Identification and Partial Structural Characterization of Mass Isolated Valsartan and Its Metabolite with Messenger Tagging Vibrational Spectroscopy

    Science.gov (United States)

    Gorlova, Olga; Colvin, Sean M.; Brathwaite, Antonio; Menges, Fabian S.; Craig, Stephanie M.; Miller, Scott J.; Johnson, Mark A.

    2017-08-01

    Recent advances in the coupling of vibrational spectroscopy with mass spectrometry create new opportunities for the structural characterization of metabolites with great sensitivity. Previous studies have demonstrated this scheme on 300 K ions using very high power free electron lasers in the fingerprint region of the infrared. Here we extend the scope of this approach to a single investigator scale as well as extend the spectral range to include the OH stretching fundamentals. This is accomplished by detecting the IR absorptions in a linear action regime by photodissociation of weakly bound N2 molecules, which are attached to the target ions in a cryogenically cooled, rf ion trap. We consider the specific case of the widely used drug Valsartan and two isomeric forms of its metabolite. Advantages and challenges of the cold ion approach are discussed, including disentangling the role of conformers and the strategic choices involved in the selection of the charging mechanism that optimize spectral differentiation among candidate structural isomers. In this case, the Na+ complexes are observed to yield sharp resonances in the high frequency NH and OH stretching regions, which can be used to easily differentiate between two isomers of the metabolite. [Figure not available: see fulltext.

  4. Microplasma-based flowing atmospheric-pressure afterglow (FAPA) source for ambient desorption-ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zeiri, Offer M.; Storey, Andrew P.; Ray, Steven J., E-mail: sjray2@buffalo.edu; Hieftje, Gary M.

    2017-02-01

    A new direct-current microplasma-based flowing atmospheric pressure afterglow (FAPA) source was developed for use in ambient desorption-ionization mass spectrometry. The annular-shaped microplasma is formed in helium between two concentric stainless-steel capillaries that are separated by an alumina tube. Current-voltage characterization of the source shows that this version of the FAPA operates in the normal glow-discharge regime. A glass surface placed in the path of the helium afterglow reaches temperatures of up to approximately 400 °C; the temperature varies with distance from the source and helium flow rate through the source. Solid, liquid, and vapor samples were examined by means of a time-of-flight mass spectrometer. Results suggest that ionization occurs mainly through protonation, with only a small amount of fragmentation and adduct formation. The mass range of the source was shown to extend up to at least m/z 2722 for singly charged species. Limits of detection for several small organic molecules were in the sub-picomole range. Examination of competitive ionization revealed that signal suppression occurs only at high (mM) concentrations of competing substances. - Highlights: • The first microplasma version of the FAPA source. • Current-voltage behavior reflects the behavior of a normal glow discharge. • Detection limits below 1 pmol for the classes of organic compounds studied over a wide mass range. • Mass spectra show limited fragmentation.

  5. Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Beddows, D.C.S.; Telle, H.H.

    2005-01-01

    In this paper we discuss the prospects of real-time, in situ laser-induced breakdown spectroscopy applied for the identification and classification of bio-aerosols (including species of potential bio-hazard) within common urban aerosol mixtures. In particular, we address the issues associated with the picking out of bio-aerosols against common background aerosol particles, comparing laser-induced breakdown spectroscopy measurements with data from a mobile single-particle aerosol mass spectrometer (ATOFMS). The data from the latter provide statistical data over an extended period of time, highlighting the variation of the background composition. While single-particle bio-aerosols are detectable in principle, potential problems with small (∼ 1 μm size) bio-aerosols have been identified; constituents of the air mass other than background aerosols, e.g. gaseous CO 2 in conjunction with common background aerosols, may prevent unique recognition of the bio-particles. We discuss whether it is likely that laser-induced breakdown spectroscopy on its own can provide reliable, real-time identification of bio-aerosol in an urban environment, and it is suggested that more than one technique should be or would have to be used. A case for using a combination of laser-induced breakdown spectroscopy and Raman (and/or) laser-induced fluorescence spectroscopy is made

  6. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--discrimination of ammonium nitrate sources.

    Science.gov (United States)

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    An evaluation was undertaken to determine if isotope ratio mass spectrometry (IRMS) could assist in the investigation of complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. The focus of the research was on ammonium nitrate (AN), a common oxidiser used in improvised explosive mixtures. The potential value of IRMS to attribute Australian AN samples to the manufacturing source was demonstrated through the development of a preliminary AN classification scheme based on nitrogen isotopes. Although the discrimination utilising nitrogen isotopes alone was limited and only relevant to samples from the three Australian manufacturers during the evaluated time period, the classification scheme has potential as an investigative aid. Combining oxygen and hydrogen stable isotope values permitted the differentiation of AN prills from three different Australian manufacturers. Samples from five different overseas sources could be differentiated utilising a combination of the nitrogen, oxygen and hydrogen isotope values. Limited differentiation between Australian and overseas prills was achieved for the samples analysed. The comparison of nitrogen isotope values from intact AN prill samples with those from post-blast AN prill residues highlighted that the nitrogen isotopic composition of the prills was not maintained post-blast; hence, limiting the technique to analysis of un-reacted explosive material.

  7. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    Science.gov (United States)

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  8. Electron-volt spectroscopy at a pulsed neutron source using a resonance detector technique

    CERN Document Server

    Andreani, C; Senesi, R; Gorini, G; Tardocchi, M; Bracco, A; Rhodes, N; Schooneveld, E M

    2002-01-01

    The effectiveness of the neutron resonance detector spectrometer for deep inelastic neutron scattering measurements has been assessed by measuring the Pb scattering on the eVS spectrometer at ISIS pulsed neutron source and natural U foils as (n,gamma) resonance converters. A conventional NaI scintillator with massive shielding has been used as gamma detector. A neutron energy window up to 90 eV, including four distinct resonance peaks, has been assessed. A net decrease of the intrinsic width of the 6.6 eV resonance peak has also been demonstrated employing the double difference spectrum technique, with two uranium foils of different thickness.

  9. Differential optical absorption spectroscopy (DOAS and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    Directory of Open Access Journals (Sweden)

    V. V. Rozanov

    2010-06-01

    Full Text Available The Differential Optical Absorption Spectroscopy (DOAS technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical basis and validity range of the DOAS method for those cases where the contribution of the multiple scattering processes is not negligible. Our study is intended to fill this gap by means of a theoretical investigation of the applicability of the DOAS technique for the retrieval of amounts of atmospheric species from observations of the scattered solar light with a non-negligible contribution of the multiple scattering.

    Starting from the expansion of the intensity logarithm in the functional Taylor series we formulate the general form of the DOAS equation. The thereby introduced variational derivative of the intensity logarithm with respect to the variation of the gaseous absorption coefficient, which is often referred to as the weighting function, is demonstrated to be closely related to the air mass factor. Employing some approximations we show that the general DOAS equation can be rewritten in the form of the weighting function (WFDOAS, the modified (MDOAS, and the standard DOAS equations. For each of these forms a specific equation for the air mass factor follows which, in general, is not suitable for other forms of the DOAS equation. Furthermore, the validity range of the standard DOAS equation is quantitatively investigated using a suggested criterion of a weak absorption.

    The results presented in this study are intended to provide a basis for a better understanding of the applicability range of different forms of the DOAS equation as

  10. VUV emission spectroscopy diagnostics of a 14 GHz ECR negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, R., E-mail: duo0364@mail4.doshisha.ac.jp; Ichikawa, T.; Kasuya, T.; Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Nishiura, M. [Graduate School of Frontier Sciences The University of Tokyo, Kashiwara, Chiba 277-8561 (Japan); Shimozuma, T. [National lnstitute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2015-04-08

    Vacuum Ultra Violet(VUV) emission from a 4 cm diameter 2 cm long compact ion source excited by 14 GHz microwave has been investigated. Intensity ratio of band spectrum emission near Ly-α to Ly-α line spectrum is determined from the measured spectrum. which shows preferential excitation of molecules near the entrance of microwave input power. The ratio does not depend strongly upon pressure nor the input microwave power when the intensity is integrated over the volume of the plasma. The spatial distribution of the spectrum intensity ratio exhibits concentrations near microwave inlet and the opposite side where the microwave matching structure is located. The ratio at these peripheral regions is about two times as high as that of the central region. The ratio increased in proportion to the ion source pressure up to about 3.0 Pa, indicating efficient production of high energy electrons by ECR up to this pressure.

  11. Design, simulations and test of a Time-of-Flight spectrometer for mass measurement of exotic beams from SPIRAL1/SPIRAL2 and γ-ray spectroscopy of N=Z nuclei close to 100Sn

    International Nuclear Information System (INIS)

    Chauveau, Pierre

    2016-01-01

    The new generation of nuclear facilities calls for new technological developments to produce, accelerate, manipulate and analyse exotic nuclei. The main topic of this thesis work was the simulation, design and test of a Multi-Reflection Time-of-Flight Mass spectrometer (MR-ToFMS) for fast mass separation and fast mass measurement of radioactive ions in the installations S3 and DESIR at SPIRAL2. Such a device could separate isobaric nuclei and provide SPIRAL2 with high purity beams. Also, its mass measurement capabilities would help to determine binding energies of exotic and superheavy nuclei with a high precision. This apparatus has been simulated with the SIMION 8.1 software and designed accordingly. First offline tests have been performed with a stable ion source at LPC Caen. In addition a low-aberration electrostatic deflector has been simulated and designed to operate with this MR-ToF-MS without spoiling its performances. This work also describes the analysis and results of the first online tests of a FEBIAD-type ion source intended to provide SPIRAL1 and SPIRAL2 radioactive beams of competitive intensities. Finally, we describe the analysis of a nuclear physics experiment, including the calibration of the different detectors and the gamma-spectroscopy of nuclei in the vicinity of the doubly magic 100 Sn. (author) [fr

  12. Gas Phase Vibrational Spectroscopy of Weakly Volatil Safe Taggants Using a Synchrotron Source

    Science.gov (United States)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Gruet, Sebastien; Pirali, Olivier; Roy, Pascale

    2013-06-01

    The high performances of the AILES beamline of SOLEIL allow to study at medium resolution (0.5 cm^{-1}) the gas phase THz vibrational spectra of weakly volatil compounds. Between 2008 and 2010 we recorded and analyzed the THz/Far-IR spectra of phosphorous based nerve agents thanks to sufficient vapour pressures from liquid samples at room temperature. Recently, we extended these experiments towards the vibrational spectroscopy of vapour pressures from solid samples. This project is quite challenging since we target lower volatile compounds, and so requires very high sensitive spectrometers. Moreover a specially designed heated multipass-cell have been developped for the gas phase study of very weak vapor pressures. Thanks to skills acquired during initial studies and recent experiments performed on AILES with solid PAHs, we have recorded and assigned the gas phase vibrational fingerprints from the THz to the NIR spectral domain (10-4000 cm-1) of a set of targeted nitro-derivatives. The study was focused onto the para, ortho-mononitrotoluene (p-NT, o-NT), the 1,4 Dinitrobenzene (1,4 DNB), the 2,3-dimethyl-2,3-dinitrobutane (DMNB), and 2,4 and 2,6-dinitrotoluene (2,4-2,6 DNT), which are safe taggants widely used for the detection of commercial explosives. These taggants are usually added to plastic explosives in order to facilitate their vapour detection. Therefore, there is a continuous interest for their detection and identification in realistic conditions via optical methods. A first step consists in the recording of their gas phase vibrational spectra. These expected spectra focused onto molecules involved into defence and security domains are not yet available to date and will be very useful for the scientific community. This work is supported by the contract ANR-11-ASTR-035-01. A. Cuisset, G. Mouret, O. Pirali, P. Roy, F. Cazier, H. Nouali, J. Demaison, J. Phys. Chem. B, 2008, 112:, 12516-12525 I. Smirnova, A. Cuisset, R. Bocquet, F. Hindle, G. Mouret, O

  13. Source zone remediation by ZVI-clay soil-mixing: Reduction of tetrachloroethene mass and mass discharge at a Danish DNAPL site

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Binning, Philip John

    2012-01-01

    The presence of chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality. The remediation of Dense Non-Aqueous Phase Liquid (DNAPL) sites is especially challenging and the development of innovative remediation technologies is needed. Zero-valent iron (ZVI......) technologies have proven effective for remediation of chlorinated compounds. ZVI-Clay soil-mixing is a new remediation technology, which combines abiotic degradation (via ZVI addition) and immobilization (via soil-mixing and clay addition), whereby a great potential for reduction of both contaminant mass....... The concentrations of chlorinated ethenes were monitored via soil sampling at the source zone and groundwater sampling at a control plane with multilevel samplers covering the entire contaminated plume down-gradient (3 m) of the source zone. The results showed a significant mass depletion of PCE (2-3 orders...

  14. New developments of the in-source spectroscopy method at RILIS/ISOLDE

    CERN Document Server

    Marsh, B A; Imai, N; Seliverstov, M D; Rothe, S; Sels, S; Capponi, L; Rossel, R E; Franchoo, S; Wendt, K; Focker, G J; Kalaninova, Z; Sjoedin, A M; Popescu, L; Nicol, T; Huyse, M; Radulov, D; Atanasov, D; Kesteloot, N; Borgmann, Ch; Cocolios, T E; Lecesne, N; Ghys, L; Pauwels, D; Rapisarda, E; Kreim, S; Liberati, V; Wolf, R N; Andel, B; Schweikhard, L; Lane, J; Derkx, X; Kudryavtsev, Yu; Zemlyanoy, S G; Fedosseev, V N; Lynch, K M; Rosenbusch, M; Van Duppen, P; Lunney, D; Manea, V; Barzakh, A E; Andreyev, A N; Truesdale, V; Flanagan, K T; Molkanov, P L; Koester, U; Van Beveren, C; Wienholtz, F; Goodacre, T Day; Antalic, S; Bastin, B; De Witte, H; Fink, D A; Fedorov, D V

    2013-01-01

    At the CERN ISOLDE facility, long isotope chains of many elements are produced by proton-induced reactions in target materials such as uranium carbide. The Resonance Ionization Laser Ion Source (RILIS) is an efficient and selective means of ionizing the reaction products to produce an ion beam of a chosen isotope. Coupling the RILIS with modern ion detection techniques enables highly sensitive studies of nuclear properties (spins, electromagnetic moments and charge radii) along an isotope chain, provided that the isotope shifts and hyperfine structure splitting of the atomic transitions can be resolved. At ISOLDE the campaign to measure the systematics of isotopes in the lead region (Pb, Bi, Tl and Po) has been extended to include the gold and astatine isotope chains. Several developments were specifically required for the feasibility of the most recent measurements: new ionization schemes (Po, At); a remote controlled narrow line-width mode of operation for the RILIS Ti:sapphire laser (At, Au, Po); isobar fr...

  15. Reconciling FTIR Spectroscopy with Top-off Operations at the Advanced Light Source

    International Nuclear Information System (INIS)

    Vernoud, Laetitia; Bechtel, Hans A.; Borondics, Ferenc; Martin, Michael C.

    2009-01-01

    Top-off operations is a quasi-continuous injection mode that increases the flux and brightness of a synchrotron source and improves thermal stability of optical components by maintaining a constant current in the storage ring. Although the increased and constant flux is advantageous for FTIR measurements, the frequent injections (about one every 30 seconds in the ALS case) introduce artifacts into the spectrum by creating spikes in the interferogram data. These spikes are caused by brief beam motion during the injection event. Here, we describe our efforts to minimize the effects of top-off generated interferogram spikes on several FTIR spectrometers. They include using a fast feedback mirror system to correct for beam motion and a gating signal to inhibit interferogram collection during a top-off injection.

  16. A multichannel frequency response analyser for impedance spectroscopy on power sources

    Directory of Open Access Journals (Sweden)

    DANIEL J. L. BRETT

    2013-06-01

    Full Text Available A low-cost multi-channel frequency response analyser (FRA has been developed based on a DAQ (data acquisition/LabVIEW interface. The system has been tested for electric and electrochemical impedance measurements. This novel association of hardware and software demonstrated performance comparable to a commercial potentiostat / FRA for passive electric circuits. The software has multichannel capabilities with minimal phase shift for 5 channels when operated below 3 kHz. When applied in active (galvanostatic mode in conjunction with a commercial electronic load (by discharging a lead acid battery at 1.5 A the performance was fit for purpose, providing electrochemical information to characterize the performance of the power source.

  17. NEXAFS spectroscopy with a laser plasma x-ray source on soil samples

    International Nuclear Information System (INIS)

    Sedlmair, J; Geber, S-C; Thieme, J; Peth, C; Mann, K

    2009-01-01

    Humic substances are post-mortal organic substances without an exact chemical structure. Their large specific surface is important for transport processes, especially in soils. We analyzed the NEXAFS spectra of humic substances, from which the amount of certain chemical compounds such as aromatic and aliphatic groups can be verified by the resonances of their binding energy. For the experiments, a compact table-top setup working with a laser plasma source was used. NEXAFS makes it possible to distinguish between samples, even if they contain the same composits, because information about the specific functional groups in the sample is supplied. The evaluation was carried out using the program SpecFit. It was developed on IDL within our group and allows to fit the NEXAFS-data with a combination of arctangent, Gaussian and Lorentzian curves.

  18. NEXAFS spectroscopy with a laser plasma x-ray source on soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Sedlmair, J; Geber, S-C; Thieme, J [Institute for X-Ray Physics, Georg-August-University Goettingen, Friedrich-Hund-Platz 1, D-37077 (Germany); Peth, C; Mann, K, E-mail: jsedlma@gwdg.d [Laser-Laboratorium Goettingen e.V., Hans-Adolf-Krebs-Weg 1, D-37077 (Germany)

    2009-09-01

    Humic substances are post-mortal organic substances without an exact chemical structure. Their large specific surface is important for transport processes, especially in soils. We analyzed the NEXAFS spectra of humic substances, from which the amount of certain chemical compounds such as aromatic and aliphatic groups can be verified by the resonances of their binding energy. For the experiments, a compact table-top setup working with a laser plasma source was used. NEXAFS makes it possible to distinguish between samples, even if they contain the same composits, because information about the specific functional groups in the sample is supplied. The evaluation was carried out using the program SpecFit. It was developed on IDL within our group and allows to fit the NEXAFS-data with a combination of arctangent, Gaussian and Lorentzian curves.

  19. Collimated dual species oven source and its characterisation via spatially resolved fluorescence spectroscopy

    Science.gov (United States)

    Cooper, N.; Da Ros, E.; Nute, J.; Baldolini, D.; Jouve, P.; Hackermüller, L.; Langer, M.

    2018-03-01

    We describe the design, construction and characterisation of a collimated, dual-species oven source for generating intense beams of lithium and caesium in UHV environments. Our design produces full beam overlap for the two species. Using an aligned microtube array the FWHM of the output beam is restricted to  ˜75 milliradians, with an estimated axial brightness of 3.6× 1014 atoms s-1 sr-1 for Li and 7.4× 1015 atoms s-1 sr-1 for Cs. We measure the properties of the output beam using a spatially-resolved fluorescence technique, which allows for the extraction of additional information not accessible without spatial resolution.

  20. A new concept of efficient therapeutic drug monitoring using the high-resolution continuum source absorption spectrometry and the surface enhanced Raman spectroscopy

    Science.gov (United States)

    Xing, Yanlong; Fuss, Harald; Lademann, Jürgen; Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Patzelt, Alexa; Meinke, Martina C.; Jung, Sora; Esser, Norbert

    2018-04-01

    In this study, a new therapeutic drug monitoring approach has been tested based on the combination of CaF molecular absorption using high-resolution continuum source absorption spectrometry (HR-CSAS) and surface enhanced Raman spectroscopy (SERS). HR-CSAS with mini graphite tube was successfully tested for clinical therapeutic drug monitoring of the fluorine-containing drug capecitabine in sweat samples of cancer patients: It showed advantageous features of high selectivity (no interference from Cl), high sensitivity (characteristic mass of 0.1 ng at CaF 583.069 nm), low sample consumption (down to 30 nL) and fast measurement (no sample pretreatment and less than 1 min of responding time) in tracing the fluorine signal out of capecitabine. However, this technique has the disadvantage of the total loss of the drug's structure information after burning the sample at very high temperature. Therefore, a new concept of combining HR-CSAS with a non-destructive spectroscopic method (SERS) was proposed for the sensitive sensing and specific identification of capecitabine. We tested and succeed in obtaining the molecular characteristics of the metabolite of capecitabine (named 5-fluorouracil) by the non-destructive SERS technique. With the results shown in this work, it is demonstrated that the combined spectroscopic technique of HR-CSAS and SERS will be very useful in efficient therapeutic drug monitoring in the future.

  1. DETERMINATION OF AMMONIA MASS EMISSION FLUX FROM HOG WASTE EFFLUENT SPRAYING OPERATION USING OPEN PATH TUNABLE DIODE LASER SPECTROSCOPY WITH VERTICAL RADIAL PLUME MAPPING ANALYSIS

    Science.gov (United States)

    Emission of ammonia from concentrated animal feeding operations represents an increasingly important environmental issue. Determination of total ammonia mass emission flux from extended area sources such as waste lagoons and waste effluent spraying operations can be evaluated usi...

  2. Instrumental development of a quasi-relativistic ultrashort electron beam source for electron diffractions and spectroscopies.

    Science.gov (United States)

    Shin, Young-Min; Figora, Michael

    2017-10-01

    A stable femtosecond electron beam system has been configured for time-resolved pump-probe experiments. The ultrafast electron diffraction (UED) system is designed with a sub-MeV photoelectron beam source pulsed by a femtosecond UV laser and nondispersive beamline components, including a bunch compressor-a pulsed S-band klystron is installed and fully commissioned with 5.5 MW peak power in a 2.5 μs pulse length. A single-cell RF photo-gun is designed to produce 1.6-16 pC electron bunches in a photoemission mode with 150 fs pulse duration at 0.5-1 MeV. The measured RF system jitters are within 1% in magnitude and 0.2° in phase, which would induce 3.4 keV and 0.25 keV of ΔE, corresponding to 80 fs and 5 fs of Δt, respectively. Our particle-in-cell simulations indicate that the designed bunch compressor reduces the time-of-arrival jitter by about an order of magnitude. The transport and focusing optics of the designed beamline with the bunch compressor enables an energy spread within 10 -4 and a bunch length (electron probe) within quasi-relativistic UED system.

  3. Detection of emission sources using passive-remote Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Demirgian, J.C.; Macha, S.M.; Darby, S.M.; Ditillo, J.

    1995-01-01

    The detection and identification of toxic chemicals released in the environment is important for public safety. Passive-remote Fourier transform infrared (FTIR) spectrometers can be used to detect these releases. Their primary advantages are their small size and ease of setup and use. Open-path FTIR spectrometers are used to detect concentrations of pollutants from a fixed frame of reference. These instruments detect plumes, but they are too large and difficult to aim to be used to track a plume to its source. Passive remote FTIR spectrometers contain an interferometer, optics, and a detector. They can be used on tripods and in some cases can be hand-held. A telescope can be added to most units. We will discuss the capability of passive-remote FTIR spectrometers to detect the origin of plumes. Low concentration plumes were released using a custom-constructed vaporizer. These plumes were detected with different spectrometers from different distances. Passive-remote spectrometers were able to detect small 10 cm on a side chemical releases at concentration-pathlengths at the low parts per million-meter (ppm-m) level

  4. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    Science.gov (United States)

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.

  5. KINETyS II: Constraints on spatial variations of the stellar initial mass function from K-band spectroscopy

    Science.gov (United States)

    Alton, P. D.; Smith, R. J.; Lucey, J. R.

    2018-05-01

    We investigate the spatially resolved stellar populations of a sample of seven nearby massive Early-type galaxies (ETGs), using optical and near infrared data, including K-band spectroscopy. This data offers good prospects for mitigating the uncertainties inherent in stellar population modelling by making a wide variety of strong spectroscopic features available. We report new VLT-KMOS measurements of the average empirical radial gradients out to the effective radius in the strengths of the Ca I 1.98 μm and 2.26 μm features, the Na I 2.21 μm line, and the CO 2.30 μm bandhead. Following previous work, which has indicated an excess of dwarf stars in the cores of massive ETGs, we pay specific attention to radial variations in the stellar initial mass function (IMF) as well as modelling the chemical abundance patterns and stellar population ages in our sample. Using state-of-the-art stellar population models we infer an [Fe/H] gradient of -0.16±0.05 per dex in fractional radius and an average [Na/Fe] gradient of -0.35±0.09. We find a large but radially-constant enhancement to [Mg/Fe] of ˜ 0.4 and a much lower [Ca/Fe] enhancement of ˜ 0.1. Finally, we find no significant IMF radial gradient in our sample on average and find that most galaxies in our sample are consistent with having a Milky Way-like IMF, or at most a modestly bottom heavy IMF (e.g. less dwarf enriched than a single power law IMF with the Salpeter slope).

  6. Study on the decomposition mechanism of alkyl carbonate on lithium metal by pyrolysis-gas chromatography-mass spectroscopy

    Science.gov (United States)

    Mogi, Ryo; Inaba, Minoru; Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi

    The surface films formed on deposited lithium in electrolyte solutions based on ethylene carbonate (EC), diethyl carbonate (DEC), and dimethyl carbonate (DMC) were analyzed by pyrolysis-gas chromatography-mass spectroscopy (Py-GC-MS). In 1 M LiClO 4/EC, the main component of the surface film was easily hydrolyzed to give ethylene glycol after exposure to air, and hence was considered to have a chemical structure of ROCH 2CH 2OR', of which OR and OR' are OLi or OCO 2Li. Ethylene oxide, acetaldehyde, and 1,4-dioxane were detected in decomposition products, and they were considered to have been formed by pyrolysis of ROCH 2CH 2OR' in the pyrolyzer. The presence of ethanol in decomposition products confirmed that ring cleavage at the CH 2O bonds of EC occurs by one electron reduction. In addition, the presence of methanol implied the cleavage of the CC bond of EC upon reduction. From the surface films formed in 1 M LiClO 4/DEC and /DMC, ethanol and methanol, respectively, were detected, which suggested that corresponding lithium alkoxides and/or lithium alkyl carbonates were the main components. In 1 M LiClO 4/EC+DEC (1:1), EC dominantly decomposed to form the surface film. The surface film formed in 1 M LiPF 6/EC+DEC (1:1) contained a much smaller amount of organic compounds.

  7. Validation of the doubly labeled water method using off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry.

    Science.gov (United States)

    Melanson, Edward L; Swibas, Tracy; Kohrt, Wendy M; Catenacci, Vicki A; Creasy, Seth A; Plasqui, Guy; Wouters, Loek; Speakman, John R; Berman, Elena S F

    2018-02-01

    When the doubly labeled water (DLW) method is used to measure total daily energy expenditure (TDEE), isotope measurements are typically performed using isotope ratio mass spectrometry (IRMS). New technologies, such as off-axis integrated cavity output spectroscopy (OA-ICOS) provide comparable isotopic measurements of standard waters and human urine samples, but the accuracy of carbon dioxide production (V̇co 2 ) determined with OA-ICOS has not been demonstrated. We compared simultaneous measurement V̇co 2 obtained using whole-room indirect calorimetry (IC) with DLW-based measurements from IRMS and OA-ICOS. Seventeen subjects (10 female; 22 to 63 yr) were studied for 7 consecutive days in the IC. Subjects consumed a dose of 0.25 g H 2 18 O (98% APE) and 0.14 g 2 H 2 O (99.8% APE) per kilogram of total body water, and urine samples were obtained on days 1 and 8 to measure average daily V̇co 2 using OA-ICOS and IRMS. V̇co 2 was calculated using both the plateau and intercept methods. There were no differences in V̇co 2 measured by OA-ICOS or IRMS compared with IC when the plateau method was used. When the intercept method was used, V̇co 2 using OA-ICOS did not differ from IC, but V̇co 2 measured using IRMS was significantly lower than IC. Accuracy (~1-5%), precision (~8%), intraclass correlation coefficients ( R = 0.87-90), and root mean squared error (30-40 liters/day) of V̇co 2 measured by OA-ICOS and IRMS were similar. Both OA-ICOS and IRMS produced measurements of V̇co 2 with comparable accuracy and precision compared with IC.

  8. The heat source of Ruapehu crater lake; deductions from the energy and mass balances

    Science.gov (United States)

    Hurst, A. W.; Bibby, H. M.; Scott, B. J.; McGuinness, M. J.

    1991-05-01

    Regular observations of temperature, outflow rates and water chemistry of Crater Lake, Mt. Ruapehu, New Zealand have been made for the last 25 years. These data have been used to derive a model of the dynamics of the lake, and determine the input of energy, mass, and chloride from the volcano to the Crater Lake. The recent, relatively quiescent state of the volcano, when virtually no heat has been input to the lake, has also enabled an assessment to be made of the surface heat loss characteristics, which play an important role in the model of the lake. The modelling suggests that since about 1982 the ratio of the volcanic heat to mass added to the base of the lake is about 6 MJ/kg, which is not compatible with heating of the lake by magmatic steam alone. Thus, only about 50% of the heating has been by magmatic steam. It is suggested that heat could be transferred from a magmatic source to the region below the lake by a heat-pipe mechanism, commonly associated with geothermal systems. The simultaneous upward movement of vapour phase, and downward movement of liquid phase from condensed vapour allows efficient heat transfer without overall mass transfer. The permeability necessary to supply the required heat is of the order of 10 darcy, and is consistent with a rubble filled vent. For at least the last five years, there has been a characteristic pattern in the Crater Lake temperature record, with alternate heating and cooling phases. The heating phase generally lasts for one or two months, while the cooling phase lasts for six months to a year. A possible explanation for this cyclic behaviour is the presence of a layer of liquid sulphur under Crater Lake, acting as a partial barrier between the heat-pipe and the lake. The unusual variations of the viscosity of liquid sulphur with temperature will mean that at temperatures greater than 160°C, the layer of sulphur becomes highly viscous and would block any upwards steam flow and hence stop the heat input to Crater

  9. ON THE QUESTION OF MASS-ENERGY CHARACTERISTICS OF VARIOUS AVIATION SOURCES OF ELECTRICITY

    Directory of Open Access Journals (Sweden)

    A. V. Kechin

    2017-01-01

    Full Text Available The article raises the issue of the synthesis of power supply systems for new generation aircraft, which is understood as: the power supply system (complex of the aircraft, which includes the power and information structures closely integrated. Using this method, the power generation, transformation and distribution functions are assigned to the power structure, and the information structure provides work algorithms. The problematic of the synthesis of the described systems is formed and its relevance is justified. The main work done abroad and on the territory of the Russian Federation aimed at solving this problem are analyzed. As a solution to the problem, it is proposed to use the actual, from the point of view of the authors, method – the structural-functional method. It is shown that the structural-functional method is applicable to solving complex engineering problems, as shown in the examples [16, 18]. The chosen method of solving this problem, like any other one, requires a sufficient number of bench-mark data. When applying the structural-functional method, which is data of the "constraint" type, i.e. GOST (All-Union State Standard and OST (All-Union Standard requirements, technical specifications, supplemented by data on possible elements of the synthesized scheme. This article is mainly devoted to the choice of parameters of possible elements of the synthesized circuit, namely primary electric power sources. The article defines a technique for converting discrete values of primary energy sources into functional dependencies, as well as restrictions imposed on their approximating functions. The example shows the obtaining of functional dependencies for mass-energy indicators of nickel-cadmium storage batteries produced by VARTA and SAFT. The analysis of the obtained results is shown, which showed their sufficient reliability and, as follows, their applicability in the development of aircraft power supply systems.

  10. Improved Diagnostic Accuracy in Characterization of Adnexal Masses by Detection of Choline Peak Using 1H MR Spectroscopy in Comparison to Internal Reference at 3 Tesla.

    Science.gov (United States)

    Malek, Mahrooz; Pourashraf, Maryam; Gilani, Mitra Modares; Gity, Masoumeh

    2015-01-01

    The aim of this study was to assess the role of the presence of a choline peak in 3 Tesla 1H magnetic resonance spectroscopy (MRS) for differentiating benign from malignant adnexal masses. A total of 46 adnexal masses (23 malignant and 23 benign) underwent 1H MRS study prior to surgery to assess the presence of choline peak. A choline peak was detected in 16 malignant masses (69.5%) and was absent in the other 7 (30.5%). A choline peak was only detected in 6 (26%) of the benign adnexal masses. The presence of an MRS choline peak had a sensitivity of 69.5%, a specificity of 74%, a positive predictive value (PPV) of 72.7%, and a negative predictive value (NPV) of 71% for diagnosing malignant adnexal masses. A significant difference between the frequency of mean choline peaks in benign and malignant adnexal masses was observed (P valuepeak is seen in malignant adnexal masses more frequently than the benign masses, and may be helpful for diagnosing malignant adnexal masses.

  11. Optical design of an x-ray absorption spectroscopy beamline at Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Das, N.C.; Jha, S.N.; Roy, A.P.

    1999-10-01

    Details of optical design of EXAFS beamline at Indus-2 SRS, under development at CAT, Indore, have been discussed in this report. This beamline will cover the photon energy range of 5 keV to 20 keV and will use a bent crystal of Si(111) having 2d value equal to 6.2709 A. It will accept a horizontal divergence of 1.5 mrad. The heart of the beamline is the bent crystal polychromator which will disperse and focus the synchrotron beam at the experimental sample position. The transmitted radiation from the sample will be, subsequently, detected by a position sensitive detector (CCD type). The detector length is 25 mm. Assuming a suitable value for the distance between the source and the crystal, we have computed several geometrical parameters of the beamline, such as, Bragg angle, crystal length, crystal radius, crystal to sample distance, sample to detector distance, etc. for three different photon energies, namely, 5 keV, 10 keV, and 20 keV. The band passes around these photon energies are 0.3 keV, 1 keV and 2 keV respectively. It has been found that computed geometrical parameters are well within acceptable limits. An extensive ray tracing work was done using the software program SHADOW to evaluate the imaging properties of the beamline. It was established that the image spot size at the sample position improved substantially when the crystal is changed from spherical cylinder shape to elliptic cylinder shape. From the ray intensity plots, the average resolution of the crystal bender was estimated to be 1 eV per channel. Finally based on the optical layout of the beamline, a schematic mechanical layout of the beamline has been prepared. (author)

  12. Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template.

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    Full Text Available Understanding the spatial and depth sensitivity of non-invasive near-infrared spectroscopy (NIRS measurements to brain tissue-i.e., near-infrared neuromonitoring (NIN - is essential for designing experiments as well as interpreting research findings. However, a thorough characterization of such sensitivity in realistic head models has remained unavailable. In this study, we conducted 3,555 Monte Carlo (MC simulations to densely cover the scalp of a well-characterized, adult male template brain (Colin27. We sought to evaluate: (i the spatial sensitivity profile of NIRS to brain tissue as a function of source-detector separation, (ii the NIRS sensitivity to brain tissue as a function of depth in this realistic and complex head model, and (iii the effect of NIRS instrument sensitivity on detecting brain activation. We found that increasing the source-detector (SD separation from 20 to 65 mm provides monotonic increases in sensitivity to brain tissue. For every 10 mm increase in SD separation (up to ~45 mm, sensitivity to gray matter increased an additional 4%. Our analyses also demonstrate that sensitivity in depth (S decreases exponentially, with a "rule-of-thumb" formula S=0.75*0.85(depth. Thus, while the depth sensitivity of NIRS is not strictly limited, NIN signals in adult humans are strongly biased towards the outermost 10-15 mm of intracranial space. These general results, along with the detailed quantitation of sensitivity estimates around the head, can provide detailed guidance for interpreting the likely sources of NIRS signals, as well as help NIRS investigators design and plan better NIRS experiments, head probes and instruments.

  13. Deeply inelastic collisions as a source of intermediate mass fragments at E/A = 27 MeV

    International Nuclear Information System (INIS)

    Borderie, B.; Montoya, M.; Rivet, M.F.; Jouan, D.; Cabot, C.; Fuchs, H.; Gardes, D.; Gauvin, H.; Jacquet, D.; Monnet, F.

    1988-01-01

    Intermediate-mass fragments detected in coincidence with heavy residues were measured in 40 Ar induced reactions on Ag at E/A = 27 MeV. From the observed characteristics, it is inferred that intermediate-mass fragments associated with the so-called intermediate-velocity source come mainly from deeply inelastic collisions occurring after or at the same time as preequilibrium particle emission. (orig.)

  14. Dynamical mass of a star cluster in M 83: a test of fibre-fed multi-object spectroscopy

    NARCIS (Netherlands)

    Moll, S.L.; Grijs, R.; Anders, P.; Crowther, P.A.; Larsen, S.S.; Smith, L.J.; Portegies Zwart, S.F.

    2008-01-01

    Aims. We obtained VLT/FLAMES+UVES high-resolution, fibre-fed spectroscopy of five young massive clusters (YMCs) in M 83 (NGC 5236). This forms the basis of a pilot study testing the feasibility of using fibre-fed spectroscopy to measure the velocity dispersions of several clusters simultaneously, in

  15. Dynamical mass of a star cluster in M 83: A test of fibre-fed multi-object spectroscopy

    NARCIS (Netherlands)

    Moll, S.L.; de Grijs, R.; Anders, P.; Crowther, P.A.; Larsen, S.S.; Smith, L.J.; Portegies Zwart, S.F.

    2008-01-01

    Aims. We obtained VLT/FLAMES+UVES high-resolution, fibre-fed spectroscopy of five young massive clusters (YMCs) in M 83 (NGC 5236). This forms the basis of a pilot study testing the feasibility of using fibre-fed spectroscopy to measure the velocity dispersions of several clusters simultaneously, in

  16. Chagas disease vector blood meal sources identified by protein mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Judith I Keller

    Full Text Available Chagas disease is a complex vector borne parasitic disease involving blood feeding Triatominae (Hemiptera: Reduviidae insects, also known as kissing bugs, and the vertebrates they feed on. This disease has tremendous impacts on millions of people and is a global health problem. The etiological agent of Chagas disease, Trypanosoma cruzi (Kinetoplastea: Trypanosomatida: Trypanosomatidae, is deposited on the mammalian host in the insect's feces during a blood meal, and enters the host's blood stream through mucous membranes or a break in the skin. Identifying the blood meal sources of triatomine vectors is critical in understanding Chagas disease transmission dynamics, can lead to identification of other vertebrates important in the transmission cycle, and aids management decisions. The latter is particularly important as there is little in the way of effective therapeutics for Chagas disease. Several techniques, mostly DNA-based, are available for blood meal identification. However, further methods are needed, particularly when sample conditions lead to low-quality DNA or to assess the risk of human cross-contamination. We demonstrate a proteomics-based approach, using liquid chromatography tandem mass spectrometry (LC-MS/MS to identify host-specific hemoglobin peptides for blood meal identification in mouse blood control samples and apply LC-MS/MS for the first time to Triatoma dimidiata insect vectors, tracing blood sources to species. In contrast to most proteins, hemoglobin, stabilized by iron, is incredibly stable even being preserved through geologic time. We compared blood stored with and without an anticoagulant and examined field-collected insect specimens stored in suboptimal conditions such as at room temperature for long periods of time. To our knowledge, this is the first study using LC-MS/MS on field-collected arthropod disease vectors to identify blood meal composition, and where blood meal identification was confirmed with more

  17. A collection of open source applications for mass spectrometry data mining.

    Science.gov (United States)

    Gallardo, Óscar; Ovelleiro, David; Gay, Marina; Carrascal, Montserrat; Abian, Joaquin

    2014-10-01

    We present several bioinformatics applications for the identification and quantification of phosphoproteome components by MS. These applications include a front-end graphical user interface that combines several Thermo RAW formats to MASCOT™ Generic Format extractors (EasierMgf), two graphical user interfaces for search engines OMSSA and SEQUEST (OmssaGui and SequestGui), and three applications, one for the management of databases in FASTA format (FastaTools), another for the integration of search results from up to three search engines (Integrator), and another one for the visualization of mass spectra and their corresponding database search results (JsonVisor). These applications were developed to solve some of the common problems found in proteomic and phosphoproteomic data analysis and were integrated in the workflow for data processing and feeding on our LymPHOS database. Applications were designed modularly and can be used standalone. These tools are written in Perl and Python programming languages and are supported on Windows platforms. They are all released under an Open Source Software license and can be freely downloaded from our software repository hosted at GoogleCode. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pleasing the masses: messages for daily life management in African American women's popular media sources.

    Science.gov (United States)

    Black, Angela Rose; Peacock, Nadine

    2011-01-01

    Using African American women's insights on their own health experiences, we explored how their daily life management was linked to the "strong Black woman" (SBW) script, and the health implications of that script. Using the search term "strong Black woman," we identified 20 articles from African American women's magazines and 10 blog sites linked to the SBW script and analyzed their content. We created thematic categories (role management, coping, and self-care) and extracted issues relevant to African American women's health. Adherence to the SBW script was linked to women's daily life management and health experiences. Themes such as self-sacrificial role management ("please the masses"), emotional suppression ("game face"), and postponement of self-care ("last on the list") incited internal distress and evinced negative health consequences. Scientists, activists, and health care professionals would be aided in forming initiatives aimed at reducing health disparities among African American women by heeding the insights on their health experiences that they express in popular media sources.

  19. Novel Remarks on Point Mass Sources, Firewalls, Null Singularities and Gravitational Entropy

    Science.gov (United States)

    Perelman, Carlos Castro

    2016-01-01

    A continuous family of static spherically symmetric solutions of Einstein's vacuum field equations with a spatial singularity at the origin r = 0 is found. These solutions are parametrized by a real valued parameter λ (ranging from 0 to 1) and such that the radial horizon's location is displaced continuously towards the singularity ( r = 0 ) as λ increases. In the extreme limit λ = 1, the location of the singularity and horizon merges leading to a null singularity. In this extreme case, any infalling observer hits the null singularity at the very moment he/she crosses the horizon. This fact may have important consequences for the resolution of the fire wall problem and the complementarity controversy in black holes. An heuristic argument is provided how one might avoid the Hawking particle emission process in this extreme case when the singularity and horizon merges. The field equations due to a delta-function point-mass source at r = 0 are solved and the Euclidean gravitational action corresponding to those solutions is evaluated explicitly. It is found that the Euclidean action is precisely equal to the black hole entropy (in Planck area units). This result holds in any dimensions D ≥ 3.

  20. Chemical analysis of surfaces by resonance ionization mass spectroscopy associated to ionic pulverization; Analyse chimique de surfaces par spectrometrie d`ionisation resonante associee a la pulverisation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Kern, P

    1995-12-19

    This work shows that if resonance ionization mass spectroscopy was first applied in isotopic separation, it`s also an analyzing method adapted to the study of semi-conductor materials and thin foils. We have improved this technic: a neodymium laser coupled with a dye laser, a new argon ions gun, a gallium ions gun and a new collection optic for the secondary ions quadrupole spectrometer to allow quantitative and selective measurements. (S.G.). 84 refs.

  1. Nuclear chemistry research and spectroscopy with radioactive sources. Twenty-second annual progress report, February 1, 1986-January 31, 1987

    International Nuclear Information System (INIS)

    Fink, R.W.

    1986-01-01

    The nuclear chemistry group in the School of Chemistry continues investigations of radioactive decay of nuclei far from stability under this DOE contract. These nuclei are produced with heavy ions from the Holifield Heavy Ion Research Facility (HHIRF) and studied on-line with the University Isotope Separator at Oak Ridge (UNISOR). Radioactive decay represents a unique method for the population of low-energy, low-spin structures in nuclei, and new phenomena which do not occur near stability can be explored. Our research interest encompasses three aspects of nuclear structure: (1) nuclear spectroscopy with detailed γγt, e - γt, Xγt, αγt multiparameter coincidence spectrometry; (2) measurements of single γ-ray angular distributions and magnetic moments of mass separated low-temperature oriented nuclei, using the helium dilution refrigerator ''ORIENT'' being installed on-line to the isotope separator; and (3) on-line laser hyperfine structure (hfs) and isotope shift measurements for determination of nuclear quadrupole moments, nuclear spins, and changes in mean nuclear charge radii as a means of revealing systematic shape changes in nuclei. 35 refs., 8 figs., 1 tab

  2. Nuclear chemistry research and spectroscopy with radioactive sources. Twentieth annual progress report, September 1, 1983-August 31, 1984

    International Nuclear Information System (INIS)

    Fink, R.W.

    1984-01-01

    Research under this continuing DOE contract centers on radioactive decay studies of nuclei far from stability produced with heavy ions from the Holifield Heavy Ion Research Facility (HHIRF) and studied on-line with the University Isotope Separator at Oak Ridge (UNISOR). These investigations encompass three aspects of nuclear structure research: nuclear spectroscopic measurements involving detailed γγt, γe - t, and Xγt three-parameter coincidence spectrometry; on-line laser hyperfine structure (hfs) and isotope shift spectroscopy for determining quadrupole moments, nuclear spins, and mean nuclear charge radii; and computer calculations of nuclear model predictions for comparison with the experimental level schemes. The focus of this research program is on odd-mass nuclei in which the odd nucleon probes the core, making possible observation of such phenomena as the onset of abrupt shape changes, the occurrence of shape coexistence, and shell-model intruder states. These phenomena are critical tests of concepts fundamental to an understanding of low-energy nuclear structure, such as nuclear deformations, shell models, collective models, and particle-core couplings

  3. Absolute analysis of uranium isotopic concentrations with a gas ion source mass spectrometer; Analyses absolues des concentrations isotopiques de l'uranium par spectrometre de masse equipe d'une source a gaz

    Energy Technology Data Exchange (ETDEWEB)

    Chaussy, L.; Boyer, R. [Commissariat a l' Energie Atomique, Pierrelatte (France)

    1969-07-01

    Mass spectrometer with electronic bombardment ions source for routine uranium isotopic analysis are used like relative measurements apparatus. We show that such mass spectrometers can be used for absolute measurements with a very high sensitivity and precision which are ten times better than theses of thermo-ionic ions source mass spectrometer. We examine the causes of systematic errors and we give experimental data. In particular natural uranium sample used as reference give: U{sub 5} = 0.7202 {+-} 0.0005 atoms per cent; U{sub 4} = 0.00552 {+-} 0.0003 atoms per cent. The use of this method is justified for standards control. (authors) [French] Les spectrometres de masse a source par bombardement electronique pour l'analyse de l'uranium sous forme d'hexafluorure, sont utilises en routine comme des appareils de mesure relative. On montre que l'on peut utiliser de tels appareils pour effectuer des mesures absolues avec une excellente sensibilite et reproductibilite, dix fois superieure a celle des spectrometres a source thermoionique. On examine en detail les causes d'erreurs systematiques et on donne des resultats experimentaux. En particulier, l'analyse d'un echantillon d'uranium naturel donne: U{sub 5} = 0.7202 {+-} 0.0005 atomes pour cent; U{sub 4} = 0.00552 {+-} 0.0003 atomes pour cent. La technique de mesure est utile pour le controle d'etalons isotopiques. (auteurs)

  4. Highly Stable, All-fiber, High Power ZBLAN Supercontinuum Source Reaching 4.75 µm used for Nanosecond mid-IR Spectroscopy

    DEFF Research Database (Denmark)

    Moselund, Peter M.; Petersen, Christian; Leick, Lasse

    2013-01-01

    We demonstrate compact all-fiber mid-IR supercontinuum generation up to 4.75 μm with 1.2 W output power during hundreds of hours. This source is applied to upconversion spectroscopy using the energy corresponding to a single pulse....

  5. Cold-target recoil-ion momentum spectroscopy for diagnostics of high harmonics of the extreme-ultraviolet free-electron laser light source at SPring-8

    International Nuclear Information System (INIS)

    Liu, X.-J.; Fukuzawa, H.; Pruemper, G.; Ueda, K.; Okunishi, M.; Shimada, K.; Motomura, K.; Saito, N.; Iwayama, H.; Nagaya, K.; Yao, M.; Rudenko, A.; Ullrich, J.; Foucar, L.; Czasch, A.; Schmidt-Boecking, H.; Doerner, R.; Nagasono, M.; Higashiya, A.; Yabashi, M.

    2009-01-01

    We have developed a cold-target recoil-ion momentum spectroscopy apparatus dedicated to the experiments using the extreme-ultraviolet light pulses at the free-electron laser facility, SPring-8 Compact SASE Source test accelerator, in Japan and used it to measure spatial distributions of fundamental, second, and third harmonics at the end station.

  6. The optical, infrared and radio properties of extragalactic sources observed by SDSS, 2mass and first surveys

    International Nuclear Information System (INIS)

    Z. Ivezic et al.

    2002-01-01

    We positionally match sources observed by the Sloan Digital Sky Survey (SDSS), the Two Micron All Sky Survey (2MASS), and the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey. Practically all 2MASS sources are matched to an SDSS source within 2 arcsec; ∼ 11% of them are optically resolved galaxies and the rest are dominated by stars. About 1/3 of FIRST sources are matched to an SDSS source within 2 arcsec; ∼ 80% of these are galaxies and the rest are dominated by quasars. Based on these results, we project that by the completion of these surveys the matched samples will include about 10 7 and 10 6 galaxies observed by both SDSS and 2MASS, and about 250,000 galaxies and 50,000 quasars observed by both SDSS and FIRST. Here we present a preliminary analysis of the optical, infrared and radio properties for the extragalactic sources from the matched samples. In particular, we find that the fraction of quasars with stellar colors missed by the SDSS spectroscopic survey is probably not larger than ∼ 10%, and that the optical colors of radio-loud quasars are ∼ 0.05 mag. redder (with 4σ significance) than the colors of radio-quiet quasars

  7. THE IMPACT OF MASS SEGREGATION AND STAR FORMATION ON THE RATES OF GRAVITATIONAL-WAVE SOURCES FROM EXTREME MASS RATIO INSPIRALS

    Energy Technology Data Exchange (ETDEWEB)

    Aharon, Danor; Perets, Hagai B. [Physics Department, Technion—Israel Institute of Technology, Haifa 3200003 (Israel)

    2016-10-10

    Compact stellar objects inspiraling into massive black holes (MBHs) in galactic nuclei are some of the most promising gravitational-wave (GWs) sources for next-generation GW detectors. The rates of such extreme mass ratio inspirals (EMRIs) depend on the dynamics and distribution of compact objects (COs) around the MBH. Here, we study the impact of mass-segregation processes on EMRI rates. In particular, we provide the expected mass function (MF) of EMRIs, given an initial MF of stellar black holes (SBHs), and relate it to the mass-dependent detection rate of EMRIs. We then consider the role of star formation (SF) on the distribution of COs and its implication on EMRI rates. We find that the existence of a wide spectrum of SBH masses leads to the overall increase of EMRI rates and to high rates of the EMRIs from the most massive SBHs. However, it also leads to a relative quenching of EMRI rates from lower-mass SBHs, and together produces a steep dependence of the EMRI MF on the highest-mass SBHs. SF history plays a relatively small role in determining the EMRI rates of SBHs, since most of them migrate close to the MBH through mass segregation rather than forming in situ. However, the EMRI rate of neutron stars (NSs) can be significantly increased when they form in situ close to the MBH, as they can inspiral before relaxation processes significantly segregate them outward. A reverse but weaker effect of decreasing the EMRI rates from NSs and white dwarfs occurs when SF proceeds far from the MBH.

  8. The potential for optical beam shaping of UV laser sources for mass scale quarantine disinfection applications

    Science.gov (United States)

    Lizotte, Todd

    2010-08-01

    Recent events concerning H1N1 "swine flu", have demonstrated to the world the significant potential of rapid increases in death and illness among all age groups and even among the healthy population [1] when a highly infectious influenza virus is introduced. In terms of mass casualties due to a pandemic, preparedness and response planning must be done. One course of action to prevent a pandemic outbreak or reduce the impact of a bioterrorist event is the use of isolation or quarantine facilities. The first level of isolation or quarantine is within the personal residence of the person exposed or infected. In the case where, the specific virus is extremely contagious and its onset of symptoms is rapid and severe, there will be a need for the deployment and setup of larger self contained quarantine facilities. Such facilities are used to house infectious individuals to minimize the exposure of susceptible individuals to contagious individuals, especially when specialized care or treatment is required and during the viral shedding period (5 to 7 days). These types of facilities require non-shared air conditioning, heating and ventilating systems where 100% of air is vented to the outside through a series of disinfection systems and staged filters. Although chemical disinfection is possible, there is a desire to incorporate intense UV radiation as a means to deactivate and disinfect airborne virus within hospital settings and isolated mass scale quarantine facilities. UV radiation is also being considered for disinfection of contaminated surfaces, such as table tops, walls and floors in hospitals and temporary quarantine facilities. In such applications the use of UV bulb technology can create many problems, for instance bulb technology requires numerous bulbs to treat a large volume of air, generates significant heat, uses significant power and does not produce large fluxes of UV light efficiently. This paper provides several methods of creating quarantine level

  9. Assessment of left ventricular function and mass in dual-source computed tomography coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Christoph J., E-mail: c.jensen@contilia.d [Department of Cardiology and Angiology, Elisabeth Hospital, Essen (Germany); Jochims, Markus [Department of Cardiology and Angiology, Elisabeth Hospital, Essen (Germany); Hunold, Peter; Forsting, Michael; Barkhausen, Joerg [Department of Diagnostic and Interventional Radiology and Neuroradiology, University of Essen (Germany); Sabin, Georg V.; Bruder, Oliver [Department of Cardiology and Angiology, Elisabeth Hospital, Essen (Germany); Schlosser, Thomas [Department of Diagnostic and Interventional Radiology and Neuroradiology, University of Essen (Germany)

    2010-06-15

    Purpose: To quantify left ventricular (LV) function and mass (LVM) derived from dual-source computed tomography (DSCT) and the influence of beta-blocker administration compared to cardiac magnetic resonance imaging (CMR). Methods: Thirty-two patients undergoing cardiac DSCT and CMR were included, where of fifteen received metoprolol intravenously before DSCT. LV parameters were calculated by the disc-summation method (DSM) and by a segmented region-growing algorithm (RGA). All data sets were analyzed by two blinded observers. Interobserver agreement was tested by the intraclass correlation coefficient. Results.: 1. Using DSM LV parameters were not statistically different between DSCT and CMR in all patients (DSCT vs. CMR: EF 63 {+-} 8% vs. 64 {+-} 8%, p = 0.47; EDV 136 {+-} 36 ml vs. 138 {+-} 35 ml, p = 0.66; ESV 52 {+-} 21 ml vs. 52 {+-} 22 ml, p = 0.61; SV 83 {+-} 22 ml vs. 87 {+-} 19 ml, p = 0.22; CO 5.4 {+-} 0.9 l/min vs. 5.7 {+-} 1.2 l/min, p = 0.09, LVM 132 {+-} 33 g vs. 132 {+-} 33 g, p = 0.99). 2. In a subgroup of 15 patients beta-blockade prior to DSCT resulted in a lower ejection fraction (EF), stroke volume (SV), cardiac output (CO) and increase in end systolic volume (ESV) in DSCT (EF 59 {+-} 8% vs. 62 {+-} 9%; SV 73 {+-} 17 ml vs. 81 {+-} 15 ml; CO 5.7 {+-} 1.2 l/min vs. 5.0 {+-} 0.8 l/min; ESV 52 {+-} 27 ml vs. 57 {+-} 24 ml, all p < 0.05). 3. Analyzing the RGA parameters LV volumes were not significantly different compared to DSM, whereas LVM was higher using RGA (177 {+-} 31 g vs. 132 {+-} 33 g, p < 0.05). Interobserver agreement was excellent comparing DSM values with best agreement between RGA calculations. Conclusion: Left ventricular volumes and mass can reliably be assessed by DSCT compared to CMR. However, beta-blocker administration leads to statistically significant reduced EF, SV and CO, whereas ESV significantly increases. DSCT RGA reliably analyzes LV function, whereas LVM is overestimated compared to DSM.

  10. Assessment of left ventricular function and mass in dual-source computed tomography coronary angiography

    International Nuclear Information System (INIS)

    Jensen, Christoph J.; Jochims, Markus; Hunold, Peter; Forsting, Michael; Barkhausen, Joerg; Sabin, Georg V.; Bruder, Oliver; Schlosser, Thomas

    2010-01-01

    Purpose: To quantify left ventricular (LV) function and mass (LVM) derived from dual-source computed tomography (DSCT) and the influence of beta-blocker administration compared to cardiac magnetic resonance imaging (CMR). Methods: Thirty-two patients undergoing cardiac DSCT and CMR were included, where of fifteen received metoprolol intravenously before DSCT. LV parameters were calculated by the disc-summation method (DSM) and by a segmented region-growing algorithm (RGA). All data sets were analyzed by two blinded observers. Interobserver agreement was tested by the intraclass correlation coefficient. Results.: 1. Using DSM LV parameters were not statistically different between DSCT and CMR in all patients (DSCT vs. CMR: EF 63 ± 8% vs. 64 ± 8%, p = 0.47; EDV 136 ± 36 ml vs. 138 ± 35 ml, p = 0.66; ESV 52 ± 21 ml vs. 52 ± 22 ml, p = 0.61; SV 83 ± 22 ml vs. 87 ± 19 ml, p = 0.22; CO 5.4 ± 0.9 l/min vs. 5.7 ± 1.2 l/min, p = 0.09, LVM 132 ± 33 g vs. 132 ± 33 g, p = 0.99). 2. In a subgroup of 15 patients beta-blockade prior to DSCT resulted in a lower ejection fraction (EF), stroke volume (SV), cardiac output (CO) and increase in end systolic volume (ESV) in DSCT (EF 59 ± 8% vs. 62 ± 9%; SV 73 ± 17 ml vs. 81 ± 15 ml; CO 5.7 ± 1.2 l/min vs. 5.0 ± 0.8 l/min; ESV 52 ± 27 ml vs. 57 ± 24 ml, all p < 0.05). 3. Analyzing the RGA parameters LV volumes were not significantly different compared to DSM, whereas LVM was higher using RGA (177 ± 31 g vs. 132 ± 33 g, p < 0.05). Interobserver agreement was excellent comparing DSM values with best agreement between RGA calculations. Conclusion: Left ventricular volumes and mass can reliably be assessed by DSCT compared to CMR. However, beta-blocker administration leads to statistically significant reduced EF, SV and CO, whereas ESV significantly increases. DSCT RGA reliably analyzes LV function, whereas LVM is overestimated compared to DSM.

  11. Use of Proton-Transfer-Reaction Mass Spectrometry to Characterize Volatile Organic Compound Sources at the La Porte Super Site During the Texas Air Quality Study 2000

    Energy Technology Data Exchange (ETDEWEB)

    Karl, Thomas G.; Jobson, B Tom T.; Kuster, W. C.; Williams, Eric; Stutz, Jochen P.; Shetter, Rick; Hall, Samual R.; Goldan, P. D.; Fehsenfeld, Fred C.; Lindinger, Werner

    2003-08-19

    Proton-transfer-reaction mass spectrometry (PTR-MS) was deployed for continuous real-time monitoring of volatile organic compounds (VOCs) at a site near the Houston Ship Channel during the Texas Air Quality Study 2000. Overall, 28 ions dominated the PTR-MS mass spectra and were assigned as anthropogenic aromatics (e.g., benzene, toluene, xylenes) and hydrocarbons (propene, isoprene), oxygenated compounds (e.g., formaldehyde, acetaldehyde, acetone, methanol, C7 carbonyls), and three nitrogencontaining compounds (e.g., HCN, acetonitrile and acrylonitrile). Biogenic VOCs were minor components at this site. Propene was the most abundant lightweight hydrocarbon detected by this technique with concentrations up to 100+ nmol mol-1, and was highly correlated with its oxidation products, formaldehyde (up to ~40 nmol mol-1) and acetaldehyde (up to ~80 nmol/mol), with typical ratios close to 1 in propene-dominated plumes. In the case of aromatic species the high time resolution of the obtained data set helped in identifying different anthropogenic sources (e.g., industrial from urban emissions) and testing current emission inventories. A comparison with results from complimentary techniques (gas chromatography, differential optical absorption spectroscopy) was used to assess the selectivity of this on-line technique in a complex urban and industrial VOC matrix and give an interpretation of mass scans obtained by ‘‘soft’’ chemical ionization using proton-transfer via H3O+. The method was especially valuable in monitoring rapidly changing VOC plumes which passed over the site, and when coupled with meteorological data it was possible to identify likely sources.

  12. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 1. Site description and contaminant source mass reduction

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Riis, Charlotte; Christensen, Anders G.

    2012-01-01

    Field investigations on the effects of ZVI-Clay soil mixing were conducted at a small DNAPL source zone with PCE as the parent compound. In a one-year monitoring program, soil samples were collected at three horizontal sampling planes (2.5, 5.0 and 7.5m bgs.). PCE was found to have a pseudo first...

  13. Hot filament-dissociation of (CH3)3SiH and (CH3)4Si, probed by vacuum ultra violet laser time of flight mass spectroscopy.

    Science.gov (United States)

    Sharma, Ramesh C; Koshi, Mitsuo

    2006-11-01

    The decomposition of trimethylsilane and tetramethylsilane has been investigated for the first time, using hot wire (catalytic) at various temperatures. Trimethylsilane is catalytic-dissociated in these species SiH(2), CH(3)SiH, CH(3), CH(2)Si. Time of flight mass spectroscopy signal of these species are linearly increasing with increasing catalytic-temperature. Time of flight mass spectroscopy (TOFMS) signals of (CH(3))(3)SiH and photodissociated into (CH(3))(2)SiH are decreasing with increasing hot filament temperature. TOFMS signal of (CH(3))(4)Si is decreasing with increasing hot wire temperature, but (CH(3))(3)Si signal is almost constant with increasing the temperature. We calculated activation energies of dissociated species of the parental molecules for fundamental information of reaction kinetics for the first time. Catalytic-dissociation of trimethylsilane, and tetramethylsilane single source time of flight coupled single photon VUV (118 nm) photoionization collisionless radicals at temperature range of tungsten filament 800-2360 K. The study is focused to understand the fundamental information on reaction kinetics of these molecules at hot wire temperature, and processes of catalytic-chemical vapour deposition (Cat-CVD) technique which could be implemented in amorphous and crystalline SiC semiconductors thin films.

  14. Improving quantitative gas chromatography-electron ionization mass spectrometry results using a modified ion source: demonstration for a pharmaceutical application.

    Science.gov (United States)

    D'Autry, Ward; Wolfs, Kris; Hoogmartens, Jos; Adams, Erwin; Van Schepdael, Ann

    2011-07-01

    Gas chromatography-mass spectrometry is a well established analytical technique. However, mass spectrometers with electron ionization sources may suffer from signal drifts, hereby negatively influencing quantitative performance. To demonstrate this phenomenon for a real application, a static headspace-gas chromatography method in combination with electron ionization-quadrupole mass spectrometry was optimized for the determination of residual dichloromethane in coronary stent coatings. Validating the method, the quantitative performance of an original stainless steel ion source was compared to that of a modified ion source. Ion source modification included the application of a gold coating on the repeller and exit plate. Several validation aspects such as limit of detection, limit of quantification, linearity and precision were evaluated using both ion sources. It was found that, as expected, the stainless steel ion source suffered from signal drift. As a consequence, non-linearity and high RSD values for repeated analyses were obtained. An additional experiment was performed to check whether an internal standard compound would lead to better results. It was found that the signal drift patterns of the analyte and internal standard were different, consequently leading to high RSD values for the response factor. With the modified ion source however, a more stable signal was observed resulting in acceptable linearity and precision. Moreover, it was also found that sensitivity improved compared to the stainless steel ion source. Finally, the optimized method with the modified ion source was applied to determine residual dichloromethane in the coating of coronary stents. The solvent was detected but found to be below the limit of quantification. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  16. Advanced signal processing analysis of laser-induced breakdown spectroscopy data for the discrimination of obsidian sources.

    Science.gov (United States)

    Remus, Jeremiah J; Harmon, Russell S; Hark, Richard R; Haverstock, Gregory; Baron, Dirk; Potter, Ian K; Bristol, Samantha K; East, Lucille J

    2012-03-01

    Obsidian is a natural glass of volcanic origin and a primary resource used by indigenous peoples across North America for making tools. Geochemical studies of obsidian enhance understanding of artifact production and procurement and remain a priority activity within the archaeological community. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique being examined as a means for identifying obsidian from different sources on the basis of its 'geochemical fingerprint'. This study tested whether two major California obsidian centers could be distinguished from other obsidian localities and the extent to which subsources could be recognized within each of these centers. LIBS data sets were collected in two different spectral bands (350±130 nm and 690±115 nm) using a Nd:YAG 1064 nm laser operated at ~23 mJ, a Czerny-Turner spectrograph with 0.2-0.3 nm spectral resolution and a high performance imaging charge couple device (ICCD) detector. Classification of the samples was performed using partial least-squares discriminant analysis (PLSDA), a common chemometric technique for performing statistical regression on high-dimensional data. Discrimination of samples from the Coso Volcanic Field, Bodie Hills, and other major obsidian areas in north-central California was possible with an accuracy of greater than 90% using either spectral band. © 2012 Optical Society of America

  17. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  18. Distribution of Fe atom density in a dc magnetron sputtering plasma source measured by laser-induced fluorescence imaging spectroscopy

    Science.gov (United States)

    Shibagaki, K.; Nafarizal, N.; Sasaki, K.; Toyoda, H.; Iwata, S.; Kato, T.; Tsunashima, S.; Sugai, H.

    2003-10-01

    Magnetron sputtering discharge is widely used as an efficient method for thin film fabrication. In order to achieve the optimized fabrication, understanding of the kinetics in plasmas is essential. In the present work, we measured the density distribution of sputtered Fe atoms using laser-induced fluorescence imaging spectroscopy. A dc magnetron plasma source with a Fe target was used. An area of 20 × 2 mm in front of the target was irradiated by a tunable laser beam having a planar shape. The picture of laser-induced fluorescence on the laser beam was taken using an ICCD camera. In this way, we obtained the two-dimensional image of the Fe atom density. As a result, it has been found that the Fe atom density observed at a distance of several centimeters from the target is higher than that adjacent to the target, when the Ar gas pressure was relatively high. It is suggested from this result that some gas-phase production processes of Fe atoms are available in the plasma. This work has been performed under the 21st Century COE Program by the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  19. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    Science.gov (United States)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  20. Use of a discharge in an hollow cathode as neutral atom source for resonant ionization mass spectrometry

    International Nuclear Information System (INIS)

    Berthoud, T.; Briand, A.; Khelifa, N.; Mauchien, P.

    1987-01-01

    The resonance ionization mass spectrometry in our laboratory is aimed at simplification of isotope measurements of elements present in mixtures and at measurement of very small isotopes. An atomization source which produces an atomic beam collimated from a discharge in a hollow cathode has been developed. First results of this spectrometry with an uranium atomic jet are presented [fr

  1. Influence of air mass source sector on variations in CO2 mixing ratio at a boreal site in northern Finland

    International Nuclear Information System (INIS)

    Aalto, T.; Hatakka, J.; Viisanen, Y.

    2003-01-01

    CO 2 mixing ratio in air masses coming from different source sectors was studied at Pallas measurement station in Lapland. Source sectors were defined using back trajectories and wind direction measurements. Air masses from the North and West sectors showed an annual variation of 17 ppm, possibly affected by a long range transported marine air. A larger variation of 20 ppm was observed in air masses from the more continental South and East sectors. During late autumn mixing ratios in air masses from the South sector were high in comparison with the other sectors. Different methods for a source sector definition were considered for the site, located in a contoured terrain. 52%-73% of wind direction-based source sector definitions agreed with trajectory- based definitions. However, the number of cases with reliable sector definitions may remain low when considering all observations. Different definition methods can cause differences of the order of 1 ppm in sectorially selected monthly mean CO 2 mixing ratios. (orig.)

  2. Characterization of a sealed Americium-Beryllium (AmBe) source by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Sommers, J.; Jimenez, M.; Adamic, M.; Giglio, J.; Carney, K.

    2009-01-01

    Two Americium-Beryllium neutron sources were dismantled, sampled (sub-sampled) and analyzed via inductively coupled plasma mass spectrometry (ICP-MS). Characteristics such as 'age' since purification, actinide content, trace metal content and inter and intra source composition were determined. The 'age' since purification of the two sources was determined to be 25.0 and 25.4 years, respectively. The systematic uncertainties in the 'age' determination were ±4% 2σ. The amount and isotopic composition of U and Pu varied substantially between the sub-samples of Source 2 (n = 8). This may be due to the physical means of sub-sampling or the way the source was manufactured. Source 1 was much more consistent in terms of content and isotopic composition (n = 3 sub-samples). The Be-Am ratio varied greatly between the two sources. Source 1 had an Am-Be ratio of 6.3 ± 52% (1σ). Source 2 had an Am-Be ratio of 9.81 ± 3.5% (1σ). In addition, the trace element content between the samples varied greatly. Significant differences were determined between Sources 1 and 2 for Sc, Sr, Y, Zr, Mo, Ba and W. (author)

  3. A New Measurement of the Stellar Mass Density at z~5: Implications for the Sources of Cosmic Reionization

    Science.gov (United States)

    Stark, D. P.; Bunker, A. J.; Ellis, R. S.; Eyles, L. P.; Lacy, M.

    2007-04-01

    We present a new measurement of the integrated stellar mass per comoving volume at redshift 5 determined via spectral energy fitting drawn from a sample of 214 photometrically selected galaxies with z'850LPmasses for various subsamples for which reliable and unconfused Spitzer IRAC detections are available. A spectroscopic sample of 14 of the most luminous sources with z=4.92 provides a firm lower limit to the stellar mass density of 1×106 Msolar Mpc-3. Several galaxies in this subsample have masses of order 1011 Msolar, implying that significant earlier activity occurred in massive systems. We then consider a larger sample whose photometric redshifts in the publicly available GOODS-MUSIC catalog lie in the range 4.4MUSIC photometric redshifts, we check the accuracy of their photometry and explore the possibility of contamination by low-z galaxies and low-mass stars. After excising probable stellar contaminants and using the z'850LP-J color to exclude any remaining foreground red galaxies, we conclude that 196 sources are likely to be at z~=5. The implied mass density from the unconfused IRAC fraction of this sample, scaled to the total available, is 6×106 Msolar Mpc-3. We discuss the uncertainties, as well as the likelihood that we have underestimated the true mass density. By including fainter and quiescent sources, the total integrated density could be as high as 1×107 Msolar Mpc-3. Even accounting for 25% cosmic variance within a single GOODS field, such a high mass density only 1.2 Gyr after the big bang has interesting consequences for the implied past average star formation during the period when cosmic reionization is now thought to have taken place. Using the currently available (but highly uncertain) rate of decline in the star formation history over 5mass at z~=5 if we admit significant dust extinction at early times or extend the luminosity function to very faint limits. An interesting consequence of the latter possibility is an abundant population

  4. Proof of Concept Coded Aperture Miniature Mass Spectrometer Using a Cycloidal Sector Mass Analyzer, a Carbon Nanotube (CNT) Field Emission Electron Ionization Source, and an Array Detector

    Science.gov (United States)

    Amsden, Jason J.; Herr, Philip J.; Landry, David M. W.; Kim, William; Vyas, Raul; Parker, Charles B.; Kirley, Matthew P.; Keil, Adam D.; Gilchrist, Kristin H.; Radauscher, Erich J.; Hall, Stephen D.; Carlson, James B.; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T.; Russell, Zachary E.; Grego, Sonia; Edwards, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Stoner, Brian R.; Gehm, Michael E.; Glass, Jeffrey T.

    2018-02-01

    Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified.

  5. Mass of 17O from Penning-trap mass spectrometry and molecular spectroscopy: A precision test of the Dunham-Watson model in carbon monoxide

    International Nuclear Information System (INIS)

    Mount, Brianna J.; Redshaw, Matthew; Myers, Edmund G.; Mueller, Holger S. P.

    2010-01-01

    By fitting the Dunham-Watson model to extensive rotational and vibrational spectroscopic data of isotopic variants of CO, and by using existing precise masses of 13 C, 16 O, and 18 O from Penning-trap mass spectrometry, we determine the atomic mass of 17 O to be M[ 17 O]=16.999 131 644(30) u, where the uncertainty is purely statistical. Using Penning-trap mass spectrometry, we have also directly determined the atomic mass of 17 O with the more precise result M[ 17 O]=16.999 131 756 6(9) u. The Dunham-Watson model applied to the molecular spectroscopic data hence predicts the mass of 17 O to better than 1 part in 10 8 .

  6. Measuring the black hole mass in ultraluminous X-ray sources with the X-ray scaling method

    Science.gov (United States)

    Jang, I.; Gliozzi, M.; Satyapal, S.; Titarchuk, L.

    2018-01-01

    In our recent work, we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BH), could be reliably extended to estimate the mass of supermassive black holes accreting at moderate to high level. Here, we apply this X-ray scaling method to ultraluminous X-ray sources (ULXs) to constrain their MBH. Using 49 ULXs with multiple XMM-Newton observations, we infer that ULXs host both stellar mass BHs and intermediate mass BHs. The majority of the sources of our sample seem to be consistent with the hypothesis of highly accreting massive stellar BHs with MBH ∼ 100 M⊙. Our results are in general agreement with the MBH values obtained with alternative methods, including model-independent variability methods. This suggests that the X-ray scaling method is an actual scale-independent method that can be applied to all BH systems accreting at moderate-high rate.

  7. Source Determination of Red Gel Pen Inks using Raman Spectroscopy and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy combined with Pearson's Product Moment Correlation Coefficients and Principal Component Analysis.

    Science.gov (United States)

    Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee

    2018-01-01

    The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.

  8. Dynamic secondary ion mass spectrometry and X-ray photoelectron spectroscopy on artistic bronze and copper artificial patinas

    International Nuclear Information System (INIS)

    Balta, I.Z.; Pederzoli, S.; Iacob, E.; Bersani, M.

    2009-01-01

    To prevent the natural processes of decay and to develop and improve the treatments of conservation and restoration of artistic bronzes meaning statues and sculptures, it is important understanding the patination processes and the knowledge of artificially corroded surfaces. Chemical and physical characterization of artificial patinas obtained on artistic bronzes and coppers by using the 19th century Western traditional patination techniques and recipes by means of SEM-EDS, light microscopy and ATR/FT-IR has been done in previous studies [I.Z. Balta, L. Robbiola, Characterization of artificial black patinas on artistic cast bronze and pure copper by using SEM-EDS and light microscopy, in: Proceedings of the 13th European Microscopy Congress, 22-27 August 2004, Antwerp, Belgium, EMC 2004 CD-Rom Conference Preprints; I.Z. Balta, L. Robbiola, Traditional artificial artistic bronze and copper patinas-an investigation by SEM-EDS and ATR/FT-IR, in: Proceedings of the 8th International Conference on Non Destructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, 15-19 May 2005, Lecce, Italy, ART'05 CD-Rom Conference Preprints]. Differences in morphology (structure, thickness, porosity, adherence, compactity, uniformity, homogeneity) and also in composition, on both artistic cast bronze and pure copper patinas, were clearly evidenced. Further in-depth investigation is required to be carried out in order to better understand the patinas mechanisms of formation and the layers kinetics of growth. The elemental and chemical analysis, either on a surface monolayer or in a depth profile, by using the Secondary Ion Mass Spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS) techniques, can provide this kind of information, unique at trace-level sensitivity. SIMS has proved to be a suitable analytical technique for analyzing small amounts of material with high atomic sensitivity (ppm or even ppb) and high

  9. Dynamic secondary ion mass spectrometry and X-ray photoelectron spectroscopy on artistic bronze and copper artificial patinas

    Energy Technology Data Exchange (ETDEWEB)

    Balta, I.Z., E-mail: balta_z_i@yahoo.com [National Research Institute for Conservation and Restoration, Calea Victoriei 12, Sector 3, 030026 Bucharest (Romania); Pederzoli, S.; Iacob, E.; Bersani, M. [Fondazione Bruno Kessler - IRST, Centro per la Ricerca Scientifica e Tecnologica, Trento (Italy)

    2009-04-01

    To prevent the natural processes of decay and to develop and improve the treatments of conservation and restoration of artistic bronzes meaning statues and sculptures, it is important understanding the patination processes and the knowledge of artificially corroded surfaces. Chemical and physical characterization of artificial patinas obtained on artistic bronzes and coppers by using the 19th century Western traditional patination techniques and recipes by means of SEM-EDS, light microscopy and ATR/FT-IR has been done in previous studies [I.Z. Balta, L. Robbiola, Characterization of artificial black patinas on artistic cast bronze and pure copper by using SEM-EDS and light microscopy, in: Proceedings of the 13th European Microscopy Congress, 22-27 August 2004, Antwerp, Belgium, EMC 2004 CD-Rom Conference Preprints; I.Z. Balta, L. Robbiola, Traditional artificial artistic bronze and copper patinas-an investigation by SEM-EDS and ATR/FT-IR, in: Proceedings of the 8th International Conference on Non Destructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, 15-19 May 2005, Lecce, Italy, ART'05 CD-Rom Conference Preprints]. Differences in morphology (structure, thickness, porosity, adherence, compactity, uniformity, homogeneity) and also in composition, on both artistic cast bronze and pure copper patinas, were clearly evidenced. Further in-depth investigation is required to be carried out in order to better understand the patinas mechanisms of formation and the layers kinetics of growth. The elemental and chemical analysis, either on a surface monolayer or in a depth profile, by using the Secondary Ion Mass Spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS) techniques, can provide this kind of information, unique at trace-level sensitivity. SIMS has proved to be a suitable analytical technique for analyzing small amounts of material with high atomic sensitivity (ppm or even ppb) and

  10. Tunable All Reflective Spatial Heterodyne Spectroscopy, A Technique For High Resolving Power Observation OI Defused Emission Line Sources

    Science.gov (United States)

    Hosseini, Seyedeh Sona

    The solar system presents a challenge to spectroscopic observers, because it is an astrophysically low energy environment populated with often angularly extended targets (e.g, interplanetary medium, comets, planetary upper atmospheres, and planet and satellite near space environments). Spectroscopy is a proven tool for determining compositional and other properties of remote objects. Narrow band imaging and low resolving spectroscopic measurements provide information about composition, photochemical evolution, energy distribution and density. The extension to high resolving power provides further access to temperature, velocity, isotopic ratios, separation of blended sources, and opacity effects. The drawback of high-resolution spectroscopy comes from the instrumental limitations of lower throughput, the necessity of small entrance apertures, sensitivity, field of view, and large physical instrumental size. These limitations quickly become definitive for faint and/or extended targets and for spacecraft encounters. An emerging technique with promise for the study of faint, extended sources at high resolving power is the all-reflective form of the Spatial Heterodyne Spectrometer (SHS). SHS instruments are compact and naturally possess both high etendue and high resolving power. To achieve similar spectral grasp, grating spectrometers require big telescopes. SHS is a common-path beam Fourier transform interferometer that produces Fizeau fringe pattern for all other wavelengths except the tuned wavelength. Compared to similar Fourier transform Spectrometers (FTS), SHS has considerably relaxed optical tolerances that make it easier to use in the visible and UV spectral ranges. The large etendue of SHS instruments makes them ideal for observations of extended, low surface brightness, isolated emission line sources, while their intrinsically high spectral resolution enables the study of the dynamical and spectral characteristics described above. SHS also combines very

  11. Evaluation of CDOM sources and their links with water quality in the lakes of Northeast China using fluorescence spectroscopy

    Science.gov (United States)

    Zhao, Ying; Song, Kaishan; Wen, Zhidan; Fang, Chong; Shang, Yingxin; Lv, Lili

    2017-07-01

    The spatial distributions of the fluorescence intensities Fmax for chromophoric dissolved organic matter (CDOM) components, the fluorescence indices (FI370 and FI310) and their correlations with water quality of 19 lakes in the Songhua River Basin (SHRB) across semiarid regions of Northeast China were examined with the data collected in September 2012 and 2015. The 19 lakes were divided into two groups according to EC (threshold value = 800 μS cm-1): fresh water (N = 13) and brackish water lakes (N = 6). The fluorescent characteristics of CDOM in the 19 lakes were investigated using excitation-emission matrix fluorescence spectroscopy (EEM) coupled with parallel factor (PARAFAC) and multivariate analysis. Two humic-like components (C1 and C3), one tryptophan-like component (C2), and one tyrosine-like component (C4) were identified by PARAFAC. The component C4 was not included in subsequent analyses due to the strong scatter in some colloidal water samples from brackish water lakes. The correlations between Fmax for the three EEM-PARAFAC extracted CDOM components C1-C3, the fluorescence indices (FI370 and FI310) and the water quality parameters (i.e., TN, TP, Chl-a, pH, EC, turbidity (Turb) and dissolved organic carbon (DOC)) were determined by redundancy analysis (RDA). The results of RDA analysis showed that spatial variation in land cover, pollution sources, and salinity/EC gradients in water quality affected Fmax for the fluorescent components C1-C3 and the fluorescence indices (FI370 and FI310). Further examination indicated that the CDOM fluorescent components and the fluorescence indices (FI370 and FI310) did not significantly differ (t-test, p > 0.05) in fresh water (N = 13) and brackish water lakes (N = 6). There was a difference in the distribution of the average Fmax for the CDOM fluorescent components between C1 to C3 from agricultural sources and urban wastewater sources in hypereutrophic brackish water lakes. The Fmax for humic-like components C1 and

  12. On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry

    Science.gov (United States)

    Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.

    2017-10-01

    We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.

  13. Wet-cleaning of MgO(001): Modification of surface chemistry and effects on thin film growth investigated by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy

    OpenAIRE

    Le Febvrier, Arnaud; Jensen, Jens; Eklund, Per

    2017-01-01

    The effect of the wet-cleaning process using solvents and detergent on the surface chemistry of MgO(001) substrate for film deposition was investigated. Six different wet-cleaning processes using solvent and detergent were compared. The effect on film growth was studied by the example system ScN. The surface chemistry of the cleaned surface was studied by x-ray photoelectron spectroscopy and the film/substrate interface after film growth was investigated by time-of-flight secondary ion mass s...

  14. In-source collision induced dissociation of inorganic explosives for mass spectrometric signature detection and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Thomas P., E-mail: thomas.forbes@nist.gov; Sisco, Edward

    2015-09-10

    The trace detection, bulk quantification, and chemical imaging of inorganic explosives and components was demonstrated utilizing in-source collision induced dissociation (CID) coupled with laser desorption/ionization mass spectrometry (LDI-MS). The incorporation of in-source CID provided direct control over the extent of adduct and cluster fragmentation as well as organic noise reduction for the enhanced detection of both the elemental and molecular ion signatures of fuel-oxidizer mixtures and other inorganic components of explosive devices. Investigation of oxidizer molecular anions, specifically, nitrates, chlorates, and perchlorates, identified that the optimal in-source CID existed at the transition between fragmentation of the ionic salt bonds and molecular anion bonds. The chemical imaging of oxidizer particles from latent fingerprints was demonstrated, including both cation and anion components in positive and negative mode mass spectrometry, respectively. This investigation demonstrated LDI-MS with in-source CID as a versatile tool for security fields, as well as environmental monitoring and nuclear safeguards, facilitating the detection of elemental and molecular inorganic compounds at nanogram levels. - Highlights: • In-source CID enhanced detection of elemental inorganics up to 1000-fold. • In-source CID optimization of polyatomic oxidizers enhanced detection up to 100-fold. • Optimal CID identified at transition from breaking ionic salt to molecular anion bonds. • Trace detection of inorganic explosives at nanogram levels was demonstrated. • Oxidizer particles were chemically imaged directly from latent fingerprints.

  15. A Comprehensive, Open-source Platform for Mass Spectrometry-based Glycoproteomics Data Analysis.

    Science.gov (United States)

    Liu, Gang; Cheng, Kai; Lo, Chi Y; Li, Jun; Qu, Jun; Neelamegham, Sriram

    2017-11-01

    Glycosylation is among the most abundant and diverse protein post-translational modifications (PTMs) identified to date. The structural analysis of this PTM is challenging because of the diverse monosaccharides which are not conserved among organisms, the branched nature of glycans, their isomeric structures, and heterogeneity in the glycan distribution at a given site. Glycoproteomics experiments have adopted the traditional high-throughput LC-MS n proteomics workflow to analyze site-specific glycosylation. However, comprehensive computational platforms for data analyses are scarce. To address this limitation, we present a comprehensive, open-source, modular software for glycoproteomics data analysis called GlycoPAT (GlycoProteomics Analysis Toolbox; freely available from www.VirtualGlycome.org/glycopat). The program includes three major advances: (1) "SmallGlyPep," a minimal linear representation of glycopeptides for MS n data analysis. This format allows facile serial fragmentation of both the peptide backbone and PTM at one or more locations. (2) A novel scoring scheme based on calculation of the "Ensemble Score (ES)," a measure that scores and rank-orders MS/MS spectrum for N- and O-linked glycopeptides using cross-correlation and probability based analyses. (3) A false discovery rate (FDR) calculation scheme where decoy glycopeptides are created by simultaneously scrambling the amino acid sequence and by introducing artificial monosaccharides by perturbing the original sugar mass. Parallel computing facilities and user-friendly GUIs (Graphical User Interfaces) are also provided. GlycoPAT is used to catalogue site-specific glycosylation on simple glycoproteins, standard protein mixtures and human plasma cryoprecipitate samples in three common MS/MS fragmentation modes: CID, HCD and ETD. It is also used to identify 960 unique glycopeptides in cell lysates from prostate cancer cells. The results show that the simultaneous consideration of peptide and glycan

  16. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

    International Nuclear Information System (INIS)

    Stockett, Mark H.; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-01-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

  17. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stockett, Mark H., E-mail: stockett@phys.au.dk; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen [Department of Physics and Astronomy, Aarhus University, Aarhus (Denmark)

    2016-05-15

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

  18. Assessment of Thermal Maturity Trends in Devonian–Mississippian Source Rocks Using Raman Spectroscopy: Limitations of Peak-Fitting Method

    Energy Technology Data Exchange (ETDEWEB)

    Lupoi, Jason S., E-mail: jlupoi@rjlg.com; Fritz, Luke P. [RJ Lee Group, Inc., Monroeville, PA (United States); Parris, Thomas M. [Kentucky Geological Survey, University of Kentucky, Lexington, KY (United States); Hackley, Paul C. [UniversityS. Geological Survey, Reston, VA (United States); Solotky, Logan [RJ Lee Group, Inc., Monroeville, PA (United States); Eble, Cortland F. [Kentucky Geological Survey, University of Kentucky, Lexington, KY (United States); Schlaegle, Steve [RJ Lee Group, Inc., Monroeville, PA (United States)

    2017-09-27

    The thermal maturity of shale is often measured by vitrinite reflectance (VRo). VRo measurements for the Devonian–Mississippian black shale source rocks evaluated herein predicted thermal immaturity in areas where associated reservoir rocks are oil-producing. This limitation of the VRo method led to the current evaluation of Raman spectroscopy as a suitable alternative for developing correlations between thermal maturity and Raman spectra. In this study, Raman spectra of Devonian–Mississippian black shale source rocks were regressed against measured VRo or sample-depth. Attempts were made to develop quantitative correlations of thermal maturity. Using sample-depth as a proxy for thermal maturity is not without limitations as thermal maturity as a function of depth depends on thermal gradient, which can vary through time, subsidence rate, uplift, lack of uplift, and faulting. Correlations between Raman data and vitrinite reflectance or sample-depth were quantified by peak-fitting the spectra. Various peak-fitting procedures were evaluated to determine the effects of the number of peaks and maximum peak widths on correlations between spectral metrics and thermal maturity. Correlations between D-frequency, G-band full width at half maximum (FWHM), and band separation between the G- and D-peaks and thermal maturity provided some degree of linearity throughout most peak-fitting assessments; however, these correlations and those calculated from the G-frequency, D/G FWHM ratio, and D/G peak area ratio also revealed a strong dependence on peak-fitting processes. This dependency on spectral analysis techniques raises questions about the validity of peak-fitting, particularly given the amount of subjective analyst involvement necessary to reconstruct spectra. This research shows how user interpretation and extrapolation affected the comparability of different samples, the accuracy of generated trends, and therefore, the potential of the Raman spectral method to become an

  19. Assessment of Thermal Maturity Trends in Devonian–Mississippian Source Rocks Using Raman Spectroscopy: Limitations of Peak-Fitting Method

    International Nuclear Information System (INIS)

    Lupoi, Jason S.; Fritz, Luke P.; Parris, Thomas M.; Hackley, Paul C.; Solotky, Logan; Eble, Cortland F.; Schlaegle, Steve

    2017-01-01

    The thermal maturity of shale is often measured by vitrinite reflectance (VRo). VRo measurements for the Devonian–Mississippian black shale source rocks evaluated herein predicted thermal immaturity in areas where associated reservoir rocks are oil-producing. This limitation of the VRo method led to the current evaluation of Raman spectroscopy as a suitable alternative for developing correlations between thermal maturity and Raman spectra. In this study, Raman spectra of Devonian–Mississippian black shale source rocks were regressed against measured VRo or sample-depth. Attempts were made to develop quantitative correlations of thermal maturity. Using sample-depth as a proxy for thermal maturity is not without limitations as thermal maturity as a function of depth depends on thermal gradient, which can vary through time, subsidence rate, uplift, lack of uplift, and faulting. Correlations between Raman data and vitrinite reflectance or sample-depth were quantified by peak-fitting the spectra. Various peak-fitting procedures were evaluated to determine the effects of the number of peaks and maximum peak widths on correlations between spectral metrics and thermal maturity. Correlations between D-frequency, G-band full width at half maximum (FWHM), and band separation between the G- and D-peaks and thermal maturity provided some degree of linearity throughout most peak-fitting assessments; however, these correlations and those calculated from the G-frequency, D/G FWHM ratio, and D/G peak area ratio also revealed a strong dependence on peak-fitting processes. This dependency on spectral analysis techniques raises questions about the validity of peak-fitting, particularly given the amount of subjective analyst involvement necessary to reconstruct spectra. This research shows how user interpretation and extrapolation affected the comparability of different samples, the accuracy of generated trends, and therefore, the potential of the Raman spectral method to become an

  20. Assessment of Thermal Maturity Trends in Devonian–Mississippian Source Rocks Using Raman Spectroscopy: Limitations of Peak-Fitting Method

    Directory of Open Access Journals (Sweden)

    Jason S. Lupoi

    2017-09-01

    Full Text Available The thermal maturity of shale is often measured by vitrinite reflectance (VRo. VRo measurements for the Devonian–Mississippian black shale source rocks evaluated herein predicted thermal immaturity in areas where associated reservoir rocks are oil-producing. This limitation of the VRo method led to the current evaluation of Raman spectroscopy as a suitable alternative for developing correlations between thermal maturity and Raman spectra. In this study, Raman spectra of Devonian–Mississippian black shale source rocks were regressed against measured VRo or sample-depth. Attempts were made to develop quantitative correlations of thermal maturity. Using sample-depth as a proxy for thermal maturity is not without limitations as thermal maturity as a function of depth depends on thermal gradient, which can vary through time, subsidence rate, uplift, lack of uplift, and faulting. Correlations between Raman data and vitrinite reflectance or sample-depth were quantified by peak-fitting the spectra. Various peak-fitting procedures were evaluated to determine the effects of the number of peaks and maximum peak widths on correlations between spectral metrics and thermal maturity. Correlations between D-frequency, G-band full width at half maximum (FWHM, and band separation between the G- and D-peaks and thermal maturity provided some degree of linearity throughout most peak-fitting assessments; however, these correlations and those calculated from the G-frequency, D/G FWHM ratio, and D/G peak area ratio also revealed a strong dependence on peak-fitting processes. This dependency on spectral analysis techniques raises questions about the validity of peak-fitting, particularly given the amount of subjective analyst involvement necessary to reconstruct spectra. This research shows how user interpretation and extrapolation affected the comparability of different samples, the accuracy of generated trends, and therefore, the potential of the Raman spectral

  1. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-04-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M•+, MH+, [M - H2O]+, and solvent adducts were observed in positive LPPI, [M - H]- and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure.

  2. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry.

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-04-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M •+ , MH + , [M - H 2 O] + , and solvent adducts were observed in positive LPPI, [M - H] - and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure. Graphical Abstract ᅟ.

  3. Design and development of a high energy photo-electron spectroscopy beamline on Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Jagannath; Bhandarkar, V.B.; Pradeep, R.; Sharma, R.K.; Sule, U.S.; Goutam, U.K.; Gadkari, S.C.; Yakhmi, J.V.; Sahni, V.C.

    2007-08-01

    We report on the design and development of a high energy x-ray photo-electron spectroscopy (XPS) beamline for one of the bending magnets (BM-6) at the 2.5 GeV, 3 rd generation Indus-2 synchrotron radiation (SR) source under commissioning at the Raja Ramanna Centre for Advanced Technology, Indore. The beamline (BL) extends up to 40 m in length, and has been designed based on certain criteria such as its working energy range (0.8 - 15.0 keV), the resolution (∼ 10 -4 ), the flux throughput (10 10 -10 11 ), and the requirement of a focused beam at the sample position. Two pairs of identical crystals in the (+1, -1) double crystal monochromator (DCM) geometry, based on beryl (10i0) and Si (111) reflections with their intrinsic resolution of ∼ 10 -4 have been chosen to respectively cover the lower (0.8-2.0 keV) and higher energy (2 - 15.0 keV) ranges of the BL. The DCM has been placed at a distance of 30.0 m from the BM source. The effect of pitch (ΔΘ P ) and roll errors (ΔΘ R ) of the DCM on the vertical and horizontal shifts in the exit beam has been evaluated and minimized to acceptable values (ΔΘ P R < 2 μrad) that correspond to shifts of less than 20 % of the beam width at the sample position. Sagittal focusing has been achieved by bending the 2 nd Si crystal of the DCM in the sagittal direction. A mirror has been placed at 20.0 m from the BM source. The toroidal surface of the mirror substrate (1.2 m long Si crystal) is coated with a thin film of Pt metal (∼ 50 nm), and held at a grazing angle of 9.0 μrad so that it provides high reflectivity in a much wider energy range from 0.8 to 8.0 keV. The effect of mirror surface imperfections, such as the roughness and figure error, on the spot size at its focal position has been evaluated and optimized using a ray-trace program SHADOW. The optimum value for the roughness is found to be 3.0 A, while those for figure errors are found to be 2.0 and 20.0 μrad in the meridional and sagittal directions

  4. System for studying a sample of material using a heavy ion induced mass spectrometer source

    Science.gov (United States)

    Fries, D.P.; Browning, J.F.

    1998-07-21

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  5. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    Science.gov (United States)

    Fries, D.P.; Browning, J.F.

    1999-02-16

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  6. A wide low-mass binary model for the origin of axially symmetric non-thermal radio sources

    International Nuclear Information System (INIS)

    Kool, M. de; Heuvel, E.P.J. van den

    1985-01-01

    An accreting binary model has been proposed by recent workers to account for the origin of the axially symmetric non-thermal radio sources. The authors show that the only type of binary system that can produce the observed structural properties, is a relatively wide neutron star binary, in which the companion of the neutron star is a low-mass giant. Binaries of this type are expected to resemble closely the eight brightest galactic bulge X-ray sources as well as the progenitors of the two wide radio pulsar binaries. (U.K.)

  7. A recent source modification for noble gases at the Los Alamos on-line mass analysis facility

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Forman, L.

    1976-01-01

    The Los Alamos on-line mass analysis experiment at the Godiva-IV burst reactor facility has been modified to determine independent fission yields of noble gases. The gases are released from a stearate target and ionization by electron bombardment. The distance traveled by the gases from the target to the ionization chamber is 20 cm. The efficiency of the electron bombardment source is lower than that of the surface ionization source that was employed to measure the yields of Rb and Cs. But this effect is compensated by the larger quantity of target metal that is possible when using a stearate target. (Auth.)

  8. DeNovoGUI: an open source graphical user interface for de novo sequencing of tandem mass spectra.

    Science.gov (United States)

    Muth, Thilo; Weilnböck, Lisa; Rapp, Erdmann; Huber, Christian G; Martens, Lennart; Vaudel, Marc; Barsnes, Harald

    2014-02-07

    De novo sequencing is a popular technique in proteomics for identifying peptides from tandem mass spectra without having to rely on a protein sequence database. Despite the strong potential of de novo sequencing algorithms, their adoption threshold remains quite high. We here present a user-friendly and lightweight graphical user interface called DeNovoGUI for running parallelized versions of the freely available de novo sequencing software PepNovo+, greatly simplifying the use of de novo sequencing in proteomics. Our platform-independent software is freely available under the permissible Apache2 open source license. Source code, binaries, and additional documentation are available at http://denovogui.googlecode.com .

  9. INTEGRAL FIELD SPECTROSCOPY OF SUPERNOVA EXPLOSION SITES: CONSTRAINING THE MASS AND METALLICITY OF THE PROGENITORS. I. TYPE Ib AND Ic SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Kuncarayakti, Hanindyo; Maeda, Keiichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Doi, Mamoru; Morokuma, Tomoki; Hashiba, Yasuhito [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Aldering, Greg [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Arimoto, Nobuo [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Pereira, Rui [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, 4 Rue Enrico Fermi, F-69622 Villeurbanne Cedex (France); Usuda, Tomonori, E-mail: hanindyo.kuncarayakti@ipmu.jp [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States)

    2013-08-01

    Integral field spectroscopy of 11 Type Ib/Ic supernova (SN Ib/Ic) explosion sites in nearby galaxies has been obtained using UH88/SNIFS and Gemini-N/GMOS. The use of integral field spectroscopy enables us to obtain both spatial and spectral information about the explosion site, enabling the identification of the parent stellar population of the SN progenitor star. The spectrum of the parent population provides metallicity determination via strong-line method and age estimation obtained via comparison with simple stellar population models. We adopt this information as the metallicity and age of the SN progenitor, under the assumption that it was coeval with the parent stellar population. The age of the star corresponds to its lifetime, which in turn gives the estimate of its initial mass. With this method we were able to determine both the metallicity and initial (zero-age main sequence) mass of the progenitor stars of SNe Ib and Ic. We found that on average SN Ic explosion sites are more metal-rich and younger than SN Ib sites. The initial mass of the progenitors derived from parent stellar population age suggests that SN Ic has more massive progenitors than SN Ib. In addition, we also found indication that some of our SN progenitors are less massive than {approx}25 M{sub Sun }, indicating that they may have been stars in a close binary system that have lost their outer envelope via binary interactions to produce SNe Ib/Ic, instead of single Wolf-Rayet stars. These findings support the current suggestions that both binary and single progenitor channels are in effect in producing SNe Ib/Ic. This work also demonstrates the power of integral field spectroscopy in investigating SN environments and active star-forming regions.

  10. Source Distribution Method for Unsteady One-Dimensional Flows With Small Mass, Momentum, and Heat Addition and Small Area Variation

    Science.gov (United States)

    Mirels, Harold

    1959-01-01

    A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.

  11. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic)], E-mail: kaiser@fme.vutbr.cz; Galiova, M.; Novotny, K.; Cervenka, R. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Reale, L. [Faculty of Sciences, University of L' Aquila, Via Vetoio (Coppito 1), 67010 L' Aquila (Italy); Novotny, J.; Liska, M.; Samek, O. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Kanicky, V.; Hrdlicka, A. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Stejskal, K.; Adam, V.; Kizek, R. [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, 613 00 Brno (Czech Republic)

    2009-01-15

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 {mu}m in a up to cm x cm area of sunflower (Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  12. Source contributions and mass loadings for chemicals of emerging concern: Chemometric application of pharmaco-signature in different aquatic systems

    International Nuclear Information System (INIS)

    Jiang, Jheng-Jie; Lee, Chon-Lin; Brimblecombe, Peter; Vydrova, Lucie; Fang, Meng-Der

    2016-01-01

    To characterize the source contributions of chemicals of emerging concern (CECs) from different aquatic environments of Taiwan, we collected water samples from different aquatic systems, which were screened for 30 pharmaceuticals and illicit drugs. The total estimated mass loadings of CECs were 23.1 g/d in southern aquatic systems and 133 g/d in central aquatic systems. We developed an analytical framework combining pollutant fingerprinting, hierarchical cluster analysis (HCA), and principal component analysis with multiple linear regression (PCA-MLR) to infer the pharmaco-signature and source contributions of CECs. Based on this approach, we estimate source contributions of 62.2% for domestic inputs, 16.9% for antibiotics application, and 20.9% for drug abuse/medication in southern aquatic system, compared with 47.3% domestic, 35.1% antibiotic, and 17.6% drug abuse/medication inputs to central aquatic systems. The proposed pharmaco-signature method provides initial insights into the profile and source apportionment of CECs in complex aquatic systems, which are of importance for environmental management. - Highlights: • Pharmaco-signature provides first insights into the profile and source apportionment of CECs. • Performing HCA and PCA-MLR can discern the potential source of CECs in different aquatic systems. • Chemometric results resolved 3 factors: domestic inputs, antibiotic application and drug abuse. - The proposed pharmaco-signature method provides initial insights into the profile and source apportionment of CECs in complex aquatic systems.

  13. Composition and mechanisms analysis of aromatic telechelic oligomers by mass spectroscopy; Analyse de la composition et de mecanismes de polymerisation d`oligomeres telecheliques aromatiques par spectrometrie de masse

    Energy Technology Data Exchange (ETDEWEB)

    Damerval, V.

    1997-10-22

    The aim of this work was to apply mass spectrometry, on the one hand to the characterization of telechelic oligo-imides with oxazoline and lactane end-caps and, on the other hand to the determination of the thermal reticulation mechanism of nadimides. First bis-oxazoline and buslactane end-capped, oligomers used to form blocks copolymers were studied by liquid secondary ion mass spectroscopy (LSIMS) and Matrix-assisted laser desorption ionization time of flight spectroscopy (MALDI-TOF). An acetamide end-cap by-product was detected. Then the analysis was modified to avoid the formation of this by-product which was unable to copolymerize. Secondly, to circumvent the experimental difficulties related to crosslinked networks, the study of the thermal polymerization of nadimides was performed ones (LSIMS, electroscopy, MALDI-TOF) led to the determination of the polynadimide structure. Thanks to MS/MS studies the nature of the linkages and the structure of the end-caps were established. Finally, this work evidenced the opportunity to use mass spectrometry to analyze synthetic polymers. (author) 222 refs.

  14. Automatisation of reading and interpreting photographically recorded spark source mass spectra for the quantitative analysis in solids

    International Nuclear Information System (INIS)

    Naudin, Guy.

    1976-01-01

    Quantitative analysis in solids by spark source mass spectrometry involves the study of photographic plates by means of a microdensitometer. After a graphic treatment of data from the plate, a scientific program is used to calculate the concentrations of isotopes. The automatisation of the three parts has been realised by using a program for computer. This program has been written in the laboratory for a small computer (Multi 8, Intertechnique) [fr

  15. Nondestructive analysis of the natural uranium mass through the measurement of delayed neutrons using the technique of pulsed neutron source

    International Nuclear Information System (INIS)

    Coelho, Paulo Rogerio Pinto

    1979-01-01

    This work presents results of non destructive mass analysis of natural uranium by the pulsed source technique. Fissioning is produced by irradiating the test sample with pulses of 14 MeV neutrons and the uranium mass is calculated on a relative scale from the measured emission of delayed neutrons. Individual measurements were normalised against the integral counts of a scintillation detector measuring the 14 MeV neutron intensity. Delayed neutrons were measured using a specially constructed slab detector operated in anti synchronism with the fast pulsed source. The 14 MeV neutrons were produced via the T(d,n) 4 He reaction using a 400 kV Van de Graaff accelerated operated at 200 kV in the pulsed source mode. Three types of sample were analysed, namely: discs of metallic uranium, pellets of sintered uranium oxide and plates of uranium aluminium alloy sandwiched between aluminium. These plates simulated those of Material Testing Reactor fuel elements. Results of measurements were reproducible to within an overall error in the range 1.6 to 3.9%; the specific error depending on the shape, size and mass of the sample. (author)

  16. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source

    International Nuclear Information System (INIS)

    Walder, A.J.; Freedman, P.A.

    1992-01-01

    An inductively coupled plasma source was coupled to a magnetic sector mass analyser equipped with seven Faraday detectors. An electrostatic filter located between the plasma source and the magnetic sector was used to create a double focusing system. Isotopic ratio measurements of uranium and lead standards revealed levels of internal and external precision comparable to those obtained using thermal inonization mass spectrometry. An external precision of 0.014% was obtained from the 235 U: 238 U measurement of six samples of a National Bureau of Standards (NBS) Standard Reference Material (SRM) U-500, while an RSD of 0.022% was obtained from the 206 Pb: 204 Pb measurement of six samples of NBS SRM Pb-981. Measured isotopic ratios deviated from the NBS value by approximately 0.9% per atomic mass unit. This deviation approximates to a linear function of mass bias and can therefore be corrected for by the analysis of standards. The analysis of NBS SRM Sr-987 revealed superior levels of internal and external precision. The normalization of the 87 Sr: 86 Sr ratio to the 86 Sr: 88 Sr ratio reduced the RSD to approximately 0.008%. The measured ratio was within 0.01% of the NBS value and the day-to-day reproducibility was consistent within one standard deviation. (author)

  17. Sensitivity of a Chemical Mass Balance model for PM2.5 to source profiles for differing styles of cooking

    Science.gov (United States)

    Abdullahi, K. L.; Delgado-Saborit, J. M.; Harrison, Roy M.

    2018-04-01

    Use of a Chemical Mass Balance model is one of the two most commonly used approaches to estimating atmospheric concentrations of cooking aerosol. Such models require the input of chemical profiles for each of the main sources contributing to particulate matter mass and there is appreciable evidence from the literature that not only the mass emission but also the chemical composition of particulate matter varies according to the food being prepared and the style of cooking. In this study, aerosol has been sampled in the laboratory from four different styles of cooking, i.e. Indian, Chinese, Western and African cooking. The chemical profiles of molecular markers have been quantified and are used individually within a Chemical Mass Balance model applied to air samples collected in a multi-ethnic area of Birmingham, UK. The model results give a source contribution estimate for cooking aerosol which is consistent with other comparable UK studies, but also shows a very low sensitivity of the model to the cooking aerosol profile utilised. A survey of local restaurants suggested a wide range of cooking styles taking place which may explain why no one profile gives an appreciably better fit in the CMB model.

  18. A high brightness source for nano-probe secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N.S. [Oregon Physics LLC, 2704 SE 39th Loop, Suite 109, Hillsboro, OR 97123 (United States)], E-mail: n.smith@oregon-physics.com; Tesch, P.P.; Martin, N.P.; Kinion, D.E. [Oregon Physics LLC, 2704 SE 39th Loop, Suite 109, Hillsboro, OR 97123 (United States)

    2008-12-15

    The two most prevalent ion source technologies in the field of surface analysis and surface machining are the Duoplasmatron and the liquid metal ion source (LMIS). There have been many efforts in this area of research to develop an alternative source [; N.S. Smith, W.P. Skoczylas, S.M. Kellogg, D.E. Kinion, P.P. Tesch, O. Sutherland, A. Aanesland, R.W. Boswell, J. Vac. Sci. Technol. B 24 (6) (2006) 2902-2906] with the brightness of a LMIS and yet the ability to produce secondary ion yield enhancing species such as oxygen. However, to date a viable alternative has not been realized. The high brightness and small virtual source size of the LMIS are advantageous for forming high resolution probes but a significant disadvantage when beam currents in excess of 100 nA are required, due to the effects of spherical aberration from the optical column. At these higher currents a source with a high angular intensity is optimal and in fact the relatively moderate brightness of today's plasma ion sources prevail in this operating regime. Both the LMIS and Duoplasmatron suffer from a large axial energy spread resulting in further limitations when forming focused beams at the chromatic limit where the figure-of-merit is inversely proportional to the square of the energy spread. Also, both of these ion sources operate with a very limited range of ion species. This article reviews some of the latest developments and some future potential in this area of instrument development. Here we present an approach to source development that could lead to oxygen ion beam SIMS imaging with 10 nm resolution, using a 'broad area' RF gas phase ion source.

  19. An examination of mass thickness measurements with X-ray sources

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    A method using X-rays to measure mass thickness is discussed. The method utilizes a filter to absorb low energy and characteristic photons so that the hardened X-ray spectra have a peaked energy distribution. An equivalent X-ray energy, which defines the attenuation in a material of interest can be used. The effect on the X-ray spectra of different filters is examined with Monte Carlo simulation using the EGSnrc package. A theoretical model for X-ray absorption that shows that the method can achieve good precision for a certain range of mass thicknesses is advanced. Experimental results agree well with the theoretical analysis. It is found that for a certain range of mass thicknesses, the relative error can be less than 1% for the aluminum alloy sample at the tube voltage of 30 or 45 kV

  20. An examination of mass thickness measurements with X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Chen Mincong; Li Hongmei; Chen Ziyu [Department of Modern Physics, University of Science and Technology of China, Jin Zhai Road, Hefei 230026 (China); Shen Ji [Department of Modern Physics, University of Science and Technology of China, Jin Zhai Road, Hefei 230026 (China)], E-mail: shenji@ustc.edu.cn

    2008-10-15

    A method using X-rays to measure mass thickness is discussed. The method utilizes a filter to absorb low energy and characteristic photons so that the hardened X-ray spectra have a peaked energy distribution. An equivalent X-ray energy, which defines the attenuation in a material of interest can be used. The effect on the X-ray spectra of different filters is examined with Monte Carlo simulation using the EGSnrc package. A theoretical model for X-ray absorption that shows that the method can achieve good precision for a certain range of mass thicknesses is advanced. Experimental results agree well with the theoretical analysis. It is found that for a certain range of mass thicknesses, the relative error can be less than 1% for the aluminum alloy sample at the tube voltage of 30 or 45 kV.

  1. X-ray photoelectron spectroscopy studies of nitridation on 4H-SiC (0001) surface by direct nitrogen atomic source

    International Nuclear Information System (INIS)

    Chai, J. W.; Pan, J. S.; Zhang, Z.; Wang, S. J.; Chen, Q.; Huan, C. H. A.

    2008-01-01

    A Si 3 N 4 passivation layer has been successfully grown on the 4H-SiC (0001) surface by direct atomic source nitridation at various substrate temperatures. In situ x-ray photoelectron spectroscopy measurements show that higher substrate temperature leads to higher nitridation rate and good crystallinity of the passivation layer. A thin oxynitride layer on the top of the Si 3 N 4 was observed due to the residual O in the vacuum system, but was decomposed during annealing. In the meantime, excess C was found to be effectively removed by the reactive atomic N source

  2. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliqueivis, T.; Kuwata, Mikinori; Karl, Thomas G.; Guenther, Alex B.; Allan, James D.; Coe, H.; Andreae, M. O.; Poeschl, U.; Jiminez, J. L.; Artaxo, Paulo; Martin, Scot T.

    2015-01-01

    Real-time mass spectra of non-refractory component of submicron aerosol particles were recorded in a tropical rainforest in the central Amazon basin during the wet season of 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic components accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. Ammonium was present in sufficient quantities to halfway neutralize sulfate. In this acidic, isoprene-dominated, low-NOx environment the high-resolution mass spectra as well as mass closures with ion chromatography measurements did not provide evidence for significant contributions of organosulfate species, at least at concentrations above uncertainty levels. Positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the variance of the signal intensities of the organic constituents: a factor HOA having a hydrocarbon-like signature and identified as regional emissions of primary organic material, a factor OOA-1 associated with fresh production of secondary organic material by a mechanism of BVOC oxidation followed by gas-to-particle conversion, a factor OOA-2 consistent with reactive uptake of isoprene oxidation products, especially epoxydiols by acidic particles, and a factor OOA-3 associated with long range transport and atmospheric aging. The OOA-1, -2, and -3 factors had progressively more oxidized signatures. Diameter-resolved mass spectral markers also suggested enhanced reactive uptake of isoprene oxidation products to the accumulation mode for the OOA-2 factor, and such size partitioning can be indicative of in-cloud process. The campaign-average factor loadings were in a ratio of 1.1:1.0 for the OOA-1 compared to the OOA-2 pathway, suggesting the comparable importance of gas-phase compared to particle-phase (including cloud waters) production pathways of secondary organic material during

  3. Exploring symbiotic nitrogen fixation and assimilation in pea root nodules by in vivo 15N nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Scharff, A.M.; Egsgaard, H.; Hansen, P.E.

    2003-01-01

    Nitrogen (N) fixation and assimilation in pea (Pisum sativum) root nodules were studied by in vivo N-15 nuclear magnetic resonance (NMR) by exposing detached nodules to N-15, via a perfusion medium, while recording a time course of spectra. In vivo P-31 NMR spectroscopy was used to monitor...... the physiological state of the metabolically active nodules. The nodules were extracted after the NMR studies and analyzed for total soluble amino acid pools and N-15 labeling of individual amino acids by liquid chromatography-mass spectrometry. A substantial pool of free ammonium was observed by N-15 NMR...... labeling of Asn was observed by liquid chromatography-mass spectrometry, which is consistent with the generally accepted role of Asn as the end product of primary N assimilation in pea nodules. However, the Asn N-15 amino signal was absent in in vivo N-15 NMR spectra, which could be because...

  4. Method of obtaining an anode mass for primary chemical current sources

    Energy Technology Data Exchange (ETDEWEB)

    Cyrankowska, M.; Kwasnik, J.; Sobkowiak, J.

    1981-12-31

    The Zn powder is mixed with thickner protecting the Zn from the oxidation effect of the air during subsequent amalgamation. Alkaline electrolyte which governs dissolving of the ZnO film formed on the Zn grains is added to the dry mixture. The mixture is mixed until the formation of a uniform plastic mass, after which metal mecury is added to it. The method makes it possible to reduce corrosion of Zn both during preparation of the active mass and during assembly of the electrode.

  5. Application of dual-energy scanning technique with dual-source CT in pulmonary mass lesions

    International Nuclear Information System (INIS)

    Jiang Jie; Xu Yiming; He Bo; Xie Xiaojie; Han Dan

    2012-01-01

    Objective: To explore the feasibility of DSCT dual-energy technique in pulmonary mass lesions. Methods: A total of 100 patients with pulmonary masses underwent conventional plain CT scan and dual-energy enhanced CT scan. The virtual non-contrast (VNC) images were obtained at post-processing workstation.The mean CT value,enhancement value,signal to noise ratio (SNR), image quality and radiation dose of pulmonary masses were compared between the two scan techniques using F or t test and the detectability of lesions was compared using Wilcoxon test. Results: There was no statistically significant difference among VNC (A) (32.89 ± 12.58) HU,VNC (S) (30.86 ± 9.60) HU and conventional plain images (35.89 ± 9.99) HU in mean CT value of mass (F =2.08, P>0.05). There was statistically significant difference among VNC (A) (3.29 ± 1.45), VNC (S) (3.93 ± 1.49) and conventional plain image (4.61 ± 1.50) in SNR (F =6.01, P<0.05), which of conventional plain scan was higher than that of VNC.The enhancement value of mass in conventional enhanced scan (60.74 ± 13.9) HU and distribution of iodine from VNC (A) (58.26 ± 31.99) HU was no statistically significant difference (t=0.48, P>0.05), but there was a significant difference between conventional enhanced scan (56.51 ± 17.94) HU and distribution of iodine from VNC (S) (52.65 ± 16.78) HU (t=4.45, P<0.05). There was no statistically significant difference among conventional plain scan (4.69 ± 0.06) and VNC (A) (4.60 ± 0.09), VNC (S) (4.61 ±0.11) in image quality at mediastinal window (F=3.014, P>0.05). The appearance, size, internal features of mass (such as necrosis, calcification and cavity) were showed the same in conventional plain scan, VNC (A) and VNC (S). Of 41 patients with hilar mass, 18 patients were found to have lobular and segmental perfusion decrease or defect. Perfusion defect area was found in 59 patients with peripheral lung mass. The radiation dose of dual-energy enhanced scan was lower than that of

  6. An investigation of liquid secondary ion and laser desorption mass spectroscopy for the analysis of planar chromatograms

    Energy Technology Data Exchange (ETDEWEB)

    Dunphy, J.C.

    1990-11-01

    In the work described in this dissertation, interfaces between two mass spectrometric methods, liquid secondary ion mass spectrometry (LSIMS) and laser desorption/ionization Fourier transform mass spectrometry (LD/FTMS), and thin-layer chromatography (TLC) and slab gel electrophoresis were developed for bioanalytical applications. In an investigation of direct LSIMS for TLC analysis (TLC/LSIMS), mass spectra of bile acids and bile salts were characterized directly from high-performance TLC plates. The scanning ability of the LSIMS instrument was used to generate spatial profiles of the characteristic bile acid ions in the mass spectra. A procedure for the analysis of bile salts in dog bile was developed involving an extraction step, followed by TLC separation and direct TLC/LSIMS detection and semi-quantitation. For peptides, an experiment called selected-sequence monitoring'' was developed to locate target peptides related in structure in complex mixtures developed on TLC plates. Ions characteristic of the bradykinin and enkephalin peptides were used to generate spatial profiles of members of those peptide families on TLC plates. Using a Fourier transform mass spectrometer (FTMS), a fundamental investigation was conducted into the factors affecting the quality of analytical data obtained using direct laser desorption/ionization to produce mass spectra from TLC plates.

  7. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    Science.gov (United States)

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...

  8. In-source laser spectroscopy of $^{75, 77, 78}$Cu Direct evidence for a change in the quasiparticle energy sequence in $^{75, 77}$Cu and an absence of longer-lived isomers in $^{78}$Cu

    CERN Document Server

    Koster, U; Serot, O; Fedosseev, V N; Kratz, K L; Stone, N J; Sjodin, A M; Materna, T; Flanagan, K T; Molkanov, P L; Stone, J R; Seliverstov, M D; Mathieu, L; Marsh, B A

    2011-01-01

    This paper describes measurements on the isotopes (75,77,78)Cu by the technique of in-source laser spectroscopy, at the ISOLDE facility, CERN. The role of this technique is briefly discussed in the context of this and other, higher resolution, methods applied to copper isotopes in the range (57-78)Cu. The data, analyzed in comparison with previous results on the lighter isotopes (59,63)Cu, establish the ground-state nuclear spin of (75,77)Cu as 5/2 and yield their magnetic dipole moments as +1.01(5)mu(N) and +1.61(5)mu(N), respectively. The results on (78)Cu show no evidence for long-lived isomerism at this mass number and are consistent with a spin in the range 3-6 and moment of 0.0(4) mu(N)

  9. Mass spectra of alkaline earth salts with a FAB source. Complexation with crown ethers

    International Nuclear Information System (INIS)

    Ulrich, J.

    1987-01-01

    With a liquid desorption FAB source it is possible to obtain alkaline earth metal ions complexed by a crown ether. Conditions for formation of these complexes ions are examined for selection of the complexing agent in function of cation size. Behaviour of alkaline and alkaline earth compounds are compared allowing the differentiation of ion extraction phenomena by liquid desorption ion source and solvent extraction [fr

  10. Source apportionment of PM10 mass and particulate carbon in the Kathmandu Valley, Nepal

    Science.gov (United States)

    Kim, Bong Mann; Park, Jin-Soo; Kim, Sang-Woo; Kim, Hyunjae; Jeon, Haeun; Cho, Chaeyoon; Kim, Ji-Hyoung; Hong, Seungkyu; Rupakheti, Maheswar; Panday, Arnico K.; Park, Rokjin J.; Hong, Jihyung; Yoon, Soon-Chang

    2015-12-01

    The Kathmandu Valley in Nepal is a bowl-shaped urban basin in the Himalayan foothills with a serious problem of fine particulate air pollution that impacts local health and impairs visibility. Particulate carbon concentrations have reached severe levels that threaten the health of 3.5 million local residents. Moreover, snow and ice on the Himalayan mountains are melting as a result of additional warming due to particulate carbon, especially high black carbon concentrations. To date, the sources of the Valley's particulate carbon and the impacts of different sources on particulate carbon concentrations are not well understood. Thus, before an effective control strategy can be developed, these particulate carbon sources must be identified and quantified. Our study has found that the four primary sources of particulate carbon in the Kathmandu Valley during winter are brick kilns, motor vehicles, fugitive soil dust, and biomass/garbage burning. Their source contributions are quantified using a recently developed new multivariate receptor model SMP. In contrast to other highly polluted areas such as China, secondary contribution is almost negligible in Kathmandu Valley. Brick kilns (40%), motor vehicles (37%) and biomass/garbage burning (22%) have been identified as the major sources of elemental carbon (black carbon) in the Kathmandu Valley during winter, while motor vehicles (47%), biomass/garbage burning (32%), and soil dust (13%) have been identified as the most important sources of organic carbon. Our research indicates that controlling emissions from motor vehicles, brick kilns, biomass/garbage burning, and soil dust is essential for the mitigation of the particulate carbon that threatens public health, impairs visibility, and influences climate warming within and downwind from the Kathmandu Valley. In addition, this paper suggests several useful particulate carbon mitigation methods that can be applied to Kathmandu Valley and other areas in South Asia with

  11. Atmospheric-pressure solution-cathode glow discharge: A versatile ion source for atomic and molecular mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Andrew J. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Williams, Kelsey L. [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Hieftje, Gary M. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Shelley, Jacob T., E-mail: shellj@rpi.edu [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States)

    2017-01-15

    An atmospheric-pressure solution-cathode glow discharge (SCGD) has been evaluated as an ion source for atomic, molecular, and ambient desorption/ionization mass spectrometry. The SCGD consists of a direct-current plasma, supported in the ambient air in the absence of gas flows, and sustained upon the surface of a flowing liquid cathode. Analytes introduced in the flowing liquid, as an ambient gas, or as a solid held near the plasma are vaporized and ionized by interactions within or near the discharge. Introduction of acidic solutions containing metal salts produced bare elemental ions as well as H{sub 2}O, OH{sup −} and NO{sub 3}{sup −} adducts. Detection limits for these elemental species ranged from 0.1 to 4 ppb, working curves spanned more than 4 orders of linear dynamic range, and precision varied between 5 and 16% relative standard deviation. Small organic molecules were also efficiently ionized from solution, and both the intact molecular ion and fragments were observed in the resulting SCGD mass spectra. Fragmentation of molecular species was found to be tunable; high discharge currents led to harder ionization, while low discharge currents produced stronger molecular-ion signals. Ambient gases and solids, desorbed by the plasma from a glass probe, were also readily ionized by the SCGD. Indeed, strong analyte signals were obtained from solid samples placed at least 2 cm from the plasma. These findings indicate that the SCGD might be useful also for ambient desorption/ionization mass spectrometry. Combined with earlier results that showed the SCGD is useful for ionization of labile biomolecules, the results here indicate that the SCGD is a highly versatile ion source capable of providing both elemental and molecular mass-spectral information. - Highlights: • Solution-cathode glow discharge used as an ionization source for mass spectrometry. • SCGD-MS can provide atomic as well as intact molecular mass spectra. • Atomic limits of detection range

  12. Enormous mass of the elliptical galaxy M87: A model for the extended X-ray source

    International Nuclear Information System (INIS)

    Mathews, W.G.

    1978-01-01

    An analysis of the X-ray data from the Virgo cluster indicates that the mass of the giant elliptical galaxy M87 exceeds 10 13 M/sub sun/ or greater. This large mass is required in order to confine the extended thermal X-ray source to its observed projected size - provided that the gas which radiates X-rays is essentially isothermal (T=3 x 10 7 K) and in hydrostatic equilibrium. Isothermality follows from the efficiency of heat conduction and the suggested origin of the gas. If these assumptions are correct, the bulk of the mass in M87 must be distributed in a low-density, low luminosity component quite unlike the distribution of luminous matter. The mass of this component could account for the ''missing mass'' in the Virgo cluster. Observations of polarized radio emission from the core source in M87 provide further indirect support for the existence of a massive, low-luminosity halo. The hot gas (Tapprox. =3 x 10 7 K), trapped in the potential well of the dark halo, and the magnetic field associated with the M87 radio halo account for the Faraday depolarization and rotation measure observed in the radio core source (jet and nucleus).The gas at Tapprox. =3 x 10 7 K which surrounds M87 cools at its center in less than a Hubble time, and produces the H II region which is observed there. Observations of the Balmer decrement could be useful in verifying the origin of the nuclear H II gas. This gas, which falls as clouds into the nucleus at a rate of approx.10 M/sub sun/ yr -1 , may be responsible for maintaining the nonthermal activity there. The total mass of hot gas in M87 is, very approximately, 5 x 10 12 M/sub sun/. A likely source for the hot gas surrounding M87 would be the interaction of galactic winds among the cluster members, followed by infall into the potential well of M87

  13. Rapid screening of basic colorants in processed vegetables through mass spectrometry using an interchangeable thermal desorption electrospray ionization source.

    Science.gov (United States)

    Chao, Yu-Ying; Chen, Yen-Ling; Lin, Hong-Yi; Huang, Yeou-Lih

    2018-06-20

    Thermal desorption electrospray ionization/mass spectrometry (TD-ESI-MS) employing a quickly interchangeable ionization source is a relatively new ambient ionization mass spectrometric technique that has had, to date, only a limited number of applications related to food safety control. With reallocation of resources, this direct-analysis technique has had wider use in food analysis when operated in dual-working mode (pretreatment-free qualitative screening and conventional quantitative confirmation) after switching to an ambient ionization source from a traditional atmospheric pressure ionization source. Herein, we describe the benefits and challenges associated with the use of a TD-ESI source to detect adulterants in processed vegetables (PVs), as a proof-of-concept for the detection of basic colorants. While TD-ESI can offer direct qualitative screening analyses for PVs with detection capabilities lower than those provided with liquid chromatography/UV detection within 30 s, the use of TD-ESI for semi-quantification is applicable only for homogeneous food matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Chemical mass balance source apportionment of TSP in a lignite-burning area of Western Macedonia, Greece

    Science.gov (United States)

    Samara, Constantini

    Total suspended particle mass concentrations (TSP) were determined in the Kozani-Ptolemais-Florina basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a 1-year period (November 2000-November 2001) at 10 receptor sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Particulate emissions were also collected from a variety of sources including fly ash, lignite dust, automobile traffic, domestic heating, and open-air burning of agricultural biomass and refuse, and analyzed for the same chemical components. Ambient and source chemical profiles were used for source identification and apportionment of TSP by employing a chemical mass balance (CMB) receptor model. Diesel burning in vehicular traffic and in the power plants for generator start up was found to be the major contributor to ambient TSP levels at all 10 sites. Other sources with significant contributions were domestic coal burning, vegetative burning (wood combustion and agricultural burns) and refuse open-air burning. Fly ash escaping the electrostatic precipitators of the power plants was a minor contributor to ambient TSP.

  15. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    Duesterhoeft, H.; Pippig, R.

    1986-01-01

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  16. Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy.

    Science.gov (United States)

    Derrien, Morgane; Kim, Min-Seob; Ock, Giyoung; Hong, Seongjin; Cho, Jinwoo; Shin, Kyung-Hoon; Hur, Jin

    2018-03-15

    The two popular source tracing tools of stable isotope ratios (δ 13 C and δ 15 N) and fluorescence spectroscopy were used to estimate the relative source contributions to sediment organic matter (SeOM) at five different river sites in an agricultural-forested watershed (Soyang Lake watershed), and their capabilities for the source assignment were compared. Bulk sediments were used for the stable isotopes, while alkaline extractable organic matter (AEOM) from sediments was used to obtain fluorescent indices for SeOM. Several source discrimination indices were fully compiled for a range of the SeOM sources distributed in the catchments of the watershed, which included soils, forest leaves, crop (C3 and C4) and riparian plants, periphyton, and organic fertilizers. The relative source contributions to the river sediment samples were estimated via end member mixing analysis (EMMA) based on several selected discrimination indices. The EMMA based on the isotopes demonstrated that all sediments were characterized by a medium to a high contribution of periphyton ranging from ~30% to 70% except for one site heavily affected by forest and agricultural fields with relatively high contributions of terrestrial materials. The EMMA based on fluorescence parameters, however, did not show similar results with low contributions from forest leaf and periphyton. The characteristics of the studied watershed were more consistent with the source contributions determined by the isotope ratios. The discrepancy in the EMMA capability for source assignments between the two analytical tools can be explained by the limited analytical window of fluorescence spectroscopy for non-fluorescent dissolved organic matter (FDOM) and the inability of AEOM to represent original bulk particulate organic matter (POM). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A novel library-independent approach based on high-throughput cultivation in Bioscreen and fingerprinting by FTIR spectroscopy for microbial source tracking in food industry.

    Science.gov (United States)

    Shapaval, V; Møretrø, T; Wold Åsli, A; Suso, H P; Schmitt, J; Lillehaug, D; Kohler, A

    2017-05-01

    Microbiological source tracking (MST) for food industry is a rapid growing area of research and technology development. In this paper, a new library-independent approach for MST is presented. It is based on a high-throughput liquid microcultivation and FTIR spectroscopy. In this approach, FTIR spectra obtained from micro-organisms isolated along the production line and a product are compared to each other. We tested and evaluated the new source tracking approach by simulating a source tracking situation. In this simulation study, a selection of 20 spoilage mould strains from a total of six genera (Alternaria, Aspergillus, Mucor, Paecilomyces, Peyronellaea and Phoma) was used. The simulation of the source tracking situation showed that 80-100% of the sources could be correctly identified with respect to genus/species level. When performing source tracking simulations, the FTIR identification diverged for Phoma glomerata strain in the reference collection. When reidentifying the strain by sequencing, it turned out that the strain was a Peyronellaea arachidicola. The obtained results demonstrated that the proposed approach is a versatile tool for identifying sources of microbial contamination. Thus, it has a high potential for routine control in the food industry due to low costs and analysis time. The source tracking of fungal contamination in the food industry is an important aspect of food safety. Currently, all available methods are time consuming and require the use of a reference library that may limit the accuracy of the identification. In this study, we report for the first time, a library-independent FTIR spectroscopic approach for MST of fungal contamination along the food production line. It combines high-throughput microcultivation and FTIR spectroscopy and is specific on the genus and species level. Therefore, such an approach possesses great importance for food safety control in food industry. © 2016 The Society for Applied Microbiology.

  18. High mass resolution, high angular acceptance time-of-flight mass spectroscopy for planetary missions under the Planetary Instrument Definition and Development Program (PIDDP)

    Science.gov (United States)

    Young, David T.

    1991-01-01

    This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.

  19. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Malherbe, C; Hutchinson, I B; Ingley, R; Boom, A; Carr, A S; Edwards, H; Vertruyen, B; Gilbert, B; Eppe, G

    2017-11-01

    In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars to search for evidence of past and present life. In preparation for these missions, terrestrial analog samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analog samples. During the formation of desert varnishes (which takes many hundreds of years), organic matter is incorporated, and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-ray diffraction [XRD], Raman spectroscopy, elemental analysis, and pyrolysis-gas chromatography-mass spectrometry [Py-GC-MS]) were used to interrogate samples of desert varnish and describe their capacity to sustain life under extreme scenarios. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described with the use of identical sets of samples. XRD and Raman spectroscopy measurements were used to nondestructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman-active biomarker. The content and the nature of the organic material in the samples were further investigated with elemental analysis and methylated Py-GC-MS, and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the biogeochemical composition of the samples. Possible interference of the geological substrate on the detectability of pyrolysis products is also suggested. Key Words: Desert varnish-Habitability-Raman spectroscopy-Py-GC-MS-XRD-ExoMars-Planetary science. Astrobiology 17, 1123-1137.

  20. Masses of the Planetary Nebula Central Stars in the Galactic Globular Cluster System from HST Imaging and Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacoby, George H. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Marco, Orsola De [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Davies, James [Space Telescope Science Institute, Baltimore MD 21218 (United States); Lotarevich, I. [American Museum of Natural History, New York, NY (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Harrington, J. Patrick [University of Maryland, College Park, MD (United States); Lanz, Thierry, E-mail: gjacoby@lowell.edu, E-mail: orsola.demarco@mq.edu.au, E-mail: jdavies@stsci.edu, E-mail: heb11@psu.edu, E-mail: jph@astro.umd.edu, E-mail: thierry.lanz@oca.eu [Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, F-06304 Nice (France)

    2017-02-10

    The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrain its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M {sub ⊙} for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M {sub ⊙}) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and H α emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2.

  1. Current mass spectrometry strategies for selenium speciation in dietary sources of high-selenium

    Energy Technology Data Exchange (ETDEWEB)

    Infante, Heidi Goenaga; Hearn, Ruth; Catterick, Tim [LGC Limited, Teddington, Middlesex (United Kingdom)

    2005-06-01

    This document reviews the most relevant mass spectrometry approaches to selenium (Se) speciation in high-Se food supplements in terms of qualitative and quantitative Se speciation and Se-containing species identification, with special reference to high-Se yeast, garlic, onions and Brazil nuts. Important topics such as complexity of Se speciation in these materials and the importance of combining Se-specific detection and molecule-specific determination of the particular species of this element in parallel with chromatography, to understand their nutritional role and cancer preventive properties are critically discussed throughout. The versatility and potential of mass spectrometric detection in this field are clearly demonstrated. Although great advances have been achieved, further developments are required, especially if ''speciated''certified reference materials (CRMs) are to be produced for validation of measurements of target Se-containing species in Se-food supplements. (orig.)

  2. Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data.

    Science.gov (United States)

    Jaitly, Navdeep; Mayampurath, Anoop; Littlefield, Kyle; Adkins, Joshua N; Anderson, Gordon A; Smith, Richard D

    2009-03-17

    Data generated from liquid chromatography coupled to high-resolution mass spectrometry (LC-MS)-based studies of a biological sample can contain large amounts of biologically significant information in the form of proteins, peptides, and metabolites. Interpreting this data involves inferring the masses and abundances of biomolecules injected into the instrument. Because of the inherent complexity of mass spectral patterns produced by these biomolecules, the analysis is significantly enhanced by using visualization capabilities to inspect and confirm results. In this paper we describe Decon2LS, an open-source software package for automated processing and visualization of high-resolution MS data. Drawing extensively on algorithms developed over the last ten years for ICR2LS, Decon2LS packages the algorithms as a rich set of modular, reusable processing classes for performing diverse functions such as reading raw data, routine peak finding, theoretical isotope distribution modelling, and deisotoping. Because the source code is openly available, these functionalities can now be used to build derivative applications in relatively fast manner. In addition, Decon2LS provides an extensive set of visualization tools, such as high performance chart controls. With a variety of options that include peak processing, deisotoping, isotope composition, etc, Decon2LS supports processing of multiple raw data formats. Deisotoping can be performed on an individual scan, an individual dataset, or on multiple datasets using batch processing. Other processing options include creating a two dimensional view of mass and liquid chromatography (LC) elution time features, generating spectrum files for tandem MS data, creating total intensity chromatograms, and visualizing theoretical peptide profiles. Application of Decon2LS to deisotope different datasets obtained across different instruments yielded a high number of features that can be used to identify and quantify peptides in the

  3. Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data

    Directory of Open Access Journals (Sweden)

    Anderson Gordon A

    2009-03-01

    Full Text Available Abstract Background Data generated from liquid chromatography coupled to high-resolution mass spectrometry (LC-MS-based studies of a biological sample can contain large amounts of biologically significant information in the form of proteins, peptides, and metabolites. Interpreting this data involves inferring the masses and abundances of biomolecules injected into the instrument. Because of the inherent complexity of mass spectral patterns produced by these biomolecules, the analysis is significantly enhanced by using visualization capabilities to inspect and confirm results. In this paper we describe Decon2LS, an open-source software package for automated processing and visualization of high-resolution MS data. Drawing extensively on algorithms developed over the last ten years for ICR2LS, Decon2LS packages the algorithms as a rich set of modular, reusable processing classes for performing diverse functions such as reading raw data, routine peak finding, theoretical isotope distribution modelling, and deisotoping. Because the source code is openly available, these functionalities can now be used to build derivative applications in relatively fast manner. In addition, Decon2LS provides an extensive set of visualization tools, such as high performance chart controls. Results With a variety of options that include peak processing, deisotoping, isotope composition, etc, Decon2LS supports processing of multiple raw data formats. Deisotoping can be performed on an individual scan, an individual dataset, or on multiple datasets using batch processing. Other processing options include creating a two dimensional view of mass and liquid chromatography (LC elution time features, generating spectrum files for tandem MS data, creating total intensity chromatograms, and visualizing theoretical peptide profiles. Application of Decon2LS to deisotope different datasets obtained across different instruments yielded a high number of features that can be used to

  4. Validation of methods to measure uranium isotopes using magnetic sector mass spectrometry with inductively coupled plasma source

    International Nuclear Information System (INIS)

    Hernandez M, H.; Rios L, M. J.; Romero G, E. T.

    2017-10-01

    The mass spectrometry technique with inductively coupled plasma source (Icp-Ms) has been widely used to measure isotopic ratios of elements toxic to human health. Reason for which, in this work several measurement methods for the analysis of uranium isotopes in different matrices were implemented using magnetic sector mass spectrometry with inductively coupled plasma source (Icp-SFMS). Groundwater, sediment, soil and urine were the matrices analyzed, which were supplied by intercomparison tests conducted by the IAEA and Association for the Promotion of Quality Control of Medical Biology Analysis in Radio-toxicology. The procedures used in the treatment of soil, sediment and water samples were based on US EPA methods. In the case of the urine sample, the preparation was rapid (1:20 dilution). The average of the results obtained in yield of each matrix was 94, 71, 72 and 78% for water, urine, soil and sediment respectively. In addition, the precision in terms of standard relative deviation was less than 5% and the accuracy was less than 4%. In conclusion, the Icp-SFMS is a very sensitive technique for measuring isotopes of U in different matrices. However, careful tuning is necessary, especially in the mass regions of interest 234, 235 and 238 if an external quantification is considered using natural U solutions. (Author)

  5. Fundamental Stellar Parameters with HST/FGS Dynamical Masses and HST/STIS Spectroscopy of M Dwarf Binaries

    Science.gov (United States)

    Dieterich, Sergio; Henry, Todd J.; Benedict, George Fritz; Jao, Wei-Chun; White, Russel; RECONS Team

    2017-01-01

    Mass is the most fundamental stellar parameter, and yet model independent dynamical masses can only be obtained for a small subset of closely separated binaries. The high angular resolution needed to characterize individual components of those systems means that little is known about the details of their atmospheric properties. We discuss the results of HST/STIS observations yielding spatially resolved optical spectra for six closely separated M dwarf systems, all of which have HST/FGS precision dynamical masses for the individual components ranging from 0.4 to 0.076 MSol. We assume coevality and equal metallicity for the components of each system and use those constraints to perform stringent tests of the leading atmospheric and evolutionary model families throughout the M dwarf mass range. We find the latest models to be in good agreement with observations. We discuss specific spectral diagnostic features such as the well-known gravity sensitive Na and K lines and address ways to break the temperature-metallicity-gravity degeneracy that often hinders the interpretation of these features. We single out a comparison between the systems GJ 469 AB and G 250-29 AB, which have nearly identical mass configurations but different metallicities, thus causing marked differences in atmospheric properties and overall luminosities.This work is funded by NASA grant HST-GO-12938. and By the NSF Astronomy and Astrophysics Postdoctoral Fellowship program through NSF grant AST-1400680.

  6. Optimization of a coherent synchrotron radiation source in the Tera-hertz range for high-resolution spectroscopy of molecules of astrophysical interest

    International Nuclear Information System (INIS)

    Barros, J.

    2012-01-01

    Fourier Transform spectroscopy is the most used multiplex tool for high-resolution measurements in the infrared range. Its extension to the Tera-hertz domain is of great interest for spectroscopic studies of interstellar molecules. This application is however hampered by the lack of dedicated, broadband sources with a sufficient intensity and stability. In this work, Coherent Synchrotron Radiation (CSR) was used as a source for molecular spectroscopy at high resolution on the AILES infrared and Tera-hertz beamline of SOLEIL synchrotron. The beamline being optimized for far-infrared, we could characterize the properties of CSR and compare them to the incoherent synchrotron radiation. A double detection system allowed to correct the effect of the source-related instabilities, hence to significantly increase the signal-to-noise ratio. Pure rotational spectra were measured using these developments. The case of the propynal molecule, for which a refined set of rotational and centrifugal distortion constants was calculated, proves the complementarity between CSR and the classical microwave or infrared sources. (author)

  7. Flux and Mass Reduction Resulting from ZVIClay Remediation of a PCE DNAPL Source Zone

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Kjeldsen, Peter; Riis, C.

    2010-01-01

    of bentonite clay. The degradation of PCE in the treated source area and the development in the downstream flux of chlorinated compounds have been monitored in six sampling campaigns. A PCE half-life of 50 days and a reduction of the average concentration of PCE of more than 99% were found during the first...

  8. UV-Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water

    International Nuclear Information System (INIS)

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-01-01

    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety of oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 ± 0.6 × 10 –17 cm 2 molecule –1 was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.

  9. Leidenfrost Phenomenon-assisted Thermal Desorption (LPTD) and Its Application to Open Ion Sources at Atmospheric Pressure Mass Spectrometry

    Science.gov (United States)

    Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo

    2013-03-01

    This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution `Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10-9 M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.

  10. [Specific detection of urinary sympathomimetic amines for control of anti-doping by gas chromatography-mass spectroscopy].

    Science.gov (United States)

    Franceschini, A; Duthel, J M; Vallon, J J

    1991-03-22

    A specific, sensitive and reliable gas chromatography-mass spectrometry (GC-MS) technique for detection of sympathomimetic amines following urinary extraction is proposed. Amphetamine, phentermine, ephedrine, mephenorex, methylphenidate, benzphetamine, clobenzorex and internal standard (fenfluramine) are extracted from urines at pH 7.0 using elution by chloroform-isopropanol on C18 cartridges. Derivatization followed by GC-MS analysis allows identification of these drugs founded on relative retention times and mass spectra. The quantitation limit for derivatizable drugs was found to be 200 ng/ml and 500 ng/ml for underivatizable drugs.

  11. The black hole mass of NGC 4151. II. Stellar dynamical measurement from near-infrared integral field spectroscopy

    International Nuclear Information System (INIS)

    Onken, Christopher A.; Ferrarese, Laura; Valluri, Monica; Brown, Jonathan S.; McGregor, Peter J.; Peterson, Bradley M.; Pogge, Richard W.; Bentz, Misty C.; Vestergaard, Marianne; Storchi-Bergmann, Thaisa; Riffel, Rogemar A.

    2014-01-01

    We present a revised measurement of the mass of the central black hole (M BH ) in the Seyfert 1 galaxy NGC 4151. The new stellar dynamical mass measurement is derived by applying an axisymmetric orbit-superposition code to near-infrared integral field data obtained using adaptive optics with the Gemini Near-infrared Integral Field Spectrograph (NIFS). When our models attempt to fit both the NIFS kinematics and additional low spatial resolution kinematics, our results depend sensitively on how χ 2 is computed—probably a consequence of complex bar kinematics that manifest immediately outside the nuclear region. The most robust results are obtained when only the high spatial resolution kinematic constraints in the nuclear region are included in the fit. Our best estimates for the black hole mass and H-band mass-to-light ratio are M BH ∼ 3.76 ± 1.15 × 10 7 M ☉ (1σ error) and Y H ∼ 0.34 ± 0.03 M ☉ /L ☉ (3σ error), respectively (the quoted errors reflect the model uncertainties). Our black hole mass measurement is consistent with estimates from both reverberation mapping (3.57 −0.37 +0.45 ×10 7 M ⊙ ) and gas kinematics (3.0 −2.2 +0.75 ×10 7 M ⊙ ; 1σ errors), and our best-fit mass-to-light ratio is consistent with the photometric estimate of Y H = 0.4 ± 0.2 M ☉ /L ☉ . The NIFS kinematics give a central bulge velocity dispersion σ c = 116 ± 3 km s –1 , bringing this object slightly closer to the M BH -σ relation for quiescent galaxies. Although NGC 4151 is one of only a few Seyfert 1 galaxies in which it is possible to obtain a direct dynamical black hole mass measurement—and thus, an independent calibration of the reverberation mapping mass scale—the complex bar kinematics makes it less than ideally suited for this purpose.

  12. The black hole mass of NGC 4151. II. Stellar dynamical measurement from near-infrared integral field spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Onken, Christopher A.; Ferrarese, Laura [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Valluri, Monica; Brown, Jonathan S. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); McGregor, Peter J. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Peterson, Bradley M.; Pogge, Richard W. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Office 610, Atlanta, GA 30303 (United States); Vestergaard, Marianne [Dark Cosmology Centre, The Niels Bohr Institute, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Storchi-Bergmann, Thaisa [Universidade Federal do Rio Grande do Sul, Instituto de Física, CP 15051, Porto Alegre 91501-970, RS (Brazil); Riffel, Rogemar A., E-mail: christopher.onken@anu.edu.au, E-mail: mvalluri@umich.edu [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)

    2014-08-10

    We present a revised measurement of the mass of the central black hole (M{sub BH} ) in the Seyfert 1 galaxy NGC 4151. The new stellar dynamical mass measurement is derived by applying an axisymmetric orbit-superposition code to near-infrared integral field data obtained using adaptive optics with the Gemini Near-infrared Integral Field Spectrograph (NIFS). When our models attempt to fit both the NIFS kinematics and additional low spatial resolution kinematics, our results depend sensitively on how χ{sup 2} is computed—probably a consequence of complex bar kinematics that manifest immediately outside the nuclear region. The most robust results are obtained when only the high spatial resolution kinematic constraints in the nuclear region are included in the fit. Our best estimates for the black hole mass and H-band mass-to-light ratio are M{sub BH} ∼ 3.76 ± 1.15 × 10{sup 7} M{sub ☉} (1σ error) and Y{sub H} ∼ 0.34 ± 0.03 M{sub ☉}/L{sub ☉} (3σ error), respectively (the quoted errors reflect the model uncertainties). Our black hole mass measurement is consistent with estimates from both reverberation mapping (3.57{sub −0.37}{sup +0.45}×10{sup 7} M{sub ⊙}) and gas kinematics (3.0{sub −2.2}{sup +0.75}×10{sup 7} M{sub ⊙}; 1σ errors), and our best-fit mass-to-light ratio is consistent with the photometric estimate of Y{sub H} = 0.4 ± 0.2 M{sub ☉}/L{sub ☉}. The NIFS kinematics give a central bulge velocity dispersion σ{sub c} = 116 ± 3 km s{sup –1}, bringing this object slightly closer to the M{sub BH}-σ relation for quiescent galaxies. Although NGC 4151 is one of only a few Seyfert 1 galaxies in which it is possible to obtain a direct dynamical black hole mass measurement—and thus, an independent calibration of the reverberation mapping mass scale—the complex bar kinematics makes it less than ideally suited for this purpose.

  13. Radio Observations of Ultra-Luminous X-Ray Sources ---Microblazars or Intermediate-Mass Black Holes?---

    Science.gov (United States)

    Körding, E.; Colbert, E.; Falcke, H.

    In recent years Ultra-Luminous X-Ray sources (ULXs) received wide attention, however, their true nature is not yet understood. Many explanations have been suggested, including intermediate-mass black holes, super-Eddington accretion flows, anisotropic emission, and relativistic beaming of microquasars. We model the logN-logS distribution of ULXs assuming that each neutron star or black hole XRB can be described by an accretion disk plus jet model, where the jet is relativistically beamed. The distribution can be either fit by intermediate-mass black holes or by stellar mass black holes with mildly relativistic jets. Even though the jet is intrinsically weaker than the accretion disk, relativistic beaming can in the latter approach lead to the high fluxes observed. To further explore the possibility of microblazars contributing to the ULX phenomenon, we have embarked on a radio-monitoring study of ULXs in nearby galaxies with the VLA. However, up to now no radio flare has been detected. Using the radio/X-ray correlation the upp