WorldWideScience

Sample records for source incandescent fluorescent

  1. Materials for incandescent and fluorescent lamps

    DEFF Research Database (Denmark)

    Thorsen, Knud Aage

    1996-01-01

    The article gives an overview of the materials systems used for incandescent lamps as well as a brief introduction to the systems used for fluorescent lamps. The materials used for incandescent lamps are doped tungsten used for the filaments, metals and alloys used for terminal and support posts......, lead wires and internal reflectors and screens as well as glasses for the envelope. The physics of bulbs and changes in bulbs during use are elucidated. The cost and energy savings and environmental benefits by replacement of incandescent lamps by fluorescent lamps are presented....

  2. Abundance and Night Hourly Dispersal of the Vesicating Beetles of the Genus Paederus (Coleoptera: Staphylinidae) Attracted to Fluorescent, Incandescent, and Black Light Sources in the Brazilian Savanna.

    Science.gov (United States)

    Lima, D C B; Costa, A A V; Silva, F S

    2015-01-01

    Paederus beetles are cosmopolitan medically important insects that cause dermatitis linearis to humans. In Brazil, despite the medical importance of these beetles, no studies focusing directly on the abundance and ecological features of harmful species exist. Therefore, this study aims at determining the abundance and the nocturnal hourly dispersal of Paederus species attracted to fluorescent, incandescent, and black light sources in the Brazilian savanna. Paederus species were captured from May to September for three consecutive years, between 2011 and 2013. The specimens were caught hourly, from 1800 to 0600 hours. Paederus beetles were attracted to incandescent, fluorescent, and black light lamps as light sources. A total of 959 individuals of five species were collected. The collected species were Paederus protensus Sharp (59.85%), Paederus columbinus Laporte de Castelnau (29.20%), Paederus mutans Sharp (7.09%), Paederus brasiliensis Erichson (3.34%), and Paederus ferus Erichson (0.52%). The black light was the most attractive source, and the darkest collecting point was the most representative for the number of individuals. The lowest catches were captured at full moon, and the highest catches were between 2200 and 0100 hours. Future investigations are needed to better understand the role of night temperature and soil humidity affecting the seasonal growth of Paederus beetle populations of northeastern Brazil. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Impact of various lighting source (incandescent, fluorescent, metal halide and high pressure sodium) on the production performance of chicken broilers

    International Nuclear Information System (INIS)

    Guffar, A.; Rahman, K.U.; Siddique, M.; Ahmad, F.

    2009-01-01

    Light is an important aspect of an animal's environment. Avian as well as mammalian species respond to light energy in a variety of ways. Recent research has indicated that light source may affect body weight, immune response, livability and health status. Broiler behavior is strongly affected by light sources. So the present project was designed to study the effect of light sources on the production performance of broilers. For this purpose, 500 day-old broilers purchased from the local market were reared for three days (adaptation period) in one group. Then these were randomly divided into five experimental groups each comprising of 100 birds. Group A was given 25 incandescent light (INC), Group B was given fluorescent light (FC), Group C was given metal halide light (MH), Group D was given high pressure sodium light (HPS) and Group E was given no light source (control). Performance trial in terms of measurement of weekly body weight, weekly feed consumption, feed conversion ratio (FCR), daily water consumption and mortality were checked. Among various lighting sources, MH proved the best light source regarding main parameters of production performance. (author)

  4. Study on residential appliances energy efficiency standards Refrigerators, air-conditioners, incandescent lamps, fluorescent lamps, color TVs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.G.; Cho, S.K.; Choi, S.H.; Jung, B.M.; Han, S.B.; Kim, K.D. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The energy efficiency standards and rating act, as amended by the rational energy utilization act, provides energy efficiency standards and ratings for 6 types of consumer products(refrigerators, air-conditioners, fluorescent lamps, incandescent lamps, ballasts and cars) authorizes the Ministry of Trade, Industry and Energy(MOTIE) to prescribe amended or new energy efficiency standards and rating standards. This study was initiated by the KIER in 1992. KIER`s assessment of the standards is designed to evaluate their statistical and engineering analysis according to Korean(Industrial) Standards(KS). And to make distinction between the poor efficiency and good efficiency models, 5 grades are classified depending on their tested energy efficiency. This year, based on our analysis, MOTIE mandated updated standards for refrigerators, air-conditioners, incandescent lamps, and fluorescent lamps. Also the objective of this study is to set the energy efficiency standards and to grade for color TV sets. (author). 37 refs., 89 figs., 85 tabs.

  5. Effects of read-out light sources and ambient light on radiochromic film

    International Nuclear Information System (INIS)

    Butson, Martin J.; Yu, Peter K.N.; Metcalfe, Peter E.

    1998-01-01

    Both read-out light sources and ambient light sources can produce a marked effect on coloration of radiochromic film. Fluorescent, helium neon laser, light emitting diode (LED) and incandescent read-out light sources produce an equivalent dose coloration of 660 cGy h -1 , 4.3 cGy h -1 , 1.7 cGy h -1 and 2.6 cGy h -1 respectively. Direct sunlight, fluorescent light and incandescent ambient light produce an equivalent dose coloration of 30 cGy h -1 , 18 cGy h -1 and 0 cGy h -1 respectively. Continuously on, fluorescent light sources should not be used for film optical density evaluation and minimal exposure to any light source will increase the accuracy of results. (author)

  6. Light Sources and Lighting Circuits

    Science.gov (United States)

    Honda, Hisashi; Suwa, Takumi; Yasuda, Takeo; Ohtani, Yoshihiko; Maehara, Akiyoshi; Okada, Atsunori; Komatsu, Naoki; Mannami, Tomoaki

    According to the Machinery Statistics of the Ministry of Economy, Trade and Industry, the production of incandescent lamps in Japan in 2007 was 990 million units (90.0% of the previous year's total), in which the production of incandescent lamps for general lighting was 110 million units (90.0% of the previous year's total) and of tungsten-halogen lamps was 44 million units (96.6% of the previous year's total). The production of fluorescent lamps was 927 million units (93.9% of the previous year's total), in which general fluorescent lamps, excluding those for LCD back lighting, was 320 million units (87.2% of the previous year's total). Also, the production of HID lamps was 10 million units (101.5% of the previous year's total). On the other hand, when the numbers of sales are compared with the sales of the previous year, incandescent lamps for general use was 99.8%, tungsten-halogen lamps was 96.9%, fluorescent lamps was 95.9%, and HID lamps was 98.9%. Self-ballasted fluorescent lamps alone showed an increase in sales as strong as 29 million units, or 121.7% of the previous year's sales. It is considered that the switchover of incandescent lamps to HID lamps was promoted for energy conservation and carbon dioxide reduction with the problem of global warming in the background. In regard to exhibitions, Lighting Fair 2007 was held in Tokyo in March, and LIGHTFAIR INTERNATIONAL 2007 was held in New York in May. Regarding academic conferences, LS:11 (the 11th International Symposium on the Science & Technology of Light Sources) was held in Shanghai in May, and the First International Conference on White LEDs and Solid State Lighting was held in Tokyo in November. Both conferences suggested that there are strong needs and concerns now about energy conservation, saving natural resources, and restrictions of hazardous materials. In regard to incandescent lamps, the development of products aiming at higher efficacy, electric power savings, and longer life was advanced by

  7. Radiation doses from radioactivity in incandescent mantles

    International Nuclear Information System (INIS)

    1985-01-01

    Thorium nitrate is used in the production of incandescent mantles for gas lanterns. In this report dose estimates are given for internal and external exposure that result from the use of the incandescent mantles for gas lanterns. The collective, effective dose equivalent for all users of gas mantles is estimated to be about 100 Sv per annum in the Netherlands. For the population involved (ca. 700,000 persons) this is roughly equivalent to 5% to 10% of the collective dose equivalent associated with exposure to radiation from natural sources. The major contribution to dose estimates comes from inhalation of radium during burning of the mantles. A pessimistic approach results in individual dose estimates for inhalation of up to 0.2 mSv. Consideration of dose consequences in case of a fire in a storage department learns that it is necessary for emergency personnel to wear respirators. It is concluded that the uncontrolled removal of used gas mantles to the environment (soil) does not result in a significant contribution to environmental radiation exposure. (Auth.)

  8. 30 CFR 75.518-2 - Incandescent lamps, overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Incandescent lamps, overload and short circuit...-General § 75.518-2 Incandescent lamps, overload and short circuit protection. Incandescent lamps installed... or direct current feeder circuits, need not be provided with separate short circuit or overload...

  9. Laser-induced incandescence of titania nanoparticles synthesized in a flame

    Science.gov (United States)

    Cignoli, F.; Bellomunno, C.; Maffi, S.; Zizak, G.

    2009-09-01

    Laser induced incandescence experiments were carried out in a flame reactor during titania nanoparticle synthesis. The structure of the reactor employed allowed for a rather smooth particle growth along the flame axis, with limited mixing of different size particles. Particle incandescence was excited by the 4th harmonic of a Nd:YAG laser. The radiation emitted from the particles was recorded in time and checked by spectral analysis. Results were compared with measurements from transmission electron microscopy of samples taken at the same locations probed by incandescence. This was done covering a portion of the flame length within which a particle size growth of a factor of about four was detected . The incandescence decay time was found to increase monotonically with particle size. The attainment of a process control tool in nanoparticle flame synthesis appears to be realistic.

  10. Inventing around Edison’s Incandescent Lamp Patent

    DEFF Research Database (Denmark)

    Howells, John; Katznelson, Ron D.

    ’s ‘898 patent. Third, by analysis of forward citation to these patents we show that regardless of these inventions’ commercial viability in the incandescent lamp market, some became important prior art for new technological fields and some laid the groundwork for the later successful substitute...... for Edison’s carbon filament. Fourthly, we show that the recent view that Edison’s patent gave the patent holder General Electric (GE) a dominant position in the incandescent lamp market is incorrect: we show that besides commercially-successful invention around the claims of this patent, data for GE...

  11. Inventing around Edison’s incandescent lamp patent

    DEFF Research Database (Denmark)

    Howells, John; Ron D, Katznelson

    ’s ‘898 patent. Third, by analysis of forward citation to these patents we show that regardless of these inventions’ commercial viability in the incandescent lamp market, some became important prior art for new technological fields and some laid the groundwork for the later successful substitute...... for Edison’s carbon filament. Fourthly, we show that the recent view that Edison’s patent gave the patent holder General Electric (GE) a dominant position in the incandescent lamp market is incorrect: we show that besides commercially-successful invention around the claims of this patent, data for GE...

  12. The health risks associated with energy efficient fluorescent, LEDs, and artificial lighting

    Science.gov (United States)

    Panahi, Allen

    2014-09-01

    With the phasing out of incandescent lamps in many countries, the introduction of new LED based light sources and luminaries sometimes raise the question of whether the spectral characteristics of the LED and other energy savings Fluorescent lights including the popular CFLs are suitable to replace the traditional incandescent lamps. These concerns are sometimes raised particularly for radiation emissions in the UV and Blue parts of the spectrum. This paper aims to address such concerns for the common `white light' sources typically used in household and other general lighting used in the work place. Recent studies have shown that women working the night shift have an increased probability of developing breast cancer. We like to report on the findings of many studies done by medical professionals, in particular the recent announcement of AMA in the US and many studies conducted in the UK, as well as the European community to increase public awareness on the long term health risks of the optical and opto-biological effects on the human health caused by artificial lighting.

  13. Behavior of Layers under Different Light Sources

    Directory of Open Access Journals (Sweden)

    BO Tavares

    2015-12-01

    Full Text Available ABSTRACT Light is an important factor in the management of laying poultry. The ideal lamp spectrum that provides the best welfare conditions still needs to be determined. Wavelength and light intensity influence poultry behavior and their welfare. This study evaluated the influence of four lamps types with different light spectra on the behavior of seventy 52-week laying hens. Incandescent, fluorescent, and sodium and mercury vapor lamps were set in a different poultry house each and supplied similar light intensities. Layer behavior was video-recorded three times weekly using video cameras installed on the ceiling. The effects of different wavelengths emitted by the light sources on layer behavior were evaluated by the Kruskal-Wallis median test. Results indicated that incandescent and sodium vapor lamps increased the occurrence of nesting, and of active behaviors, such as floor-scratching and pecking.

  14. TELEGRAPHS TO INCANDESCENT LAMPS: A SEQUENTIAL PROCESS OF INNOVATION

    Directory of Open Access Journals (Sweden)

    Laurence J. Malone

    2000-01-01

    Full Text Available This paper outlines a sequential process of technological innovation in the emergence of the electrical industry in the United States from 1830 to 1880. Successive inventions that realize the commercial possibilities of electricity provided the foundation for an industry where technical knowledge, invention and diffusion were ultimately consolidated within the managerial structure of new firms. The genesis of the industry is traced, sequentially, through the development of the telegraph, arc light and incandescent lamp. Exploring the origins of the telegraph and incandescent lamp reveals a process where a series of inventions and firms result from successful efforts touse scientific principles to create new commodities and markets.

  15. Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence

    CERN Document Server

    Zelensky, S

    2003-01-01

    The interaction of pulsed YAG-Nd sup 3 sup + laser radiation with submicron light-absorbing particles suspended in an aqueous solution of Rhodamine 6G is investigated experimentally. The experiments demonstrate that the laser-induced incandescence of suspended particles excites the luminescence of the dissolved dye molecules. The mechanism of the luminescence excitation consists in the reabsorption of the thermal radiation within the volume of the sample cell. On the ground of this mechanism of excitation, a method of measurement of the luminescence quantum yield is proposed and realized. The method requires the knowledge of the geometrical parameters of the cell and does not require the use of reference samples.

  16. Laser-induced incandescence: Towards quantitative soot volume fraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tzannis, A P; Wienbeucker, F; Beaud, P; Frey, H -M; Gerber, T; Mischler, B; Radi, P P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Laser-Induced Incandescence has recently emerged as a versatile tool for measuring soot volume fraction in a wide range of combustion systems. In this work we investigate the essential features of the method. LII is based on the acquisition of the incandescence of soot when heated through a high power laser pulse. Initial experiments have been performed on a model laboratory flame. The behaviour of the LII signal is studied experimentally. By applying numerical calculations we investigate the possibility to obtain two-dimensional soot volume fraction distributions. For this purpose a combination of LII with other techniques is required. This part is discussed in some extent and the future work is outlined. (author) 4 figs., 3 refs.

  17. Research on effect of China’s energy saving policy of phase-out incandescent lamps

    Science.gov (United States)

    Ding, Qing; Zhao, Yuejin; Liang, Xiuying; Lin, Ling

    2017-11-01

    China’s energy saving policy of phase-out of incandescent lamps have been introduced and a comprehensive evaluation framework has been put forward. The impact of the implementation of the policy on manufacturing enterprises and places of sale, lighting industry and domestic and foreign markets, as well as the effect of energy conservation and emission reduction have been analyzed from micro, meso and macro layers. The research results show that, under the guidance of the policy, the orderly product mix transformation has been seen in incandescent lamp manufacturing enterprises, incandescent lamps gradually exit the Chinese mainstream lighting product market, and the energy conservation and emission reduction effect is remarkable.

  18. Laser-induced incandescence applied to dusty plasmas

    NARCIS (Netherlands)

    van de Wetering, F.M.J.H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Kovacevic, E.; Berndt, J.

    2016-01-01

    This paper reports on the laser heating of nanoparticles (diameters ≤1 μm) confined in a reactive plasma by short (150 ps) and intense (~63 mJ) UV (355 nm) laser pulses (laser-induced incandescence, LII). Important parameters such as the particle temperature and radius follow from analysis of the

  19. Radio-isotope powered light source

    International Nuclear Information System (INIS)

    Spottiswoode, N.L.; Ryden, D.J.

    1979-01-01

    The light source described comprises a radioisotope fuel source, thermal insulation against heat loss, a biological shield against the escape of ionizing radiation and a material having a surface which attains incandescence when subject to isotope decay heat. There is then a means for transferring this heat to produce incandescence of the surface and thus emit light. A filter associated with the surface permits a relatively high transmission of visible radiation but has a relatively high reflectance in the infra red spectrum. Such light sources require the minimum of attention and servicing and are therefore suitable for use in navigational aids such as lighthouses and lighted buoys. The isotope fuel sources and thus the insulation and shielding and the incandescent material can be chosen for the use required and several sources, materials, means of housing etc. are detailed. Operation and efficiency are discussed. (U.K.)

  20. An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy

    International Nuclear Information System (INIS)

    Dunsby, C; Lanigan, P M P; McGinty, J; Elson, D S; Requejo-Isidro, J; Munro, I; Galletly, N; McCann, F; Treanor, B; Oenfelt, B; Davis, D M; Neil, M A A; French, P M W

    2004-01-01

    Fluorescence imaging is used widely in microscopy and macroscopic imaging applications for fields ranging from biomedicine to materials science. A critical component for any fluorescence imaging system is the excitation source. Traditionally, wide-field systems use filtered thermal or arc-generated white light sources, while point scanning confocal microscope systems require spatially coherent (point-like) laser sources. Unfortunately, the limited range of visible wavelengths available from conventional laser sources constrains the design and usefulness of fluorescent probes in confocal microscopy. A 'hands-off' laser-like source, electronically tunable across the visible spectrum, would be invaluable for fluorescence imaging and provide new opportunities, e.g. automated excitation fingerprinting and in situ measurement of excitation cross-sections. Yet more information can be obtained using fluorescence lifetime imaging (FLIM), which requires that the light source be pulsed or rapidly modulated. We show how a white light continuum, generated by injecting femtosecond optical radiation into a micro-structured optical fibre, coupled with a simple prism-based tunable filter arrangement, can fulfil all these roles as a continuously electronically tunable (435-1150 nm) visible ultrafast light source in confocal, wide-field and FLIM systems

  1. Immobilization of trypsin on miniature incandescent bulbs for infrared-assisted proteolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Huimin; Bao, Huimin; Zhang, Luyan; Chen, Gang, E-mail: gangchen@fudan.edu.cn

    2014-10-03

    Highlights: • Trypsin was immobilized on miniature incandescent bulbs via chitosan coating. • The bulbs acted as enzymatic reactors and the generators of infrared radiation. • The bulb bioreactors were successfully employed in infrared-assisted proteolysis. • The proteolysis could accomplish within 5 min with high sequence coverages. - Abstract: A novel efficient proteolysis approach was developed based on trypsin-immobilized miniature incandescent bulbs and infrared (IR) radiation. Trypsin was covalently immobilized in the chitosan coating on the outer surface of miniature incandescent bulbs with the aid of glutaraldehyde. When an illuminated enzyme-immobilized bulb was immersed in protein solution, the emitted IR radiation could trigger and accelerate heterogeneous protein digestion. The feasibility and performance of the novel proteolysis approach were demonstrated by the digestion of hemoglobin (HEM), cytochrome c (Cyt-c), lysozyme (LYS), and ovalbumin (OVA) and the digestion time was significantly reduced to 5 min. The obtained digests were identified by MALDI-TOF-MS with the sequence coverages of 91%, 77%, 80%, and 52% for HEM, Cyt-c, LYS, and OVA (200 ng μL{sup −1} each), respectively. The suitability of the prepared bulb bioreactors to complex proteins was demonstrated by digesting human serum.

  2. Phase out of incandescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Since early 2007 almost all OECD and many non-OECD governments have announced policies aimed at phasing-out incandescent lighting within their jurisdictions. This study considers the implications of these policy developments in terms of demand for regulatory compliant lamps and the capacity and motivation of the lamp industry to produce efficient lighting products in sufficient volume to meet future demand. To assess these issues, it reviews the historic international screw-based lamp market, describes the status of international phase-out policies and presents projections of anticipated market responses to regulatory requirements to determine future demand for CFLs.

  3. Technological evolution of the fluorescent lamps for the domestic sector; Evolucion tecnologica de lamparas fluorescentes para el sector domestico

    Energy Technology Data Exchange (ETDEWEB)

    Valera Negrete, A. [Programa de Ahorro de Energia para el Sector Electrico, Mexico, D. F. (Mexico)

    1995-12-31

    This paper shows the efficiency, the harmonic distortion and the power factor of compact and circular fluorescent lamps that replace the incandescent bulbs of 60, 75 and 100 Watts in the domestic sector offered by manufacturers to increase the efficient use of the electric energy in networks of the national electric system. Also are presented, the quality parameters such as color temperature, performance index, useful life and maintenance of the lighting source; the aesthetics as length and weight and additionally the safety measures (thermal protector) that make competitive and functional the use of fluorescent lamps in relation to the installation of incandescent bulbs. [Espanol] En este trabajo se muestran las eficacias, distorsion de armonica y factor de potencia de lamparas fluorescentes compactas y circulares, que sustituyen a focos incandescentes de 60, 75 y 100 W en el sector domestico, ofrecidas por los fabricantes para aumentar el uso eficiente de la energia electrica en las redes del sistema electrico nacional. Ademas, se presentan los parametros de calidad, como temperatura de color, indice de rendimiento de color, vida y mantenimiento de la fuente luminosa; de estetica como longitud y peso; y adicionalmente la medida de seguridad (protector termico); que hace competitivo y funcional el uso de lamparas fluorescentes respecto a la instalacion de focos incandescentes.

  4. Technological evolution of the fluorescent lamps for the domestic sector; Evolucion tecnologica de lamparas fluorescentes para el sector domestico

    Energy Technology Data Exchange (ETDEWEB)

    Valera Negrete, A [Programa de Ahorro de Energia para el Sector Electrico, Mexico, D. F. (Mexico)

    1996-12-31

    This paper shows the efficiency, the harmonic distortion and the power factor of compact and circular fluorescent lamps that replace the incandescent bulbs of 60, 75 and 100 Watts in the domestic sector offered by manufacturers to increase the efficient use of the electric energy in networks of the national electric system. Also are presented, the quality parameters such as color temperature, performance index, useful life and maintenance of the lighting source; the aesthetics as length and weight and additionally the safety measures (thermal protector) that make competitive and functional the use of fluorescent lamps in relation to the installation of incandescent bulbs. [Espanol] En este trabajo se muestran las eficacias, distorsion de armonica y factor de potencia de lamparas fluorescentes compactas y circulares, que sustituyen a focos incandescentes de 60, 75 y 100 W en el sector domestico, ofrecidas por los fabricantes para aumentar el uso eficiente de la energia electrica en las redes del sistema electrico nacional. Ademas, se presentan los parametros de calidad, como temperatura de color, indice de rendimiento de color, vida y mantenimiento de la fuente luminosa; de estetica como longitud y peso; y adicionalmente la medida de seguridad (protector termico); que hace competitivo y funcional el uso de lamparas fluorescentes respecto a la instalacion de focos incandescentes.

  5. Characterization and impact of incandescent particles in the ventilation networks during dismantling operations

    International Nuclear Information System (INIS)

    Marchal, Pierre

    2014-01-01

    Fire hazards while metal cutting on dismantling operations led IRSN to focus a study on incandescent particles emitted by these cutting tools and their impact on air filter. If micronic particles (≤ 10 μm) have been studied for their negative impact on human health, few studies are dealing with incandescent particles, despite their strong thermal energy. These particles are mainly made of iron, coming from the metal cutting, and the exothermic oxidation reaction coupled to a high temperature emission causes them to molt. An experimental system was designed, representative of dismantling operations with instrumentations adapted for in-flight particles measurement, such as size, velocity and temperature. The particles are characterized from the emission source (automated cut-off grinder) and all along their path into the ventilation duct to their impact on a filter. An analytical approach of the impact of these particles on the filter shows that the temperature of the particles, greater than 430 C damages the filter medium, and may reduce the filter thickness or perforate it, which leads to a decrease of its filtration efficiency determined according to the French standard. Comparison between the characteristics of the particles and the filtration efficiency has permitted to establish empirical correlations in order to predict the loss of filtration efficiency versus the cutting parameters and some good practices have been proposed to protect the filter. (author)

  6. Ultraviolet light and heat source selection in captive spiny-tailed iguanas (Oplurus cuvieri)

    International Nuclear Information System (INIS)

    Dickinson, H.C.; Fa, J.E.

    1997-01-01

    Three experimental manipulations were conducted to assess the influence of heat source selection and active thermoregulation on ultraviolet (UV) light exposure in captive spiny-tailed iguanas (Oplurus cuvieri) at the Jersey Wildlife Preservation Trust. Four replicates per manipulation were conducted on six individual lizards. All animals were tested in a separate enclosure to which they were acclimated before observations. Data on choice of thermal sources were collected during the first 2 hr of light, when lizards were actively thermoregulating. Animals were allowed to choose between incandescent light, UV light and a non-light heat source (thermotube) in different combinations. Recorded temperatures close to the incandescent light (37°C) were always significantly higher than at the thermotube (33°C) and at the UV light (29°C). Manipulation 1 offered the animals a choice of an UV light and an incandescent light as thermal sources. Manipulation 2 presented animals with the thermal choices in Manipulation 1, but substrates under each source in Manipulation 1 were switched. In Manipulation 3, animals could choose between an incandescent light and the thermotube. All studied lizards were significantly more attracted to the incandescent light than to the UV light or thermotube. Incandescent light elicited a significantly higher proportion of basking behaviors in all individuals than the other sources. A high proportion of time basking was also spent in front of the thermotube but fewer individuals and less time were spent basking under the UV light. Heat source selection was generally found to be independent of substrate. Management applications of this preference are suggested for juvenile diurnal heliothermic iguanids. (author)

  7. 40 CFR 426.125 - Standards of performance for new sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp Envelope... manufacturing plant which produces incandescent lamp envelopes shall meet the following limitations with regard to the forming operations. Effluent characteristic Effluent limitations Maximum for any 1 day Average...

  8. Open source tools for fluorescent imaging.

    Science.gov (United States)

    Hamilton, Nicholas A

    2012-01-01

    As microscopy becomes increasingly automated and imaging expands in the spatial and time dimensions, quantitative analysis tools for fluorescent imaging are becoming critical to remove both bottlenecks in throughput as well as fully extract and exploit the information contained in the imaging. In recent years there has been a flurry of activity in the development of bio-image analysis tools and methods with the result that there are now many high-quality, well-documented, and well-supported open source bio-image analysis projects with large user bases that cover essentially every aspect from image capture to publication. These open source solutions are now providing a viable alternative to commercial solutions. More importantly, they are forming an interoperable and interconnected network of tools that allow data and analysis methods to be shared between many of the major projects. Just as researchers build on, transmit, and verify knowledge through publication, open source analysis methods and software are creating a foundation that can be built upon, transmitted, and verified. Here we describe many of the major projects, their capabilities, and features. We also give an overview of the current state of open source software for fluorescent microscopy analysis and the many reasons to use and develop open source methods. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Design of Programmable LED Controller with a Variable Current Source for 3D Image Display

    Directory of Open Access Journals (Sweden)

    Kyung-Ryang Lee

    2014-12-01

    Full Text Available Conventional fluorescent light sources, as well as incandescent light sources are gradually being replaced by Light Emitting Diodes (LEDs for reducing power consumption in the image display area for multimedia application. An LED light source requires a controller with a low-power operation. In this paper, a low-power technique using adiabatic operation is applied for the implementation of LED controller with a stable constant-current, a low-power and low-heat function. From the simulation result, the power consumption of the proposed LED controller using adiabatic operation was reduced to about 87% in comparison with conventional operation with a constant VDD. The proposed circuit is expected to be an alternative LED controller which is sensitive to external conditions such as heat.

  10. The incandescent lamps in Mexico; are they really a beneficial technology?; Las lamparas incandescentes en Mexico: son realmente una tecnologia benefica?

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Rivero, A. G. [Genertek, S.A. de C.V., Mexico, D. F. (Mexico)

    1995-12-31

    The versatility of the incandescent lamps has originated a sustained increment of its population all over the world. Because of its characteristics they continue being irreplaceable in numberless applications, that go from the movies up to the medicine. Nevertheless the greatest population are represented by the incandescent lamps A-19 with the well-known negative effects to the environment and the economy caused by the electric power generation by conventional methods. No doubt about it, the best option to substitute them are the compact fluorescent lamps (CFL), but the economical barriers, the market and the performance do not permit its massive application in Mexico. In this paper a proposal is set forth that might bring high benefits with a minimum investment and rapid implementation. [Espanol] La versatilidad de las lamparas incandescentes ha causado un incremento sostenido de su poblacion en todo el mundo. Dadas sus caracteristicas continua siendo insustituible en un sinnumero de aplicaciones, que van desde el cine hasta la medicina. Sin embargo, la mayor poblacion la representan las ineficientes lamparas incandescentes A19 con los consabidos efectos negativos en el medio ambiente y la economia, causados por la generacion de energia electrica por medios convencionales. Sin duda, la mejor opcion para sustituirlas son las lamparas compacto fluorescentes (LCF), pero las barreras economicas, de mercado y de desempeno no permiten su aplicacion masiva en Mexico. En este trabajo se hace una propuesta que puede permitir grandes beneficios con minima inversion y rapida implementacion.

  11. The incandescent lamps in Mexico; are they really a beneficial technology?; Las lamparas incandescentes en Mexico: son realmente una tecnologia benefica?

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Rivero, A G [Genertek, S.A. de C.V., Mexico, D. F. (Mexico)

    1996-12-31

    The versatility of the incandescent lamps has originated a sustained increment of its population all over the world. Because of its characteristics they continue being irreplaceable in numberless applications, that go from the movies up to the medicine. Nevertheless the greatest population are represented by the incandescent lamps A-19 with the well-known negative effects to the environment and the economy caused by the electric power generation by conventional methods. No doubt about it, the best option to substitute them are the compact fluorescent lamps (CFL), but the economical barriers, the market and the performance do not permit its massive application in Mexico. In this paper a proposal is set forth that might bring high benefits with a minimum investment and rapid implementation. [Espanol] La versatilidad de las lamparas incandescentes ha causado un incremento sostenido de su poblacion en todo el mundo. Dadas sus caracteristicas continua siendo insustituible en un sinnumero de aplicaciones, que van desde el cine hasta la medicina. Sin embargo, la mayor poblacion la representan las ineficientes lamparas incandescentes A19 con los consabidos efectos negativos en el medio ambiente y la economia, causados por la generacion de energia electrica por medios convencionales. Sin duda, la mejor opcion para sustituirlas son las lamparas compacto fluorescentes (LCF), pero las barreras economicas, de mercado y de desempeno no permiten su aplicacion masiva en Mexico. En este trabajo se hace una propuesta que puede permitir grandes beneficios con minima inversion y rapida implementacion.

  12. Smart lighting using LED luminaries

    NARCIS (Netherlands)

    Bhardwaj, S.; Ozcelebi, T.; Lukkien, J.J.

    2010-01-01

    The target of a smart lighting system is to control light sources in an environment (e.g. home, office) adaptively according to user contexts and preferences. Literature work in this area focuses on traditional light sources such as incandescent and fluorescent lights, whereas this paper takes a

  13. Kalman filter approach for uncertainty quantification in time-resolved laser-induced incandescence.

    Science.gov (United States)

    Hadwin, Paul J; Sipkens, Timothy A; Thomson, Kevin A; Liu, Fengshan; Daun, Kyle J

    2018-03-01

    Time-resolved laser-induced incandescence (TiRe-LII) data can be used to infer spatially and temporally resolved volume fractions and primary particle size distributions of soot-laden aerosols, but these estimates are corrupted by measurement noise as well as uncertainties in the spectroscopic and heat transfer submodels used to interpret the data. Estimates of the temperature, concentration, and size distribution of soot primary particles within a sample aerosol are typically made by nonlinear regression of modeled spectral incandescence decay, or effective temperature decay, to experimental data. In this work, we employ nonstationary Bayesian estimation techniques to infer aerosol properties from simulated and experimental LII signals, specifically the extended Kalman filter and Schmidt-Kalman filter. These techniques exploit the time-varying nature of both the measurements and the models, and they reveal how uncertainty in the estimates computed from TiRe-LII data evolves over time. Both techniques perform better when compared with standard deterministic estimates; however, we demonstrate that the Schmidt-Kalman filter produces more realistic uncertainty estimates.

  14. Influence of Type of Electric Bright Light on the Attraction of the African Giant Water Bug, Lethocerus indicus (Hemiptera: Belostomatidae

    Directory of Open Access Journals (Sweden)

    Luke Chinaru Nwosu

    2012-01-01

    Full Text Available This study investigated the influence of type of electric bright light (produced by fluorescent light tube and incandescent light bulb on the attraction of the African giant water bug, Lethocerus indicus (Hemiptera: Belostomatidae. Four fluorescent light tubes of 15 watts each, producing white-coloured light and four incandescent light bulbs of 60 watts each, producing yellow-coloured light, but both producing the same amount of light, were varied and used for the experiments. Collections of bugs at experimental house were done at night between the hours of 8.30 pm and 12 mid-night on daily basis for a period of four months per experiment in the years 2008 and 2009. Lethocerus indicus whose presence in any environment has certain implications was the predominant belostomatid bug in the area. Use of incandescent light bulbs in 2009 significantly attracted more Lethocerus indicus 103 (74.6% than use of fluorescent light tubes 35 (25.41% in 2008 [4.92=0.0001]. However, bug’s attraction to light source was not found sex dependent [>0.05; (>0.18=0.4286 and >0.28=0.3897]. Therefore, this study recommends the use of fluorescent light by households, campgrounds, and other recreational centres that are potentially exposed to the nuisance of the giant water bugs. Otherwise, incandescent light bulbs should be used when it is desired to attract the presence of these aquatic bugs either for food or scientific studies.

  15. Adoption of Light-Emitting Diodes in Common Lighting Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Mary [Navigant Consulting, Suwanee, GA (United States); Chwastyk, Dan [Navigant Consulting, Suwanee, GA (United States)

    2013-05-01

    Report estimating LED energy savings in nine applications where LEDs compete with traditional lighting sources such as incandescent, halogen, high-pressure sodium, and certain types of fluorescent. The analysis includes indoor lamp, indoor luminaire, and outdoor luminaire applications.

  16. Adoption of Light-Emitting Diodes in Common Lighting Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Mary [Navigant, Chicago, IL (United States); Stober, Kelsey [Navigant, Chicago, IL (United States)

    2015-07-01

    Report estimating LED energy savings between 2012 and 2014 in 10 applications where LEDs competed with traditional lighting sources such as incandescent, halogen, high-pressure sodium, and fluorescent. The analysis includes indoor lamp, indoor luminaire, and outdoor luminaire applications.

  17. Laser-induced incandescence (LII) diagnostic for in situ monitoring of nanoparticle synthesis in a high-pressure arc discharge

    Science.gov (United States)

    Yatom, Shurik; Vekselman, Vladislav; Mitrani, James; Stratton, Brentley; Raitses, Yevgeny; LaboratoryPlasma Nanosynthesis Team

    2016-10-01

    A DC arc discharge is commonly used for synthesis of carbon nanoparticles, including buckyballs, carbon nanotubes, and graphene flakes. In this work we show the first results of nanoparticles monitored during the arc discharge. The graphite electrode is vaporized by high current (60 A) in a buffer Helium gas leading to nanoparticle synthesis in a low temperature plasma. The arc was shown to oscillate, which can possibly influence the nano-synthesis. To visualize the nanoparticles in-situ we employ the LII technique. The nanoparticles with radii >50 nm, emerging from the arc area are heated with a short laser pulse and incandesce. The resulting radiation is captured with an ICCD camera, showing the location of the generated nanoparticles. The images of incandescence are studied together with temporally synchronized fast-framing imaging of C2 emission, to connect the dynamics of arc instabilities, C2 molecules concentration and nanoparticles. The time-resolved incandescence signal is analyzed with combination of ex-situ measurements of the synthesized nanoparticles and LII modeling, to provide the size distribution of produced nanoparticles. This work was supported by US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  18. Comprehensive Laser-induced Incandescence (LII) modeling for soot particle sizing

    KAUST Repository

    Lisanti, Joel

    2015-03-30

    To evaluate the current state of the art in LII particle sizing, a comprehensive model for predicting the temporal incandescent response of combustion-generated soot to absorption of a pulsed laser is presented. The model incorporates particle heating through laser absorption, thermal annealing, and oxidation at the surface as well as cooling through sublimation and photodesorption, radiation, conduction and thermionic emission. Thermodynamic properties and the thermal accommodation coefficient utilized in the model are temperature dependent. In addition, where appropriate properties are also phase dependent, thereby accounting for annealing effects during laser heating and particle cooling.

  19. Modeling of charge-transport processes for predictive simulation of OLEDs

    NARCIS (Netherlands)

    Cottaar, J.

    2012-01-01

    Intensive research is taking place into alternative light sources to replace incandescent and fluorescent lamps. Organic light-emitting diodes (OLEDs) show great promise, with their main potential advantages being high energy efficiency, cheap roll-to-roll production, excellent color rendering and a

  20. Optical radiation emissions from compact fluorescent lamps

    International Nuclear Information System (INIS)

    Khazova, M.; O'Hagan, J.B.

    2008-01-01

    There is a drive to energy efficiency to mitigate climate change. To meet this challenge, the UK Government has proposed phasing out incandescent lamps by the end of 2011 and replacing them with energy efficient fluorescent lighting, including compact fluorescent lamps (CFLs) with integrated ballasts. This paper presents a summary of an assessment conducted by the Health Protection Agency in March 2008 to evaluate the optical radiation emissions of CFLs currently available in the UK consumer market. The study concluded that the UV emissions from a significant percentage of the tested CFLs with single envelopes may result in foreseeable overexposure of the skin when these lamps are used in desk or task lighting applications. The optical output of all tested CFLs, in addition to high-frequency modulation, had a 100-Hz envelope with modulation in excess of 15%. This degree of modulation may be linked to a number of adverse effects. (authors)

  1. Ignition of a Combustible Atmosphere by Incandescent Carbon Wear Particles

    Science.gov (United States)

    Buckley, Donald H.; Swikert, Max A.; Johnson, Robert L.

    1960-01-01

    A study was made to determine whether carbon wear particles from carbon elements in sliding contact with a metal surface were sufficiently hot to cause ignition of a combustible atmosphere. In some machinery, electric potential differences and currents may appear at the carbon-metal interface. For this reason the effect of these voltages and currents on the ability of carbon wear particles to cause ignition was evaluated. The test specimens used in the investigation were carbon vanes taken from a fuel pump and flat 21-inch-diameter 2 metal disks (440-C stainless steel) representing the pump housing. During each experiment a vane was loaded against a disk with a 0.5-pound force, and the disk was rotated to give a surface speed of 3140 feet per minute. The chamber of the apparatus that housed the vane and the disk was filled with a combustible mixture of air and propane. Various voltages and amperages were applied across the vane-disk interface. Experiments were conducted at temperatures of 75, 350, 400, and 450 F. Fires were produced by incandescent carbon wear particles obtained at conditions of electric potential as low as 106 volts and 0.3 ampere at 400 F. Ignitions were obtained only with carbon wear particles produced with an electric potential across the carbon-vane-disk interface. No ignitions were obtained with carbon wear particles produced in the absence of this potential; also, the potential difference produced no ignitions in the absence of carbon wear particles. A film supplement showing ignition by incandescent wear particles is available.

  2. Spectral Design Flexibility of LED Brings Better life

    DEFF Research Database (Denmark)

    Ou, Haiyan; Corell, Dennis Dan; Ou, Yiyu

    2012-01-01

    Light-emitting diodes (LEDs) are penetrating into the huge market of general lighting because they are energy saving and environmentally friendly. The big advantage of LED light sources, compared to traditional incandescent lamps and fluorescent light tubes, is the flexible spectral design to make...

  3. Process of producing fuels from slates or bituminous shales. [distillation at incandescent heat

    Energy Technology Data Exchange (ETDEWEB)

    Huppenbauer, M

    1902-07-31

    A process of producing a fuel from slates or bituminous shales by saturating or impregnating them after preliminary distillation with the vapors of tars, resins, oils, etc., is given. The process is characterized by the bituminous shale being submitted in the form of fragments to distillation at incandescent heat to make the shale porous and able to absorb the vapors of the substances already mentioned.

  4. Disparity in Cutaneous Pigmentary Response to LED vs Halogen Incandescent Visible Light: Results from a Single Center, Investigational Clinical Trial Determining a Minimal Pigmentary Visible Light Dose.

    Science.gov (United States)

    Soleymani, Teo; Cohen, David E; Folan, Lorcan M; Okereke, Uchenna R; Elbuluk, Nada; Soter, Nicholas A

    2017-11-01

    Background: While most of the attention regarding skin pigmentation has focused on the effects of ultraviolet radiation, the cutaneous effects of visible light (400 to 700nm) are rarely reported. The purpose of this study was to investigate the cutaneous pigmentary response to pure visible light irradiation, examine the difference in response to different sources of visible light irradiation, and determine a minimal pigmentary dose of visible light irradiation in melanocompetent subjects with Fitzpatrick skin type III - VI. The study was designed as a single arm, non-blinded, split-side dual intervention study in which subjects underwent visible light irradiation using LED and halogen incandescent light sources delivered at a fluence of 0.14 Watts/cm2 with incremental dose progression from 20 J/cm2 to 320 J/cm2. Pigmentation was assessed by clinical examination, cross-polarized digital photography, and analytic colorimetry. Immediate, dose-responsive pigment darkening was seen with LED light exposure in 80% of subjects, beginning at 60 Joules. No pigmentary changes were seen with halogen incandescent light exposure at any dose in any subject. This study is the first to report a distinct difference in cutaneous pigmentary response to different sources of visible light, and the first to demonstrate cutaneous pigment darkening from visible LED light exposure. Our findings raise the concern that our increasing daily artificial light surroundings may have clandestine effects on skin biology. J Drugs Dermatol. 2017;16(11):1105-1110..

  5. Time-resolved laser-induced incandescence from multiwalled carbon nanotubes in air

    Energy Technology Data Exchange (ETDEWEB)

    Mitrani, J. M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA; Shneider, M. N. [Department of Mechanical Engineering, Princeton University, Princeton, New Jersey 08544, USA

    2015-01-26

    We observed temporal laser-induced incandescence (LII) signals from multiwalled carbon nanotubes(MWCNTs) suspended in ambient air. Unlike previous LII experiments with soot particles, which showed that primary particles with larger diameters cool at slower timescales relative to smaller particles, we observed that thicker MWCNTs with larger outer diameters (ODs) cool at faster timescales relative to thinner MWCNTs with smaller ODs. We suggested a simple explanation of this effect, based on the solution of one-dimensional nonstationary heat conduction equation for the initial non-uniform heating of MWCNTs with ODs greater than the skin depth.

  6. Photoluminescence topography of fluorescent SiC and its corresponding source crystals

    DEFF Research Database (Denmark)

    Wilhelm, M.; Kaiser, M.; Jokubavicus, V.

    2013-01-01

    The preparation and application of co-doped polycrystalline SiC as source in sublimation growth of fluorescent layers is a complex topic. Photoluminescence topographies of luminescent 6H-SiC layers and their corresponding source crystals have been studied in order to investigate the dependence...

  7. Optical arc sensor using energy harvesting power source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr [Dept. of Information and Telecommunication Engineering Incheon National University Incheon 22012 (Korea, Republic of)

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  8. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  9. Preliminary Results of Nuclear Fluorescence Imaging of Alpha and Beta Emitting Sources

    International Nuclear Information System (INIS)

    Feener, Jessica S.; Charlton, William S.

    2013-06-01

    The preliminary results from a series of nuclear fluorescence imaging experiments using a variety of radioactive sources and shielding are given. These experiments were done as part of a proof of concept to determine if nuclear fluorescence imaging could be used as a safeguards measurements tool or for nuclear warhead verification for nuclear arms control treaties such as the New Strategic Arms Reduction Treaty and the Fissile Material Cut-Off Treaty. An off-the-shelf Princeton Instruments charged coupled device camera system was used to image the emission of fluorescence photons from the de-excitation of nitrogen molecules in air that have been excited by ionizing radiation. The fluorescence emissions are primarily in the near ultraviolet range; between the wavelengths of 300 and 400 nm. Fluorescent imaging techniques are currently being investigated in a number of applications. A French research team has successfully demonstrated this concept for remote imaging of alpha contamination. It has also been shown that the phenomenon can be seen through translucent materials and that alpha radiation can be seen in the presence of large gamma backgrounds. Additionally, fluorescence telescopes and satellites utilize the de-excitation of nitrogen molecules to observe cosmic ray showers in the atmosphere. In cosmic ray shower detection, electrons are the main contributor to the excitation of the of nitrogen molecules in air. The experiments presented in this paper were designed to determine if the imaging system could observe beta emitting sources, differentiate between beta emitters and alpha emitting materials such as uranium oxide and uranium metal, and to further investigate the phenomenon through translucent and non-translucent materials. The initial results show that differentiation can be made between beta and alpha emitting sources and that the device can observe the phenomenon through very thin non-transparent material. Additionally, information is given on the

  10. 77 FR 76959 - Energy Conservation Program: Request for Exclusion of 100 Watt R20 Short Incandescent Reflector...

    Science.gov (United States)

    2012-12-31

    ... subject to energy conservation standards, the manufacturers removed the product from the market... Conservation Program: Request for Exclusion of 100 Watt R20 Short Incandescent Reflector Lamp From Energy Conservation Standards AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION...

  11. Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements

    Science.gov (United States)

    Hadwin, Paul J.; Sipkens, T. A.; Thomson, K. A.; Liu, F.; Daun, K. J.

    2016-01-01

    Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional "nuisance" model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.

  12. Electrical Connections: Letters to Thomas Edison in Response to His Claim of Solving Incandescent Lighting, 1878.

    Science.gov (United States)

    Bazerman, Charles

    1994-01-01

    Discusses the way in which letters sent to Thomas Edison following the report that he had solved the problem of incandescent lighting reveal the many discursive worlds that Edison's work touched. Claims these letters indicate how a technological accomplishment is also a multiple, complex social, and communicative accomplishment, creating place and…

  13. Development of a fluorescent x-ray source for medical imaging

    Science.gov (United States)

    Toyofuku, F.; Tokumori, K.; Nishimura, K.; Saito, T.; Takeda, T.; Itai, Y.; Hyodo, K.; Ando, M.; Endo, M.; Naito, H.; Uyama, C.

    1995-02-01

    A fluorescent x-ray source for medical imaging, such as K-edge subtraction angiography and monochromatic x-ray CT, has been developed. Using a 6.5 GeV accumulation ring in Tsukuba, fluorescent x rays, which range from about 30 to 70 keV are generated by irradiating several target materials. Measurements have been made of output intensities and energy spectra for different target angles and extraction angles. The intensities of fluorescent x rays at a 30 mA beam current are on the order of 1-3×106 photons/mm2/s at 30 cm from the local spot where the incident beam is collimated to 1 mm2. A phantom which contains three different contrast media (iodine, barium, gadolinium) was used for the K-edge energy subtraction, and element selective CT images were obtained.

  14. Radioisotope sources for X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Leonowich, J.; Pandian, S.; Preiss, I.L.

    1977-01-01

    Problems involved in developing radioisotope sources and the characteristics of potentially useful radioisotopes for X-ray fluorescence analysis are presented. These include the following. The isotope must be evaluated for the physical and chemical forms available, purity, half-life, specific activity, toxicity, and cost. The radiation hazards of the source must be considered. The type and amount of radiation output of the source must be evaluated. The source construction must be planned. The source should also present an advance over those currently available in order to justify its development. Some of the isotopes, which are not in use but look very promising, are indicated, and their data are tabulated. A more or less ''perfect'' source within a given range of interest would exhibit the following characteristics. (1) Decay by an isometric transition with little or no internal conversion, (2) Have an intense gamma transition near the absorption edge of the element(s) of interest with no high energy gammas, (3) Have a sufficiently long half-life (in the order of years) for both economic and calibration reasons, (4) Have a sufficiently large cross-section for production in a reasonable amount of time. If there are competing reactions the interfering isotopes should be reasonably short-lived, or if not, be apt to be separated from the isotope chemically with a minimum of difficulty. (T.G.)

  15. Soot particulate size characterisation in a heavy-duty diesel engine for different engine loads by laser-induced incandescence

    NARCIS (Netherlands)

    Bougie, B.; Ganippa, L.C.; Vliet, van A.P.; Meerts, W.L.; Dam, N.J.; Meulen, ter J.J.

    2007-01-01

    Time-resolved laser-induced incandescence was used to estimate primary particle size distributions inside the combustion chamber of a heavy-duty diesel engine as a function of the crank angle, for two different engine loads at two different probe locations. Assuming a log-normal particle size

  16. Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of light sources.

    Science.gov (United States)

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming

    2015-03-01

    This study is aimed at enhancing biomass and pigments production together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via different light sources. Red, yellow, blue, white LED and incandescent lamp were used. Results showed different light sources had great effects on the PSB. PSB had the highest biomass production, COD removal and biomass yield with red LED. The corresponding biomass, COD removal and biomass yield reached 2580 mg/L, 88.6% and 0.49 mg-biomass/mg-COD-removal, respectively. The hydraulic retention time of wastewater treatment could be shortened to 72 h with red LED. Mechanism analysis showed higher ATP was produced with red LED than others. Light sources could significantly affect the pigments production. The pigments productions were greatly higher with LED than incandescent lamp. Yellow LED had the highest pigments production while red LED produced the highest carotenoid/bacteriochlorophyll ratio. Considering both efficiency and energy cost, red LED was the optimal light source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Compact fluorescent lighting in Wisconsin: elevated atmospheric emission and landfill deposition post-EISA implementation.

    Science.gov (United States)

    Arendt, John D; Katers, John F

    2013-07-01

    The majority of states in the USA, including Wisconsin, have been affected by elevated air, soil and waterborne mercury levels. Health risks associated with mercury increase from the consumption of larger fish species, such as Walleye or Pike, which bio-accumulate mercury in muscle tissue. Federal legislation with the 2011 Mercury and Air Toxics Standards and the Wisconsin legislation on mercury, 2009 Wisconsin Act 44, continue to aim at lowering allowable levels of mercury emissions. Meanwhile, mercury-containing compact fluorescent lights (CFL) sales continue to grow as businesses and consumers move away from energy intensive incandescent light bulbs. An exchange in pollution media is occurring as airborne mercury emissions from coal-burning power plants, the largest anthropogenic source of mercury, are being reduced by lower energy demand and standards, while more universal solid waste containing mercury is generated each time a CFL is disposed. The treatment of CFLs as a 'universal waste' by the Environmental Protection Agency (EPA) led to the banning of non-household fluorescent bulbs from most municipal solid waste. Although the EPA encourages recycling of bulbs, industry currently recycles fluorescent lamps and CFLs at a rate of only 29%. Monitoring programs at the federal and state level have had only marginal success with industrial and business CFL recycling. The consumer recycling rate is even lower at only 2%. A projected increase in residential CFL use in Wisconsin owing to the ramifications of the Energy Independence and Security Act of 2007 will lead to elevated atmospheric mercury and landfill deposition in Wisconsin.

  18. 40 CFR 426.126 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp Envelope Manufacturing... established. Pollutant or pollutant property Pretreatment standards Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Metric units (g/kkg of furnace pull) Oil (animal and...

  19. Internal heat gain from different light sources in the building lighting systems

    Directory of Open Access Journals (Sweden)

    Suszanowicz Dariusz

    2017-01-01

    Full Text Available EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  20. Internal heat gain from different light sources in the building lighting systems

    Science.gov (United States)

    Suszanowicz, Dariusz

    2017-10-01

    EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  1. The electronics in fluorescent bulbs and light emitting diodes (LED), rather than ultraviolet radiation, cause increased malignant melanoma incidence in indoor office workers and tanning bed users.

    Science.gov (United States)

    Milham, Samuel; Stetzer, Dave

    2018-07-01

    The epidemiology of cutaneous malignant melanoma (CMM) has a number of facets that do not fit with sunlight and ultraviolet light as the primary etiologic agents. Indoor workers have higher incidence and mortality rates of CMM than outdoor workers; CMM occurs in body locations never exposed to sunlight; CMM incidence is increasing in spite of use of UV blocking agents and small changes in solar radiation. Installation of two new fluorescent lights in the milking parlor holding area of a Minnesota dairy farm in 2015 caused an immediate drop in milk production. This lead to measurement of body amperage in humans exposed to modern non-incandescent lighting. People exposed to old and new fluorescent lights, light emitting diodes (LED) and compact fluorescent lights (CFL) had body amperage levels above those considered carcinogenic. We hypothesize that modern electric lighting is a significant health hazard, a carcinogen, and is causing increasing CMM incidence in indoor office workers and tanning bed users. These lights generate dirty electricity (high frequency voltage transients), radio frequency (RF) radiation, and increase body amperage, all of which have been shown to be carcinogenic. This could explain the failure of ultraviolet blockers to stem the malignant melanoma pandemic. Tanning beds and non-incandescent lighting could be made safe by incorporating a grounded Faraday cage which allows passage of ultraviolet and visible light frequencies and blocks other frequencies. Modern electric lighting should be fabricated to be electrically clean. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. NicoLase-An open-source diode laser combiner, fiber launch, and sequencing controller for fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Philip R Nicovich

    Full Text Available Modern fluorescence microscopy requires software-controlled illumination sources with high power across a wide range of wavelengths. Diode lasers meet the power requirements and combining multiple units into a single fiber launch expands their capability across the required spectral range. We present the NicoLase, an open-source diode laser combiner, fiber launch, and software sequence controller for fluorescence microscopy and super-resolution microscopy applications. Two configurations are described, giving four or six output wavelengths and one or two single-mode fiber outputs, with all CAD files, machinist drawings, and controller source code openly available.

  3. Compact Fluorescent Plug-In Ballast-in-a-Socket

    Energy Technology Data Exchange (ETDEWEB)

    Rebecca Voelker

    2001-12-21

    The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are used today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other

  4. An Analysis of Sources of Technological Change in Efficiency Improvement of Fluorescent Lamp Systems

    Science.gov (United States)

    Imanaka, Takeo

    In Japan, energy efficient fluorescent lamp systems which use “rare-earth phosphors” and “electronic ballasts” have shown rapid diffusion since 1990s. This report investigated sources of technological change in the efficiency improvement of fluorescent lamp systems: (i) Fluorescent lamp and luminaires have been under steady technological development for getting more energy efficient lighting and the concepts to achieve high efficiency had been found in such activities; however, it took long time until they realized and become widely used; (ii) Electronic ballasts and rare-earth phosphors add fluorescent lamp systems not only energy efficiency but also various values such as compactness, lightweight, higher output, and better color rendering properties, which have also been expected and have induced research and development (R&D) (iii) Affordable electronic ballasts are realized by the new technology “power MOSFET” which is based on IC technologies and has been developed for large markets of information and communication technologies and mobile devices; and (iv) Rare-earth phosphors became available after rare-earth industries developed for the purpose of supplying rare-earth phosphors for color television. In terms of sources of technological change, (i) corresponds to “R&D” aiming at the particular purpose i.e. energy efficiency in this case, on the other hand, (ii), (iii), and (iv) correspond to “spillovers” from activities aiming at other purposes. This case exhibits an actual example in which “spillovers” were the critical sources of technological change in energy technology.

  5. The Addition of Several Mineral Sources on Growing Media of Fluorescent Pseudomonad for the Biosynthesis of Hydrogen Cyanide

    Science.gov (United States)

    Advinda, L.; Fifendy, M.; Anhar, A.

    2018-04-01

    All Fluorescent pseudomonad is a group of rhyzobacteria which these days often utilized on plant disease control. The growing media is an absolute requirement which needs to be considered for the growth and cultivation of bacteria. The mineral source contained in growing media of bacteria may affect the production of hydrogen cyanide compound. The objectives of the research were to obtain the best source of minerals for biosynthesis of cyanide acid compounds by fluorescent pseudomonad isolates PfPj1, PfPb1, PfPj2, Kd7, Cas, Cas3, and LAHp2. This research is a qualitative experimental research including observation of hydrogen cyanide compound produced after the growing media of fluorescent pseudomonad bacteria added with several mineral sources. The treatments were given: A = ZnSO4.7H2O 0.5 mM addition, B = CoCl2.6H2O 0.5 mM addition, and C = Fe2SO4.7H2O 0.5 mM addition. From the result of the research, it was concluded that the addition of ZnSO4.7H2O mineral resources on the growing media of fluorescent pseudomonad isolate Cas and Cas3 produced the best hydrogen cyanide. Whereas addition of CoCl2.6H2O mineral source on the growing media showed poor hydrogen cyanide production for all fluorescent pseudomonad isolates

  6. Fundamentals of solid-state lighting LEDs, OLEDs, and their applications in illumination and displays

    CERN Document Server

    Khanna, Vinod Kumar

    2014-01-01

    History and Basics of LightingChronological History of LightingLearning Objectives How Early Man Looked at the ""Sun"" The Need for Artificial Light Sources First Steps in the Evolution of Artificial Lighting The First Solid-State Lighting Device The First Practical Electrical Lighting Device The Incandescent Filament Lamp Mercury and Sodium Vapor Lamps The Fluorescent Lamp The Compact Fluorescent Lamp Revolution in the World of Lighting: Advent of Light-Emitting Diodes Birth of the First LED and the Initial Stages of LED Development The Father of the LED: Holonyak Jr. The Post-1962 Developmen

  7. Environmental and health aspects of lighting: Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Clear, R.; Berman, S.

    1993-07-01

    Most discharge lamps, including fluorescent lamps, metal halide lamps, and high pressure sodium lamps, contain Mercury, a toxic chemical. Lighting professionals need to be able to respond to questions about the direct hazards of Mercury from accidentally breaking lamps, and the potential environmental hazards of lamp operation and disposal. We calculated the exposures that could occur from an accidental breakage of lamps. Acute poisoning appears almost impossible. Under some circumstances a sealed environment, such as a space station, could be contaminated enough to make it unhealthy for long-term occupation. Mercury becomes a potential environmental hazard after it becomes methylated. Mercury is methylated in aquatic environments, where it may accumulate in fish, eventually rendering them toxic to people and other animals. Lighting causes Mercury to enter the environment directly from lamp disposal, and indirectly from power plant emissions. The environmental tradeoffs between incandescent and discharge lamps depend upon the amounts released by these two sources, their local concentrations, and their probabilities of being methylated. Indirect environmental effects of lighting also include the release of other heavy metals (Cadmium, Lead and Arsenic), and other air pollutants and carbon dioxide that are emitted by fossil fuel power plants. For a given light output, the level of power plant emissions depends upon the efficacy of the light source, and is thus much larger for incandescent lamps than for fluorescent or discharge lamps. As disposal and control technologies change the relative direct and indirect emissions from discharge and incandescent lamps will change.

  8. EVALUATION OF ADOPTION OF LED LIGHTING TECHNOLOGY IN MALAYSIA

    OpenAIRE

    Khorasanizadeh, Hasti

    2017-01-01

    Electrical energy consumption in Malaysia is rapidly increasing with illumination being the second largest contributor to this increment. Light Emitting Diode (LED) could be a viable option to reduce the illumination based energy consumption. LEDs are energy efficient and easier to recycle compared to traditional lighting sources such as incandescent and fluorescent lamps. They also have longer life time and lower failure rate. In this thesis, the feasibility of replacing...

  9. Fluorescent optical position sensor

    Science.gov (United States)

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  10. Increasing the brightness of light sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ling

    2006-11-16

    In this work the principle of light recycling is applied to artificial light sources in order to achieve brightness enhancement. Firstly, the feasibilities of increasing the brightness of light sources via light recycling are examined theoretically, based on the fundamental laws of thermodynamics including Kirchhoff's law on radiation, Planck's law, Lambert-Beer's law, the etendue conservation and the brightness theorem. From an experimental viewpoint, the radiation properties of three different kinds of light sources including short-arc lamps, incandescent lamps and LEDs characterized by their light-generating mechanisms are investigated. These three types of sources are used in light recycling experiments, for the purpose of 1. validating the intrinsic light recycling effect in light sources, e. g. the intrinsic light recycling effect in incandescent lamps stemming from the coiled filament structure. 2. acquiring the required parameters for establishing physical models, e.g. the emissivity/absorptivity of the short-arc lamps, the intrinsic reflectivity and the external quantum efficiency of LEDs. 3. laying the foundations for designing optics aimed at brightness enhancement according to the characteristics of the sources and applications. Based on the fundamental laws and experiments, two physical models for simulating the radiance distribution of light sources are established, one for thermal filament lamps, the other for luminescent sources, LEDs. As validation of the theoretical and experimental investigation of the light recycling effect, an optical device, the Carambola, is designed for achieving deterministic and multiple light recycling. The Carambola has the function of a concentrator. In order to achieve the maximum possible brightness enhancement with the Carambola, several combinations of sources and Carambolas are modelled in ray-tracing simulations. Sources with different light-emitting mechanisms and different radiation properties

  11. A Difference in Cutaneous Pigmentary Response to LED Versus Halogen Incandescent Visible Light: A Case Report from a Single Center, Investigational Clinical Trial Determining a Minimal Pigmentary Visible Light Dose.

    Science.gov (United States)

    Soleymani, Teo; Soter, Nicholas A; Folan, Lorcan M; Elbuluk, Nada; Okereke, Uchenna R; Cohen, David E

    2017-04-01

    BACKGROUND: While most of the attention regarding skin pigmentation has focused on the effects on ultraviolet radiation, the cutaneous effects of visible light (400 to 700nm) are rarely reported. In this report, we describe a case of painful erythema and induration that resulted from direct irradiation of UV-naïve skin with visible LED light in a patient with Fitzpatrick type II skin. METHODS AND RESULTS: A 24-year-old healthy woman with Fitzpatrick type II skin presented to our department to participate in a clinical study. As part of the study, the subject underwent visible light irradiation with an LED and halogen incandescent visible light source. After 5 minutes of exposure, the patient complained of appreciable pain at the LED exposed site. Evaluation demonstrated erythema and mild induration. There were no subjective or objective findings at the halogen incandescent irradiated site, which received equivalent fluence (0.55 Watts / cm2). The study was halted as the subject was unable to tolerate the full duration of visible light irradiation. CONCLUSION: This case illustrates the importance of recognizing the effects of visible light on skin. While the vast majority of investigational research has focused on ultraviolet light, the effects of visible light have been largely overlooked and must be taken into consideration, in all Fitzpatrick skin types. J Drugs Dermatol. 2017;16(4):388-392..

  12. Are we done yet? An assessment of the remaining barriers to increasing compact fluorescent lamp installations and recommended program strategies for reducing them

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Tami; Canseco, Jennifer [KEMA Inc., Sustainable Market Strategies Group (United States); Rubin, Rob [San Diego Gas and Electric Company (United States); Teja, Anu [Northwest Energy Efficiency Alliance (United States)

    2007-07-01

    Residential energy efficiency lighting programs in active regions of the United States have been successful in dramatically increasing compact fluorescent lamp (CFL) purchases over the last decade - where currently a majority of households have one or more CFLs installed. However, in these regions CFLs are used in less than 10 percent of residential lamp sockets, and much untapped energy savings potential remains. Consumers in these active regions with CFLs already installed could expand their existing CFL installations by a factor of five. The reasons that they are not doing so include waiting for incandescent bulbs to burn out, issues with CFL performance, the need for specialty CFLs (which are expensive and not widely available) and the higher cost of CFLs.Programs in these active regions should consider the following recommendations for increasing CFL installations: encourage consumers to retrofit more CFLs and not to wait for incandescent bulbs to burn out; track and address CFL performance issues for the range of CFL products; broaden program strategies to address specialty CFLs; expand incentives to year-round and to more stores and products; and track market barriers at both the household and lamp socket level.In regions of the United States or countries with emerging residential CFL programs, program planners should consider the following recommendations: research the lighting market and introduce program strategies within existing market channels; focus first on the most basic style of CFLs that are designed to replace standard incandescent bulbs and move to specialty CFLs later; and track and monitor product quality from program inception.

  13. Evaluation of the energetic impact of the use of compact fluorescent lamps in the residential sector of Brazil; Avaliacao do impacto energetico do uso de lampadas fluorescentes compactas no setor residencial brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Rafael Balbino; Haddad, Jamil; Nogueira, Luiz Augusto Horta [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)], e-mail: cardosorb@unifei.edu.br, e-mail: jamil@unifei.edu.br, e-mail: horta@unifei.edu.br

    2008-07-01

    Among the actions taken after the crisis of electricity supply at the beginning of this decade, the replacement of incandescent lamps for compact fluorescent lamps (CFL's, about four times more efficient than the incandescent) is one of most important. This paper develops an assessment of the impact of this measure in terms of energy saved and demand reduction, especially associated with the use of CFL's lamps in the residential sector. According to this study, which took into account the park of lamps installed in Brazilian households (38% efficient) and an average time of use of 1,000 hours per year, nowadays lightning in the residential sector corresponds to a peak demand reduction for 4,800 MW and a consumption of about 16,000 GWh, approximately 20% of whole residential sector consumption in 2005. The introduction of more efficient lamps has induced an economy of 6,858 GWh, approximately 8% of consumption observed in 2005. (author)

  14. Light Sources and Ballast Circuits

    Science.gov (United States)

    Yorifuji, Takashi; Sakai, Makoto; Yasuda, Takeo; Maehara, Akiyoshi; Okada, Atsunori; Gouriki, Takeshi; Mannami, Tomoaki

    According to the machinery statistics by Ministry of Economy, Trade and Industry (METI), the total of domestic light bulb production in 2006 was 1,101 million (88.5% year-on-year). Production for general purpose illumination light bulbs and halogen light bulbs accounted for 122 million (99.2% y/y) and 45 million (96.3% y/y), respectively. The total of fluorescent lamp production was 988 million (114.9%) and the production of general purpose fluorescent lamps excluding backlights accounted for 367 million (101.7% y/y). Further, HID lamp production was 10 million (106.3% y/y). What is noteworthy regarding such lamp production is that, similar to the previous year, the sales volume (amount) of lamps for general illumination exceeded 100% against the previous year, indicating a steady shift to high value added products. Major lighting exhibitions in 2006 included the Light + Building Trade Fair held in Frankfurt in April and the Light Fair International 2006 held in Las Vegas, U.S.A. in May, both of which demonstrated signs of acceleration toward energy saving, high efficiency and resource saving. As for incandescent lamps, products filled with larger atomic weight gases aiming at higher efficiency/longer life are becoming the mainstream. As for new technologies, it was experimentally demonstrated that infrared radiation can be suppressed by processing micro cavities to metal plates made of tungsten, tantalum, etc. For fluorescent lamps, straight and circular fluorescent lamps achieving a longer life/higher luminous flux maintenance factor continued to be widely developed/launched again this year. For compact fluorescent lamps, energy saving/high efficiency products, multifunctional type products combined with LED and new shaped products were launched. As to HID lamps, ceramic metal halide lamps with high efficiency, improved color rendering, longer life and higher luminous flux maintenance factor were commercialized one after another. Numerous studies and analyses, on

  15. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering.

    Directory of Open Access Journals (Sweden)

    Isaac Nuñez

    Full Text Available The advent of easy-to-use open source microcontrollers, off-the-shelf electronics and customizable manufacturing technologies has facilitated the development of inexpensive scientific devices and laboratory equipment. In this study, we describe an imaging system that integrates low-cost and open-source hardware, software and genetic resources. The multi-fluorescence imaging system consists of readily available 470 nm LEDs, a Raspberry Pi camera and a set of filters made with low cost acrylics. This device allows imaging in scales ranging from single colonies to entire plates. We developed a set of genetic components (e.g. promoters, coding sequences, terminators and vectors following the standard framework of Golden Gate, which allowed the fabrication of genetic constructs in a combinatorial, low cost and robust manner. In order to provide simultaneous imaging of multiple wavelength signals, we screened a series of long stokes shift fluorescent proteins that could be combined with cyan/green fluorescent proteins. We found CyOFP1, mBeRFP and sfGFP to be the most compatible set for 3-channel fluorescent imaging. We developed open source Python code to operate the hardware to run time-lapse experiments with automated control of illumination and camera and a Python module to analyze data and extract meaningful biological information. To demonstrate the potential application of this integral system, we tested its performance on a diverse range of imaging assays often used in disciplines such as microbial ecology, microbiology and synthetic biology. We also assessed its potential use in a high school environment to teach biology, hardware design, optics, and programming. Together, these results demonstrate the successful integration of open source hardware, software, genetic resources and customizable manufacturing to obtain a powerful, low cost and robust system for education, scientific research and bioengineering. All the resources developed here

  16. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering.

    Science.gov (United States)

    Nuñez, Isaac; Matute, Tamara; Herrera, Roberto; Keymer, Juan; Marzullo, Timothy; Rudge, Timothy; Federici, Fernán

    2017-01-01

    The advent of easy-to-use open source microcontrollers, off-the-shelf electronics and customizable manufacturing technologies has facilitated the development of inexpensive scientific devices and laboratory equipment. In this study, we describe an imaging system that integrates low-cost and open-source hardware, software and genetic resources. The multi-fluorescence imaging system consists of readily available 470 nm LEDs, a Raspberry Pi camera and a set of filters made with low cost acrylics. This device allows imaging in scales ranging from single colonies to entire plates. We developed a set of genetic components (e.g. promoters, coding sequences, terminators) and vectors following the standard framework of Golden Gate, which allowed the fabrication of genetic constructs in a combinatorial, low cost and robust manner. In order to provide simultaneous imaging of multiple wavelength signals, we screened a series of long stokes shift fluorescent proteins that could be combined with cyan/green fluorescent proteins. We found CyOFP1, mBeRFP and sfGFP to be the most compatible set for 3-channel fluorescent imaging. We developed open source Python code to operate the hardware to run time-lapse experiments with automated control of illumination and camera and a Python module to analyze data and extract meaningful biological information. To demonstrate the potential application of this integral system, we tested its performance on a diverse range of imaging assays often used in disciplines such as microbial ecology, microbiology and synthetic biology. We also assessed its potential use in a high school environment to teach biology, hardware design, optics, and programming. Together, these results demonstrate the successful integration of open source hardware, software, genetic resources and customizable manufacturing to obtain a powerful, low cost and robust system for education, scientific research and bioengineering. All the resources developed here are available under

  17. In vivo quantitative imaging of point-like bioluminescent and fluorescent sources: Validation studies in phantoms and small animals post mortem

    Science.gov (United States)

    Comsa, Daria Craita

    2008-10-01

    There is a real need for improved small animal imaging techniques to enhance the development of therapies in which animal models of disease are used. Optical methods for imaging have been extensively studied in recent years, due to their high sensitivity and specificity. Methods like bioluminescence and fluorescence tomography report promising results for 3D reconstructions of source distributions in vivo. However, no standard methodology exists for optical tomography, and various groups are pursuing different approaches. In a number of studies on small animals, the bioluminescent or fluorescent sources can be reasonably approximated as point or line sources. Examples include images of bone metastases confined to the bone marrow. Starting with this premise, we propose a simpler, faster, and inexpensive technique to quantify optical images of point-like sources. The technique avoids the computational burden of a tomographic method by using planar images and a mathematical model based on diffusion theory. The model employs in situ optical properties estimated from video reflectometry measurements. Modeled and measured images are compared iteratively using a Levenberg-Marquardt algorithm to improve estimates of the depth and strength of the bioluminescent or fluorescent inclusion. The performance of the technique to quantify bioluminescence images was first evaluated on Monte Carlo simulated data. Simulated data also facilitated a methodical investigation of the effect of errors in tissue optical properties on the retrieved source depth and strength. It was found that, for example, an error of 4 % in the effective attenuation coefficient led to 4 % error in the retrieved depth for source depths of up to 12mm, while the error in the retrieved source strength increased from 5.5 % at 2mm depth, to 18 % at 12mm depth. Experiments conducted on images from homogeneous tissue-simulating phantoms showed that depths up to 10mm could be estimated within 8 %, and the relative

  18. Optimization of a fluorescence X-ray source and background studies for a prospective CNNS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, Andreas; Ciemniak, Christian; Feilitzsch, Franz von; Guetlein, Achim; Haag, Nils; Hofmann, Martin; Isaila, Christian; Lanfranchi, Jean-Come; Oberauer, Lothar; Pfister, Sebastian; Potzel, Walter; Roth, Sabine; Schoenert, Stefan; Sivers, Moritz von; Strauss, Raimund [Technische Universitaet Muenchen, Physik-Department, E15 (Germany); Lachenmaier, Tobias [Eberhard Karls Universitaet, Tuebingen (Germany)

    2011-07-01

    Coherent Neutrino Nucleus Scattering (CNNS) is predicted by the Standard Model but hasn't been measured yet. A good background discrimination and shielding is essential for the achievement of a prospective experiment. We show the results of simulations for background discrimination and suppression using a myon veto system in combination with a shielding around a cryostat. With CNNS, the expected nuclear recoil energy for reactor anti-neutrinos is in the range of source within this energy region is necessary. Two different methods to create fluorescence are discussed and measured energy spectra will be shown. Finally results of an improved fluorescence x-ray source with nine clearly separated energy lines between {proportional_to}1 keV and 6.5 keV are shown.

  19. Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence.

    Science.gov (United States)

    Shrestha, Sebina; Serafino, Michael J; Rico-Jimenez, Jesus; Park, Jesung; Chen, Xi; Zhaorigetu, Siqin; Walton, Brian L; Jo, Javier A; Applegate, Brian E

    2016-09-01

    Multimodal imaging probes a variety of tissue properties in a single image acquisition by merging complimentary imaging technologies. Exploiting synergies amongst the data, algorithms can be developed that lead to better tissue characterization than could be accomplished by the constituent imaging modalities taken alone. The combination of optical coherence tomography (OCT) with fluorescence lifetime imaging microscopy (FLIM) provides access to detailed tissue morphology and local biochemistry. The optical system described here merges 1310 nm swept-source OCT with time-domain FLIM having excitation at 355 and 532 nm. The pulses from 355 and 532 nm lasers have been interleaved to enable simultaneous acquisition of endogenous and exogenous fluorescence signals, respectively. The multimodal imaging system was validated using tissue phantoms. Nonspecific tagging with Alexa Flour 532 in a Watanbe rabbit aorta and active tagging of the LOX-1 receptor in human coronary artery, demonstrate the capacity of the system for simultaneous acquisition of OCT, endogenous FLIM, and exogenous FLIM in tissues.

  20. An optical method for reducing green fluorescence from urine during fluorescence-guided cystoscopy

    Science.gov (United States)

    Lindvold, Lars R.; Hermann, Gregers G.

    2016-12-01

    Photodynamic diagnosis (PDD) of bladder tumour tissue significantly improves endoscopic diagnosis and treatment of bladder cancer in rigid cystoscopes in the operating theatre and thus reduces tumour recurrence. PDD comprises the use of blue light, which unfortunately excites green fluorescence from urine. As this green fluorescence confounds the desired red fluorescence of the PDD, methods for avoiding this situation particularly in cystoscopy using flexible cystoscopes are desirable. In this paper we demonstrate how a tailor made high power LED light source at 525 nm can be used for fluorescence assisted tumour detection using both a flexible and rigid cystoscope used in the outpatient department (OPD) and operating room (OR) respectively. It is demonstrated both in vitro and in vivo how this light source can significantly reduce the green fluorescence problem with urine. At the same time this light source also is useful for exciting autofluorescence in healthy bladder mucosa. This autofluorescence then provides a contrast to the sensitized fluorescence (PDD) of tumours in the bladder.

  1. Evaluation of CDOM sources and their links with water quality in the lakes of Northeast China using fluorescence spectroscopy

    Science.gov (United States)

    Zhao, Ying; Song, Kaishan; Wen, Zhidan; Fang, Chong; Shang, Yingxin; Lv, Lili

    2017-07-01

    The spatial distributions of the fluorescence intensities Fmax for chromophoric dissolved organic matter (CDOM) components, the fluorescence indices (FI370 and FI310) and their correlations with water quality of 19 lakes in the Songhua River Basin (SHRB) across semiarid regions of Northeast China were examined with the data collected in September 2012 and 2015. The 19 lakes were divided into two groups according to EC (threshold value = 800 μS cm-1): fresh water (N = 13) and brackish water lakes (N = 6). The fluorescent characteristics of CDOM in the 19 lakes were investigated using excitation-emission matrix fluorescence spectroscopy (EEM) coupled with parallel factor (PARAFAC) and multivariate analysis. Two humic-like components (C1 and C3), one tryptophan-like component (C2), and one tyrosine-like component (C4) were identified by PARAFAC. The component C4 was not included in subsequent analyses due to the strong scatter in some colloidal water samples from brackish water lakes. The correlations between Fmax for the three EEM-PARAFAC extracted CDOM components C1-C3, the fluorescence indices (FI370 and FI310) and the water quality parameters (i.e., TN, TP, Chl-a, pH, EC, turbidity (Turb) and dissolved organic carbon (DOC)) were determined by redundancy analysis (RDA). The results of RDA analysis showed that spatial variation in land cover, pollution sources, and salinity/EC gradients in water quality affected Fmax for the fluorescent components C1-C3 and the fluorescence indices (FI370 and FI310). Further examination indicated that the CDOM fluorescent components and the fluorescence indices (FI370 and FI310) did not significantly differ (t-test, p > 0.05) in fresh water (N = 13) and brackish water lakes (N = 6). There was a difference in the distribution of the average Fmax for the CDOM fluorescent components between C1 to C3 from agricultural sources and urban wastewater sources in hypereutrophic brackish water lakes. The Fmax for humic-like components C1 and

  2. Optimization of a polarized source for in vivo x-ray fluorescence analysis of platinum and other heavy metals

    International Nuclear Information System (INIS)

    Lewis, D.G.

    1994-01-01

    The Monte Carlo method was used to optimize a polarized photon source for the x-ray fluorescence analysis of platinum and other heavy metals in vivo. The source consisted of a 140 kVp, 25 mA x-ray tube with the photons plane-polarized by 90 o scattering. The use of plane-polarized photons results in a significant reduction in background when the fluorescent radiation is measured along the direction of polarization. A Monte Carlo computer programme was written to simulate the production and interaction of polarized photons in order to determine the optimal polarizing material and dimensions, together with beam width and geometrical arrangement of source, polarizer and beam collimators. Calculated photon energy distributions are compared with experimental data to test the validity of the model. (author)

  3. Room-temperature single-photon sources with definite circular and linear polarizations based on single-emitter fluorescence in liquid crystal hosts

    International Nuclear Information System (INIS)

    Winkler, Justin M; Lukishova, Svetlana G; Bissell, Luke J

    2013-01-01

    Definite circular and linear polarizations of room-temperature single-photon sources, which can serve as polarization bases for quantum key distribution, are produced by doping planar-aligned liquid crystal hosts with single fluorescence emitters. Chiral 1-D photonic bandgap microcavities for a single handedness of circularly polarized light were prepared from both monomeric and oligomeric cholesteric liquid crystals. Fluorescent emitters, such as nanocrystal quantum dots, nitrogen vacancy color centers in nanodiamonds, and rare-earth ions in nanocrystals, were doped into these microcavity structures and used to produce circularly polarized fluorescence of definite handedness. Additionally, we observed circularly polarized resonances in the spectrum of nanocrystal quantum dot fluorescence at the edge of the cholesteric microcavity's photonic stopband. For this polarization we obtained a ∼4.9 enhancement of intensity compared to the polarization of the opposite handedness that propagates without photonic bandgap microcavity effects. Such a resonance is indicative of coupling of quantum dot fluorescence to the cholesteric microcavity mode. We have also used planar-aligned nematic liquid crystal hosts to align DiI dye molecules doped into the host, thereby providing a single-photon source of linear polarization of definite direction. Antibunching is demonstrated for fluorescence of nanocrystal quantum dots, nitrogen vacancy color centers, and dye molecules in these liquid crystal structures.

  4. [Absorption and fluorescence characteristics of dissolved organic matter (DOM) in rainwater and sources analysis in summer and winter season].

    Science.gov (United States)

    Liang, Jian; Jiang, Tao; WeiI, Shi-Qiang; Lu, Song; Yan, Jin-Long; Wang, Qi-Lei; Gao, Jie

    2015-03-01

    This study aimed at evaluating the variability of the optical properties including UV-Vis and fluorescence characteristics of dissolved organic matter (DOM) from rainwater in summer and winter seasons. UV-Vis and fluorescence spectroscopy, together with Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and fire events map, were conducted to characterize DOM and investigate its sources and contributions. The results showed that as compared with aquatic and soil DOM, rainwater DOM showed similar spectral characteristics, suggesting DOM in precipitation was also an important contributor to DOM pool in terrestrial and aquatic systems. The concentrations of DOC in rainwater were 0.88-12.80 mg x L(-1), and the CDOM concentrations were 3.17-21.11 mg x L(-1). Differences of DOM samples between summer and winter were significant (P summer, DOM samples in winter had lower molecular weight and aromaticity, and also lower humification. Input of DOM in winter was predominantly derived from local and short-distance distances, while non-special scattering sources were identified as the main contributors in summer. Although absorption and fluorescence spectroscopy could be used to identify DOM composition and sources, there were obvious differences in spectra and sources analysis between rainwater DOM and the others from other sources. Thus, the classic differentiation method by "allochthonous (terrigenous) and autochthonous (authigenic)" is possibly too simple and arbitrary for characterization of DOM in rainwater.

  5. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  6. Dissolved organic matter fluorescence at wavelength 275/342 nm as a key indicator for detection of point-source contamination in a large Chinese drinking water lake.

    Science.gov (United States)

    Zhou, Yongqiang; Jeppesen, Erik; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Zhu, Guangwei

    2016-02-01

    Surface drinking water sources have been threatened globally and there have been few attempts to detect point-source contamination in these waters using chromophoric dissolved organic matter (CDOM) fluorescence. To determine the optimal wavelength derived from CDOM fluorescence as an indicator of point-source contamination in drinking waters, a combination of field campaigns in Lake Qiandao and a laboratory wastewater addition experiment was used. Parallel factor (PARAFAC) analysis identified six components, including three humic-like, two tryptophan-like, and one tyrosine-like component. All metrics showed strong correlation with wastewater addition (r(2) > 0.90, p CDOM fluorescence at 275/342 nm was the most responsive wavelength to the point-source contamination in the lake. Our results suggest that pollutants in Lake Qiandao had the highest concentrations in the river mouths of upstream inflow tributaries and the single wavelength at 275/342 nm may be adapted for online or in situ fluorescence measurements as an early warning of contamination events. This study demonstrates the potential utility of CDOM fluorescence to monitor water quality in surface drinking water sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. MATLAB tools for improved characterization and quantification of volcanic incandescence in Webcam imagery; applications at Kilauea Volcano, Hawai'i

    Science.gov (United States)

    Patrick, Matthew R.; Kauahikaua, James P.; Antolik, Loren

    2010-01-01

    Webcams are now standard tools for volcano monitoring and are used at observatories in Alaska, the Cascades, Kamchatka, Hawai'i, Italy, and Japan, among other locations. Webcam images allow invaluable documentation of activity and provide a powerful comparative tool for interpreting other monitoring datastreams, such as seismicity and deformation. Automated image processing can improve the time efficiency and rigor of Webcam image interpretation, and potentially extract more information on eruptive activity. For instance, Lovick and others (2008) provided a suite of processing tools that performed such tasks as noise reduction, eliminating uninteresting images from an image collection, and detecting incandescence, with an application to dome activity at Mount St. Helens during 2007. In this paper, we present two very simple automated approaches for improved characterization and quantification of volcanic incandescence in Webcam images at Kilauea Volcano, Hawai`i. The techniques are implemented in MATLAB (version 2009b, Copyright: The Mathworks, Inc.) to take advantage of the ease of matrix operations. Incandescence is a useful indictor of the location and extent of active lava flows and also a potentially powerful proxy for activity levels at open vents. We apply our techniques to a period covering both summit and east rift zone activity at Kilauea during 2008?2009 and compare the results to complementary datasets (seismicity, tilt) to demonstrate their integrative potential. A great strength of this study is the demonstrated success of these tools in an operational setting at the Hawaiian Volcano Observatory (HVO) over the course of more than a year. Although applied only to Webcam images here, the techniques could be applied to any type of sequential images, such as time-lapse photography. We expect that these tools are applicable to many other volcano monitoring scenarios, and the two MATLAB scripts, as they are implemented at HVO, are included in the appendixes

  8. The European Commission's light bulb decree: Another costly regulation?

    International Nuclear Information System (INIS)

    Frondel, Manuel; Lohmann, Steffen

    2011-01-01

    Since September 2009, Regulation 244/2009 of the European Commission enforces the gradual phase-out of incandescent light bulbs. As of September 2012, only energy-efficient lighting sources will be allowed for sale. Among these are halogen light bulbs, light-emitting diodes (LED), or compact fluorescent light bulbs-often referred to as energy-saving light bulbs. The Commission's justification for the phase-out of conventional light bulbs maintains that a reduction in the electricity consumed will not only lead to lower energy cost for private households and industrial consumers, but at the same time lead to a decrease in greenhouse gas emissions. This article discusses possible reasons for the slow market diffusion of energy-saving light bulbs and shows that the investment in energy-efficient light bulbs does not necessarily lead to significant cost reductions. Drawing on some illustrative examples, we demonstrate that the use of cheaper incandescent bulbs instead of energy-saving light bulbs can be economically rational in cases of rather low usage times, in which the higher initial purchasing price might only pay off after very long time spans. Furthermore, due to the coexistence with the European Emissions Trading Scheme (ETS), this regulation attains no additional emission reductions beyond those achieved by the ETS alone. We thus conclude that the general ban of incandescent light bulbs is inappropriate and should be abolished by the Commission. - Research highlights: → This article discusses reasons for the slow market diffusion of energy-saving light bulbs. → We show that using incandescent bulbs can be rational in cases of rather low usage times. → We conclude that the general ban of incandescent light bulbs should be abolished by the Commission.

  9. The European Commission's light bulb decree: Another costly regulation?

    Energy Technology Data Exchange (ETDEWEB)

    Frondel, Manuel, E-mail: frondel@rwi-essen.de [Ruhr-University Bochum (RUB), Ruhr-Graduate School in Economics (RGS Econ) (Germany); Rheinisch-Westfaelisches Institut fuer Wirtschaftsforschung (RWI), Hohenzollernstr. 1-3, 45128 Essen (Germany); Lohmann, Steffen [Rheinisch-Westfaelisches Institut fuer Wirtschaftsforschung (RWI), Hohenzollernstr. 1-3, 45128 Essen (Germany); Tinbergen Institute (Netherlands)

    2011-06-15

    Since September 2009, Regulation 244/2009 of the European Commission enforces the gradual phase-out of incandescent light bulbs. As of September 2012, only energy-efficient lighting sources will be allowed for sale. Among these are halogen light bulbs, light-emitting diodes (LED), or compact fluorescent light bulbs-often referred to as energy-saving light bulbs. The Commission's justification for the phase-out of conventional light bulbs maintains that a reduction in the electricity consumed will not only lead to lower energy cost for private households and industrial consumers, but at the same time lead to a decrease in greenhouse gas emissions. This article discusses possible reasons for the slow market diffusion of energy-saving light bulbs and shows that the investment in energy-efficient light bulbs does not necessarily lead to significant cost reductions. Drawing on some illustrative examples, we demonstrate that the use of cheaper incandescent bulbs instead of energy-saving light bulbs can be economically rational in cases of rather low usage times, in which the higher initial purchasing price might only pay off after very long time spans. Furthermore, due to the coexistence with the European Emissions Trading Scheme (ETS), this regulation attains no additional emission reductions beyond those achieved by the ETS alone. We thus conclude that the general ban of incandescent light bulbs is inappropriate and should be abolished by the Commission. - Research Highlights: > This article discusses reasons for the slow market diffusion of energy-saving light bulbs. > We show that using incandescent bulbs can be rational in cases of rather low usage times. > We conclude that the general ban of incandescent light bulbs should be abolished by the Commission.

  10. Decommissioning of a Facility that Produced Incandescent Mantles in Berlin, Germany

    International Nuclear Information System (INIS)

    2011-01-01

    The facility which manufactured incandescent mantles was operating from about the 1960s up to 2005. Production was stopped because there was no longer a market for incandescent mantles as they had been superseded by electrical street lighting. The facility was licensed by the radiation protection regulator in the end of the 1970s. Prior to this time, no license was needed and the facility was registered as a chemical manufacturer. After the legislation changed and the radiation protection legislation was issued, the company had to obtain a license and establish radiation protection rules. Thorium was not used for its radioactive properties in the production of incandescent mantles. The production of gas mantles included their impregnation with naturally occurring thorium, which contains 232 Th as the radioactive isotope of interest. The thorium impregnation was essential to prevent the gas mantles from burning out too soon and to increase their light efficiency. This solution as Th (NO 3 ) 4 was delivered by a company which dealt with several minerals and chemicals. This solution was stored in plastic tanks and contained a high specific radioactivity in Bq/g and dose rates up to several hundreds of μSv/hr. Before seeking bids for the decommissioning of the facility (the company must obtain three bids from different decommissioning companies) it was decided to characterize the site to get a detailed overview about the used equipment, the secondary equipment like exhaust fumes and the radiological inventory. The characterization of the site was estimated to require five workers over two days, including one external specialist knowledgeable in free release of material. Boundary conditions and requirements for characterization are described in the following: (1) The owner of the facility planned to sell most of the equipment for reuse at an Indian facility. This necessitated thorough decontamination. Production of secondary radioactive waste was a problem. Equipment

  11. Control and Driving Methods for LED Based Intelligent Light Sources

    OpenAIRE

    Beczkowski, Szymon

    2012-01-01

    High power light-emitting diodes allow the creation of luminaires capable of generating saturated colour light at very high efficacies. Contrary to traditional light sources like incandescent and high-intensity discharge lamps, where colour is generated using filters, LEDs use additive light mixing, where the intensity of each primary colour diode has to be adjusted to the needed intensity to generate specified colour. The function of LED driver is to supply the diode with power needed to ach...

  12. Electrical discharge light sources: a challenge for the future

    International Nuclear Information System (INIS)

    Zissis, G.

    2001-01-01

    The first electric powder lamp operated that 150 years ago, since then the evolution of light sources is astonishing. Today, more than 10 % of the global electric power produced worldwide serve fore light production from several billions lamps. Since last three decades incandescent lamps are gradually replaced by more energy efficient discharge lamps. In parallel, new generation of light emitting diodes, producing bright colours (including white) with luminous efficacy challenging even discharge lamps, appeared in past years. The objective of this paper is to focus on the state of art in the domain of light sources and discuss the challenges for the near future. (author)

  13. An operational fluorescence system for crop assessment

    Science.gov (United States)

    Belzile, Charles; Belanger, Marie-Christine; Viau, Alain A.; Chamberland, Martin; Roy, Simon

    2004-03-01

    The development of precision farming requires new tools for plant nutritional stress monitoring. An operational fluorescence system has been designed for vegetation status mapping and stress detection at plant and field scale. The instrument gives relative values of fluorescence at different wavelengths induced by the two-excitation sources. Lightinduced fluorescence has demonstrated successful crop health monitoring and plant nutritional stress detection capabilities. The spectral response of the plants has first been measured with an hyperspectral imager using laser-induced fluorescence. A tabletop imaging fluorometer based on flash lamp technology has also been designed to study the spatial distribution of fluorescence on plant leaves. For field based non-imaging system, LED technology is used as light source to induce fluorescence of the plant. The operational fluorescence system is based on ultraviolet and blue LED to induce fluorescence. Four narrow fluorescence bands centered on 440, 520, 690 and 740nm are detected. The instrument design includes a modular approach for light source and detector. It can accommodate as many as four different light sources and six bands of fluorescence detection. As part of the design for field application, the instrument is compatible with a mobile platform equipped with a GPS and data acquisition system. The current system developed by Telops/GAAP is configured for potato crops fluorescence measurement but can easily be adapted for other crops. This new instrument offers an effective and affordable solution for precision farming.

  14. Total luminous flux measurement for flexible surface sources with an integrating sphere photometer

    International Nuclear Information System (INIS)

    Yu, Hsueh-Ling; Liu, Wen-Chun

    2014-01-01

    Applying an integrating sphere photometer for total luminous flux measurement is a widely used method. However, the measurement accuracy depends on the spatial uniformity of the integrating sphere, especially when the test sample has a different light distribution from that of the standard source. Therefore, spatial correction is needed to eliminate the effect caused by non-uniformity. To reduce the inconvenience of spatial correction but retain the measurement accuracy, a new type of working standard is designed for flexible and curved surface sources. Applying this new type standard source, the measurement deviation due to different orientations is reduced by an order of magnitude compared with using a naked incandescent lamp as the standard source. (paper)

  15. Choice of excitation source for determination of rare earth elements with radioisotope excited X ray fluorescence

    International Nuclear Information System (INIS)

    Zhang Quanshi; Chang Yongfu

    2000-01-01

    The comparisons of two radioisotope source ( 241 Am and 238 Pu) which are the most available in the radioisotope excited X Ray Fluorescence (XRF) analysis technique and two characteristic X ray series (KX and LX) analyzed for the determination of the rare-earth (RE) elements were investigated in detail. According to the principle of emission and detection of X ray , the relative excitation efficiencies were calculated by the some fundamental physical parameters including the photoelectric mass attenuation coefficient, the fluorescent yield, the absorption jump factor, the emission probability of the detected fluorescent line with reference to other liens of the same series etc., The advantages and disadvantages of the two conditions are discussed. These results may determine the optimal excitation and detection conditions for different rare-earth elements. The experimental results with nine rare-earth elements (Ce, Nd, Sm, Tb, Tm, Ho, Er, Yb and Lu) are in agreement with the results of theoretical calculations

  16. Atomic-fluorescence spectrophotometry

    International Nuclear Information System (INIS)

    Bakhturova, N.F.; Yudelevich, I.G.

    1975-01-01

    Atomic-fluorescence spectrophotometry, a comparatively new method for the analysis of trace quantities, has developed rapidly in the past ten years. Theoretical and experimental studies by many workers have shown that atomic-fluorescence spectrophotometry (AFS) is capable of achieving a better limit than atomic absorption for a large number of elements. The present review examines briefly the principles of atomic-fluorescence spectrophotometry and the types of fluorescent transition. The excitation sources, flame and nonflame atomizers, used in AFS are described. The limits of detection achieved up to the present, using flame and nonflame methods of atomization are given

  17. Sole-Source Lighting for Controlled-Environment Agriculture

    Science.gov (United States)

    Mitchell.Cary; Stutte, Gary W.

    2015-01-01

    Since plants on Earth evolved under broad-spectrum solar radiation, anytime they are grown exclusively under electric lighting that does not contain all wavelengths in similar proportion to those in sunlight, plant appearance and size could be uniquely different. Nevertheless, plants have been grown for decades under fluorescent (FL) (1) + incandescent (IN) (2) lamps as a sole source of lighting (SSL), and researchers have become comfortable that, in certain proportions of FL + IN for a given species, plants can appear "normal" relative to their growth outdoors. The problem with using such traditional SSLs for commercial production typically is short lamp lifespans and not obtaining enough photosynthetically active radiation (PAR, 400-700 nm) when desired. These limitations led to supplementation of FL + IN lamp outputs with longer-lived, high-intensity discharge (HID) lamps in growth chambers (3). As researchers became comfortable that mixes of orange-biased high-pressure sodium (HPS) and blue-biased metal halide (MH) HIDs together also could give normal plant growth at higher intensities, growth chambers and phytotrons subsequently were equipped mainly with HID lamps, with their intense thermal output filtered out by ventilated light caps or thermal-controlled water barriers. For the most part, IN and HID lamps have found a home in commercial protected horticulture, usually for night-break photoperiod lighting (IN) or for seasonal supplemental lighting (mostly HPS) in greenhouses. However, lack of economically viable options for SSL have held back aspects of year-round indoor agriculture from taking off commercially.

  18. Development of optical spectrum acquisition with spectrophotometer for characterization of optical radiation sources

    International Nuclear Information System (INIS)

    Solano Vargas, Alvaro

    2013-01-01

    An improved process of the data acquisition system is developed with Pasco 750 interface and Pasco OS-8539 spectrophotometer. The optical spectrum and color temperature of incandescent sources available are obtained from the Laboratorio de Fotonica y Tecnologia Laser Aplicada. The procedures developed in the project are recommended to collect data and analyze results. The purchase of a new Software and the interface of Pasco is recommended to have a better operation and update [es

  19. Heavy element concentration determination by the x-ray fluorescence analysis using radioisotope {gamma}-ray sources; Dosage d'elements lourds par fluorescence X utilisant des radio-sources de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, S [Commissariat a l' Energie Atomique, Dir. des Materiaux et des Combustibles Nucleaires, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    A theoretical and experimental study has been made on the fluorescence analysis of high atomic number element, using {gamma}-ray sources for excitation and characteristic K X-rays for the measurement. The choice of the proper {gamma}-ray energy according to the conditions of the determination is considered. The author has studied the usefulness of using the backscattered {gamma}-rays as a correction mean for matrix and grain-size effects. Sources of {sup 153}Gd, {sup 57}Co, {sup 137}Cs have been used for excitation using collimated geometries. Concentration measurements of tungsten in steel, tungsten and lead in aqueous solution, PbS in SiO{sub 2}-PbS powder mixtures have been done, as well as thickness evaluation of gold layers on copper. A precision of about 0.2 per cent (abs.) is obtained for lead determination in light matrixes. A probe design is proposed for the continuous determination of lead in aqueous solutions. (author) [French] On etudie de maniere theorique et experimentale l'analyse d'elements a nombre atomique eleve par fluorescence en utilisant des sources de rayons {gamma} pour l'excitation, et des rayons-X K caracteristiques pour la mesure. On considere le choix de l'energie appropriee des rayons {gamma} suivant les conditions experimentales. L'utilite d'employer les rayons {gamma} retrodiffuses pour corriger les effets de la matrice et de la dimension des grains est etudiee. Des sources de {sup 153}Gd, de {sup 57}Co et de {sup 137}Cs a geometrie collimatee ont ete utilisees pour l'excitation. Des mesures de la concentration du tungstene dans l'acier, du tungstene et du plomb en solutions aqueuses, et du PbS dans des melanges de poudre SiO{sub 2}-PbS ont ete entreprises ainsi que l'evaluation de l'epaisseur des couches d'or sur le cuivre. On obtient une precision d'environ 0,2 pour cent (en absolu) pour la determination du plomb dans des matrices legeres. On propose un modele de sonde pour la determination en continu du plomb en solution aqueuse

  20. Novel Insight for Organic Matter Sourcing: Interest of Time Resolved Fluorescence to Qualify and Quantify PAH Content of Solid Matrix at High Resolution

    Science.gov (United States)

    Quiers, M.; Perrette, Y.; Jacq, K.; Pousset, E.; Plassart, G.

    2017-12-01

    OM fluorescence is today a well-developed tool used to characterize and quantify organic matter (OM), but also to evaluate and discriminate OM fate and changes related to climate and environmental modifications. While fluorescence measurements on water and soils extracts provide information about organic fluxes today, solid phase fluorescence using natural archives allows to obtain high resolution records of OM evolution during time. These evolutions can be discussed in regards of climate and environmental perturbations detected in archives using different proxies, and thus provide keys for understanding factors driving carbon fluxes mechanisms. Among fluorescent organic species, Polycyclic Aromatic Hydrocarbons (PAH) have been used as probe molecules for organic contamination tracking. Moreover, monitoring studies have shown that PAH could also be used as markers to discriminates atmospheric and erosion factors leading to PAH and organic matter fluxes to the aquifer. PAH records in soils and natural archives appear as a promising proxy to follow both past atmospheric contamination and soil erosion. But, PAH fluorescence is difficult to discriminate from bulk OM fluorescence using steady-state fluorescence (SSF) technics as their fluorescence domains recover. Time resolved emission spectroscopy (TRES) increases the information provided by SSF technic, adding a time dimension to measurements and allowing to discriminate PAH fluorescence. We report here a first application of this technic on natural archives. The challenge is to obtain TRES signature along the sample, including for low PAH concentrations. This study aims to evaluate the reliability of high resolution TRES measurement as PAH carbon fluxes sources. Method is based on LIF instrument for solid phase fluorescence measurement. An instrument coupling an excitation system constituting by 2 pulsed lasers (266 and 355 nm) and a detection system was developed. This measurement provides high resolution record of

  1. Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy.

    Science.gov (United States)

    Derrien, Morgane; Kim, Min-Seob; Ock, Giyoung; Hong, Seongjin; Cho, Jinwoo; Shin, Kyung-Hoon; Hur, Jin

    2018-03-15

    The two popular source tracing tools of stable isotope ratios (δ 13 C and δ 15 N) and fluorescence spectroscopy were used to estimate the relative source contributions to sediment organic matter (SeOM) at five different river sites in an agricultural-forested watershed (Soyang Lake watershed), and their capabilities for the source assignment were compared. Bulk sediments were used for the stable isotopes, while alkaline extractable organic matter (AEOM) from sediments was used to obtain fluorescent indices for SeOM. Several source discrimination indices were fully compiled for a range of the SeOM sources distributed in the catchments of the watershed, which included soils, forest leaves, crop (C3 and C4) and riparian plants, periphyton, and organic fertilizers. The relative source contributions to the river sediment samples were estimated via end member mixing analysis (EMMA) based on several selected discrimination indices. The EMMA based on the isotopes demonstrated that all sediments were characterized by a medium to a high contribution of periphyton ranging from ~30% to 70% except for one site heavily affected by forest and agricultural fields with relatively high contributions of terrestrial materials. The EMMA based on fluorescence parameters, however, did not show similar results with low contributions from forest leaf and periphyton. The characteristics of the studied watershed were more consistent with the source contributions determined by the isotope ratios. The discrepancy in the EMMA capability for source assignments between the two analytical tools can be explained by the limited analytical window of fluorescence spectroscopy for non-fluorescent dissolved organic matter (FDOM) and the inability of AEOM to represent original bulk particulate organic matter (POM). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Fiber optical assembly for fluorescence spectrometry

    Science.gov (United States)

    Carpenter, II, Robert W.; Rubenstein, Richard; Piltch, Martin; Gray, Perry

    2010-12-07

    A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.

  3. Laser Based Phosphor Converted Solid State White Light Emitters

    Science.gov (United States)

    Cantore, Michael

    Artificial lighting and as a consequence the ability to be productive when the sun does not shine may be a profound achievement in society that is largely taken for granted. As concerns arise due to our dependence on energy sources with finite lifespan or environmentally negative effects, efforts to reduce energy consumption and create clean renewable alternatives has become highly valued. In the scope of artificial lighting, the use of incandescent lamps has shifted to more efficient light sources. Fluorescent lighting made the first big gains in efficiency over incandescent lamps with peak efficiency for mature designs reaching luminous efficacy of approximately 90 lm/W; more than three times as efficient as an incandescent lamp. Lamps based on light emitting diodes (LEDs) which can produce light at even greater efficiency, color quality and without the potential for hazardous chemical release from lamp failure. There is a significant challenge with LED based light sources. Their peak efficiency occurs at low current densities and then droops as the current density increases. Laser diodes (LDs) do not suffer from decreasing efficiency due to increased current. An alternative solid state light source using LDs has potential to make further gains in efficiency as well as allow novel illuminant designs which may be impractical or even impossible even with LED or other conventional sources. While similar to LEDS, the use of LDs does present new challenges largely due to the increased optical power density which must be accommodated in optics and phosphor materials. Single crystal YAG:Ce has been shown to be capable of enduring this more extreme operating environment while retaining the optical and fluorescing qualities desired for use as a wavelength converter in phosphor converted LD based white emitting systems. The incorporation of this single crystal phosphor in a system with a commercial laser diode with peak wall plug efficiency of 31% resulted in emission of

  4. Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames

    KAUST Repository

    Choi, Byungchul; Choi, Sangkyu; Chung, Suk-Ho

    2011-01-01

    The characteristics of polycyclic aromatic hydrocarbon (PAH) and soot for gasoline surrogate fuels have been investigated in counterflow diffusion flames by adopting laser-induced fluorescence (LIF) and laser-induced incandescence (LII) techniques

  5. Radiation protection and regulatory aspects in the use of radiation sources

    International Nuclear Information System (INIS)

    Sen, Amit; Dash Sharma, P.K.; Sonawane, A.U.

    2012-01-01

    The uses of ionising radiation sources (i.e. radioisotopes and radiation generating equipment such as accelerators and X-ray machines) for multifarious applications in industry, medicine, agriculture, research and teaching have been significantly increasing all over the world. In India, the application of radiation sources in various fields has registered phenomenal growth during the last decade. The use of radiation sources mainly include radiation processing for food preservation and sterilization of healthcare products, radiotherapy for treatment of cancer, nuclear medicine for diagnosis and therapy, gamma chambers for several R and D studies, blood irradiators, industrial radiography for non destructive examinations of steel structures, industrial ionising radiation gauging devices for monitoring/measurement of on-line quality control parameters (e.g. thickness, level, density, moisture, elemental analysis), consumer products such as gaseous tritium light sources (GTLS), gaseous tritium light devices (GTLD), ionisation chamber smoke detectors (ICSD), fluorescent light starters, antistatic devices and incandescent gas mantles containing thorium etc. All these beneficial applications involve use of both sealed and unsealed radioactive sources and amount of radioactivity varies from few kBq (μCi) to hundreds of TBq (thousands of curies). Radiation sources emit ionising radiations and if not handled properly and safely, may give rise to potential exposures leading to an unacceptable hazard. Therefore, it is necessary to ensure a high standard of safety and reliability in handling of radiation equipment and sources through their careful design by ensuring adequate built-in-safety as per applicable national/international standard, safe operation and periodic maintenance procedures, safe transport from one place to another, secured storage when not in use, physical security to radiation sources, effective emergency response plans and preparedness, including safe

  6. Kα resonance fluorescence in Al, Ti, Cu and potential applications for X-ray sources

    Science.gov (United States)

    Nahar, Sultana N.; Pradhan, Anil K.

    2015-04-01

    The Kα resonance fluorescence (RFL) effect via photoabsorptions of inner shell electrons as the element goes through multiple ionization states is studied. We demonstrate that the resonances observed recently in Kα (1s-2p) fluorescence in aluminum plasmas by using a high-intensity X-ray free-electron laser [1] are basically K-shell resonances in hollow atoms going through multiple ionization states at resonant energies as predicted earlier for gold and iron ions [2]. These resonances are formed below the K-shell ionization edge and shift toward higher energies with ionization states, as observed. Fluorescence emission intensities depend on transition probabilities for each ionization stage of the given element for all possible Kα (1 s → 2 p) transition arrays. The present calculations for resonant photoabsorptions of Kα photons in Al have reproduced experimentally observed features. Resonant cross sections and absorption coefficients are presented for possible observation of Kα RFL in the resonant energy ranges of 4.5-5.0 keV for Ti ions and 8.0-8.7 keV for Cu ions respectively. We suggest that theoretically the Kα RFL process may be driven to enhance the Auger cycle by a twin-beam monochromatic X-ray source, tuned to the K-edge and Kα energies, with potential applications such as the development of narrow-band biomedical X-ray devices.

  7. Lighting Options for Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W.S.

    1991-04-01

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  8. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    International Nuclear Information System (INIS)

    Rodrigues, D.; Teixeira, P.; Tavares, C.J.; Azeredo, J.

    2013-01-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO 2 ) and, more recently, nitrogen-doped titanium dioxide (N-TiO 2 ) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO 2 coating on glass and stainless steel under two different sources of visible light – fluorescent and incandescent – and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO 2 coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 10 6 CFU/ml on glass and 2.37 × 10 7 on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO 2 coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly effective against foodborne

  9. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    Science.gov (United States)

    Rodrigues, D.; Teixeira, P.; Tavares, C. J.; Azeredo, J.

    2013-04-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO2) and, more recently, nitrogen-doped titanium dioxide (N-TiO2) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO2 coating on glass and stainless steel under two different sources of visible light - fluorescent and incandescent - and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO2 coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 106 CFU/ml on glass and 2.37 × 107 on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO2 coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly effective against foodborne pathogens and

  10. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr. C.R.; Schmid, A.W.; Marshall, K.L.

    2006-01-01

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time

  11. Moessbauer spectroscopy and X-ray fluorescence analysis in studies for determinate the sources of several prehispanic objects

    International Nuclear Information System (INIS)

    Arriola S, H.; Ramos R, P.; Castro V, P.; Jimenez R, A.; Flores D, F.; Garcia Moreno C, C.

    1980-01-01

    A study by the Moessbauer effect and X-ray fluorescence analysis of the mexican prehispanic ceramic specimens is presented. Several iron compounds of the ceramics are determined, the different iron compounds indicate different sources of the clays, and different forms of ovens used with them, this compounds are identified by the differents oxidation states of the magnetic iron Fe 3+ , Fe 2+ . (author)

  12. Interaction of light quality and fertility on biomass, shoot pigmentation and xanthophyll cycle flux in Chinese kale.

    Science.gov (United States)

    Kopsell, Dean A; Sams, Carl E; Morrow, Robert C

    2017-02-01

    Nutritionally important carotenoids in 21-day-old brassica microgreens increase following short and long-term exposure to narrow-band wavelengths from light-emitting diodes (LED). The present study aimed to measure the impact of: (1) fluorescent/incandescent light and different percentages of blue/red LED light and (2) different levels of nutrient fertility on biomass and pigment concentrations in 30-day-old 'Green Lance' Chinese kale (Brassica oleracea var. alboglabra). Kale plants were exposed to four light treatments and two fertility levels and were harvested 30 days after seeding and analyzed for nutritionally important shoot pigments. Kale under the fluorescent/incandescent light treatment had a significantly higher shoot fresh and dry mass. The shoot tissue concentrations of most pigment were significantly higher under blue/red LED light treatments. The higher fertility level resulted in higher concentrations for most pigments. Interestingly, the pool of xanthophyll cycle pigments and de-epoxidized xanthophylls was higher under all LED treatments. The results obtained in the present study support previous data demonstrating the stimulation of nutritionally important shoot tissue pigment concentrations following exposure to sole source blue/red LEDs compared to traditional lighting. Xanthophyll cycle flux was impacted by LEDs and this may support the role of zeaxanthin in blue light perception in leafy specialty crops. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Collimated dual species oven source and its characterisation via spatially resolved fluorescence spectroscopy

    Science.gov (United States)

    Cooper, N.; Da Ros, E.; Nute, J.; Baldolini, D.; Jouve, P.; Hackermüller, L.; Langer, M.

    2018-03-01

    We describe the design, construction and characterisation of a collimated, dual-species oven source for generating intense beams of lithium and caesium in UHV environments. Our design produces full beam overlap for the two species. Using an aligned microtube array the FWHM of the output beam is restricted to  ˜75 milliradians, with an estimated axial brightness of 3.6× 1014 atoms s-1 sr-1 for Li and 7.4× 1015 atoms s-1 sr-1 for Cs. We measure the properties of the output beam using a spatially-resolved fluorescence technique, which allows for the extraction of additional information not accessible without spatial resolution.

  14. Combined fluorescence and phase contrast imaging at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Hornberger, B.; Feser, M.; Jacobsen, C.; Vogt, S.; Legnini, D.; Paterson, D.; Rehak, P.; DeGeronimo, G.; Palmer, B.M.; Experimental Facilities Division; State Univ. of New York at Stony Brook Univ.; BNL; Univ. of Vermont

    2006-01-01

    X-ray fluorescence microprobes excel at detecting and quantifying trace metals in biological and environmental science samples, but typically do not detect low Z elements such as carbon and nitrogen. Therefore, it is hard to put the trace metals into context with their natural environment. We are implementing phase contrast capabilities with a segmented detector into several microprobes at the Advanced Photon Source (APS) to address this problem. Qualitative differential phase contrast images from a modified soft x-ray detector already provide very useful information for general users. We are also implementing a quantitative method to recover the absolute phase shift by Fourier filtering detector images. New detectors are under development which are optimized for the signal levels present at the APS. In this paper, we concentrate on fundamental signal to noise considerations comparing absorption and differential phase contrast

  15. Radiation safety aspects of fluorescent lamp starters incorporating radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Sadagopan, Geetha [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Shukla, V.K. [Environmental Assessment Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2000-05-01

    A fluorescent lamp starter is a switch applies the voltage to the fluorescent tube after sufficient preheating to allow the tube to conduct an electric current. Radioactive substances used in the starters are {sup 85}Kr, {sup 147}Pm, {sup 3}H and {sup 232}Th. In India, fluorescent lamp starters are classified as consumer products and users are outside regulatory control. However, regulatory control is exercised over the manufacturers at the production stage. Tritium activity measured in the lamp starters ranged from 400-4500 Bq with a mean activity of 1.78 kBq. Thorium activity measured varied from 0.44-3.3 mg. The results of radiation safety assessment of the workplace and radioactivity estimation in the starters are discussed in this paper. (author)

  16. Radiation safety aspects of fluorescent lamp starters incorporating radiation source

    International Nuclear Information System (INIS)

    Sadagopan, Geetha; Shukla, V.K.

    2000-01-01

    A fluorescent lamp starter is a switch applies the voltage to the fluorescent tube after sufficient preheating to allow the tube to conduct an electric current. Radioactive substances used in the starters are 85 Kr, 147 Pm, 3 H and 232 Th. In India, fluorescent lamp starters are classified as consumer products and users are outside regulatory control. However, regulatory control is exercised over the manufacturers at the production stage. Tritium activity measured in the lamp starters ranged from 400-4500 Bq with a mean activity of 1.78 kBq. Thorium activity measured varied from 0.44-3.3 mg. The results of radiation safety assessment of the workplace and radioactivity estimation in the starters are discussed in this paper. (author)

  17. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Franz J. T.; Will, Stefan, E-mail: stefan.will@fau.de [Lehrstuhl für Technische Thermodynamik (LTT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058 (Germany); Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052 (Germany); Cluster of Excellence Engineering of Advanced Materials (EAM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052 (Germany); Altenhoff, Michael [Lehrstuhl für Technische Thermodynamik (LTT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058 (Germany); Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052 (Germany)

    2016-05-15

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  18. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    International Nuclear Information System (INIS)

    Huber, Franz J. T.; Will, Stefan; Altenhoff, Michael

    2016-01-01

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  19. Predicting the heat of vaporization of iron at high temperatures using time-resolved laser-induced incandescence and Bayesian model selection

    Science.gov (United States)

    Sipkens, Timothy A.; Hadwin, Paul J.; Grauer, Samuel J.; Daun, Kyle J.

    2018-03-01

    Competing theories have been proposed to account for how the latent heat of vaporization of liquid iron varies with temperature, but experimental confirmation remains elusive, particularly at high temperatures. We propose time-resolved laser-induced incandescence measurements on iron nanoparticles combined with Bayesian model plausibility, as a novel method for evaluating these relationships. Our approach scores the explanatory power of candidate models, accounting for parameter uncertainty, model complexity, measurement noise, and goodness-of-fit. The approach is first validated with simulated data and then applied to experimental data for iron nanoparticles in argon. Our results justify the use of Román's equation to account for the temperature dependence of the latent heat of vaporization of liquid iron.

  20. Practical sublimation source for large-scale chromium gettering in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, J E; Gabbard, W A; Emerson, L C; Mioduszewski, P K [Oak Ridge National Lab., TN (USA)

    1984-05-01

    This paper describe the fabrication and testing of a large-scale chromium sublimation source that resembles the VARIAN Ti-ballsup(TM) in its design. The device consists of a hollow chromium sphere with a diameter of approximately 3 cm and an incandescent filament for radiation heating from inside the ball. We also discuss the gettering technique utilizing this source. The experimental arrangement consists of an ultrahigh vacuum (UHV) system instrumented for total and partial pressure measurements, a film thickness monitor, thermocouples, an optical pyrometer, and appropriate instrumentation to measure the heating power. The results show the temperature and corresponding sublimation rate of the Cr-ball as functions of input power. In addition, an example of the total pumping speed of a gettered surface is shown.

  1. Smart indoor solid state lighting based on a novel illumination model and implementation

    NARCIS (Netherlands)

    Bhardwaj, S.; Ozcelebi, T.; Lukkien, J.J.; Verhoeven, R.

    2011-01-01

    Smart lighting research traditionally focuses on conventional incandescent and fluorescent luminaries. However, in addition to its higher energy efficiency and longer lifetime, Solid State Lighting (SSL) offers better control of spectral, spatial, temporal polarization, and color properties of

  2. Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements

    Science.gov (United States)

    Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey

    2017-12-01

    Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.

  3. Integrated Photoacoustic and Fluorescence Confocal Microscopy

    OpenAIRE

    Wang, Yu; Maslov, Konstantin; Kim, Chulhong; Hu, Song; Wang, Lihong V.

    2010-01-01

    We have developed a dual-modality imaging system by integrating optical-resolution photoacoustic microscopy and fluorescence confocal microscopy to provide optical absorption and fluorescence contrasts simultaneously. By sharing the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence images are acquired in a single scan. The micrometer resolution allows imaging of both blood and lymphatic vessels down to the capillary level. Simultaneous photoacoustic...

  4. Sustainable LED Fluorescent Light Replacement Technology

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-09-30

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life: Environmental Impact Review – Designs are comparable

  5. A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase.

    Science.gov (United States)

    Del Barrio, Melisa; Cases, Rafael; Cebolla, Vicente; Hirsch, Thomas; de Marcos, Susana; Wilhelm, Stefan; Galbán, Javier

    2016-11-01

    Upon near-infrared excitation Tm(3+)+Yb(3+) doped fluorohafnate glasses present upconversion properties and emit visible light. This property permits to use these glasses (UCG) as excitation sources for fluorescent optical biosensors. Taking this into account, in this work a fluorescent biosensor for glucose determination is designed and evaluated. The biosensor combines the UCG and the fluorescence of the enzyme glucose oxidase chemically modified with a fluorescein derivative (GOx-FS), whose intensity is modified during the enzymatic reaction with glucose. Optical parameters have been optimized and a mathematical model describing the behavior of the analytical signal is suggested. Working in FIA mode, the biosensor responds to glucose concentrations up to, at least, 15mM with a limit of detection of 1.9mM. The biosensor has a minimum lifetime of 9 days and has been applied to glucose determination in drinks. The applicability of the sensor was tested by glucose determination in two fruit juices. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Kevin R; Farrell, Thomas J; Patterson, Michael S [Department of Medical Physics, Juravinski Cancer Centre and McMaster University, 699 Concession Street, Hamilton, Ontario L8V 5C2 (Canada)

    2003-12-21

    Steady-state diffusion theory models of fluorescence in tissue have been investigated for recovering fluorophore concentrations and fluorescence quantum yield. Spatially resolved fluorescence, excitation and emission reflectance were calculated by diffusion theory and Monte Carlo simulations, and measured using a multi-fibre probe on tissue-simulating phantoms containing either aluminium phthalocyanine tetrasulfonate (AlPcS{sub 4}), Photofrin or meso-tetra-(4-sulfonatophenyl)-porphine dihydrochloride (TPPS{sub 4}). The accuracy of the fluorophore concentration and fluorescence quantum yield recovered by three different models of spatially resolved fluorescence were compared. The models were based on: (a) weighted difference of the excitation and emission reflectance, (b) fluorescence due to a point excitation source or (c) fluorescence due to a pencil beam excitation source. When literature values for the fluorescence quantum yield were used for each of the fluorophores, the fluorophore absorption coefficient (and hence concentration) at the excitation wavelengthwas recovered with a root-mean-square accuracy of 11.4% using the point source model of fluorescence and 8.0% using the more complicated pencil beam excitation model. The accuracy was calculated over a broad range of optical properties and fluorophore concentrations. The weighted difference of reflectance model performed poorly, with a root-mean-square error in concentration of about 50%. Monte Carlo simulations suggest that there are some situations where the weighted difference of reflectance is as accurate as the other two models, although this was not confirmed experimentally. Estimates of the fluorescence quantum yield in multiple scattering media were also made by determining independently from the fitted absorption spectrum and applying the various diffusion theory models. The fluorescence quantum yields for AlPcS{sub 4} and TPPS{sub 4} were calculated to be 0.59 {+-} 0.03 and 0.121 {+-} 0

  7. Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence

    International Nuclear Information System (INIS)

    Diamond, Kevin R; Farrell, Thomas J; Patterson, Michael S

    2003-01-01

    Steady-state diffusion theory models of fluorescence in tissue have been investigated for recovering fluorophore concentrations and fluorescence quantum yield. Spatially resolved fluorescence, excitation and emission reflectance were calculated by diffusion theory and Monte Carlo simulations, and measured using a multi-fibre probe on tissue-simulating phantoms containing either aluminium phthalocyanine tetrasulfonate (AlPcS 4 ), Photofrin or meso-tetra-(4-sulfonatophenyl)-porphine dihydrochloride (TPPS 4 ). The accuracy of the fluorophore concentration and fluorescence quantum yield recovered by three different models of spatially resolved fluorescence were compared. The models were based on: (a) weighted difference of the excitation and emission reflectance, (b) fluorescence due to a point excitation source or (c) fluorescence due to a pencil beam excitation source. When literature values for the fluorescence quantum yield were used for each of the fluorophores, the fluorophore absorption coefficient (and hence concentration) at the excitation wavelengthwas recovered with a root-mean-square accuracy of 11.4% using the point source model of fluorescence and 8.0% using the more complicated pencil beam excitation model. The accuracy was calculated over a broad range of optical properties and fluorophore concentrations. The weighted difference of reflectance model performed poorly, with a root-mean-square error in concentration of about 50%. Monte Carlo simulations suggest that there are some situations where the weighted difference of reflectance is as accurate as the other two models, although this was not confirmed experimentally. Estimates of the fluorescence quantum yield in multiple scattering media were also made by determining independently from the fitted absorption spectrum and applying the various diffusion theory models. The fluorescence quantum yields for AlPcS 4 and TPPS 4 were calculated to be 0.59 ± 0.03 and 0.121 ± 0.001 respectively using the point

  8. 40 CFR 426.123 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp... technology economically achievable: (a) [Reserved] (b) Any manufacturing plant which frosts incandescent lamp... characteristic Effluent limitations Maximum for any 1 day Average of daily values for 30 consecutive days shall...

  9. A practical sublimation source for large-scale chromium gettering in fusion devices

    International Nuclear Information System (INIS)

    Simpkins, J.E.; Gabbard, W.A.; Emerson, L.C.; Mioduszewski, P.K.

    1984-01-01

    This paper describe the fabrication and testing of a large-scale chromium sublimation source that resembles the VARIAN Ti-ballsup(TM) in its design. The device consists of a hollow chromium sphere with a diameter of approximately 3 cm and an incandescent filament for radiation heating from inside the ball. We also discuss the gettering technique utilizing this source. The experimental arrangement consists of an ultrahigh vacuum (UHV) system instrumented for total and partial pressure measurements, a film thickness monitor, thermocouples, an optical pyrometer, and appropriate instrumentation to measure the heating power. The results show the temperature and corresponding sublimation rate of the Cr-ball as functions of input power. In addition, an example of the total pumping speed of a gettered surface is shown. (orig.)

  10. Characterization of a pulsed x-ray source for fluorescent lifetime measurements

    International Nuclear Information System (INIS)

    Blankespoor, S.C.; Derenzo, S.E.; Moses, W.W.; Rossington, C.S.; Ito, M.; Oba, K.

    1994-01-01

    To search for new, fast, inorganic scintillators, the authors have developed a bench-top pulsed x-ray source for determining fluorescent lifetimes and wavelengths of compounds in crystal or powdered form. This source uses a light-excited x-ray tube which produces x-rays when light from a laser diode strikes its photocathode. The x-ray tube has a tungsten anode, a beryllium exit window, a 30 kV maximum tube bias, and a 50 μA maximum average cathode current. The laser produces 3 x 10 7 photons at 650 nm per ∼100 ps pulse, with up to 10 7 pulses/sec. The time spread for the laser diode, x-ray tube, and a microchannel plate photomultiplier tube is less than 120 ps fwhm. The mean x-ray energy at tube biases of 20, 25, and 30 kV is 9.4, 10.3, and 11.1 keV, respectively. The authors measured 140, 230, and 330 x-ray photons per laser diode pulse per steradian, at tube biases of 20, 25, and 30 kV, respectively. Background x-rays due to dark current occur at a rate of 1 x 10 6 and 3 x 10 6 photons/sec/steradian at biases of 25 and 30 kV, respectively. Data characterizing the x-ray output with an aluminum filter in the x-ray beam are also presented

  11. Nonlinear excitation fluorescence microscopy: source considerations for biological applications

    Science.gov (United States)

    Wokosin, David L.

    2008-02-01

    Ultra-short-pulse solid-state laser sources have improved contrast within fluorescence imaging and also opened new windows of investigation in biological imaging applications. Additionally, the pulsed illumination enables harmonic scattering microscopy which yields intrinsic structure, symmetry and contrast from viable embryos, cells and tissues. Numerous human diseases are being investigated by the combination of (more) intact dynamic tissue imaging of cellular function with gene-targeted specificity and electrophysiology context. The major limitation to more widespread use of multi-photon microscopy has been the complete system cost and added complexity above and beyond commercial camera and confocal systems. The current status of all-solid-state ultrafast lasers as excitation sources will be reviewed since these lasers offer tremendous potential for affordable, reliable, "turnkey" multiphoton imaging systems. This effort highlights the single box laser systems currently commercially available, with defined suggestions for the ranges for individual laser parameters as derived from a biological and fluorophore limited perspective. The standard two-photon dose is defined by 800nm, 10mW, 200fs, and 80Mhz - at the sample plane for tissue culture cells, i.e. after the full scanning microscope system. Selected application-derived excitation wavelengths are well represented by 700nm, 780nm, ~830nm, ~960nm, 1050nm, and 1250nm. Many of the one-box lasers have fixed or very limited excitation wavelengths available, so the lasers will be lumped near 780nm, 800nm, 900nm, 1050nm, and 1250nm. The following laser parameter ranges are discussed: average power from 200mW to 2W, pulse duration from 70fs to 700fs, pulse repetition rate from 20MHz to 200MHz, with the laser output linearly polarized with an extinction ratio at least 100:1.

  12. Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources

    International Nuclear Information System (INIS)

    Laws, W.R.; Potter, D.W.; Sutherland, J.C.

    1984-01-01

    We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics

  13. An optical method for reducing green fluorescence from urine during fluorescence-guided cystoscopy

    DEFF Research Database (Denmark)

    Lindvold, Lars René; Hermann, Gregers G

    2016-01-01

    Photodynamic diagnosis (PDD) of bladder tumour tissue significantly improves endoscopic diagnosis and treatment of bladder cancer in rigid cystoscopes in the operating theatre and thus reduces tumour recurrence. PDD comprises the use of blue light, which unfortunately excites green fluorescence...... this light source also is useful for exciting autofluorescence in healthy bladder mucosa. This autofluorescence then provides a contrast to the sensitized fluorescence (PDD) of tumours in the bladder....

  14. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J.

    2013-03-01

    This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summary of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected

  15. Determination of illuminants representing typical white light emitting diodes sources

    DEFF Research Database (Denmark)

    Jost, S.; Ngo, M.; Ferrero, A.

    2017-01-01

    is to develop LED-based illuminants that describe typical white LED products based on their Spectral Power Distributions (SPDs). Some of these new illuminants will be recommended in the update of the CIE publication 15 on colorimetry with the other typical illuminants, and among them, some could be used......Solid-state lighting (SSL) products are already in use by consumers and are rapidly gaining the lighting market. Especially, white Light Emitting Diode (LED) sources are replacing banned incandescent lamps and other lighting technologies in most general lighting applications. The aim of this work...... to complement the CIE standard illuminant A for calibration use in photometry....

  16. Practical sublimation source for large-scale chromium gettering in fusion devices

    International Nuclear Information System (INIS)

    Simpkins, J.E.; Emerson, L.C.; Mioduszewski, P.K.

    1983-01-01

    This paper describes the technique of chromium gettering with a large-scale sublimation source which resembles in its design the VARIAN Ti-Ball. It consists of a hollow chromium sphere with a diameter of approximately 3 cm and an incandescent filament for radiation heating from inside the ball. While the fabrication of the source is described in a companion paper, we discuss here the gettering technique. The experimental arrangement consists of an UHV system instrumented for total- and partial-pressure measurements, a film-thickness monitor, thermocouples, an optical pyrometer, and appropriate instrumentation to measure the heating power. The results show the temperature and corresponding sublimation rate of the Cr-Ball as function of input power. In addition, an example of the total pumping speed of a gettered surface is shown

  17. Uniform LED illuminator for miniature displays

    Science.gov (United States)

    Medvedev, Vladimir; Pelka, David G.; Parkyn, William A.

    1998-10-01

    The Total Internally Reflecting (TIR) lens is a faceted structure composed of prismatic elements that collect a source's light over a much larger angular range than a conventional Fresnel lens. It has been successfully applied to the efficient collimation of light from incandescent and fluorescent lamps, and from light-emitting diodes (LEDs). A novel LED-powered collimating backlight is presented here, for uniformly illuminating 0.25'-diagonal miniature liquid- crystal displays, which are a burgeoning market for pagers, cellular phones, digital cameras, camcorders, and virtual- reality displays. The backlight lens consists of a central dual-asphere refracting section and an outer TIR section, properly curved with a curved exit face.

  18. Crystal growth and characterization of fluorescent SiC

    DEFF Research Database (Denmark)

    Wellmann, P.; Kaiser, M.; Hupfer, T.

    -SiC co-doped with nitrogen and boron has been achieved [1][2]. The source is the rate determining step, and is expected to be determining the fluorescent properties by introducing dopants to the layer from the source. The optimization process of the polycrystalline, co-doped SiC:B,N source material...... and its impact on the FSPG epitaxial process, in particular the influence on the brightness of the is presented. In particular, the doping properties of the poly-SiC source material influence on the brightness of the fluorescent 6H-SiC. In addition we have investigated how the grain orientation...

  19. Total-reflection x-ray fluorescence with a brillant undulator x-ray source

    International Nuclear Information System (INIS)

    Sakurai, K.; Eba, H.; Numako, C.; Suzuki, M.; Inoue, K.; Yagi, N.

    2000-01-01

    Total-reflection x-ray fluorescence (TXRF) is a highly sensitive technique for analyzing trace elements, because of the very low background from the sample support. Use of third-generation synchrotron x-ray source could further enhance the detection power. However, while such high sensitivity permits the detection of signals from trace elements of interest, it also means that one can observe weak parasitic x-rays as well. If the sample surface becomes even slightly contaminated, owing to air particulates near the beamline, x-ray fluorescence lines of iron, zinc, copper, nickel, chromium, and titanium can be observed even for a blank sample. Another critical problem is the low-energy-side tail of the scattering x-rays, which ultimately restricts the detection capability of the technique using a TXRF spectrometer based on a Si(Li) detector. The present paper describes our experiments with brilliant undulator x-ray beams at BL39XU and BL40XU, at the SPring-8, Harima, Japan. The emphasis is on the development of instruments to analyze a droplet of 0.1 μl containing trace elements of ppb level. Although the beamline is not a clean room, we have employed equipment for preparing a clean sample and also for avoiding contamination during transferring the sample into the spectrometer. We will report on the successful detection of the peak from 0.8 ppb selenium in a droplet (absolute amount 80 fg). We will also present the results of recent experiments obtained from a Johansson spectrometer rather than a Si(Li) detector. (author)

  20. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    International Nuclear Information System (INIS)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The new version MS2 of the in situ on-axis micro-spectrophotometer at the macromolecular crystallography beamline X10SA of the Swiss Light Source supports the concurrent acquisition of Raman, resonance Raman, fluorescence and UV/Vis absorption spectra along with diffraction data. The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years

  1. Multi-site and multi-depth in vivo cancer localization enhancement after auto-fluorescence removal

    International Nuclear Information System (INIS)

    Montcuquet, A.S.; Herve, L.; Navarro, F.; Dinten, J.M.; Mars, J.I.

    2011-01-01

    Fluorescence imaging in diffusive media locates tumors tagged by injected fluorescent markers in NIR wavelengths. For deep embedded markers, natural auto-fluorescence of tissues comes to be a limiting factor to tumor detection and accurate FDOT reconstructions. A spectroscopic approach coupled with Non-negative Matrix Factorization source separation method is explored to discriminate fluorescence sources according to their fluorescence spectra and remove unwanted auto-fluorescence. We successfully removed auto-fluorescence from acquisitions on living mice with a single subcutaneous tumor or two capillary tubes inserted at different depths. (authors)

  2. Sensitivities and detection limits of X-ray fluorescence analysis with a 10 mCi241Am source

    International Nuclear Information System (INIS)

    Wundt, K.; Janghorbani, M.; Starke, K.

    1976-01-01

    Seven trace elements ranging from chromium to barium were preconcentrated on Amberlite IR-120 cation exchange paper and determined in an energy dispersive X-ray fluorescence system using a 10 mCi 241 Am source. Sensitivities were experimentally determined and checked with theoretically calculated values. The detection limits are compared with elemental levels present in typical surface waters and those allowed in drinking water. Appropriate conclusions as to feasibility of such a system for environmental monitoring are drawn. (orig.) [de

  3. Radiative transport-based frequency-domain fluorescence tomography

    International Nuclear Information System (INIS)

    Joshi, Amit; Rasmussen, John C; Sevick-Muraca, Eva M; Wareing, Todd A; McGhee, John

    2008-01-01

    We report the development of radiative transport model-based fluorescence optical tomography from frequency-domain boundary measurements. The coupled radiative transport model for describing NIR fluorescence propagation in tissue is solved by a novel software based on the established Attila(TM) particle transport simulation platform. The proposed scheme enables the prediction of fluorescence measurements with non-contact sources and detectors at a minimal computational cost. An adjoint transport solution-based fluorescence tomography algorithm is implemented on dual grids to efficiently assemble the measurement sensitivity Jacobian matrix. Finally, we demonstrate fluorescence tomography on a realistic computational mouse model to locate nM to μM fluorophore concentration distributions in simulated mouse organs

  4. High efficiency quasi-monochromatic infrared emitter

    Energy Technology Data Exchange (ETDEWEB)

    Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri, E-mail: henri.benisty@institutoptique.fr; Greffet, Jean-Jacques [Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France); Bouchon, Patrick; Haïdar, Riad [Office National d’Études et de Recherches Aérospatiales, Chemin de la Hunière, 91761 Palaiseau (France)

    2014-02-24

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  5. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, D.; Teixeira, P. [Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Tavares, C.J. [Center of Physics, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Azeredo, J., E-mail: jazeredo@deb.uminho.pt [Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-04-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO{sub 2}) and, more recently, nitrogen-doped titanium dioxide (N-TiO{sub 2}) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO{sub 2} coating on glass and stainless steel under two different sources of visible light – fluorescent and incandescent – and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO{sub 2} coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 10{sup 6} CFU/ml on glass and 2.37 × 10{sup 7} on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO{sub 2} coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly

  6. Combined "dual" absorption and fluorescence smartphone spectrometers.

    Science.gov (United States)

    Arafat Hossain, Md; Canning, John; Ast, Sandra; Cook, Kevin; Rutledge, Peter J; Jamalipour, Abbas

    2015-04-15

    A combined "dual" absorption and fluorescence smartphone spectrometer is demonstrated. The optical sources used in the system are the white flash LED of the smartphone and an orthogonally positioned and interchangeable UV (λex=370  nm) and blue (λex=450  nm) LED. The dispersive element is a low-cost, nano-imprinted diffraction grating coated with Au. Detection over a 300 nm span with 0.42 nm/pixel resolution was carried out with the camera CMOS chip. By integrating the blue and UV excitation sources into the white LED circuitry, the entire system is self-contained within a 3D printed case and powered from the smartphone battery; the design can be scaled to add further excitation sources. Using a customized app, acquisition of absorption and fluorescence spectra are demonstrated using a blue-absorbing and green-emitting pH-sensitive amino-naphthalimide-based fluorescent probe and a UV-absorbing and blue-emitting Zn2+-sensitive fluoro-ionophore.

  7. Operational efficiency of the lighting system of bus salons

    Directory of Open Access Journals (Sweden)

    Brytkovskyi V.M.

    2016-08-01

    Full Text Available In recent years the problem of safety of people is studied primarily in aspects of natural and man-made disasters, fire, health and safety in the workplace. A problem connected with the way of life of the people, in particular with the use of bus transport remains almost out of sight. In addition to the foregoing, there is another side to the issue: modern development of industry and transport is characterized by large-scale introduction of technical measures aimed at saving energy In the specified aspect theoretical dependences for evaluation of technological economic efficiency of light sources in indoor lighting system buses are grounded. This theoretical dependency will make analytical framework justification applying the respective sources of light, taking into account the hygiene requirements to illumination. The methodology of calculation of economic efficiency of lighting of bus salons is offered. Estimating parameter is justified relative objective function value costs per unit of time or distance. The greatest costs are typical for lamps with incandescent bulbs. The least is common to lamps with fluorescent lamps. Led bulbs have no significant advantage even over incandescent lamps. The reason for this is the relatively high color temperature radiation of LED lamps that requires more light levels and, consequently, the high cost of energy, as well as relatively large initial cost of these lamps.

  8. Analysis of different technologies of artificial illumination for production of chrysanthemum in protecting environment; Analise de diferentes tecnologias de iluminacao artificial para producao de crisantemos em ambiente protegido

    Energy Technology Data Exchange (ETDEWEB)

    David, Eduardo; Rossi, Luiz Antonio [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola. Dept. de Engenharia Agricola], Emails: eduardo.david@gr.unicamp.br, rossi@agr.unicamp.br

    2006-07-01

    In protecting environment chrysanthemum's production, the artificial illumination type used to induce the photo period, affects the growing and development of plants, as well the electric power consumed in this process of production. The most useful illumination type is by filament. Today, new artificial illumination technologies have been studied to reduce the electric power consumption. This work has been development in a commercial greenhouse with four varieties. The preliminary results have showed that the utilization of discharge lamps does not affect significantly the flower's development considering the weight and presence of flower bud. In the analyzed period, the reduction on power electricity consumption was 60,13% on the sodium-vapor lamp, 41,66% on the mercury-vapor lamp, 60,52% on the fluorescent tube lamp and 50,32% on the compact fluorescent-integrated lamp in comparison with the incandescent lamp that nowadays it is used. It shows the high intensity discharge technology (HID technology) has saved more electricity than the incandescent lamp. (author)

  9. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source.

    Science.gov (United States)

    Byun, Ho-June; Song, Woo-Seuk; Yang, Heesun

    2011-06-10

    The work presents a facile, stepwise synthetic approach for the production of highly fluorescent InP/ZnS core/shell quantum dots (QDs) by using a safer phosphorus (P) precursor. First, InP quantum dots (QDs) were solvothermally prepared at 180 °C for 24 h by using a P source of P(N(CH(3))(2))(3). The as-grown InP QDs were consecutively placed in another solvothermal condition for ZnS shell overcoating. In contrast to the almost non-fluorescent InP QDs, due to their highly defective surface states, the ZnS-coated InP QDs were highly fluorescent as a result of effective surface passivation. After the shell growth, the resulting InP/ZnS core/shell QDs were subjected to a size-sorting processing, by which red- to green-emitting QDs with quantum yields (QYs) of 24-60% were produced. Solvothermal shell growth parameters such as the reaction time and Zn/In solution concentration ratio were varied and optimized toward the highest QYs of core/shell QDs.

  10. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source

    International Nuclear Information System (INIS)

    Byun, Ho-June; Song, Woo-Seuk; Yang, Heesun

    2011-01-01

    The work presents a facile, stepwise synthetic approach for the production of highly fluorescent InP/ZnS core/shell quantum dots (QDs) by using a safer phosphorus (P) precursor. First, InP quantum dots (QDs) were solvothermally prepared at 180 deg. C for 24 h by using a P source of P(N(CH 3 ) 2 ) 3 . The as-grown InP QDs were consecutively placed in another solvothermal condition for ZnS shell overcoating. In contrast to the almost non-fluorescent InP QDs, due to their highly defective surface states, the ZnS-coated InP QDs were highly fluorescent as a result of effective surface passivation. After the shell growth, the resulting InP/ZnS core/shell QDs were subjected to a size-sorting processing, by which red- to green-emitting QDs with quantum yields (QYs) of 24-60% were produced. Solvothermal shell growth parameters such as the reaction time and Zn/In solution concentration ratio were varied and optimized toward the highest QYs of core/shell QDs.

  11. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source

    Science.gov (United States)

    Byun, Ho-June; Song, Woo-Seuk; Yang, Heesun

    2011-06-01

    The work presents a facile, stepwise synthetic approach for the production of highly fluorescent InP/ZnS core/shell quantum dots (QDs) by using a safer phosphorus (P) precursor. First, InP quantum dots (QDs) were solvothermally prepared at 180 °C for 24 h by using a P source of P(N(CH3)2)3. The as-grown InP QDs were consecutively placed in another solvothermal condition for ZnS shell overcoating. In contrast to the almost non-fluorescent InP QDs, due to their highly defective surface states, the ZnS-coated InP QDs were highly fluorescent as a result of effective surface passivation. After the shell growth, the resulting InP/ZnS core/shell QDs were subjected to a size-sorting processing, by which red- to green-emitting QDs with quantum yields (QYs) of 24-60% were produced. Solvothermal shell growth parameters such as the reaction time and Zn/In solution concentration ratio were varied and optimized toward the highest QYs of core/shell QDs.

  12. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Ho-June; Song, Woo-Seuk; Yang, Heesun, E-mail: hyang@hongik.ac.kr [Department of Materials Science and Engineering, Hongik University, Seoul 121-791 (Korea, Republic of)

    2011-06-10

    The work presents a facile, stepwise synthetic approach for the production of highly fluorescent InP/ZnS core/shell quantum dots (QDs) by using a safer phosphorus (P) precursor. First, InP quantum dots (QDs) were solvothermally prepared at 180 deg. C for 24 h by using a P source of P(N(CH{sub 3}){sub 2}){sub 3}. The as-grown InP QDs were consecutively placed in another solvothermal condition for ZnS shell overcoating. In contrast to the almost non-fluorescent InP QDs, due to their highly defective surface states, the ZnS-coated InP QDs were highly fluorescent as a result of effective surface passivation. After the shell growth, the resulting InP/ZnS core/shell QDs were subjected to a size-sorting processing, by which red- to green-emitting QDs with quantum yields (QYs) of 24-60% were produced. Solvothermal shell growth parameters such as the reaction time and Zn/In solution concentration ratio were varied and optimized toward the highest QYs of core/shell QDs.

  13. Disseminating energy-efficient technologies: a case study of compact fluorescent lamps (CFLs) in India

    International Nuclear Information System (INIS)

    Kumar, Arun; Jain, Sudhir K.; Bansal, N.K.

    2003-01-01

    Disseminating energy-efficient technologies, even when they may appear to be technically perfect, is always a tough task, more so in economies with low purchasing power and educational levels. The compact fluorescent lamp (CFL) is one such well-known product that consumes only 20% electricity for the same light output as given out by the ubiquitous incandescent lamp and which, if adopted in a big way, has the potential of reducing peak electric power loads very significantly. However, in India, the CFL sales are still not growing in the expected manner. The current study was accordingly undertaken to investigate the underlying reasons and to determine the most effective ways in which an efficient technology like this could be popularized. The task involved the designing and administering of questionnaires to some 900 respondents from 100 locations representing various socio-economic, educational and professional backgrounds in and around Delhi, and analysing the results in terms of an importance index. Based on this feedback, the authors recommend an aggressive implementation of the formula standing for EDucation, POlicy support, STAandards, Demonstrations and INdustry involvement (EDPOSTADIN) at least for popularizing CFLs

  14. Village electrification technologies - an evaluation of photovoltaic cells and compact fluorescent lamps and their applicability in rural villages based on a Tanzanian case study

    International Nuclear Information System (INIS)

    Gullberg, Monica; Ilskog, Elisabeth; Katyega, Maneno; Kjellstroem, B.

    2005-01-01

    Electrification of remote sites in developing countries is often realised trough diesel generator sets and an electric distribution network. This was also the technology used in the village Urambo, where the first rural electrification co-operative in Tanzania was started in 1994. Climate change however calls for decreased fossil fuel combustion worldwide and new technologies have been further developed since the erection of the diesel generator sets in Urambo. It is therefore not obvious that electrification of other rural areas shall follow the Urambo example. In this article, the situation for 250 electricity consumers in Urambo will be demonstrated and the implications for them of introducing new technologies will be evaluated. Technology options regarded in the study are individual photovoltaic (PV) power systems and either incandescent lamps, tube lights or compact fluorescent lights (CFLs) supplied by diesel generation. The different options have been evaluated with respect to consumer costs and environmental impact. The results of the comparison show that PV generation is able to compete with diesel generation if combined with incandescent lamps, but not when tube lights or CFLs are used in the conventional supply system. It should be noted, however, that while the diesel option offer financially more attractive solutions, individual PV systems do not result in any CO 2 emissions. Furthermore, PV systems normally have a higher reliability. However, since the diesel option is not only cheaper but also offers a wider range of energy services and facilitates, future connection to the national electric grid, the conclusion is that this is preferable before individual PV systems for communities similar to Urambo, if the consumers shall pay the full cost of the service

  15. Laser-induced incandescence measurements in a fired diesel engine at 3 kHz

    Science.gov (United States)

    Boxx, I. G.; Heinold, O.; Geigle, K. P.

    2015-01-01

    Laser-induced incandescence (LII) was performed at 3 kHz in an optically accessible cylinder of a fired diesel engine using a commercially available diode-pumped solid-state laser and an intensified CMOS camera. The resulting images, acquired every 3° of crank angle, enabled the spatiotemporal tracking of soot structures during the expansion/exhaust stroke of the engine cycle. The image sequences demonstrate that soot tends to form in thin sheets that propagate and interact with the in-cylinder flow. These sheets tend to align parallel to the central axis of the cylinder and are frequently wrapped into conical spirals by aerodynamic swirl. Most of the soot is observed well away from the cylinder walls. Quantitative soot measurements were beyond the scope of this study but the results demonstrate the practical utility of using kHz-rate LII to acquire ensemble-averaged statistical data with high crank angle resolution over a complete engine cycle. Based on semi-quantitative measures of soot distribution, it was possible to identify soot dynamics related to incomplete charge exchange. This study shows that long-duration, multi-kHz acquisition rate LII measurements are viable in a fired diesel engine with currently available laser and camera technology, albeit only in the expansion and exhaust phase of the cycle at present. Furthermore, such measurements yield useful insight into soot dynamics and therefore constitute an important new tool for the development and optimization of diesel engine technology.

  16. Exploration in vivo by X-ray fluorescence (thyroid-brain)

    International Nuclear Information System (INIS)

    Delcroix, V.; Allemand, R.; Laval, M.; Dipaola, M.; Tubiana, M.

    1975-01-01

    X-ray fluorescence methods of medical exploration avoid the use of radioactive tracers and hence reduce the total dose received by the patient. In addition the collimation to the excitation source and detector respectively produces a tomographic effect which improves the spatial resolution of the system and even allows organs to be charted. The physical principles involved in X-ray fluorescence are outlined, with emphasis on the fact that the only elements useful for such applications are those of high enough atomic number to emit a fluorescence radiation of energy sufficient to pass through the tissues. The apparatus used, the excitation sources (radioactive source or X-ray tube), the detector and the measurement equipment are described. The experimental results obtained are given in two fields: measurement of blood flow in the tissues; thyroid imagery [fr

  17. Relative evaluation of neutron activation, X-ray fluorescence and spark source mass spectrometry for multielement analysis of geothermal waters

    International Nuclear Information System (INIS)

    Blommaert, W.; Vandelannoote, R.; Van't Dack, L.; Gijbels, R.; Van Grieken, R.

    1980-01-01

    To sulfide geothermal waters from the French Pyrenees region and bicarbonate and chloride waters from the French Vosges area, all of the following analysis techniques were applied in order to compose a broad inventory of trace elements: (1) for the dissolved metarial: neutron activation analysis after a freeze-drying step using a very short cycle, short cycle or long cycle, neutron activation after co-crystallization on 1-(2-pyridylazo)-2-naphthol (PAN) using a short cycle or long cycle, X-ray fluorescence after co-crystallization on PAN and spark source mass spectrometry after evaporation on graphite or preconcentration on PAN, and, (2) for the filtered or suspended material: neutron activation using a very short, short or long cycle and X-ray fluorescence. Altogether, on the average some 30 elements could be determined above the detection limit in solution and 15 in suspension. (author)

  18. Bivariate constant stress degradation model: LED lighting system reliability estimation with two-stage modelling

    NARCIS (Netherlands)

    Sari, J.K.; Newby, M.J.; Brombacher, A.C.; Tang, L.C.

    2009-01-01

    Light-emitting diode (LED) lamp has received great attention as a potential replacement for the more commercially available lighting technology, such as incandescence and fluorescence lamps. LED which is the main component of LED lamp has a very long lifetime. This means that no or very few failures

  19. Assisted Interpretation of Laser-Induced Fluorescence Spectra of Egg-Based Binding Media Using Total Emission Fluorescence Spectroscopy

    International Nuclear Information System (INIS)

    Anglos, D.; Nevin, A.

    2006-01-01

    Laser-induced fluorescence (LIF) spectroscopy can provide nondestructive, qualitative analysis of protein-based binding media found in artworks. Fluorescence emissions from proteins in egg yolk and egg white are due to auto fluorescent aromatic amino acids as well as other native and age-related fluorophores, but the potential of fluorescence spectroscopy for the differentiation between binding media is dependent on the choice of a suitable excitation wavelength and limited by problems in interpretation. However, a better understanding of emission spectra associated with LIF can be achieved following comparisons with total emission fluorescence spectra where a series of consecutive emission spectra are recorded over a specific range. Results using nanosecond UV laser sources for LIF of egg-based binding media are presented which are rationalised following comparisons with total emission spectra. Specifically, fluorescence is assigned to tryptophan and oxidation products of amino acids; in the case of egg yolk, fatty-acid polymerisation and age-related degradation products account for the formation of fluorophores.

  20. Test and Control System for Chlorophyll Fluorescence Parameters Using LED as Excitation Source

    Directory of Open Access Journals (Sweden)

    Zou Qiuying

    2014-05-01

    Full Text Available A new scheme on test and control system for chlorophyll fluorescence is presented in this work, which uses light-emitting diode (LED excitation by means of measuring the fluorescence parameter fpsII. The system takes programmable power supply as LEDs illumination drive power with high sensitivity and signal-to-noise ratio. MINIPAM is used to measure fluorescence parameter fpsII and keeps communication with upper PC by serial port. The upper PC can control the power supply and process the data received from MINIPAM by software which is programmed in VB6. The results show that the system has a lot of advantages such as high accuracy and convenience. The effect of environmental factors on fluorescence parameters is analyzed comprehensively. It will be a practical measurement and control system for photosynthetic ability and have wide application foreground.

  1. Fluorescence lifetime imaging using light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Gordon T; Munro, Ian; Poher, Vincent; French, Paul M W; Neil, Mark A A [Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Elson, Daniel S [Institute of Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hares, Jonathan D [Kentech Instruments Ltd, Unit 9, Hall Farm Workshops, South Moreton, Didcot, Oxfordshire, OX11 9AG (United Kingdom)], E-mail: gordon.kennedy@imperial.ac.uk

    2008-05-07

    We demonstrate flexible use of low cost, high-power light emitting diodes as illumination sources for fluorescence lifetime imaging (FLIM). Both time-domain and frequency-domain techniques have been implemented at wavelengths spanning the range 450-640 nm. Additionally, we demonstrate optically sectioned fluorescence lifetime imaging by combining structured illumination with frequency-domain FLIM.

  2. 40 CFR 92.111 - Smoke measurement system.

    Science.gov (United States)

    2010-07-01

    ... were the exhaust is not circular at its discharge, the path of the light beam through the plume shall.... (ii) The light source shall be an incandescent lamp with a color temperature range of 2800K to 3250K... incandescent lamp, the detector shall have a spectral response similar to the photopic curve of the human eye...

  3. Monitoring by fluorescence measurements

    International Nuclear Information System (INIS)

    Malcolme-Lawes, D.J.; Gifford, L.A.

    1981-01-01

    A fluorimetric detector is described in which the fluorescence excitation source may be 3 H, 14 C, 35 S, 147 Pm or 63 Ni. Such a detector can be adapted for use with flowing liquid systems especially liquid chromatography systems. (U.K.)

  4. Lighting for Education.

    Science.gov (United States)

    Ontario Ministry of Colleges and Universities, Toronto.

    Some of the qualities and quantities that must be juggled to produce good lighting for educational facilities are analyzed with photographs, tables, and drawings. The three categories of lamps used for school lighting (incandescent, fluorescent, and high intensity discharge) are described; a lamp selection guide gives the design characteristics of…

  5. The fluorescence theatre: a cost-effective device using theatre gels for fluorescent protein and dye screening.

    Science.gov (United States)

    Heil, John R; Nordeste, Ricardo F; Charles, Trevor C

    2011-04-01

    Here we report a simple cost-effective device for screening colonies on plates for expression of the monomeric red fluorescent protein mRFP1 and the fluorescent dye Nile red. This device can be built from any simple light source, in our case a Quebec Colony Counter, and cost-effective theatre gels. The device can be assembled in as little as 20 min, and it produces excellent results when screening a large number of colonies.

  6. Intrinsic Fluorescence of PAMAM Dendrimers—Quenching Studies

    Directory of Open Access Journals (Sweden)

    Malgorzata Konopka

    2018-05-01

    Full Text Available Intrinsic, non-traditional fluorescence of polyamidoamine (PAMAM dendrimers that do not possess classical fluorophores has been attracting considerable interest for the last decade. Many hypotheses regarding the source of the fluorescence have appeared, but some of them are still disputable. In order to shed new light on the nature of the phenomenon, we applied quenchers that are normally used to study intrinsic fluorescence of proteins (i.e., KI, CsCl, and acrylamide. KI and acrylamide efficiently quenched steady state fluorescence of PAMAM G2, PAMAM G3, and PAMAM G4 dendrimers. Stern-Volmer plots exhibited a downward curvature that has been elucidated by heterogenous emission. We assume that there are two distinct fluorescent moieties in the dendrimer structure that are characterized by different accessibility to the quenchers.

  7. Studying colours with a smartphone

    Science.gov (United States)

    Rosi, T.; Malgieri, M.; Onorato, P.; De Ambrosis, , A.; Oss, S.

    2017-03-01

    We show how a low-cost spectrometer, based on the use of inexpensive diffraction transmission gratings coupled with a smartphone photo camera, can be assembled and employed to obtain quantitative measurements of spectra from different sources. The analysis of spectra emitted by different light sources (incandescent bulb, fluorescent lamp, gas lamps, LEDs) helps students understand the different physical mechanisms which govern the production of light. Measurements of emission and transmission spectra allow students to focus on the differences between additive and subtractive models of colour formation. For this purpose the spectra of RGB colours emitted from an LCD screen and the transmission spectra of CMY pigments of a laser printer have been studied, using our low-cost spectroscope. A sequence of experimental activities was designed, and proposed to undergraduate students and secondary school teachers in order to study the feasibility and educational potential.

  8. Monitoring of Level of Radiation Hazards to the Community in the Settlement Around the Incandescent Gas Mantle Factory

    International Nuclear Information System (INIS)

    Suryawati

    2000-01-01

    The analyze of radiation internal hazards level of thoron (Rn-220) and its daughter to the community settlement around the incandescent gas mantle factory. The radiation hazard level can be indicated in the form of working level (WL) and sffsctive dose lungs received by the community. The working level and effective dose lungs is got from the measurement of radioactivity level of thoron (Rn-220) and its daugther and by using the mathematical formula calculation. The measurement of thoron radioactive concentration and its daughter. The value of woking level obtained, performance level for community range from 0,001-0,013 WL, equivalent with dose range from 0,014- 0,467 mSv. From the research result, it can be identified that the radiation hazard, because exceed the mean value of threshold thorium radioactive nuclide and its daughter product of natural radiation in back ground per year for word mean i.e. 0,336 mSv, but the value of this research result is far below the allowed value limit for the community is 0,12 WL and 1 mSv/year

  9. X-ray fluorescence imaging with synchrotron radiation

    International Nuclear Information System (INIS)

    Rivers, M.L.

    1987-01-01

    The micro-distribution of trace elements is of great interest in fields such as geochemistry, biology and material science. The synchrotron x-ray fluorescence microprobe provides a technique to quantitatively measure trace element compositions at individual points and to construct semiquantitative two dimensional maps of trace element compositions. This paper describes an x-ray fluorescence system used at the National Synchrotron Light Source

  10. Improvement of gamma-ray Sn transport calculations including coherent and incoherent scatterings and secondary sources of bremsstrahlung and fluorescence: Determination of gamma-ray buildup factors

    International Nuclear Information System (INIS)

    Kitsos, S.; Diop, C.M.; Assad, A.; Nimal, J.C.; Ridoux, P.

    1996-01-01

    Improvements of gamma-ray transport calculations in S n codes aim at taking into account the bound-electron effect of Compton scattering (incoherent), coherent scattering (Rayleigh), and secondary sources of bremsstrahlung and fluorescence. A computation scheme was developed to take into account these phenomena by modifying the angular and energy transfer matrices, and no modification in the transport code has been made. The incoherent and coherent scatterings as well as the fluorescence sources can be strictly treated by the transfer matrix change. For bremsstrahlung sources, this is possible if one can neglect the charged particles path as they pass through the matter (electrons and positrons) and is applicable for the energy range of interest for us (below 10 MeV). These improvements have been reported on the kernel attenuation codes by the calculation of new buildup factors. The gamma-ray buildup factors have been carried out for 25 natural elements up to 30 mean free paths in the energy range between 15 keV and 10 MeV

  11. SEM investigation of incandescent lamp mantle structure on durability

    International Nuclear Information System (INIS)

    Gerneke, D.; Lang, C.

    2002-01-01

    Full text: The incandescent mantle as used on pressure and non-pressure liquid fuel lamps has been in use for over 100 years. What remains unexplained is the way in which the resistance to mechanical shock and the decline in tensile strength with usage is experienced. It has been suggested that to improve durability it is necessary to continuously burn a new mantle for the first two to three hours. The known factors in mantle durability and mechanical strength are chemical composition and fabric weave. This study was undertaken to investigate the effects of burning time and temperature on thorium oxide mantles. The operating temperature of mantles on a range of kerosene pressure lamps was measured and found to be between 800 and 1100 deg C. Heat treatments of thorium based Coleman mantles were carried out in a laboratory furnace within these ranges of temperatures for periods ranging from 2 minutes to 2 hours. The mantles were then viewed in a LEO S440 analytical SEM. Results at 800 deg C show a distinct change in surface morphology with increasing exposure time. At the shorter times (2-5 minutes) the surface was relatively smooth. With increased time periods (15 - 120 minutes) the surface was observed to have a large lumpy structure. At 1100 deg C the difference in surface morphology was not apparent between the shortest and longest times. The surface appears much smoother and no lumpy structure was observed. This suggests that when a mantle is operated at the higher temperature of 1100 deg C the structure of the Thorium oxide is quickly transformed into the known stronger amorphous form. This is taken as the observed smooth structure seen in the SEM images of the 1100 deg C samples. Thus the mantle is expected to be more resistant to mechanical shock and have increased durability. Practical field test results confirm these observations. The mantle on a lamp that is operating efficiently, burns brightly, will far outlast a mantle on an inefficient lamp which bums

  12. Application of radionuclide sources for excitation in energy-dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Hoffmann, P.

    1986-01-01

    X-ray fluorescence (XRF) analysis is in broad application in many fields of science where elemental determinations are necessary. Solid and liquid samples are analyzed by this method. Solids are introduced in thin or thick samples as melted glass, pellets, powders or as original specimen. The excitation of X-ray spectra can be performed by specific and polychromic radiation of X-ray tubes, by protons, deuterons, α-particles, heavy ions and synchrotron radiation from accelerators and by α-particles, X- and γ-rays and by bremsstrahlung generated by β - -particles from radionuclide sources. The radionuclides are devided into groups with respect to their decay mode and the energy of the emitted radiation. The broad application of radionuclides in XRF excitation is shown in examples as semi-quantitative analysis of glasses, as quantitative analysis of coarse ceramics and as quantitative determination of heavy elements (mainly actinides) in solutions. The advantages and disadvantages of radionuclide excitation in XRF analysis are discussed. (orig.) [de

  13. The chemistry of artificial lighting devices lamps, phosphors and cathode ray tubes

    CERN Document Server

    Ropp, Richard C

    2013-01-01

    Both the early use of artificial lighting and current manufacturing methods concerning incandescent and fluorescent lamps are covered in this book. The protocols for manufacture of fluorescent lamp phosphors and those used in cathode ray tubes are also treated in some detail. This text surveys the amazing, vast array of artificial lighting devices known to date in terms of how they arose and are, or have been used by mankind. A complete description of the formulations and methodology for manufacturing all known phosphors is given. The book will serve as a repository of such phosphor manufacturing methods, including that of cathode ray tube phosphors. Methods of manufacture of lamp parts are also presented, including that of tungsten wire. The original approaches used are described as well as improvements in technology. These will serve as comparative methods for present day manufacture of these components. A history of the lamp industry is presented. Several methods are given which may serve as a source for f...

  14. Tomato seeds maturity detection system based on chlorophyll fluorescence

    Science.gov (United States)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  15. A Precisely Assembled Carbon Source to Synthesize Fluorescent Carbon Quantum Dots for Sensing Probes and Bioimaging Agents.

    Science.gov (United States)

    Qiao, Yiqiang; Luo, Dan; Yu, Min; Zhang, Ting; Cao, Xuanping; Zhou, Yanheng; Liu, Yan

    2018-02-09

    A broad range of carbon sources have been used to fabricate varieties of carbon quantum dots (CQDs). However, the majority of these studies concern the influence of primary structures and chemical compositions of precursors on the CQDs; it is still unclear whether or not the superstructures of carbon sources have effects on the physiochemical properties of the synthetic CQDs. In this work, the concept of molecular assembly is first introduced into the design of a new carbon source. Compared with the tropocollagen molecules, the hierarchically assembled collagen scaffolds, as a new carbon source, immobilize functional groups of the precursors through hydrogen bonds, electrostatic attraction, and hydrophobic forces. Moreover, the accumulation of functional groups in collagen self-assembly further promotes the covalent bond formation in the obtained CQDs through a hydrothermal process. Both of these two chemical superiorities give rise to high quality CQDs with enhanced emission. The assembled collagen scaffold-based CQDs with heteroatom doping exhibit superior stability, and could be further applied as effective fluorescent probes for Fe 3+ detection and cellular cytosol imaging. These findings open a wealth of possibilities to explore more nanocarbons from precursors with assembled superstructures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Market research on the use of energy saving lamps in the domestic sector

    Energy Technology Data Exchange (ETDEWEB)

    Kofod, C.; Naser, L.; Rahbar, A.

    1996-06-01

    During the past few years, many campaigns have been carried out to encourage customers to use compact fluorescent lamps (CFLs) instead of incandescent lamps. Information has been retrieved from 26 different programmes carried out in the period 1988-94, including different combinations of direct installations, rebates, give-away, wholesale discounts, and pay-on-the-bill schemes. A very broad range of promotional strategies have been employed including direct mail, give-aways, articles and/or advertisements in newspapers, brochures, TV and/or radio announcements. The percentage of customers who use CFLs in Denmark, Germany and the Netherlands is close to 50%. The use per residence depends firstly on the type, and secondly on the size of the residence and the number of inhabitants. Use of CFLs instead of incandescent lamps gives a favourable Benefit cost Ratio (BCR) for the customer as well as for the society. The main barrier to the procurement of CFLs in the three countries analyzed is that customers find the price of CFLs too high in comparison with incandescent lamps. (EG) 22 refs.

  17. Spatiotemporal Distribution, Sources, and Photobleaching Imprint of Dissolved Organic Matter in the Yangtze Estuary and Its Adjacent Sea Using Fluorescence and Parallel Factor Analysis

    Science.gov (United States)

    Li, Penghui; Chen, Ling; Zhang, Wen; Huang, Qinghui

    2015-01-01

    To investigate the seasonal and interannual dynamics of dissolved organic matter (DOM) in the Yangtze Estuary, surface and bottom water samples in the Yangtze Estuary and its adjacent sea were collected and characterized using fluorescence excitation-emission matrices (EEMs) and parallel factor analysis (PARAFAC) in both dry and wet seasons in 2012 and 2013. Two protein-like components and three humic-like components were identified. Three humic-like components decreased linearly with increasing salinity (r>0.90, p<0.001), suggesting their distribution could primarily be controlled by physical mixing. By contrast, two protein-like components fell below the theoretical mixing line, largely due to microbial degradation and removal during mixing. Higher concentrations of humic-like components found in 2012 could be attributed to higher freshwater discharge relative to 2013. There was a lack of systematic patterns for three humic-like components between seasons and years, probably due to variations of other factors such as sources and characteristics. Highest concentrations of fluorescent components, observed in estuarine turbidity maximum (ETM) region, could be attributed to sediment resuspension and subsequent release of DOM, supported by higher concentrations of fluorescent components in bottom water than in surface water at two stations where sediments probably resuspended. Meanwhile, photobleaching could be reflected from the changes in the ratios between fluorescence intensity (Fmax) of humic-like components and chromophoric DOM (CDOM) absorption coefficient (a355) along the salinity gradient. This study demonstrates the abundance and composition of DOM in estuaries are controlled not only by hydrological conditions, but also by its sources, characteristics and related estuarine biogeochemical processes. PMID:26107640

  18. Spatiotemporal Distribution, Sources, and Photobleaching Imprint of Dissolved Organic Matter in the Yangtze Estuary and Its Adjacent Sea Using Fluorescence and Parallel Factor Analysis.

    Directory of Open Access Journals (Sweden)

    Penghui Li

    Full Text Available To investigate the seasonal and interannual dynamics of dissolved organic matter (DOM in the Yangtze Estuary, surface and bottom water samples in the Yangtze Estuary and its adjacent sea were collected and characterized using fluorescence excitation-emission matrices (EEMs and parallel factor analysis (PARAFAC in both dry and wet seasons in 2012 and 2013. Two protein-like components and three humic-like components were identified. Three humic-like components decreased linearly with increasing salinity (r>0.90, p<0.001, suggesting their distribution could primarily be controlled by physical mixing. By contrast, two protein-like components fell below the theoretical mixing line, largely due to microbial degradation and removal during mixing. Higher concentrations of humic-like components found in 2012 could be attributed to higher freshwater discharge relative to 2013. There was a lack of systematic patterns for three humic-like components between seasons and years, probably due to variations of other factors such as sources and characteristics. Highest concentrations of fluorescent components, observed in estuarine turbidity maximum (ETM region, could be attributed to sediment resuspension and subsequent release of DOM, supported by higher concentrations of fluorescent components in bottom water than in surface water at two stations where sediments probably resuspended. Meanwhile, photobleaching could be reflected from the changes in the ratios between fluorescence intensity (Fmax of humic-like components and chromophoric DOM (CDOM absorption coefficient (a355 along the salinity gradient. This study demonstrates the abundance and composition of DOM in estuaries are controlled not only by hydrological conditions, but also by its sources, characteristics and related estuarine biogeochemical processes.

  19. Simulation study of two-energy X-ray fluorescence holograms reconstruction algorithm to remove twin images

    International Nuclear Information System (INIS)

    Xie Honglan; Hu Wen; Luo Hongxin; Deng Biao; Du Guohao; Xue Yanling; Chen Rongchang; Shi Shaomeng; Xiao Tiqiao

    2008-01-01

    Unlike traditional outside-source holography, X-ray fluorescence holography is carded out with fluorescent atoms in a sample as source light for holographic imaging. With the method, three-dimensional arrangement of atoms into crystals can be observed obviously. However, just like traditional outside-source holography, X-ray fluorescence holography suffers from the inherent twin-image problem, too. With a 27-Fe-atoms cubic lattice as model, we discuss in this paper influence of the photon energy of incident source in removing twin images in reconstructed atomic images by numerical simulation and reconstruction with two-energy X-ray fluorescence holography. The results indicate that incident X-rays of nearer energies have better effect of removing twin images. In the detector of X-ray holography, minimum difference of the two incident energies depends on energy resolution of the monochromator and detector, and for inside source X-ray holography, minimum difference of the two incident energies depends on difference of two neighboring fluorescent energies emitting from the element and energy resolution of detector. The spatial resolution of atomic images increases with the incident energies. This is important for experiments of X-ray fluorescence holography, which is being developed on Shanghai Synchrotron Radiation Facility. (authors)

  20. Limitations of fluorescence spectroscopy to characterize organic matter in engineered systems

    Science.gov (United States)

    Korak, J.

    2017-12-01

    Fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in engineered systems, such as drinking water, municipal wastewater and industrial water treatment. While fluorescence data collected in water treatment applications has led to the development of strong empirical relationships between fluorescence responses and process performance, the use of fluorescence to infer changes in the underlying organic matter chemistry is often oversimplified and applied out of context. Fluorescence only measures a small fraction of DOM as fluorescence quantum yields are less than 5% for many DOM sources. Relying on fluorescence as a surrogate for DOM presence, character or reactivity may not be appropriate for systems where small molecular weight, hydrophilic constituents unlikely to fluoresce are important. In addition, some methods rely on interpreting fluorescence signals at different excitation wavelengths as a surrogate for operationally-defined humic- and fulvic-acids in lieu of traditional XAD fractionation techniques, but these approaches cannot be supported by other lines of evidence considering natural abundance and fluorescence quantum yields of these fractions. These approaches also conflict with parallel factor analysis (PARAFAC), a statistical approach that routinely identifies fluorescence components with dual excitation behavior. Lastly, methods developed for natural systems are often applied out of context to engineered systems. Fluorescence signals characteristic of phenols or indoles are often interpreted as indicators for biological activity in natural systems due to fluorescent amino acids and peptides, but this interpretation is may not be appropriate in engineering applications where non-biological sources of phenolic functional groups may be present. This presentation explores common fluorescence interpretation approaches, discusses the limitations and provides recommendations related to engineered systems.

  1. Hyper-filter-fluorescer spectrometer for fusion x-ray diagnostics

    International Nuclear Information System (INIS)

    Wang, C.L.

    1981-01-01

    The filter-fluorescer spectrometer (FFS) is a powerful tool for measuring x-ray spectrum from high fluence x-ray sources. However, this technique is limited to energies less than 120 keV, because there are no practical absorption edges available above this energy. In this paper, we present a new method of utilizing the filter-fluorescer system for x-ray spectral measurement above 120 keV. The new apparatus is called hyper-filter-fluorescer spectrometer

  2. Photoacoustic-fluorescence in vitro flow cytometry for quantification of absorption, scattering and fluorescence properties of the cells

    Science.gov (United States)

    Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.

    2013-03-01

    Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.

  3. EFICIENCIA ENERGÉTICA POR LA UTILIZACIÓN DE COMPONENTES DE CONDUCCIÓN DE LUZ NATURAL EN CLIMA CÁLIDO-HÚMEDO | ENERGETIC EFFICIENCY DERIVED FROM THE USE OF CONDUCTION COMPONENTS OF DAYLIGHT IN WARM-HUMID CLIMATE

    Directory of Open Access Journals (Sweden)

    Rosalinda González Gómez

    2015-11-01

    Full Text Available The electric energy saving was estimated by the utilization of Conduction Components of Daylight (CCD in warm-humid climate. For this, the luminic performance of the component was determined, considering values of horizontal exterior lighting and interior lighting obtained by monitoring under real sky conditions in scale models, and the comparison with incandescent bulbs and Compact Fluorescent Lamps (CFL. The utilization of the natural light through CCLN allows to obtain a saving in the expense for energy, with respect to the use of Incandescent Bulb and/or Compact Fluorescent Lamp (artificial lighting. In this sense, their use would correspond to 219 KWh and to 54.75 KWh, respectively, if they are used for an average of 10 daily hours, during a period of one year. It was estimated that a possible reduction could be achieved in the electricity consumption, maintaining the comfort and quality of life of the users in buildings (high luminic performance without use of energy from commercial supplier, contributing this way to the "energy efficiency" in them.

  4. A portable fluorescence microscopic imaging system for cholecystectomy

    Science.gov (United States)

    Ye, Jian; Yang, Chaoyu; Gan, Qi; Ma, Rong; Zhang, Zeshu; Chang, Shufang; Shao, Pengfei; Zhang, Shiwu; Liu, Chenhai; Xu, Ronald

    2016-03-01

    In this paper we proposed a portable fluorescence microscopic imaging system to prevent iatrogenic biliary injuries from occurring during cholecystectomy due to misidentification of the cystic structures. The system consisted of a light source module, a CMOS camera, a Raspberry Pi computer and a 5 inch HDMI LCD. Specifically, the light source module was composed of 690 nm and 850 nm LEDs, allowing the CMOS camera to simultaneously acquire both fluorescence and background images. The system was controlled by Raspberry Pi using Python programming with the OpenCV library under Linux. We chose Indocyanine green(ICG) as a fluorescent contrast agent and then tested fluorescence intensities of the ICG aqueous solution at different concentration levels by our fluorescence microscopic system compared with the commercial Xenogen IVIS system. The spatial resolution of the proposed fluorescence microscopic imaging system was measured by a 1951 USAF resolution target and the dynamic response was evaluated quantitatively with an automatic displacement platform. Finally, we verified the technical feasibility of the proposed system in mouse models of bile duct, performing both correct and incorrect gallbladder resection. Our experiments showed that the proposed system can provide clear visualization of the confluence between the cystic duct and common bile duct or common hepatic duct, suggesting that this is a potential method for guiding cholecystectomy. The proposed portable system only cost a total of $300, potentially promoting its use in resource-limited settings.

  5. Ultraviolet Radiation Emissions and Illuminance in Different Brands of Compact Fluorescent Lamps

    Directory of Open Access Journals (Sweden)

    Shahram Safari

    2015-01-01

    Full Text Available Introduction. Replacing incandescent lamps with compact fluorescent lamps (CFLs, which are three to six times more efficient, is one of the easiest methods to achieve energy efficiency. The present study aimed to evaluate relationships between UV emissions radiated and illuminance CFLs. Material and Methods. This pilot study was conducted on 16 single envelope CFLs. The illuminance and UV irradiance of various types of CFLs are measured on a three-meter long optical bench, using a calibrated lux meter and UV meter, and measurement was done in 10, 25, 50, 100, 150, and 200 cm, in three angles, including 0°, 45°, and 90°, at the ages of 0, 100, and 2000 hours. Result. UVC irradiance was not observed at the distance of 10 cm in all of lamps. The lowest value of UVB irradiance was recorded in Pars Khazar lamp, while the highest value was recorded in Etehad lamps. UVR values measured at different times showed negligible differences; the highest asset value was detected in zero times. One way ANOVA indicated that relationships between UVA irradiance and illuminance were significant (P<0.05. Conclusion. UVB irradiance in most of the lamp in 10 and 25 cm was more than occupational exposure and UVA except for the fact that Pars Khazar 60 watts and Nama Noor 60 watts were less than occupational exposure.

  6. Processes and Technologies for the Recycling of Spent Fluorescent Lamps

    Directory of Open Access Journals (Sweden)

    Kujawski Wojciech

    2014-09-01

    Full Text Available The growing industrial application of rare earth metals led to great interest in the new technologies for the recycling and recovery of REEs from diverse sources. This work reviews the various methods for the recycling of spent fluorescent lamps. The spent fluorescent lamps are potential source of important rare earth elements (REEs such as: yttrium, terbium, europium, lanthanum and cerium. The characteristics of REEs properties and construction of typical fl uorescent lamps is described. The work compares also current technologies which can be utilized for an efficient recovery of REEs from phosphors powders coming from spent fluorescent lamps. The work is especially focused on the hydrometallurgical and pyrometallurgical processes. It was concluded that hydrometallurgical processes are especially useful for the recovery of REEs from spent fluorescent lamps. Moreover, the methods used for recycling of REEs are identical or very similar to those utilized for the raw ores processing.

  7. Banning the bulb: Institutional evolution and the phased ban of incandescent lighting in Germany

    International Nuclear Information System (INIS)

    Howarth, Nicholas A.A.; Rosenow, Jan

    2014-01-01

    Much academic attention has been directed at analysing energy efficiency investments through the lens of ‘behavioural failure’. These studies have challenged the neoclassical framing of regulation which emphasises the efficiency benefits of price based policy, underpinned by the notion of rational individual self-mastery. The increasing use of a regulatory ban on electric lamps in many countries is one of the most recent and high profile flash points in this dialectic of ‘freedom-versus-the-state’ in the public policy discourse. This paper interrogates this debate through a study of electric lamp diffusion in Germany. It is argued that neoclassical theory and equilibrium analysis is inadequate as a tool for policy analysis as it takes the formation of market institutions, such as existing regulations, for granted. Further still, it may be prone to encourage idealistic debates around such grand narratives which may in practice simply serve those who benefit most from the status quo. Instead we argue for an evolutionary approach which we suggest offers a more pragmatic framing tool which focuses on the formation of market institutions in light of shifting social norms and political goals—in our case, progress towards energy efficiency and environmental goals. - Highlights: • Empirical data on the ban of incandescent lamps in Germany is presented. • The political debate on the ban is positioned within key bodies of theory. • Discourse was found to have positively influenced diffusion of efficient lighting. • Tools for the reframing of political debate are proposed for policy makers

  8. Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source

    Science.gov (United States)

    Kawarasaki, Tatsuo; Uchiyama, Kazuhiko; Hirao, Atsushi; Azuma, Sadahiro; Otake, Masayoshi; Shibata, Masatoshi; Tsuchiya, Seiko; Enosawa, Shin; Takeuchi, Koichi; Konno, Kenjiro; Hakamata, Yoji; Yoshino, Hiroyuki; Wakai, Takuya; Ookawara, Shigeo; Tanaka, Hozumi; Kobayashi, Eiji; Murakami, Takashi

    2009-09-01

    Animal imaging sources have become an indispensable material for biological sciences. Specifically, gene-encoded biological probes serve as stable and high-performance tools to visualize cellular fate in living animals. We use a somatic cell cloning technique to create new green fluorescent protein (GFP)-expressing Jinhua pigs with a miniature body size, and characterized the expression profile in various tissues/organs and ex vivo culture conditions. The born GFP-transgenic pig demonstrate an organ/tissue-dependent expression pattern. Strong GFP expression is observed in the skeletal muscle, pancreas, heart, and kidney. Regarding cellular levels, bone-marrow-derived mesenchymal stromal cells, hepatocytes, and islet cells of the pancreas also show sufficient expression with the unique pattern. Moreover, the cloned pigs demonstrate normal growth and fertility, and the introduced GFP gene is stably transmitted to pigs in subsequent generations. The new GFP-expressing Jinhua pigs may be used as new cellular/tissue light resources for biological imaging in preclinical research fields such as tissue engineering, experimental regenerative medicine, and transplantation.

  9. FY08 Annual Report for Nuclear Resonance Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Glen A.; Caggiano, Joseph A.

    2009-01-06

    FY08 annual report for project the "Nuclear Resonance Fluorescence Imaging" project. Reviews accomplishments of last 3 years, including U-235 signature search, comparison of different photon sources, and examination of NRF measurements using monochromatic photon source.

  10. Searching for illicit materials using nuclear resonance fluorescence stimulated by narrow-band photon sources

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.S., E-mail: johnson329@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); San Jose State University, San Jose, CA 95192 (United States); Hagmann, C.A.; Hall, J.M.; McNabb, D.P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kelley, J.H.; Huibregtse, C. [North Carolina State University, Raleigh, NC 27695 (United States); Kwan, E.; Rusev, G.; Tonchev, A.P. [Duke University, Durham, NC 27708 (United States)

    2012-08-15

    We report the results of an experimental study of the sensitivity of two distinct classes of systems that exploit nuclear resonance fluorescence (NRF) to search for illicit materials in containers. One class of systems is based on the direct detection of NRF photons emitted from isotopes of interest. The other class infers the presence of a particular isotope by observing the preferential attenuation of resonant photons in the incident beam. We developed a detailed analytical model for both approaches. We performed experiments to test the model using depleted uranium as a surrogate for illicit material and used tungsten as a random choice for shielding. We performed the experiments at Duke University's High Intensity Gamma Source (HIGS). Using the methodology we detail in this paper one can use this model to estimate the performance of potential inspection systems in certifying containers as free of illicit materials and for detecting the presence of those same materials.

  11. Contribution to the analysis of light elements using x fluorescence excited by radio-elements; Contribution a l'analyse des elements legers par fluorescence x excitee au moyen de radioelements

    Energy Technology Data Exchange (ETDEWEB)

    Robert, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    In order to study the possibilities of using radioactive sources for the X-fluorescence analysis of light elements, the principle is given, after a brief description of X-fluorescence, of the excitation of this phenomenon by X, {beta} and {alpha} emission from radio-elements. The operation and use of the proportional gas counter for X-ray detection is described. A device has been studied for analysing the elements of the 2. and 3. periods of the Mendeleev table. It makes it possible to excite the fluorescence with a radioactive source emitting X-rays or a particles; the X-ray fluorescence penetrates into a window-less proportional counter, this being made possible by the use of an auxiliary electric field in the neighbourhood of the sample. The gas detection pressure leading to the maximum detection yield is given. The spectra are given for the K{sub {alpha}} lines of 3. period elements excited by {sup 55}Fe, {sup 3}H/Zr and {sup 210}Po sources; for the 2. period the K{sub {alpha}} spectra of carbon and of fluorine excited by the {alpha} particles of {sup 210}Po. (author) [French] Afin d'etudier les possibilites d'emploi de sources radioactives a l'analyse par fluorescence X des elements legers, on presente apres rappel de notions generales sur la fluorescence X, le principe de l'excitation de ce phenomene par emission X, {beta}, {alpha} de radioelements. Le fonctionnement et l'utilisation du compteur proportionnel a gaz a la detection du rayonnement X est developpe. Un dispositif permettant l'analyse des elements des 2eme et 3eme periodes de la classification de Mendeleev est etudie. Il permet l'excitation de la fluorescence par source radioactive emettrice de rayons X ou de particules {alpha}; le rayonnement X de fluorescence penetre dans un compteur proportionnel depourvu de fenetre, ceci est rendu possible en creant un champ electrique auxiliaire au voisinage de l'echantillon. On definit une pression du gaz de detection pour un rendement de detection maximal

  12. Fluorescence detection of esophageal neoplasia

    Science.gov (United States)

    Borisova, E.; Vladimirov, B.; Avramov, L.

    2008-06-01

    White-light endoscopy is well-established and wide used modality. However, despite the many technological advances that have been occurred, conventional endoscopy is suboptimal and usually detects advanced stage lesions. The limitations of standard endoscopy initiate development of spectroscopic techniques, additional to standard endoscopic equipment. One of the most sensitive approaches is fluorescence spectroscopy of gastrointestinal mucosa for neoplasia detection. In the recent study delta-aminolevulinic acid/Protoporphyrin IX (5-ALA/PpIX) is used as fluorescent marker for dysplasia and tumor detection in esophagus. The 5-ALA is administered per os six hours before measurements at dose 20 mg/kg weight. Excitation source has max of emission at 405 nm and light is delivered by the standard light guide of the endoscopic equipment. Through endoscopic instrumental channel a fiber is applied to return information about fluorescence to microspectrometer. Spectral features observed during endoscopic investigations could be distinct as the next regions: 450-630 nm region, where tissue autofluorescence is observed; 630-710 nm region, where fluorescence of PpIX is clearly pronounced; 530-580 nm region, where minima in the autofluorescence signal are observed, related to reabsorption of blood. The lack of fluorescence peaks in the red spectral area for normal mucosa is an indication for selective accumulation of 5-ALA/PpIX only in abnormal sites Very good correlation between fluorescence signals and histology examination of the lesions investigated is achieved.

  13. Nine New Fluorescent Probes

    Science.gov (United States)

    Lin, Tsung-I.; Jovanovic, Misa V.; Dowben, Robert M.

    1989-06-01

    Absorption and fluorescence spectroscopic studies are reported here for nine new fluorescent probes recently synthesized in our laboratories: four pyrene derivatives with substituents of (i) 1,3-diacetoxy-6,8-dichlorosulfonyl, (ii) 1,3-dihydroxy-6,8-disodiumsulfonate, (iii) 1,3-disodiumsulfonate, and (iv) l-ethoxy-3,6,8-trisodiumsulfonate groups, and five [7-julolidino] coumarin derivatives with substituents of (v) 3-carboxylate-4-methyl, (vi) 3- methylcarboxylate, (vii) 3-acetate-4-methyl, (viii) 3-propionate-4-methyl, and (ix) 3-sulfonate-4-methyl groups. Pyrene compounds i and ii and coumarin compounds v and vi exhibit interesting absorbance and fluorescence properties: their absorption maxima are red shifted compared to the parent compound to the blue-green region, and the band width broadens considerably. All four blue-absorbing dyes fluoresce intensely in the green region, and the two pyrene compounds emit at such long wavelengths without formation of excimers. The fluorescence properties of these compounds are quite environment-sensitive: considerable spectral shifts and fluorescence intensity changes have been observed in the pH range from 3 to 10 and in a wide variety of polar and hydrophobic solvents with vastly different dielectric constants. The high extinction and fluorescence quantum yield of these probes make them ideal fluorescent labeling reagents for proteins, antibodies, nucleic acids, and cellular organelles. The pH and hydrophobicity-dependent fluorescence changes can be utilized as optical pH and/or hydrophobicity indicators for mapping environmental difference in various cellular components in a single cell. Since all nine probes absorb in the UV, but emit at different wavelengths in the visible, these two groups of compounds offer an advantage of utilizing a single monochromatic light source (e.g., a nitrogen laser) to achieve multi-wavelength detection for flow cytometry application. As a first step to explore potential application in

  14. Contribution to the analysis of light elements using x fluorescence excited by radio-elements; Contribution a l'analyse des elements legers par fluorescence x excitee au moyen de radioelements

    Energy Technology Data Exchange (ETDEWEB)

    Robert, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    In order to study the possibilities of using radioactive sources for the X-fluorescence analysis of light elements, the principle is given, after a brief description of X-fluorescence, of the excitation of this phenomenon by X, {beta} and {alpha} emission from radio-elements. The operation and use of the proportional gas counter for X-ray detection is described. A device has been studied for analysing the elements of the 2. and 3. periods of the Mendeleev table. It makes it possible to excite the fluorescence with a radioactive source emitting X-rays or a particles; the X-ray fluorescence penetrates into a window-less proportional counter, this being made possible by the use of an auxiliary electric field in the neighbourhood of the sample. The gas detection pressure leading to the maximum detection yield is given. The spectra are given for the K{sub {alpha}} lines of 3. period elements excited by {sup 55}Fe, {sup 3}H/Zr and {sup 210}Po sources; for the 2. period the K{sub {alpha}} spectra of carbon and of fluorine excited by the {alpha} particles of {sup 210}Po. (author) [French] Afin d'etudier les possibilites d'emploi de sources radioactives a l'analyse par fluorescence X des elements legers, on presente apres rappel de notions generales sur la fluorescence X, le principe de l'excitation de ce phenomene par emission X, {beta}, {alpha} de radioelements. Le fonctionnement et l'utilisation du compteur proportionnel a gaz a la detection du rayonnement X est developpe. Un dispositif permettant l'analyse des elements des 2eme et 3eme periodes de la classification de Mendeleev est etudie. Il permet l'excitation de la fluorescence par source radioactive emettrice de rayons X ou de particules {alpha}; le rayonnement X de fluorescence penetre dans un compteur proportionnel depourvu de fenetre, ceci est rendu possible en creant un champ electrique auxiliaire au voisinage de l'echantillon. On definit une pression du gaz de detection

  15. Compact whole-body fluorescent imaging of nude mice bearing EGFP expressing tumor

    Science.gov (United States)

    Chen, Yanping; Xiong, Tao; Chu, Jun; Yu, Li; Zeng, Shaoqun; Luo, Qingming

    2005-01-01

    Issue of tumor has been a hotspot of current medicine. It is important for tumor research to detect tumors bearing in animal models easily, fast, repetitively and noninvasivly. Many researchers have paid their increasing interests on the detecting. Some contrast agents, such as green fluorescent protein (GFP) and Discosoma red fluorescent protein (Dsred) were applied to enhance image quality. Three main kinds of imaging scheme were adopted to visualize fluorescent protein expressing tumors in vivo. These schemes based on fluorescence stereo microscope, cooled charge-coupled-device (CCD) or camera as imaging set, and laser or mercury lamp as excitation light source. Fluorescence stereo microscope, laser and cooled CCD are expensive to many institutes. The authors set up an inexpensive compact whole-body fluorescent imaging tool, which consisted of a Kodak digital camera (model DC290), fluorescence filters(B and G2;HB Optical, Shenyang, Liaoning, P.R. China) and a mercury 50-W lamp power supply (U-LH50HG;Olympus Optical, Japan) as excitation light source. The EGFP was excited directly by mercury lamp with D455/70 nm band-pass filter and fluorescence was recorded by digital camera with 520nm long-pass filter. By this easy operation tool, the authors imaged, in real time, fluorescent tumors growing in live mice. The imaging system is external and noninvasive. For half a year our experiments suggested the imaging scheme was feasible. Whole-body fluorescence optical imaging for fluorescent expressing tumors in nude mouse is an ideal tool for antitumor, antimetastatic, and antiangiogenesis drug screening.

  16. Fluorescent intensifying screens: contribution of secondary X-rays

    International Nuclear Information System (INIS)

    Barroso, R.C.; Goncalves, O.D.; Eichler, J.; Lopes, R.T.; Cardoso, S.C.

    1996-01-01

    The counting rate and angular distribution of secondary X-rays produced by fluorescent intensifying screens are studied. A source of 241 Am - gamma radiation of 59.54 keV - is used. Fluorescent intensifying screens reduce the radiation dose in radiology since they produce visible light which increases the efficiency of the film. In addition, secondary X-rays arise due to the photoelectric effect, elastic (Rayleigh) and inelastic (Compton) scattering

  17. Characterization of phosphates and phosphogypsum by x-ray fluorescence with radioisotopic excitation sources of 55 Fe, 238 Pu and 109 Cd

    International Nuclear Information System (INIS)

    Parreira, Paulo S.; Nascimento Filho, Virgilio F.

    1999-01-01

    Using the energy dispersive X-ray fluorescence technique (ED-XRF), with radioisotopic sources of 55 Fe, 238 Pu e 109 Cd samples excitation, a qualitative study was carried out in a phosphogypsum and phosphate samples from different origin. The objective was to verify the excitation responses from different sources and to establish the analytical conditions of the technique for these kind of matrices. Besides the P and Ca, characteristic macro elements of this of matrix, it was also observed the elements Si, S, K, matrix, it was also observed the elements Si, S, K, Ti, Cr, Mn, Cu, Zn, Pb, Sr, Y, Zr and Nb. With different sources could be observed different groups of elements, since the emission response of the characteristic X-rays are associated to the excitation energy, in other words to the radioactive source. From the nutrients of major interest in this kind of matrix (P, S and Ca), the P and S elements showed small analytical sensibilities to the 109 Cd source. Greater intensities of characteristics X-ray emissions for the mainly elements of interest, was observed with the 55 Fe source and with the 238 Pu and 109 Cd sources analysis could be done showing trace elements which are present in those sort of samples. (author)

  18. Viability utilization of one Se sup(75) source in the analysis of uranium, thorium and rare earths for use on energy dispersive x-ray fluorescence

    International Nuclear Information System (INIS)

    Nova Mussel, W. da.

    1989-01-01

    This work is a study about the viable utilization of one Se sup(75) source as an excitation source for the use of Energy Dispersive X-Ray Fluorescence (EDXRF), in the analysis of Uranium, Thorium and the Rare Earths. The following arrangement was build up: a HPGE detector, two Se sup(75) sources in 30 sup(0) positions of castle, deadtime of 5%. Using this arrangement the calibration curve for U and Th was measured and the angular correlation coeficient was r+ 0,999, and for the Rare Earths was superior r+ 0,960. The answer given for this system was considered very fine. (author)

  19. Spectral design flexibility of LED brings better life

    Science.gov (United States)

    Ou, Haiyan; Corell, Dennis; Ou, Yiyu; Poulsen, Peter B.; Dam-Hansen, Carsten; Petersen, Paul-Michael

    2012-03-01

    Light-emitting diodes (LEDs) are penetrating into the huge market of general lighting because they are energy saving and environmentally friendly. The big advantage of LED light sources, compared to traditional incandescent lamps and fluorescent light tubes, is the flexible spectral design to make white light using different color mixing schemes. The spectral design flexibility of white LED light sources will promote them for novel applications to improve the life quality of human beings. As an initial exploration to make use of the spectral design flexibility, we present an example: 'no blue' white LED light source for sufferers of disease Porphyria. An LED light source prototype, made of high brightness commercial LEDs applying an optical filter, was tested by a patient suffering from Porphyria. Preliminary results have shown that the sufferer could withstand the light source for much longer time than the standard light source. At last future perspectives on spectral design flexibility of LED light sources improving human being's life will be discussed, with focus on the light and health. The good health is ensured by the spectrum optimized so that vital hormones (melatonin and serotonin) are produced during times when they support human daily rhythm.

  20. Simulation and application of micro X-ray fluorescence based on an ellipsoidal capillary

    Science.gov (United States)

    Yang, Jing; Li, Yude; Wang, Xingyi; Zhang, Xiaoyun; Lin, Xiaoyan

    2017-06-01

    A micro X-ray fluorescence setup was presented, based on an ellipsoidal capillary and a traditional laboratorial X-ray source. Using Ray-tracing principle, we have simulated the transmission path of X-ray beam in the ellipsoidal capillary and designed the optimal parameters of the ellipsoidal capillary for the micro X-ray fluorescence setup. We demonstrate that ellipsoidal capillary is well suited as condenser for the micro X-ray fluorescence based on traditional laboratorial X-ray source. Furthermore, we obtain the 2D mapping image of the leaf blade sample by using the ellipsoidal capillary we designed.

  1. Double-gated spectral snapshots for biomolecular fluorescence

    International Nuclear Information System (INIS)

    Nakamura, Ryosuke; Hamada, Norio; Ichida, Hideki; Tokunaga, Fumio; Kanematsu, Yasuo

    2007-01-01

    A versatile method to take femtosecond spectral snapshots of fluorescence has been developed based on a double gating technique in the combination of an optical Kerr gate and an image intensifier as an electrically driven gate set in front of a charge-coupled device detector. The application of a conventional optical-Kerr-gate method is limited to molecules with the short fluorescence lifetime up to a few hundred picoseconds, because long-lifetime fluorescence itself behaves as a source of the background signal due to insufficiency of the extinction ratio of polarizers employed for the Kerr gate. By using the image intensifier with the gate time of 200 ps, we have successfully suppressed the background signal and overcome the application limit of optical-Kerr-gate method. The system performance has been demonstrated by measuring time-resolved fluorescence spectra for laser dye solution and the riboflavin solution as a typical sample of biomolecule

  2. Multispectral fluorescence imaging techniques for nondestructive food safety inspection

    Science.gov (United States)

    Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren

    2004-03-01

    The use of spectral sensing has gained acceptance as a rapid means for nondestructive inspection of postharvest food produce. Current technologies generally use color or a single wavelength camera technology. The applicability and sensitivity of these techniques can be expanded through the use of multiple wavelengths. Reflectance in the Vis/NIR is the prevalent spectral technique. Fluorescence, compared to reflectance, is regarded as a more sensitive technique due to its dynamic responses to subtle changes in biological entities. Our laboratory has been exploring fluorescence as a potential means for detection of quality and wholesomeness of food products. Applications of fluorescence sensing require an understanding of the spectral characteristics emanating from constituents and potential contaminants. A number of factors affecting fluorescence emission characteristics are discussed. Because of relatively low fluorescence quantum yield from biological samples, a system with a powerful pulse light source such as a laser coupled with a gated detection device is used to harvest fluorescence, in the presence of ambient light. Several fluorescence sensor platforms developed in our laboratory, including hyperspectral imaging, and laser-induced fluorescence (LIF) and steady-state fluorescence imaging systems with multispectral capabilities are presented. We demonstrate the potential uses of recently developed fluorescence imaging platforms in food safety inspection of apples contaminated with animal feces.

  3. Fluorescent optical liquid-level sensor

    International Nuclear Information System (INIS)

    Weiss, Jonathan D.

    2000-01-01

    An optical method of detecting a liquid level is presented that uses fluorescence radiation generated in an impurity-doped glass or plastic slab. In operation, the slab is inserted into the liquid and pump light is coupled into it so that the light is guided by the slab-air interface above the liquid and escapes into the liquid just below its surface. Since the fluorescence is generated only in that section of the slab above the liquid, the fluorescence power will monotonically decrease with increasing liquid level. Thus, a relationship can be established between any signal proportional to it and the liquid level. Because optical fibers link the pump source and the detector of fluorescence radiation to the sensor, no electrical connections are needed in or near the liquid. Their absence vastly decreases the hazard associated with placing a liquid-level sensor in a potentially explosive environment. A laboratory prototype, consisting of a methyl styrene slab doped with an organic dye, has been built and successfully tested in water. Its response to liquid level when pumped by a tunable argon-ion laser at 476, 488, and 496 nm, and by a blue LED, is presented and shown to be consistent with theory. The fluorescence spectra, optical efficiency, temperature, and other effects are also presented and discussed. (c) 2000 Society of Photo-Optical Instrumentation Engineers

  4. Compact fluorescent lamp phosphors in accidental radiation monitoring

    International Nuclear Information System (INIS)

    Murthy, K. V. R.; Pallavi, S. P.; Ghildiyal, R.; Parmar, M. C.; Patel, Y. S.; Ravi Kumar, V.; Sai Prasad, A. S.; Natarajan, V.; Page, A. G.

    2006-01-01

    The application of lamp phosphors for accidental dosimetry is a new concept. Since the materials used in fluorescent lamps are good photo luminescent materials, if one can either use the inherent defects present in the phosphor or add suitable modifiers to induce thermoluminescence (TL) in these phosphors, then the device (fluorescent lamp) can be used as an accidental dosemeter. In continuation of our search for a suitable phosphor material, which can serve both as an efficient lamp phosphor and as a good radiation monitoring device, detailed examination has been carried out on cerium and terbium-doped lanthanum phosphate material. A 90 Sr beta source with 50 mCi strength (1.85 GBq) was used as the irradiation source for TL studies. The TL response as a function of dose received was examined for all phosphors used and it was observed that the intensity of the TL peak vs. dose received was a linear function in the dose range 0.1-200 Gy in each case. Incidentally LaPO 4 :Ce,Tb is a component of the compact fluorescent lamp marketed recently as an energy bright light source. Besides having very good luminescence efficiency, good dosimetric properties of these phosphors render them useful for their use in accidental dosimetry also. (authors)

  5. Superior optical nonlinearity of an exceptional fluorescent stilbene dye

    Energy Technology Data Exchange (ETDEWEB)

    He, Tingchao [College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Division of Physics and Applied Physics, Centre for Disruptive Photonic Technologies (CDPT), School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Sreejith, Sivaramapanicker; Zhao, Yanli [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Gao, Yang; Grimsdale, Andrew C. [School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore 639798 (Singapore); Lin, Xiaodong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg [College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Sun, Handong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg [Division of Physics and Applied Physics, Centre for Disruptive Photonic Technologies (CDPT), School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2015-03-16

    Strong multiphoton absorption and harmonic generation in organic fluorescent chromophores are, respectively, significant in many fields of research. However, most of fluorescent chromophores fall short of the full potential due to the absence of the combination of such different nonlinear upconversion behaviors. Here, we demonstrate that an exceptional fluorescent stilbene dye could exhibit efficient two- and three-photon absorption under the excitation of femtosecond pulses in solution phase. Benefiting from its biocompatibility and strong excited state absorption behavior, in vitro two-photon bioimaging and superior optical limiting have been exploited, respectively. Simultaneously, the chromophore could generate efficient three-photon excited fluorescence and third-harmonic generation (THG) when dispersed into PMMA film, circumventing the limitations of classical fluorescent chromophores. Such chromophore may find application in the production of coherent light sources of higher photon energy. Moreover, the combination of three-photon excited fluorescence and THG can be used in tandem to provide complementary information in biomedical studies.

  6. Distribution of Fe atom density in a dc magnetron sputtering plasma source measured by laser-induced fluorescence imaging spectroscopy

    Science.gov (United States)

    Shibagaki, K.; Nafarizal, N.; Sasaki, K.; Toyoda, H.; Iwata, S.; Kato, T.; Tsunashima, S.; Sugai, H.

    2003-10-01

    Magnetron sputtering discharge is widely used as an efficient method for thin film fabrication. In order to achieve the optimized fabrication, understanding of the kinetics in plasmas is essential. In the present work, we measured the density distribution of sputtered Fe atoms using laser-induced fluorescence imaging spectroscopy. A dc magnetron plasma source with a Fe target was used. An area of 20 × 2 mm in front of the target was irradiated by a tunable laser beam having a planar shape. The picture of laser-induced fluorescence on the laser beam was taken using an ICCD camera. In this way, we obtained the two-dimensional image of the Fe atom density. As a result, it has been found that the Fe atom density observed at a distance of several centimeters from the target is higher than that adjacent to the target, when the Ar gas pressure was relatively high. It is suggested from this result that some gas-phase production processes of Fe atoms are available in the plasma. This work has been performed under the 21st Century COE Program by the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  7. Simulation and application of micro X-ray fluorescence based on an ellipsoidal capillary

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jing; Li, Yude; Wang, Xingyi; Zhang, Xiaoyun; Lin, Xiaoyan, E-mail: yangjing_928@126.com

    2017-06-15

    Highlights: • A micro X-ray fluorescence setup based on an ellipsoidal capillary was presented. • The optimal parameters of ellipsoidal capillary were designed. • The 2D mapping image of biological sample was obtained. - Abstract: A micro X-ray fluorescence setup was presented, based on an ellipsoidal capillary and a traditional laboratorial X-ray source. Using Ray-tracing principle, we have simulated the transmission path of X-ray beam in the ellipsoidal capillary and designed the optimal parameters of the ellipsoidal capillary for the micro X-ray fluorescence setup. We demonstrate that ellipsoidal capillary is well suited as condenser for the micro X-ray fluorescence based on traditional laboratorial X-ray source. Furthermore, we obtain the 2D mapping image of the leaf blade sample by using the ellipsoidal capillary we designed.

  8. Auto fluorescence of intervertebral disc tissue: a new diagnostic tool.

    Science.gov (United States)

    Hoell, T; Huschak, G; Beier, A; Hüttmann, G; Minkus, Y; Holzhausen, H J; Meisel, H J

    2006-08-01

    The paper reports on auto fluorescence phenomena of inter-vertebral human discs. It systematically investigates the auto fluorescence effects of ex vivo disc specimen and reports on surgical cases to demonstrate the potential value of the new method. The paper offers biologic explanations of the phenomenon and discusses the potential value of the UV auto fluorescence technique as a diagnostic tool. Intra- and postoperative observations are made by a surgical microscope with an integrated UV light source. Quantitative measurements were carried out using a photon counter and a spectrometer ex vivo. The auto fluorescence phenomenon allows the differentiation of traumatized and degenerated disc tissue intraoperatively in some cases, it allows the differentiation of bony and collagen endplate in cervical disc surgery. The source of the auto fluorescent light emission are amino acids of the collagen molecules. The proteoglycan components and the liquid components of the disc do not show relevant auto fluorescence. Emission wavelength of disc material is equivalent to color perception. It differs due to different collagen composition of the intervertebral disc components from yellow-green to blue-green and can be visualized in situ by naked eye.UV-auto fluorescence of inter-vertebral discs is a new clinical tool that has the potential to differentiate disc material from the anatomical surrounding, to distinguish between different fractions of the disc and to give information on the quality and status of the disc material. Since the technology has just emerged, it needs further investigations to quantify the clinical observations reported in this paper.

  9. Responses of sun-induced chlorophyll fluorescence to biological and environmental variations measured with a versatile Fluorescence Auto-Measurement Equipment (FAME)

    Science.gov (United States)

    Gu, L.

    2017-12-01

    In this study, we examine responses of sun-induced chlorophyll fluorescence to biological and environmental variations measured with a versatile Fluorescence Auto-Measurement Equipment (FAME). FAME was developed to automatically and continuously measure chlorophyll fluorescence (F) of a leaf, plant or canopy in both laboratory and field environments, excited by either artificial light source or sunlight. FAME is controlled by a datalogger and allows simultaneous measurements of environmental variables complementary to the F signals. A built-in communication system allows FAME to be remotely monitored and data-downloaded. Radiance and irradiance calibrations can be done online. FAME has been applied in a variety of environments, allowing an investigation of biological and environmental controls on F emission.

  10. The use of light-emitting diodes (LED in commercial layer production

    Directory of Open Access Journals (Sweden)

    R Borille

    2013-06-01

    Full Text Available Artificial lighting is one of the most powerful management tools available to commercial layer producers. Artificial light allows anticipating or delaying the beginning of lay, improving egg production, and optimizing feed efficiency. This study aimed at comparing the performance of commercial layers submitted to lighting using different LED colors or conventional incandescent lamps. The study was carried out in a layer house divided in isolated environments in order to prevent any influenced from the neighboring treatments. In total, 360 Isa Brown layers, with an initial age of 56 weeks, were used. The following light sources were used: blue LED, yellow LED, green LED, red LED, white LED, and 40W incandescent light. Birds in all treatment were submitted to a 17-h continuous lighting program, and were fed a corn and soybean meal-based diet. A completely randomized experimental design with subplots was applied, with 24 treatments (six light sources and four periods of three replicates. Egg production (% was significantly different (p0.05 by light source. It was concluded that the replacement of incandescent light bulbs by white and red LEDs does not cause any negative effect on the egg production of commercial layers.

  11. Color adjustable LED driver design based on PWM

    Science.gov (United States)

    Du, Yiying; Yu, Caideng; Que, Longcheng; Zhou, Yun; Lv, Jian

    2012-10-01

    Light-emitting diode (LED) is a liquid cold source light source that rapidly develops in recent years. The merits of high brightness efficiency, long duration, high credibility and no pollution make it satisfy our demands for consumption and natural life, and gradually replace the traditional lamp-house-incandescent light and fluorescent light. However, because of the high cost and unstable drive circuit, the application range is restricted. To popularize the applications of the LED, we focus on improving the LED driver circuit to change this phenomenon. Basing on the traditional LED drive circuit, we adopt pre-setup constant current model and introduce pulse width modulation (PWM) control method to realize adjustable 256 level-grays display. In this paper, basing on human visual characteristics and the traditional PWM control method, we propose a new PWM control timing clock to alter the duty cycle of PWM signal to realize the simple gamma correction. Consequently, the brightness can accord with our visual characteristics.

  12. Efficiency simulations of thin film chalcogenide photovoltaic cells for different indoor lighting conditions

    International Nuclear Information System (INIS)

    Minnaert, B.; Veelaert, P.

    2011-01-01

    Photovoltaic (PV) energy is an efficient natural energy source for outdoor applications. However, for indoor applications, the efficiency of PV cells is much lower. Typically, the light intensity under artificial lighting conditions is less than 10 W/m 2 as compared to 100-1000 W/m 2 under outdoor conditions. Moreover, the spectrum is different from the outdoor solar spectrum. In this context, the question arises whether thin film chalcogenide photovoltaic cells are suitable for indoor use. This paper contributes to answering that question by comparing the power output of different thin film chalcogenide solar cells with the classical crystalline silicon cell as reference. The comparisons are done by efficiency simulation based on the quantum efficiencies of the solar cells and the light spectra of typical artificial light sources i.e. an LED lamp, a 'warm' and a 'cool' fluorescent tube and a common incandescent and halogen lamp, which are compared to the outdoor AM 1.5 spectrum as reference.

  13. A study on a portable fluorescence imaging system

    Science.gov (United States)

    Chang, Han-Chao; Wu, Wen-Hong; Chang, Chun-Li; Huang, Kuo-Cheng; Chang, Chung-Hsing; Chiu, Shang-Chen

    2011-09-01

    The fluorescent reaction is that an organism or dye, excited by UV light (200-405 nm), emits a specific frequency of light; the light is usually a visible or near infrared light (405-900 nm). During the UV light irradiation, the photosensitive agent will be induced to start the photochemical reaction. In addition, the fluorescence image can be used for fluorescence diagnosis and then photodynamic therapy can be given to dental diseases and skin cancer, which has become a useful tool to provide scientific evidence in many biomedical researches. However, most of the methods on acquiring fluorescence biology traces are still stay in primitive stage, catching by naked eyes and researcher's subjective judgment. This article presents a portable camera to obtain the fluorescence image and to make up a deficit from observer competence and subjective judgment. Furthermore, the portable camera offers the 375nm UV-LED exciting light source for user to record fluorescence image and makes the recorded image become persuasive scientific evidence. In addition, when the raising the rate between signal and noise, the signal processing module will not only amplify the fluorescence signal up to 70 %, but also decrease the noise significantly from environmental light on bill and nude mouse testing.

  14. Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging.

    Science.gov (United States)

    Giacomelli, Michael G; Husvogt, Lennart; Vardeh, Hilde; Faulkner-Jones, Beverly E; Hornegger, Joachim; Connolly, James L; Fujimoto, James G

    2016-01-01

    We derive a physically realistic model for the generation of virtual transillumination, white light microscopy images using epi-fluorescence measurements from thick, unsectioned tissue. We demonstrate this technique by generating virtual transillumination H&E images of unsectioned human breast tissue from epi-fluorescence multiphoton microscopy data. The virtual transillumination algorithm is shown to enable improved contrast and color accuracy compared with previous color mapping methods. Finally, we present an open source implementation of the algorithm in OpenGL, enabling real-time GPU-based generation of virtual transillumination microscopy images using conventional fluorescence microscopy systems.

  15. An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol

    International Nuclear Information System (INIS)

    Hao, Tongfan; Wei, Xiao; Nie, Yijing; Zhou, Zhiping; Xu, Yeqing; Yan, Yongsheng

    2016-01-01

    We on report an eco-friendly molecularly imprinted material based on carbon dots (C-dots) via a facile and efficient sol–gel polymerization for selective fluorescence detection of 4-nitrophenol (4-NP). The amino-modified C-dots were firstly synthesized by a hydrothermal process using citric acid as the carbon source and poly(ethyleneimine) as the surface modifier, and then after a sol–gel molecular imprinting process, the molecularly imprinted fluorescence material was obtained. The material (MIP-C-dots) showed strong fluorescence from C-dots and high selectivity due to the presence of a molecular imprint. After the detection conditions were optimized, the relative fluorescence intensity (F_0/F) of MIP-C-dots presented a good linearity with 4-NP concentrations in the linear range of 0.2 − 50 μmol L"-"1 with a detection limit (3σ/k) of 0.06 μmol L"-"1. In addition, the correlation coefficient was 0.9978 and the imprinting factor was 2.76. The method was applicable to the determination of trace 4-NP in Yangtze River water samples and good recoveries from 92.6–107.3 % were obtained. The present study provides a general strategy to fabricate materials based on C-dots with good fluorescence property for selective fluorescence detection of organic pollutants. (author)

  16. Use of neutron activation and X-ray fluorescence with radioactive sources (Cf-252 and Am-241) for the instrumental qualiquantitative simultaneous analysis of some elements in samples of mineral supplement for animals

    International Nuclear Information System (INIS)

    Simabuco, S.M.

    1984-01-01

    To study the possibility of using two non-destructive (neutron activation and X-ray fluorescence) analyses in simultaneous quali-quantitative evaluations of some elements in mineral supplement for animals, a Cf-252 neutron source (11.3 mCi; 21.1 μgrams) and a Am-241 low energy gamma-ray emitter source (59.5 KeV; 100 mCi) were employed. For these sources, shieldings and sample irradiation systems were built. For the neutron activation analysis a reservoir of 72 cm height and 43 cm diameter was filled with paraffine, and the samples and neutron sources were put inside this reservoir using polypropilene and nylon tubes. To detect the gamma-rays emitted by the radioisotopes a well-type solid NaI(Tl) crystal scintillator (3x3') was used, coupled to a multi-channel analyser. For the X-ray fluorescence analysis a lead cylinder of 9.75 cm height and 5.6 cm diameter (with 0.7 cm thickness) was made and internally lined with a 0.36 mm copper and 0.1 mm aluminium foil. (Author) [pt

  17. Rational use of electrical energy in artificial light in the production of chrysanthemum seedlings in greenhouse; Uso racional de energia eletrica em iluminacao artificial na producao de mudas de crisantemo em ambiente protegido

    Energy Technology Data Exchange (ETDEWEB)

    David, Eduardo [Universidade Estadual de Campinas (FEA/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], e-mail: eduardo.david@gr.unicamp.br; Rossi, Luiz Antonio [Universidade Estadual de Campinas (DEA/UNICAMP), SP (Brazil). Dept. de Engenharia Agricola], e-mail: rossi@agr.unicamp.br

    2008-07-01

    The type of artificial illumination employed for chrysanthemum cultivation in greenhouses to induce photo period effect will determine its growing rate as well as the energy consumption. Incandescent filament is currently employed for artificial illumination in chrysanthemum nursery to induce photo period effect. Nowadays new illumination technology is being tested aiming energy consumption reduction. The application of illumination based on electrical discharge in sodium or mercury vapor, as well as tubular or integrated compact fluorescent bulbs in chrysanthemum cultivation is identified as the objective of this research work. The experimental part of this work was carried out in a commercial greenhouse model employing five chrysanthemum variety as Papiro, Lindy White, Mona Lisa Rose, Euro Speedy and Stateman during winter and summer period. Parameters employed to the study variety behavior included: production per area, fresh matter weight, presence of flower sprouts and moisture content. The parameters known as electrical variables, like consumption, demand and power factor, together with the treatment energy efficiency index were used to analyze the employed illumination technologies and light bulbs type. Results showed differences between weight of fresh flowers and moisture content for the flowers variety under consideration. Productivity per unit area was noticed to be larger for discharge technology when compared with filament bulbs, for both varieties being tested. The lowest flower sprout occurrence was associated to the discharge technology with the exception of the variety Stateman produced with incandescent bulbs of 100 W in the winter plot. The unique exception related to discharge technology was associated to the White 23 W Integrated Compact Fluorescent bulb yielding 2.4% of flower sprouts compared with 0% of other bulb types associated to the production of the variety Euro Speedy. It was noticed from the results that the yellow integrated compact

  18. Fluorescent compounds for plastic scintillation applications

    International Nuclear Information System (INIS)

    Pla-Dalmau, A.; Bross, A.D.

    1994-04-01

    Several 2-(2'-hydroxyphenyl)benzothiazole, -benzoxazole, and -benzimidazole derivatives have been prepared. Transmittance, fluorescence, light yield, and decay time characteristics of these compounds have been studied in a polystyrene matrix and evaluated for use in plastic scintillation detectors. Radiation damage studies utilizing a 60 C source have also been performed

  19. Light emission from compound eye with conformal fluorescent coating

    Science.gov (United States)

    Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh

    2015-03-01

    Compound eyes of insects are attractive biological systems for engineered biomimicry as artificial sources of light, given their characteristic wide angular field of view. A blowfly eye was coated with a thin conformal fluorescent film, with the aim of achieving wide field-of-view emission. Experimental results showed that the coated eye emitted visible light and that the intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.

  20. Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes

    Science.gov (United States)

    Jeong, Chan Jin; Roy, Arup Kumer; Kim, Sung Han; Lee, Jung-Eun; Jeong, Ji Hoon; Insik; Park, Sung Young

    2014-11-01

    Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials.Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04805a

  1. Fluorescence of Alexa fluor dye tracks protein folding.

    Directory of Open Access Journals (Sweden)

    Simon Lindhoud

    Full Text Available Fluorescence spectroscopy is an important tool for the characterization of protein folding. Often, a protein is labeled with appropriate fluorescent donor and acceptor probes and folding-induced changes in Förster Resonance Energy Transfer (FRET are monitored. However, conformational changes of the protein potentially affect fluorescence properties of both probes, thereby profoundly complicating interpretation of FRET data. In this study, we assess the effects protein folding has on fluorescence properties of Alexa Fluor 488 (A488, which is commonly used as FRET donor. Here, A488 is covalently attached to Cys69 of apoflavodoxin from Azotobacter vinelandii. Although coupling of A488 slightly destabilizes apoflavodoxin, the three-state folding of this protein, which involves a molten globule intermediate, is unaffected. Upon folding of apoflavodoxin, fluorescence emission intensity of A488 changes significantly. To illuminate the molecular sources of this alteration, we applied steady state and time-resolved fluorescence techniques. The results obtained show that tryptophans cause folding-induced changes in quenching of Alexa dye. Compared to unfolded protein, static quenching of A488 is increased in the molten globule. Upon populating the native state both static and dynamic quenching of A488 decrease considerably. We show that fluorescence quenching of Alexa Fluor dyes is a sensitive reporter of conformational changes during protein folding.

  2. Fluorescence properties of human teeth and dental calculus for clinical applications

    Science.gov (United States)

    Lee, Yong-Keun

    2015-04-01

    Fluorescent emission of human teeth and dental calculus is important for the esthetic rehabilitation of teeth, diagnosis of dental caries, and detection of dental calculus. The purposes of this review were to summarize the fluorescence and phosphorescence of human teeth by ambient ultraviolet (UV) light, to investigate the clinically relevant fluorescence measurement methods in dentistry, and to review the fluorescence of teeth and dental calculus by specific wavelength light. Dentine was three times more phosphorescent than enamel. When exposed to light sources containing UV components, the fluorescence of human teeth gives them the quality of vitality, and fluorescent emission with a peak of 440 nm is observed. Esthetic restorative materials should have fluorescence properties similar to those of natural teeth. Based on the fluorescence of teeth and restorative materials as determined with a spectrophotometer, a fluorescence parameter was defined. As to the fluorescence spectra by a specific wavelength, varied wavelengths were investigated for clinical applications, and several methods for the diagnosis of dental caries and the detection of dental calculus were developed. Since fluorescent properties of dental hard tissues have been used and would be expanded in diverse fields of clinical practice, these properties should be investigated further, embracing newly developed optical techniques.

  3. Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging.

    Directory of Open Access Journals (Sweden)

    Michael G Giacomelli

    Full Text Available We derive a physically realistic model for the generation of virtual transillumination, white light microscopy images using epi-fluorescence measurements from thick, unsectioned tissue. We demonstrate this technique by generating virtual transillumination H&E images of unsectioned human breast tissue from epi-fluorescence multiphoton microscopy data. The virtual transillumination algorithm is shown to enable improved contrast and color accuracy compared with previous color mapping methods. Finally, we present an open source implementation of the algorithm in OpenGL, enabling real-time GPU-based generation of virtual transillumination microscopy images using conventional fluorescence microscopy systems.

  4. Measuring light spectrum as a main indicator of artificial sources quality

    Directory of Open Access Journals (Sweden)

    Piotr Dąbrowski

    2015-05-01

    Full Text Available Objective: To compare different artificial light sources in different places where plant breeding is conduced. Methods: Measurements were conducted outdoor, in room, in greenhouse, under four panels with light emitting diodes, in phytotron, in dark room with various light sources and inside Sanyo versatile environmental chamber. The measurements were made by using SpectraPen SP100 (PSI, Czech Republic device. Results: Our result showed that spectrum measured outdoor during sunny day had only one peak at the wavelength of 485 nm (ca. 60000 relative units. On cloudy day, the trend of light spectrum curve was similar, but with lower values. At room conditions, the curve was more flat than outdoor. Under greenhouse conditions, the curve was similar to that measured outdoor. A few additional peaks on the curve appeared by adding high pressure sodium lamp. There were changes of curve under LED panels. Conclusions: It must be underlined that the most similar spectrum curve to daylight light has incandescent bulb and this light source should be preferred as support of daylight in greenhouses and as main source in phytotrons. Using high pressure sodium lamp in greenhouses as support of daylight cause increase in the red/far-red ratio and occurrence of a new peak on spectrum curve. The new possibilities are creating by LED panels with red and blue diodes.

  5. Ensemble empirical mode decomposition based fluorescence spectral noise reduction for low concentration PAHs

    Science.gov (United States)

    Wang, Shu-tao; Yang, Xue-ying; Kong, De-ming; Wang, Yu-tian

    2017-11-01

    A new noise reduction method based on ensemble empirical mode decomposition (EEMD) is proposed to improve the detection effect for fluorescence spectra. Polycyclic aromatic hydrocarbons (PAHs) pollutants, as a kind of important current environmental pollution source, are highly oncogenic. Using the fluorescence spectroscopy method, the PAHs pollutants can be detected. However, instrument will produce noise in the experiment. Weak fluorescent signals can be affected by noise, so we propose a way to denoise and improve the detection effect. Firstly, we use fluorescence spectrometer to detect PAHs to obtain fluorescence spectra. Subsequently, noises are reduced by EEMD algorithm. Finally, the experiment results show the proposed method is feasible.

  6. Photobleaching and Fluorescence Recovery of RPE Bisretinoids.

    Directory of Open Access Journals (Sweden)

    Zhao Liu

    Full Text Available The autofluorescence of the retina that originates primarily from lipofuscin fluorophores in retinal pigment epithelial cells, is observed to undergo photobleaching during the acquisition of fundus autofluorescence images. Bisretinoid fluorophores isolated from retinal pigment epithelial cells have the spectral characteristics consistent with their being the source of fundus autofluorescence. Clinically relevant experiments were designed to better understand conditions in the micromilieu of bisretinoid fluorophores that can influence fluorescence efficiencies, photobleaching, and subsequent fluorescence recovery of this fluorophore. The consumption of the bisretinoid A2E due to photooxidation-induced degradation was quantified in solvent systems of variable relative permittivity (formerly called dielectric constant, in micelles, and in phospholipid vesicles of varying composition. Reorganization within biphasic systems was also examined. A2E content was measured by high performance liquid chromatography (HPLC and fluorescence intensity was quantified spectroscopically. As solvent polarity was increased, A2E fluorescent spectra exhibited red-shifted maxima and reduced intensity. A2E was depleted by light irradiation and the loss was more pronounced in less polar solvents, lower concentrations of anionic surfactant, and in gel- versus fluid-ordered phospholipid liposomes. Conditions that permit A2E aggregation promoted photooxidation/photodegradation, while movement of A2E between bisphasic systems was associated with fluorescence recovery after photobleaching. The fluorescence characteristics of A2E are subject to environmental modulation. Photooxidation and photodegradation of bisretinoid can account for fundus autofluorescence photobleaching. Return of fluorescence intensity after photobleaching likely occurs due to redistribution of A2E fractions amongst co-existing heterogeneous microdomains of the lysosomal compartment.

  7. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  8. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  9. Use of astronomy filters in fluorescence microscopy.

    Science.gov (United States)

    Piper, Jörg

    2012-02-01

    Monochrome astronomy filters are well suited for use as excitation or suppression filters in fluorescence microscopy. Because of their particular optical design, such filters can be combined with standard halogen light sources for excitation in many fluorescent probes. In this "low energy excitation," photobleaching (fading) or other irritations of native specimens are avoided. Photomicrographs can be taken from living motile fluorescent specimens also with a flash so that fluorescence images can be created free from indistinctness caused by movement. Special filter cubes or dichroic mirrors are not needed for our method. By use of suitable astronomy filters, fluorescence microscopy can be carried out with standard laboratory microscopes equipped with condensers for bright-field (BF) and dark-field (DF) illumination in transmitted light. In BF excitation, the background brightness can be modulated in tiny steps up to dark or black. Moreover, standard industry microscopes fitted with a vertical illuminator for examinations of opaque probes in DF or BF illumination based on incident light (wafer inspections, for instance) can also be used for excitation in epi-illumination when adequate astronomy filters are inserted as excitatory and suppression filters in the illuminating and imaging light path. In all variants, transmission bands can be modulated by transmission shift.

  10. X-ray fluorescence holography.

    Science.gov (United States)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu, Wen; Matsushita, Tomohiro

    2012-03-07

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy.

  11. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu Wen; Matsushita, Tomohiro

    2012-01-01

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy. (topical review)

  12. Radionuclide X-ray fluorescence analysis of components of the environment

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Havranek, E.; Dejmkova, E.

    1983-12-01

    The physical foundations and methodology are described of radionuclide X-ray fluorescence analysis. The sources are listed of air, water and soil pollution, and the transfer of impurities into biological materials is described. A detailed description is presented of the sampling of air, soil and biological materials and their preparation for analysis. Greatest attention is devoted to radionuclide X-ray fluorescence analysis of the components of the environment. (ES)

  13. A hard X-ray scanning microprobe for fluorescence imaging and microdiffraction at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Cai, L.; Lai, B.; Yun, W.; Ilinski, P.; Legnini, D.; Maser, J.; Rodrigues, W.

    1999-01-01

    A hard x-ray scanning microprobe based on zone plate optics and undulator radiation, in the energy region from 6 to 20 keV, has reached a focal spot size (FWHM) of 0.15 microm (v) x 0.6 microm (h), and a photon flux of 4 x 10 9 photons/sec/0.01%BW. Using a slit 44 meters upstream to create a virtual source, a circular beam spot of 0.15 microm in diameter can be obtained with a photon flux of one order of magnitude less. During fluorescence mapping of trace elements in a single human ovarian cell, the microprobe exhibited an imaging sensitivity for Pt (L a line) of 80 attograms/microm 2 for a count rate of 10 counts per second. The x-ray microprobe has been used to map crystallographic strain and multiquantum well thickness in micro-optoelectronic devices produced with the selective area growth technique

  14. Which lamp will be optimum to eye? Incandescent, fluorescent or LED etc

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2014-02-01

    Full Text Available Low frequency flicker, high frequency flicker, strong light, strong blue light, infrared, ultraviolet, electromagnetic radiation, ripple flicker and dimming flicker produced by different lamps have negative impact on vision, eyes and health. Negative impact on eyes resulting in myopia or cataract etc:the solution is to remove all the negative factors by applying upright lighting technology and that is optimum to vision, eyes and health.

  15. Synthesis and Fluorescence Spectra of Triazolylcoumarin Fluorescent Dyes

    Institute of Scientific and Technical Information of China (English)

    PENG Xian-fu; LI Hong-qi

    2009-01-01

    Much attention is devoted to fluorescent dyes especially those with potential in versatile applications. Reactions under "click" conditions between nonfluorescent 3 - azidocoumarins and terminal alkynes produced 3 -(1, 2, 3- triazol- 1 - yl)cournarins, a novel type of fluorescent dyes with intense fluorescence. The structures of the new coumarins were characterized by 1H NMR, MS, and IR spectra. Fluorescence spectra measurement demonstrated excellent fluorescence performance of the triazolylcoumarins and this click reaction is a promising candidate for bioconjugation and bioimaging applications since both azide and alkynes are quite inert to biological systems.

  16. Combined X-ray fluorescence and absorption computed tomography using a synchrotron beam

    International Nuclear Information System (INIS)

    Hall, C

    2013-01-01

    X-ray computed tomography (CT) and fluorescence X-ray computed tomography (FXCT) using synchrotron sources are both useful tools in biomedical imaging research. Synchrotron CT (SRCT) in its various forms is considered an important technique for biomedical imaging since the phase coherence of SR beams can be exploited to obtain images with high contrast resolution. Using a synchrotron as the source for FXCT ensures a fluorescence signal that is optimally detectable by exploiting the beam monochromaticity and polarisation. The ability to combine these techniques so that SRCT and FXCT images are collected simultaneously, would bring distinct benefits to certain biomedical experiments. Simultaneous image acquisition would alleviate some of the registration difficulties which comes from collecting separate data, and it would provide increased information about the sample: functional X-ray images from the FXCT, with the morphological information from the SRCT. A method is presented for generating simultaneous SRCT and FXCT images. Proof of principle modelling has been used to show that it is possible to recover a fluorescence image of a point-like source from an SRCT apparatus by suitably modulating the illuminating planar X-ray beam. The projection image can be successfully used for reconstruction by removing the static modulation from the sinogram in the normal flat and dark field processing. Detection of the modulated fluorescence signal using an energy resolving detector allows the position of a fluorescent marker to be obtained using inverse reconstruction techniques. A discussion is made of particular reconstruction methods which might be applied by utilising both the CT and FXCT data.

  17. Fluorescence spectroscopy of gastrointestinal tumors using δ-ALA

    Science.gov (United States)

    Borisova, E. G.; Vladimirov, B. G.; Angelov, I. G.; Avramov, L. A.

    2007-03-01

    In the recent study delta-aminolevulinic acid/Protoporphyrin IX (δ-ALA/PpIX) is used as fluorescent marker for dysplasia and tumor detection in esophagus and stomach. The δ-ALA is administered per os six hours before measurements at dose 20mg/kg weight. High-power light-emitting diode at 405 nm is used as an excitation source. Special opto-mechanical device is built to use the light guide of standard video-endoscopic system (Olimpus Corp.). Through endoscopic instrumental channel a fiber is applied to return information about fluorescence to microspectrometer (USB4000, OceanOptics Inc.). The fluorescence detected from tumor sites has very complex spectral origins. It consists of autofluorescence, fluorescence from exogenous fluorophores and re-absorption from the chromophores accumulated in the tissue investigated. Mucosa autofluorescence lies at 450-600 nm region. The fluorescence of PpIX is clearly pronounced at the 630-710 nm region. Deep minima in the tumor fluorescence signals are observed in the region 540-575 nm, related to hemoglobin re-absorption. Such high hemoglobin content is an indication of the tumors neovascularisation and it is clearly pronounced in all dysplastic and tumor sites investigated. The lack of fluorescence peaks in the red spectral area for normal mucosa is an indication for selective accumulation of δ-ALA/PpIX only in abnormal sites and gives high contrast when lesion borders are determined from clinicians during video observation in the process of diagnostic procedure. Very good correlation between fluorescence signals and histology examination results of the lesions investigated is achieved.

  18. Integrating Philips' extreme UV source in the alpha-tools

    Science.gov (United States)

    Pankert, Joseph; Apetz, Rolf; Bergmann, Klaus; Derra, Guenther; Janssen, Maurice; Jonkers, Jeroen; Klein, Jurgen; Kruecken, Thomas; List, Andreas; Loeken, Michael; Metzmacher, Christof; Neff, Willi; Probst, Sven; Prummer, Ralph; Rosier, Oliver; Seiwert, Stefan; Siemons, Guido; Vaudrevange, Dominik; Wagemann, Dirk; Weber, Achim; Zink, Peter; Zitzen, Oliver

    2005-05-01

    The paper describes recent progress in the development of the Philips's EUV source. Progress has been realized at many frontiers: Integration studies of the source into a scanner have primarily been studied on the Xe source because it has a high degree of maturity. We report on integration with a collector, associated collector lifetime and optical characteristics. Collector lifetime in excess of 1 bln shots could be demonstrated. Next, an active dose control system was developed and tested on the Xe lamp. Resulting dose stability data are less than 0.2% for an exposure window of 100 pulses. The second part of the paper reports on progress in the development of the Philips' Sn source. First, the details of the concept are described. It is based on a Laser triggered vacuum arc, which is an extension with respect to previous designs. The source is furbished with rotating electrodes that are covered with a Sn film that is constantly regenerated. Hence by the very design of the source, it is scalable to very high power levels, and moreover has fundamentally solved the notorious problem of electrode erosion. Power values of 260 W in 2p sr are reported, along with a stable, long life operation of the lamp. The paper also addresses the problem of debris generation and mitigation of the Sn-source. The problem is attacked by a combined strategy of protection of the collector by traditional means (e.g. fields, foiltraps... ), and by designing the gas atmosphere according to the principles of the well known halogen cycles in incandescent lamps. These principles have been studied in the Lighting industry for decades and rely on the excessively high vapor pressures of metal halides. Transferred to the Sn source, it allows pumping away tin residues that would otherwise irreversibly deposit on the collector.

  19. Three-Port dc-dc Conversion in Light-to-Light Systems

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen

    conversion efficiency under low irradiation conditions. This work is part of a Ph.D. research project to study the feasibility of implementing three-port converter (TPC) topologies in solar powered LED, light-to-light (LtL) systems. After the introduction in Chapter 1, an overview of the state-of-the art...... conventional light sources based on heated filaments (incandescent and halogen) and gas discharge (fluorescent, sodium, etc). The rapid development of this technology makes it possible to replace the conventional technologies towards high brightness LED lighting systems. The combination of these technologies......—solar cells, energy storage elements and LEDs—in a stand-alone solar powered LED system, can provide light where otherwise it would be cumbersome; in rural areas, where cabling can be challenging and expensive, and also in the urban environment, where the cost of digging and construction is very expensive...

  20. Contribution to the analysis of light elements using x fluorescence excited by radio-elements

    International Nuclear Information System (INIS)

    Robert, A.

    1964-01-01

    In order to study the possibilities of using radioactive sources for the X-fluorescence analysis of light elements, the principle is given, after a brief description of X-fluorescence, of the excitation of this phenomenon by X, β and α emission from radio-elements. The operation and use of the proportional gas counter for X-ray detection is described. A device has been studied for analysing the elements of the 2. and 3. periods of the Mendeleev table. It makes it possible to excite the fluorescence with a radioactive source emitting X-rays or a particles; the X-ray fluorescence penetrates into a window-less proportional counter, this being made possible by the use of an auxiliary electric field in the neighbourhood of the sample. The gas detection pressure leading to the maximum detection yield is given. The spectra are given for the K α lines of 3. period elements excited by 55 Fe, 3 H/Zr and 210 Po sources; for the 2. period the K α spectra of carbon and of fluorine excited by the α particles of 210 Po. (author) [fr

  1. Molecular engineering of two-photon fluorescent probes for bioimaging applications

    Science.gov (United States)

    Liu, Hong-Wen; Liu, Yongchao; Wang, Peng; Zhang, Xiao-Bing

    2017-03-01

    During the past two decades, two-photon microscopy (TPM), which utilizes two near-infrared photons as the excitation source, has emerged as a novel, attractive imaging tool for biological research. Compared with one-photon microscopy, TPM offers several advantages, such as lowering background fluorescence in living cells and tissues, reducing photodamage to biosamples, and a photobleaching phenomenon, offering better 3D spatial localization, and increasing penetration depth. Small-molecule-based two-photon fluorescent probes have been well developed for the detection and imaging of various analytes in biological systems. In this review, we will give a general introduction of molecular engineering of two-photon fluorescent probes based on different fluorescence response mechanisms for bioimaging applications during the past decade. Inspired by the desired advantages of small-molecule two-photon fluorescent probes in biological imaging applications, we expect that more attention will be devoted to the development of new two-photon fluorophores and applications of TPM in areas of bioanalysis and disease diagnosis.

  2. Application of fluorescence spectroscopy and imaging in the detection of a photosensitizer in photodynamic therapy

    Science.gov (United States)

    Zang, Lixin; Zhao, Huimin; Zhang, Zhiguo; Cao, Wenwu

    2017-02-01

    Photodynamic therapy (PDT) is currently an advanced optical technology in medical applications. However, the application of PDT is limited by the detection of photosensitizers. This work focuses on the application of fluorescence spectroscopy and imaging in the detection of an effective photosenzitizer, hematoporphyrin monomethyl ether (HMME). Optical properties of HMME were measured and analyzed based on its absorption and fluorescence spectra. The production mechanism of its fluorescence emission was analyzed. The detection device for HMME based on fluorescence spectroscopy was designed. Ratiometric method was applied to eliminate the influence of intensity change of excitation sources, fluctuates of excitation sources and photo detectors, and background emissions. The detection limit of this device is 6 μg/L, and it was successfully applied to the diagnosis of the metabolism of HMME in the esophageal cancer cells. To overcome the limitation of the point measurement using fluorescence spectroscopy, a two-dimensional (2D) fluorescence imaging system was established. The algorithm of the 2D fluorescence imaging system is deduced according to the fluorescence ratiometric method using bandpass filters. The method of multiple pixel point addition (MPPA) was used to eliminate fluctuates of signals. Using the method of MPPA, SNR was improved by about 30 times. The detection limit of this imaging system is 1.9 μg/L. Our systems can be used in the detection of porphyrins to improve the PDT effect.

  3. Fluorescence Image Segmentation by using Digitally Reconstructed Fluorescence Images

    OpenAIRE

    Blumer, Clemens; Vivien, Cyprien; Oertner, Thomas G; Vetter, Thomas

    2011-01-01

    In biological experiments fluorescence imaging is used to image living and stimulated neurons. But the analysis of fluorescence images is a difficult task. It is not possible to conclude the shape of an object from fluorescence images alone. Therefore, it is not feasible to get good manual segmented nor ground truth data from fluorescence images. Supervised learning approaches are not possible without training data. To overcome this issues we propose to synthesize fluorescence images and call...

  4. Satellite-detected fluorescence reveals global physiology of ocean phytoplankton

    Directory of Open Access Journals (Sweden)

    M. J. Behrenfeld

    2009-05-01

    Full Text Available Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models.

  5. Light extraction efficiency enhancement for fluorescent SiC based white light-emitting diodes

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    Fluorescent SiC based white light-emitting diodes(LEDs) light source, as an innovative energy-efficient light source, would even have longer lifetime, better light quality and eliminated blue-tone effect, compared to the current phosphor based white LED light source. In this paper, the yellow...

  6. 5-ALA/PpIX fluorescence detection of gastrointestinal neoplasia

    Science.gov (United States)

    Borisova, Ekaterina G.; Vladimirov, Borislav; Terziev, Ivan; Ivanova, Radina; Avramov, Latchezar

    2009-07-01

    In the recent study delta-ALA/PpIX is used as fluorescent marker for dysplasia and tumor detection in esophagus, stomach and colon. ALA is administered per os six to eight (depending on the lesion location) hours before measurements at dose 20mg/kg weight. High-power light-emitting diode at 405 nm is used as an excitation source. Special opto-mechanical device is built for the LED to use the light guide of standard video-endoscopic system. Through endoscopic instrumental channel a fiber is applied to return information about fluorescence to microspectrometer. The fluorescence detected from tumor sites has very complex spectral origins. It consists of autofluorescence, fluorescence from exogenous fluorophores and re-absorption from the chromophores accumulated in the tissue investigated. Spectral features observed during endoscopic investigations could be distinct as the next regions: 450-630 nm region, where tissue autofluorescence is observed; 630-710 nm region, where fluorescence of PpIX is clearly pronounced; 530-580 nm region, where minima in the autofluorescence signal are observed, related to re-absorption of oxy-hemoglobin in this spectral area. Endogenous and exogenous fluorescence spectra are used to develop simple but effective algorithm, based on dimensionless ratio of the signals at 560 and 635 nm, for differentiation of normal/abnormal gastrointestinal tissues. Very good correlation between fluorescence signals and histology examination of the lesions investigated is achieved.

  7. Melanin fluorescence spectra by step-wise three photon excitation

    Science.gov (United States)

    Lai, Zhenhua; Kerimo, Josef; DiMarzio, Charles A.

    2012-03-01

    Melanin is the characteristic chromophore of human skin with various potential biological functions. Kerimo discovered enhanced melanin fluorescence by stepwise three-photon excitation in 2011. In this article, step-wise three-photon excited fluorescence (STPEF) spectrum between 450 nm -700 nm of melanin is reported. The melanin STPEF spectrum exhibited an exponential increase with wavelength. However, there was a probability of about 33% that another kind of step-wise multi-photon excited fluorescence (SMPEF) that peaks at 525 nm, shown by previous research, could also be generated using the same process. Using an excitation source at 920 nm as opposed to 830 nm increased the potential for generating SMPEF peaks at 525 nm. The SMPEF spectrum peaks at 525 nm photo-bleached faster than STPEF spectrum.

  8. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review

    Science.gov (United States)

    Fernandez-Jaramillo, Arturo A.; Duarte-Galvan, Carlos; Contreras-Medina, Luis M.; Torres-Pacheco, Irineo; de J. Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon G.; Millan-Almaraz, Jesus R.

    2012-01-01

    Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images. PMID:23112686

  9. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review

    Directory of Open Access Journals (Sweden)

    Jesus R. Millan-Almaraz

    2012-08-01

    Full Text Available Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images.

  10. Quantitative x-ray fluorescent analysis using fundamental parameters

    International Nuclear Information System (INIS)

    Sparks, C.J. Jr.

    1976-01-01

    A monochromatic source of x-rays for sample excitation permits the use of pure elemental standards and relatively simple calculations to convert the measured fluorescent intensities to an absolute basis of weight per unit weight of sample. Only the mass absorption coefficients of the sample for the exciting and the fluorescent radiation need be determined. Besides the direct measurement of these absorption coefficients in the sample, other techniques are considered which require fewer sample manipulations and measurements. These fundamental parameters methods permit quantitative analysis without recourse to the time-consuming process of preparing nearly identical standards

  11. Assembly of positioner of automated two-dimensional scan coupled to X-ray fluorescence spectrometry; Montagem de posicionador de varredura bidimensional automatizada acoplado a espectrometria de fluorescência de raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo Santiago Melgaço

    2011-07-01

    This work describes the design and assembling of a prototype automated positioner two-dimensional scanning coupled to X-ray fluorescence spectrometry. The work aims to achieve a portable and easy to use, device of broad utility in the analysis of samples by X-ray fluorescence area of expertise and research. The two-dimensional scanning of the positioner is by means of two stepper motors controlled by a microcontroller PIC 16F877A, encoder and optical sensors. The user interacts with the XY table through an interface program for the Windows operating system, which communicates with the microcontroller through the serial port. The system of Fluorescence Spectroscopy incorporated into the positioner consists of a system commercially available system from the company AMPTEK, where the primary source of excitation of the sample was a source of {sup 241}Am of 59.5 KeV emissions. Resolution and accuracy of tests were performed in the XY scanning process and reproducibility of the same kit with the fluorescence spectrometry X-ray. Qualitative tests by X-ray fluorescence spectrometry in samples were performed to demonstrate the applicability and versatility of the project. It follows that the prototype illustrates a possible adequately to portable device for X-ray spectrometry of two-dimensional. (author)

  12. Scattered and Fluorescent Photon Track Reconstruction in a Biological Tissue

    Directory of Open Access Journals (Sweden)

    Maria N. Kholodtsova

    2014-01-01

    Full Text Available Appropriate analysis of biological tissue deep regions is important for tumor targeting. This paper is concentrated on photons’ paths analysis in such biotissue as brain, because optical probing depth of fluorescent and excitation radiation differs. A method for photon track reconstruction was developed. Images were captured focusing on the transparent wall close and parallel to the source fibres, placed in brain tissue phantoms. The images were processed to reconstruct the photons most probable paths between two fibres. Results were compared with Monte Carlo simulations and diffusion approximation of the radiative transfer equation. It was shown that the excitation radiation optical probing depth is twice more than for the fluorescent photons. The way of fluorescent radiation spreading was discussed. Because of fluorescent and excitation radiation spreads in different ways, and the effective anisotropy factor, geff, was proposed for fluorescent radiation. For the brain tissue phantoms it were found to be 0.62±0.05 and 0.66±0.05 for the irradiation wavelengths 532 nm and 632.8 nm, respectively. These calculations give more accurate information about the tumor location in biotissue. Reconstruction of photon paths allows fluorescent and excitation probing depths determination. The geff can be used as simplified parameter for calculations of fluorescence probing depth.

  13. Fluorescent Endoscopy of Tumors in Upper Part of Gastrointestinal Tract

    Science.gov (United States)

    Borisova, E.; Vladimirov, B.; Angelov, I.; Avramov, L.

    2007-04-01

    In the recent study delta-aminolevulinic acid/Protoporphyrin IX (5-ALA/PpIX) is used as fluorescent marker for dysplasia and tumor detection in esophagus and stomach. The 5-ALA is administered per os six hours before measurements at dose 20mg/kg weight. High-power light-emitting diode at 405 nm is used as an excitation source. Special opto-mechanical device is built for LED to use the light guide of standard video-endoscopic system (Olimpus Corp.). Through endoscopic instrumental channel a fiber is applied to return information about fluorescence to microspectrometer (USB4000, OceanOptics Inc.). Very good correlation between fluorescence signals and histology examination of the lesions investigated is achieved.

  14. Detection of {alpha} particles with the aid of a fluorescence counter; Detection des particules {alpha} a l'aide d'un compteur a fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Koechlin, Y

    1951-07-01

    The operation principle of the fluorescence counter, used as {alpha} particles detector, is analyzed in the first part. Detection can be done in two ways: by counting the pulses due to each {alpha} particle, or by integrating all pulses and measuring the average current obtained. In the second part, three series of measurements are presented: 1 - two fluorescent substances (zinc sulfate and anthracene) are placed in front of the photocathode of three types of photomultipliers (RCA 931A, EMI 4588, and EMI 5311). These substances are bombarded with the {alpha} radiations of a Po source and then irradiated by the {beta} and {gamma} radiations of a Ra source in order to study the light emission of these thin film substances when submitted to the three types of radiations. The results show that thanks to the amplitude of the emitted light pulses, the fluorescence counter, when submitted to the three types of radiations, allows to distinguish between the {alpha} radiations of the polonium and the {beta} and {gamma} radiations of the radium source. The output current of a 931A, when measured with a galvanometer, allows to detect Po sources with an intensity of about 10{sup -6} curie. This is observed when its photocathode receives the light from a ZnS-Ag coating bombarded by the {alpha} particles of Po. The quantum efficiency of the counter is close to 100% for the {alpha} particles of Po. This efficiency is evaluated by comparison with the efficiency of a thin wall Geiger-Mueller counter. Moreover, when a thin crystal of anthracene is used as detector, the energy of the incident particles can be measured with a 2% preciseness. (J.S.)

  15. Quantum electrodynamics of the internal source x-ray holographies: Bremsstrahlung, fluorescence, and multiple-energy x-ray holography

    International Nuclear Information System (INIS)

    Miller, G.A.; Sorensen, L.B.

    1997-01-01

    Quantum electrodynamics (QED) is used to derive the differential cross sections measured in the three new experimental internal source ensemble x-ray holographies: bremsstrahlung (BXH), fluorescence (XFH), and multiple-energy (MEXH) x-ray holography. The polarization dependence of the BXH cross section is also obtained. For BXH, we study analytically and numerically the possible effects of the virtual photons and electrons which enter QED calculations in summing over the intermediate states. For the low photon and electron energies used in the current experiments, we show that the virtual intermediate states produce only very small effects. This is because the uncertainty principle limits the distance that the virtual particles can propagate to be much shorter than the separation between the regions of high electron density in the adjacent atoms. We also find that using the asymptotic form of the scattering wave function causes about a 5 10% error for near forward scattering. copyright 1997 The American Physical Society

  16. Conversion of isotropic fluorescence into a long-range non-diverging beam

    Science.gov (United States)

    Zhang, Douguo; Zhu, Liangfu; Chen, Junxue; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Rosenfeld, Mary; Zhan, Qiwen; Kuang, Cuifang; Liu, Xu; Lakowicz, Joseph R.

    2018-04-01

    Fluorescent samples typically emit isotropically in all directions. Large lenses and other optical components are needed to capture a significant fraction of the emission, and complex confocal microscopes are required for high resolution focal-plane imaging. It is known that Bessel beams have remarkable properties of being able to travel over long distances, over 1000 times the wavelength, without diverging, and hence are called non-diffracting beams. In previous reports the Bessel beams were formed by an incident light source, typically with plane-wave illumination on a circular aperture. It was not known if Bessel beams could form from fluorescent light sources. We demonstrate transformation of the emission from fluorescent polystyrene spheres (FPS) into non-diverging beams which propagate up to 130 mm (13 cm) along the optical axis with a constant diameter. This is accomplished using a planar metal film, with no nanoscale features in the X-Y plane, using surface plasmon-coupled emission. Using samples which contain many FPS in the field-of-view, we demonstrate that an independent Bessel beam can be generated from any location on the metal film. The extremely long non-diffracted propagation distances, and self-healing properties of Bessel beams, offer new opportunities in fluorescence sensing and imaging.

  17. Study of improving signal-noise ratio for fluorescence channel

    Science.gov (United States)

    Wang, Guoqing; Li, Xin; Lou, Yue; Chen, Dong; Zhao, Xin; Wang, Ran; Yan, Debao; Zhao, Qi

    2017-10-01

    Laser-induced fluorescence(LIFS), which is one of most effective discrimination methods to identify the material at the molecular level by inducing fluorescence spectrum, has been popularized for its fast and accurate probe's results. According to the research, violet laser or ultraviolet laser is always used as excitation light source. While, There is no atmospheric window for violet laser and ultraviolet laser, causing laser attenuation along its propagation path. What's worse, as the laser reaching sample, part of the light is reflected. That is, excitation laser really react on sample to produce fluorescence is very poor, leading to weak fluorescence mingled with the background light collected by LIFS' processing unit, when it used outdoor. In order to spread LIFS to remote probing under the complex background, study of improving signal-noise ratio for fluorescence channel is a meaningful work. Enhancing the fluorescence intensity and inhibiting background light both can improve fluorescence' signal-noise ratio. In this article, three different approaches of inhibiting background light are discussed to improve the signal-noise ratio of LIFS. The first method is increasing fluorescence excitation area in the proportion of LIFS' collecting field by expanding laser beam, if the collecting filed is fixed. The second one is changing field angle base to accommodate laser divergence angle. The third one is setting a very narrow gating circuit to control acquisition circuit, which is shortly open only when fluorescence arriving. At some level, these methods all can reduce the background light. But after discussion, the third one is best with adding gating acquisition circuit to acquisition circuit instead of changing light path, which is effective and economic.

  18. Experimental design and quality assurance: in situ fluorescence instrumentation

    Science.gov (United States)

    Conmy, Robyn N.; Del Castillo, Carlos E.; Downing, Bryan D.; Chen, Robert F.

    2014-01-01

    Both instrument design and capabilities of fluorescence spectroscopy have greatly advanced over the last several decades. Advancements include solid-state excitation sources, integration of fiber optic technology, highly sensitive multichannel detectors, rapid-scan monochromators, sensitive spectral correction techniques, and improve data manipulation software (Christian et al., 1981, Lochmuller and Saavedra, 1986; Cabniss and Shuman, 1987; Lakowicz, 2006; Hudson et al., 2007). The cumulative effect of these improvements have pushed the limits and expanded the application of fluorescence techniques to numerous scientific research fields. One of the more powerful advancements is the ability to obtain in situ fluorescence measurements of natural waters (Moore, 1994). The development of submersible fluorescence instruments has been made possible by component miniaturization and power reduction including advances in light sources technologies (light-emitting diodes, xenon lamps, ultraviolet [UV] lasers) and the compatible integration of new optical instruments with various sampling platforms (Twardowski et at., 2005 and references therein). The development of robust field sensors skirt the need for cumbersome and or time-consuming filtration techniques, the potential artifacts associated with sample storage, and coarse sampling designs by increasing spatiotemporal resolution (Chen, 1999; Robinson and Glenn, 1999). The ability to obtain rapid, high-quality, highly sensitive measurements over steep gradients has revolutionized investigations of dissolved organic matter (DOM) optical properties, thereby enabling researchers to address novel biogeochemical questions regarding colored or chromophoric DOM (CDOM). This chapter is dedicated to the origin, design, calibration, and use of in situ field fluorometers. It will serve as a review of considerations to be accounted for during the operation of fluorescence field sensors and call attention to areas of concern when making

  19. Application of synchrotron radiation to x-ray fluorescence analysis of trace elements

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.

    1986-08-01

    The development of synchrotron radiation x-ray sources has provided the means to greatly extend the capabilities of x-ray fluorescence analysis for determinations of trace element concentrations. A brief description of synchrotron radiation properties provides a background for a discussion of the improved detection limits compared to existing x-ray fluorescence techniques. Calculated detection limits for x-ray microprobes with micrometer spatial resolutions are described and compared with experimental results beginning to appear from a number of laboratories. The current activities and future plans for a dedicated x-ray microprobe beam line at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory are presented

  20. Time resolved fluorescence of cow and goat milk powder

    Science.gov (United States)

    Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.

    2017-01-01

    Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.

  1. Exciton-controlled fluorescence: application to hybridization-sensitive fluorescent DNA probe.

    Science.gov (United States)

    Okamoto, Akimitsu; Ikeda, Shuji; Kubota, Takeshi; Yuki, Mizue; Yanagisawa, Hiroyuki

    2009-01-01

    A hybridization-sensitive fluorescent probe has been designed for nucleic acid detection, using the concept of fluorescence quenching caused by the intramolecular excitonic interaction of fluorescence dyes. We synthesized a doubly thiazole orange-labeled nucleotide showing high fluorescence intensity for a hybrid with the target nucleic acid and effective quenching for the single-stranded state. This exciton-controlled fluorescent probe was applied to living HeLa cells using microinjection to visualize intracellular mRNA localization. Immediately after injection of the probe into the cell, fluorescence was observed from the probe hybridizing with the target RNA. This fluorescence rapidly decreased upon addition of a competitor DNA. Multicoloring of this probe resulted in the simple simultaneous detection of plural target nucleic acid sequences. This probe realized a large, rapid, reversible change in fluorescence intensity in sensitive response to the amount of target nucleic acid, and facilitated spatiotemporal monitoring of the behavior of intracellular RNA.

  2. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  3. Atomic fluorescence spectrometry with the inductively coupled plasma

    International Nuclear Information System (INIS)

    Omenetto, N.; Winefordner, J.D.

    1987-01-01

    Atomic fluorescence spectrometry (AFS) is based on the radiational activation of atoms and ions produced in a suitable atomizer (ionizer) and the subsequent measurement of the resulting radiational deactivation, called fluorescence. Atomic fluorescence spectrometry has been of considerable interest to researchers in atomic spectrometry because of its use for both analytical and diagnostic purposes. Unfortunately, the analytical applications of AFS have suffered from the lack of commercial instrumentation until the recent marketing of the Baird multiple-element, hollow cathode lamp-excited inductively coupled plasma system. This chapter is concerned strictly with the use of the inductively coupled plasma (ICP) as a cell and as a source for AFS. Many of the major references concerning the ICP in analytical AFS are categorized in Table 9.1, along with several reviews and diagnostical studies. For more detailed discussions of the fundamental aspects of AFS, the reader is referred to previous reviews

  4. Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation

    International Nuclear Information System (INIS)

    Churmakov, D Y; Meglinski, I V; Piletsky, S A; Greenhalgh, D A

    2003-01-01

    A novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account the spatial distribution of fluorophores, which would arise due to the structure of collagen fibres, compared to the epidermis and stratum corneum where the distribution of fluorophores is assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the near-infrared spectral region, whereas the spatial distribution of fluorescence sources within a sensor layer embedded in the epidermis is localized at an 'effective' depth

  5. Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Churmakov, D Y [School of Engineering, Cranfield University, Cranfield, MK43 0AL (United Kingdom); Meglinski, I V [School of Engineering, Cranfield University, Cranfield, MK43 0AL (United Kingdom); Piletsky, S A [Institute of BioScience and Technology, Cranfield University, Silsoe, MK45 4DT (United Kingdom); Greenhalgh, D A [School of Engineering, Cranfield University, Cranfield, MK43 0AL (United Kingdom)

    2003-07-21

    A novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account the spatial distribution of fluorophores, which would arise due to the structure of collagen fibres, compared to the epidermis and stratum corneum where the distribution of fluorophores is assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the near-infrared spectral region, whereas the spatial distribution of fluorescence sources within a sensor layer embedded in the epidermis is localized at an 'effective' depth.

  6. Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation

    Science.gov (United States)

    Y Churmakov, D.; Meglinski, I. V.; Piletsky, S. A.; Greenhalgh, D. A.

    2003-07-01

    A novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account the spatial distribution of fluorophores, which would arise due to the structure of collagen fibres, compared to the epidermis and stratum corneum where the distribution of fluorophores is assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the near-infrared spectral region, whereas the spatial distribution of fluorescence sources within a sensor layer embedded in the epidermis is localized at an `effective' depth.

  7. Sensitivity of in vivo X-ray fluorescence determination of skeletal lead stores

    International Nuclear Information System (INIS)

    Sokas, R.K.; Besarab, A.; McDiarmid, M.A.; Shapiro, I.M.; Bloch, P.

    1990-01-01

    Eighteen patients with known past occupational lead exposure underwent parenteral diagnostic chelation with ethylenediaminetetraacetic acid and x-ray fluorescent determination of in vivo skeletal lead stores at the distal styloid process of the ulna and at the temporal base bone using a cobalt 57 source and measuring lead Ka x-rays. X-ray fluorescent lead measurements in both locations correlated with results of diagnostic chelation. Using a post-chelation urinary excretion of greater than 600 micrograms lead/24 h as the definition of high-lead stores, sensitivity of x-ray fluorescence at the wrist and temple was 56% and 39%, respectively

  8. A time-domain fluorescence diffusion optical tomography system for breast tumor diagnosis

    Science.gov (United States)

    Zhang, Wei; Gao, Feng; Wu, LinHui; Ma, Wenjuan; Yang, Fang; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan

    2011-02-01

    A prototype time-domain fluorescence diffusion optical tomography (FDOT) system using near-infrared light is presented. The system employs two pulsed light sources, 32 source fibers and 32 detection channels, working separately for acquiring the temporal distribution of the photon flux on the tissue surface. The light sources are provided by low power picosecond pulsed diode lasers at wavelengths of 780 nm and 830 nm, and a 1×32-fiber-optic-switch sequentially directs light sources to the object surface through 32 source fibers. The light signals re-emitted from the object are collected by 32 detection fibers connected to four 8×1 fiber-optic-switch and then routed to four time-resolved measuring channels, each of which consists of a collimator, a filter wheel, a photomultiplier tube (PMT) photon-counting head and a time-correlated single photon counting (TCSPC) channel. The performance and efficacy of the designed multi-channel PMT-TCSPC system are assessed by reconstructing the fluorescent yield and lifetime images of a solid phantom.

  9. LASER FLUORESCENCE EEM PROBE FOR CONE PENETROMETER POLLUTION ANALYSIS

    Science.gov (United States)

    A fiber optic LIF (Laser induced fluorescence) EEM (Excitation emission matrix) instrument for CPT deployment has been successfully developed and field tested. The system employs a Nd: YAG laser and Raman shifter as a rugged field portable excitation source. This excitation sou...

  10. Determination of silver in ancient coins by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Pairatana, C.

    1976-01-01

    45 coins of late Ayudhaya and Bangkok periods was analyzed quantitatively by x-ray fluorescence technique using radioisotopic sources Pm - 147/A1 and Am - 241. The fluorescence x-rays were detected by Lithium drifted silicon detector and 1024 channels pulse height analyzer. The procedure was laid a stress on non-destructive methods which could be utilized for analysing various kinds of antiquities and work of arts such as metals, alloys, pottery, ceramics, paper, textile, wood etc

  11. Solid-state lighting technology perspective.

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

    2006-08-01

    Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

  12. Applications of two-photon fluorescence microscopy in deep-tissue imaging

    Science.gov (United States)

    Dong, Chen-Yuan; Yu, Betty; Hsu, Lily L.; Kaplan, Peter D.; Blankschstein, D.; Langer, Robert; So, Peter T. C.

    2000-07-01

    Based on the non-linear excitation of fluorescence molecules, two-photon fluorescence microscopy has become a significant new tool for biological imaging. The point-like excitation characteristic of this technique enhances image quality by the virtual elimination of off-focal fluorescence. Furthermore, sample photodamage is greatly reduced because fluorescence excitation is limited to the focal region. For deep tissue imaging, two-photon microscopy has the additional benefit in the greatly improved imaging depth penetration. Since the near- infrared laser sources used in two-photon microscopy scatter less than their UV/glue-green counterparts, in-depth imaging of highly scattering specimen can be greatly improved. In this work, we will present data characterizing both the imaging characteristics (point-spread-functions) and tissue samples (skin) images using this novel technology. In particular, we will demonstrate how blind deconvolution can be used further improve two-photon image quality and how this technique can be used to study mechanisms of chemically-enhanced, transdermal drug delivery.

  13. New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation.

    Science.gov (United States)

    Baran, Timothy M; Foster, Thomas H

    2011-08-01

    We present a new Monte Carlo model of cylindrical diffusing fibers that is implemented with a graphics processing unit. Unlike previously published models that approximate the diffuser as a linear array of point sources, this model is based on the construction of these fibers. This allows for accurate determination of fluence distributions and modeling of fluorescence generation and collection. We demonstrate that our model generates fluence profiles similar to a linear array of point sources, but reveals axially heterogeneous fluorescence detection. With axially homogeneous excitation fluence, approximately 90% of detected fluorescence is collected by the proximal third of the diffuser for μ(s)'∕μ(a) = 8 in the tissue and 70 to 88% is collected in this region for μ(s)'∕μ(a) = 80. Increased fluorescence detection by the distal end of the diffuser relative to the center section is also demonstrated. Validation of these results was performed by creating phantoms consisting of layered fluorescent regions. Diffusers were inserted into these layered phantoms and fluorescence spectra were collected. Fits to these spectra show quantitative agreement between simulated fluorescence collection sensitivities and experimental results. These results will be applicable to the use of diffusers as detectors for dosimetry in interstitial photodynamic therapy.

  14. Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans

    Science.gov (United States)

    Corlu, Alper; Choe, Regine; Durduran, Turgut; Rosen, Mark A.; Schweiger, Martin; Arridge, Simon R.; Schnall, Mitchell D.; Yodh, Arjun G.

    2007-05-01

    We present three-dimensional (3D) in vivo images of human breast cancer based on fluorescence diffuse optical tomography (FDOT). To our knowledge, this work represents the first reported 3D fluorescence tomography of human breast cancer in vivo. In our protocol, the fluorophore Indocyanine Green (ICG) is injected intravenously. Fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Phantom and in vivo studies confirm the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. Fluorescence images of breast tumors were in good agreement with those of MRI, and with DOT based on endogenous contrast. Tumorto- normal tissue contrast based on ICG fluorescence was two-to-four-fold higher than contrast based on hemoglobin and scattering parameters. In total the measurements demonstrate that FDOT of breast cancer is feasible and promising.

  15. Assembly of positioner of automated two-dimensional scan coupled to X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Silva, Leonardo Santiago Melgaço

    2011-01-01

    This work describes the design and assembling of a prototype automated positioner two-dimensional scanning coupled to X-ray fluorescence spectrometry. The work aims to achieve a portable and easy to use, device of broad utility in the analysis of samples by X-ray fluorescence area of expertise and research. The two-dimensional scanning of the positioner is by means of two stepper motors controlled by a microcontroller PIC 16F877A, encoder and optical sensors. The user interacts with the XY table through an interface program for the Windows operating system, which communicates with the microcontroller through the serial port. The system of Fluorescence Spectroscopy incorporated into the positioner consists of a system commercially available system from the company AMPTEK, where the primary source of excitation of the sample was a source of 241 Am of 59.5 KeV emissions. Resolution and accuracy of tests were performed in the XY scanning process and reproducibility of the same kit with the fluorescence spectrometry X-ray. Qualitative tests by X-ray fluorescence spectrometry in samples were performed to demonstrate the applicability and versatility of the project. It follows that the prototype illustrates a possible adequately to portable device for X-ray spectrometry of two-dimensional. (author)

  16. Preliminary Study of the Efficacy of Using Nuclear Resonance Fluorescence with Quasi-Monoenergetic Gamma-Ray Sources for Nuclear Safeguards Assay

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M S; McNabb, D P; Hall, J M; Gonzalez, J J

    2011-02-17

    We have studied the efficacy of using nuclear resonance fluorescence (NRF)-based techniques to assay spent nuclear fuel for Pu content using quasi-monoenergetic sources. We have developed two techniques to precisely determine the Pu content in a fuel rod/pin. One of our approaches is virtually free of systematic uncertainties. Using analytical models, we have determined the amount of time required to measure the Pu content in spent nuclear fuel rods and spent fuel assemblies to within 1% precision. We note that Pu content can be determined in a fuel assembly about as fast as in a single fuel pin. The performance of NRF-based assay techniques with improved photon sources, which are currently under development, will also estimated. For follow-on research we propose to: (1) Construct research prototype detection systems for both of the NRF-based assay systems proposed in this paper and measure their calibration curves; (2) Determine the systematic errors associated with both assay methods, explore ways to reduce the errors and fold the results into future performance calculations; (3) Develop an algorithm to assay a fuel assembly; (4) Perform validation measurements using a single pin and scaled assemblies; (5) Research and develop current-mode detection and/or threshold detection techniques to improve assay times; (6) Characterize the flux of newly constructed sources and fold the results into the calculations presented here to determine the feasibility of a variety of proposed sources; and (7) Collaborate with others in the safeguards community to build a prototype system and perform an NRF-based assay demonstration on spent fuel.

  17. Sorting fluorescent nanocrystals with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  18. [Analysis of fluorescence spectrum of petroleum-polluted water].

    Science.gov (United States)

    Huang, Miao-Fen; Song, Qing-Jun; Xing, Xu-Feng; Jian, Wei-Jun; Liu, Yuan; Zhao, Zu-Long

    2014-09-01

    In four ratio experiments, natural waters, sampled from the mountain reservoir and the sea water around Dalian city, were mixed with the sewage from petroleum refinery and petroleum exploitation plants. The fluorescence spectra of water samples containing only chromophoric dissolved organic matters(CDOM), samples containing only petroleum, and samples containing a mixture of petroleum and CDOM were analyzed, respectively. The purpose of this analysis is to provide a basis for determining the contribution of petroleum substances and CDOM to the total absorption coefficient of the petroleum-contaminated water by using fluorescence technique. The results showed that firstly, CDOM in seawater had three main fluorescence peaks at Ex: 225-230 nm/Em: 320-330 nm, Ex: 280 nm/Em: 340 nm and Ex: 225-240 nm/Em: 430-470 nm, respectively, and these may arise from the oceanic chlorophyll. CDOM in natural reservoir water had two main fluorescence peaks at EX: 240- 260 nm/Em: 420-450 nm and Ex: 310~350 nm/Em: 420--440 nm, respectively, and these may arise from the terrestrial sources; secondly, the water samples containing only petroleum extracted with n-hexane had one to three fluorescence spectral peaksat Ex: 220-240 nm/Em: 320-340 nm, Ex: 270-290 nm/Em: 310-340 nm and Ex: 220-235 nm/Em: 280-310 nm, respectively, caused by their hydrocarbon component; finally, the water samples containing both petroleum and CDOM showed a very strong fluorescence peak at Ex: 230-250 nm/Em: 320-370 nm, caused by the combined effect of CDOM and petroleum hydrocarbons.

  19. Pollution detection using the spectral fluorescent signatures (SFS technique

    Directory of Open Access Journals (Sweden)

    Mª Del Carmen Martín

    2014-06-01

    provide quantitative measurement through the use of algorithms based on libraries from previous samples. Since the different materials and compounds have different spectral signatures of fluorescence, it is possible with a single measure to analyze the different components in the sample. The reliability of this method will depend on the library of samples used. Several substances have been studied through their fluorescence response to incident light by using different methods. Firstly, different oil products have been analyzed in the laboratory, by using eight LED light sources with wavelengths ranging from 270 to 850 nm to excite the samples (Figure 1, employing a USB4000-FL Fluorescence Spectrometer to register the fluorescence spectra. On the one hand the SFS of twelve different types of oils has been obtained by exciting the samples with a 310nm LED light source (in absence of any other source of light (Figure 2. Each sample consisted of 5 ml of distilled water and 400 μl of oil. On the other hand the SFS of oil, gasoline, engine oil and heavy oil has been acquired using all LEDs (Figure 3. Secondly, the Instant Screener M53UVC SFS analyzer has been used to obtain the SFS for screening detection of aluminium concentrations in water samples by a derivatization method. The Instant Screener (IS presents two different software versions (UV and BIO, associated with the excitation and emission wavelength provided and registered (respectively by the instrument. In UV software version, excitation wavelength ranges from 240 to 360 nm and fluorescence is registered from 260 to 575 nm whereas in the BIO version excitation wavelength varies from 400 to 650 nm while emission is registered from 530 to 730 nm. The study is concentrated on the development of a sensitive and selective methodology for the non-fluorescent aluminium ion detection based on the analytical derivatization reaction strategy to form a characteristic fluorescent coordination complex [1, 2]. Morin (Flavonol

  20. The MicroAnalysis Toolkit: X-ray Fluorescence Image Processing Software

    International Nuclear Information System (INIS)

    Webb, S. M.

    2011-01-01

    The MicroAnalysis Toolkit is an analysis suite designed for the processing of x-ray fluorescence microprobe data. The program contains a wide variety of analysis tools, including image maps, correlation plots, simple image math, image filtering, multiple energy image fitting, semi-quantitative elemental analysis, x-ray fluorescence spectrum analysis, principle component analysis, and tomographic reconstructions. To be as widely useful as possible, data formats from many synchrotron sources can be read by the program with more formats available by request. An overview of the most common features will be presented.

  1. Applications of optical fiber to remote laser fluorescence analysis

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Shin, Jang Soo; Lee, Sang Mock; Kim, Jeong Moog; Kim, Duk Heon; Hong, Seok Kyung

    1991-12-01

    Fluorescence analysis using time-resolved laser fluorimetry has been used for trace uranium analysis because this method shows high sensitivity and low detection limit and is less matrix dependent than any other fluorimetric measurement. By this time, the uranium analyses in the solution of reprocessing process or high radioactive area have been primarily analyzed by sampling of the solution, but recently, a study on a remote uranium fluorescence analysis using optical fiber has been setting out based on the development of an optical fiber with radiation resistivity and of an advanced laser excitation source. Laser fluorimetry developed by our laboratory for trace uranium analyses in uranium handling process or in urine samples of workers in a nuclear facility has been used in our institute since 1988. A development of the system for remote control of uranium fluorescence analysis will be expected to contribute to an on-line uranium concentration monitoring in the cooling water of reconversion stream. In this report, we summarize the information related to fluorescence analyses and remote fluorescence monitoring methods established by foreign countries and our laboratory. We also present a future research direction for remote on-line monitoring of uranium in conversion or reconversion process. (Author)

  2. Doping chloro boron subnaphthalocyanines and chloro boron subphthalocyanine in simple OLED architectures yields warm white incandescent-like emissions

    Science.gov (United States)

    Plint, Trevor G.; Lessard, Benoît H.; Bender, Timothy P.

    2018-01-01

    We have incorporated chloro boron subphthalocyanine (Cl-BsubPc) and chloro boron subnapthalocyanines (Cl-ClnBsubNcs) into organic light emitting diodes (OLEDs) that enabled an overall warm white emission with CIE coordinates close to that of a 60 W incandescent lightbulb. More specifically, we have shown that Cl-BsubPc and Cl-ClnBsubNcs can be used as dopant emitters in a simple host-dopant architecture, and we have compared the use of NPB and Alq3 as potential hosts for these materials. When doped into Alq3, Cl-BsubPc shows a strong orange emission, and Cl-ClnBsubNcs shows a moderately strong red emission. We have further demonstrated that Cl-BsubPc and Cl-ClnBsubNcs can be co-doped into the same layer giving combined orange and red emission peaks. A "cascade" energy transfer mechanism of sequential absorption and re-emission is proposed. Device performance characteristics such as luminance, current efficiency, photoluminescence efficiency, and external quantum efficiency are tabulated. Additionally, in view of ongoing research into white emitting OLEDs for indoor lighting purposes, the Colour Rendering Index (CRI), R9 values, and CIE co-ordinates for these devices are also discussed. We conclude from this study that the BsubNc chromophore has potential application as a red dopant in OLEDs including for indoor lighting. Additionally, given the scope for axial and peripheral derivatization of the BsubNc motif, we believe that this chromophore has many unexplored molecular design handles that will affect its ultimate performance and application in OLEDs and other opto-electronic devices.

  3. Sentinel lymph nodes detection with an imaging system using Patent Blue V dye as fluorescent tracer

    Science.gov (United States)

    Tellier, F.; Steibel, J.; Chabrier, R.; Rodier, J. F.; Pourroy, G.; Poulet, P.

    2013-03-01

    Sentinel lymph node biopsy is the gold standard to detect metastatic invasion from primary breast cancer. This method can help patients avoid full axillary chain dissection, thereby decreasing the risk of morbidity. We propose an alternative to the traditional isotopic method, to detect and map the sentinel lymph nodes. Indeed, Patent Blue V is the most widely used dye in clinical routine for the visual detection of sentinel lymph nodes. A Recent study has shown the possibility of increasing the fluorescence quantum yield of Patent Blue V, when it is bound to human serum albumin. In this study we present a preclinical fluorescence imaging system to detect sentinel lymph nodes labeled with this fluorescent tracer. The setup is composed of a black and white CCD camera and two laser sources. One excitation source with a laser emitting at 635 nm and a second laser at 785 nm to illuminate the region of interest. The prototype is operated via a laptop. Preliminary experiments permitted to determine the device sensitivity in the μmol.L-1 range as regards the detection of PBV fluorescence signals. We also present a preclinical evaluation performed on Lewis rats, during which the fluorescence imaging setup detected the accumulation and fixation of the fluorescent dye on different nodes through the skin.

  4. Statistical filtering in fluorescence microscopy and fluorescence correlation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Macháň, Radek; Kapusta, Peter; Hof, Martin

    Roč. 406 , č. 20 (2014), s. 4797-4813 ISSN 1618-2642 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : Filtered fluorescence correlation spectroscopy * Fluorescence lifetime correlation spectroscopy * Fluorescence spectral correlation spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.436, year: 2014

  5. ZebrafishMiner: an open source software for interactive evaluation of domain-specific fluorescence in zebrafish

    Directory of Open Access Journals (Sweden)

    Reischl Markus

    2017-09-01

    Full Text Available High-throughput microscopy makes it possible to observe the morphology of zebrafish on large scale to quantify genetic, toxic or drug effects. The image acquisition is done by automated microscopy, images are evaluated automatically by image processing pipelines, tailored specifically to the requirements of the scientific question. The transfer of such algorithms to other projects, however, is complex due to missing guidelines and lack of mathematical or programming knowledge. In this work, we implement an image processing pipeline for automatic fluorescence quantification in user-defined domains of zebrafish embryos and larvae of different age. The pipeline is capable of detecting embryos and larvae in image stacks and quantifying domain activity. To make this protocol available to the community, we developed an open source software package called „ZebrafishMiner“ which guides the user through all steps of the processing pipeline and makes the algorithms available and easy to handle. We implemented all routines in an MATLAB-based graphical user interface (GUI that gives the user control over all image processing parameters. The software is shipped with a manual of 30 pages and three tutorial datasets, which guide the user through the manual step by step. It can be downloaded at https://sourceforge.net/projects/scixminer/.

  6. Green Synthesis of Fluorescent Carbon Dots for Selective Detection of Tartrazine in Food Samples.

    Science.gov (United States)

    Xu, Hua; Yang, Xiupei; Li, Gu; Zhao, Chuan; Liao, Xiangjun

    2015-08-05

    A simple, economical, and green method for the preparation of water-soluble, high-fluorescent carbon quantum dots (C-dots) has been developed via hydrothermal process using aloe as a carbon source. The synthesized C-dots were characterized by atomic force microscope (AFM), transmission electron microscopy (TEM), fluorescence spectrophotometer, UV-vis absorption spectra as well as Fourier transform infrared spectroscopy (FTIR). The results reveal that the as-prepared C-dots were spherical shape with an average diameter of 5 nm and emit bright yellow photoluminescence (PL) with a quantum yield of approximately 10.37%. The surface of the C-dots was rich in hydroxyl groups and presented various merits including high fluorescent quantum yield, excellent photostability, low toxicity and satisfactory solubility. Additionally, we found that one of the widely used synthetic food colorants, tartrazine, could result in a strong fluorescence quenching of the C-dots through a static quenching process. The decrease of fluorescence intensity made it possible to determine tartrazine in the linear range extending from 0.25 to 32.50 μM, This observation was further successfully applied for the determination of tartrazine in food samples collected from local markets, suggesting its great potential toward food routine analysis. Results from our study may shed light on the production of fluorescent and biocompatible nanocarbons due to our simple and environmental benign strategy to synthesize C-dots in which aloe was used as a carbon source.

  7. Some dispersive X-ray fluorescence applications in energies with radioisotopic excitation source

    International Nuclear Information System (INIS)

    Adelfang, P.; Vazquez, C.

    1990-01-01

    The aim of this work is based on the use of interelemental correction coefficients which are calculated through fundamental parameters. To this purpose, it is necessary to know about the physical constants for each element including the absorption coefficient values and fluorescence yield, the incidence radiation energy, geometric and instrumental parameters. Besides, a special application of the program for the determination of a Nd-La mixed crystal formula is included. (Author) [es

  8. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Stedmon, Colin A.; Granskog, Mats A.

    2014-01-01

    The majority of dissolved organic matter (DOM) in the ocean is resistant to microbial degradation, yet its formation remains poorly understood. The fluorescent fraction of DOM can be used to trace the formation of recalcitrant DOM (RDOM). A long-term (> 1 year) experiment revealed 27–52% removal...... of dissolved organic carbon and a nonlinear increase in RDOM fluorescence associated with microbial turnover of semilabile DOM. This fluorescence was also produced using glucose as the only initial carbon source, suggesting that degradation of prokaryote remnants contributes to RDOM. Our results indicate...... that the formation of a fluorescent RDOM component depends on the bioavailability of the substrate: the less labile, the larger the production of fluorescent RDOM relative to organic carbon remineralized. The anticipated increase in microbial carbon demand due to ocean warming can potentially forcemicrobes...

  9. Enhancement of uranyl fluorescence using trimesic acid: Ligand sensitization and co-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Maji, S. [Chemistry Group, Materials Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Viswanathan, K.S., E-mail: vish@igcar.gov.in [Chemistry Group, Materials Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2011-09-15

    Trimesic acid (TMA) was shown to sensitize and enhance uranyl fluorescence in aqueous medium, with the enhancement being a maximum at pH 5.0. Fluorescence spectra and lifetime data together suggest that TMA complexes with uranyl (UO{sub 2}{sup 2+}). The fluorescence of UO{sub 2}{sup 2+} in its acid complex is further enhanced by more than two orders of magnitude following the addition of Y{sup 3+}; a process referred to as co-fluorescence, leading to the possibility of detecting uranium at sub ng/mL level. The present study demonstrates, for the first time, fluorescence enhancement of the uranyl species due to co-fluorescence. - Highlights: > Trimesic acid was shown to sensitize and enhance the fluorescence of uranium in aqueous medium. > This ligand also exhibited co-fluorescence of uranium with Y{sup 3+}. > To the best of our knowledge this is the first report of co-fluorescence in uranium. > The enhancement of uranium fluorescence, resulted in detection limits in the ng/mL regime.

  10. Towards a merged satellite and in situ fluorescence ocean chlorophyll product

    Directory of Open Access Journals (Sweden)

    H. Lavigne

    2012-06-01

    Full Text Available Understanding the ocean carbon cycle requires a precise assessment of phytoplankton biomass in the oceans. In terms of numbers of observations, satellite data represent the largest available data set. However, as they are limited to surface waters, they have to be merged with in situ observations. Amongst the in situ data, fluorescence profiles constitute the greatest data set available, because fluorometers have operated routinely on oceanographic cruises since the 1970s. Nevertheless, fluorescence is only a proxy of the total chlorophyll a concentration and a data calibration is required. Calibration issues are, however, sources of uncertainty, and they have prevented a systematic and wide range exploitation of the fluorescence data set. In particular, very few attempts to standardize the fluorescence databases have been made. Consequently, merged estimations with other data sources (e.g. satellite are lacking.

    We propose a merging method to fill this gap. It consists firstly in adjusting the fluorescence profile to impose a zero chlorophyll a concentration at depth. Secondly, each point of the fluorescence profile is then multiplied by a correction coefficient, which forces the chlorophyll a integrated content measured on the fluorescence profile to be consistent with the concomitant ocean colour observation. The method is close to the approach proposed by Boss et al. (2008 to correct fluorescence data of a profiling float, although important differences do exist. To develop and test our approach, in situ data from three open ocean stations (BATS, HOT and DYFAMED were used. Comparison of the so-called "satellite-corrected" fluorescence profiles with concomitant bottle-derived estimations of chlorophyll a concentration was performed to evaluate the final error (estimated at 31%. Comparison with the Boss et al. (2008 method, using a subset of the DYFAMED data set, demonstrated that the methods have similar

  11. 33 CFR 66.01-14 - Label affixed by manufacturer.

    Science.gov (United States)

    2010-07-01

    ... the degradation of either the source of light or the lamp. (2) Range in nautical miles. (3) Effective intensity in candela. (4) Size of lamp (incandescent only). (5) Interval, in days or years, for replacement...

  12. Clinical application of photodynamic medicine technology using light-emitting fluorescence imaging based on a specialized luminous source.

    Science.gov (United States)

    Namikawa, Tsutomu; Fujisawa, Kazune; Munekage, Eri; Iwabu, Jun; Uemura, Sunao; Tsujii, Shigehiro; Maeda, Hiromichi; Kitagawa, Hiroyuki; Fukuhara, Hideo; Inoue, Keiji; Sato, Takayuki; Kobayashi, Michiya; Hanazaki, Kazuhiro

    2018-04-04

    The natural amino acid 5-aminolevulinic acid (ALA) is a protoporphyrin IX (PpIX) precursor and a new-generation photosensitive substance that accumulates specifically in cancer cells. When indocyanine green (ICG) is irradiated with near-infrared (NIR) light, it shifts to a higher energy state and emits infrared light with a longer wavelength than the irradiated NIR light. Photodynamic diagnosis (PDD) using ALA and ICG-based NIR fluorescence imaging has emerged as a new diagnostic technique. Specifically, in laparoscopic examinations for serosa-invading advanced gastric cancer, peritoneal metastases could be detected by ALA-PDD, but not by conventional visible-light imaging. The HyperEye Medical System (HEMS) can visualize ICG fluorescence as color images simultaneously projected with visible light in real time. This ICG fluorescence method is widely applicable, including for intraoperative identification of sentinel lymph nodes, visualization of blood vessels in organ resection, and blood flow evaluation during surgery. Fluorescence navigation by ALA-PDD and NIR using ICG imaging provides good visualization and detection of the target lesions that is not possible with the naked eye. We propose that this technique should be used in fundamental research on the relationship among cellular dynamics, metabolic enzymes, and tumor tissues, and to evaluate clinical efficacy and safety in multicenter cooperative clinical trials.

  13. Fundamental parameters method for quantitative energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Demirel, H.; Zararsiz, A.

    1986-01-01

    In this study, the requirement of the standart material in photon excited energy distributed X-ray fluorescence analysis has been removed. The interaction of X-rays with matter has been taken into account. A computer program has been developed by using the fundamental parameters of X-ray fluorescence technique and the spectral intensity 'K' of pure elements at saturation thickness has been obtained. For experimental purpose a convenient source-target-detector geometry has been designed. In order to excite the samples,Cd-109 radioisotope source has been used. The peak intensities has been obtained in a vacum chamber by counting the emitted X-rays. The calculation of concentration has been performed for double mixed samples correcting the effects of absorption and enchancement factors. The results were in conformity with their certificate values. (author)

  14. Detection of bacterial infection of agave plants by laser-induced fluorescence

    Science.gov (United States)

    Cervantes-Martinez, Jesus; Flores-Hernandez, Ricardo; Rodriguez-Garay, Benjamin; Santacruz-Ruvalcaba, Fernando

    2002-05-01

    Greenhouse-grown plants of Agave tequilana Weber var. azul were inoculated with Erwinia carotovora, the causal agent of stem soft rot. We investigated the laser-induced fluorescence (LIF) of agave plants to determine whether LIF can be used as a noninvasive sensing tool for pathological studies. The LIF technique was also investigated as a means of detecting the effect of the polyamine biosynthesis inhibitor beta-hydroxyethylhydrazine as a bactericide against the pathogenic bacterium Erwinia carotovora. A He-Ne laser at 632.8 nm was used as the excitation source, and in vivo fluorescence emission spectra were recorded in the 660-790-range. Fluorescence maxima were at 690 and 740 nm. The infected plants that were untreated with the bactericide showed a definite increase in fluorescence intensity at both maxima within the first three days after infection. Beginning on the fifth day, a steady decrease in fluorescence intensity was observed, with a greater effect at 740 than at 690 nm. After 30 days there was no fluorescence. The infected plants that had been treated with the bactericide showed no significant change in fluorescence compared with that of the uninfected plants. The ratio of fluorescence intensities was determined to be F 690 nm/F 740 nm for all treatments. These studies indicate that LIF measurements of agave plants may be used for the early detection of certain types of disease and for determining the effect of a bactericide on bacteria. The results also showed that fluorescence intensity ratios can be used as a reliable indicator of the progress of disease.

  15. Bacteria and fluorescent organic matter: processing and production.

    Science.gov (United States)

    Fox, B. G.; Thorn, R. M. S.; Reynolds, D. M.

    2017-12-01

    There is a need for a greater understanding of the importance of aquatic organic matter (OM) within global biogeochemical cycling. This need has prompted characterisation of OM using fluorescence spectroscopy. The origin, transformation and fate of fluorescent organic matter (FOM) is not fully understood within freshwater systems. This work demonstrates the importance of microbial processing in the creation and transformation of FOM, highlighting the dynamics of microbial-FOM interactions, using a model system. The FOM signature of different bacterial species common to surface freshwaters were analysed using a non-fluorescent media; Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa. By undertaking bacterial growth curves, alongside fluorescence spectroscopy, we have been able to determine FOM development in relation to population growth. Within this, we have identified that FOM peaks are associated with different species and driven by bacterial processes, such as cell multiplication or as metabolic by-products. The intracellular and extracellular fluorescence signature of each species has also been analysed to better understand how the microbial community structure may impact the FOM signal in aquatic systems. For example, Peak T develops within the growth curves of all the cultured species and has been identified as both intracellular and extracellular FOM. Whilst Peak T has been termed `microbially-derived' previously, other fluorescence peaks associated with terrestrial high molecular weight compounds, e.g. Peak C, have also been shown to be produced by bacteria throughout growth stages. Additionally, the notion that cell lysis is responsible for the presence of larger FOM compounds was also explored. Our work highlights the capacity of bacteria to not only utilise and process OM but to actively be a source of both labile and recalcitrant OM in situ. The bacteria fluorescence signatures seen are complex with comparable fluorescence peaks to those

  16. Fluorescent SiC with pseudo-periodic moth-eye structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Aijaz, Imran; Ou, Haiyan

    2012-01-01

    White light-emitting diodes (LEDs) consisting of a nitride-based blue LED chip and phosphor are very promising candidates for the general lighting applications as energy-saving sources. Recently, donor-acceptor doped fluorescent SiC has been proven as a highly efficient wavelength converter...... to enhance the extraction efficiency, we present a simple method to fabricate the pseudo-periodic moth-eye structures on the surface of the fluorescent SiC. A thin gold layer is deposited on the fluorescent SiC first. Then the thin gold layer is treated by rapid thermal processing. After annealing, the thin...... gold layer turns into discontinuous nano-islands. The average size of the islands is dependent on the annealing condition which could be well controlled. By using the reactive-ion etching, pseudo-periodic moth-eye structures would be obtained using the gold nano-islands as a mask layer. Reactive...

  17. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.

    Science.gov (United States)

    Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki

    2013-07-29

    We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

  18. Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment.

    Science.gov (United States)

    Li, Wen-Tao; Jin, Jing; Li, Qiang; Wu, Chen-Fei; Lu, Hai; Zhou, Qing; Li, Ai-Min

    2016-04-15

    Online monitoring dissolved organic matter (DOM) is urgent for water treatment management. In this study, high performance size exclusion chromatography with multi-UV absorbance and multi-emission fluorescence scans were applied to spectrally characterize samples from 16 drinking water sources across Yangzi River and Huai River Watersheds. The UV absorbance indices at 254 nm and 280 nm referred to the same DOM components and concentration, and the 280 nm UV light could excite both protein-like and humic-like fluorescence. Hence a novel UV fluorescence sensor was developed out using only one UV280 light-emitting diode (LED) as light source. For all samples, enhanced coagulation was mainly effective for large molecular weight biopolymers; while anion exchange further substantially removed humic substances. During chlorination tests, UVA280 and UVA254 showed similar correlations with yields of disinfection byproducts (DBPs); the humic-like fluorescence obtained from LED sensors correlated well with both trihalomethanes and haloacetic acids yields, while the correlation between protein-like fluorescence and trihalomethanes was relatively poor. Anion exchange exhibited more reduction of DBPs yields as well as UV absorbance and fluorescence signals than enhanced coagulation. The results suggest that the LED UV fluorescence sensors are very promising for online monitoring DOM and predicting DBPs formation potential during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source

    International Nuclear Information System (INIS)

    Manohar, Nivedh; Reynoso, Francisco J.; Cho, Sang Hyun

    2013-01-01

    Purpose: To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system.Methods: 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg/cm 3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm 3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence/scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm × 15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm.Results: XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73 × 10 −2 cm 3 ). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations.Conclusions: L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts

  20. Determination of experimental K-shell fluorescence yield for ...

    Indian Academy of Sciences (India)

    calcium compounds using a Si(Li) X-ray detector system (FWHM=5.96 keV at 160 eV). The samples were excited by 5.96 keV photons produced by a 55Fe radioisotope source. The experimental values are systematically lower than the theoretical values. Keywords. X-ray; fluorescence yield; cross-section and chemical ...

  1. Biomolecule-to-fluorescent-color encoder: modulation of fluorescence emission via DNA structural changes

    Science.gov (United States)

    Nishimura, Takahiro; Ogura, Yusuke; Yamada, Kenji; Ohno, Yuko; Tanida, Jun

    2014-01-01

    A biomolecule-to-fluorescent-color (B/F) encoder for optical readout of biomolecular information is proposed. In the B/F encoder, a set of fluorescence wavelengths and their intensity levels are used for coding of a biomolecular signal. A hybridization chain reaction of hairpin DNAs labeled with fluorescent reporters was performed to generate the fluorescence color codes. The fluorescence is modulated via fluorescence resonance energy transfer, which is controlled by DNA structural changes. The results demonstrate that fluorescent color codes can be configured based on two wavelengths and five intensities using the B/F encoder, and the assigned codes can be retrieved via fluorescence measurements. PMID:25071950

  2. Endogenous and exogenous fluorescence of gastrointestinal tumors: initial clinical observations

    Science.gov (United States)

    Borisova, Ekaterina; Plamenova, Lilia; Keremedchiev, Momchil; Vladimirov, Borislav; Avramov, Latchezar

    2013-03-01

    The limitations of standard endoscopy for detection and evaluation of cancerous changes in gastrointestinal tract (GIT) are significant challenge and initiate development of new diagnostic modalities. Therefore many spectral and optical techniques are applied recently into the clinical practice for obtaining qualitatively and quantitatively new data from gastrointestinal neoplasia with different level of clinical applicability and diagnostic success. One of the most promising approaches is fluorescence detection using naturally existing fluorescent molecules or added fluorescent markers. Deltaaminolevulinic acid / protoporphyrin IX is applied for exogenous fluorescent tumor detection in the upper part of gastrointestinal tract. The 5-ALA is administered per os six hours before measurements at dose 20mg/kg weight. Highpower light-emitting diode at 405 nm is used as a source and the excitation light is passed through the light-guide of standard video-endoscopic system to obtain 2-D visualization. Both kinds of spectra - autofluorescence signals and protoporphyrin IX signal are recorded and stored using a fiber-optic microspectrometer, as in endoscopy instrumental channel a fiber is applied to return information about fluorescence signals. In such way 1-D detection and 2-D visualization of the lesions' fluorescence are received. The results from in vivo detection show significant differentiation between normal and abnormal tissues in 1-D spectroscopic regime, but only moderate discrimination in 2-D imaging.

  3. Fluorescent microthermographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barton, D.L.

    1993-09-01

    In the early days of microelectronics, design rules and feature sizes were large enough that sub-micron spatial resolution was not needed. Infrared or IR thermal techniques were available that calculated the object`s temperature from infrared emission. There is a fundamental spatial resolution limitation dependent on the wavelengths of light being used in the image formation process. As the integrated circuit feature sizes began to shrink toward the one micron level, the limitations imposed on IR thermal systems became more pronounced. Something else was needed to overcome this limitation. Liquid crystals have been used with great success, but they lack the temperature measurement capabilities of other techniques. The fluorescent microthermographic imaging technique (FMI) was developed to meet this need. This technique offers better than 0.01{degrees}C temperature resolution and is diffraction limited to 0.3 {mu}m spatial resolution. While the temperature resolution is comparable to that available on IR systems, the spatial resolution is much better. The FMI technique provides better spatial resolution by using a temperature dependent fluorescent film that emits light at 612 nm instead of the 1.5 {mu}m to 12 {mu}m range used by IR techniques. This tutorial starts with a review of blackbody radiation physics, the process by which all heated objects emit radiation to their surroundings, in order to understand the sources of information that are available to characterize an object`s surface temperature. The processes used in infrared thermal imaging are then detailed to point out the limitations of the technique but also to contrast it with the FMI process. The FMI technique is then described in detail, starting with the fluorescent film physics and ending with a series of examples of past applications of FMI.

  4. Dual-wavelength external cavity laser device for fluorescence suppression in Raman spectroscopy

    Science.gov (United States)

    Zhang, Xuting; Cai, Zhijian; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been widely used in the detection of drugs, pesticides, explosives, food additives and environmental pollutants, for its characteristics of fast measurement, easy sample preparation, and molecular structure analyzing capability. However, fluorescence disturbance brings a big trouble to these applications, with strong fluorescence background covering up the weak Raman signals. Recently shifted excitation Raman difference spectroscopy (SERDS) not only can completely remove the fluorescence background, but also can be easily integrated into portable Raman spectrometers. Usually, SERDS uses two lasers with small wavelength gap to excite the sample, then acquires two spectra, and subtracts one to the other to get the difference spectrum, where the fluorescence background will be rejected. So, one key aspects of successfully applying SERDS method is to obtain a dual-wavelength laser source. In this paper, a dual-wavelength laser device design based on the principles of external cavity diode laser (ECDL) is proposed, which is low-cost and compact. In addition, it has good mechanical stability because of no moving parts. These features make it an ideal laser source for SERDS technique. The experiment results showed that the device can emit narrow-spectral-width lasers of two wavelengths, with the gap smaller than 2 nanometers. The laser power corresponding to each wavelength can be up to 100mW.

  5. Fluorescent Probes and Fluorescence (Microscopy Techniques — Illuminating Biological and Biomedical Research

    Directory of Open Access Journals (Sweden)

    Gregor P. C. Drummen

    2012-11-01

    Full Text Available Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  6. Elemental analysis of the ancient bronze coins by x-ray fluorescence technique using simultaneously radioisotope source and x-ray tube

    International Nuclear Information System (INIS)

    Nguyen The Quynh; Truong Thi An; Tran Duc Thiep; Nguyen Dinh Chien; Dao Tran Cao; Nguyen Quang Liem

    2004-01-01

    The results on elemental analysis of the Vietnamese ancient bronze coins during the time of the Nguyen dynasty (19th century) are presented. The samples were provided by the vietnam National Historical Museum and the elemental analysis was performed on the home-made model EDS-XT-99-01 X-ray fluorescence spectrometer in the Institute of Materials Science, NCST of Vietnam. The samples exited simultaneously by radioisotope source and X-ray tube. The analytical results show the similarity in the elemental composition of the coins issued by different kings of the Nguyen dynasty, but there is the difference in the concentration of the used elements. Another interesting point is that all the coins have zinc (Zn) in their composition, which shows clearly the influence of the occidental metallurgical technology on the money-making technique in Vietnam during the 19th century. (author)

  7. [Laser induced fluorescence spectrum characteristics of common edible oil and fried cooking oil].

    Science.gov (United States)

    Mu, Tao-tao; Chen, Si-ying; Zhang, Yin-chao; Chen, He; Guo, Pan; Ge, Xian-ying; Gao, Li-lei

    2013-09-01

    In order to detect the trench oil the authors built a trench oil rapid detection system based on laser induced fluorescence detection technology. This system used 355 nm laser as excitation light source. The authors collected the fluorescence spectrum of a variety of edible oil and fried cooking oil (a kind of trench oil) and then set up a fluorescence spectrum database by taking advantage of the trench oil detection system It was found that the fluorescence characteristics of fried cooking oil and common edible oil were obviously different. Then it could easily realize the oil recognition and trench oil rapid detection by using principal component analysis and BP neural network, and the overall recognition rate could reach as high as 97.5%. Experiments showed that laser induced fluorescence spectrum technology was fast, non-contact, and highly sensitive. Combined with BP neural network, it would become a new technique to detect the trench oil.

  8. Reviews in fluorescence 2010

    CERN Document Server

    Geddes, Chris D

    2011-01-01

    ""Reviews in Fluorescence 2010"", the seventh volume of the book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of fluorescence and closely related disciplines. It summarizes the year's progress in fluorescence and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. ""Reviews in Fluorescence"" offers an essential reference material for any lab working in the fluoresc

  9. Smart phone based bacterial detection using bio functionalized fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Rajendran, Vinoth Kumar; Bakthavathsalam, Padmavathy; Ali, Baquir Mohammed Jaffar

    2014-01-01

    We are describing immunochromatographic test strips with smart phone-based fluorescence readout. They are intended for use in the detection of the foodborne bacterial pathogens Salmonella spp. and Escherichia coli O157. Silica nanoparticles (SiNPs) were doped with FITC and Ru(bpy), conjugated to the respective antibodies, and then used in a conventional lateral flow immunoassay (LFIA). Fluorescence was recorded by inserting the nitrocellulose strip into a smart phone-based fluorimeter consisting of a light weight (40 g) optical module containing an LED light source, a fluorescence filter set and a lens attached to the integrated camera of the cell phone in order to acquire high-resolution fluorescence images. The images were analysed by exploiting the quick image processing application of the cell phone and enable the detection of pathogens within few minutes. This LFIA is capable of detecting pathogens in concentrations as low as 10 5 cfu mL −1 directly from test samples without pre-enrichment. The detection is one order of magnitude better compared to gold nanoparticle-based LFIAs under similar condition. The successful combination of fluorescent nanoparticle-based pathogen detection by LFIAs with a smart phone-based detection platform has resulted in a portable device with improved diagnosis features and having potential application in diagnostics and environmental monitoring. (author)

  10. Fused oblique incidence reflectometry and confocal fluorescence microscopy

    Science.gov (United States)

    Risi, Matthew D.; Rouse, Andrew R.; Gmitro, Arthur F.

    2011-03-01

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure, but relies on exogenous fluorophores, has a relatively limited penetration depth (100 μm) and field of view (700 μm), and produces a high rate of detailed information to the user. A new catheter based multi-modal system has been designed that combines confocal imaging and oblique incidence reflectometry (OIR), which is a non-invasive method capable of rapidly extracting tissue absorption, μa, and reduced scattering, μ's, spectra from tissue. The system builds on previous developments of a custom slit-scan multi-spectral confocal microendoscope and is designed to rapidly switch between diffuse spectroscopy and confocal fluorescence imaging modes of operation. An experimental proof-of-principle catheter has been developed that consists of a fiber bundle for traditional confocal fluorescence imaging and a single OIR source fiber which is manually redirected at +/- 26 degrees. Diffusely scattered light from each orientation of the source fiber is collected via the fiber bundle, with a frame of data representing spectra collected at a range of distances from the OIR source point. Initial results with intralipid phantoms show good agreement to published data over the 550-650 nm spectral range. We successfully imaged and measured the optical properties of rodent cardiac muscle.

  11. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    Science.gov (United States)

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  12. Radio-isotopic apparatus for analyzing low atomic number elements by fluorescence

    International Nuclear Information System (INIS)

    Robert, Andre; Martinelli, Pierre; Daniel, Georges; Laflotte, Jean-Luc

    1969-10-01

    An apparatus is described for analyzing light elements of atomic number between 6 and 24 by X-fluorescence. The samples are excited by means of X or α isotopic sources. Various examples of analytical determinations are given. (author) [fr

  13. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  14. Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Chemistry and Chemical Engineering, Lyuliang University, Lyuliang 033001 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Yaling [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Feng, Xiaoting [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Feng [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-11-30

    Highlights: • Nitrogen-doped carbon dots (NCDs) from ammonia solution and citric acid were synthesized at different temperatures. • Quantum yield (QY) of NCDs depends largely on the amount of fluorescent polymer chains (FPC), more FPC gives higher QY. • The law of QY of NCDs first increase and then decrease with the reaction temperature increased is found and explained. • Nitrogen doping plays significant role in getting increased UV–vis absorption and QY. - Abstract: To investigate the effect of reaction temperature and nitrogen doping on the structure and fluorescence properties of carbon dots (CDs), six kinds of nitrogen-doped CDs (NCDs) were synthesized at reaction temperatures of 120, 140, 160, 180, 200 and 220 °C, separately, by using citric acid as carbon source and ammonia solution as nitrogen source. Nitrogen-free CDs (N-free CDs-180) was also prepared at 180 °C by using citric acid as the only carbon source for comparison. Results show that reaction temperature has obvious effect on carbonization degree, quantum yield (QY), ultraviolet-visible (UV–vis) absorption and photoluminescence (PL) spectra but less effect on functional groups, nitrogen doping degree and fluorescence lifetime of NCDs. Compared with N-free CDs-180, NCDs-180 possesses enchanced QY and longer fluorescence lifetime. Doping nitrogen has obvious effect on UV–vis absorption and PL spectra but less effect on particles sizes and carbonization degree. The formation mechanism of NCDs is explored: QY of NCDs depends largely on the number of fluorescent polymer chains (FPC), the competition between FPC formation on the surface of NCDs and carbon core growth leads to the change in number of FPC, and consequently to the NCDs with highest QY at appropriate hydrothermal temperature.

  15. Energy activity guide : simple steps to reduce your household energy use

    Energy Technology Data Exchange (ETDEWEB)

    Byckalo-Khan, F; Wallace, C L [ed.

    2003-07-01

    This guide presents 13 practical activities that can help households reduce energy consumption in order to create a more sustainable lifestyle and to help meet Canada's Kyoto commitment to reduce greenhouse gas emissions. Most energy sources create pollution that harms both human health and the Earth. The burning of fossil fuels creates greenhouse gas emissions that contribute to climate change, smog, pollution and adverse health effects. This guide offers suggestions on how households can reduce the impact on the environment while saving money. Some of the initiatives include lowering the thermostat, replacing incandescent light bulbs with compact fluorescent light bulbs, turning off appliances when not in use, weatherising building envelopes, using a clothes line to dry clothes instead of a dryer, laundering clothes with cold water, and proper maintenance of heating equipment. An energy use chart is included with this guide to help track activities and to estimate how much time and money is required by each activity. refs., figs.

  16. Energy activity guide : simple steps to reduce your household energy use

    Energy Technology Data Exchange (ETDEWEB)

    Byckalo-Khan, F.; Wallace, C.L. (ed.)

    2003-07-01

    This guide presents 13 practical activities that can help households reduce energy consumption in order to create a more sustainable lifestyle and to help meet Canada's Kyoto commitment to reduce greenhouse gas emissions. Most energy sources create pollution that harms both human health and the Earth. The burning of fossil fuels creates greenhouse gas emissions that contribute to climate change, smog, pollution and adverse health effects. This guide offers suggestions on how households can reduce the impact on the environment while saving money. Some of the initiatives include lowering the thermostat, replacing incandescent light bulbs with compact fluorescent light bulbs, turning off appliances when not in use, weatherising building envelopes, using a clothes line to dry clothes instead of a dryer, laundering clothes with cold water, and proper maintenance of heating equipment. An energy use chart is included with this guide to help track activities and to estimate how much time and money is required by each activity. refs., figs.

  17. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  18. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  19. Photoperiodic responses of Kalanchoe and chrysanthemum to radiation by an infrared lamp

    International Nuclear Information System (INIS)

    Ko, C.H.; Lee, S.B.; Jeong, B.R.

    2012-01-01

    This experiment was conducted to investigate the effect of a low intensity infrared radiation on the growth and photoperiodic responses of Kalanchoe blossfeldiana ‘Kaluna’ and ‘Taos’, and Dendranthema grandiflorum ‘Lemon Eye’ grown in growth chambers. In the first experiment, uniformly-rooted cuttings of ‘Kaluna’ and ‘Lemon Eye’ were selected and transplanted to 10 cm pots. After a week, pots were transferred from greenhouse to three environment-controlled growth chambers. All chambers were maintained at 25 ± 1 and 70% RH with an 8 hours photoperiod (760 μmol·m −2 ·s −1 ), provided by high pressure sodium and white fluorescent lamps. During the night period one chamber was left unlit (darkness), while the second and third ones were lit with an incandescent lamp (10 μmol·m −2 ·s −1 ) or an infrared lamp (15 μmol·m −2 ·s −1 ), respectively. Shoot length, root length, stem diameter, number of flowers, number of branches, fresh weight, and dry weight were measured after eight weeks. Flowering occurred on plants maintained in the unlit darkness and under an incandescent lamp during the night period, while only vegetative growth was observed under an infrared lamp. In the second experiment, cuttings of uniformly-rooted ‘Taos’ and ‘Lemon Eye’ were selected and transferred from the greenhouse to three environment-controlled growth chambers with the same environment setting as in the first experiment at a week after potting. During the night period one chamber was left unlit (darkness), the second and third ones were lit with an incandescent or an infrared heating lamp, both at a 0.3 μmol·m −2 ·s −1 PPFD level. After nine weeks, flowering in all treatments was observed, but was slightly delayed under an incandescent and an infrared heating lamp. Because both the incandescent lamp and the infrared lamp slightly delayed flowering in these two species, a more detailed experiment is necessary to find out at which

  20. Spectroscopy and nonclassical fluorescence properties of single trapped Ba+ ions

    International Nuclear Information System (INIS)

    Bolle, J.

    1998-06-01

    This thesis reports on the setup and application of an experimental apparatus for spectroscopic and quantum optical investigations of a single Barium ion in a Paul trap. The realization of the apparatus, which consists of the ion trap in ultra high vacuum, two laser systems, and a photon counting detection system, is described in detail, with particular consideration of the noise sources like stray light and laser frequency instabilities. The two lasers at 493 nm and 650 nm needed to continuously excite resonance fluorescence from the Barium ion have been realized using diode lasers only. The preparation of a single localized Barium ion is described, in particular its optical cooling with the laser light and the minimization of induced vibration in the trapping potential. The purely quantum mechanical property of antibunching is observed by measuring the intensity correlation function of resonance fluorescence from the trapped and cooled ion. Interference properties of the single ion resonance fluorescence are investigated with a Mach-Zehnder interferometer. From the measured high-contrast interference signal it is proven that each individual fluorescence photon interferes with itself. The fluorescence excitation spectrum, on varying one laser frequency, is also measured and exhibits dark resonances. These measurements are compared to calculations based on optical Bloch equations for the 8 atomic levels involved. Future experiments, in particular the detection of reduced quantum fluctuations (squeezing) in one quadrature component of the resonance fluorescence, are discussed. (author)

  1. Principles of fluorescence techniques

    CERN Document Server

    2016-01-01

    Fluorescence techniques are being used and applied increasingly in academics and industry. The Principles of Fluorescence Techniques course will outline the basic concepts of fluorescence techniques and the successful utilization of the currently available commercial instrumentation. The course is designed for students who utilize fluorescence techniques and instrumentation and for researchers and industrial scientists who wish to deepen their knowledge of fluorescence applications. Key scientists in the field will deliver theoretical lectures. The lectures will be complemented by the direct utilization of steady-state and lifetime fluorescence instrumentation and confocal microscopy for FLIM and FRET applications provided by leading companies.

  2. A high resolution solar atlas for fluorescence calculations

    Science.gov (United States)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  3. 2D/3D cryo x-ray fluorescence imaging at the bionanoprobe at the advanced photon source

    International Nuclear Information System (INIS)

    Chen, S.; Vine, D. J.; Lai, B.; Paunesku, T.; Yuan, Y.; Woloschak, G. E.; Deng, J.; Jin, Q.; Hong, Y. P.; Flachenecker, C.; Hornberger, B.; Brister, K.; Jacobsen, C.; Vogt, S.

    2016-01-01

    Trace elements, particularly metals, play very important roles in biological systems. Synchrotron-based hard X-ray fluorescence microscopy offers the most suitable capabilities to quantitatively study trace metals in thick biological samples, such as whole cells and tissues. In this manuscript, we have demonstrated X-ray fluorescence imaging of frozen-hydrated whole cells using the recent developed Bionanoprobe (BNP). The BNP provides spatial resolution down to 30 nm and cryogenic capabilities. Frozen-hydrated biological cells have been directly examined on a sub-cellular level at liquid nitrogen temperatures with minimal sample preparation

  4. Casino Rama hits the jackpot with energy-efficient lighting

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2007-10-15

    A lighting retrofit program was conducted by Casino Rama in an effort to improve quality while reducing costs and environmental impacts. Casino Rama, Ontario's only commercial First Nation's casino, was opened in July 1996. With over 25,000 bulbs in use, the facility had a lot to gain by reducing energy costs. Toronto Hydro (TH) Energy Services evaluated the facility's current usage level and recommended ways to increase energy efficiency. The casino used mostly incandescent and fluorescent lights which provided adequate light, but which required a great deal of upkeep. The operators wanted to relamp the lighting package that consumed the most electricity with high-efficiency lighting systems that would maintain a consistent look with that of the warm-glow provided by incandescent light bulbs. In order to benefit from energy savings, an efficient, non-invasive system was needed with minimal construction costs to retrofit the lighting system. TH Energy concluded that high-quality, longer-lasting lamps were required. TCP Inc. provided energy-efficient compact fluorescent lamps (CFLs) that have an average life of 10,000 hours and use a quarter of the energy of standard incandescent bulbs, resulting in increased energy savings, lower utility costs and greenhouse gas reduction. The retrofit involved the replacement of more than 5,000 bulbs with over 4,000 CFLs being installed on the 3 massive canopies over the casino entrance. Long-life LED products lasting up to 50,000 hours were also used for the glass elevator shaft, which minimized maintenance costs. Cold-cathode lamps that last an average 25,000 hours were recommended for rapid cycle applications such as signage. The relamping process was completed in 7 working days with minimal disruption to business activity. The casino has saved $200,000 from its annual hydro bill and has freed up valuable manpower for other maintenance-related tasks. The relamping is reducing greenhouse gas emissions by 7 to 8

  5. Casino Rama hits the jackpot with energy-efficient lighting

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2007-10-15

    A lighting retrofit program was conducted by Casino Rama in an effort to improve quality while reducing costs and environmental impacts. Casino Rama, Ontario's only commercial First Nation's casino, was opened in July 1996. With over 25,000 bulbs in use, the facility had a lot to gain by reducing energy costs. Toronto Hydro (TH) Energy Services evaluated the facility's current usage level and recommended ways to increase energy efficiency. The casino used mostly incandescent and fluorescent lights which provided adequate light, but which required a great deal of upkeep. The operators wanted to relamp the lighting package that consumed the most electricity with high-efficiency lighting systems that would maintain a consistent look with that of the warm-glow provided by incandescent light bulbs. In order to benefit from energy savings, an efficient, non-invasive system was needed with minimal construction costs to retrofit the lighting system. TH Energy concluded that high-quality, longer-lasting lamps were required. TCP Inc. provided energy-efficient compact fluorescent lamps (CFLs) that have an average life of 10,000 hours and use a quarter of the energy of standard incandescent bulbs, resulting in increased energy savings, lower utility costs and greenhouse gas reduction. The retrofit involved the replacement of more than 5,000 bulbs with over 4,000 CFLs being installed on the 3 massive canopies over the casino entrance. Long-life LED products lasting up to 50,000 hours were also used for the glass elevator shaft, which minimized maintenance costs. Cold-cathode lamps that last an average 25,000 hours were recommended for rapid cycle applications such as signage. The relamping process was completed in 7 working days with minimal disruption to business activity. The casino has saved $200,000 from its annual hydro bill and has freed up valuable manpower for other maintenance-related tasks. The relamping is reducing greenhouse gas emissions by 7 to 8 per cent, based

  6. Total Internal Reflection Fluorescence Microscopy Imaging-Guided Confocal Single-Molecule Fluorescence Spectroscopy

    OpenAIRE

    Zheng, Desheng; Kaldaras, Leonora; Lu, H. Peter

    2013-01-01

    We have developed an integrated spectroscopy system combining total internal reflection fluorescence microscopy imaging with confocal single-molecule fluorescence spectroscopy for two-dimensional interfaces. This spectroscopy approach is capable of both multiple molecules simultaneously sampling and in situ confocal fluorescence dynamics analyses of individual molecules of interest. We have demonstrated the calibration with fluorescent microspheres, and carried out single-molecule spectroscop...

  7. Optimal parameters for near infrared fluorescence imaging of amyloid plaques in Alzheimer's disease mouse models

    International Nuclear Information System (INIS)

    Raymond, S B; Kumar, A T N; Boas, D A; Bacskai, B J

    2009-01-01

    Amyloid-β plaques are an Alzheimer's disease biomarker which present unique challenges for near-infrared fluorescence tomography because of size (<50 μm diameter) and distribution. We used high-resolution simulations of fluorescence in a digital Alzheimer's disease mouse model to investigate the optimal fluorophore and imaging parameters for near-infrared fluorescence tomography of amyloid plaques. Fluorescence was simulated for amyloid-targeted probes with emission at 630 and 800 nm, plaque-to-background ratios from 1-1000, amyloid burden from 0-10%, and for transmission and reflection measurement geometries. Fluorophores with high plaque-to-background contrast ratios and 800 nm emission performed significantly better than current amyloid imaging probes. We tested idealized fluorophores in transmission and full-angle tomographic measurement schemes (900 source-detector pairs), with and without anatomical priors. Transmission reconstructions demonstrated strong linear correlation with increasing amyloid burden, but underestimated fluorescence yield and suffered from localization artifacts. Full-angle measurements did not improve upon the transmission reconstruction qualitatively or in semi-quantitative measures of accuracy; anatomical and initial-value priors did improve reconstruction localization and accuracy for both transmission and full-angle schemes. Region-based reconstructions, in which the unknowns were reduced to a few distinct anatomical regions, produced highly accurate yield estimates for cortex, hippocampus and brain regions, even with a reduced number of measurements (144 source-detector pairs).

  8. Scanning fluorescent microscopy is an alternative for quantitative fluorescent cell analysis.

    Science.gov (United States)

    Varga, Viktor Sebestyén; Bocsi, József; Sipos, Ferenc; Csendes, Gábor; Tulassay, Zsolt; Molnár, Béla

    2004-07-01

    Fluorescent measurements on cells are performed today with FCM and laser scanning cytometry. The scientific community dealing with quantitative cell analysis would benefit from the development of a new digital multichannel and virtual microscopy based scanning fluorescent microscopy technology and from its evaluation on routine standardized fluorescent beads and clinical specimens. We applied a commercial motorized fluorescent microscope system. The scanning was done at 20 x (0.5 NA) magnification, on three channels (Rhodamine, FITC, Hoechst). The SFM (scanning fluorescent microscopy) software included the following features: scanning area, exposure time, and channel definition, autofocused scanning, densitometric and morphometric cellular feature determination, gating on scatterplots and frequency histograms, and preparation of galleries of the gated cells. For the calibration and standardization Immuno-Brite beads were used. With application of shading compensation, the CV of fluorescence of the beads decreased from 24.3% to 3.9%. Standard JPEG image compression until 1:150 resulted in no significant change. The change of focus influenced the CV significantly only after +/-5 microm error. SFM is a valuable method for the evaluation of fluorescently labeled cells. Copyright 2004 Wiley-Liss, Inc.

  9. Simulating fluorescence light-canopy interaction in support of laser-induced fluorescence measurements

    International Nuclear Information System (INIS)

    Rosema, A.; Verhoef, W.; Schroote, J.; Snel, J.F.H.

    1991-01-01

    In the Netherlands an operational field instrument for the measurement of laser induced fluorescence of vegetation (LEAF) is developed. In addition, plant physiological and remote sensing research is done to support this new remote sensing instrument. This paper presents a general introduction on the subject of laser-induced fluorescence, including the relation between chlorophyll fluorescence and photosynthesis, spectral characteristics, and previous research. Also the LEAF system is briefly described. Subsequently, the development of a leaf fluorescence model (KMF) and a canopy fluorescence model (FLSAIL) are reported. With these simulation models a sensitivity study is carried out. Fluorescence of 685 nm appears to be most suitable to obtain information on photosynthesis and stress, but is also influenced by canopy structure. Separation of these two effects is studied

  10. X-ray fluorescence analysis study. Final report, December 1, 1970-December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Kneip, T J; Laurer, G R

    1978-01-01

    This report has described the most significant experiments and the results obtained, during the development of a system for the detection and measurement of Pb in blood using radioisotope-excited x-ray fluorescence analysis, over the contract period. Briefly, the report described: detector selection; source selection; source-sample-detector geometry; sample preparation; system calibration; and separation technique. (PSB)

  11. Evaluating Activated Carbon Adsorption of Dissolved Organic Matter and Micropollutants Using Fluorescence Spectroscopy.

    Science.gov (United States)

    Shimabuku, Kyle K; Kennedy, Anthony M; Mulhern, Riley E; Summers, R Scott

    2017-03-07

    Dissolved organic matter (DOM) negatively impacts granular activated carbon (GAC) adsorption of micropollutants and is a disinfection byproduct precursor. DOM from surface waters, wastewater effluent, and 1 kDa size fractions were adsorbed by GAC and characterized using fluorescence spectroscopy, UV-absorption, and size exclusion chromatography (SEC). Fluorescing DOM was preferentially adsorbed relative to UV-absorbing DOM. Humic-like fluorescence (peaks A and C) was selectively adsorbed relative to polyphenol-like fluorescence (peaks T and B) potentially due to size exclusion effects. In the surface waters and size fractions, peak C was preferentially removed relative to peak A, whereas the reverse was found in wastewater effluent, indicating that humic-like fluorescence is associated with different compounds depending on DOM source. Based on specific UV-absorption (SUVA), aromatic DOM was preferentially adsorbed. The fluorescence index (FI), if interpreted as an indicator of aromaticity, indicated the opposite but exhibited a strong relationship with average molecular weight, suggesting that FI might be a better indicator of DOM size than aromaticity. The influence of DOM intermolecular interactions on adsorption were minimal based on SEC analysis. Fluorescence parameters captured the impact of DOM size on the fouling of 2-methylisoborneol and warfarin adsorption and correlated with direct competition and pore blockage indicators.

  12. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods

    International Nuclear Information System (INIS)

    Vishwanath, Karthik; Mycek, Mary-Ann; Pogue, Brian

    2002-01-01

    A Monte Carlo model developed to simulate time-resolved fluorescence propagation in a semi-infinite turbid medium was validated against previously reported theoretical and computational results. Model simulations were compared to experimental measurements of fluorescence spectra and lifetimes on tissue-simulating phantoms for single and dual fibre-optic probe geometries. Experiments and simulations using a single probe revealed that scattering-induced artefacts appeared in fluorescence emission spectra, while fluorescence lifetimes were unchanged. Although fluorescence lifetime measurements are generally more robust to scattering artefacts than are measurements of fluorescence spectra, in the dual-probe geometry scattering-induced changes in apparent lifetime were predicted both from diffusion theory and via Monte Carlo simulation, as well as measured experimentally. In all cases, the recovered apparent lifetime increased with increasing scattering and increasing source-detector separation. Diffusion theory consistently underestimated the magnitude of these increases in apparent lifetime (predicting a maximum increase of ∼15%), while Monte Carlo simulations and experiment were closely matched (showing increases as large as 30%). These results indicate that quantitative simulations of time-resolved fluorescence propagation in turbid media will be important for accurate recovery of fluorophore lifetimes in biological spectroscopy and imaging applications. (author)

  13. Fluorescence molecular tomography in the presence of background fluorescence

    International Nuclear Information System (INIS)

    Soubret, Antoine; Ntziachristos, Vasilis

    2006-01-01

    Fluorescence molecular tomography is an emerging imaging technique that resolves the bio-distribution of engineered fluorescent probes developed for in vivo reporting of specific cellular and sub-cellular targets. The method can detect fluorochromes in picomole amounts or less, imaged through entire animals, but the detection sensitivity and imaging performance drop in the presence of background, non-specific fluorescence. In this study, we carried out a theoretical and an experimental investigation on the effect of background fluorescence on the measured signal and on the tomographic reconstruction. We further examined the performance of three subtraction methods based on physical models of photon propagation, using experimental data on phantoms and small animals. We show that the data pre-processing with subtraction schemes can improve image quality and quantification when non-specific background florescence is present

  14. Laser-Induced Fluorescence diagnostic of barium ion plasmas in the Paul Trap Simulator Experiment

    International Nuclear Information System (INIS)

    Chung, Moses; Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard; Startsev, Edward A.

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) is a cylindrical Paul trap whose purpose is to simulate the nonlinear dynamics of intense charged particle beam propagation in alternating-gradient magnetic transport systems. To investigate the ion plasma microstate in PTSX, including the ion density profile and the ion velocity distribution function, a laser-induced fluorescence diagnostic system is being developed as a nondestructive diagnostic. Instead of cesium, which has been used in the initial phase of the PTSX experiment, barium has been selected as the preferred ion for the laser-induced fluorescence diagnostic. A feasibility study of the laser-induced fluorescence diagnostic using barium ions is presented with the characterization of a tunable dye laser. The installation of the barium ion source and the development of the laser-induced fluorescence diagnostic system are also discussed

  15. Signals from fluorescent materials on the surface of silicon micro-strip sensors

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2017-01-01

    For the High-Luminosity Upgrade of the Large Hadron Collider at CERN, the ATLAS Inner Detector will be replaced with a new, all-silicon tracker. In order to minimise the amount of material in the detector, circuit boards with readout electronics will be glued on to the active area of the sensor. Several adhesives investigated to be used for the construction of detector modules were found to become fluorescent when exposed to UV light. These adhesives could become a light source in the high-radiation environment of the ATLAS detector. The effect of fluorescent material covering the sensor surface in a high- radiation environment has been studied for a silicon micro-strip sensor using a micro-focused X-ray beam. By pointing the beam both inside the sensor and parallel to the sensor surface, the sensor responses from direct hits and fluorescence can be compared with high precision. This contribution presents a setup to study the susceptibility of silicon strip sensors to light contamination from fluorescent mate...

  16. Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties

    Science.gov (United States)

    Zhao, Zhao; Gonsior, Michael; Luek, Jenna; Timko, Stephen; Ianiri, Hope; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Fang, Xiaoting; Zeng, Qinglu; Jiao, Nianzhi; Chen, Feng

    2017-05-01

    Marine chromophoric dissolved organic matter (CDOM) and its related fluorescent components (FDOM), which are widely distributed but highly photobleached in the surface ocean, are critical in regulating light attenuation in the ocean. However, the origins of marine FDOM are still under investigation. Here we show that cultured picocyanobacteria, Synechococcus and Prochlorococcus, release FDOM that closely match the typical fluorescent signals found in oceanic environments. Picocyanobacterial FDOM also shows comparable apparent fluorescent quantum yields and undergoes similar photo-degradation behaviour when compared with deep-ocean FDOM, further strengthening the similarity between them. Ultrahigh-resolution mass spectrometry (MS) and nuclear magnetic resonance spectroscopy reveal abundant nitrogen-containing compounds in Synechococcus DOM, which may originate from degradation products of the fluorescent phycobilin pigments. Given the importance of picocyanobacteria in the global carbon cycle, our results indicate that picocyanobacteria are likely to be important sources of marine autochthonous FDOM, which may accumulate in the deep ocean.

  17. Sensitive determination of nucleic acids using organic nanoparticle fluorescence probes

    Science.gov (United States)

    Zhou, Yunyou; Bian, Guirong; Wang, Leyu; Dong, Ling; Wang, Lun; Kan, Jian

    2005-06-01

    This paper describes the preparation of organic nanoparticles by reprecipitation method under sonication and vigorous stirring. Transmission electron microscopy (TEM) was used to characterize the size and size distribution of the luminescent nanoparticles. Their average diameter was about 25 nm with a size variation of ±18%. The fluorescence decay lifetime of the nanoparticles also was determined on a self-equipped fluorospectrometer with laser light source. The lifetime (˜0.09 μs) of nanoparticles is about three times long as that of the monomer. The nanoparticles were in abundant of hydrophilic groups, which increased their miscibility in aqueous solution. These organic nanoparticles have high photochemical stability, excellent resistance to chemical degradation and photodegradation, and a good fluorescence quantum yield (25%). The fluorescence can be efficiently quenched by nucleic acids. Based on the fluorescence quenching of nanoparticles, a fluorescence quenching method was developed for determination of microamounts of nucleic acids by using the nanoparticles as a new fluorescent probe. Under optimal conditions, maximum fluorescence quenching is produced, with maximum excitation and emission wavelengths of 345 and 402 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range 0.4-19.0 μg ml -1 for calf thymus DNA (ct-DNA) and 0.3-19.0 μg ml -1 for fish sperm DNA (fs-DNA). The corresponding detection limits are 0.25 μg ml -1 for ct-DNA and 0.17 μg ml -1 for fs-DNA. The relative standard deviation of six replicate measurements is 1.3-2.1%. The method is simple, rapid and sensitive with wide linear range. The recovery and relative standard deviation are very satisfactory.

  18. Quantitative fluorescence angiography for neurosurgical interventions.

    Science.gov (United States)

    Weichelt, Claudia; Duscha, Philipp; Steinmeier, Ralf; Meyer, Tobias; Kuß, Julia; Cimalla, Peter; Kirsch, Matthias; Sobottka, Stephan B; Koch, Edmund; Schackert, Gabriele; Morgenstern, Ute

    2013-06-01

    Present methods for quantitative measurement of cerebral perfusion during neurosurgical operations require additional technology for measurement, data acquisition, and processing. This study used conventional fluorescence video angiography--as an established method to visualize blood flow in brain vessels--enhanced by a quantifying perfusion software tool. For these purposes, the fluorescence dye indocyanine green is given intravenously, and after activation by a near-infrared light source the fluorescence signal is recorded. Video data are analyzed by software algorithms to allow quantification of the blood flow. Additionally, perfusion is measured intraoperatively by a reference system. Furthermore, comparing reference measurements using a flow phantom were performed to verify the quantitative blood flow results of the software and to validate the software algorithm. Analysis of intraoperative video data provides characteristic biological parameters. These parameters were implemented in the special flow phantom for experimental validation of the developed software algorithms. Furthermore, various factors that influence the determination of perfusion parameters were analyzed by means of mathematical simulation. Comparing patient measurement, phantom experiment, and computer simulation under certain conditions (variable frame rate, vessel diameter, etc.), the results of the software algorithms are within the range of parameter accuracy of the reference methods. Therefore, the software algorithm for calculating cortical perfusion parameters from video data presents a helpful intraoperative tool without complex additional measurement technology.

  19. Colour differences in Caucasian and Oriental women's faces illuminated by white LED sources.

    Science.gov (United States)

    Melgosa, M; Richard, N; Fernández-Maloigne, C; Xiao, K; de Clermont-Gallerande, H; Jost-Boissard, S; Okajima, K

    2018-04-10

    To provide an approach to facial contrast, analysing CIELAB colour differences (ΔE* ab,10 ) and its components in women's faces from two different ethnic groups, illuminated by modern white light-emitting diodes (LEDs) or traditional illuminants recommended by the International Commission on Illumination (CIE). We performed spectrophotometric measurements of spectral reflectance factors on forehead and cheek of 87 young healthy women (50 Caucasians and 37 Orientals), plus 5 commercial red lipsticks. We considered a set of 10 white LED illuminants, representative of technologies currently available on the market, plus 8 main illuminants currently recommended by the CIE, representative of conventional incandescent, daylight, and fluorescent light sources. Under each of these 18 illuminants we analysed the magnitude and components of ΔE* ab,10 between Caucasian and Oriental women (considering cheek and forehead), as well as for cheek-forehead and cheek-lipsticks in Caucasian and Oriental women. Colour-inconstancy indices for cheek, forehead, and lipsticks were computed, assuming D65 and A as reference illuminants. ΔE* ab,10 between forehead and cheek were quantitatively and qualitatively different in Orientals and Caucasians, but discrepancies with respect to average values for 18 illuminants were small (1.5% and 5.0% for Orientals and Caucasians, respectively). ΔE* ab,10 between Caucasians and Orientals were also quantitatively and qualitatively different both for forehead and cheek, and discrepancies with respect to average values were again small (1.0% and 3.9% for forehead and cheek, respectively). ΔE* ab,10 between lipsticks and cheek were at least 2 times higher than those between forehead and cheek. Regarding ΔE* ab,10 between lipsticks and cheeks, discrepancies with respect to average values were in the range 1.5% - 12.3%, although higher values of up to 54.2% were found for a white RGB LED. This white RGB LED provided the highest average colour

  20. In Situ Live-Cell Nucleus Fluorescence Labeling with Bioinspired Fluorescent Probes.

    Science.gov (United States)

    Ding, Pan; Wang, Houyu; Song, Bin; Ji, Xiaoyuan; Su, Yuanyuan; He, Yao

    2017-08-01

    Fluorescent imaging techniques for visualization of nuclear structure and function in live cells are fundamentally important for exploring major cellular events. The ideal cellular labeling method is capable of realizing label-free, in situ, real-time, and long-term nucleus labeling in live cells, which can fully obtain the nucleus-relative information and effectively alleviate negative effects of alien probes on cellular metabolism. However, current established fluorescent probes-based strategies (e.g., fluorescent proteins-, organic dyes-, fluorescent organic/inorganic nanoparticles-based imaging techniques) are unable to simultaneously realize label-free, in situ, long-term, and real-time nucleus labeling, resulting in inevitable difficulties in fully visualizing nuclear structure and function in live cells. To this end, we present a type of bioinspired fluorescent probes, which are highly efficacious for in situ and label-free tracking of nucleus in long-term and real-time manners. Typically, the bioinspired polydopamine (PDA) nanoparticles, served as fluorescent probes, can be readily synthesized in situ within live cell nucleus without any further modifications under physiological conditions (37 °C, pH ∼7.4). Compared with other conventional nuclear dyes (e.g., propidium iodide (PI), Hoechst), superior spectroscopic properties (e.g., quantum yield of ∼35.8% and high photostability) and low cytotoxicity of PDA-based probes enable long-term (e.g., 3 h) fluorescence tracking of nucleus. We also demonstrate the generality of this type of bioinspired fluorescent probes in different cell lines and complex biological samples.

  1. Topics: in vivo measurement of thyroidal iodine content by x-ray fluorescent technique

    International Nuclear Information System (INIS)

    Imamura, Keiko

    1979-01-01

    Thyroidal iodine content gives useful informations in the fields of physiology, clinical medicine, health physics etc. Iodine content has been determined mainly for resected thyroids. Recently, x-ray fluorescent analysis has been extended as the in vivo technique first in the clinical medicine. Exciting sources used for the analysis of the thyroid are Am-241 or x-ray tube. Am-241 has a half-life of 438 years and emits #betta#-ray of 60 keV. Thyroid can be imaged by fluorescent scan utilizing strong (10 - 15 Ci) Am-241 source. Examination time is about 15 min and the radiation dose to the gland is about 15 - 60 mrad. Iodine content is determined by static fluorescent technique equipped with weaker source of less than 1 Ci. Thyroidal iodine content in normal subjects were analysed by this technique and the results were in good accordance with those obtained by in vitro analysis. Difference in the thyroidal iodine content between the Japanese population and other countries is not clear. Application to the pathological cases has provided many findings about the iodine content and its distribution which could not be obtained by in vitro analysis. This in vivo technique can be safely performed for infants and for pregnancies, and the relatively compact size of this apparatus could be widely used in the study of health physics and environmental problems. (author)

  2. In vivo x-ray fluorescence of lead and other toxic trace elements

    International Nuclear Information System (INIS)

    Chettle, D.R.

    1995-01-01

    The first in vivo x-ray fluorescence measurements of lead in bone used y-rays from a 57 Co source to excite Pb K x-rays. Later systems used γ-rays from 109 Cd to excite Pb K x-rays or polarized x-rays to excite Ph L x-rays. All three approaches involve an extremely low effective dose to the subject. Of the two K x-ray techniques, 109 Cd is more precise and more flexible in choice of measurement site. Pb L x-ray fluorescence (L-XRF) effectively samples lead at bone surfaces, whereas Ph K x-ray fluorescence (K-XRF) samples through the bulk of a bone. Both the polarized L-XRF and 109 Cd K-XRF achieve similar precision. Renal mercury has recently been determined using a polarized x-ray source, Both renal and hepatic cadmium can be measured using polarized x-rays in conjunction with a Si(Li) detector. Platinum and gold have been measured both by radioisotopic source excitation and by using polarized x-rays, but the latter is to be preferred. Applications of Pb K-XRF have shown that measured bone lead relates strongly to cumulative lead exposure. Secondly, biological half lives of lead in different bone types have been estimated from limited longitudinal data sets and from some cross sectional surveys. Thirdly, the effect of bone lead as an endogenous source of lead has been demonstrated and it has been shown that a majority of circulating blood lead can be mobilized from bone, rather than deriving from new exposure, in some retired lead workers. 35 refs., 5 tabs

  3. Laser scanning endoscope via an imaging fiber bundle for fluorescence imaging

    Science.gov (United States)

    Yeboah, Lorenz D.; Nestler, Dirk; Steiner, Rudolf W.

    1994-12-01

    Based on a laser scanning endoscope via an imaging fiber bundle, a new approach for a tumor diagnostic system has been developed to assist physicians in the diagnosis before the actual PDT is carried out. Laser induced, spatially resolved fluorescence images of diseased tissue can be compared with images received by video endoscopy using a white light source. The set- up is required to produce a better contrast between infected and healthy tissue and might serve as a constructive diagnostic help for surgeons. The fundamental idea is to scan a low-power laser beam on an imaging fiber bundle and to achieve a spatially resolved projection on the tissue surface. A sufficiently high laser intensity from the diode laser is concentrated on each single spot of the tissue exciting fluorescence when a dye has previously been accumulated. Subsequently, video image of the tissue is recorded and stored. With an image processing unit, video and fluorescence images are overlaid producing a picture of the fluorescence intensity in the environment of the observed tissue.

  4. Detection of Dysplastic Intestinal Adenomas Using a Fluorescent Folate Imaging Probe

    Directory of Open Access Journals (Sweden)

    Wei-Tsung Chen

    2005-01-01

    Full Text Available Macrophages have long been recognized as a prominent component of tumors. Activated macrophages overexpress folate receptors and we used this phenomenon to image inflammatory reactions in colon dysplasia using a fluorescent folate probe (FFP. APCΔ468 mice injected with FFP showed fluorescent adenomas (target-to-background ratio, adenoma vs. adjacent normal mucosa, of 2.46 ± 0.41, significantly higher (p < .001 than adenomas in animals injected with a non-folate-containing control probe. Fluorescence-activated cell-sorting analysis revealed a 3-fold higher content of Mac1-positive cells in colonic adenomas compared with normal adjacent mucosa (6.8% vs. 2.2%, and confirmed the source of FFP-positive cells to be primarily an F4/80-positive macrophage subpopulation. Taken together, these results indicate that FFP potentially can be used to image dysplastic intestinal adenomas in vivo.

  5. A green fluorescent protein with photoswitchable emission from the deep sea.

    Directory of Open Access Journals (Sweden)

    Alexander Vogt

    Full Text Available A colorful variety of fluorescent proteins (FPs from marine invertebrates are utilized as genetically encoded markers for live cell imaging. The increased demand for advanced imaging techniques drives a continuous search for FPs with new and improved properties. Many useful FPs have been isolated from species adapted to sun-flooded habitats such as tropical coral reefs. It has yet remained unknown if species expressing green fluorescent protein (GFP-like proteins also exist in the darkness of the deep sea. Using a submarine-based and -operated fluorescence detection system in the Gulf of Mexico, we discovered ceriantharians emitting bright green fluorescence in depths between 500 and 600 m and identified a GFP, named cerFP505, with bright fluorescence emission peaking at 505 nm. Spectroscopic studies showed that approximately 15% of the protein bulk feature reversible ON/OFF photoswitching that can be induced by alternating irradiation with blue und near-UV light. Despite being derived from an animal adapted to essentially complete darkness and low temperatures, cerFP505 maturation in living mammalian cells at 37 degrees C, its brightness and photostability are comparable to those of EGFP and cmFP512 from shallow water species. Therefore, our findings disclose the deep sea as a potential source of GFP-like molecular marker proteins.

  6. Site-specific multipoint fluorescence measurement system with end-capped optical fibers.

    Science.gov (United States)

    Song, Woosub; Moon, Sucbei; Lee, Byoung-Cheol; Park, Chul-Seung; Kim, Dug Young; Kwon, Hyuk Sang

    2011-07-10

    We present the development and implementation of a spatially and spectrally resolved multipoint fluorescence correlation spectroscopy (FCS) system utilizing multiple end-capped optical fibers and an inexpensive laser source. Specially prepared end-capped optical fibers placed in an image plane were used to both collect fluorescence signals from the sample and to deliver signals to the detectors. The placement of independently selected optical fibers on the image plane was done by monitoring the end-capped fiber tips at the focus using a CCD, and fluorescence from specific positions of a sample were collected by an end-capped fiber, which could accurately represent light intensities or spectral data without incurring any disturbance. A fast multipoint spectroscopy system with a time resolution of ∼1.5 ms was then implemented using a prism and an electron multiplying charge coupled device with a pixel binning for the region of interest. The accuracy of our proposed system was subsequently confirmed by experimental results, based on an FCS analysis of microspheres in distilled water. We expect that the proposed multipoint site-specific fluorescence measurement system can be used as an inexpensive fluorescence measurement tool to study many intracellular and molecular dynamics in cell biology. © 2011 Optical Society of America

  7. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    Science.gov (United States)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-10-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485

  8. Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources

    NARCIS (Netherlands)

    Grivas, C.; Shepherd, D.P.; May-Smith, T.C.; Eason, R.W.; Pollnau, Markus; Crunteanu, A.; Jelinek, M.

    2003-01-01

    Rib waveguides have been fabricated in pulsed-laser-deposited Ti:sapphire layers using photolithographic patterning and subsequent Ar+-beam milling. Fluorescence output powers up to 300 W have been observed from the ribs following excitation by a 3-W multiline argon laser. Mode intensity profiles

  9. Fluorescence X-ray microscopy on hydrated tributyltin-clay mineral suspensions

    Science.gov (United States)

    Neuhäusler, U.; Schmidt, C.; Hoch, M.; Susini, J.

    2003-03-01

    Using the scanning transmission X-ray microscope at ID21 beamline of the ESRF in fluorescence mode, we mapped tin at a bulk concentration of 1000 μg(Sn)/ml within hydrated tributyltin (TBT)-clay mineral (Kaolinite) dispersion with sub-300 nm spatial resolution. Using the L absorption edges of tin at 3929, 4156 and 4465 eV fluorescence radiation was excited in tin atoms with incident photon energies of 4 and 4.5 keV. When using 4 keV radiation, only tin fluorescence is excited. For 4.5 keV X rays, both the fluorescence of tin and calcium (which is present in the solid phase) can be measured. Methodologically, we were interested in assessing and proving the possibilities and limitations of fluorescence mapping using the L absorption edges of tin, where the fluorescence yield is significantly lower compared to other elements with their K edges in the same energy range. Scientifically, organotin-clay mineral interactions are of environmental concern because this factor influences significantly the distribution of toxic TBT in the aquatic System. On one hand, the half-life of TBT deposited to the sediment phase increases, and consequently the time of its bioavailability. On the other hand, the adsorption process is reversible, which means that contaminated sediments can act as a source of pollution. The adsorption and desorption effects can be studied directly with high spatial resolution and brought into connection to the surface properties of the clay mineral under study as well as to other experimental parameters, like pH or salinity.

  10. Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2

    International Nuclear Information System (INIS)

    McConnell, Gail; Riis, Erling

    2004-01-01

    We report on a novel and compact reliable laser source capable of short-wavelength two-photon laser scanning fluorescence microscopy based on soliton self-frequency shift effects in photonic crystal fibre. We demonstrate the function of the system by performing two-photon microscopy of smooth muscle cells and cardiac myocytes from the rat pulmonary vein and Chinese hamster ovary cells loaded with the fluorescent calcium indicator fura-2/AM

  11. Nonendothelial source of nitric oxide in arterioles but not in venules: alternative source revealed in vivo by diaminofluorescein microfluorography.

    Science.gov (United States)

    Kashiwagi, Satoshi; Kajimura, Mayumi; Yoshimura, Yasunori; Suematsu, Makoto

    2002-12-13

    This study aimed to examine topographic distribution of microvascular NO generation in vivo. To this end, nitrosonium ion (NO+)-sensitive diaminofluorescein diacetate was superfused continuously on the rat mesentery and the fluorescence was visualized in the microvessels through laser confocal microfluorography. Two major sites exhibited a time-dependent elevation of the fluorescence: microvascular endothelia and mast cells. As judged by the fluorescence sensitivity to local application of different inhibitors of NO synthase (NOS), NO availability in arteriolar endothelium and mast cells appeared to be maintained mainly by NOS1, whereas that in venular endothelium greatly depends on NOS3. In venules, the magnitude of inhibitory responses elicited by the inhibitors was positively correlated with the density of leukocyte adhesion. NOS inhibitors significantly reduced, but did not eliminate, the NO+-associated fluorescence in arterioles, capillaries, and venules, suggesting alternative sources of NO in circulation for these microvessels. Immunohistochemistry for NOS isozymes revealed that NOS1 occurred not only in nerve fibers innervated to arterioles but also abundantly in mast cells. Laser flow cytometry of peritoneal cells in vitro revealed abundant expression of NOS1 in mast cells. Interestingly, NOS3 occurred in endothelia of capillaries and venules but not in those of distal arterioles with comparable diameters. These results suggest that the arterioles receive NO from nonendothelial origins involving NOS1 present in nerve terminals and mast cells, whereas venules depend on the endothelial NOS as a major source. Furthermore, nonenzymatic sources of NO from circulating reservoirs constitute a notable fraction throughout different classes of microvessels. The full text of this article is available at http://www.circresaha.org.

  12. New Approaches in Soil Organic Matter Fluorescence; A Solid Phase Fluorescence Approach

    Science.gov (United States)

    Bowman, M. M.; Sanclements, M.; McKnight, D. M.

    2017-12-01

    Fluorescence spectroscopy is a well-established technique to investigate the composition of organic matter in aquatic systems and is increasingly applied to soil organic matter (SOM). Current methods require that SOM be extracted into a liquid prior to analysis by fluorescence spectroscopy. Soil extractions introduce an additional layer of complexity as the composition of the organic matter dissolved into solution varies based upon the selected extractant. Water is one of the most commonly used extractant, but only extracts the water-soluble fraction of the SOM with the insoluble soil organic matter fluorescence remaining in the soil matrix. We propose the use of solid phase fluorescence on whole soils as a potential tool to look at the composition of organic matter without the extraction bias and gain a more complete understand of the potential for fluorescence as a tool in terrestrial studies. To date, the limited applications of solid phase fluorescence have ranged from food and agriculture to pharmaceutical with no clearly defined methods and limitations available. We are aware of no other studies that use solid phase fluorescence and thus no clear methods to look at SOM across a diverse set of soil types and ecosystems. With this new approach to fluorescence spectroscopy there are new challenges, such as blank correction, inner filter effect corrections, and sample preparation. This work outlines a novel method for analyzing soil organic matter using solid phase fluorescence across a wide range of soils collected from the National Ecological Observatory Network (NEON) eco-domains. This method has shown that organic matter content in soils must be diluted to 2% to reduce backscattering and oversaturation of the detector in forested soils. In mineral horizons (A) there is observed quenching of the humic-like organic matter, which is likely a result of organo-mineral complexation. Finally, we present preliminary comparisons between solid and liquid phase

  13. Analysis of the performance of domestic lighting lamps

    International Nuclear Information System (INIS)

    Aman, M.M.; Jasmon, G.B.; Mokhlis, H.; Bakar, A.H.A.

    2013-01-01

    The power crisis problem is getting worse in the developing countries. Measures are being taken to overcome the power shortage problem by efficiently utilizing the available power. Replacement of high-power consumption lamps with energy efficient lamps is also among these steps. This paper presents a detailed comparative analysis between domestic lighting lamps (DLLs) use for producing artificial light. DLLs include incandescent lamp (IL), fluorescent lamp (FL) and compact fluorescent lamp (CFL). Light emitting diodes (LED) based lamp technology is relatively new in comparison with conventional incandescent and discharge lamps. However, the present study will also cover the LED lamps. Power quality based experiments have been conducted on DLLs in Power System Laboratory and power consumption based calculations are carried out using the lighting design software DIALux. The result shows that with the current technology, the use of FL and LED lamp is beneficial for utility as well as for consumer. However, with the current pace in the development of LED technology, it is possible LED lamps will lead the lighting market in the near future. The paper has also presented the uncertainties that exist in lighting market and proposed the guidelines that will help in making future energy policy. - Highlights: ► Performances of domestic lighting lamps are compared. ► Power quality and power consumption based case study results are presented. ► For future energy policies, recommendations are also given.

  14. Three-dimensional fluorescence lifetime tomography

    International Nuclear Information System (INIS)

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-01-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores

  15. Time reversal optical tomography locates fluorescent targets in a turbid medium

    Science.gov (United States)

    Wu, Binlin; Cai, W.; Gayen, S. K.

    2013-03-01

    A fluorescence optical tomography approach that extends time reversal optical tomography (TROT) to locate fluorescent targets embedded in a turbid medium is introduced. It uses a multi-source illumination and multi-detector signal acquisition scheme, along with TR matrix formalism, and multiple signal classification (MUSIC) to construct pseudo-image of the targets. The samples consisted of a single or two small tubes filled with water solution of Indocyanine Green (ICG) dye as targets embedded in a 250 mm × 250 mm × 60 mm rectangular cell filled with Intralipid-20% suspension as the scattering medium. The ICG concentration was 1μM, and the Intralipid-20% concentration was adjusted to provide ~ 1-mm transport length for both excitation wavelength of 790 nm and fluorescence wavelength around 825 nm. The data matrix was constructed using the diffusely transmitted fluorescence signals for all scan positions, and the TR matrix was constructed by multiplying data matrix with its transpose. A pseudo spectrum was calculated using the signal subspace of the TR matrix. Tomographic images were generated using the pseudo spectrum. The peaks in the pseudo images provided locations of the target(s) with sub-millimeter accuracy. Concurrent transmission TROT measurements corroborated fluorescence-TROT findings. The results demonstrate that TROT is a fast approach that can be used to obtain accurate three-dimensional position information of fluorescence targets embedded deep inside a highly scattering medium, such as, a contrast-enhanced tumor in a human breast.

  16. Effects of Depilation-Induced Skin Pigmentation and Diet-Induced Fluorescence on In Vivo Fluorescence Imaging

    OpenAIRE

    Kwon, Sunkuk; Sevick-Muraca, Eva M.

    2017-01-01

    Near-infrared fluorescence imaging (NIRFI) and far-red fluorescence imaging (FRFI) were used to investigate effects of depilation-induced skin pigmentation and diet-induced background fluorescence on fluorescent signal amplitude and lymphatic contraction frequency in C57BL6 mice. Far-red fluorescent signal amplitude, but not frequency, was affected by diet-induced fluorescence, which was removed by feeding the mice an alfalfa-free diet, and skin pigmentation further impacted the amplitude mea...

  17. Basic design of on-line analyzer for sheet paper using X-ray fluorescence (XRF) technique

    International Nuclear Information System (INIS)

    Rony Djokorayono; Ahmad Suntoro; Ikhsan Shobari; Usep Setia Gunawan

    2016-01-01

    Basic design of on-line analyzer for sheet paper using X-ray fluorescence technique has been carried out. Compared with sampling technique, this X-ray fluorescence technique has some advantages in term of analysis accuracy and time. The design activities performed including the establishment of design requirements, functional requirements, technical requirements, technical specification, detection sub-system design, data acquisition sub-system design, and operator computer console design. This program will use silicon drift or CdTe X-ray detector to detect X-ray fluorescence emitted by elements in sheet paper due to X-ray interaction of a X-ray source, 55 Fe (Ferro-55).This basic design of on-line analyzer for sheet paper using X-ray fluorescence technique should be followed up with the development of detailed design, prototype construction, and field testing. (author)

  18. Fluorescent converter and neutron absorber being made of boron nitride

    International Nuclear Information System (INIS)

    Matsumoto, G.; Teramura, M.; Sato, J.; Maeda, M.

    1983-01-01

    To improve the sensitivity of fluorescent converter is essential to the neutron radiography (NRG) which utilizes portable, not so strong, neutron sources. The fluorescent converter made of boron nitride (BN) is fabricated and tested. The sensitivity is about 1/20 of the NE426, but the homogeneity may be better. If 10 BN is utilized, the sensitivity will be five times as much as that of natural BN. Using the neutron beam of the Kyoto University Research Reactor, the flux of which is about 10 6 n/cm 2 sec, a good neutron television image was gained by X-ray television camera. As a bi-product of this converter, a flexible absorber was fabricated. (Auth.)

  19. 75 FR 22213 - Energy Conservation Program: Test Procedures for General Service Fluorescent Lamps, Incandescent...

    Science.gov (United States)

    2010-04-28

    ..., Department of Energy. ACTION: Final rule; technical amendments. SUMMARY: This document contains a technical... test procedure regulations for the above-specified lamps. However, due to a drafting error, part of the.... Since the publication of that rule, it has come to DOE's attention that, due to a technical oversight, a...

  20. Workflow for high-content, individual cell quantification of fluorescent markers from universal microscope data, supported by open source software.

    Science.gov (United States)

    Stockwell, Simon R; Mittnacht, Sibylle

    2014-12-16

    Advances in understanding the control mechanisms governing the behavior of cells in adherent mammalian tissue culture models are becoming increasingly dependent on modes of single-cell analysis. Methods which deliver composite data reflecting the mean values of biomarkers from cell populations risk losing subpopulation dynamics that reflect the heterogeneity of the studied biological system. In keeping with this, traditional approaches are being replaced by, or supported with, more sophisticated forms of cellular assay developed to allow assessment by high-content microscopy. These assays potentially generate large numbers of images of fluorescent biomarkers, which enabled by accompanying proprietary software packages, allows for multi-parametric measurements per cell. However, the relatively high capital costs and overspecialization of many of these devices have prevented their accessibility to many investigators. Described here is a universally applicable workflow for the quantification of multiple fluorescent marker intensities from specific subcellular regions of individual cells suitable for use with images from most fluorescent microscopes. Key to this workflow is the implementation of the freely available Cell Profiler software(1) to distinguish individual cells in these images, segment them into defined subcellular regions and deliver fluorescence marker intensity values specific to these regions. The extraction of individual cell intensity values from image data is the central purpose of this workflow and will be illustrated with the analysis of control data from a siRNA screen for G1 checkpoint regulators in adherent human cells. However, the workflow presented here can be applied to analysis of data from other means of cell perturbation (e.g., compound screens) and other forms of fluorescence based cellular markers and thus should be useful for a wide range of laboratories.

  1. Mercury risk from fluorescent lamps in China: current status and future perspective.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2012-09-01

    Energy-efficient lighting is one of the key measures for addressing electric power shortages and climate change mitigation, and fluorescent lamps are expected to dominate the lighting market in China over the next several years. This review presents an overview on the emissions and risk of mercury from fluorescent lamps during production and disposal, and discusses measures for reducing the mercury risk through solid waste management and source reduction. Fluorescent lamps produced in China used to contain relatively large amounts of mercury (up to 40 mg per lamp) due to the prevalence of liquid mercury dosing, which also released significant amounts of mercury to the environment. Upgrade of the mercury dosing technologies and manufacturing facilities had significantly reduced the mercury contents in fluorescent lamps, with most of them containing less than 10 or 5mg per lamp now. Occupational hygiene studies showed that mercury emissions occurred during fluorescent lamp production, particularly in the facilities using liquid mercury dosing, which polluted the environmental media at and surrounding the production sites and posed chronic health risk to the workers by causing neuropsychological and motor impairments. It is estimated that spent fluorescent lamps account for approximately 20% of mercury input in the MSW in China. Even though recycling of fluorescent lamps presents an important opportunity to capture the mercury they contain, it is difficult and not cost-effective at reducing the mercury risk under the broader context of mercury pollution control in China. In light of the significant mercury emissions associated with electricity generation in China, we propose that reduction of mercury emissions and risk associated with fluorescent lamps should be achieved primarily through lowering their mercury contents by the manufacturers while recycling programs should focus on elemental mercury-containing waste products instead of fluorescent lamps to recapture

  2. Photoreactivation and other ultraviolet/visible light effects on DNA in human skin

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Blackett, A.D.; Feng, N.I.; Freeman, S.E.; Ogut, E.S.; Gange, R.W.; Sutherland, J.C.

    1985-01-01

    Wavelengths of light present in sunlight, sunlamps, and fluorescent and incandescent lamps induce changes in human skin DNA in a multiplicity of reactions. UVB and UVA exposures can induce damage in DNA as well as can the inducement of tanning to protect against such damage. Longer wavelength ultraviolet radiation can mediate enzymatic (or perhaps nonenzymatic) reversal of dimers. None of the action spectra, kinetics, or other characteristics of such reactions are known. Elucidation of their properties will provide essential information to allow evaluation of the interaction of light with human skin DNA

  3. Technical and economic feasibility of the use of discharge lamps in replacement of filament for induction of photoperiod in chrysanthemum seedlings production; Viabilidade tecnico-economica do uso de lampadas de descarga em substituicao as de filamento para inducao de fotoperiodo na producao de mudas de crisantemos

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Luiz A.; David, Eduardo [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: rossi@feagri.unicamp.br; Pagliardi, Odail [Faculdade Municipal Prof. Franco Montoro (FMPFM), Mogi Guacu, SP (Brazil); Sarubbi, Juliana [Universidade Federal de Santa Maria (CESNORS/UFSM), Palmeira das Missoes, RS (Brazil). Centro de Educacao Superior Norte-RS

    2010-07-01

    Due to its physiological characteristics, the seedlings of chrysanthemums require supplemental light to prevent bud formation, that is done at night. This article examines the technical and economic valuation to replace the current technology of artificial lighting used by producers (incandescent bulbs) for the purpose of inducing photoperiod in a protected environment for cutting-discharge lamps, with the goal of reducing the consumption electricity used in the process. The analysis showed that the integrated compact fluorescent yellow lamp 23W is the technically and economically feasible for such replacement. (author)

  4. Optimization of fluorescent proteins

    NARCIS (Netherlands)

    Bindels, D.S.; Goedhart, J.; Hink, M.A.; van Weeren, L.; Joosen, L.; Gadella (jr.), T.W.J.; Engelborghs, Y.; Visser, A.J.W.G.

    2014-01-01

    Nowadays, fluorescent protein (FP) variants have been engineered to fluoresce in all different colors; to display photoswitchable, or photochromic, behavior; or to show yet other beneficial properties that enable or enhance a still growing set of new fluorescence spectroscopy and microcopy

  5. Analyses of archaeological pottery samples using X-ray fluorescence technique for provenance study

    International Nuclear Information System (INIS)

    Tamilarasu, S.; Swain, K.K.; Singhal, R.K; Reddy, A.V.R.; Acharya, R.; Velraj, G.

    2015-01-01

    Archaeological artifacts reveal information on past human activities, artifact preparation technology, art and possible trade. Ceramics are the most stable and abundant material in archaeological context. Pottery is the most abundant tracers in all archaeological excavations. Compared to major elements, elements present at trace concentrations levels are source specific and they maintain same concentration levels in source clay as well as finished products e.g., fired clay potteries. As it is difficult to find out exact source or origin, provenance study is carried out first to establish whether objects under study are from the same or different sources/origin. Various analytical techniques like instrumental neutron activation analysis (INAA), Ion beam analysis (IBA) and X-ray fluorescence (XRF) have been used for obtaining elemental concentrations in archaeological potteries. Portable X-ray fluorescence (pXRF) spectrometry provides a non-destructive means for elemental characterization of a wide range of archaeological materials. Ten archaeological pottery samples were collected from Kottapuram, Kerala under the supervision of archaeological survey of India. Portable X-ray fluorescence (pXRF) spectrometry using a handheld Olympus Innov-X Delta XRF device, ACD BARC, has been used for chemical characterization of the pottery samples. The instrument is equipped with the Delta Rhodium (Rh) anode X-Ray tube and uses a Silicon Drift Detector (resolution <200 eV at 5.95 keV Mn Kα X-ray). NIST 2781 SRM was analyzed for quality control purpose. Ten elements namely Fe, Ti, Mn, Co, Cu, Zn, Pb, Zr, Mo and Se were chosen for cluster analysis and their concentration values were utilized for multivariate statistical analysis using WinSTAT 9.0

  6. Design and implementation of a dual-wavelength intrinsic fluorescence camera system

    Science.gov (United States)

    Ortega-Martinez, Antonio; Musacchia, Joseph J.; Gutierrez-Herrera, Enoch; Wang, Ying; Franco, Walfre

    2017-03-01

    Intrinsic UV fluorescence imaging is a technique that permits the observation of spatial differences in emitted fluorescence. It relies on the fluorescence produced by the innate fluorophores in the sample, and thus can be used for marker-less in-vivo assessment of tissue. It has been studied as a tool for the study of the skin, specifically for the classification of lesions, the delimitation of lesion borders and the study of wound healing, among others. In its most basic setup, a sample is excited with a narrow-band UV light source and the resulting fluorescence is imaged with a UV sensitive camera filtered to the emission wavelength of interest. By carefully selecting the excitation/emission pair, we can observe changes in fluorescence associated with physiological processes. One of the main drawbacks of this simple setup is the inability to observe more than a single excitation/emission pair at the same time, as some phenomena are better studied when two or more different pairs are studied simultaneously. In this work, we describe the design and the hardware and software implementation of a dual wavelength portable UV fluorescence imaging system. Its main components are an UV camera, a dual wavelength UV LED illuminator (295 and 345 nm) and two different emission filters (345 and 390 nm) that can be swapped by a mechanical filter wheel. The system is operated using a laptop computer and custom software that performs basic pre-processing to improve the image. The system was designed to allow us to image fluorescent peaks of tryptophan and collagen cross links in order to study wound healing progression.

  7. Determination of antioxidant content in biodiesel by fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Keurison F.; Caires, Anderson R.L. [Universidade Federal da Grande Dourados, MS (Brazil). Grupo de Optica Aplicada; Oliveira, Samuel L. [Universidade Federal de Mato Grosso do Sul (UFMS), MS (Brazil). Grupo de Optica e Fotonica

    2011-07-01

    Full text. Biodiesel is an alternative fuel composed by mono-alkyl esters obtained from vegetable oils or animal fats. Due to its chemical structure, biodiesel is highly susceptible to oxidation which leads to formation of insoluble gums and sediments that can block the filter system of fuel injection. Biodiesel made from vegetable oils typically has a small amount of natural antioxidants so that it is necessary to add synthetic antioxidants to enhance its stability and retain their properties for a longer period. The main antioxidants are synthetic phenolic compounds such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) as well as natural antioxidants as tocopherols. The fluorescence spectroscopy has been applied for determination of phenolic compounds in oils. Here, a method based on fluorescence is proposed to quantify the BHA and TBHQ antioxidant concentration in biodiesel produced from sunflower and soybean oils. Soybean and sunflower biodiesel were obtained by transesterification of fatty alcohol in the presence of NaOH as catalyst. The reactions were carried out in the molar ratio of 6:1 methanol/oil. After the production and purification, biodiesel samples were stored. Biodiesel samples with BHA and TBHQ concentrations from 1000 to 8000 ppm (m/m) were pre- pared. These samples were diluted in ethanol (95%) in order to measure the fluorescence spectra. Fluorescence and excitation spectra of the solutions were recorded at room temperature using a spectrofluorimeter. The emission spectra were obtained under excitation at about 310nm and fluorescence in the 320-800nm range was evaluated. Biodiesel samples without BHA and TBHQ showed fluorescence band at about 420nm, which can be attributed to tocopherols inherent to the vegetable oils used in the biodiesel production. The addition of BHA and/or TBHQ is responsible for the appearance of a fluorescence band around 330nm. It was verified that the fluorescence

  8. Fluorescence diffuse tomography of small animals with DsRed2 fluorescent protein

    Science.gov (United States)

    Turchin, I. V.; Plehanov, V. I.; Orlova, A. G.; Kamenskiy, V. A.; Kleshnin, M. S.; Shirmanova, M. V.; Shakhova, N. M.; Balalaeva, I. V.; Savitskiy, A. P.

    2006-05-01

    Fluorescent compounds are used as markers to diagnose oncological diseases, to study molecular processes typical for carcinogenesis, and to investigate metastasis formation and tumor regress under the influence of therapeutics. Different types of tomography, such as continuous wave (CW), frequency-domain (FD), and time-domain (TD) tomography, allow fluorescence imaging of tumors located deep in human or animal tissue. In this work, preliminary results of the frequency domain fluorescent diffuse tomography (FDT) method in application to DsRed2 protein as a fluorescent agent are presented. For the first step of our experiments, we utilized low-frequency amplitude modulation (1 kHz) of second harmonic of Nd: YAG (532 nm). The transilluminative configuration was used in the setup. The results of post mortem experiments with capsules containing DsRed2 inserted inside the esophagus of a 3-day-old hairless rat to simulate tumor are shown. An algorithm of processing fluorescent images based on calculating the zero of maximum curvature has been applied to detect fluorescent inclusion boundaries in the image. This work demonstrates the potential capability of the FDT method for imaging deep fluorescent tumors in human tissue or animal models of human cancer. Improvement of the setup can be accomplished by using high-frequency modulation (using a 110-MHz acoustooptical modulator).

  9. X-ray Microprobe for Fluorescence and Diffraction Analysis

    International Nuclear Information System (INIS)

    Ice, G.E.

    2005-01-01

    X-ray diffraction (see unit 1.1) and x-ray excited fluorescence analysis are powerful techniques for the nondestructive measurement of crystal structure and chemical composition. X-ray fluorescence analysis is inherently nondestructive with orders of magnitude lower power deposited for the same detectable limit as with fluorescence excited by charged particle probes (Sparks, 1980). X-ray diffraction analysis is sensitive to crystal structure with orders-of-magnitude greater sensitivity to crystallographic strain than electron probes (Rebonato, et al. 1989). When a small-area x-ray microbeam is used as the probe, chemical composition (Z>14), crystal structure, crystalline texture, and crystalline strain distributions can be determined. These distributions can be studied both at the surface of the sample and deep within the sample (Fig. 1). Current state-of-the-art can achieve an ∼1 mm-D x-ray microprobe and an ∼0.1 mm-D x-ray microprobe has been demonstrated (Bilderback, et al., 1994). Despite their great chemical and crystallographic sensitivities, x-ray microprobe techniques have until recently been restricted by inefficient x-ray focusing optics and weak x-ray sources; x-ray microbeam analysis was largely superseded by electron techniques in the 50's. However, interest in x-ray microprobe techniques has now been revived (Howells, et al., 1983; Ice and Sparks, 1984; Chevallier, et al., 1997; Riekel 1992; Thompson, el al., 1992; and Making and Using... 1997) by the development of efficient x-ray focusing optics and ultra-high intensity synchrotron x-ray sources (Buras and Tazzari, 1984; Shenoy, et al., 1988). These advances have increased the achievable microbeam flux by more than 11 orders of magnitude (Fig. 2) (Ice, 1997); the flux in a tunable 1 mm-D beam on a 'so called' 3rd-generation synchrotron source such as the APS can exceed the flux in a fixed-energy mm2 beam on a conventional source. These advances make x-ray microfluorescence and x

  10. LCLS in—photon out: fluorescence measurement of neon using soft x-rays

    Science.gov (United States)

    Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; Beerwerth, Randolf; Holmes, Michael; Aldrich, Jeff; Lin, Ming-Fu; Minitti, Michael; Osipov, Timur; Schlotter, William; Cederbaum, Lorenz S.; Fritzsche, Stephan; Berrah, Nora

    2018-02-01

    We measured the fluorescence photon yield of neon upon soft x-ray ionization (∼1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.

  11. Safe biodegradable fluorescent particles

    Science.gov (United States)

    Martin, Sue I [Berkeley, CA; Fergenson, David P [Alamo, CA; Srivastava, Abneesh [Santa Clara, CA; Bogan, Michael J [Dublin, CA; Riot, Vincent J [Oakland, CA; Frank, Matthias [Oakland, CA

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  12. Radiant heat increases piglets’ use of the heated creep area on the critical days after birth

    DEFF Research Database (Denmark)

    Larsen, Mona Lilian Vestbjerg; Thodberg, Karen; Pedersen, Lene Juul

    2017-01-01

    The aim of the present study was to investigate how piglets’ use of a creep area is affected by using radiant heat compared to an incandescent light bulb. It was hypothesised that radiant heat would increase the use of the creep area. Twenty litters were randomly assigned to one of two heat sources...... in the creep area: (1) an incandescent light bulb (STANDARD, n=10) or (2) a radiant heat source (RADIANT, n=10) with five of each type of heat source in each of two batches. Observations on piglets’ position in the pen were made by scan sampling every ten minutes in a 4-hour period from 1100 to 1500 h on day 1......–7, 14 and 21 post partum. A higher percentage of piglets in the creep area was seen for RADIANT litters compared to STANDARD litters on day 2 (P=0.002) and day 3 (P=0.005), and percentage of piglets in the creep area increased for RADIANT litters from day 1 to 2 (P

  13. Characterization of the photoreaction between DNA and aminomethyl-trimethylpsoralen using absorption and fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Johnston, B.H.; Hearst, J.E.

    1981-01-01

    The use of absorption and fluorescence spectroscopy for following the progress of the photoreaction between DNA and 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT) has been investigated. Absorption at long wavelengths and fluorescence both decline upon intercalation of AMT into the DNA helix. The loss of fluorescence from AMT and the accompanying appearance of monoadduct fluorescence upon irradiation by UV light can be easily followed by using the excitation beam of a spectrofluorometer as the source of irradiation and monitoring the changing emission spectrum. Where cross-link formation is possible, the subsequent decline of monoadduct fluorescence is seen as well. This suggests that the 4',5'-monoadduct is a precursor of cross-links. Both monoaddition and cross-linking are more rapid with poly d(A-T) than with calf thymus DNA or poly d(A.T). Excitation spectra can be helpful in resolving the levels of AMT and 4',5'-monoadduct when both are contributing to the emission spectrum. Some changes are observed in the emission spectrum of AMT-poly d(A.T) monoadducts after prolonged irradiation which indicate further photoreaction. (author)

  14. Development of Laser-Induced Fluorescence Diagnostic for the Paul Trap Simulator Experiment

    CERN Document Server

    Chung, Moses; Efthimion, Philip; Gilson, Erik P; Majeski, Richard; Startsev, Edward

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) is a cylindrical Paul trap whose purpose is to simulate the nonlinear dynamics of intense charged particle beam propagation in alternating-gradient magnetic transport systems. For the in-situ measurement of the transverse ion density profile in the PTSX device, which is essential for the study of beam mismatch and halo particle production, a laser-induced fluorescence diagnostic system is being developed. Instead of cesium, which has been used in the initial phase of the PTSX experiment, barium has been selected as the preferred ion for the laser-induced fluorescence diagnostic. The installation of the barium ion source and the characterization of the tunable dye laser system are discussed. The design of the collection optics with an intensified CCD camera system is also discussed. Finally, initial test results using the laser-induced fluorescence diagnostic will be presented.

  15. Quantitative performance characterization of three-dimensional noncontact fluorescence molecular tomography

    Science.gov (United States)

    Favicchio, Rosy; Psycharakis, Stylianos; Schönig, Kai; Bartsch, Dusan; Mamalaki, Clio; Papamatheakis, Joseph; Ripoll, Jorge; Zacharakis, Giannis

    2016-02-01

    Fluorescent proteins and dyes are routine tools for biological research to describe the behavior of genes, proteins, and cells, as well as more complex physiological dynamics such as vessel permeability and pharmacokinetics. The use of these probes in whole body in vivo imaging would allow extending the range and scope of current biomedical applications and would be of great interest. In order to comply with a wide variety of application demands, in vivo imaging platform requirements span from wide spectral coverage to precise quantification capabilities. Fluorescence molecular tomography (FMT) detects and reconstructs in three dimensions the distribution of a fluorophore in vivo. Noncontact FMT allows fast scanning of an excitation source and noninvasive measurement of emitted fluorescent light using a virtual array detector operating in free space. Here, a rigorous process is defined that fully characterizes the performance of a custom-built horizontal noncontact FMT setup. Dynamic range, sensitivity, and quantitative accuracy across the visible spectrum were evaluated using fluorophores with emissions between 520 and 660 nm. These results demonstrate that high-performance quantitative three-dimensional visible light FMT allowed the detection of challenging mesenteric lymph nodes in vivo and the comparison of spectrally distinct fluorescent reporters in cell culture.

  16. Laser-induced fluorescence of metal-atom impurities in a neutral beam

    International Nuclear Information System (INIS)

    Burrell, C.F.; Pyle, R.V.; Sabetimani, Z.; Schlachter, A.S.

    1984-10-01

    The need to limit impurities in fusion devices to low levels is well known. We have investigated, by the technique of laser-induced fluorescence, the concentration of heavy-metal atoms in a neutral beam caused by their evaporation from the hot filaments in a conventional high-current multifilament hydrogen-ion source

  17. Large area self-powered gamma ray detector

    International Nuclear Information System (INIS)

    LeVert, F.E.

    1994-01-01

    The purpose of this research was to develop a large area self-powered gamma detector (LASPGD) capable of detecting the movement of sealed radiation sources into and out of industrial radiographic units and to construct a prototype source position monitor (SPM) for these units utilizing the LASPGD. Prototype isotropic and directional LASPGDs, with solid and inert gas dielectrics, were developed and extensively tested using calibrated gamma sources (i.e., Cs-137, and Co-60). The sensitivities of the isotropic detectors, with inert gas dielectrics, were found to be approximately a factor of ten greater than those measured for the solid dielectric LASPGDs. Directionally sensitive self-powered detectors were found to exhibit a forward-to-back hemispherical sensitivity ratio of approximately 2 to 1. Industrial radiographic units containing Ir-192 sources with different activities were used to test the performance of the SPM. The SPM, which utilized a gas dielectric LASPGD, performed as designed. That is, the current generated in the LASPGD was converted to a voltage, amplified and used to control the on/off state of an incandescent lamp. The incandescent lamp, which functions as the source/out warning indicator, flashes at a rate of one flash per second when the source is in use (i.e. out of its shield)

  18. Monosodium glutamate derived tricolor fluorescent carbon nanoparticles for cell-imaging application.

    Science.gov (United States)

    Zheng, Nannan; Ding, Sha; Zhou, Xingping

    2016-06-01

    Fluorescent carbon nanoparticle (FCN) is a new type of carbon-based materials. Because of its wide raw material sources, excellent optical properties and good biocompatibility, FCN is getting more and more attentions. However, its synthesis from resources at low cost under mild conditions is still a challenge. Here we report a novel and simple method derived from monosodium glutamate carbonization to make tricolor fluorescent carbon nanoparticles with an average size below 10nm, a high yield up to 35.2% based on the carbon content in the resource, a long life-time of 3.71ns, and a high fluorescence quantum yield up to 51.5% by using quinine sulfate as the standard substance. We discovered that the fluorescent stability of the FCNs was very excellent under UV irradiation for hours in aqueous solutions of pH ranged from 2.0 to 9.0. The cell viability tested under a pretty high concentration of FCNs indicated their safety for biological applications. Based on their high fluorescence quantum efficiency and the advantages mentioned above, these FCNs were then used for cell imaging and exhibited a perfect performance under 3 kinds of excitation bands (UV, blue, and green lights). Thus, they can be practically applied to immune labeling and imaging in vivo in the near future. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays

    International Nuclear Information System (INIS)

    Chekini, M.; Bierwagen, J.; Cunningham, A.; Bürgi, T.; Filter, R.; Rockstuhl, C.

    2015-01-01

    Localized surface plasmon resonances excited in metallic nanoparticles confine and enhance electromagnetic fields at the nanoscale. This is particularly pronounced in dimers made from two closely spaced nanoparticles. When quantum emitters, such as dyes, are placed in the gap of those dimers, their absorption and emission characteristics can be modified. Both processes have to be considered when aiming to enhance the fluorescence from the quantum emitters. This is particularly challenging for dimers, since the electromagnetic properties and the enhanced fluorescence sensitively depend on the distance between the nanoparticles. Here, we use a layer-by-layer method to precisely control the distances in such systems. We consider a dye layer deposited on top of an array of gold nanoparticles or integrated into a central position of a double array of gold nanoparticles. We study the effect of the spatial arrangement and the average distance on the plasmon-enhanced fluorescence. We found a maximum of a 99-fold increase in the fluorescence intensity of the dye layer sandwiched between two gold nanoparticle arrays. The interaction of the dye layer with the plasmonic system also causes a spectral shift in the emission wavelengths and a shortening of the fluorescence life times. Our work paves the way for large-scale, high throughput, and low-cost self-assembled functionalized plasmonic systems that can be used as efficient light sources

  20. The Pierre Auger fluorescence detector. Cross-checking the absolute calibration using a drone

    Energy Technology Data Exchange (ETDEWEB)

    Tomankova, Lenka [Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The Pierre Auger Observatory combines the air shower fluorescence and surface array methods to study ultra-high energy cosmic rays. As the energy scale of the experiment is derived from calorimetric measurements by the fluorescence telescopes, their accurate calibration is of primary importance to all Auger data. We discuss a novel calibration method based on a remotely flown drone equipped with a specially designed light source that mimics a snapshot of an air shower traversing the atmosphere. Several drone measurement campaigns have been performed to study the properties of the Auger fluorescence telescopes and to derive an end-to-end calibration. We give an overview of the measurements and present the basic analysis chain as well as the first results of an independent cross-check of the Auger energy scale.

  1. Hyperspectral solar-induced chlorophyll fluorescence of urban tree leaves: Analyses and applications

    Science.gov (United States)

    Van Wittenberghe, Shari

    Solar energy is the primary energy source for life on Earth which is converted into chemical energy through photosynthesis by plants, algae and cyanobacteria, releasing fuel for the organisms' activities. To dissipate excess of absorbed light energy, plants emit chlorophyll (Chl) fluorescence (650-850 nm) from the same location where photosynthesis takes place. Hence, it provides information on the efficiency of primary energy conversion. From this knowledge, many applications on vegetation and crop stress monitoring could be developed, a necessity for our planet under threat of a changing global climate. Even though the Chl fluorescence signal is weak against the intense reflected radiation background, methods for retrieving the solar-induced Chl fluorescence have been refined over the last years, both at leaf and airborne scale. However, a lack of studies on solar-induced Chl fluorescence gives difficulties for the interpretation of the signal. Within this thesis, hyperspectral upward and downward solar-induced Chl fluorescence is measured at leaf level. Fluorescence yield (FY) is calculated as well as different ratios characterizing the emitted Chl fluorescence shape. The research in this PhD dissertation illustrates the influence of several factors on the solar-induced Chl fluorescence signal. For instance, both the intensity of FY and its spectral shape of urban tree leaves are able to change under influence of stress factors such as traffic air pollution. This shows how solar-induced Chl fluorescence could function as an early stress indicator for vegetation. Further, it is shown that the signal contains information on the ultrastructure of the photosynthetic apparatus. Also, it is proven that the leaf anatomical structure and related light scattering properties play a role in the partitioning between upward and downward Chl fluorescence emission. All these findings indicate how the Chl fluorescence spectrum is influenced by factors which also influence

  2. Fluorescence guided lymph node biopsy in large animals using direct image projection device

    Science.gov (United States)

    Ringhausen, Elizabeth; Wang, Tylon; Pitts, Jonathan; Akers, Walter J.

    2016-03-01

    The use of fluorescence imaging for aiding oncologic surgery is a fast growing field in biomedical imaging, revolutionizing open and minimally invasive surgery practices. We have designed, constructed, and tested a system for fluorescence image acquisition and direct display on the surgical field for fluorescence guided surgery. The system uses a near-infrared sensitive CMOS camera for image acquisition, a near-infra LED light source for excitation, and DLP digital projector for projection of fluorescence image data onto the operating field in real time. Instrument control was implemented in Matlab for image capture, processing of acquired data and alignment of image parameters with the projected pattern. Accuracy of alignment was evaluated statistically to demonstrate sensitivity to small objects and alignment throughout the imaging field. After verification of accurate alignment, feasibility for clinical application was demonstrated in large animal models of sentinel lymph node biopsy. Indocyanine green was injected subcutaneously in Yorkshire pigs at various locations to model sentinel lymph node biopsy in gynecologic cancers, head and neck cancer, and melanoma. Fluorescence was detected by the camera system during operations and projected onto the imaging field, accurately identifying tissues containing the fluorescent tracer at up to 15 frames per second. Fluorescence information was projected as binary green regions after thresholding and denoising raw intensity data. Promising results with this initial clinical scale prototype provided encouraging results for the feasibility of optical projection of acquired luminescence during open oncologic surgeries.

  3. A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yan [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Tan, Jun; Wang, Chengjie; Zhu, Ying [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Fang, Shenwen [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Wu, Jiayi; Wang, Qing [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Duan, Ming, E-mail: swpua124@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China)

    2016-11-15

    In this work, a miniaturized sensor was integrated on fiber surface and developed for oxygen determination through evanescent-wave induced fluorescence quenching. The sensor was designed by using light emitting diode (LED) as light source and optical fiber as light transmission element. Tris(2,2′-bipyridyl) ruthenium ([Ru(bpy){sub 3}]{sup 2+}) fluorophore was immobilized in the organically modified silicates (ORMOSILs) film and coated onto the fiber surface. When light propagated by total internal reflection (TIR) in the fiber core, evanescent wave could be produced on the fiber surface and excite [Ru(bpy){sub 3}]{sup 2+} fluorophore to produce fluorescence emission. Then oxygen could be determinated by its quenching effect on the fluorescence and its concentration could be evaluated according to Stern–Volumer model. Through integrating evanescent wave excitation and fluorescence quenching on fiber surface, the sensor was successfully miniaturized and exhibit improved performances of high sensitivity (1.4), excellent repeatability (1.2%) and fast analysis (12 s) for oxygen determination. The sensor provided a newly portable method for in-situ and real-time measurement of oxygen and showed potential for practical oxygen analysis in different application fields. Furthermore, the fabrication of this sensor provides a miniaturized and portable detection platform for species monitoring by simple modular design. - Highlights: • ORMOSILs sensing film immobilized with [Ru(bpy){sub 3}]{sup 2+} fluorophore was coated on fiber surface. • Evanescent wave on the fiber surface was utilized as excitation source to produce fluorescence. • Oxygen was measured based on its quenching effect on evanescent wave-induce fluorescence. • Sensor fabrication was miniaturized by integrating detection and sensing elements on the fiber. • The modular design sensor provides a detection platform for other species monitoring.

  4. X-ray fluorescence determination of cobalt in iron-manganese oceanic concretions

    International Nuclear Information System (INIS)

    Ivanenko, V.V.; Kustov, V.N.; Metelev, A.Yu.; Rakita, K.A.

    1989-01-01

    A method was developed for resolution of weak analytical lines for elements determined by radionuclide-excited X-ray fluorescence multi-element analysis. The method was used aboart for determining cobalt and some other commercially valuable elements in iron-manganese concretions of Pacific ocean 109 Cd was used as an ionizing radiation source

  5. Fluorescence characteristics of the fuel tracers triethylamine and trimethylamine for the investigation of fuel distribution in internal combustion engines.

    Science.gov (United States)

    Lind, Susanne; Aßmann, Simon; Zigan, Lars; Will, Stefan

    2016-03-01

    Laser-induced fluorescence based on fuel tracers like amines is a suitable measurement technique for mixing studies in internal combustion (IC) engines. Triethylamine has often been used in gasoline IC engines; however, no detailed fluorescence characterization for excitation at 263 or 266 nm is available. Trimethylamine (TMA) exhibits high potential as a gaseous fuel tracer but little information about TMA fluorescence is currently available. A picosecond laser source combined with a streak camera equipped with a spectrograph was used to determine the spectral fluorescence emission and fluorescence decay time of both tracers. The tracers were investigated at various temperatures and pressures in a calibration cell with nitrogen as bath gas. The results provide an in-depth understanding of the fluorescence characteristics of both tracers and allow assessment of their application to the investigation of fuel distribution in IC engines.

  6. Biocompatible fluorescence-enhanced ZrO2-CdTe quantum dot nanocomposite for in vitro cell imaging

    Science.gov (United States)

    Lu, Zhisong; Zhu, Zhihong; Zheng, Xinting; Qiao, Yan; Guo, Jun; Li, Chang Ming

    2011-04-01

    With advances of quantum dots (QDs) in bioimaging applications, various materials have been used to coat QDs to reduce their nanotoxicity; however, the coating could introduce new toxic sources and quench the fluorescence in bioimaging applications. In this work, ZrO2, an excellent ceramic material with low extinction coefficient and good biocompatibility, is utilized to coat CdTe QDs for the first time. Experimental results show that ZrO2-QD nanocomposites with the size of ~ 30 nm possess enhanced fluorescence emission, lower nanotoxicity and gradually increased fluorescence under 350 nm light illumination. After functionalization with folic acid, they were applied to label cultured HeLa cells effectively. Therefore, the ZrO2-QD nanocomposites could be promising biocompatible nanomaterials with strong fluorescence emission to replace or complement QDs in biomedical applications.

  7. Biocompatible fluorescence-enhanced ZrO2-CdTe quantum dot nanocomposite for in vitro cell imaging

    International Nuclear Information System (INIS)

    Lu Zhisong; Zhu Zhihong; Zheng Xinting; Qiao Yan; Li Changming; Guo Jun

    2011-01-01

    With advances of quantum dots (QDs) in bioimaging applications, various materials have been used to coat QDs to reduce their nanotoxicity; however, the coating could introduce new toxic sources and quench the fluorescence in bioimaging applications. In this work, ZrO 2 , an excellent ceramic material with low extinction coefficient and good biocompatibility, is utilized to coat CdTe QDs for the first time. Experimental results show that ZrO 2 -QD nanocomposites with the size of ∼ 30 nm possess enhanced fluorescence emission, lower nanotoxicity and gradually increased fluorescence under 350 nm light illumination. After functionalization with folic acid, they were applied to label cultured HeLa cells effectively. Therefore, the ZrO 2 -QD nanocomposites could be promising biocompatible nanomaterials with strong fluorescence emission to replace or complement QDs in biomedical applications.

  8. Benchtop and animal validation of a portable fluorescence microscopic imaging system for potential use in cholecystectomy

    Science.gov (United States)

    Ye, Jian; Liu, Guanghui; Liu, Peng; Zhang, Shiwu; Shao, Pengfei; Smith, Zachary J.; Liu, Chenhai; Xu, Ronald X.

    2018-02-01

    We propose a portable fluorescence microscopic imaging system (PFMS) for intraoperative display of biliary structure and prevention of iatrogenic injuries during cholecystectomy. The system consists of a light source module, a camera module, and a Raspberry Pi computer with an LCD. Indocyanine green (ICG) is used as a fluorescent contrast agent for experimental validation of the system. Fluorescence intensities of the ICG aqueous solution at different concentration levels are acquired by our PFMS and compared with those of a commercial Xenogen IVIS system. We study the fluorescence detection depth by superposing different thicknesses of chicken breast on an ICG-loaded agar phantom. We verify the technical feasibility for identifying potential iatrogenic injury in cholecystectomy using a rat model in vivo. The proposed PFMS system is portable, inexpensive, and suitable for deployment in resource-limited settings.

  9. White organic light-emitting diodes with fluorescent tube efficiency.

    Science.gov (United States)

    Reineke, Sebastian; Lindner, Frank; Schwartz, Gregor; Seidler, Nico; Walzer, Karsten; Lüssem, Björn; Leo, Karl

    2009-05-14

    The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.

  10. Spectral, energy, and time parameters of two-photon fluorescence of 2,5-diphenyloxazole polycrystals

    International Nuclear Information System (INIS)

    Agal'tsov, A.M.; Gorelik, V.S.; Rakhmatullaev, I.A.

    1995-01-01

    Two-photon fluorescence (TPF) spectra of 2,5-diphenyloxazole polycrystals (known in the literature as PPO) were obtained and studied as a function of the pump power and time delay. The fluorescence spectrum shape observed upon two-photon excitation is shown to be distinctly different from that observed upon electron-beam excitation. It is shown that high pump powers result in stimulated fluorescence. PPO exhibits a high TPF quantum yield, the integrated conversion efficiency of exciting radiation to TPF being 40%. The TPF decay time is measured to be 20 ns. The spectral data obtained for PPO polycrystals can be used in the development of new TPF light sources tunable in the UV region. 10 refs., 4 figs., 1 tab

  11. A study of fecal coliform sources at a coastal site using colored dissolved organic matter (CDOM) as a water source tracer.

    Science.gov (United States)

    Clark, Catherine D; O'Connor, Adam P; Foley, Denise M; de Bruyn, Warren J

    2007-09-01

    Optical properties of colored dissolved organic matter (CDOM) were measured as a tracer of polluted waters in a Southern California surf-zone with consistently high levels of fecal indicator bacteria. Salinity, temperature, fecal coliform, absorbance (200-700nm) and fluorescence (lambda(excitation)=350nm; lambda(emission)=360-650nm) were measured in the creek and surf-zone during a dry and rain event. Fluorescence to absorption ratios for CDOM were used to distinguish water masses, with two distinct CDOM end-members identified as creek (flu/abs=8.7+/-0.8x10(4)) and coastal (flu/abs=2.2+/-0.3x10(4)). Waters containing the same CDOM end-member had highly variable bacterial levels during the dry event, suggesting intermittent sources of bacteria added to a uniform water source, consistent with marine birds. During the rain event, increased levels of the creek end-member and bacteria indicated a second bacteria source from runoff.

  12. Design of remote laser-induced fluorescence system's acquisition circuit

    Science.gov (United States)

    Wang, Guoqing; Lou, Yue; Wang, Ran; Yan, Debao; Li, Xin; Zhao, Xin; Chen, Dong; Zhao, Qi

    2017-10-01

    Laser-induced fluorescence system(LIfS) has been found its significant application in identifying one kind of substance from another by its properties even it's thimbleful, and becomes useful in plenty of fields. Many superior works have reported LIfS' theoretical analysis , designs and uses. However, the usual LIPS is always constructed in labs to detect matter quite closely, for the system using low-power laser as excitation source and charge coupled device (CCD) as detector. Promoting the detectivity of LIfS is of much concern to spread its application. Here, we take a high-energy narrow-pulse laser instead of commonly used continuous wave laser to operate sample, thus we can get strong fluorescent. Besides, photomultiplier (PMT) with high sensitivity is adopted in our system to detect extremely weak fluorescence after a long flight time from the sample to the detector. Another advantage in our system, as the fluorescence collected into spectroscopy, multiple wavelengths of light can be converted to the corresponding electrical signals with the linear array multichannel PMT. Therefore, at the cost of high-powered incentive and high-sensitive detector, a remote LIFS is get. In order to run this system, it is of importance to turn light signal to digital signal which can be processed by computer. The pulse width of fluorescence is deeply associated with excitation laser, at the nanosecond(ns) level, which has a high demand for acquisition circuit. We design an acquisition circuit including, I/V conversion circuit, amplifying circuit and peak-holding circuit. The simulation of circuit shows that peak-holding circuit can be one effective approach to reducing difficulty of acquisition circuit.

  13. Fluorescence excitation-emission matrix spectroscopy of vitiligo skin in vivo (Conference Presentation)

    Science.gov (United States)

    Zhao, Jianhua; Richer, Vincent; Al Jasser, Mohammed; Zandi, Soodabeh; Kollias, Nikiforos; Kalia, Sunil; Zeng, Haishan; Lui, Harvey

    2016-02-01

    Fluorescence signals depend on the intensity of the exciting light, the absorption properties of the constituent molecules, and the efficiency with which the absorbed photons are converted to fluorescence emission. The optical features and appearance of vitiligo have been explained primarily on the basis of reduced epidermal pigmentation, which results in abnormal white patches on the skin. The objective of this study is to explore the fluorescence properties of vitiligo and its adjacent normal skin using fluorescence excitation-emission matrix (EEM) spectroscopy. Thirty five (35) volunteers with vitiligo were acquired using a double-grating spectrofluorometer with excitation and emission wavelengths of 260-450 nm and 300-700 nm respectively. As expected, the most pronounced difference between the spectra obtained from vitiligo lesions compared to normally pigmented skin was that the overall fluorescence was much higher in vitiligo; these differences increased at shorter wavelengths, thus matching the characteristic spectral absorption of epidermal melanin. When comparing the fluorescence spectra from vitiligo to normal skin we detected three distinct spectral bands centered at 280nm, 310nm, and 335nm. The 280nm band may possibly be related to inflammation, whereas the 335 nm band may arise from collagen or keratin cross links. The source of the 310 nm band is uncertain; it is interesting to note its proximity to the 311 nm UV lamps used for vitiligo phototherapy. These differences are accounted for not only by changes in epidermal pigment content, but also by other optically active cutaneous biomolecules.

  14. Pancreatic tumor detection using hypericin-based fluorescence spectroscopy and cytology

    Science.gov (United States)

    Lavu, Harish; Geary, Kevin; Fetterman, Harold R.; Saxton, Romaine E.

    2005-04-01

    Hypericin is a novel, highly fluorescent photosensitizer that exhibits selective tumor cell uptake properties and is particularly resistant to photobleaching. In this study, we have characterized hypericin uptake in human pancreatic tumor cells with relation to incubation time, cell number, and drug concentration. Ex vivo hypericin based fluorescence spectroscopy was performed to detect the presence of MIA PaCa-2 pancreatic tumor cells in the peritoneal cavity of BALB/c nude mice, as well as to quantify gross tumor burden. Hypericin based cytology of peritoneal lavage samples, using both one and two photon laser confocal microscopy, demonstrated more than a two-fold increase in fluorescence emission of pancreatic tumor cells as compared to control samples. In vitro treatment of pancreatic cancer cells with hypericin based photodynamic therapy showed tumor cell cytotoxicity in a drug dose, incident laser power, and time dependent manner. For these experiments, a continuous wavelength solid-state laser source (532 nm) was operated at power levels in the range of 100-400 mW. Potential applications of hypericin in tumor diagnosis, staging, and therapy will be presented.

  15. Detection of volatile and soluble general anesthetics using a fluorescence-based fiber optic sensor: recent progress in chemical sensitivity and noise sources

    Science.gov (United States)

    Yager, Paul; Abrams, Susan B.

    1992-04-01

    A fiber optic sensor for general anesthetics based on the phase transition of immobilized phospholipid vesicles is under development. Current work centers on evaluating the sensor response to different anesthetics and instrumentation design. The fluorescence of laurdan- doped liposomes is found to respond linearly to the infusible anesthetics thiopental sodium and Propofol. Preliminary experiments have been performed to determine sources of noise in the optical and electronic components of the sensor as it is now configured. One potential noise source is the liposome sample at the fiber tip; photobleaching and thermal fluctuations due to heating by the illuminating 360 nm radiation can affect measurement of the anesthetic level. Heating of the sample is a factor at high illumination levels, but photobleaching, which reduces the signal intensity, does not alter the intensity ratio upon which the anesthetic concentration measurement is based. Optical microscopy of fiber tips embedded in liposomes allows direct observation of the light intensity near the tip of the fiber despite the extreme turbidity of the suspension. Light intensity drops to less than 10% of its maximum intensity at the fiber tip within 300 micrometers . Further use of this technique should allow monitoring the effects of photobleaching on the spatial distribution of the liposomes responsible for the measured optical signal.

  16. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.

    Science.gov (United States)

    Zhu, Hongying; Ozcan, Aydogan

    2013-04-11

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water.

  17. Capacity of X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Wobrauschek, P.; Kregsamer, P.

    1997-01-01

    X-Ray fluorescence analysis (XRF) is a powerful analytical tool for the qualitative and quantitative determination of chemical elements in a sample. Two different detection principles are accepted widely: wavelength dispersive and energy dispersive. Various sources for XRF are discussed: X-ray tubes, accelerators for particle induced XRF, radioactive isotopes, and the use of synchrotron radiation. Applications include environmental, technical, medical, fine art, and forensic studies. Due to the demands of research and application special techniques like total reflection XRF (TXRF) were developed with ultimately achievable detection limits in the femtogram region. The elements detectable by XRF range from Be to U. (author)

  18. Effects of carbon and nitrogen sources on the induction and ...

    African Journals Online (AJOL)

    user

    about the induction and repression mechanism of this hydrolytic enzyme. This report ... chitin as a sole source of carbon followed by the medium containing an extra nitrogen source, yeast extract. .... against fluorescent background by UV illumination. Statistical ..... Virulence Associated with Native and Mutant Isolates of an.

  19. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    Science.gov (United States)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  20. Changes in the fluorescence of the Caribbean coral Montastraea faveolata during heat-induced bleaching

    Science.gov (United States)

    Zawada, David G.; Jaffe, J.S.

    2003-01-01

    In order to evaluate the response of commonly occurring green and orange fluorescent host-based pigments, a thermal stress experiment was performed on specimens of the Caribbean coral Montastraea faveolata. Seven paired samples were collected from a small oceanic reef near Lee Stocking Island in the Bahamas. Seven of the fourteen corals were subjected to elevated temperatures for 28 d, followed by a recovery period lasting 53 d. Throughout the experiment, high-resolution (~400 µm pixel-1) multispectral images of induced fluorescence were recorded at wavelengths corresponding to the green and orange host pigments, plus chlorophyll. These images revealed that the fluorescence of both host pigments was concentrated at polyp centers and declined by 70–90% in regions between polyps. Chlorophyll fluorescence, however, was distributed almost uniformly across the entire coral surface, but with decreases of 10–30% around polyp centers. A normalized difference ratio between the green and orange pigments (GO ratio) was developed to facilitate comparison with chlorophyll fluorescence as a bleaching indicator. Analysis showed a high correspondence between a sustained GO ratio of less than zero and the death of corals. Finally, this ratio was resistant to contamination from other sources of chlorophyll fluorescence, such as filamentous algae.

  1. Fluorescent S-layer fusion proteins

    International Nuclear Information System (INIS)

    Kainz, B.

    2010-01-01

    This work describes the construction and characterisation of fluorescent S-layer fusion proteins used as building blocks for the fabrication of nanostructured monomolecular biocoatings on silica particles with defined fluorescence properties. The S-layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a was fused with the pH-dependant cyan, green and yellow variant of the green fluorescent protein (GFP) and the red fluorescent protein mRFP1. These fluorescent S-layer fusion proteins, acting as scaffold and optical sensing element simultaneously, were able to reassemble in solution and on silica particles forming 2D nanostructures with p2 lattice symmetry (a=11 ±0.5 nm, b=14 ±0.4 nm, g=80 ±1 o ). The pH-dependant fluorescence behaviour was studied with fluorimetry, confocal microscopy and flow cytometry. These fluorescent S-layer fusion proteins can be used as pH-sensor. 50% of the fluorescence intensity decreases at their calculated pKa values (pH6 - pH5). The fluorescence intensity of the GFP variants vanished completely between pH4 and pH3 whereas the chromophore of the red protein mRFP1 was only slightly affected in acidic conditions. At the isoelectric point of the S-layer coated silica particles (pH4.6 ±0.2) an increase in particle aggregation was detected by flow cytometry. The cyan and yellow fluorescent proteins were chosen to create a bi-fluorescent S-layer tandem fusion protein with the possibility for resonance energy transfer (FRET). A transfer efficiency of 20% and a molecular distance between the donor (ECFP) and acceptor (YFP) chromophores of around 6.2 nm could be shown. This bi-fluorescent ECFP-SgsE-YFP tandem fusion protein was able to reassemble on solid surfaces. The remarkable combination of fluorescence and self-assembly and the design of bi-functional S-layer tandem fusion protein matrices makes them to a promising tool in nanobiotechnology. (author) [de

  2. Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.

    Science.gov (United States)

    Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert

    2017-07-01

    Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.

  3. Using Fluorescence Intensity of Enhanced Green Fluorescent Protein to Quantify Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Erin Wilson

    2018-05-01

    Full Text Available A variety of direct and indirect methods have been used to quantify planktonic and biofilm bacterial cells. Direct counting methods to determine the total number of cells include plate counts, microscopic cell counts, Coulter cell counting, flow cytometry, and fluorescence microscopy. However, indirect methods are often used to supplement direct cell counting, as they are often more convenient, less time-consuming, and require less material, while providing a number that can be related to the direct cell count. Herein, an indirect method is presented that uses fluorescence emission intensity as a proxy marker for studying bacterial accumulation. A clinical strain of Pseudomonas aeruginosa was genetically modified to express a green fluorescent protein (PA14/EGFP. The fluorescence intensity of EGFP in live cells was used as an indirect measure of live cell density, and was compared with the traditional cell counting methods of optical density (OD600 and plate counting (colony-forming units (CFUs. While both OD600 and CFUs are well-established methods, the use of fluorescence spectroscopy to quantify bacteria is less common. This study demonstrates that EGFP intensity is a convenient reporter for bacterial quantification. In addition, we demonstrate the potential for fluorescence spectroscopy to be used to measure the quantity of PA14/EGFP biofilms, which have important human health implications due to their antimicrobial resistance. Therefore, fluorescence spectroscopy could serve as an alternative or complementary quick assay to quantify bacteria in planktonic cultures and biofilms.

  4. Applications of photon-in, photon-out spectroscopy with third-generation, synchrotron-radiation sources

    International Nuclear Information System (INIS)

    Lindle, D.W.; Perera, R.C.C.

    1991-01-01

    This report discusses the following topics: Mother nature's finest test probe; soft x-ray emission spectroscopy with high-brightness synchrotron radiation sources; anisotropy and polarization of x-ray emission from atoms and molecules; valence-hole fluorescence from molecular photoions as a probe of shape-resonance ionization: progress and prospects; structural biophysics on third-generation synchrotron sources; ultra-soft x-ray fluorescence-yield XAFS: an in situ photon-in, photon-out spectroscopy; and x-ray microprobe: an analytical tool for imaging elemental composition and microstructure

  5. Laser Induced Fluorescence of Helium Ions in a Helicon Plasma

    Science.gov (United States)

    Compton, C. S.; Biloui, C.; Hardin, R. A.; Keesee, A. M.; Scime, E. E.; Boivin, R.

    2003-10-01

    The lack of a suitable Laser Induced Fluorescence (LIF) scheme for helium ions at visible wavelengths has prevented LIF from being employed in helium plasmas for measurements of ion temperature and bulk ion flow speeds. In this work, we will discuss our attempts to perform LIF of helium ions in a helicon source plasma using an infrared, tunable diode laser operating at 1012.36 nm. The infrared transition corresponds to excitation from the n = 4 level (4f ^2F) to the n = 5 (5g ^2G) level of singly ionized helium and therefore requires substantial electron temperatures (> 10 eV) to maintain an adequate ion population in the n = 4 state. Calculations using a steady state coronal model predict that the n = 4 state population will be 25% larger than the n = 5 population for our experimental conditions. The fluorescence decay from the n = 5 (5f ^2F) level of singly ionized helium level to the n = 3 (3d ^2D) level at 320.31 nm is monitored as the diode laser is swept through 10 GHz around the 1012.36 nm line. Note that the fluorescence emission requires a collisionally coupled transition between two different n = 5 quantum states. We will also present measurements of the emission intensities of both the 1012.36 nm and the 320.31 nm lines as a function of source neutral pressure, rf power, and plasma density. This work supported by the U.S. DoE EPSCoR Lab Partnership Program.

  6. Phenotyping of Arabidopsis Drought Stress Response Using Kinetic Chlorophyll Fluorescence and Multicolor Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Jieni Yao

    2018-05-01

    Full Text Available Plant responses to drought stress are complex due to various mechanisms of drought avoidance and tolerance to maintain growth. Traditional plant phenotyping methods are labor-intensive, time-consuming, and subjective. Plant phenotyping by integrating kinetic chlorophyll fluorescence with multicolor fluorescence imaging can acquire plant morphological, physiological, and pathological traits related to photosynthesis as well as its secondary metabolites, which will provide a new means to promote the progress of breeding for drought tolerant accessions and gain economic benefit for global agriculture production. Combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging proved to be efficient for the early detection of drought stress responses in the Arabidopsis ecotype Col-0 and one of its most affected mutants called reduced hyperosmolality-induced [Ca2+]i increase 1. Kinetic chlorophyll fluorescence curves were useful for understanding the drought tolerance mechanism of Arabidopsis. Conventional fluorescence parameters provided qualitative information related to drought stress responses in different genotypes, and the corresponding images showed spatial heterogeneities of drought stress responses within the leaf and the canopy levels. Fluorescence parameters selected by sequential forward selection presented high correlations with physiological traits but not morphological traits. The optimal fluorescence traits combined with the support vector machine resulted in good classification accuracies of 93.3 and 99.1% for classifying the control plants from the drought-stressed ones with 3 and 7 days treatments, respectively. The results demonstrated that the combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging with the machine learning technique was capable of providing comprehensive information of drought stress effects on the photosynthesis and the secondary metabolisms. It is a promising

  7. S - and N-alkylating agents diminish the fluorescence of fluorescent dye-stained DNA.

    Science.gov (United States)

    Giesche, Robert; John, Harald; Kehe, Kai; Schmidt, Annette; Popp, Tanja; Balzuweit, Frank; Thiermann, Horst; Gudermann, Thomas; Steinritz, Dirk

    2017-01-25

    Sulfur mustard (SM), a chemical warfare agent, causes DNA alkylation, which is believed to be the main cause of its toxicity. SM DNA adducts are commonly used to verify exposure to this vesicant. However, the required analytical state-of-the-art mass-spectrometry methods are complex, use delicate instruments, are not mobile, and require laboratory infrastructure that is most likely not available in conflict zones. Attempts have thus been made to develop rapid detection methods that can be used in the field. The analysis of SM DNA adducts (HETE-G) by immunodetection is a convenient and suitable method. For a diagnostic assessment, HETE-G levels must be determined in relation to the total DNA in the sample. Total DNA can be easily visualized by the use of fluorescent DNA dyes. This study examines whether SM and related compounds affect total DNA staining, an issue that has not been investigated before. After pure DNA was extracted from human keratinocytes (HaCaT cells), DNA was exposed to different S- and N-alkylating agents. Our experiments revealed a significant, dose-dependent decrease in the fluorescence signal of fluorescent dye-stained DNA after exposure to alkylating agents. After mass spectrometry and additional fluorescence measurements ruled out covalent modifications of ethidium bromide (EthBr) by SM, we assumed that DNA crosslinks caused DNA condensation and thereby impaired access of the fluorescent dyes to the DNA. DNA digestion by restriction enzymes restored fluorescence, a fact that strengthened our hypothesis. However, monofunctional agents, which are unable to crosslink DNA, also decreased the fluorescence signal. In subsequent experiments, we demonstrated that protons produced during DNA alkylation caused a pH decrease that was found responsible for the reduction in fluorescence. The use of an appropriate buffer system eliminated the adverse effect of alkylating agents on DNA staining with fluorescent dyes. An appropriate buffer system is thus

  8. Fluorescent discharge lamp

    Science.gov (United States)

    Mukai, E.; Otsuka, H.; Nomi, K.; Honmo, I.

    1982-01-01

    A rapidly illuminating fluorescent lamp 1,200 mm long and 32.5 mm in diameter with an interior conducting strip which is compatible with conventional fixtures and ballasts is described. The fluorescent lamp is composed of a linear glass tube, electrodes sealed at both ends, mercury and raregas sealed in the glass tube, a fluorescent substance clad on the inner walls of the glass tube, and a clad conducting strip extending the entire length of the glass tube in the axial direction on the inner surface of the tube.

  9. Thermally activated delayed fluorescence organic dots for two-photon fluorescence lifetime imaging

    Science.gov (United States)

    He, Tingchao; Ren, Can; Li, Zhuohua; Xiao, Shuyu; Li, Junzi; Lin, Xiaodong; Ye, Chuanxiang; Zhang, Junmin; Guo, Lihong; Hu, Wenbo; Chen, Rui

    2018-05-01

    Autofluorescence is a major challenge in complex tissue imaging when molecules present in the biological tissue compete with the fluorophore. This issue may be resolved by designing organic molecules with long fluorescence lifetimes. The present work reports the two-photon absorption (TPA) properties of a thermally activated delayed fluorescence (TADF) molecule with carbazole as the electron donor and dicyanobenzene as the electron acceptor (i.e., 4CzIPN). The results indicate that 4CzIPN exhibits a moderate TPA cross-section (˜9 × 10-50 cm4 s photon-1), high fluorescence quantum yield, and a long fluorescence lifetime (˜1.47 μs). 4CzIPN was compactly encapsulated into an amphiphilic copolymer via nanoprecipitation to achieve water-soluble organic dots. Interestingly, 4CzIPN organic dots have been utilized in applications involving two-photon fluorescence lifetime imaging (FLIM). Our work aptly demonstrates that TADF molecules are promising candidates of nonlinear optical probes for developing next-generation multiphoton FLIM applications.

  10. Infrared images of reflection nebulae and Orion's bar: Fluorescent molecular hydrogen and the 3.3 micron feature

    International Nuclear Information System (INIS)

    Burton, M.G.; Moorhouse, A.; Brand, P.W.J.L.; Roche, P.F.; Geballe, T.R.

    1989-01-01

    Images were obtained of the (fluorescent) molecular hydrogen 1-0 S(1) line, and of the 3.3 micron emission feature, in Orion's Bar and three reflection nebulae. The emission from these species appears to come from the same spatial locations in all sources observed. This suggests that the 3.3 micron feature is excited by the same energetic UV-photons which cause the molecular hydrogen to fluoresce

  11. Simultaneous analysis of gaseous and particulate sulphur in the atmosphere by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Matsuda, Yatsuka; Mamuro, Tetsuo

    1975-01-01

    An analytical technique for the simultaneous measurements of the atmospheric concentrations of SO 2 gas and sulphur absorbed by aerosol particles has been developed. Aerosol particles are collected on membrane filter and at the same time SO 2 gas is captured on alkali impregnated filter. The sulphur content in each filter is measured by an energy dispersive X -ray fluorescence spectrometer consisting of a Si(Li) semiconductor detector connected to a multi-channel pulse height analyzer and an excitation source of 55 Fe. Two methods are acceptable for the determination of the sulphur content in impregnated filter by X-ray fluorescence analysis. In the first method X-ray fluorescence analysis is made after the collected sulphur gas diffused and distributed uniformly enough throughout the filter, and in the second method X-ray fluorescence analysis gas to be finished before the diffusion of the collected sulphur becomes appreciable. (author)

  12. The compositional change of Fluorescent Dissolved Organic Matter across Fram Strait assessed with use of a multi channel in situ fluorometer.

    Science.gov (United States)

    Raczkowska, A.; Kowalczuk, P.; Sagan, S.; Zabłocka, M.; Pavlov, A. K.; Granskog, M. A.; Stedmon, C. A.

    2016-02-01

    Observations of Colored Dissolved Organic Matter absorption (CDOM) and fluorescence (FDOM) from water samples and an in situ fluorometer and of Inherent Optical Properties (IOP; light absorption and scattering) were carried out along a section across Fram Strait at 79°N. A 3 channel Wetlabs Wetstar fluorometer was deployed, with channels for humic- and protein-like DOM and used to assess distribution of different FDOM fractions. A relationship between fluorescence intensity of the protein-like fraction of FDOM and chlorophyll a fluorescence was found and indicated the importance of phytoplankton biomass in West Spitsbergen Current waters as a significant source of protein-like FDOM. East Greenland Current waters has low concentration of chlorophyll a, and were characterized by high humic-like FDOM fluorescence. An empirical relationship between humic-like FDOM fluorescence intensity and CDOM absorption was derived and confirms the dominance of terrigenous like CDOM on the composition of DOM in the East Greenland Current. These high resolution profile data offer a simple approach to fractionate the contribution of these two DOM source to DOM across the Fram Strait and may help refine estimates of DOC fluxes in and out of the Arctic through this region.

  13. A fluorescence scanning electron microscope

    International Nuclear Information System (INIS)

    Kanemaru, Takaaki; Hirata, Kazuho; Takasu, Shin-ichi; Isobe, Shin-ichiro; Mizuki, Keiji; Mataka, Shuntaro; Nakamura, Kei-ichiro

    2009-01-01

    Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.

  14. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Stedmon, Colin; Kragh, Theis

    2011-01-01

    . These observations imply a link to dark ocean microbial remineralization and indicate that the major source of humic-like compounds is microbial turnover of organic matter. The results of the present study show that the distribution of the humic-like DOM fractions is a balance between supply from continental run off......A fraction of dissolved organic matter (DOM) is able to fluoresce. This ability has been used in the present study to investigate the characteristics and distribution of different DOM fractions. A unique global dataset revealed seven different fluorescent fractions of DOM: two humic-like, four...... in the surface layer indicate the quantitative importance of photochemical degradation as a sink of the humic-like compounds. In the dark ocean (below 200 m), significant linear relationships between humic-like DOM fluorescence and microbial activity (apparent oxygen utilization, NO3- and PO43-) were found...

  15. Improved thermal isolation for superconducting magnet systems

    Science.gov (United States)

    Wiebe, E. R.

    1974-01-01

    Closed-cycle refrigerating system for superconductive magnet and maser is operated in vacuum environment. Each wire leading from external power source passes through cooling station which blocks heat conduction. In connection with these stations, switch with small incandescent light bulb, which generates heat, is used to stop superconduction.

  16. PLASTIQUE: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    International Nuclear Information System (INIS)

    De Stasio, G.; Zema, N.; Antonangeli, F.; Parasassi, T.; Rosato, N.

    1991-01-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in the frequency domain. These experiments are extremely valuable sources of informations on the structure and dynamics of molecules. The beamline and some examples of initial data are described

  17. Fluorescence Molecular Tomography: Principles and Potential for Pharmaceutical Research

    Directory of Open Access Journals (Sweden)

    Florian Stuker

    2011-04-01

    Full Text Available Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT, which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT or Magnetic Resonance Imaging (MRI will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue’s optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular

  18. Multicolor Fluorescence Writing Based on Host-Guest Interactions and Force-Induced Fluorescence-Color Memory.

    Science.gov (United States)

    Matsunaga, Yuki; Yang, Jye-Shane

    2015-06-26

    A new strategy is reported for multicolor fluorescence writing on thin solid films with mechanical forces. This concept is illustrated by the use of a green-fluorescent pentiptycene derivative 1, which forms variably colored fluorescent exciplexes: a change from yellow to red was observed with anilines, and fluorescence quenching (a change to black) occurred in the presence of benzoquinone. Mechanical forces, such as grinding and shearing, induced a crystalline-to-amorphous phase transition in both the pristine and guest-adsorbed solids that led to a change in the fluorescence color (mechanofluorochromism) and a memory of the resulting color. Fluorescence drawings of five or more colors were created on glass or paper and could be readily erased by exposure to air and dichloromethane fumes. The structural and mechanistic aspects of the observations are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fluorescence-based calculus detection using a 405-nm excitation wavelength

    Science.gov (United States)

    Brede, O.; Schelle, F.; Krueger, S.; Oehme, B.; Dehn, C.; Frentzen, M.; Braun, A.

    2011-03-01

    The aim of this study was to assess the difference of fluorescence signals of cement and calculus using a 405 nm excitation wavelength. A total number of 20 freshly extracted teeth was used. The light source used for this study was a blue LED with a wavelength of 405nm. For each tooth the spectra of calculus and cementum were measured separately. Fluorescence light was collimated into an optical fibre and spectrally analyzed using an echelle spectrometer (aryelle 200, Lasertechnik Berlin, Germany) with an additionally bandpass (fgb 67, Edmund Industrial Optics, Karlsruhe, Germany). From these 40 measurements the median values were calculated over the whole spectrum, leading to two different median spectra, one for calculus and one for cementum. For further statistical analysis we defined 8 areas of interest (AOI) in wavelength regions, showing remarkable differences in signal strength. In 7 AOIs the intensity of the calculus spectrum differed statistically significant from the intensity of the cementum spectrum (p calculus and cement between 600nm and 700nm. Thus, we can conclude that fluorescence of calculus shows a significant difference to the fluorescence of cement. A differentiation over the intensity is possible as well as over the spectrum. Using a wavelength of 405nm, it is possible to distinguish between calculus and cement. These results could be used for further devices to develop a method for feedback controlled calculus removal.

  20. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    International Nuclear Information System (INIS)

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  1. “Orange alert”: A fluorescent detector for bisphenol A in water environments

    International Nuclear Information System (INIS)

    Zhang, Liyun; Er, Jun Cheng; Xu, Wang; Qin, Xian; Samanta, Animesh; Jana, Santanu; Lee, Chi-Lik Ken; Chang, Young-Tae

    2014-01-01

    Graphical abstract: - Highlights: • We report a BODIPY-based turn-on fluorescent bisphenol A sensor. • We tested the superior selectivity toward BPA against several bisphenol analogs and phenol. • We demonstrated the stability and robustness of this probe for analyzing BPA in real, complex water samples. - Abstract: Due to the prevalent use of polycarbonate plastics and epoxy resins in packaging materials and paints for ships, there has been a widespread global contamination of environmental water sources with bisphenol A (BPA). BPA, an endocrine disruptor, has been found to cause tremendous health problems. Therefore, there is an urgent need for detecting BPA in a convenient and sensitive manner to ensure water safety. Herein, we develop a fluorescent turn-on BPA probe, named Bisphenol Orange (BPO), which could conveniently detect BPA in a wide variety of real water samples including sea water, drain water and drinking water. BPO shows superior selectivity toward BPA and up to 70-fold increase in fluorescence emission at 580 nm when mixed with BPA in water. Mechanistic studies suggest a plausible water-dependent formation of hydrophobic BPA clusters which favorably trap and restrict the rotation of BPO and recover its inherent fluorescence

  2. “Orange alert”: A fluorescent detector for bisphenol A in water environments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liyun [Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore (Singapore); Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Er, Jun Cheng [Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore (Singapore); Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences, #05-01, 28 Medical Drive, 117456 Singapore (Singapore); Xu, Wang; Qin, Xian [Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore (Singapore); Samanta, Animesh; Jana, Santanu [Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A-STAR), 138667 Singapore (Singapore); Lee, Chi-Lik Ken [Centre for Biomedical and Life Sciences, Singapore Polytechnic, 139651 Singapore (Singapore); Chang, Young-Tae, E-mail: chmcyt@nus.edu.sg [Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore (Singapore); Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences, #05-01, 28 Medical Drive, 117456 Singapore (Singapore); Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A-STAR), 138667 Singapore (Singapore)

    2014-03-01

    Graphical abstract: - Highlights: • We report a BODIPY-based turn-on fluorescent bisphenol A sensor. • We tested the superior selectivity toward BPA against several bisphenol analogs and phenol. • We demonstrated the stability and robustness of this probe for analyzing BPA in real, complex water samples. - Abstract: Due to the prevalent use of polycarbonate plastics and epoxy resins in packaging materials and paints for ships, there has been a widespread global contamination of environmental water sources with bisphenol A (BPA). BPA, an endocrine disruptor, has been found to cause tremendous health problems. Therefore, there is an urgent need for detecting BPA in a convenient and sensitive manner to ensure water safety. Herein, we develop a fluorescent turn-on BPA probe, named Bisphenol Orange (BPO), which could conveniently detect BPA in a wide variety of real water samples including sea water, drain water and drinking water. BPO shows superior selectivity toward BPA and up to 70-fold increase in fluorescence emission at 580 nm when mixed with BPA in water. Mechanistic studies suggest a plausible water-dependent formation of hydrophobic BPA clusters which favorably trap and restrict the rotation of BPO and recover its inherent fluorescence.

  3. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy

    Science.gov (United States)

    Birdwell, J.E.; Valsaraj, K.T.

    2010-01-01

    Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores. ?? 2010.

  4. Fluorescence lifetime spectroscopy in multiple-scattering environments: an application to biotechnology

    Science.gov (United States)

    Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio

    1999-07-01

    Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.

  5. Nuclear resonance fluorescence of {sup 203,205}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Fabian; Fritzsche, Matthias; Pietralla, Norbert; Savran, Deniz; Weller, Henry; Zweidinger, Markus [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Rusev, Gencho; Tonchev, Anton P.; Tornow, Werner [Triangle Universities Nuclear Laboratory, Duke University, Durham (United States); Zilges, Andreas [Institut fuer Kernphysik, Universitaet Koeln (Germany)

    2009-07-01

    In order to investigate the dipole strength distribution in Thalium isotopes we have studied Nuclear Resonance Fluorescence of a sample composed of natural Thallium (consisting of 30% {sup 203}Tl and 70% {sup 205}Tl). Unpolarized bremsstrahlung with photo energies up to 7.5 MeV was used at the High Intensity Photon Setup (HIPS) at S-DALINAC at the IKP Darmstadt. 24 fluorescent {gamma}-ray transitions were observed, 19 of them for the first time. For the assignment of the polarity of two prominent {gamma}-ray transitions, one at 4.7 MeV and one at 4.9 MeV, the polarized photon beam of the High Intensity {gamma}-ray Source (HI{gamma}S) at Duke University was used. The experiment at HI{gamma}S revealed the existence of a photo-excited state of {sup 205}Tl at an excitation energy of 4.971 MeV that exhibits a transition to the first excited state at 203 keV.

  6. Use of fluorescent-metal intensifying screens with RT-type films for X-ray radiography using pulse devices

    International Nuclear Information System (INIS)

    Morgovskij, L.Ya.; Khakim'yanov, R.R.

    1985-01-01

    A study was made on characteristics of combination of fluorescent-metal Kyokko SMP-308 (Japan) and RCF (Agfa-Gevert) screens with domestic X-ray RT-1, RT-2, RT-5 films. Pulse X-ray MIRA-3D and NORA devices at 200 kV voltage amplitude in X-ray tube were used as radiation source. Testing was conducted for steel samples of 5-40 mm thickness. Comparative exposures for various film combinations with fluorescent-metal screens, fluorescent VP-2 screens and lead foils of 27 μm thickness were determined at that. It is shown that fluorescent-metal screens can be successfully applied with domestic X-ray technical films. They enable to decrease exposure by one order with insignificant deterioration of sensitivity. It is important for testing of pipeline welds

  7. Time-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gustavsson, Thomas; Mialocq, Jean-Claude

    2007-01-01

    This article addresses the evolution in time of light emitted by a molecular system after a brief photo-excitation. The authors first describe fluorescence from a photo-physical point of view and discuss the characterization of the excited state. Then, they explain some basic notions related to fluorescence characterization (lifetime and decays, quantum efficiency, so on). They present the different experimental methods and techniques currently used to study time-resolved fluorescence. They discuss basic notions of time resolution and spectral reconstruction. They briefly present some conventional methods: intensified Ccd cameras, photo-multipliers and photodiodes associated with a fast oscilloscope, and phase modulation. Other methods and techniques are more precisely presented: time-correlated single photon counting (principle, examples, and fluorescence lifetime imagery), streak camera (principle, examples), and optical methods like the Kerr optical effect (principle and examples) and fluorescence up-conversion (principle and theoretical considerations, examples of application)

  8. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    Science.gov (United States)

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. [Study on optical characteristics of chromophoric dissolved organic matter (CDOM) in rainwater by fluorescence excitation-emission matrix and absorbance spectroscopy].

    Science.gov (United States)

    Cheng, Yuan-yue; Guo, Wei-dong; Long, Ai-min; Chen, Shao-yong

    2010-09-01

    The optical characteristics of chromophoric dissolved organic matter (CDOM) were determined in rain samples collected in Xiamen Island, during a rainy season in 2007, using fluorescence excitation-emission matrix spectroscopy associated with UV-Vis absorbance spectra. Results showed that the absorbance spectra of CDOM in rain samples decreased exponentially with wavelength. The absorbance coefficient at 300 nm [a(300)] ranged from 0.27 to 3.45 m(-1), which would be used as an index of CDOM abundance, and the mean value was 1.08 m(-1). The content of earlier stage of precipitation events was higher than that of later stage of precipitation events, which implied that anthropogenic sources or atmospheric pollution or air mass types were important contributors to CDOM levels in precipitation. EEMs spectra showed 4 types of fluorescence signals (2 humic-like fluorescence peaks and 2 protein-like fluorescence peaks) in rainwater samples, and there were significant positive correlations of peak A with C and peak B with S, showing their same sources or some relationship of the two humic-like substance and the two protein-like substance. The strong positive correlations of the two humic-like fluorescence peaks with a(300), suggested that the chromophores responsible for absorbance might be the same as fluorophores responsible for fluorescence. Results showed that the presence of highly absorbing and fluorescing CDOM in rainwater is of significant importance in atmospheric chemistry and might play a previously unrecognized role in the wavelength dependent spectral attenuation of solar radiation by atmospheric waters.

  10. Fluorescence of irradiated hydrocarbons

    International Nuclear Information System (INIS)

    Gulis, I.G.; Evdokimenko, V.M.; Lapkovskij, M.P.; Petrov, P.T.; Gulis, I.M.; Markevich, S.V.

    1977-01-01

    A visible fluorescence has been found out in γ-irradiated aqueous of carbohydrates. Two bands have been distinguished in fluorescence spectra of the irradiated solution of dextran: a short-wave band lambdasub(max)=140 nm (where lambda is a wave length) at lambdasub(β)=380 nm and a long-wave band with lambdasub(max)=540 nm at lambdasub(β)=430 nm. A similar form of the spectrum has been obtained for irradiated solutions of starch, amylopectin, lowmolecular glucose. It has been concluded that a macromolecule of polysaccharides includes fluorescent centres. A relation between fluorescence and α-oxiketon groups formed under irradiation has been pointed out

  11. Sample analysis using gamma ray induced fluorescent X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Sood, B S; Allawadhi, K L; Gandhi, R; Batra, O P; Singh, N [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1983-01-01

    A non-destructive method for the analysis of materials using gamma ray-induced fluorescent x-ray emission has been developed. In this method, special preparation of very thin samples in which the absorption of the incident gamma rays and the emitted fluorescent x-rays is negligible, is not needed, and the absorption correction is determined experimentally. A suitable choice of the incident gamma ray energies is made to minimise enhancement effects through selective photoionization of the elements in the sample. The method is applied to the analysis of a typical sample of the soldering material using 279 keV and 59.5 keV gamma rays from /sup 203/Hg and /sup 241/Am radioactive sources respectively. The results of the analysis are found to agree well with those obtained from the chemical analysis.

  12. Multispectral open-air intraoperative fluorescence imaging.

    Science.gov (United States)

    Behrooz, Ali; Waterman, Peter; Vasquez, Kristine O; Meganck, Jeff; Peterson, Jeffrey D; Faqir, Ilias; Kempner, Joshua

    2017-08-01

    Intraoperative fluorescence imaging informs decisions regarding surgical margins by detecting and localizing signals from fluorescent reporters, labeling targets such as malignant tissues. This guidance reduces the likelihood of undetected malignant tissue remaining after resection, eliminating the need for additional treatment or surgery. The primary challenges in performing open-air intraoperative fluorescence imaging come from the weak intensity of the fluorescence signal in the presence of strong surgical and ambient illumination, and the auto-fluorescence of non-target components, such as tissue, especially in the visible spectral window (400-650 nm). In this work, a multispectral open-air fluorescence imaging system is presented for translational image-guided intraoperative applications, which overcomes these challenges. The system is capable of imaging weak fluorescence signals with nanomolar sensitivity in the presence of surgical illumination. This is done using synchronized fluorescence excitation and image acquisition with real-time background subtraction. Additionally, the system uses a liquid crystal tunable filter for acquisition of multispectral images that are used to spectrally unmix target fluorescence from non-target auto-fluorescence. Results are validated by preclinical studies on murine models and translational canine oncology models.

  13. Optimal Fluorescence Waveband Determination for Detecting Defective Cherry Tomatoes Using a Fluorescence Excitation-Emission Matrix

    Directory of Open Access Journals (Sweden)

    In-Suck Baek

    2014-11-01

    Full Text Available A multi-spectral fluorescence imaging technique was used to detect defective cherry tomatoes. The fluorescence excitation and emission matrix was used to measure for defects, sound surface and stem areas to determine the optimal fluorescence excitation and emission wavelengths for discrimination. Two-way ANOVA revealed the optimal excitation wavelength for detecting defect areas was 410 nm. Principal component analysis (PCA was applied to the fluorescence emission spectra of all regions at 410 nm excitation to determine the emission wavelengths for defect detection. The major emission wavelengths were 688 nm and 506 nm for the detection. Fluorescence images combined with the determined emission wavebands demonstrated the feasibility of detecting defective cherry tomatoes with >98% accuracy. Multi-spectral fluorescence imaging has potential utility in non-destructive quality sorting of cherry tomatoes.

  14. Fluorescence and Spectral Imaging

    Directory of Open Access Journals (Sweden)

    Ralph S. DaCosta

    2007-01-01

    Full Text Available Early identification of dysplasia remains a critical goal for diagnostic endoscopy since early discovery directly improves patient survival because it allows endoscopic or surgical intervention with disease localized without lymph node involvement. Clinical studies have successfully used tissue autofluorescence with conventional white light endoscopy and biopsy for detecting adenomatous colonic polyps, differentiating benign hyperplastic from adenomas with acceptable sensitivity and specificity. In Barrett's esophagus, the detection of dysplasia remains problematic because of background inflammation, whereas in the squamous esophagus, autofluorescence imaging appears to be more dependable. Point fluorescence spectroscopy, although playing a crucial role in the pioneering mechanistic development of fluorescence endoscopic imaging, does not seem to have a current function in endoscopy because of its nontargeted sampling and suboptimal sensitivity and specificity. Other point spectroscopic modalities, such as Raman spectroscopy and elastic light scattering, continue to be evaluated in clinical studies, but still suffer the significant disadvantages of being random and nonimaging. A recent addition to the fluorescence endoscopic imaging arsenal is the use of confocal fluorescence endomicroscopy, which provides real-time optical biopsy for the first time. To improve detection of dysplasia in the gastrointestinal tract, a new and exciting development has been the use of exogenous fluorescence contrast probes that specifically target a variety of disease-related cellular biomarkers using conventional fluorescent dyes and novel potent fluorescent nanocrystals (i.e., quantum dots. This is an area of great promise, but still in its infancy, and preclinical studies are currently under way.

  15. Application of x-ray fluorescence to the measurement of additives in paper

    International Nuclear Information System (INIS)

    Buchnea, A.; McNelles, L.A.; Sinclair, A.H.; Hewitt, J.S.

    1976-01-01

    Titanium dioxide content in paper was measured by x-ray fluorescence analysis using an 55 Fe source and an x-ray proportional counter to determine the feasibility of an on-line instrument. X-ray calibration curves for 60- and 100-g/m 2 paper samples were obtained using neutron activation to measure the titanium dioxide concentration. The predictions of a simple model were in good agreement with the experimental calibration curves. The measurements and calculations were extended to investigate the effects of clay and moisture. The presence of clay has a significant effect on the x-ray fluorescence determination of the titanium dioxide concentration; however, this can be well accounted for by the model. The calculations indicated that the effect of typical moisture levels on the titanium dioxide determination was small and can be ignored. It is not possible to measure the clay content by x-ray fluorescence; however, preliminary results for the determination of calcium carbonate concentration are promising

  16. Introduction to fluorescence

    CERN Document Server

    Jameson, David M

    2014-01-01

    "An essential contribution to educating scientists in the principles of fluorescence. It will also be an important addition to the libraries of practitioners applying the principles of molecular fluorescence."-Ken Jacobson, Kenan Distinguished Professor of Cell Biology and Physiology, University of North Carolina at Chapel Hill"An exquisite compendium of fluorescence and its applications in biochemistry enriched by a very exciting historical perspective. This book will become a standard text for graduate students and other scientists."-Drs. Zygmunt (Karol) Gryczynski and Ignacy Gryczynski, University of North Texas Health Science Center"… truly a masterwork, combining clarity, precision, and good humor. The reader, novice or expert, will be pleased with the text and will not stop reading. It is a formidable account of the fluorescence field, which has impacted the life sciences so considerably in the last 60 years."-Jerson L. Silva, M.D., Ph.D., Professor and Director, National Institute of Science and Tech...

  17. A new method for x-ray fluorescence analysis of contaminated material. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Grodzins, Lee; Niland, John

    2002-05-23

    Niton has successfully completed the objectives of the Phase II program to build a hand-held, x-ray fluorescent analyzer optimized for DOE decontamination and decommissioning activities in the field. A two-pound x-ray fluorescence analyzer was developed that contains 3 radioactive sources, emitting 3 widely spaced monochromatic x-rays, to give the lowest detection limits for the full range of toxic elements, from chromium to plutonium. A rapid, fundamental- parameters algorithm was developed that yields quantitative results in less than 1 second. High-resolution silicon drift detectors and silicon PIN diodes give excellent efficiency and speed. These results from Phase II have been introduced into the XL 300, 700 and 800 commercial products series. More than 800 of these instruments, yielding revenues of more than $20 million dollars, have been sold since the first 3-source instrument was introduced in 1998. A direct consequence of the Phase II funding has been the growth of Niton from 20 people to its present size of 60.

  18. A new method for x-ray fluorescence analysis of contaminated material. Final Report

    International Nuclear Information System (INIS)

    Grodzins, Lee; Niland, John

    2002-01-01

    Niton has successfully completed the objectives of the Phase II program to build a hand-held, x-ray fluorescent analyzer optimized for DOE decontamination and decommissioning activities in the field. A two-pound x-ray fluorescence analyzer was developed that contains 3 radioactive sources, emitting 3 widely spaced monochromatic x-rays, to give the lowest detection limits for the full range of toxic elements, from chromium to plutonium. A rapid, fundamental- parameters algorithm was developed that yields quantitative results in less than 1 second. High-resolution silicon drift detectors and silicon PIN diodes give excellent efficiency and speed. These results from Phase II have been introduced into the XL 300, 700 and 800 commercial products series. More than 800 of these instruments, yielding revenues of more than $20 million dollars, have been sold since the first 3-source instrument was introduced in 1998. A direct consequence of the Phase II funding has been the growth of Niton from 20 people to its present size of 60

  19. Fluorescent probes for "off-on" highly sensitive detection of Hg²⁺ and L-cysteine based on nitrogen-doped carbon dots.

    Science.gov (United States)

    Zhang, Yi; Cui, Peipei; Zhang, Feng; Feng, Xiaoting; Wang, Yaling; Yang, Yongzhen; Liu, Xuguang

    2016-05-15

    Fluorescent nitrogen-doped carbon dots (NCDs) were synthesized by a facile, and low-cost one-step hydrothermal strategy using citric acid as carbon source and ammonia solution as nitrogen source for the first time. The obtained NCDs show stable blue fluorescence with a high quantum yield of 35.4%, along with the fluorescence lifetime of ca. 6.75 ns. Most importantly, Hg(2+) can completely quench the fluorescence of NCDs as a result of the formation of a non-fluorescent stable NCDs-Hg(2+) complex. Static fluorescence quenching towards Hg(2+) is proved by the Stern-Volmer equation, ultraviolet-visible absorption spectra, temperature dependent quenching and fluorescence lifetime measurements. Subsequently, the fluorescence of the NCDs-Hg(2+) system is completely recovered with the addition L-cysteine (L-Cys) owing to the dissociation of NCDs-Hg(2+) complex to form a more stable Hg(2+)-L-Cys complex by Hg(2+)-S bonding. Therefore, such NCDs can be used as an effective fluorescent "turn-off" probe for rapid, rather highly selective and sensitive detection of Hg(2+), with a limit of detection (LOD) as low as 1.48 nM and a linear detection range of 0-10 μM. Interestingly, NCDs-Hg(2+) system can be conveniently employed as a fluorescent "turn-on" sensor for highly selective and sensitive detection of L-Cys with a low LOD of 0.79 nM and a wide linear detection range of 0-50 μM. Further, the sensitivity of NCDs to Hg(2+) is preserved in tap water with a LOD of 1.65 nM and a linear detection range of 0-10 μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Determination of Fe and Zn in healing plants by radionuclide X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Harangozo, M.; Toelgyessy, J.; Tomecek, O.; Ruzicka, I.; Cejpek, K.

    1999-01-01

    Radionuclide X-ray fluorescence method was used for the determination of Fe and Zn in healing plants (Sage, Peppermint, Stinging, Common Agrimony, Milfoil, Ribwort, Tansy, White Dead-Nettle). 238 Pu exciting source and Si/Li semiconductor detector were used for the determination. (author)

  1. X-ray fluorescence hologram data collection with a cooled avalanche photodiode

    CERN Document Server

    Hayashi, K; Matsubara, E I; Kishimoto, S; Mori, T; Tanaka, M

    2002-01-01

    A high counting rate X-ray detector with an appropriate energy resolution is desired for high quality X-ray fluorescence hologram measurements because a holographic pattern is detected as extremely small intensity variations of X-ray fluorescence on a large intensity background. A cooled avalanche photodiode (APD), which has about 10% energy resolution and is designed for a high counting rate, fits the above requirements. Reconstructed atomic images from experimental holograms using the APD system provide us a clear view of the first and second neighbor atoms around an emitter. The present result proved that a combination of this APD system and a synchrotron X-ray source enables us to measure a high quality hologram for a reasonable measurement time.

  2. Fluorenyl benzothiadiazole and benzoselenadiazole near-IR fluorescent probes for two-photon fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Belfield, Kevin D.; Yao, Sheng; Kim, Bosung; Yue, Xiling

    2016-03-01

    Imaging biological samples with two-photon fluorescence (2PF) microscopy has the unique advantage of resulting high contrast 3D resolution subcellular image that can reach up to several millimeters depth. 2PF probes that absorb and emit at near IR region need to be developed. Two-photon excitation (2PE) wavelengths are less concerned as 2PE uses wavelengths doubles the absorption wavelength of the probe, which means 2PE wavelengths for probes even with absorption at visible wavelength will fall into NIR region. Therefore, probes that fluoresce at near IR region with high quantum yields are needed. A series of dyes based on 5-thienyl-2, 1, 3-benzothiadiazole and 5-thienyl-2, 1, 3-benzoselenadiazole core were synthesized as near infrared two-photon fluorophores. Fluorescence maxima wavelengths as long as 714 nm and fluorescence quantum yields as high as 0.67 were achieved. The fluorescence quantum yields of the dyes were nearly constant, regardless of solvents polarity. These diazoles exhibited large Stokes shift (GM), and high two-photon fluorescence figure of merit (FM , 1.04×10-2 GM). Cells incubated on a 3D scaffold with one of the new probes (encapsulated in Pluronic micelles) exhibited bright fluorescence, enabling 3D two-photon fluorescence imaging to a depth of 100 µm.

  3. Novel biosensor system model based on fluorescence quenching by a fluorescent streptavidin and carbazole-labeled biotin.

    Science.gov (United States)

    Zhu, Xianwei; Shinohara, Hiroaki; Miyatake, Ryuta; Hohsaka, Takahiro

    2016-10-01

    In the present study, a novel molecular biosensor system model was designed by using a couple of the fluorescent unnatural mutant streptavidin and the carbazole-labeled biotin. BODIPY-FL-aminophenylalanine (BFLAF), a fluorescent unnatural amino acid was position-specifically incorporated into Trp120 position of streptavidin by four-base codon method. On the other hand, carbazole-labeled biotin was synthesized as a quencher for the fluorescent Trp120BFLAF mutant streptavidin. The fluorescence of fluorescent Trp120BFLAF mutant streptavidin was decreased as we expected when carbazole-labeled biotin was added into the mutant streptavidin solution. Furthermore, the fluorescence decrease of Trp120BFLAF mutant streptavidin with carbazole-labeled biotin (100 nM) was recovered by the competitive addition of natural biotin. This result demonstrated that by measuring the fluorescence quenching and recovery, a couple of the fluorescent Trp120BFLAF mutant streptavidin and the carbazole-labeled biotin were successfully applicable for quantification of free biotin as a molecular biosensor system. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Fluorescent sensors based on bacterial fusion proteins

    International Nuclear Information System (INIS)

    Mateu, Batirtze Prats; Pum, Dietmar; Sleytr, Uwe B; Toca-Herrera, José L; Kainz, Birgit

    2014-01-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins. (paper)

  5. Connecting active to passive fluorescence with photosynthesis: a method for evaluating remote sensing measurements of Chl fluorescence.

    Science.gov (United States)

    Magney, Troy S; Frankenberg, Christian; Fisher, Joshua B; Sun, Ying; North, Gretchen B; Davis, Thomas S; Kornfeld, Ari; Siebke, Katharina

    2017-09-01

    Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complicate our ability to interpret SIF measurements. We developed an instrument to measure leaf-level gas exchange simultaneously with pulse-amplitude modulation (PAM) and spectrally resolved fluorescence over the same field of view - allowing us to investigate the relationships between active and passive fluorescence with photosynthesis. Strongly correlated, slope-dependent relationships were observed between measured spectra across all wavelengths (F λ , 670-850 nm) and PAM fluorescence parameters under a range of actinic light intensities (steady-state fluorescence yields, F t ) and saturation pulses (maximal fluorescence yields, F m ). Our results suggest that this method can accurately reproduce the full Chl emission spectra - capturing the spectral dynamics associated with changes in the yields of fluorescence, photochemical (ΦPSII), and nonphotochemical quenching (NPQ). We discuss how this method may establish a link between photosynthetic capacity and the mechanistic drivers of wavelength-specific fluorescence emission during changes in environmental conditions (light, temperature, humidity). Our emphasis is on future research directions linking spectral fluorescence to photosynthesis, ΦPSII, and NPQ. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Jonge, Martin D. de, E-mail: martin.dejonge@synchrotron.org.au [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); Ryan, Christopher G. [CSIRO Earth Science and Research Engineering, Clayton, Victoria 3168 (Australia); Jacobsen, Chris J. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Department of Physics, Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208 (United States)

    2014-08-27

    Nanoscale X-ray scanning microscopes, or X-ray nanoprobes, will benefit greatly from diffraction-limited storage rings. Here the requirements for nanoscale fluorescence tomography are explored to gain insight into the scientific opportunities and technical challenges that such sources offer. X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer.

  7. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    Science.gov (United States)

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  8. Real-time detection of faecally contaminated drinking water with tryptophan-like fluorescence: defining threshold values.

    Science.gov (United States)

    Sorensen, James P R; Baker, Andy; Cumberland, Susan A; Lapworth, Dan J; MacDonald, Alan M; Pedley, Steve; Taylor, Richard G; Ward, Jade S T

    2018-05-01

    We assess the use of fluorescent dissolved organic matter at excitation-emission wavelengths of 280nm and 360nm, termed tryptophan-like fluorescence (TLF), as an indicator of faecally contaminated drinking water. A significant logistic regression model was developed using TLF as a predictor of thermotolerant coliforms (TTCs) using data from groundwater- and surface water-derived drinking water sources in India, Malawi, South Africa and Zambia. A TLF threshold of 1.3ppb dissolved tryptophan was selected to classify TTC contamination. Validation of the TLF threshold indicated a false-negative error rate of 15% and a false-positive error rate of 18%. The threshold was unsuccessful at classifying contaminated sources containing water globally. Copyright © 2017 Natural Environment Research Council (NERC), as represented by the British Geological Survey (BGS. Published by Elsevier B.V. All rights reserved.

  9. Who's who in fluorescence 2005

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    The Journal of Fluorescence's third Who's Who directory publishes the names, contact details, specialty keywords, photographs, and a brief description of scientists employing fluorescence methodology and instrumentation in their working livesThe directory provides company contact details with a brief list of fluorescence-related products.

  10. Evaluation of energy saving in large scale projects in domestic lighting; Evaluacion del ahorro de energia en proyectos de gran escala en alumbrado domestico

    Energy Technology Data Exchange (ETDEWEB)

    Valera Negrete, Adrian [Comision Federal de Electricidad, Mexico, D.F. (Mexico)

    2001-07-01

    The present work shows the methodology and the necessary parameters are indicated to evaluate the energy saving and the reduction of power demand obtained, by the large scale projects of substitution of incandescent lamps by compact, circular fluorescent and globe type lamps in the domestic sector. [Spanish] El presente trabajo muestra la metodologia y se indican los parametros necesarios para evaluar el ahorro de energia y reduccion de la demanda de potencia obtenidos, por los proyectos de gran escala de sustitucion de focos incandescentes por lamparas fluorescentes compactas, circulares y tipo globo en el sector domestico.

  11. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China.

    Science.gov (United States)

    Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng

    2014-08-01

    Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils.

  12. Biocompatible fluorescence-enhanced ZrO{sub 2}-CdTe quantum dot nanocomposite for in vitro cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zhisong; Zhu Zhihong; Zheng Xinting; Qiao Yan; Li Changming [School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 (Singapore); Guo Jun, E-mail: ecmli@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 (Singapore)

    2011-04-15

    With advances of quantum dots (QDs) in bioimaging applications, various materials have been used to coat QDs to reduce their nanotoxicity; however, the coating could introduce new toxic sources and quench the fluorescence in bioimaging applications. In this work, ZrO{sub 2}, an excellent ceramic material with low extinction coefficient and good biocompatibility, is utilized to coat CdTe QDs for the first time. Experimental results show that ZrO{sub 2}-QD nanocomposites with the size of {approx} 30 nm possess enhanced fluorescence emission, lower nanotoxicity and gradually increased fluorescence under 350 nm light illumination. After functionalization with folic acid, they were applied to label cultured HeLa cells effectively. Therefore, the ZrO{sub 2}-QD nanocomposites could be promising biocompatible nanomaterials with strong fluorescence emission to replace or complement QDs in biomedical applications.

  13. Radionuclide X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Cechak, T.

    1994-01-01

    The author's achievements in the title field are summarized and discussed. The following topics are dealt with: (i) principles of radionuclide X-ray fluorescence analysis; (ii) mathematical methods in X-ray fluorescence analysis; (iii) Ross differential filters; (iv) application of radionuclide X-ray fluorescence analysis in the coal industry (with emphasis on the determination of the ash content, sulfur content, and arsenic content of coal); and (v) evaluation of the X-ray fluorescence analyzer from the radiological safety point of view. (P.A.)

  14. Photosynthetic complex LH2 – Absorption and steady state fluorescence spectra

    International Nuclear Information System (INIS)

    Zapletal, David; Heřman, Pavel

    2014-01-01

    Nowadays, much effort is devoted to the study of photosynthesis which could be the basis for an ideal energy source in the future. To be able to create such an energy source – an artificial photosynthetic complex, the first step is a detailed understanding of the function of photosynthetic complexes in living organisms. Photosynthesis starts with the absorption of a solar photon by one of the LH (light-harvesting) pigment–protein complexes and transferring the excitation energy to the reaction center where a charge separation is initiated. The geometric structure of some LH complexes is known in great detail, e.g. for the LH2 complexes of purple bacteria. For understanding of photosynthesis first stage efficiency, it is necessary to study especially optical properties of LH complexes. In this paper we present simulated absorption and steady-state fluorescence spectra for ring molecular system within full Hamiltonian model. Such system can model bacteriochlorophyll ring of peripheral light-harvesting complex LH2 from purple bacterium Rhodopseudomonas acidophila (Rhodoblastus acidophilus). Dynamic disorder (coupling with phonon bath) simultaneously with uncorrelated static disorder (transfer integral fluctuations) is used in our present simulations. We compare and discuss our new results with our previously published ones and of course with experimental data. - Highlights: • We model absorption and steady state fluorescence spectra for B850 ring from LH2. • Fluctuations of environment is modelled by static and dynamic disorder. • Full Hamiltonian model is compared with the nearest neighbour approximation one. • Simulated fluorescence spectrum is compared with experimental data

  15. Seasonal variations in dissolved organic matter composition using absorbance and fluorescence spectroscopy in the Dardanelles Straits - North Aegean Sea mixing zone

    Science.gov (United States)

    Pitta, Elli; Zeri, Christina; Tzortziou, Maria; Mousdis, George; Scoullos, Michael

    2017-10-01

    The Dardanelles Straits - North Aegean Sea mixing zone is the area where the less saline waters of Black Sea origin supply organic material to the oligotrophic Mediterranean Sea. The objective of this work was to assess the seasonal dynamics of dissolved organic matter (DOM) in this region based on the optical properties (absorbance and fluorescence). By combining excitation-emission fluorescence with parallel factor analysis (EEM-PARAFAC), four fluorescent components were identified corresponding to three humic - like components and one amino acid - like. The latter was dominant during all seasons. Chromophoric DOM (CDOM) and dissolved organic carbon (DOC) were found to be strongly coupled only in early spring when conservative conditions prevailed and the two water masses present (Black Sea Waters - BSW and Levantine Waters - LW) could be identified by their absorption coefficients (a300) and spectral slopes S275-295. In summer and autumn the relationships collapsed. During summer two features appear to dominate the dynamics of CDOM: i) photodegradation that acts as an important sink for both the absorbing DOM and the terrestrially derived fluorescent humic substances and ii) the release of marine humic like fluorescent substances from bacterial transformation of DOM. Autumn results revealed a source of fluorescent CDOM of high molecular weight, which was independent of water mass sources and related to particle and sedimentary processes. The removal of the amino acid-like fluorescence during autumn provided evidence that although DOC was found to accumulate under low inorganic nutrient conditions, dissolved organic nitrogenous compounds could serve as bacterial substrate.

  16. Hyperspectral fluorescence imaging using violet LEDs as excitation sources for fecal matter contaminate identification on spinach leaves

    Science.gov (United States)

    Food safety in the production of fresh produce for human consumption is a worldwide issue and needs to be addressed to decrease foodborne illnesses and resulting costs. Hyperspectral fluorescence imaging coupled with multivariate image analysis techniques for detection of fecal contaminates on spina...

  17. CONSTRAINING THE LIFETIME AND OPENING ANGLE OF QUASARS USING FLUORESCENT Ly α EMISSION: THE CASE OF Q0420–388

    International Nuclear Information System (INIS)

    Borisova, Elena; Lilly, Simon J.; Cantalupo, Sebastiano; Prochaska, J. Xavier; Rakic, Olivera; Worseck, Gabor

    2016-01-01

    A toy model is developed to understand how the spatial distribution of fluorescent emitters in the vicinity of bright quasars could be affected by the geometry of the quasar bi-conical radiation field and by its lifetime. The model is then applied to the distribution of high-equivalent-width Ly α emitters (with rest-frame equivalent widths above 100 Å, threshold used in, e.g., Trainor and Steidel) identified in a deep narrow-band 36 × 36 arcmin 2 image centered on the luminous quasar Q0420–388. These emitters are found near the edge of the field and show some evidence of an azimuthal asymmetry on the sky of the type expected if the quasar is radiating in a bipolar cone. If these sources are being fluorescently illuminated by the quasar, the two most distant objects require a lifetime of at least 15 Myr for an opening angle of 60° or more, increasing to more than 40 Myr if the opening angle is reduced to a minimum of 30°. However, some other expected signatures of boosted fluorescence are not seen at the current survey limits, e.g., a fall off in Ly α brightness, or equivalent width, with distance. Furthermore, to have most of the Ly α emission of the two distant sources to be fluorescently boosted would require the quasar to have been significantly brighter in the past. This suggests that these particular sources may not be fluorescent, invalidating the above lifetime constraints. This would cast doubt on the use of this relatively low equivalent width threshold and thus also on the lifetime analysis in Trainor and Steidel.

  18. CONSTRAINING THE LIFETIME AND OPENING ANGLE OF QUASARS USING FLUORESCENT Ly α EMISSION: THE CASE OF Q0420–388

    Energy Technology Data Exchange (ETDEWEB)

    Borisova, Elena; Lilly, Simon J.; Cantalupo, Sebastiano [Institute for Astronomy, ETH Zurich, Zurich, CH-8093 (Switzerland); Prochaska, J. Xavier [UCO/Lick Observatory, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Rakic, Olivera; Worseck, Gabor, E-mail: borisova@phys.ethz.ch [Max-Planck-Institut für Astronomie, Heidelberg, D-69117 (Germany)

    2016-10-20

    A toy model is developed to understand how the spatial distribution of fluorescent emitters in the vicinity of bright quasars could be affected by the geometry of the quasar bi-conical radiation field and by its lifetime. The model is then applied to the distribution of high-equivalent-width Ly α emitters (with rest-frame equivalent widths above 100 Å, threshold used in, e.g., Trainor and Steidel) identified in a deep narrow-band 36 × 36 arcmin{sup 2} image centered on the luminous quasar Q0420–388. These emitters are found near the edge of the field and show some evidence of an azimuthal asymmetry on the sky of the type expected if the quasar is radiating in a bipolar cone. If these sources are being fluorescently illuminated by the quasar, the two most distant objects require a lifetime of at least 15 Myr for an opening angle of 60° or more, increasing to more than 40 Myr if the opening angle is reduced to a minimum of 30°. However, some other expected signatures of boosted fluorescence are not seen at the current survey limits, e.g., a fall off in Ly α brightness, or equivalent width, with distance. Furthermore, to have most of the Ly α emission of the two distant sources to be fluorescently boosted would require the quasar to have been significantly brighter in the past. This suggests that these particular sources may not be fluorescent, invalidating the above lifetime constraints. This would cast doubt on the use of this relatively low equivalent width threshold and thus also on the lifetime analysis in Trainor and Steidel.

  19. Fluorescence Imaging Reveals Surface Contamination

    Science.gov (United States)

    Schirato, Richard; Polichar, Raulf

    1992-01-01

    In technique to detect surface contamination, object inspected illuminated by ultraviolet light to make contaminants fluoresce; low-light-level video camera views fluorescence. Image-processing techniques quantify distribution of contaminants. If fluorescence of material expected to contaminate surface is not intense, tagged with low concentration of dye.

  20. Fluorescent nanoscale detection of biotin-streptavidin interaction using near-field scanning optical microscopy

    International Nuclear Information System (INIS)

    Park, Hyun Kyu; Chung, Bong Hyun; Gokarna, Anisha; Hulme, John P; Park, Hyun Gyu

    2008-01-01

    We describe a nanoscale strategy for detecting biotin-streptavidin binding using near-field scanning optical microscopy (NSOM) that exploits the fluorescence properties of single polydiacetylene (PDA) liposomes. NSOM is more useful to observe nanomaterials having optical properties with the help of topological information. We synthesized amine-terminated 10,12-pentacosadiynoic acid (PCDA) monomer (PCDA-NH 2 ) and used this derivatized monomer to prepare PCDA liposomes. PCDA-NH 2 liposomes were immobilized on an aldehyde-functionalized glass surface followed by photopolymerization by using a 254 nm light source. To measure the biotin-streptavidin binding, we conjugated photoactivatable biotin to immobilized PCDA-NH 2 liposomes by UV irradiation (365 nm) and subsequently allowed them to interact with streptavidin. We analyzed the fluorescence using a fluorescence scanner and observed single liposomes using NSOM. The average height and NSOM signal observed in a single liposome after binding were ∼31.3 to 8.5 ± 0.5 nm and 0.37 to 0.16 ± 0.6 kHz, respectively. This approach, which has the advantage of not requiring a fluorescent label, could prove highly beneficial for single molecule detection technology

  1. The application of {beta}-ray excitation fluorescence to the measurement of the thickness of deposits and to analysis; Applications de la fluorescence excitee au moyen des rayons {beta} a la mesure des epaisseurs des depots et a l'analyse

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Seibel, G [Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France)

    1961-07-01

    Principles of the method are first outlined and the instrumentation used is described. The different types of radiation detectors are subject of a detailed study. As a source of {beta}-radiation {sup 90}(Sr + Y) was used as well as {sup 147}Pm. Great care was taken to eliminate back-diffused electrons by deflection by a strong permanent magnet. The method was applied to the measurement of the thickness of deposits of Cr, Zn, Sn, Cd and Cu on iron as well as Zn, Cr, Ag and Au on copper and the results obtained are discussed. An attempt was made, to use {beta}-X-ray fluorescence for the analysis of minerals, iron ore and glass and for routine control of Si-Mn, Si-Ca, Fe-Mn and Fe-W. Finally the method of {beta}-X-ray fluorescence is compared with normal-X-ray fluorescence and possibilities of further development are cited. (author) [French] Les principes de la methode et l'instrumentation utilisee sont presentes. On decrit en particulier les detecteurs de rayonnement utilises. Comme source de rayonnement on utilise {sup 90}(Sr + Y) et {sup 147}Pm. Pour eliminer les electrons retrodiffuses on utilise un aimant permanent place sur le trajet du faisceau. La methode est appliquee a la mesure des epaisseurs des depots metalliques tels que le Cr, Zn, Sn, Cd et Cu sur fer et le Zn, Cr, Ag et Au sur cuivre. D'autre part, la fluorescence {beta}-X etait utilisee pour l'analyse des minerais et des verres et pour le controle des alliages Fe-Mn, Fe-W, Si-Mn, Si-Ca. Enfin, on passe a une comparaison entre la fluorescence {beta}-X et la fluorescence X normale et on discute les possibilites d'un developpement futur. (auteur)

  2. Cysteine detection using a high-fluorescence sensor based on a nitrogen-doped graphene quantum dot–mercury(II) system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhenzhen; Gong, Yan; Fan, Zhefeng, E-mail: zhefengfan@126.com

    2016-07-15

    A novel and highly sensitive fluorescence sensor, which was based on the recovered fluorescence of a nitrogen-doped graphene quantum dot–Hg(II) system, was developed for cysteine detection. An easy, green, one-pot synthesis of nitrogen-doped graphene quantum dots was established by using citric acid and urea as carbon and nitrogen sources, respectively. The fluorescence of nitrogen-doped graphene quantum dots was significantly quenched by Hg(II) because of the efficient electron transfer between nitrogen-doped graphene quantum dots and Hg(II). Subsequently, fluorescence was recovered gradually upon cysteine addition to form a stable complex with Hg(II). The fluorescence sensor showed a response to cysteine within a wide concentration range of 0.05–30 μmol L{sup −1}, with a detection limit of 1.3 nmol L{sup −1}. The sensor was successfully applied to detect cysteine in honey and beer samples, with a recovery range of 98–105%.

  3. Cysteine detection using a high-fluorescence sensor based on a nitrogen-doped graphene quantum dot–mercury(II) system

    International Nuclear Information System (INIS)

    Liu, Zhenzhen; Gong, Yan; Fan, Zhefeng

    2016-01-01

    A novel and highly sensitive fluorescence sensor, which was based on the recovered fluorescence of a nitrogen-doped graphene quantum dot–Hg(II) system, was developed for cysteine detection. An easy, green, one-pot synthesis of nitrogen-doped graphene quantum dots was established by using citric acid and urea as carbon and nitrogen sources, respectively. The fluorescence of nitrogen-doped graphene quantum dots was significantly quenched by Hg(II) because of the efficient electron transfer between nitrogen-doped graphene quantum dots and Hg(II). Subsequently, fluorescence was recovered gradually upon cysteine addition to form a stable complex with Hg(II). The fluorescence sensor showed a response to cysteine within a wide concentration range of 0.05–30 μmol L −1 , with a detection limit of 1.3 nmol L −1 . The sensor was successfully applied to detect cysteine in honey and beer samples, with a recovery range of 98–105%.

  4. Investigation of elemental distribution in lung samples by X-ray fluorescence microtomography

    International Nuclear Information System (INIS)

    Pereira, Gabriela R.; Rocha, Henrique S.; Lopes, Ricardo T.

    2007-01-01

    X-Ray Fluorescence Microtomography (XRFCT) is a suitable technique to find elemental distributions in heterogeneous samples. While x-ray transmission microtomography provides information about the linear attenuation coefficient distribution, XRFCT allows one to map the most important elements in the sample. The x-ray fluorescence tomography is based on the use of the X-ray fluorescence emitted from the elements contained in a sample so as to give additional information to characterize the object under study. In this work a rat lung and two human lung tissue samples have been investigated in order to verify the efficiency of the system in determination of the internal distribution of detected elements in these kinds of samples and to compare the elemental distribution in the lung tissue of an old human and a fetus. The experiments were performed at the X-Ray Fluorescence beamline (XRF) of the Brazilian Synchrotron Light Source (LNLS), Campinas, Brazil. A white beam was used for the excitation of the elements and the fluorescence photons have been detected by a HPGe detector. All the tomographies have been reconstructed using a filtered-back projection algorithm. It was possible to visualize the distribution of high atomic number elements on both, artificial and tissues samples. It was compared the quantity of Zn, Cu and Fe for the lung human tissue samples and verify that these elements have a higher concentration on the fetus tissue sample than the adult tissue sample. (author)

  5. A Geometric Dictionary Learning Based Approach for Fluorescence Spectroscopy Image Fusion

    Directory of Open Access Journals (Sweden)

    Zhiqin Zhu

    2017-02-01

    Full Text Available In recent years, sparse representation approaches have been integrated into multi-focus image fusion methods. The fused images of sparse-representation-based image fusion methods show great performance. Constructing an informative dictionary is a key step for sparsity-based image fusion method. In order to ensure sufficient number of useful bases for sparse representation in the process of informative dictionary construction, image patches from all source images are classified into different groups based on geometric similarities. The key information of each image-patch group is extracted by principle component analysis (PCA to build dictionary. According to the constructed dictionary, image patches are converted to sparse coefficients by simultaneous orthogonal matching pursuit (SOMP algorithm for representing the source multi-focus images. At last the sparse coefficients are fused by Max-L1 fusion rule and inverted to fused image. Due to the limitation of microscope, the fluorescence image cannot be fully focused. The proposed multi-focus image fusion solution is applied to fluorescence imaging area for generating all-in-focus images. The comparison experimentation results confirm the feasibility and effectiveness of the proposed multi-focus image fusion solution.

  6. X-ray fluorescence spectroscopy technology applied to the materials elementary characterization

    International Nuclear Information System (INIS)

    Marambio A, Cristian Gilberto.

    1997-01-01

    A thorough study of the different applications of energy dispersive x-ray fluorescence spectrometry is presented, using different excitation sources and measurement geometries. The adaptation of these systems focuses on the analytical solution for different sample types by studying distinct parameters such as: volume of saturation for liquid samples, inter elemental effects from the matrix and the interferences associated with the measurement reading statistical parameters: as reproducibility, precision and detection limits. The application of the technique using radioisotopic sources gave satisfactory results in the analysis of geologic samples, in analytical control of concentration processes for rare earths and for the manufacturing of fuel elements. In the case of a system with an x-ray generator two measurement geometries were studied: 45 deg geometry and total reflection. There were major results in the analysis of polymer impurities and alloy impurities, aluminums and thin semiconductor films, respectively, after non destructive in situ analysis of the material. The results show that x-ray fluorescence spectrometry is a powerful tool for analysis and process control, with prospects for the solution of analytical problems in the materials area. (author)

  7. On the origins of 718 nm fluorescence from Porphyridium cruentum at 77 K.

    Science.gov (United States)

    Wang, R T; Graham, J R; Myers, J

    1980-09-05

    Emission spectra and transient behavior of fluorescence in Porphyridium cruentum have been studied in search of the pathway of excitation energy from the phycobilisome to Photosystem I (PS I) of photosynthesis. For activating light at 436 nm, absorbed almost entirely by chlorophyll, fluorescence is dominated by the 718 nm band generally attributed to chlorophyll of PS I. Activating light at 550 nm, absorbed mostly by the phycobilisome, gives rise to the distinctive fluorescence band of PS II chlorophyll at 696 nm but also gives a large component at 718 nm. Analysis depends critically upon the source of emission at 718 nm under 550 nm activation: does it arise from PS I or PS IIC0 Ley and Butler (Ley, A.C. and Butler, W.L. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 3956-3960) have proposed that the 718 nm arises mostly from PS I, to which it is transferred by spillover from PS II. We suggest a different proposition: that under 550 nm activation most of the 718 emission arises from PS II. Analysis shows that this proposition provides an alternative explanation. Using the small change in fluorescence yield observed under 436 nm activation as a monitor of excitation in PS I, we provide evidence that under 550 activation most of the 718 nm fluorescence arises from PS II.

  8. Fluorescing macerals from wood precursors

    Energy Technology Data Exchange (ETDEWEB)

    Stout, S A; Bensley, D F

    1987-01-01

    A preliminary investigation into the origin of wood-derived macerals has established the existence of autofluorescent maceral precursors in the secondary xylem of swamp-inhabiting plant species. The optical character and fluorescent properties of microtomed thin-sections of modern woods from the Florida Everglades and Okefenokee Swamp, Georgia are compared to the character and properties of their peatified equivalents from various Everglades and Okefenokee peat horizons and their lignitic equivalents from the Brandon lignite of Vermont and the Trail Ridge lignitic peat from northern Florida. The inherent fluorescence of woody cell walls is believed to be caused by lignin though other cell wall components may contribute. The fluorescence spectra for several wood and cell types had a ..gamma../sub m//sub a//sub x/ of 452 nm and Q value of 0.00. The color as observed in blue light and the spectral geometry as measured in UV light of peatified and lignitic woody cell walls (potential textinites) may change progressively during early coalification. Cell wall-derived maceral material is shown to maintain its fluorescing properties after being converted to a structureless material, perhaps a corpohuminite or humodetrinite precursor. Fluorescing xylem cell contents, such as condensed tannins or essential oils, can maintain the fluorescent character through early coalification. Xylem cell walls and xylem cell contents are shown to provide fluorescing progenitor materials which would not require subsequent infusion with 'lipid' materials to account for their fluorescence as phytoclast material or as macerals in coal. 35 references.

  9. Max Tech and Beyond: Fluorescent Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Scholand, Michael

    2012-04-01

    Fluorescent lamps are the most widely used artificial light source today, responsible for approximately 70% of the lumens delivered to our living spaces globally. The technology was originally commercialized in the 1930's, and manufacturers have been steadily improving the efficacy of these lamps over the years through modifications to the phosphors, cathodes, fill-gas, operating frequency, tube diameter and other design attributes. The most efficient commercially available fluorescent lamp is the 25 Watt T5 lamp. This lamp operates at 114-116 lumens per watt while also providing good color rendering and more than 20,000 hours of operating life. Industry experts interviewed indicated that while this lamp is the most efficient in the market today, there is still a further 10 to 14% of potential improvements that may be introduced to the market over the next 2 to 5 years. These improvements include further developments in phosphors, fill-gas, cathode coatings and ultraviolet (UV) reflective glass coatings. The commercialization of these technology improvements will combine to bring about efficacy improvements that will push the technology up to a maximum 125 to 130 lumens per watt. One critical issue raised by researchers that may present a barrier to the realization of these improvements is the fact that technology investment in fluorescent lamps is being reduced in order to prioritize research into light emitting diodes (LEDs) and ceramic metal halide high intensity discharge (HID) lamps. Thus, it is uncertain whether these potential efficacy improvements will be developed, patented and commercialized. The emphasis for premium efficacy will continue to focus on T5 lamps, which are expected to continue to be marketed along with the T8 lamp. Industry experts highlighted the fact that an advantage of the T5 lamp is the fact that it is 40% smaller and yet provides an equivalent lumen output to that of a T8 or T12 lamp. Due to its smaller form factor, the T5 lamp

  10. Design and development of high-resolution atomic beam fluorescence spectroscopy facility for isotope shift and hyperfine structure measurements

    International Nuclear Information System (INIS)

    Acharyulu, G.V.S.G.; Sankari, M.; Kiran Kumar, P.V.; Suryanarayana, M.V.

    2012-01-01

    A high-resolution atomic beam fluorescence spectroscopy facility for the determination of isotope shifts and hyperfine structure in atomic species has been designed and developed. A resistively heated graphite tube atomic beam source was designed, tested and integrated into a compact interaction chamber for atomic beam fluorescence experiments. The design of the laser-atom interaction chamber and the source has been modified in a phased manner so as to achieve sub-Doppler resolution. The system has been used to record the hyperfine spectrum of the D2 transitions of Rb and K isotopes. The spectral resolution achieved is ∼ 26 MHz and is adequate to carry out high resolution measurement of isotope shifts and hyperfine structure of various atomic species. The other major advantage of the source is that it requires very small amounts of sample for achieving very good signal to noise ratio. (author)

  11. Real-time endoscopic guidance using near-infrared fluorescent light for thoracic surgery

    Science.gov (United States)

    Venugopal, Vivek; Stockdale, Alan; Neacsu, Florin; Kettenring, Frank; Frangioni, John V.; Gangadharan, Sidharta P.; Gioux, Sylvain

    2013-03-01

    Lung cancer is the leading cause of cancer death in the United States, accounting for 28% of all cancer deaths. Standard of care for potentially curable lung cancer involves preoperative radiographic or invasive staging, followed by surgical resection. With recent adjuvant chemotherapy and radiation studies showing a survival advantage in nodepositive patients, it is crucial to accurately stage these patients surgically in order to identify those who may benefit. However, lymphadenectomy in lung cancer is currently performed without guidance, mainly due to the lack of tools permitting real-time, intraoperative identification of lymph nodes. In this study we report the design and validation of a novel, clinically compatible near-infrared (NIR) fluorescence thoracoscope for real-time intraoperative guidance during lymphadenectomy. A novel, NIR-compatible, clinical rigid endoscope has been designed and fabricated, and coupled to a custom source and a dual channel camera to provide simultaneous color and NIR fluorescence information to the surgeon. The device has been successfully used in conjunction with a safe, FDA-approved fluorescent tracer to detect and resect mediastinal lymph nodes during thoracic surgery on Yorkshire pigs. Taken together, this study lays the foundation for the clinical translation of endoscopic NIR fluorescence intraoperative guidance and has the potential to profoundly impact the management of lung cancer patients.

  12. Determination of ammonium on an integrated microchip with LED-induced fluorescence detection.

    Science.gov (United States)

    Xue, Shuhua; Uchiyama, Katsumi; Li, Hai-Fang

    2012-01-01

    A simply fabricated microfluidic device integrated with a fluorescence detection system has been developed for on-line determination of ammonium in aqueous samples. A 365-nm light-emitting diode (LED) as an excitation source and a minor band pass filter were mounted into a polydimethylsiloxane (PDMS)-based microchip for the purpose of miniaturization of the entire analytical system. The ammonium sample reacted with o-phthaldialdehyde (OPA) on-chip with sodium sulfite as reducing reagent to produce a fluorescent isoindole derivative, which can emit fluorescence signal at about 425 nm when excited at 365 nm. Effects of pH, flow rate of solutions, concentrations of OPA-reagent, phosphate and sulfite salt were investigated. The calibration curve of ammonium in the range of 0.018-1.8 microg/mL showed a good linear relationship with R2 = 0.9985, and the detection limit was (S/N = 3) 3.6 x 10(-4) microg/mL. The relative standard deviation was 2.8% (n = 11) by calculating at 0.18 microg/mL ammonium for repeated detection. The system was applied to determine the ammonium concentration in rain and river waters, even extent to other analytes fluorescence detection by the presented device.

  13. Xanthines Studied via Femtosecond Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    Pascale Changenet-Barret

    2016-12-01

    Full Text Available Xanthines represent a wide class of compounds closely related to the DNA bases adenine and guanine. Ubiquitous in the human body, they are capable of replacing natural bases in double helices and give rise to four-stranded structures. Although the use of their fluorescence for analytical purposes was proposed, their fluorescence properties have not been properly characterized so far. The present paper reports the first fluorescence study of xanthine solutions relying on femtosecond spectroscopy. Initially, we focus on 3-methylxanthine, showing that this compound exhibits non-exponential fluorescence decays with no significant dependence on the emission wavelength. The fluorescence quantum yield (3 × 10−4 and average decay time (0.9 ps are slightly larger than those found for the DNA bases. Subsequently, we compare the dynamical fluorescence properties of seven mono-, di- and tri-methylated derivatives. Both the fluorescence decays and fluorescence anisotropies vary only weakly with the site and the degree of methylation. These findings are in line with theoretical predictions suggesting the involvement of several conical intersections in the relaxation of the lowest singlet excited state.

  14. Multi-spectral and fluorescence diffuse optical tomography of breast cancer

    Science.gov (United States)

    Corlu, Alper

    Multi-spectral and fluorescence diffuse optical tomography (DOT) techniques are explored and applied to image human breast cancer in vivo. Image reconstruction algorithms that utilize first and second order gradient information are described in detail. Breast DOT requires large computational memory and long run times. To this end, parallel computation techniques were developed appropriate to each reconstruction algorithm. A parallel plate DOT instrument developed for breast cancer imaging is described. The system relies heavily on continuous-wave (CW) transmission measurements and utilizes frequency domain (FD) measurements on the reemission side. However, traditional DOT image reconstruction methods based on CW measurements fail to separate tissue absorption and scattering uniquely. In this manuscript, multi-spectral DOT is shown to be capable of minimizing cross-talk and retrieving spectral parameters almost uniquely when the measurement wavelengths are optimized. A theoretical framework to select optimum wavelengths is provided, and tested with computer simulations. Results from phantom spectroscopy experiments and in vivo patient measurements support the notion that multi-spectral methods are superior to traditional DOT image reconstruction schemes. The same breast DOT instrument is improved and utilized to obtain the first in vivo images of human breast cancer based on fluorescence DOT (FDOT). To this end the fluorophore Indocyanine Green (ICG) is injected intravenously and fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Careful phantom and in vivo measurements are carried on to assure that the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. An in vivo measurement protocol is designed to maximize the ICG contrast by acquiring full fluorescence tomographic scan during

  15. Fluorescence imaging of soybean flavonol isolines

    Science.gov (United States)

    Kim, Moon S.; Lee, Edward H.; Mulchi, Charles L.; McMurtrey, James E., III; Chappelle, Emmett W.; Rowland, Randy A.

    1998-07-01

    Experiments were conducted to characterize the fluorescence emission of leaves from four soybean ('Harosoy') plants containing different concentrations of flavonols (kaempferol glycosides). The investigation utilized genetically mutated soybean flavonol isolines grown in a constant environment, thus limiting factors known to affect fluorescence emission characteristics other than different kaempferol glycosides concentrations. Flavonol isolines included OX922, OX941, OX942, OX944. The first two isolines contain kaempferol (K) glycosides; K3, K6, and K9, and the latter two did not have K3, K6, and K9. A fluorescence imaging system (FIS) was used to characterize steady state florescence images of the sample leaves measured at wavelengths centered at 450, 550, 680, and 740 nm with an excitation at 360 nm. Images taken with FIS greatly complement non-imaging fluorescence measurements by characterizing the spatial variation of fluorescence within leaves. We also acquired fluorescence emission spectra to characterize spectral features of the soybean flavonol isolines. The emission spectral shape of the fluorescence emission characteristics were not significantly different between the soybeans that contain kaempferol glycosides and the ones that do not contain kaempferol glycosides. Typical emission maxima of green vegetation in the blue, green, red, and far-red bands were noticed in all four soybean isolines. However, plants containing kaempferol glycosides, OX922 and OX941 had significantly lower intensities throughout the wavelength regions. These results imply that fluorescence emission intensities in the fluorescence emission bands studied are significantly affected by the presence and absence of kaempferol glycosides concentrations (UV radiation screening compounds). Pure kaempferol glycoside dissolved in solution show minimal fluorescence emission when excited with the absorption maximum radiation at 365 nm. However, a broad band emission can be seen in the green

  16. Pots, plates and provenance: sourcing Indian coarse wares from Mleiha using X-ray fluorescence (XRF) spectrometry analysis

    International Nuclear Information System (INIS)

    Reddy, A; Attaelmanan, A G; Mouton, M

    2012-01-01

    The identification of more than 25% of the pottery sherds from the late PIR.D period (ca. 2nd - mid. 3rd c. AD) assemblage from the recently excavated building H at Mleiha as Indian is based on form and fabric, but using only visual assessment. Petrographic analysis of the fabrics can provide more precise indicators of the geographical origin of the wares. In this study, a total of 21 sherds from various key sites in Western India were compared with 7 different 'Indian' coarse-ware vessels sampled at Mleiha using X-ray fluorescence (XRF) spectrometry. The analyses were conducted on powdered samples collected from the core of each sherd. Each sample was irradiated for 1000 seconds using a 1.2 mm diameter X-ray beam. The resulting spectra were used for quantification of the X-ray intensity and elemental concentration. Levels of correlation in the elemental ratios of the sherds were statistically tested using an F-test as well as a Chi-test. Initial review of the XRF results indicates that the Maharashtra and Gujarat regions of India are probable source areas for at least two of the types of wares. Collection of additional samples from these areas and other regions of India, and further statistical analysis through methods such as Principal Component Analysis will help to isolate groups of wares from India and correlate them with types of vessels imported into the Oman peninsula in antiquity.

  17. Problems of fluorescent imaging and its solution using nanofluorophores. Part I: Advantages of fluorescent nanoparticles over conventional organic fluorophores

    International Nuclear Information System (INIS)

    Zhelev, Z.; Hadjidekov, G.; Zlateva, G.; Spasov, L.; Bakalova, R.

    2011-01-01

    The application of fluorescence in deep-tissue imaging is rapidly expanding in fast several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecules in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With development of novel bright fluorophores based on nano-technologies and fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. This review outlines the current status and future trends of fluorescent nanoparticles - quantum dots (QDs), as a new generation of fluorophores in experimental and pre-clinical fluorescent imaging diagnostic. Part 1 focuses on the advantages of quantum dots over conventional organic fluorophores and defines the major requirements to the 'perfect' fluorophore for fluorescent deep-tissue imaging diagnostic. The analysis is based on the limitations of fluorescent imaging in vivo and overcome by using quantum dots

  18. Fluorescent standards for photodynamic therapy

    Science.gov (United States)

    Belko, N.; Kavalenka, S.; Samtsov, M.

    2016-08-01

    Photodynamic therapy is an evolving technique for treatment of various oncological diseases. This method employs photosensitizers - species that lead to death of tumor cells after the photoactivation. For further development and novel applications of photodynamic therapy new photosensitizers are required. After synthesis of a new photosensitizer it is important to know its concentration in different biological tissues after its administration and distribution. The concentration is frequently measured by the extraction method, which has some disadvantages, e.g. it requires many biological test subjects that are euthanized during the measurement. We propose to measure the photosensitizer concentration in tissue by its fluorescence. For this purpose fluorescent standards were developed. The standards are robust and simple to produce; their fluorescence signal does not change with time. The fluorescence intensity of fluorescent standards seems to depend linearly on the dye concentration. A set of standards thus allow the calibration of a spectrometer. Finally, the photosensitizer concentration can be determined by the fluorescence intensity after comparing the corresponding spectrum with spectra of the set of fluorescent standards. A biological test subject is not euthanized during this kind of experiment. We hope this more humane technique can be used in future instead of the extraction method.

  19. Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences

    Directory of Open Access Journals (Sweden)

    C. Pöhlker

    2012-01-01

    Full Text Available Primary biological aerosol particles (PBAP are an important subset of air particulate matter with a substantial contribution to the organic aerosol fraction and potentially strong effects on public health and climate. Recent progress has been made in PBAP quantification by utilizing real-time bioaerosol detectors based on the principle that specific organic molecules of biological origin such as proteins, coenzymes, cell wall compounds and pigments exhibit intrinsic fluorescence. The properties of many fluorophores have been well documented, but it is unclear which are most relevant for detection of atmospheric PBAP. The present study provides a systematic synthesis of literature data on potentially relevant biological fluorophores. We analyze and discuss their relative importance for the detection of fluorescent biological aerosol particles (FBAP by online instrumentation for atmospheric measurements such as the ultraviolet aerodynamic particle sizer (UV-APS or the wide issue bioaerosol sensor (WIBS.

    In addition, we provide new laboratory measurement data for selected compounds using bench-top fluorescence spectroscopy. Relevant biological materials were chosen for comparison with existing literature data and to fill in gaps of understanding. The excitation-emission matrices (EEM exhibit pronounced peaks at excitation wavelengths of ~280 nm and ~360 nm, confirming the suitability of light sources used for online detection of FBAP. They also show, however, that valuable information is missed by instruments that do not record full emission spectra at multiple wavelengths of excitation, and co-occurrence of multiple fluorophores within a detected sample will likely confound detailed molecular analysis. Selected non-biological materials were also analyzed to assess their possible influence on FBAP detection and generally exhibit only low levels of background-corrected fluorescent emission. This study strengthens the hypothesis that ambient

  20. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    Science.gov (United States)

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.

  1. Photon statistics characterization of a single-photon source

    International Nuclear Information System (INIS)

    Alleaume, R; Treussart, F; Courty, J-M; Roch, J-F

    2004-01-01

    In a recent experiment, we reported the time-domain intensity noise measurement of a single-photon source relying on single-molecule fluorescence control. In this paper, we present data processing starting from photocount timestamps. The theoretical analytical expression of the time-dependent Mandel parameter Q(T) of an intermittent single-photon source is derived from ON↔OFF dynamics. Finally, source intensity noise analysis, using the Mandel parameter, is quantitatively compared with the usual approach relying on the time autocorrelation function, both methods yielding the same molecular dynamical parameters

  2. Measuring and sorting cell populations expressing isospectral fluorescent proteins with different fluorescence lifetimes.

    Directory of Open Access Journals (Sweden)

    Bryan Sands

    Full Text Available Study of signal transduction in live cells benefits from the ability to visualize and quantify light emitted by fluorescent proteins (XFPs fused to different signaling proteins. However, because cell signaling proteins are often present in small numbers, and because the XFPs themselves are poor fluorophores, the amount of emitted light, and the observable signal in these studies, is often small. An XFP's fluorescence lifetime contains additional information about the immediate environment of the fluorophore that can augment the information from its weak light signal. Here, we constructed and expressed in Saccharomyces cerevisiae variants of Teal Fluorescent Protein (TFP and Citrine that were isospectral but had shorter fluorescence lifetimes, ∼ 1.5 ns vs ∼ 3 ns. We modified microscopic and flow cytometric instruments to measure fluorescence lifetimes in live cells. We developed digital hardware and a measure of lifetime called a "pseudophasor" that we could compute quickly enough to permit sorting by lifetime in flow. We used these abilities to sort mixtures of cells expressing TFP and the short-lifetime TFP variant into subpopulations that were respectively 97% and 94% pure. This work demonstrates the feasibility of using information about fluorescence lifetime to help quantify cell signaling in living cells at the high throughput provided by flow cytometry. Moreover, it demonstrates the feasibility of isolating and recovering subpopulations of cells with different XFP lifetimes for subsequent experimentation.

  3. Experimentally studied laser fluorescence method for remote sensing of plant stress situation induced by improper plants watering

    Directory of Open Access Journals (Sweden)

    Yu. V. Fedotov

    2014-01-01

    Full Text Available Stressful situations of plants can be caused by a lack of nutrients; mechanical damages; diseases; low or high temperatures; lack of illumination; insufficient or excess humidity of the soil; soil salinization; soil pollution by oil products or heavy metals; the increased acidity of the soil; use of pesticides, herbicides, insecticides, etc.At early stages it is often difficult to detect seemingly that the plants are in stressful situations caused by adverse external factors. However, the fluorescent analysis potentially allows detection of the stressful situations of plants by deformation of laser-induced fluorescence spectra. The paper conducts experimental investigations to learn the capabilities of the laser fluorescent method to monitor plant situations at 532nm wavelength of fluorescence excitation in the stressful situations induced by improper watering (at excess of moisture in the soil and at a lack of moisture.Researches of fluorescence spectra have been conducted using a created laboratory installation. As a source to excite fluorescence radiation the second harmonica of YAG:Nd laser is used. The subsystem to record fluorescence radiation is designed using a polychromator and a highly sensitive matrix detector with the amplifier of brightness.Experimental investigations have been conducted for fast-growing and unpretentious species of plants, namely different sorts of salad.Experimental studies of laser-induced fluorescence spectra of plants for 532nm excitement wavelength show that the impact of stressful factors on a plant due to the improper watering, significantly distorts a fluorescence spectrum of plants. Influence of a stressful factor can be shown as a changing profile of a fluorescence spectrum (an identifying factor, here, is a relationship of fluorescence intensities at two wavelengths, namely 685 nm and 740 nm or (and as a changing level of fluorescence that can be the basis for the laser method for monitoring the plant

  4. Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements

    Science.gov (United States)

    Bogh, Sidsel A.; Bora, Ilkay; Rosenberg, Martin; Thyrhaug, Erling; Laursen, Bo W.; Just Sørensen, Thomas

    2015-12-01

    Azaoxatriangulenium (ADOTA) has been shown to be highly emissive despite a moderate molar absorption coefficient of the primary electronic transition. As a result, the fluorescence lifetime is ~20 ns, longer than all commonly used red fluorescent organic probes. The electronic transitions in ADOTA are highly polarised (r 0  =  0.38), which in combination with the long fluorescence lifetime extents the size-range of biomolecular weights that can be detected in fluorescence polarisation-based experiments. Here, the rotational dynamics of bovine serum albumin (BSA) are monitored with three different ADOTA derivatives, differing only in constitution of the reactive linker. A detailed study of the degree of labelling, the steady-state anisotropy, and the time-resolved anisotropy of the three different ADOTA-BSA conjugates are reported. The fluorescence quantum yields (ϕ fl) of the free dyes in PBS solution are determined to be ~55%, which is reduced to ~20% in the ADOTA-BSA conjugates. Despite the reduction in ϕ fl, a ~20 ns intensity averaged lifetime is maintained, allowing for the rotational dynamics of BSA to be monitored for up to 100 ns. Thus, ADOTA can be used in fluorescence polarisation assays to fill the gap between commonly used organic dyes and the long luminescence lifetime transition metal complexes. This allows for efficient steady-state fluorescence polarisation assays for detecting binding of analytes with molecular weights of up to 100 kDa.

  5. FLUORESCENCE DIAGNOSIS FOR RECURRENT BLADDER CANCER

    Directory of Open Access Journals (Sweden)

    R. V. Ulyanov

    2017-01-01

    Full Text Available The clinical case of successful use of local fluorescence spectroscopy combined with fluorescence imaging during cystoscopy for diagnosis of recurrent bladder cancer is represented in the article. Histological study of fluorescent foci confirmed tumor growth (urothelial carcinoma in all areas with high levels of diagnostic parameter. In the fluorescent focus with low diagnostic parameter inflammation was detected.

  6. Absorption and fluorescence characteristics of chromophoric dissolved organic matter in the Yangtze Estuary.

    Science.gov (United States)

    Sun, Qiyuan; Wang, Chao; Wang, Peifang; Hou, Jun; Ao, Yanhui

    2014-03-01

    The Yangtze Estuary is heavily influenced by coast-continent geochemical processes and anthropogenic activity; thus, the source and distribution of chromophoric dissolved organic matter (CDOM) in the estuary are strongly impacted by these processes. Here, a series of samples were collected from across the Yangtze Estuary to investigate the source and spatial dynamics of CDOM and its components throughout the system. Three indices (a(355), spectral slope, and fluorescence) were then calculated and interpreted. The results indicated that the distribution of CDOM was dominated by allochthonous input, conservative mixing, and phase transfer. The contribution of biogenic CDOM to total CDOM increased with salinity, and three individual CDOM components were identified upon fluorescence excitation emission matrix spectroscopy and parallel factor analysis of the water samples: C1, corresponding to humic substance-like CDOM, C2, corresponding to tryptophan-like CDOM, and C3, corresponding to tyrosine-like CDOM. C1 primarily originated from a terrestrial source, C2 had widespread origins, none of which played a dominant role, and C3 mainly originated from allochthonous input in the medium salinity area. Unexpectedly, no marine humic-like component was found in the surface water of the Yangtze Estuary, possibly because turbidity decreased the depth of sunlight penetration, limiting production of this component.

  7. Simultaneous analyses of gaseous and particulate sulphur compounds in the atmosphere by x-ray fluorescence spectrometry, (1)

    International Nuclear Information System (INIS)

    Matsuda, Yatsuka; Mamuro, Tetsuo

    1974-01-01

    An analytical technique for the simultaneous measurements of the atmospheric concentrations of SO 2 gas and sulphur absorbed by aerosol particles has been developed. Aerosol particles are collected on membrane filter and at the same time SO 2 gas is captured on alkali impregnated filter. The sulphur content in each filter is measured by an energy dispersive X-ray fluorescence spectrometer consisting of a Si(Li) semiconductor detector connected to a multichannel pulse hight analyzer and an excitation source of 55 Fe. Two methods are acceptable for the determination of the sulphur content in impregnated filter by X-ray fluorescence analysis. In the first method X-ray fluorescence analysis is made after the collected sulphur has diffused and distributed uniformly enough throughout filter, and in the second method X-ray fluorescence analysis has to be finished before the diffusion of the collected sulphur becomes appreciable. (auth.)

  8. Reviews in fluorescence 2008

    CERN Document Server

    Geddes, Chris D

    2010-01-01

    This volume serves as a comprehensive collection of current trends and emerging hot topics in the field of fluorescence spectroscopy. It summarizes the year's progress in fluorescence and its applications as well as includes authoritative analytical reviews.

  9. 340nm UV LED excitation in time-resolved fluorescence system for europium-based immunoassays detection

    DEFF Research Database (Denmark)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter

    2017-01-01

    In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum......, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on europium chelate as a fluorescent marker. The system performance was tested with the immunoassay based...... on the cardiac marker, TnI. The same signal-to-noise ratio as for the flash lamp based system was obtained, operating the LED below specified maximum current. The background counts of the system and its main contributors were measured and analyzed. The background of the system of the LED based unit was improved...

  10. Integrated three-dimensional optical MEMS for chip-based fluorescence detection

    Science.gov (United States)

    Hung, Kuo-Yung; Tseng, Fan-Gang; Khoo, Hwa-Seng

    2009-04-01

    This paper presents a novel fluorescence sensing chip for parallel protein microarray detection in the context of a 3-in-1 protein chip system. This portable microchip consists of a monolithic integration of CMOS-based avalanche photo diodes (APDs) combined with a polymer micro-lens, a set of three-dimensional (3D) inclined mirrors for separating adjacent light signals and a low-noise transformer-free dc-dc boost mini-circuit to power the APDs (ripple below 1.28 mV, 0-5 V input, 142 V and 12 mA output). We fabricated our APDs using the planar CMOS process so as to facilitate the post-CMOS integration of optical MEMS components such as the lenses. The APD arrays were arranged in unique circular patterns appropriate for detecting the specific fluorescently labelled protein spots in our study. The array-type APDs were designed so as to compensate for any alignment error as detected by a positional error signal algorithm. The condenser lens was used as a structure for light collection to enhance the fluorescent signals by about 25%. This element also helped to reduce the light loss due to surface absorption. We fabricated an inclined mirror to separate two adjacent fluorescent signals from different specimens. Excitation using evanescent waves helped reduce the interference of the excitation light source. This approach also reduced the number of required optical lenses and minimized the complexity of the structural design. We achieved detection floors for anti-rabbit IgG and Cy5 fluorescent dye as low as 0.5 ng/µl (~3.268 nM). We argue that the intrinsic nature of point-to-point and batch-detection methods as showcased in our chip offers advantages over the serial-scanning approach used in traditional scanner systems. In addition, our system is low cost and lightweight.

  11. Using Continuous In-situ Measurement of Fluorescence to Reveal Hot Spots and Hot Moments of Dissolved Organic Matter Dynamics in a Forested Watershed

    Science.gov (United States)

    Ryan, K. A.; Hosen, J. D.; Raymond, P. A.; Stubbins, A.; Shanley, J. B.

    2017-12-01

    River systems serve as net carbon exporters from land to the ocean, fueling downstream aquatic ecosystem food webs. Fluorescence signatures of aquatic organic matter can be used as a proxy for dissolved organic carbon (DOC) concentration and can characterize DOC composition, reactivity, and source to improve our understanding of ecological processes. In-situ measurement of fluorescence using fifteen-minute interval data logging allows greater temporal resolution than laboratory studies. However, in-situ data must be corrected for interferences from temperature, absorbance and turbidity changes occurring in the field. We installed multiparameter water quality sondes (Eureka Mantas) and in-situ fluorometers (Turner Designs Cyclops) at sites nested within streams and riparian zones in the Sleepers River Research Watershed in Vermont in 2017. We coupled these measurements with simultaneous intensive field sampling campaigns and laboratory analysis of DOC and fluorescence Excitation-Emission Matrices. The data loggers from the nested sites recorded fluorescence peaks responding to discharge events and tracked changes in fluorescence occurring from upstream to downstream sites. Laboratory results confirm a nonlinear, hysteretic relationship between discharge and DOC where peak DOC lags peak discharge. This hysteresis is predicted to be controlled by multiple flow paths and DOC sources (i.e. groundwater, overland flow). We conclude that continuous in-situ records of river water fluorescence can be used to inform ecological processes and test new hypotheses concerning dissolved organic matter dynamics in watersheds.

  12. Smartphone Cortex Controlled Real-Time Image Processing and Reprocessing for Concentration Independent LED Induced Fluorescence Detection in Capillary Electrophoresis.

    Science.gov (United States)

    Szarka, Mate; Guttman, Andras

    2017-10-17

    We present the application of a smartphone anatomy based technology in the field of liquid phase bioseparations, particularly in capillary electrophoresis. A simple capillary electrophoresis system was built with LED induced fluorescence detection and a credit card sized minicomputer to prove the concept of real time fluorescent imaging (zone adjustable time-lapse fluorescence image processor) and separation controller. The system was evaluated by analyzing under- and overloaded aminopyrenetrisulfonate (APTS)-labeled oligosaccharide samples. The open source software based image processing tool allowed undistorted signal modulation (reprocessing) if the signal was inappropriate for the actual detection system settings (too low or too high). The novel smart detection tool for fluorescently labeled biomolecules greatly expands dynamic range and enables retrospective correction for injections with unsuitable signal levels without the necessity to repeat the analysis.

  13. Elemental Composition of Mars Return Samples Using X-Ray Fluorescence Imaging at the National Synchrotron Light Source II

    Science.gov (United States)

    Thieme, J.; Hurowitz, J. A.; Schoonen, M. A.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    NSLS-II at BNL provides a unique and critical capability to perform assessments of the elemental composition and the chemical state of Mars returned samples using synchrotron radiation X-ray fluorescence imaging and X-ray absorption spectroscopy.

  14. Membranes and Fluorescence microscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2009-01-01

    Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence...

  15. Signals from fluorescent materials on the surface of silicon micro-strip sensors

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2018-01-01

    For the High-Luminosity Upgrade of the Large Hadron Collider at CERN, the ATLAS Inner Detector will be replaced with a new, all-silicon tracker (ITk). In order to minimise the amount of material in the ITk, circuit boards with readout electronics will be glued onto the active area of the sensor. Several adhesives, investigated to be used for the construction of detector modules, were found to become fluorescent when exposed to UV light. These adhesives could become a light source in the high-radiation environment of the ATLAS detector. The effect of fluorescent material covering the sensor surface in a high-radiation environment has been studied for a silicon micro-strip sensor using a micro-focused X-ray beam. By positioning the beam parallel to the sensor surfave and pointing it both inside the sensor and above the sensor surface inside the deposited glue, the sensor responses from direct hits and fluorescence can be compared with high precision. This contribution presents a setup to study the susceptibilit...

  16. Fluorescence lifetime imaging of skin cancer

    Science.gov (United States)

    Patalay, Rakesh; Talbot, Clifford; Munro, Ian; Breunig, Hans Georg; König, Karsten; Alexandrov, Yuri; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris

    2011-03-01

    Fluorescence intensity imaging and fluorescence lifetime imaging microscopy (FLIM) using two photon microscopy (TPM) have been used to study tissue autofluorescence in ex vivo skin cancer samples. A commercially available system (DermaInspect®) was modified to collect fluorescence intensity and lifetimes in two spectral channels using time correlated single photon counting and depth-resolved steady state measurements of the fluorescence emission spectrum. Uniquely, image segmentation has been used to allow fluorescence lifetimes to be calculated for each cell. An analysis of lifetime values obtained from a range of pigmented and non-pigmented lesions will be presented.

  17. Multimodal fluorescence imaging spectroscopy

    NARCIS (Netherlands)

    Stopel, Martijn H W; Blum, Christian; Subramaniam, Vinod; Engelborghs, Yves; Visser, Anthonie J.W.G.

    2014-01-01

    Multimodal fluorescence imaging is a versatile method that has a wide application range from biological studies to materials science. Typical observables in multimodal fluorescence imaging are intensity, lifetime, excitation, and emission spectra which are recorded at chosen locations at the sample.

  18. Comparison of LED and Conventional Fluorescence Microscopy for Detection of Acid Fast Bacilli in a Low-Incidence Setting

    Science.gov (United States)

    Minion, Jessica; Pai, Madhukar; Ramsay, Andrew; Menzies, Dick; Greenaway, Christina

    2011-01-01

    Introduction Light emitting diode fluorescence microscopes have many practical advantages over conventional mercury vapour fluorescence microscopes, which would make them the preferred choice for laboratories in both low- and high-resource settings, provided performance is equivalent. Methods In a nested case-control study, we compared diagnostic accuracy and time required to read slides with the Zeiss PrimoStar iLED, LW Scientific Lumin, and a conventional fluorescence microscope (Leica DMLS). Mycobacterial culture was used as the reference standard, and subgroup analysis by specimen source and organism isolated were performed. Results There was no difference in sensitivity or specificity between the three microscopes, and agreement was high for all comparisons and subgroups. The Lumin and the conventional fluorescence microscope were equivalent with respect to time required to read smears, but the Zeiss iLED was significantly time saving compared to both. Conclusions Light emitting diode microscopy should be considered by all tuberculosis diagnostic laboratories, including those in high income countries, as a replacement for conventional fluorescence microscopes. Our findings provide support to the recent World Health Organization policy recommending that conventional fluorescence microscopy be replaced by light emitting diode microscopy using auramine staining in all settings where fluorescence microscopy is currently used. PMID:21811622

  19. Comparison of LED and conventional fluorescence microscopy for detection of acid fast bacilli in a low-incidence setting.

    Directory of Open Access Journals (Sweden)

    Jessica Minion

    Full Text Available INTRODUCTION: Light emitting diode fluorescence microscopes have many practical advantages over conventional mercury vapour fluorescence microscopes, which would make them the preferred choice for laboratories in both low- and high-resource settings, provided performance is equivalent. METHODS: In a nested case-control study, we compared diagnostic accuracy and time required to read slides with the Zeiss PrimoStar iLED, LW Scientific Lumin, and a conventional fluorescence microscope (Leica DMLS. Mycobacterial culture was used as the reference standard, and subgroup analysis by specimen source and organism isolated were performed. RESULTS: There was no difference in sensitivity or specificity between the three microscopes, and agreement was high for all comparisons and subgroups. The Lumin and the conventional fluorescence microscope were equivalent with respect to time required to read smears, but the Zeiss iLED was significantly time saving compared to both. CONCLUSIONS: Light emitting diode microscopy should be considered by all tuberculosis diagnostic laboratories, including those in high income countries, as a replacement for conventional fluorescence microscopes. Our findings provide support to the recent World Health Organization policy recommending that conventional fluorescence microscopy be replaced by light emitting diode microscopy using auramine staining in all settings where fluorescence microscopy is currently used.

  20. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.

    Science.gov (United States)

    Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun

    2014-07-09

    Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.