WorldWideScience

Sample records for source high spatial

  1. High frequency seismic signal generated by landslides on complex topographies: from point source to spatially distributed sources

    Science.gov (United States)

    Mangeney, A.; Kuehnert, J.; Capdeville, Y.; Durand, V.; Stutzmann, E.; Kone, E. H.; Sethi, S.

    2017-12-01

    During their flow along the topography, landslides generate seismic waves in a wide frequency range. These so called landquakes can be recorded at very large distances (a few hundreds of km for large landslides). The recorded signals depend on the landslide seismic source and the seismic wave propagation. If the wave propagation is well understood, the seismic signals can be inverted for the seismic source and thus can be used to get information on the landslide properties and dynamics. Analysis and modeling of long period seismic signals (10-150s) have helped in this way to discriminate between different landslide scenarios and to constrain rheological parameters (e.g. Favreau et al., 2010). This was possible as topography poorly affects wave propagation at these long periods and the landslide seismic source can be approximated as a point source. In the near-field and at higher frequencies (> 1 Hz) the spatial extent of the source has to be taken into account and the influence of the topography on the recorded seismic signal should be quantified in order to extract information on the landslide properties and dynamics. The characteristic signature of distributed sources and varying topographies is studied as a function of frequency and recording distance.The time dependent spatial distribution of the forces applied to the ground by the landslide are obtained using granular flow numerical modeling on 3D topography. The generated seismic waves are simulated using the spectral element method. The simulated seismic signal is compared to observed seismic data from rockfalls at the Dolomieu Crater of Piton de la Fournaise (La Réunion).Favreau, P., Mangeney, A., Lucas, A., Crosta, G., and Bouchut, F. (2010). Numerical modeling of landquakes. Geophysical Research Letters, 37(15):1-5.

  2. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  3. Geo-Parcel Based Crop Identification by Integrating High Spatial-Temporal Resolution Imagery from Multi-Source Satellite Data

    Directory of Open Access Journals (Sweden)

    Yingpin Yang

    2017-12-01

    Full Text Available Geo-parcel based crop identification plays an important role in precision agriculture. It meets the needs of refined farmland management. This study presents an improved identification procedure for geo-parcel based crop identification by combining fine-resolution images and multi-source medium-resolution images. GF-2 images with fine spatial resolution of 0.8 m provided agricultural farming plot boundaries, and GF-1 (16 m and Landsat 8 OLI data were used to transform the geo-parcel based enhanced vegetation index (EVI time-series. In this study, we propose a piecewise EVI time-series smoothing method to fit irregular time profiles, especially for crop rotation situations. Global EVI time-series were divided into several temporal segments, from which phenological metrics could be derived. This method was applied to Lixian, where crop rotation was the common practice of growing different types of crops, in the same plot, in sequenced seasons. After collection of phenological features and multi-temporal spectral information, Random Forest (RF was performed to classify crop types, and the overall accuracy was 93.27%. Moreover, an analysis of feature significance showed that phenological features were of greater importance for distinguishing agricultural land cover compared to temporal spectral information. The identification results indicated that the integration of high spatial-temporal resolution imagery is promising for geo-parcel based crop identification and that the newly proposed smoothing method is effective.

  4. Monitoring Oilfield Operations and GHG Emissions Sources Using Object-based Image Analysis of High Resolution Spatial Imagery

    Science.gov (United States)

    Englander, J. G.; Brodrick, P. G.; Brandt, A. R.

    2015-12-01

    Fugitive emissions from oil and gas extraction have become a greater concern with the recent increases in development of shale hydrocarbon resources. There are significant gaps in the tools and research used to estimate fugitive emissions from oil and gas extraction. Two approaches exist for quantifying these emissions: atmospheric (or 'top down') studies, which measure methane fluxes remotely, or inventory-based ('bottom up') studies, which aggregate leakage rates on an equipment-specific basis. Bottom-up studies require counting or estimating how many devices might be leaking (called an 'activity count'), as well as how much each device might leak on average (an 'emissions factor'). In a real-world inventory, there is uncertainty in both activity counts and emissions factors. Even at the well level there are significant disagreements in data reporting. For example, some prior studies noted a ~5x difference in the number of reported well completions in the United States between EPA and private data sources. The purpose of this work is to address activity count uncertainty by using machine learning algorithms to classify oilfield surface facilities using high-resolution spatial imagery. This method can help estimate venting and fugitive emissions sources from regions where reporting of oilfield equipment is incomplete or non-existent. This work will utilize high resolution satellite imagery to count well pads in the Bakken oil field of North Dakota. This initial study examines an area of ~2,000 km2 with ~1000 well pads. We compare different machine learning classification techniques, and explore the impact of training set size, input variables, and image segmentation settings to develop efficient and robust techniques identifying well pads. We discuss the tradeoffs inherent to different classification algorithms, and determine the optimal algorithms for oilfield feature detection. In the future, the results of this work will be leveraged to be provide activity

  5. Tunable All Reflective Spatial Heterodyne Spectroscopy, A Technique For High Resolving Power Observation OI Defused Emission Line Sources

    Science.gov (United States)

    Hosseini, Seyedeh Sona

    The solar system presents a challenge to spectroscopic observers, because it is an astrophysically low energy environment populated with often angularly extended targets (e.g, interplanetary medium, comets, planetary upper atmospheres, and planet and satellite near space environments). Spectroscopy is a proven tool for determining compositional and other properties of remote objects. Narrow band imaging and low resolving spectroscopic measurements provide information about composition, photochemical evolution, energy distribution and density. The extension to high resolving power provides further access to temperature, velocity, isotopic ratios, separation of blended sources, and opacity effects. The drawback of high-resolution spectroscopy comes from the instrumental limitations of lower throughput, the necessity of small entrance apertures, sensitivity, field of view, and large physical instrumental size. These limitations quickly become definitive for faint and/or extended targets and for spacecraft encounters. An emerging technique with promise for the study of faint, extended sources at high resolving power is the all-reflective form of the Spatial Heterodyne Spectrometer (SHS). SHS instruments are compact and naturally possess both high etendue and high resolving power. To achieve similar spectral grasp, grating spectrometers require big telescopes. SHS is a common-path beam Fourier transform interferometer that produces Fizeau fringe pattern for all other wavelengths except the tuned wavelength. Compared to similar Fourier transform Spectrometers (FTS), SHS has considerably relaxed optical tolerances that make it easier to use in the visible and UV spectral ranges. The large etendue of SHS instruments makes them ideal for observations of extended, low surface brightness, isolated emission line sources, while their intrinsically high spectral resolution enables the study of the dynamical and spectral characteristics described above. SHS also combines very

  6. The nature of the Galactic Center source IRS 13 revealed by high spatial resolution in the infrared

    Science.gov (United States)

    Maillard, J. P.; Paumard, T.; Stolovy, S. R.; Rigaut, F.

    2004-08-01

    High spatial resolution observations in the 1 to 3.5 μm/ region of the Galactic Center source known historically as IRS 13 are presented. They include ground-based adaptive optics images in the H, Kp (2.12/0.4 μm) and L bands, HST-NICMOS data in filters between 1.1 and 2.2 μm, and integral field spectroscopic data from BEAR, an Imaging FTS, in the He I 2.06 μm/ and the Brγ line regions. Analysis of all these data provides a completely new picture of the main component, IRS 13E, which appears as a cluster of seven individual stars within a projected diameter of ˜0.5 arcsec (0.02 pc). The brightest sources, 13E1, 13E2, 13E3 which is detected as a binary, and 13E4, are all massive stars of different type. The star 13E1 is a luminous, blue object, with no detected emission line. 13E2 and 13E4 are two hot, high-mass emission line stars, 13E2 being at the WR stage and 13E4 a massive O-type star. In contrast, 13E3A and B are extremely red objects, proposed as other examples of dusty WR stars, like IRS 21 (Tanner et al. \\cite{tanner}). All these sources have a common westward proper motion (Ott et al. \\cite{ott2}) indicating they are bounded. Two other sources, detected after deconvolution of the AO images in the H and Kp bands, are also identified. One, that we call 13E5, is a red source similar to 13E3A and B, while the other one, 13E6, is probably a main sequence O star in front of the cluster. Considering this exceptional concentration of comoving massive hot stars, IRS 13E is proposed as the remaining core of a massive star cluster, which could harbor an intermediate-mass black hole (IMBH) (Portegies Zwart & McMillan \\cite{zwart2)} of ˜1300 M⊙. This detection plays in favor of a scenario, first suggested by Gerhard (\\cite{gerhard}), in which the helium stars and the other hot stars in the central parsec originate from the stripping of a massive cluster formed several tens of pc from the center. This cluster would have spiraled towards SgrA*, and IRS 13E

  7. Developing a bright 17 keV x-ray source for probing high-energy-density states of matter at high spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Landen, O. L.; Wehrenberg, C. E.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California, 94551 (United States); Hohenberger, M.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-04-15

    A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb He{sub α} x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a “prepulse” shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.

  8. Probing the Spatial Distribution of the Interstellar Dust Medium by High Angular Resolution X-ray Halos of Point Sources

    Science.gov (United States)

    Xiang, Jingen

    X-rays are absorbed and scattered by dust grains when they travel through the interstellar medium. The scattering within small angles results in an X-ray ``halo''. The halo properties are significantly affected by the energy of radiation, the optical depth of the scattering, the grain size distributions and compositions, and the spatial distribution of dust along the line of sight (LOS). Therefore analyzing the X-ray halo properties is an important tool to study the size distribution and spatial distribution of interstellar grains, which plays a central role in the astrophysical study of the interstellar medium, such as the thermodynamics and chemistry of the gas and the dynamics of star formation. With excellent angular resolution, good energy resolution and broad energy band, the Chandra ACIS is so far the best instrument for studying the X-ray halos. But the direct images of bright sources obtained with ACIS usually suffer from severe pileup which prevents us from obtaining the halos in small angles. We first improve the method proposed by Yao et al to resolve the X-ray dust scattering halos of point sources from the zeroth order data in CC-mode or the first order data in TE mode with Chandra HETG/ACIS. Using this method we re-analyze the Cygnus X-1 data observed with Chandra. Then we studied the X-ray dust scattering halos around 17 bright X-ray point sources using Chandra data. All sources were observed with the HETG/ACIS in CC-mode or TE-mode. Using the interstellar grain models of WD01 model and MRN model to fit the halo profiles, we get the hydrogen column densities and the spatial distributions of the scattering dust grains along the line of sights (LOS) to these sources. We find there is a good linear correlation not only between the scattering hydrogen column density from WD01 model and the one from MRN model, but also between N_{H} derived from spectral fits and the one derived from the grain models WD01 and MRN (except for GX 301-2 and Vela X-1): N

  9. Calculation of spatial distribution of the EURACOS II converter source

    International Nuclear Information System (INIS)

    Santo, A.C.F. de

    1985-01-01

    It is obtained the neutron spatial flux from the EURACOS (Enriched Uranium Converter Source) device, adjusted to experimental measures. The EURACOS device is a converter source which is constituted a circle plate of highly enriched uranium (90%). The converter provides an intense source of fast neutrons which has the energetic spectrum near to the fission spectrum. (M.C.K.) [pt

  10. Generation of new spatial and temporal coherent states using VECSEL technology: VORTEX, high order Laguerre-Gauss mode, continuum source

    Science.gov (United States)

    Sellahi, Mohamed; Seghilani, Mohamed Seghir; Sagnes, Isabelle; Beaudoin, Gregoire; Lafosse, Xavier; Legratiet, Luc; Lalanne, Philippe; Myara, Mikhal; Garnache, Arnaud

    2017-11-01

    Since years, the VeCSEL concept is pointed out as a technology of choice for beyond-state-of-the-art laser light sources. The targeted coherent state in CW is typically the common gaussian TEM00, single frequency, linearly polarized lightstate. In this work, we take advantage of the VeCSEL technology for the generation of other kinds of coherent states, thanks to the insertion of intracavity functions, such as low-loss intensity and phase filters integrated on a semiconductor chip. This technological development permitted to demonstrate very pure high-order Laguerre-Gauss mode, both degenerate and non-degenerate(vortex)modes, preserving the coherence properties of usual TEM00 VeCSELs. This technology paves the way for the generation of other coherences (Bessel beams) or new functionnalities (wavelength filtering, etc.). We also explore new time domain coherence : owing to a high gain semiconductor chip design and the insertion of intracavity AOM, we demonstrated the first Frequecy-Shifted-Feedback VeCSEL, with a broadband coherence state as wide as 300 GHz.

  11. Tunable Reflective Spatial Heterodyne Spectrometer: A Technique for High Resolving Power, Wide Field Of View Observation Of Diffuse Emission Line Sources

    Science.gov (United States)

    Hosseini, Seyedeh Sona

    The purpose of this dissertation is to discuss the need for new technology in broadband high-resolution spectroscopy based on the emerging technique of Spatial Heterodyne Spectroscopy (SHS) and to propose new solutions that should enhance and generalize this technology to other fields. Spectroscopy is a proven tool for determining compositional and other properties of remote objects. Narrow band imaging and low resolving spectroscopic measurements provide information about composition, photochemical evolution, energy distribution and density. The extension to high resolving power provides further access to temperature, velocity, isotopic ratios, separation of blended sources, and opacity effects. In current high resolving power devices, the drawback of high-resolution spectroscopy is bound to the instrumental limitations of lower throughput, the necessity of small entrance apertures, sensitivity, field of view, and large physical instrumental size. These limitations quickly become handicapping for observation of faint and/or extended targets and for spacecraft encounters. A technique with promise for the study of faint and extended sources at high resolving power is the reflective format of the Spatial Heterodyne Spectrometer (SHS). SHS instruments are compact and naturally tailored for both high etendue (defined in section 2.2.5) and high resolving power. In contrast, to achieve similar spectral grasp, grating spectrometers require large telescopes. For reference, SHS is a cyclical interferometer that produces Fizeau fringe pattern for all other wavelengths except the tuned wavelength. The large etendue obtained by SHS instruments makes them ideal for observations of extended, low surface brightness, isolated emission line sources, while their intrinsically high spectral resolution enables one to study the dynamical and physical properties described above. This document contains four chapters. Chapter 1, introduces a class of scientific targets that formerly have

  12. Transplantation of epiphytic bioaccumulators (Tillandsia capillaris) for high spatial resolution biomonitoring of trace elements and point sources deconvolution in a complex mining/smelting urban context

    Science.gov (United States)

    Goix, Sylvaine; Resongles, Eléonore; Point, David; Oliva, Priscia; Duprey, Jean Louis; de la Galvez, Erika; Ugarte, Lincy; Huayta, Carlos; Prunier, Jonathan; Zouiten, Cyril; Gardon, Jacques

    2013-12-01

    Monitoring atmospheric trace elements (TE) levels and tracing their source origin is essential for exposure assessment and human health studies. Epiphytic Tillandsia capillaris plants were used as bioaccumulator of TE in a complex polymetallic mining/smelting urban context (Oruro, Bolivia). Specimens collected from a pristine reference site were transplanted at a high spatial resolution (˜1 sample/km2) throughout the urban area. About twenty-seven elements were measured after a 4-month exposure, also providing new information values for reference material BCR482. Statistical power analysis for this biomonitoring mapping approach against classical aerosols surveys performed on the same site showed the better aptitude of T. Capillaris to detect geographical trend, and to deconvolute multiple contamination sources using geostatistical principal component analysis. Transplanted specimens in the vicinity of the mining and smelting areas were characterized by extreme TE accumulation (Sn > Ag > Sb > Pb > Cd > As > W > Cu > Zn). Three contamination sources were identified: mining (Ag, Pb, Sb), smelting (As, Sn) and road traffic (Zn) emissions, confirming results of previous aerosol survey.

  13. High current ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.

    1989-06-01

    The concept of high current ion source is both relative and evolutionary. Within the domain of one particular kind of ion source technology a current of microamperers might be 'high', while in another area a current of 10 Amperes could 'low'. Even within the domain of a single ion source type, what is considered high current performance today is routinely eclipsed by better performance and higher current output within a short period of time. Within their fields of application, there is a large number of kinds of ion sources that can justifiably be called high current. Thus, as a very limited example only, PIGs, Freemen sources, ECR sources, duoplasmatrons, field emission sources, and a great many more all have their high current variants. High current ion beams of gaseous and metallic species can be generated in a number of different ways. Ion sources of the kind developed at various laboratories around the world for the production of intense neutral beams for controlled fusion experiments are used to form large area proton deuteron beams of may tens of Amperes, and this technology can be used for other applications also. There has been significant progress in recent years in the use of microwave ion sources for high current ion beam generation, and this method is likely to find wide application in various different field application. Finally, high current beams of metal ions can be produced using metal vapor vacuum arc ion source technology. After a brief consideration of high current ion source design concepts, these three particular methods are reviewed in this paper

  14. Aerosol characterization over the southeastern United States using high resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition, sources, and organic nitrates

    Science.gov (United States)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-04-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particles (NR-PM1) in the southeastern US. Measurements were performed in both rural and urban sites in the greater Atlanta area, GA and Centreville, AL for approximately one year, as part of Southeastern Center of Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important but not dominant contributions to total OA in urban sites. Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA (Isoprene-OA) is only deconvolved in warmer months and contributes 18-36% of total OA. The presence of Isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79%) of OA in all sites. MO-OOA correlates well with ozone in summer, but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based on the HR-ToF-AMS measurements, we estimate that the nitrate functionality from organic nitrates

  15. Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions

    Science.gov (United States)

    Ganesan, A. L.; Stell, A. C.; Gedney, N.; Comyn-Platt, E.; Hayman, G.; Rigby, M.; Poulter, B.; Hornibrook, E. R. C.

    2018-04-01

    We present the first spatially resolved wetland δ13C(CH4) source signature map based on data characterizing wetland ecosystems and demonstrate good agreement with wetland signatures derived from atmospheric observations. The source signature map resolves a latitudinal difference of 10‰ between northern high-latitude (mean -67.8‰) and tropical (mean -56.7‰) wetlands and shows significant regional variations on top of the latitudinal gradient. We assess the errors in inverse modeling studies aiming to separate CH4 sources and sinks by comparing atmospheric δ13C(CH4) derived using our spatially resolved map against the common assumption of globally uniform wetland δ13C(CH4) signature. We find a larger interhemispheric gradient, a larger high-latitude seasonal cycle, and smaller trend over the period 2000-2012. The implication is that erroneous CH4 fluxes would be derived to compensate for the biases imposed by not utilizing spatially resolved signatures for the largest source of CH4 emissions. These biases are significant when compared to the size of observed signals.

  16. Ionizing nightglow: sources, intensity, and spatial distribution

    International Nuclear Information System (INIS)

    Young, J.M.; Troy, B.E. Jr.; Johnson, C.Y.; Holmes, J.C.

    1975-01-01

    Photometers carried aboard an Aerobee rocket mapped the ultraviolet night sky at White Sands, New Mexico. Maps for five 300 A passbands in the wavelength range 170 to 1400 A reveal spatial radiation patterns unique to each spectral subregion. The major ultraviolet features seen in these maps are ascribed to a variety of sources: 1) solar Lyman α (1216 A) and Lyman β (1026 A), resonantly scattered by geocoronal hydrogen; 2) solar HeII (304 A) resonantly scattered by ionized helium in the Earth's plasmasphere; 3) solar HeI (584 A) resonantly scattered by neutral helium in the interstellar wind and Doppler shifted so that it penetrates the Earth's helium blanket; and 4) starlight in the 912 to 1400 A band, primarily from early-type stars in the Orion region. Not explained are the presence of small, but measurable, albedo signals observed near the peak of flight. Intensities vary from several kilorayleighs for Lyman α to a few rayleighs for HeII. (auth)

  17. High speed atom source

    International Nuclear Information System (INIS)

    Hoshino, Hitoshi.

    1990-01-01

    In a high speed atom source, since the speed is not identical between ions and electrons, no sufficient neutralizing effect for ionic rays due to the mixing of the ionic rays and the electron rays can be obtained failing to obtain high speed atomic rays at high density. In view of the above, a speed control means is disposed for equalizing the speed of ions forming ionic rays and the speed of electrons forming electron rays. Further, incident angle of the electron rays and/or ionic rays to a magnet or an electrode is made variable. As a result, the relative speed between the ions and the electrons to the processing direction is reduced to zero, in which the probability of association between the ions and the electrons due to the coulomb force is increased to improve the neutralizing efficiency to easily obtain fine and high density high speed electron rays. Further, by varying the incident angle, a track capable of obtaining an ideal mixing depending on the energy of the neutralized ionic rays is formed. Since the high speed electron rays has such high density, they can be irradiated easily to the minute region of the specimen. (N.H.)

  18. Perceived loudness of spatially distributed sound sources

    DEFF Research Database (Denmark)

    Song, Woo-keun; Ellermeier, Wolfgang; Minnaar, Pauli

    2005-01-01

    psychoacoustic attributes into account. Therefore, a method for deriving loudness maps was developed in an earlier study [Song, Internoise2004, paper 271]. The present experiment investigates to which extent perceived loudness depends on the distribution of individual sound sources. Three loudspeakers were...... positioned 1.5 m from the centre of the listener’s head, one straight ahead, and two 10 degrees to the right and left, respectively. Six participants matched the loudness of either one, or two simultaneous sounds (narrow-band noises with 1-kHz, and 3.15-kHz centre frequencies) to a 2-kHz, 60-dB SPL narrow......-band noise placed in the frontal loudspeaker. The two sounds were either originating from the central speaker, or from the two offset loudspeakers. It turned out that the subjects perceived the noises to be softer when they were distributed in space. In addition, loudness was calculated from the recordings...

  19. Atomic processes and equation of state of high Z plasmas for EUV sources and their effects on the spatial and temporal evolution of the plasmas

    Science.gov (United States)

    Sasaki, Akira; Sunahara, Atushi; Furukawa, Hiroyuki; Nishihara, Katsunobu; Nishikawa, Takeshi; Koike, Fumihiro

    2016-03-01

    Laser-produced plasma (LPP) extreme ultraviolet (EUV) light sources have been intensively investigated due to potential application to next-generation semiconductor technology. Current studies focus on the atomic processes and hydrodynamics of plasmas to develop shorter wavelength sources at λ = 6.x nm as well as to improve the conversion efficiency (CE) of λ = 13.5 nm sources. This paper examines the atomic processes of mid-z elements, which are potential candidates for λ = 6.x nm source using n=3-3 transitions. Furthermore, a method to calculate the hydrodynamics of the plasmas in terms of the initial interaction between a relatively weak prepulse laser is presented.

  20. Comparison of performance of object-based image analysis techniques available in open source software (Spring and Orfeo Toolbox/Monteverdi) considering very high spatial resolution data

    Science.gov (United States)

    Teodoro, Ana C.; Araujo, Ricardo

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for remote sensing applications is becoming more frequent. However, this type of information can result in several software problems related to the huge amount of data available. Object-based image analysis (OBIA) has proven to be superior to pixel-based analysis for very high-resolution images. The main objective of this work was to explore the potentialities of the OBIA methods available in two different open source software applications, Spring and OTB/Monteverdi, in order to generate an urban land cover map. An orthomosaic derived from UAVs was considered, 10 different regions of interest were selected, and two different approaches were followed. The first one (Spring) uses the region growing segmentation algorithm followed by the Bhattacharya classifier. The second approach (OTB/Monteverdi) uses the mean shift segmentation algorithm followed by the support vector machine (SVM) classifier. Two strategies were followed: four classes were considered using Spring and thereafter seven classes were considered for OTB/Monteverdi. The SVM classifier produces slightly better results and presents a shorter processing time. However, the poor spectral resolution of the data (only RGB bands) is an important factor that limits the performance of the classifiers applied.

  1. Source data supported high resolution carbon emissions inventory for urban areas of the Beijing-Tianjin-Hebei region: Spatial patterns, decomposition and policy implications.

    Science.gov (United States)

    Cai, Bofeng; Li, Wanxin; Dhakal, Shobhakar; Wang, Jianghao

    2018-01-15

    This paper developed internationally compatible methods for delineating boundaries of urban areas in China. By integrating emission source data with existing official statistics as well as using rescaling methodology of data mapping for 1 km grid, the authors constructed high resolution emission gridded data in Beijing-Tianjin-Hebei (Jing-Jin-Ji) region in China for 2012. Comparisons between urban and non-urban areas of carbon emissions from industry, agriculture, household and transport exhibited regional disparities as well as sectoral differences. Except for the Hebei province, per capita total direct carbon emissions from urban extents in Beijing and Tianjin were both lower than provincial averages, indicating the climate benefit of urbanization, comparable to results from developed countries. Urban extents in the Hebei province were mainly industrial centers while those in Beijing and Tianjin were more service oriented. Further decomposition analysis revealed population to be a common major driver for increased carbon emissions but climate implications of urban design, economic productivity of land use, and carbon intensity of GDP were both cluster- and sector-specific. This study disapproves the one-size-fits-all solution for carbon mitigation but calls for down-scaled analysis of carbon emissions and formulation of localized carbon reduction strategies in the Jing-Jin-Ji as well as other regions in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Competing sound sources reveal spatial effects in cortical processing.

    Directory of Open Access Journals (Sweden)

    Ross K Maddox

    Full Text Available Why is spatial tuning in auditory cortex weak, even though location is important to object recognition in natural settings? This question continues to vex neuroscientists focused on linking physiological results to auditory perception. Here we show that the spatial locations of simultaneous, competing sound sources dramatically influence how well neural spike trains recorded from the zebra finch field L (an analog of mammalian primary auditory cortex encode source identity. We find that the location of a birdsong played in quiet has little effect on the fidelity of the neural encoding of the song. However, when the song is presented along with a masker, spatial effects are pronounced. For each spatial configuration, a subset of neurons encodes song identity more robustly than others. As a result, competing sources from different locations dominate responses of different neural subpopulations, helping to separate neural responses into independent representations. These results help elucidate how cortical processing exploits spatial information to provide a substrate for selective spatial auditory attention.

  3. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.

  4. High brightness ion source

    International Nuclear Information System (INIS)

    Dreyfus, R.W.; Hodgson, R.T.

    1975-01-01

    A high brightness ion beam is obtainable by using lasers to excite atoms or molecules from the ground state to an ionized state in increments, rather than in one step. The spectroscopic resonances of the atom or molecule are used so that relatively long wavelength, low power lasers can be used to obtain such ion beam

  5. High current density ion source

    International Nuclear Information System (INIS)

    King, H.J.

    1977-01-01

    A high-current-density ion source with high total current is achieved by individually directing the beamlets from an electron bombardment ion source through screen and accelerator electrodes. The openings in these screen and accelerator electrodes are oriented and positioned to direct the individual beamlets substantially toward a focus point. 3 figures, 1 table

  6. Spatial distribution of saline water and possible sources of intrusion ...

    African Journals Online (AJOL)

    The spatial distribution of saline water and possible sources of intrusion into Lekki lagoon and transitional effects on the lacustrine ichthyofaunal characteristics were studied during March, 2006 and February, 2008. The water quality analysis indicated that, salinity has drastically increased recently in the lagoon (0.007 to ...

  7. Precise Mapping Of A Spatially Distributed Radioactive Source

    International Nuclear Information System (INIS)

    Beck, A.; Caras, I.; Piestum, S.; Sheli, E.; Melamud, Y.; Berant, S.; Kadmon, Y.; Tirosh, D.

    1999-01-01

    Spatial distribution measurement of radioactive sources is a routine task in the nuclear industry. The precision of each measurement depends upon the specific application. However, the technological edge of this precision is motivated by the production of standards for calibration. Within this definition, the most demanding field is the calibration of standards for medical equipment. In this paper, a semi-empirical method for controlling the measurement precision is demonstrated, using a relatively simple laboratory apparatus. The spatial distribution of the source radioactivity is measured as part of the quality assurance tests, during the production of flood sources. These sources are further used in calibration of medical gamma cameras. A typical flood source is a 40 x 60 cm 2 plate with an activity of 10 mCi (or more) of 57 Co isotope. The measurement set-up is based on a single NaI(Tl) scintillator with a photomultiplier tube, moving on an X Y table which scans the flood source. In this application the source is required to have a uniform activity distribution over its surface

  8. Coded aperture imaging of alpha source spatial distribution

    International Nuclear Information System (INIS)

    Talebitaher, Alireza; Shutler, Paul M.E.; Springham, Stuart V.; Rawat, Rajdeep S.; Lee, Paul

    2012-01-01

    The Coded Aperture Imaging (CAI) technique has been applied with CR-39 nuclear track detectors to image alpha particle source spatial distributions. The experimental setup comprised: a 226 Ra source of alpha particles, a laser-machined CAI mask, and CR-39 detectors, arranged inside a vacuum enclosure. Three different alpha particle source shapes were synthesized by using a linear translator to move the 226 Ra source within the vacuum enclosure. The coded mask pattern used is based on a Singer Cyclic Difference Set, with 400 pixels and 57 open square holes (representing ρ = 1/7 = 14.3% open fraction). After etching of the CR-39 detectors, the area, circularity, mean optical density and positions of all candidate tracks were measured by an automated scanning system. Appropriate criteria were used to select alpha particle tracks, and a decoding algorithm applied to the (x, y) data produced the de-coded image of the source. Signal to Noise Ratio (SNR) values obtained for alpha particle CAI images were found to be substantially better than those for corresponding pinhole images, although the CAI-SNR values were below the predictions of theoretical formulae. Monte Carlo simulations of CAI and pinhole imaging were performed in order to validate the theoretical SNR formulae and also our CAI decoding algorithm. There was found to be good agreement between the theoretical formulae and SNR values obtained from simulations. Possible reasons for the lower SNR obtained for the experimental CAI study are discussed.

  9. Spatial distribution of carbon sources and sinks in Canada's forests

    International Nuclear Information System (INIS)

    Chen, Jing M.; Weimin, Ju; Liu, Jane; Cihlar, Josef; Chen, Wenjun

    2003-01-01

    Annual spatial distributions of carbon sources and sinks in Canada's forests at 1 km resolution are computed for the period from 1901 to 1998 using ecosystem models that integrate remote sensing images, gridded climate, soils and forest inventory data. GIS-based fire scar maps for most regions of Canada are used to develop a remote sensing algorithm for mapping and dating forest burned areas in the 25 yr prior to 1998. These mapped and dated burned areas are used in combination with inventory data to produce a complete image of forest stand age in 1998. Empirical NPP age relationships were used to simulate the annual variations of forest growth and carbon balance in 1 km pixels, each treated as a homogeneous forest stand. Annual CO 2 flux data from four sites were used for model validation. Averaged over the period 1990-1998, the carbon source and sink map for Canada's forests show the following features: (i) large spatial variations corresponding to the patchiness of recent fire scars and productive forests and (ii) a general south-to-north gradient of decreasing carbon sink strength and increasing source strength. This gradient results mostly from differential effects of temperature increase on growing season length, nutrient mineralization and heterotrophic respiration at different latitudes as well as from uneven nitrogen deposition. The results from the present study are compared with those of two previous studies. The comparison suggests that the overall positive effects of non-disturbance factors (climate, CO 2 and nitrogen) outweighed the effects of increased disturbances in the last two decades, making Canada's forests a carbon sink in the 1980s and 1990s. Comparisons of the modeled results with tower-based eddy covariance measurements of net ecosystem exchange at four forest stands indicate that the sink values from the present study may be underestimated

  10. Spatial layout optimization design of multi-type LEDs lighting source based on photoelectrothermal coupling theory

    Science.gov (United States)

    Xue, Lingyun; Li, Guang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Multiple LED-based spectral synthesis technology has been widely used in the fields of solar simulator, color mixing, and artificial lighting of plant factory and so on. Generally, amounts of LEDs are spatially arranged with compact layout to obtain the high power density output. Mutual thermal spreading among LEDs will produce the coupled thermal effect which will additionally increase the junction temperature of LED. Affected by the Photoelectric thermal coupling effect of LED, the spectrum of LED will shift and luminous efficiency will decrease. Correspondingly, the spectral synthesis result will mismatch. Therefore, thermal management of LED spatial layout plays an important role for multi-LEDs light source system. In the paper, the thermal dissipation network topology model considering the mutual thermal spreading effect among the LEDs is proposed for multi-LEDs system with various types of power. The junction temperature increment cased by the thermal coupling has the great relation with the spatial arrangement. To minimize the thermal coupling effect, an optimized method of LED spatial layout for the specific light source structure is presented and analyzed. The results showed that layout of LED with high-power are arranged in the corner and low-power in the center. Finally, according to this method, it is convenient to determine the spatial layout of LEDs in a system having any kind of light source structure, and has the advantages of being universally applicable to facilitate adjustment.

  11. Classification of High Spatial Resolution, Hyperspectral ...

    Science.gov (United States)

    EPA announced the availability of the final report,Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result of a collaborative effort among an interdisciplinary team of scientists with the U.S. Environmental Protection Agency's (U.S. EPA's) Office of Research and Development in Cincinnati, Ohio. A primary goal of this project is to enhance the use of geography and spatial analytic tools in risk assessment, and to improve the scientific basis for risk management decisions affecting drinking water and water quality. The land use/land cover classification is derived from 82 flight lines of Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery acquired from July 24 through August 9, 2002 via fixed-wing aircraft.

  12. High Intensity Source Laboratory (HISL)

    International Nuclear Information System (INIS)

    1992-01-01

    The High Intensity Source Laboratory (HISL) is a laboratory facility operated for the US Department of Energy (DOE) by EG ampersand G, Energy Measurements (EG ampersand G/EM). This document is intended as an overview -- primarily for external users -- of the general purposes and capabilities of HISL; numerous technical details are beyond its scope. Moreover, systems at HISL are added, deleted, and modified to suit current needs, and upgraded with continuing development. Consequently, interested parties are invited to contact the HISL manager for detailed, current, technical, and administrative information. The HISL develops and operates pulsed radiation sources with energies, intensities, and pulse widths appropriate for several applications. Principal among these are development, characterization, and calibration of various high-bandwidth radiation detectors and diagnostic systems. Hardness/vulnerability of electronic or other sensitive components to radiation is also tested. In this connection, source development generally focuses on attending (1) the highest possible intensities with (2) reasonably short pulse widths and (3) comprehensive output characterization

  13. Spatial Dmbs Architecture for a Free and Open Source Bim

    Science.gov (United States)

    Logothetis, S.; Valari, E.; Karachaliou, E.; Stylianidis, E.

    2017-08-01

    Recent research on the field of Building Information Modelling (BIM) technology, revealed that except of a few, accessible and free BIM viewers there is a lack of Free & Open Source Software (FOSS) BIM software for the complete BIM process. With this in mind and considering BIM as the technological advancement of Computer-Aided Design (CAD) systems, the current work proposes the use of a FOSS CAD software in order to extend its capabilities and transform it gradually into a FOSS BIM platform. Towards this undertaking, a first approach on developing a spatial Database Management System (DBMS) able to store, organize and manage the overall amount of information within a single application, is presented.

  14. SPATIAL DMBS ARCHITECTURE FOR A FREE AND OPEN SOURCE BIM

    Directory of Open Access Journals (Sweden)

    S. Logothetis

    2017-08-01

    Full Text Available Recent research on the field of Building Information Modelling (BIM technology, revealed that except of a few, accessible and free BIM viewers there is a lack of Free & Open Source Software (FOSS BIM software for the complete BIM process. With this in mind and considering BIM as the technological advancement of Computer-Aided Design (CAD systems, the current work proposes the use of a FOSS CAD software in order to extend its capabilities and transform it gradually into a FOSS BIM platform. Towards this undertaking, a first approach on developing a spatial Database Management System (DBMS able to store, organize and manage the overall amount of information within a single application, is presented.

  15. High power microwave source development

    Science.gov (United States)

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  16. Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates

    Science.gov (United States)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-07-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particulate matter (NR-PM1) in the southeastern USA. Measurements were performed in both rural and urban sites in the greater Atlanta area, Georgia (GA), and Centreville, Alabama (AL), for approximately 1 year as part of Southeastern Center for Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR-PM1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important, but not dominant, contributions to total OA in urban sites (i.e., 21-38 % of total OA depending on site and season). Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA factor (isoprene-OA) is only deconvolved in warmer months and contributes 18-36 % of total OA. The presence of isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79 %) of OA in all sites. MO-OOA correlates well with ozone in summer but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based

  17. Spatial and frequency domain ring source models for the single muscle fiber action potential

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; R., Plonsey

    1994-01-01

    In the paper, single-fibre models for the extracellular action potential are developed that will allow the potential to the evaluated at an arbitrary field point in the extracellular space. Fourier-domain models are restricted in that they evaluate potentials at equidistant points along a line...... parallel to the fibre axis. Consequently, they cannot easily evaluate the potential at the boundary nodes of a boundary-element electrode model. The Fourier-domain models employ axial-symmetric ring source models, and thereby provide higher accuracy that the line source model, where the source is lumped...... including anisotropy show that the spatial models require extreme care in the integration procedure owing to the singularity in the weighting functions. With adequate sampling, the spatial models can evaluate extracellular potentials with high accuracy....

  18. High Intensity Polarized Electron Sources

    International Nuclear Information System (INIS)

    Poelker, Benard; Adderley, Philip; Brittian, Joshua; Clark, J.; Grames, Joseph; Hansknecht, John; McCarter, James; Stutzman, Marcy; Suleiman, Riad; Surles-law, Kenneth

    2008-01-01

    During the 1990s, at numerous facilities world wide, extensive RandD devoted to constructing reliable GaAs photoguns helped ensure successful accelerator-based nuclear and high-energy physics programs using spin polarized electron beams. Today, polarized electron source technology is considered mature, with most GaAs photoguns meeting accelerator and experiment beam specifications in a relatively trouble-free manner. Proposals for new collider facilities however, require electron beams with parameters beyond today's state-of-the-art and serve to renew interest in conducting polarized electron source RandD. And at CEBAF/Jefferson Lab, there is an immediate pressing need to prepare for new experiments that require considerably more beam current than before. One experiment in particular?Q-weak, a parity violation experiment that will look for physics beyond the Standard Model?requires 180 uA average current at polarization >80% for a duration of one year, with run-averaged helicity correlate

  19. High current polarized electron source

    Science.gov (United States)

    Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.

    2018-05-01

    Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.

  20. Search for Spatially Extended Fermi-LAT Sources Using Two Years of Data

    Energy Technology Data Exchange (ETDEWEB)

    Lande, Joshua; Ackermann, Markus; Allafort, Alice; Ballet, Jean; Bechtol, Keith; Burnett, Toby; Cohen-Tanugi, Johann; Drlica-Wagner, Alex; Funk, Stefan; Giordano, Francesco; Grondin, Marie-Helene; Kerr, Matthew; Lemoine-Goumard, Marianne

    2012-07-13

    Spatial extension is an important characteristic for correctly associating {gamma}-ray-emitting sources with their counterparts at other wavelengths and for obtaining an unbiased model of their spectra. We present a new method for quantifying the spatial extension of sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi). We perform a series of Monte Carlo simulations to validate this tool and calculate the LAT threshold for detecting the spatial extension of sources. We then test all sources in the second Fermi -LAT catalog (2FGL) for extension. We report the detection of seven new spatially extended sources.

  1. Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Levy Jonathan I

    2007-05-01

    Full Text Available Abstract Background There has been growing interest among exposure assessors, epidemiologists, and policymakers in the concept of "hot spots", or more broadly, the "spatial extent" of impacts from traffic-related air pollutants. This review attempts to quantitatively synthesize findings about the spatial extent under various circumstances. Methods We include both the peer-reviewed literature and government reports, and focus on four significant air pollutants: carbon monoxide, benzene, nitrogen oxides, and particulate matter (including both ultrafine particle counts and fine particle mass. From the identified studies, we extracted information about significant factors that would be hypothesized to influence the spatial extent within the study, such as the study type (e.g., monitoring, air dispersion modeling, GIS-based epidemiological studies, focus on concentrations or health risks, pollutant under study, background concentration, emission rate, and meteorological factors, as well as the study's implicit or explicit definition of spatial extent. We supplement this meta-analysis with results from some illustrative atmospheric dispersion modeling. Results We found that pollutant characteristics and background concentrations best explained variability in previously published spatial extent estimates, with a modifying influence of local meteorology, once some extreme values based on health risk estimates were removed from the analysis. As hypothesized, inert pollutants with high background concentrations had the largest spatial extent (often demonstrating no significant gradient, and pollutants formed in near-source chemical reactions (e.g., nitrogen dioxide had a larger spatial extent than pollutants depleted in near-source chemical reactions or removed through coagulation processes (e.g., nitrogen oxide and ultrafine particles. Our illustrative dispersion model illustrated the complex interplay of spatial extent definitions, emission rates

  2. High Efficiency Ka-Band Spatial Combiner

    Directory of Open Access Journals (Sweden)

    D. Passi

    2014-12-01

    Full Text Available A Ka-Band, High Efficiency, Small Size Spatial Combiner (SPC is proposed in this paper, which uses an innovatively matched quadruple Fin Lines to microstrip (FLuS transitions. At the date of this paper and at the Author's best knowledge no such FLuS innovative transitions have been reported in literature before. These transitions are inserted into a WR28 waveguide T-junction, in order to allow the integration of 16 Monolithic Microwave Integrated Circuit (MMIC Solid State Power Amplifiers (SSPA's. A computational electromagnetic model using the finite elements method has been implemented. A mean insertion loss of 2 dB is achieved with a return loss better the 10 dB in the 31-37 GHz bandwidth.

  3. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    Science.gov (United States)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  4. Geography literation to improve spatial intelligence of high school student

    Science.gov (United States)

    Utami, WS; Zain, IM

    2018-01-01

    Spatial intelligence is deeply related to success in the STEM disciplines (science,technology, engineering, and math). spatial intelligence as a transversal capacity which is useful for everyday life but which cannot be characterized in any specific and distinctive way, as are, for example, linguistic or mathematical ability. The ability of geographical literacy relates to spatial intelligence. test results prove that the ability of high-liter geography of high school students found in students who have a good spatial intelligence score

  5. Spatial variability of trace elements and sources for improved exposure assessment in Barcelona

    Science.gov (United States)

    Minguillón, María Cruz; Cirach, Marta; Hoek, Gerard; Brunekreef, Bert; Tsai, Ming; de Hoogh, Kees; Jedynska, Aleksandra; Kooter, Ingeborg M.; Nieuwenhuijsen, Mark; Querol, Xavier

    2014-06-01

    Trace and major elements concentrations in PM10 and PM2.5 were measured at 20 sites spread in the Barcelona metropolitan area (1 rural background, 6 urban background, 13 road traffic sites) and at 1 reference site. Three 2-week samples per site and size fraction were collected during 2009 using low volume samplers, adding a total of 120 samples. Collected samples were analysed for elemental composition using Energy Dispersive X-ray fluorescence (XRF). EC, OC, and hopanes and steranes concentrations in PM2.5 were determined. Positive Matrix Factorisation (PMF) model was used for a source apportionment analysis. The work was performed as part of the ESCAPE project. Elements were found in concentrations within the usual range in Spanish urban areas. Mineral elements were measured in higher concentrations during the warm season, due to enhanced resuspension; concentrations of fueloil combustion elements were also higher in summer. Elements in higher concentration at the traffic sites were: Ba, Cr, Cu, Fe, Mn, Mo, Pb, Sn, Zn and Zr. Spatial variations related to non-traffic sources were observed for concentrations of Br, Cl, K, and Na (sea salt origin) and Ni, V and S (shipping emissions), which were higher at the coastal sites, as well as for Zn and Pb, higher at sites closer to industrial facilities. Five common sources for PM10 and PM2.5 were identified by PMF: road traffic (with tracers Ba, Cr, Cu, Fe, Mo and Zn); fueloil combustion (Ni and V); secondary sulphate; industry (Pb and Zn); and mineral source (Al, Ca, Mg, Si, Sr and Ti). A marine aerosol source, a mixture of sea salt with aged anthropogenic aerosols, was found only in PM10. EC, hopanes and steranes concentrations correlate strongly with the PM10 road traffic source contributions, being hence all attributed to the same source. OC may arise from other sources in addition to road traffic and have a high contribution of secondary OC. Significant spatial and temporal variation in the PM2.5 and PM10 elemental

  6. High efficiency atomic hydrogen source

    International Nuclear Information System (INIS)

    Lagomarsino, V.; Bassi, D.; Bertok, E.; De Paz, M.; Tommasini, F.

    1974-01-01

    This work presents preliminary results of research intended to produce a M.W. discharge atomic hydrogen source with good dissociation at pressures larger than 10 torr. Analysis of the recombination process at these pressures shows that the volume recombination by three body collisions may be more important than wall recombination or loss of atoms by diffusion and flow outside the discharge region

  7. High efficiency optoelectronic terahertz sources

    Science.gov (United States)

    Lampin, Jean-François; Peytavit, Emilien; Akalin, Tahsin; Ducournau, G.; Hindle, Francis; Mouret, Gael

    2010-08-01

    We have developed a new generation of optoelectronic large bandwidth terahertz sources based on TEM horn antennas monolithically integrated with several types of photodetectors: low-temperature grown GaAs (LTG-GaAs) planar photoconductors, vertically integrated LTG-GaAs photoconductors on silicon substrate and uni-travelling-carrier photodiodes. Results of pulsed (time-domain) and photomixing (CW, frequency domain) experiments are presented.

  8. High Arctic Nitrous Oxide Emissions Found on Large Spatial Scales

    Science.gov (United States)

    Wilkerson, J. P.; Sayres, D. S.; Dobosy, R.; Anderson, J. G.

    2017-12-01

    As the planet warms, greenhouse gas emissions from thawing permafrost can potentially increase the net radiative forcing in our climate structure. However, knowledge about Arctic N2O emissions is particularly sparse. Increasing evidence suggests emissions from permafrost thaw may be a significant natural source of N2O. This evidence, though, is either based on lab experiments or in situ chamber studies, which have extremely limited spatial coverage. Consequently, it has not been confirmed to what extent these high emissions are representative of broader arctic regions. Using an airborne eddy covariance flux technique, we measured N2O fluxes over large regions of Alaska in August 2013. From these measurements, we directly show that large areas of this Arctic region have high N2O emissions.

  9. Spatially single-mode source of bright squeezed vacuum

    OpenAIRE

    Pérez, A. M.; Iskhakov, T. Sh.; Sharapova, P.; Lemieux, S.; Tikhonova, O. V.; Chekhova, M. V.; Leuchs, G.

    2014-01-01

    Bright squeezed vacuum, a macroscopic nonclassical state of light, can be obtained at the output of a strongly pumped non-seeded traveling-wave optical parametric amplifier (OPA). By constructing the OPA of two consecutive crystals separated by a large distance we make the squeezed vacuum spatially single-mode without a significant decrease in the brightness or squeezing.

  10. High-intensity sources for light ions

    International Nuclear Information System (INIS)

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H + and H - beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented

  11. Atto second high harmonic sources

    International Nuclear Information System (INIS)

    Nam, Chang Hee

    2008-01-01

    High harmonic generation is a powerful method to produce attosecond pulses. The high harmonics, emitted from atoms driven by intense femtosecond laser pulses, can from an attosecond pulse train with equally spaced harmonic spectrum or an isolated single attosecond pulse with broad continuum spectrum. Using high power femtosecond laser technology developed at CXRC, we have investigated the spectral and temporal characteristics of high harmonics obtained from gaseous atoms. The spectral structure of harmonics could be manipulated by controlling laser chirp, and continuous tuning of harmonic wavelengths was achieved. For rigorous temporal characterization of attosecond harmonic pulses a cross correlation technique was applied to the photoionization process by harmonic and IR femtosecond pulses and achieved the complete temporal reconstruction of attosecond pulse trains, revealing the detailed temporal structure of the attosecond chirp by material dispersion. The duration of attosecond high harmonic pulses is usually much longer than that of transform limited pulses due to the inherent chirp originating from the harmonic generation process. The attosecond chirp compensation in the harmonic generation medium itself was demonstrated, thereby realizing the generation of near transform limited attosecond pulses. The interference of attosecond electron wave packets, generated from an atom by attosecond harmonic pulses, will be also presented

  12. A Spatial and Temporal Assessment of Non-Point Groundwater Pollution Sources, Tutuila Island, American Samoa

    Science.gov (United States)

    Shuler, C. K.; El-Kadi, A. I.; Dulaiova, H.; Glenn, C. R.; Fackrell, J.

    2015-12-01

    The quality of municipal groundwater supplies on Tutuila, the main island in American Samoa, is currently in question. A high vulnerability for contamination from surface activities has been recognized, and there exists a strong need to clearly identify anthropogenic sources of pollution and quantify their influence on the aquifer. This study examines spatial relationships and time series measurements of nutrients and other tracers to identify predominant pollution sources and determine the water quality impacts of the island's diverse land uses. Elevated groundwater nitrate concentrations are correlated with areas of human development, however, the mixture of residential and agricultural land use in this unique village based agrarian setting makes specific source identification difficult using traditional geospatial analysis. Spatial variation in anthropogenic impact was assessed by linking NO3- concentrations and δ15N(NO3) from an extensive groundwater survey to land-use types within well capture zones and groundwater flow-paths developed with MODFLOW, a numerical groundwater model. Land use types were obtained from high-resolution GIS data and compared to water quality results with multiple-regression analysis to quantify the impact that different land uses have on water quality. In addition, historical water quality data and new analyses of δD and δ18O in precipitation, groundwater, and mountain-front recharge waters were used to constrain the sources and mechanisms of contamination. Our analyses indicate that groundwater nutrient levels on Tutuila are controlled primarily by residential, not agricultural activity. Also a lack of temporal variation suggests that episodic pollution events are limited to individual water sources as opposed to the entire aquifer. These results are not only valuable for water quality management on Tutuila, but also provide insight into the sustainability of groundwater supplies on other islands with similar hydrogeology and land

  13. Spatial assessment and source identification of heavy metals pollution in surface water using several chemometric techniques.

    Science.gov (United States)

    Ismail, Azimah; Toriman, Mohd Ekhwan; Juahir, Hafizan; Zain, Sharifuddin Md; Habir, Nur Liyana Abdul; Retnam, Ananthy; Kamaruddin, Mohd Khairul Amri; Umar, Roslan; Azid, Azman

    2016-05-15

    This study presents the determination of the spatial variation and source identification of heavy metal pollution in surface water along the Straits of Malacca using several chemometric techniques. Clustering and discrimination of heavy metal compounds in surface water into two groups (northern and southern regions) are observed according to level of concentrations via the application of chemometric techniques. Principal component analysis (PCA) demonstrates that Cu and Cr dominate the source apportionment in northern region with a total variance of 57.62% and is identified with mining and shipping activities. These are the major contamination contributors in the Straits. Land-based pollution originating from vehicular emission with a total variance of 59.43% is attributed to the high level of Pb concentration in the southern region. The results revealed that one state representing each cluster (northern and southern regions) is significant as the main location for investigating heavy metal concentration in the Straits of Malacca which would save monitoring cost and time. The monitoring of spatial variation and source of heavy metals pollution at the northern and southern regions of the Straits of Malacca, Malaysia, using chemometric analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A review on the sources and spatial-temporal distributions of Pb in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Zhang, Jie; Wang, Ming; Zhu, Sixi; Wu, Yunjie

    2017-12-01

    This paper provided a review on the source, spatial-distribution, temporal variations of Pb in Jiaozhou Bay based on investigation of Pb in surface and waters in different seasons during 1979-1983. The source strengths of Pb sources in Jiaozhou Bay were showing increasing trends, and the pollution level of Pb in this bay was slight or moderate in the early stage of reform and opening-up. Pb contents in the marine bay were mainly determined by the strength and frequency of Pb inputs from human activities, and Pb could be moving from high content areas to low content areas in the ocean interior. Surface waters in the ocean was polluted by human activities, and bottom waters was polluted by means of vertical water’s effect. The process of spatial distribution of Pb in waters was including three steps, i.e., 1), Pb was transferring to surface waters in the bay, 2) Pb was transferring to surface waters, and 3) Pb was transferring to and accumulating in bottom waters.

  15. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  16. Farmer data sourcing. The case study of the spatial soil information maps in South Tyrol.

    Science.gov (United States)

    Della Chiesa, Stefano; Niedrist, Georg; Thalheimer, Martin; Hafner, Hansjörg; La Cecilia, Daniele

    2017-04-01

    Nord-Italian region South Tyrol is Europe's largest apple growing area exporting ca. 15% in Europe and 2% worldwide. Vineyards represent ca. 1% of Italian production. In order to deliver high quality food, most of the farmers in South Tyrol follow sustainable farming practices. One of the key practice is the sustainable soil management, where farmers collect regularly (each 5 years) soil samples and send for analyses to improve cultivation management, yield and finally profitability. However, such data generally remain inaccessible. On this regard, in South Tyrol, private interests and the public administration have established a long tradition of collaboration with the local farming industry. This has granted to the collection of large spatial and temporal database of soil analyses along all the cultivated areas. Thanks to this best practice, information on soil properties are centralized and geocoded. The large dataset consist mainly in soil information of texture, humus content, pH and microelements availability such as, K, Mg, Bor, Mn, Cu Zn. This data was finally spatialized by mean of geostatistical methods and several high-resolution digital maps were created. In this contribution, we present the best practice where farmers data source soil information in South Tyrol. Show the capability of a large spatial-temporal geocoded soil dataset to reproduce detailed digital soil property maps and to assess long-term changes in soil properties. Finally, implication and potential application are discussed.

  17. Maritime Laser Scanning as the Source for Spatial Data

    Directory of Open Access Journals (Sweden)

    Szulwic Jakub

    2015-12-01

    Full Text Available The rapid development of scanning technology, especially mobile scanning, gives the possibility to collect spatial data coming from maritime measurement platforms and autonomous manned or unmanned vehicles. Presented solution is derived from the mobile scanning. However we should keep in mind that the specificity of laser scanning at sea and processing collected data should be in the form acceptable in Geographical Information Systems, especially typical for the maritime needs. At the same time we should be aware that data coming from maritime mobile scanning constitutes a new approach to the describing of maritime environment and brings a new perspective that is completely different than air and terrestrial scanning.

  18. High current ion source development at Frankfurt

    Energy Technology Data Exchange (ETDEWEB)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1995-11-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H{sup -}-sources each delivering a 70 mA H{sup -}-beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs.

  19. High current ion source development at Frankfurt

    International Nuclear Information System (INIS)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M.

    1995-01-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H - -sources each delivering a 70 mA H - -beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs

  20. Development of a hemispherical rotational modulation collimator system for imaging spatial distribution of radiation sources

    Science.gov (United States)

    Na, M.; Lee, S.; Kim, G.; Kim, H. S.; Rho, J.; Ok, J. G.

    2017-12-01

    Detecting and mapping the spatial distribution of radioactive materials is of great importance for environmental and security issues. We design and present a novel hemispherical rotational modulation collimator (H-RMC) system which can visualize the location of the radiation source by collecting signals from incident rays that go through collimator masks. The H-RMC system comprises a servo motor-controlled rotating module and a hollow heavy-metallic hemisphere with slits/slats equally spaced with the same angle subtended from the main axis. In addition, we also designed an auxiliary instrument to test the imaging performance of the H-RMC system, comprising a high-precision x- and y-axis staging station on which one can mount radiation sources of various shapes. We fabricated the H-RMC system which can be operated in a fully-automated fashion through the computer-based controller, and verify the accuracy and reproducibility of the system by measuring the rotational and linear positions with respect to the programmed values. Our H-RMC system may provide a pivotal tool for spatial radiation imaging with high reliability and accuracy.

  1. EEG/MEG Source Reconstruction with Spatial-Temporal Two-Way Regularized Regression

    KAUST Repository

    Tian, Tian Siva; Huang, Jianhua Z.; Shen, Haipeng; Li, Zhimin

    2013-01-01

    In this work, we propose a spatial-temporal two-way regularized regression method for reconstructing neural source signals from EEG/MEG time course measurements. The proposed method estimates the dipole locations and amplitudes simultaneously

  2. Particle accelerators and lasers high energy sources

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1985-04-01

    Particle accelerators and lasers are to-day precious devices for physicist and engineer. Their performance and scope do not stop growing. Producing thin beams of high energy particles or photons, they are able to be very high energy sources which interact strongly with matter. Numerous applications use them: research, industry, communication, medicine, agroalimentary, defence, and soon. In this note, their operation principles are described and some examples of their use as high energy sources are given [fr

  3. High power green lasers for gamma source

    Science.gov (United States)

    Durand, Magali; Sevillano, Pierre; Alexaline, Olivier; Sangla, Damien; Casanova, Alexis; Aubourg, Adrien; Saci, Abdelhak; Courjaud, Antoine

    2018-02-01

    A high intensity Gamma source is required for Nuclear Spectroscopy, it will be delivered by the interaction between accelerated electron and intense laser beams. Those two interactions lasers are based on a multi-stage amplification scheme that ended with a second harmonics generation to deliver 200 mJ, 5 ps pulses at 515 nm and 100 Hz. A t-Pulse oscillator with slow and fast feedback loop implemented inside the oscillator cavity allows the possibility of synchronization to an optical reference. A temporal jitter of 120 fs rms is achieved, integrated from 10 Hz to 10 MHz. Then a regenerative amplifier, based on Yb:YAG technology, pumped by fiber-coupled QCW laser diodes, delivers pulses up to 30 mJ. The 1 nm bandwidth was compressed to 1.5 ps with a good spatial quality: M2 of 1.1. This amplifier is integrated in a compact sealed housing (750 x 500 x 150 mm), which allows a pulse-pulse stability of 0.1 % rms, and a long-term stability of 1,9 % over 100 hours (with +/-1°C environment). The main amplification stage uses a cryocooled Yb:YAG crystal in an active mirror configuration. The crystal is cooled at 130 K via a compact and low-vibration cryocooler, avoiding any additional phase noise contribution, 340 mJ in a six pass scheme was achieved, with 0.9 of Strehl ratio. The trade off to the gain of a cryogenic amplifier is the bandwidth reduction, however the 1030 nm pulse was compressed to 4.4 ps. As for the regenerative amplifier a long-term stability of 1.9 % over 30 hours was achieved in an environment with +/-1°C temperature fluctuations The compression and Second Harmonics Generation Stages have allowed the conversion of 150 mJ of uncompressed infrared beam into 60 mJ at 515 nm.

  4. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  5. Maximum-likelihood-based extended-source spatial acquisition and tracking for planetary optical communications

    Science.gov (United States)

    Tsou, Haiping; Yan, Tsun-Yee

    1999-04-01

    This paper describes an extended-source spatial acquisition and tracking scheme for planetary optical communications. This scheme uses the Sun-lit Earth image as the beacon signal, which can be computed according to the current Sun-Earth-Probe angle from a pre-stored Earth image or a received snapshot taken by other Earth-orbiting satellite. Onboard the spacecraft, the reference image is correlated in the transform domain with the received image obtained from a detector array, which is assumed to have each of its pixels corrupted by an independent additive white Gaussian noise. The coordinate of the ground station is acquired and tracked, respectively, by an open-loop acquisition algorithm and a closed-loop tracking algorithm derived from the maximum likelihood criterion. As shown in the paper, the optimal spatial acquisition requires solving two nonlinear equations, or iteratively solving their linearized variants, to estimate the coordinate when translation in the relative positions of onboard and ground transceivers is considered. Similar assumption of linearization leads to the closed-loop spatial tracking algorithm in which the loop feedback signals can be derived from the weighted transform-domain correlation. Numerical results using a sample Sun-lit Earth image demonstrate that sub-pixel resolutions can be achieved by this scheme in a high disturbance environment.

  6. Construction of a high beta plasma source

    International Nuclear Information System (INIS)

    Naraghi, M.; Torabi-Fard, A.

    1976-02-01

    A high beta plasma source has been designed and constructed. This source will serve as a means of developing and exercising different diagnostic techniques as required for ALVAND I, linear theta pinch experiment. Also, it will serve to acquaint the technicians with some of the techniques and safety rules of high voltage and capacitor discharge experiments. The operating parameters of the theta pinch and Z-pinch preionization is presented and the program of diagnostic measurements on the high beta plasma source is discussed

  7. High energy particle accelerators as radiation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E [National Center for Nuclear Safety and Radiation Vontrol, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Small accelerators in the energy range of few million electron volts are usually used as radiation sources for various applications, like radiotherapy, food irradiation, radiation sterilization and in other industrial applications. High energy accelerators with energies reaching billions of electron volts also find wide field of applications as radiation sources. Synchrotrons with high energy range have unique features as radiation sources. This review presents a synopsis of cyclic accelerators with description of phase stability principle of high energy accelerators with emphasis on synchrotrons. Properties of synchrotron radiation are given together with their applications in basic and applied research. 13 figs.,1 tab.

  8. Optical spatial differentiator based on subwavelength high-contrast gratings

    Science.gov (United States)

    Dong, Zhewei; Si, Jiangnan; Yu, Xuanyi; Deng, Xiaoxu

    2018-04-01

    An optical spatial differentiator based on subwavelength high-contrast gratings (HCGs) is proposed experimentally. The spatial differentiation property of the subwavelength HCG is analyzed by calculating its spatial spectral transfer function based on the periodic waveguide theory. By employing the FDTD solutions, the performance of the subwavelength HCG spatial differentiator was investigated numerically. The subwavelength HCG differentiator with the thickness at the nanoscale was fabricated on the quartz substrate by electron beam lithography and Bosch deep silicon etching. Observed under an optical microscope with a CCD camera, the spatial differentiation of the incident field profile was obtained by the subwavelength HCG differentiator in transmission without Fourier lens. By projecting the images of slits, letter "X," and a cross on the subwavelength HCG differentiator, edge detections of images were obtained in transmission. With the nanoscale HCG structure and simple optical implementation, the proposed optical spatial differentiator provides the prospects for applications in optical computing systems and parallel data processing.

  9. ECRIS sources for highly charged ions

    International Nuclear Information System (INIS)

    Geller, R.

    1991-01-01

    The so-called Philips ionization gauge ion sources (PIGIS) were used until quite recently in heavy ion accelerators so multiply charged ions could only be obtained by incorporating a stripper to remove electrons. Electron cyclotron resonance ion sources (ECRIS) now dominate as they produce more highly charged ions. (orig.)

  10. An Inexpensive Source of High Voltage

    Science.gov (United States)

    Saraiva, Carlos

    2012-01-01

    As a physics teacher I like recycling old apparatus and using them for demonstrations in my classes. In physics laboratories in schools, sources of high voltage include induction coils or electronic systems that can be bought from companies that sell lab equipment. But these sources can be very expensive. In this article, I will explain how you…

  11. A temporal and spatial analysis of anthropogenic noise sources affecting SNMR

    Science.gov (United States)

    Dalgaard, E.; Christiansen, P.; Larsen, J. J.; Auken, E.

    2014-11-01

    One of the biggest challenges when using the surface nuclear magnetic resonance (SNMR) method in urban areas is a relatively low signal level compared to a high level of background noise. To understand the temporal and spatial behavior of anthropogenic noise sources like powerlines and electric fences, we have developed a multichannel instrument, noiseCollector (nC), which measures the full noise spectrum up to 10 kHz. Combined with advanced signal processing we can interpret the noise as seen by a SNMR instrument and also obtain insight into the more fundamental behavior of the noise. To obtain a specified acceptable noise level for a SNMR sounding the stack size can be determined by quantifying the different noise sources. Two common noise sources, electromagnetic fields stemming from powerlines and fences are analyzed and show a 1/r2 dependency in agreement with theoretical relations. A typical noise map, obtained with the nC instrument prior to a SNMR field campaign, clearly shows the location of noise sources, and thus we can efficiently determine the optimal location for the SNMR sounding from a noise perspective.

  12. Simple, high current, antimony ion source

    International Nuclear Information System (INIS)

    Sugiura, H.

    1979-01-01

    A simple metal ion source capable of producing a continuous, uncontaminated, high current beam of Sb ions is presented. It produced a total ion current of 200 μA at 1 kV extraction voltage. A discharge occurred in the source at a pressure of 6 x 10 -4 Torr. The ion current extracted from the source increased with the 3/2 power of the extraction voltage. The perveance of the source and ion density in the plasma were 8 x 10 -9 and 1.8 x 10 11 cm -3 , respectively

  13. High energy neutrinos: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark DE 19716 (United States)

    2006-05-15

    We discuss briefly the potential sources of high energy astrophysical neutrinos and show estimates of the neutrino fluxes that they can produce. A special attention is paid to the connection between the highest energy cosmic rays and astrophysical neutrinos.

  14. Spatial Distribution, Sources Apportionment and Health Risk of Metals in Topsoil in Beijing, China

    Directory of Open Access Journals (Sweden)

    Chunyuan Sun

    2016-07-01

    Full Text Available In order to acquire the pollution feature and regularities of distribution of metals in the topsoil within the sixth ring road in Beijing, a total of 46 soil samples were collected, and the concentrations of twelve elements (Nickel, Ni, Lithium, Li, Vanadium, V, Cobalt, Co, Barium, Ba, Strontium, Sr, Chrome, Cr, Molybdenum, Mo, Copper, Cu, Cadmium, Cd, Zinc, Zn, Lead, Pb were analyzed. Geostatistics and multivariate statistics were conducted to identify spatial distribution characteristics and sources. In addition, the health risk of the analyzed heavy metals to humans (adult was evaluated by an U.S. Environmental Protection Agency health risk assessment model. The results indicate that these metals have notable variation in spatial scale. The concentration of Cr was high in the west and low in the east, while that of Mo was high in the north and low in the south. High concentrations of Cu, Cd, Zn, and Pb were found in the central part of the city. The average enrichment degree of Cd is 5.94, reaching the standard of significant enrichment. The accumulation of Cr, Mo, Cu, Cd, Zn, and Pb is influenced by anthropogenic activity, including vehicle exhaustion, coal burning, and industrial processes. Health risk assessment shows that both non-carcinogenic and carcinogenic risks of selected heavy metals are within the safety standard and the rank of the carcinogenic risk of the four heavy metals is Cr > Co > Ni > Cd.

  15. Spatial Distribution, Sources Apportionment and Health Risk of Metals in Topsoil in Beijing, China.

    Science.gov (United States)

    Sun, Chunyuan; Zhao, Wenji; Zhang, Qianzhong; Yu, Xue; Zheng, Xiaoxia; Zhao, Jiayin; Lv, Ming

    2016-07-20

    In order to acquire the pollution feature and regularities of distribution of metals in the topsoil within the sixth ring road in Beijing, a total of 46 soil samples were collected, and the concentrations of twelve elements (Nickel, Ni, Lithium, Li, Vanadium, V, Cobalt, Co, Barium, Ba, Strontium, Sr, Chrome, Cr, Molybdenum, Mo, Copper, Cu, Cadmium, Cd, Zinc, Zn, Lead, Pb) were analyzed. Geostatistics and multivariate statistics were conducted to identify spatial distribution characteristics and sources. In addition, the health risk of the analyzed heavy metals to humans (adult) was evaluated by an U.S. Environmental Protection Agency health risk assessment model. The results indicate that these metals have notable variation in spatial scale. The concentration of Cr was high in the west and low in the east, while that of Mo was high in the north and low in the south. High concentrations of Cu, Cd, Zn, and Pb were found in the central part of the city. The average enrichment degree of Cd is 5.94, reaching the standard of significant enrichment. The accumulation of Cr, Mo, Cu, Cd, Zn, and Pb is influenced by anthropogenic activity, including vehicle exhaustion, coal burning, and industrial processes. Health risk assessment shows that both non-carcinogenic and carcinogenic risks of selected heavy metals are within the safety standard and the rank of the carcinogenic risk of the four heavy metals is Cr > Co > Ni > Cd.

  16. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    Directory of Open Access Journals (Sweden)

    M. Wang

    2015-05-01

    Full Text Available The conservation of drinking water source reservoirs has a close relationship between regional economic development and people’s livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool model. The model was adjusted to analyse the temporal-spatial distribution patterns of total nitrogen (TN and total phosphorus (TP. The results showed that the loss of TN and TP in the reservoir watershed were related to precipitation in flood season. And the annual changes showed an "M" shape. It was found that the contribution of loss of TN and TP accounted for 84.5% and 85.3% in high flow years, and for 70.3% and 69.7% in low flow years, respectively. The contributions in normal flow years were 62.9% and 63.3%, respectively. The TN and TP mainly arise from Wangtan town, Gulai town, and Wangyuan town, etc. In addition, it was found that the source of TN and TP showed consistency in space.

  17. Spatial and Semantic Validation of Secondary Food Source Data

    DEFF Research Database (Denmark)

    Lyseen, Anders Knørr; Hansen, Henning Sten

    2014-01-01

    Governmental and commercial lists of food retailers are often used to measure food environments and foodscapes for health and nutritional research. Information about the validity of such secondary food source data is relevant to understanding the potential and limitations of its application....... This study assesses the validity of two government lists of food retailer locations and types by comparing them to direct field observations, including an assessment of whether pre-classification of the directories can reduce the need for field observation. Lists of food retailers were obtained from......-classification was measured through the calculation of PPV, sensitivity and negative prediction value (NPV). The application of either CVR or Smiley as a measure of the food environment would result in a misrepresentation. The pre-classification based on the food retailer names was found to be a valid method for identifying...

  18. A temperature-compensated high spatial resolution distributed strain sensor

    International Nuclear Information System (INIS)

    Belal, Mohammad; Cho, Yuh Tat; Ibsen, Morten; Newson, Trevor P

    2010-01-01

    We propose and demonstrate a scheme which utilizes the temperature dependence of spontaneous Raman scattering to provide temperature compensation for a high spatial resolution Brillouin frequency-based strain sensor

  19. Scene Classification Using High Spatial Resolution Multispectral Data

    National Research Council Canada - National Science Library

    Garner, Jamada

    2002-01-01

    ...), High-spatial resolution (8-meter), 4-color MSI data from IKONOS provide a new tool for scene classification, The utility of these data are studied for the purpose of classifying the Elkhorn Slough and surrounding wetlands in central...

  20. High and low spatial frequencies in website evaluations.

    Science.gov (United States)

    Thielsch, Meinald T; Hirschfeld, Gerrit

    2010-08-01

    Which features of websites are important for users' perceptions regarding aesthetics or usability? This study investigates how evaluations of aesthetic appeal and usability depend on high vs. low spatial frequencies. High spatial frequencies convey information on fine details, whereas low spatial frequencies convey information about the global layout. Participants rated aesthetic appeal and usability of 50 website screenshots from different domains. Screenshots were presented unfiltered, low-pass filtered with blurred targets or high-pass filtered with high-pass filtered targets. The main result is that low spatial frequencies can be seen to have a unique contribution in perceived website aesthetics, thus confirming a central prediction from processing fluency theory. There was no connection between low spatial frequencies and usability evaluations, whereas strong correlations were found between ratings of high-pass filtered websites and those of unfiltered websites in aesthetics and usability. This study thus offers a new perspective on the biological basis of users' website perceptions. This research links ergonomics to neurocognitive models of visual processing. This paper investigates how high and low spatial frequencies, which are neurologically processed in different visual pathways, independently contribute to users' perceptions of websites. This is very relevant for theories of website perceptions and for practitioners of web design.

  1. Seasonal and spatial variation of diffuse (non-point) source zinc pollution in a historically metal mined river catchment, UK

    Energy Technology Data Exchange (ETDEWEB)

    Gozzard, E., E-mail: emgo@ceh.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Mayes, W.M., E-mail: W.Mayes@hull.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Potter, H.A.B., E-mail: hugh.potter@environment-agency.gov.uk [Environment Agency England and Wales, c/o Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Jarvis, A.P., E-mail: a.p.jarvis@ncl.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2011-10-15

    Quantifying diffuse sources of pollution is becoming increasingly important when characterising river catchments in entirety - a prerequisite for environmental management. This study examines both low and high flow events, as well as spatial variability, in order to assess point and diffuse components of zinc pollution within the River West Allen catchment, which lies within the northern England lead-zinc Orefield. Zinc levels in the river are elevated under all flow regimes, and are of environmental concern. Diffuse components are of little importance at low flow, with point source mine water discharges dominating instream zinc concentration and load. During higher river flows 90% of the instream zinc load is attributed to diffuse sources, where inputs from resuspension of metal-rich sediments, and groundwater influx are likely to be more dominant. Remediating point mine water discharges should significantly improve water quality at lower flows, but contribution from diffuse sources will continue to elevate zinc flux at higher flows. - Highlights: > Zinc concentrations breach EU quality thresholds under all river flow conditions. > Contributions from point sources dominate instream zinc dynamics in low flow. > Contributions from diffuse sources dominate instream zinc dynamics in high flow. > Important diffuse sources include river-bed sediment resuspension and groundwater influx. > Diffuse sources would still create significant instream pollution, even with point source treatment. - Diffuse zinc sources are an important source of instream contamination to mine-impacted rivers under varying flow conditions.

  2. Parametric effect of a spatially periodic voltage depression on operation of Cerenkov sources of electromagnetic radiation

    International Nuclear Information System (INIS)

    Nusinovich, G.S.; Vlasov, A.N.

    1994-01-01

    In microwave sources of coherent Cerenkov radiation the electrons usually propagate near the rippled wall of a slow-wave structure. These ripples cause the periodic modulation of electron potential depression, and therefore, lead to periodic modulation of electron axial velocities. Since the period of this electrostatic pumping is the period of the slow-wave structure the parametric coupling of electrons to originally nonsynchronous spatial harmonics of the microwave field may occur. This effect can be especially important for backward-wave oscillators (BWO's) driven by high current, relativistic electron beams. In the paper both linear and nonlinear theories of the relativistic resonant BWO with periodic modulation of electron axial velocities are developed and results illustrating the evolution of the linear gain function and the efficiency of operation in the large-signal regime are presented

  3. High gradient accelerators for linear light sources

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1988-01-01

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs

  4. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing

    OpenAIRE

    Cohen, M.X.; Ridderinkhof, K.R.

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (?200 ms post-stimulus) conflict modulation in ...

  5. Spectral, spatial and temporal control of high-power diode lasers through nonlinear optical feedback

    NARCIS (Netherlands)

    van Voorst, P.D.

    2008-01-01

    A high-power diode laser offers multi-Watt output power from a small and efficient device, which makes them an interesting source for numerous applications. The spatial and spectral output however, are of reduced quality which limits the applicability. This limited quality is connected to the design

  6. MEG source localization of spatially extended generators of epileptic activity: comparing entropic and hierarchical bayesian approaches.

    Science.gov (United States)

    Chowdhury, Rasheda Arman; Lina, Jean Marc; Kobayashi, Eliane; Grova, Christophe

    2013-01-01

    Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2) to 30 cm(2), whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.

  7. MEG source localization of spatially extended generators of epileptic activity: comparing entropic and hierarchical bayesian approaches.

    Directory of Open Access Journals (Sweden)

    Rasheda Arman Chowdhury

    Full Text Available Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG or Magneto-EncephaloGraphy (MEG signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i brain activity may be modeled using cortical parcels and (ii brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM and the Hierarchical Bayesian (HB source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2 to 30 cm(2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.

  8. High Dynamic Performance Nonlinear Source Emulator

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2016-01-01

    As research and development of renewable and clean energy based systems is advancing rapidly, the nonlinear source emulator (NSE) is becoming very essential for testing of maximum power point trackers or downstream converters. Renewable and clean energy sources play important roles in both...... terrestrial and nonterrestrial applications. However, most existing NSEs have only been concerned with simulating energy sources in terrestrial applications, which may not be fast enough for testing of nonterrestrial applications. In this paper, a high-bandwidth NSE is developed that is able to simulate...... change in the input source but also to a load step between nominal and open circuit. Moreover, all of these operation modes have a very fast settling time of only 10 μs, which is hundreds of times faster than that of existing works. This attribute allows for higher speed and a more efficient maximum...

  9. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  10. A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification

    Directory of Open Access Journals (Sweden)

    Guizhou Wang

    2013-01-01

    Full Text Available This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine. Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy.

  11. Seasonal and Spatial Variations of Heavy Metals in Two Typical Chinese Rivers: Concentrations, Environmental Risks, and Possible Sources

    Science.gov (United States)

    Yao, Hong; Qian, Xin; Gao, Hailong; Wang, Yulei; Xia, Bisheng

    2014-01-01

    Ten metals were analyzed in samples collected in three seasons (the dry season, the early rainy season, and the late rainy season) from two rivers in China. No observed toxic effect concentrations were used to estimate the risks. The possible sources of the metals in each season, and the dominant source(s) at each site, were assessed using principal components analysis. The metal concentrations in the area studied were found, using t-tests, to vary both seasonally and spatially (P = 0.05). The potential risks in different seasons decreased in the order: early rainy season > dry season > late rainy season, and Cd was the dominant contributor to the total risks associated with heavy metal pollution in the two rivers. The high population and industrial site densities in the Taihu basin have had negative influences on the two rivers. The river that is used as a source of drinking water (the Taipu River) had a low average level of risks caused by the metals. Metals accumulated in environmental media were the main possible sources in the dry season, and emissions from mechanical manufacturing enterprises were the main possible sources in the rainy season. The river in the industrial area (the Wusong River) had a moderate level of risk caused by the metals, and the main sources were industrial emissions. The seasonal and spatial distributions of the heavy metals mean that risk prevention and mitigation measures should be targeted taking these variations into account. PMID:25407421

  12. Seasonal and Spatial Variations of Heavy Metals in Two Typical Chinese Rivers: Concentrations, Environmental Risks, and Possible Sources

    Directory of Open Access Journals (Sweden)

    Hong Yao

    2014-11-01

    Full Text Available Ten metals were analyzed in samples collected in three seasons (the dry season, the early rainy season, and the late rainy season from two rivers in China. No observed toxic effect concentrations were used to estimate the risks. The possible sources of the metals in each season, and the dominant source(s at each site, were assessed using principal components analysis. The metal concentrations in the area studied were found, using t-tests, to vary both seasonally and spatially (P = 0.05. The potential risks in different seasons decreased in the order: early rainy season > dry season > late rainy season, and Cd was the dominant contributor to the total risks associated with heavy metal pollution in the two rivers. The high population and industrial site densities in the Taihu basin have had negative influences on the two rivers. The river that is used as a source of drinking water (the Taipu River had a low average level of risks caused by the metals. Metals accumulated in environmental media were the main possible sources in the dry season, and emissions from mechanical manufacturing enterprises were the main possible sources in the rainy season. The river in the industrial area (the Wusong River had a moderate level of risk caused by the metals, and the main sources were industrial emissions. The seasonal and spatial distributions of the heavy metals mean that risk prevention and mitigation measures should be targeted taking these variations into account.

  13. Validation of the intrinsic spatial efficiency method for non cylindrical homogeneous sources using MC simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Ramírez, Pablo, E-mail: rapeitor@ug.uchile.cl; Ruiz, Andrés [Departamento de Física, Facultad de Ciencias, Universidad de Chile (Chile)

    2016-07-07

    The Monte Carlo simulation of the gamma spectroscopy systems is a common practice in these days. The most popular softwares to do this are MCNP and Geant4 codes. The intrinsic spatial efficiency method is a general and absolute method to determine the absolute efficiency of a spectroscopy system for any extended sources, but this was only demonstrated experimentally for cylindrical sources. Due to the difficulty that the preparation of sources with any shape represents, the simplest way to do this is by the simulation of the spectroscopy system and the source. In this work we present the validation of the intrinsic spatial efficiency method for sources with different geometries and for photons with an energy of 661.65 keV. In the simulation the matrix effects (the auto-attenuation effect) are not considered, therefore these results are only preliminaries. The MC simulation is carried out using the FLUKA code and the absolute efficiency of the detector is determined using two methods: the statistical count of Full Energy Peak (FEP) area (traditional method) and the intrinsic spatial efficiency method. The obtained results show total agreement between the absolute efficiencies determined by the traditional method and the intrinsic spatial efficiency method. The relative bias is lesser than 1% in all cases.

  14. Surface ionization ion source with high current

    International Nuclear Information System (INIS)

    Fang Jinqing; Lin Zhizhou; Yu Lihua; Zhan Rongan; Huang Guojun; Wu Jianhua

    1986-04-01

    The working principle and structure of a surface ionization ion source with high current is described systematically. Some technological keypoints of the ion source are given in more detail, mainly including: choosing and shaping of the material of the surface ionizer, heating of the ionizer, distributing of working vapour on the ionizer surface, the flow control, the cooling problem at the non-ionization surface and the ion optics, etc. This ion source has been used since 1972 in the electromagnetic isotope separator with 180 deg angle. It is suitable for separating isotopes of alkali metals and rare earth metals. For instance, in the case of separating Rubidium, the maximum ion current of Rbsup(+) extracted from the ion source is about 120 mA, the maximum ion current accepted by the receiver is about 66 mA, the average ion current is more than 25 mA. The results show that our ion source have advantages of high ion current, good characteristics of focusing ion beam, working stability and structure reliability etc. It may be extended to other fields. Finally, some interesting phenomena in the experiment are disccused briefly. Some problems which should be investigated are further pointed out

  15. Developing an open source-based spatial data infrastructure for integrated monitoring of mining areas

    Science.gov (United States)

    Lahn, Florian; Knoth, Christian; Prinz, Torsten; Pebesma, Edzer

    2014-05-01

    In all phases of mining campaigns, comprehensive spatial information is an essential requirement in order to ensure economically efficient but also safe mining activities as well as to reduce environmental impacts. Earth observation data acquired from various sources like remote sensing or ground measurements is important e.g. for the exploration of mineral deposits, the monitoring of mining induced impacts on vegetation or the detection of ground subsidence. The GMES4Mining project aims at exploring new remote sensing techniques and developing analysis methods on various types of sensor data to provide comprehensive spatial information during mining campaigns (BENECKE et al. 2013). One important task in this project is the integration of the data gathered (e.g. hyperspectral images, spaceborne radar data and ground measurements) as well as results of the developed analysis methods within a web-accessible data source based on open source software. The main challenges here are to provide various types and formats of data from different sensors and to enable access to analysis and processing techniques without particular software or licensing requirements for users. Furthermore the high volume of the involved data (especially hyperspectral remote sensing images) makes data transfer a major issue in this use case. To engage these problems a spatial data infrastructure (SDI) including a web portal as user frontend is being developed which allows users to access not only the data but also several analysis methods. The Geoserver software is used for publishing the data, which is then accessed and visualized in a JavaScript-based web portal. In order to perform descriptive statistics and some straightforward image processing techniques on the raster data (e.g. band arithmetic or principal component analysis) the statistics software R is implemented on a server and connected via Rserve. The analysis is controlled and executed directly by the user through the web portal and

  16. High spatial resolution CT image reconstruction using parallel computing

    International Nuclear Information System (INIS)

    Yin Yin; Liu Li; Sun Gongxing

    2003-01-01

    Using the PC cluster system with 16 dual CPU nodes, we accelerate the FBP and OR-OSEM reconstruction of high spatial resolution image (2048 x 2048). Based on the number of projections, we rewrite the reconstruction algorithms into parallel format and dispatch the tasks to each CPU. By parallel computing, the speedup factor is roughly equal to the number of CPUs, which can be up to about 25 times when 25 CPUs used. This technique is very suitable for real-time high spatial resolution CT image reconstruction. (authors)

  17. EEG/MEG Source Reconstruction with Spatial-Temporal Two-Way Regularized Regression

    KAUST Repository

    Tian, Tian Siva

    2013-07-11

    In this work, we propose a spatial-temporal two-way regularized regression method for reconstructing neural source signals from EEG/MEG time course measurements. The proposed method estimates the dipole locations and amplitudes simultaneously through minimizing a single penalized least squares criterion. The novelty of our methodology is the simultaneous consideration of three desirable properties of the reconstructed source signals, that is, spatial focality, spatial smoothness, and temporal smoothness. The desirable properties are achieved by using three separate penalty functions in the penalized regression framework. Specifically, we impose a roughness penalty in the temporal domain for temporal smoothness, and a sparsity-inducing penalty and a graph Laplacian penalty in the spatial domain for spatial focality and smoothness. We develop a computational efficient multilevel block coordinate descent algorithm to implement the method. Using a simulation study with several settings of different spatial complexity and two real MEG examples, we show that the proposed method outperforms existing methods that use only a subset of the three penalty functions. © 2013 Springer Science+Business Media New York.

  18. Sources of variation in under-5 mortality across sub-Saharan Africa: a spatial analysis.

    Science.gov (United States)

    Burke, Marshall; Heft-Neal, Sam; Bendavid, Eran

    2016-12-01

    Detailed spatial understanding of levels and trends in under-5 mortality is needed to improve the targeting of interventions to the areas of highest need, and to understand the sources of variation in mortality. To improve this understanding, we analysed local-level information on child mortality across sub-Saharan Africa between 1980-2010. We used data from 82 Demographic and Health Surveys in 28 sub-Saharan African countries, including the location and timing of 3·24 million childbirths and 393 685 deaths, to develop high-resolution spatial maps of under-5 mortality in the 1980s, 1990s, and 2000s. These estimates were at a resolution of 0·1 degree latitude by 0·1 degree longitude (roughly 10 km × 10 km). We then analysed this spatial information to distinguish within-country versus between-country sources of variation in mortality, to examine the extent to which declines in mortality have been accompanied by convergence in the distribution of mortality, and to study localised drivers of mortality differences, including temperature, malaria burden, and conflict. In our sample of sub-Saharan African countries from the 1980s to the 2000s, within-country differences in under-5 mortality accounted for 74-78% of overall variation in under-5 mortality across space and over time. Mortality differed significantly across only 8-15% of country borders, supporting the role of local, rather than national, factors in driving mortality patterns. We found that by the end of the study period, 23% of the eligible children in the study countries continue to live in mortality hotspots-areas where, if current trends continue, the Sustainable Developent Goals mortality targets will not be met. In multivariate analysis, within-country mortality levels at each pixel were significantly related to local temperature, malaria burden, and recent history of conflict. Our findings suggest that sub-national determinants explain a greater portion of under-5 mortality than do country

  19. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing

    NARCIS (Netherlands)

    Cohen, M.X.; Ridderinkhof, K.R.

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict

  20. Comparative study between ultrahigh spatial frequency algorithm and high spatial frequency algorithm in high-resolution CT of the lungs

    International Nuclear Information System (INIS)

    Oh, Yu Whan; Kim, Jung Kyuk; Suh, Won Hyuck

    1994-01-01

    To date, the high spatial frequency algorithm (HSFA) which reduces image smoothing and increases spatial resolution has been used for the evaluation of parenchymal lung diseases in thin-section high-resolution CT. In this study, we compared the ultrahigh spatial frequency algorithm (UHSFA) with the high spatial frequency algorithm in the assessment of thin section images of the lung parenchyma. Three radiologists compared the UHSFA and HSFA on identical CT images in a line-pair resolution phantom, one lung specimen, 2 patients with normal lung and 18 patients with abnormal lung parenchyma. Scanning of a line-pair resolution phantom demonstrated no difference in resolution between two techniques but it showed that outer lines of the line pairs with maximal resolution looked thicker on UHSFA than those on HSFA. Lung parenchymal detail with UHSFA was judged equal or superior to HSFA in 95% of images. Lung parenchymal sharpness was improved with UHSFA in all images. Although UHSFA resulted in an increase in visible noise, observers did not found that image noise interfered with image interpretation. The visual CT attenuation of normal lung parenchyma is minimally increased in images with HSFA. The overall visual preference of the images reconstructed on UHSFA was considered equal to or greater than that of those reconstructed on HSFA in 78% of images. The ultrahigh spatial frequency algorithm improved the overall visual quality of the images in pulmonary parenchymal high-resolution CT

  1. Bayesian spatial filters for source signal extraction: a study in the peripheral nerve.

    Science.gov (United States)

    Tang, Y; Wodlinger, B; Durand, D M

    2014-03-01

    The ability to extract physiological source signals to control various prosthetics offer tremendous therapeutic potential to improve the quality of life for patients suffering from motor disabilities. Regardless of the modality, recordings of physiological source signals are contaminated with noise and interference along with crosstalk between the sources. These impediments render the task of isolating potential physiological source signals for control difficult. In this paper, a novel Bayesian Source Filter for signal Extraction (BSFE) algorithm for extracting physiological source signals for control is presented. The BSFE algorithm is based on the source localization method Champagne and constructs spatial filters using Bayesian methods that simultaneously maximize the signal to noise ratio of the recovered source signal of interest while minimizing crosstalk interference between sources. When evaluated over peripheral nerve recordings obtained in vivo, the algorithm achieved the highest signal to noise interference ratio ( 7.00 ±3.45 dB) amongst the group of methodologies compared with average correlation between the extracted source signal and the original source signal R = 0.93. The results support the efficacy of the BSFE algorithm for extracting source signals from the peripheral nerve.

  2. Spatial and temporal variation in sources of atmospheric nitrogen deposition in the Rocky Mountains using nitrogen isotopes

    Science.gov (United States)

    Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M. B.; Mast, M. Alisa

    2018-03-01

    Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N-NO3- at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from -3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N-NO3- is significantly lower ranging from -7.6‰ to -1.3‰ while winter δ15N-NO3- ranges from -2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N-NO3- is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3- and δ15N-NO3- are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3- concentrations and δ15N-NO3- in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N-NH4+ ranged from -10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N-NH4+(-9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N-NH4+ observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and agricultural sources. These findings show spatial and

  3. Spatial and temporal variation in sources of atmospheric nitrogen deposition in the Rocky Mountains using nitrogen isotopes

    Science.gov (United States)

    Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M.B.; Mast, M. Alisa

    2018-01-01

    Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N−NO3− at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from −3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N−NO3− is significantly lower ranging from −7.6‰ to −1.3‰ while winter δ15N−NO3− ranges from −2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N−NO3− is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3− and δ15N−NO3− are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3−concentrations and δ15N−NO3− in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N−NH4+ ranged from −10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N−NH4+(−9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N−NH4+observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and

  4. Compact high-power terahertz radiation source

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2004-06-01

    Full Text Available In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator on the return leg, is discussed. Because the beam is recirculated and not stored, short bunches may be produced that radiate coherently in the undulator, yielding exceptionally high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes, limits the charge-per-bunch possible in such a device.

  5. Spatial Regression and Prediction of Water Quality in a Watershed with Complex Pollution Sources.

    Science.gov (United States)

    Yang, Xiaoying; Liu, Qun; Luo, Xingzhang; Zheng, Zheng

    2017-08-16

    Fast economic development, burgeoning population growth, and rapid urbanization have led to complex pollution sources contributing to water quality deterioration simultaneously in many developing countries including China. This paper explored the use of spatial regression to evaluate the impacts of watershed characteristics on ambient total nitrogen (TN) concentration in a heavily polluted watershed and make predictions across the region. Regression results have confirmed the substantial impact on TN concentration by a variety of point and non-point pollution sources. In addition, spatial regression has yielded better performance than ordinary regression in predicting TN concentrations. Due to its best performance in cross-validation, the river distance based spatial regression model was used to predict TN concentrations across the watershed. The prediction results have revealed a distinct pattern in the spatial distribution of TN concentrations and identified three critical sub-regions in priority for reducing TN loads. Our study results have indicated that spatial regression could potentially serve as an effective tool to facilitate water pollution control in watersheds under diverse physical and socio-economical conditions.

  6. A Very High Spatial Resolution Detector for Small Animal PET

    International Nuclear Information System (INIS)

    Kanai Shah, M.S.

    2007-01-01

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated

  7. Ibmdbpy-spatial : An Open-source implementation of in-database geospatial analytics in Python

    Science.gov (United States)

    Roy, Avipsa; Fouché, Edouard; Rodriguez Morales, Rafael; Moehler, Gregor

    2017-04-01

    As the amount of spatial data acquired from several geodetic sources has grown over the years and as data infrastructure has become more powerful, the need for adoption of in-database analytic technology within geosciences has grown rapidly. In-database analytics on spatial data stored in a traditional enterprise data warehouse enables much faster retrieval and analysis for making better predictions about risks and opportunities, identifying trends and spot anomalies. Although there are a number of open-source spatial analysis libraries like geopandas and shapely available today, most of them have been restricted to manipulation and analysis of geometric objects with a dependency on GEOS and similar libraries. We present an open-source software package, written in Python, to fill the gap between spatial analysis and in-database analytics. Ibmdbpy-spatial provides a geospatial extension to the ibmdbpy package, implemented in 2015. It provides an interface for spatial data manipulation and access to in-database algorithms in IBM dashDB, a data warehouse platform with a spatial extender that runs as a service on IBM's cloud platform called Bluemix. Working in-database reduces the network overload, as the complete data need not be replicated into the user's local system altogether and only a subset of the entire dataset can be fetched into memory in a single instance. Ibmdbpy-spatial accelerates Python analytics by seamlessly pushing operations written in Python into the underlying database for execution using the dashDB spatial extender, thereby benefiting from in-database performance-enhancing features, such as columnar storage and parallel processing. The package is currently supported on Python versions from 2.7 up to 3.4. The basic architecture of the package consists of three main components - 1) a connection to the dashDB represented by the instance IdaDataBase, which uses a middleware API namely - pypyodbc or jaydebeapi to establish the database connection via

  8. PASOTRON high-energy microwave source

    Science.gov (United States)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  9. Analysing spatially extended high-dimensional dynamics by recurrence plots

    Energy Technology Data Exchange (ETDEWEB)

    Marwan, Norbert, E-mail: marwan@pik-potsdam.de [Potsdam Institute for Climate Impact Research, 14412 Potsdam (Germany); Kurths, Jürgen [Potsdam Institute for Climate Impact Research, 14412 Potsdam (Germany); Humboldt Universität zu Berlin, Institut für Physik (Germany); Nizhny Novgorod State University, Department of Control Theory, Nizhny Novgorod (Russian Federation); Foerster, Saskia [GFZ German Research Centre for Geosciences, Section 1.4 Remote Sensing, Telegrafenberg, 14473 Potsdam (Germany)

    2015-05-08

    Recurrence plot based measures of complexity are capable tools for characterizing complex dynamics. In this letter we show the potential of selected recurrence plot measures for the investigation of even high-dimensional dynamics. We apply this method on spatially extended chaos, such as derived from the Lorenz96 model and show that the recurrence plot based measures can qualitatively characterize typical dynamical properties such as chaotic or periodic dynamics. Moreover, we demonstrate its power by analysing satellite image time series of vegetation cover with contrasting dynamics as a spatially extended and potentially high-dimensional example from the real world. - Highlights: • We use recurrence plots for analysing partially extended dynamics. • We investigate the high-dimensional chaos of the Lorenz96 model. • The approach distinguishes different spatio-temporal dynamics. • We use the method for studying vegetation cover time series.

  10. Generation of dynamo waves by spatially separated sources in the Earth and other celestial bodies

    Science.gov (United States)

    Popova, E.

    2017-12-01

    The amplitude and the spatial configuration of the planetary and stellar magnetic field can changing over the years. Celestial bodies can have cyclic, chaotic or unchanging in time magnetic activity which is connected with a dynamo mechanism. This mechanism is based on the consideration of the joint influence of the alpha-effect and differential rotation. Dynamo sources can be located at different depths (active layers) of the celestial body and can have different intensities. Application of this concept allows us to get different forms of solutions and some of which can include wave propagating inside the celestial body. We analytically showed that in the case of spatially separated sources of magnetic field each source generates a wave whose frequency depends on the physical parameters of its source. We estimated parameters of sources required for the generation nondecaying waves. We discus structure of such sources and matter motion (including meridional circulation) in the liquid outer core of the Earth and active layers of other celestial bodies.

  11. Sources of Free and Open Source Spatial Data for Natural Disasters and Principles for Use in Developing Country Contexts

    Science.gov (United States)

    Taylor, Faith E.; Malamud, Bruce D.; Millington, James D. A.

    2016-04-01

    Access to reliable spatial and quantitative datasets (e.g., infrastructure maps, historical observations, environmental variables) at regional and site specific scales can be a limiting factor for understanding hazards and risks in developing country settings. Here we present a 'living database' of >75 freely available data sources relevant to hazard and risk in Africa (and more globally). Data sources include national scientific foundations, non-governmental bodies, crowd-sourced efforts, academic projects, special interest groups and others. The database is available at http://tinyurl.com/africa-datasets and is continually being updated, particularly in the context of broader natural hazards research we are doing in the context of Malawi and Kenya. For each data source, we review the spatiotemporal resolution and extent and make our own assessments of reliability and usability of datasets. Although such freely available datasets are sometimes presented as a panacea to improving our understanding of hazards and risk in developing countries, there are both pitfalls and opportunities unique to using this type of freely available data. These include factors such as resolution, homogeneity, uncertainty, access to metadata and training for usage. Based on our experience, use in the field and grey/peer-review literature, we present a suggested set of guidelines for using these free and open source data in developing country contexts.

  12. Cooperation in carbon source degradation shapes spatial self-organization of microbial consortia on hydrated surfaces

    OpenAIRE

    Tecon, Robin; Or, Dani

    2017-01-01

    Mounting evidence suggests that natural microbial communities exhibit a high level of spatial organization at the micrometric scale that facilitate ecological interactions and support biogeochemical cycles. Microbial patterns are difficult to study definitively in natural environments due to complex biodiversity, observability and variable physicochemical factors. Here, we examine how trophic dependencies give rise to self-organized spatial patterns of a well-defined bacterial consortium grow...

  13. Ultra-High Capacity Silicon Photonic Interconnects through Spatial Multiplexing

    Science.gov (United States)

    Chen, Christine P.

    -fabrication. Through ModePROP simulations, optimizing device performance dynamically post-fabrication is analyzed, through either electro-optical or thermo-optical means. By biasing the arm introducing the slight spectral offset, we can quantifiably improve device performance. Scaling bandwidth is experimentally demonstrated through the device at 3 modes, 2 wavelengths, and 40 Gb/s data rate for 240 Gb/s aggregate bandwidth, with the potential to reduce power penalty per the device optimization process we described. A main motivation for this on-chip spatial multiplexing is the need to reduce costs. As the laser source serves as the greatest power consumer in an optical system, mode-division multiplexing and other forms of spatial multiplexing can be implemented to push its potentially prohibitive cost metrics down. In order to demonstrate an intelligent platform capable of dynamically multicasting data and reallocating power as needed by the system, we must first initialize the switch fabric to control with an electronic interface. A dithering mechanism, whereby exact cross, bar, and sub-percentage states are enforced through the device, is described here. Such a method could be employed for actuating the device table of bias values to states automatically. We then employ a dynamic power reallocation algorithm through a data acquisition unit, showing real-time channel recovery for channels experiencing power loss by diverting power from paths that could tolerate it. The data that is being multicast through the system is experimentally shown to be error-free at 40 Gb/s data rate, when transmitting from one to three clients and going from automatic bar/cross states to equalized power distribution. For the last portion of this topic, the switch fabric was inserted into a high-performance computing system. In order to run benchmarks at 10 Gb/s data ontop of the switch fabric, a newer model of the control plane was implemented to toggle states according to the command issued by the server

  14. Spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources. Experimental results

    International Nuclear Information System (INIS)

    Panitzsch, Lauri

    2013-01-01

    The experimental determination of the spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources (ECRIS) defines the focus of this thesis. The spatial distributions of different ion species were obtained in the object plane of the bending magnet (∼45 cm downstream from the plasma electrode) and in the plane of the plasma electrode itself, both in high spatial resolution. The results show that each of the different ion species forms a bloated, triangular structure in the aperture of the plasma electrode. The geometry and the orientation of these structures are defined by the superposition of the radial and axial magnetic fields. The radial extent of each structure is defined by the charge of the ion. Higher charge states occupy smaller, more concentrated structures. The total current density increases towards the center of the plasma electrode. The circular and star-like structures that can be observed in the beam profiles of strongly focused, extracted ion beams are each dominated by ions of a single charge state. In addition, the spatially resolved current density distribution of charged particles in the plasma chamber that impinge on the plasma electrode was determined, differentiating between ions and electrons. The experimental results of this work show that the electrons of the plasma are strongly connected to the magnetic field lines in the source and thus spatially well confined in a triangular-like structure. The intensity of the electrons increases towards the center of the plasma electrode and the plasma chamber, as well. These electrons are surrounded by a spatially far less confined and less intense ion population. All the findings mentioned above were already predicted in parts by simulations of different groups. However, the results presented within this thesis represent the first (and by now only) direct experimental verification of those predictions and are qualitatively transferable to other

  15. Spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Panitzsch, Lauri

    2013-02-08

    The experimental determination of the spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources (ECRIS) defines the focus of this thesis. The spatial distributions of different ion species were obtained in the object plane of the bending magnet ({approx}45 cm downstream from the plasma electrode) and in the plane of the plasma electrode itself, both in high spatial resolution. The results show that each of the different ion species forms a bloated, triangular structure in the aperture of the plasma electrode. The geometry and the orientation of these structures are defined by the superposition of the radial and axial magnetic fields. The radial extent of each structure is defined by the charge of the ion. Higher charge states occupy smaller, more concentrated structures. The total current density increases towards the center of the plasma electrode. The circular and star-like structures that can be observed in the beam profiles of strongly focused, extracted ion beams are each dominated by ions of a single charge state. In addition, the spatially resolved current density distribution of charged particles in the plasma chamber that impinge on the plasma electrode was determined, differentiating between ions and electrons. The experimental results of this work show that the electrons of the plasma are strongly connected to the magnetic field lines in the source and thus spatially well confined in a triangular-like structure. The intensity of the electrons increases towards the center of the plasma electrode and the plasma chamber, as well. These electrons are surrounded by a spatially far less confined and less intense ion population. All the findings mentioned above were already predicted in parts by simulations of different groups. However, the results presented within this thesis represent the first (and by now only) direct experimental verification of those predictions and are qualitatively transferable to

  16. GéoSAS: A modular and interoperable Open Source Spatial Data Infrastructure for research

    Directory of Open Access Journals (Sweden)

    R. Bera

    2015-05-01

    Full Text Available To-date, the commonest way to deal with geographical information and processes still appears to consume local resources, i.e. locally stored data processed on a local desktop or server. The maturity and subsequent growing use of OGC standards to exchange data on the World Wide Web, enhanced in Europe by the INSPIRE Directive, is bound to change the way people (and among them research scientists, especially in environmental sciences make use of, and manage, spatial data. A clever use of OGC standards can help scientists to better store, share and use data, in particular for modelling. We propose a framework for online processing by making an intensive use of OGC standards. We illustrate it using the Spatial Data Infrastructure (SDI GéoSAS which is the SDI set up for researchers’ needs in our department. It is based on the existing open source, modular and interoperable Spatial Data Architecture geOrchestra.

  17. GéoSAS: A modular and interoperable Open Source Spatial Data Infrastructure for research

    Science.gov (United States)

    Bera, R.; Squividant, H.; Le Henaff, G.; Pichelin, P.; Ruiz, L.; Launay, J.; Vanhouteghem, J.; Aurousseau, P.; Cudennec, C.

    2015-05-01

    To-date, the commonest way to deal with geographical information and processes still appears to consume local resources, i.e. locally stored data processed on a local desktop or server. The maturity and subsequent growing use of OGC standards to exchange data on the World Wide Web, enhanced in Europe by the INSPIRE Directive, is bound to change the way people (and among them research scientists, especially in environmental sciences) make use of, and manage, spatial data. A clever use of OGC standards can help scientists to better store, share and use data, in particular for modelling. We propose a framework for online processing by making an intensive use of OGC standards. We illustrate it using the Spatial Data Infrastructure (SDI) GéoSAS which is the SDI set up for researchers' needs in our department. It is based on the existing open source, modular and interoperable Spatial Data Architecture geOrchestra.

  18. Newspaper archives + text mining = rich sources of historical geo-spatial data

    Science.gov (United States)

    Yzaguirre, A.; Smit, M.; Warren, R.

    2016-04-01

    Newspaper archives are rich sources of cultural, social, and historical information. These archives, even when digitized, are typically unstructured and organized by date rather than by subject or location, and require substantial manual effort to analyze. The effort of journalists to be accurate and precise means that there is often rich geo-spatial data embedded in the text, alongside text describing events that editors considered to be of sufficient importance to the region or the world to merit column inches. A regional newspaper can add over 100,000 articles to its database each year, and extracting information from this data for even a single country would pose a substantial Big Data challenge. In this paper, we describe a pilot study on the construction of a database of historical flood events (location(s), date, cause, magnitude) to be used in flood assessment projects, for example to calibrate models, estimate frequency, establish high water marks, or plan for future events in contexts ranging from urban planning to climate change adaptation. We then present a vision for extracting and using the rich geospatial data available in unstructured text archives, and suggest future avenues of research.

  19. High spatial resolution and high brightness ion beam probe for in-situ elemental and isotopic analysis

    Science.gov (United States)

    Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi

    2018-03-01

    A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.

  20. High energy cosmic rays: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor; Gaisser, Thomas K.; Tilav, Serap

    2014-04-01

    We discuss the production of a unique energy spectrum of the high energy cosmic rays detected with air showers by shifting the energy estimates of different detectors. After such a spectrum is generated we fit the spectrum with three or four populations of cosmic rays that might be accelerated at different cosmic ray sources. We also present the chemical composition that the fits of the spectrum generates and discuss some new data sets presented this summer at the ICRC in Rio de Janeiro that may require new global fits.

  1. Benefits of GMR sensors for high spatial resolution NDT applications

    Science.gov (United States)

    Pelkner, M.; Stegemann, R.; Sonntag, N.; Pohl, R.; Kreutzbruck, M.

    2018-04-01

    Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications; examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond scientific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applications. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before testing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test.

  2. Security of highly radioactive sources in Nepal

    International Nuclear Information System (INIS)

    Shrestha, Kamal K.

    2010-01-01

    Subsequent to 9/11, concerned countries and UN agencies have taken especial interest in the security of highly radioactive sources throughout the world. The IAEA Nuclear Security Plan (2006-2009) consequently made as a result of UN Security Council Resolution 1540 is binding to all States. The Global Threat Reduction Initiative (GTRI) of the US and the Global Threat Reduction Programme (GTRP) of UK have assisted the four hospitals in Nepal having more than 1,000 Curies of radioactivity in their Cobalt-60 sources used for teletherapy. The physical upgrade of the security of the nuclear materials has also been launched in Nepal for prevention of theft with malicious intention or threats. In this presentation, the radioisotopes in Nepal that comes under different categories according to TECDOC-1355 of IAEA will be described. Problems and issues regarding the security and protection of radioactive sources at hospitals, academic and research institutions that could be prevalent in many developing counties too will be discussed by taking a case study of one of the cancer hospitals in Kathmandu valley. (author)

  3. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  4. Spatial resolution limits for the localization of noise sources using direct sound mapping

    DEFF Research Database (Denmark)

    Comesana, D. Fernandez; Holland, K. R.; Fernandez Grande, Efren

    2016-01-01

    the relationship between spatial resolution, noise level and geometry. The proposed expressions are validated via simulations and experiments. It is shown that particle velocity mapping yields better results for identifying closely spaced sound sources than sound pressure or sound intensity, especially...... extensively been used for many years to locate sound sources. However, it is not yet well defined when two sources should be regarded as resolved by means of direct sound mapping. This paper derives the limits of the direct representation of sound pressure, particle velocity and sound intensity by exploring......One of the main challenges arising from noise and vibration problems is how to identify the areas of a device, machine or structure that produce significant acoustic excitation, i.e. the localization of main noise sources. The direct visualization of sound, in particular sound intensity, has...

  5. Gamma-Ray Imager With High Spatial And Spectral Resolution

    Science.gov (United States)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  6. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    Directory of Open Access Journals (Sweden)

    Michael X Cohen

    Full Text Available Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz, followed by a later alpha-band (8-12 Hz conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz, alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  7. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    Science.gov (United States)

    Cohen, Michael X; Ridderinkhof, K Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  8. EEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing

    Science.gov (United States)

    Cohen, Michael X; Ridderinkhof, K. Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30–50 Hz), followed by a later alpha-band (8–12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4–8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions. PMID:23451201

  9. Considerations for high-brightness electron sources

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Particle accelerators are now used in many areas of physics research and in industrial and medical applications. New uses are being studied to address major societal needs in energy production, materials research, generation of intense beams of radiation at optical and suboptical wavelengths, treatment of various kinds of waste, and so on. Many of these modern applications require a high intensity beam at the desired energy, along with a very good beam quality in terms of the beam confinement, aiming, or focusing. Considerations for ion and electron accelerators are often different, but there are also many commonalties, and in fact, techniques derived for one should perhaps more often be considered for the other as well. We discuss some aspects of high-brightness electron sources here from that point of view. 6 refs

  10. Spatial coherence properties of a compact and ultrafast laser-produced plasma keV x-ray source

    International Nuclear Information System (INIS)

    Boschetto, D.; Mourou, G.; Rousse, A.; Mordovanakis, A.; Hou, Bixue; Nees, J.; Kumah, D.; Clarke, R.

    2007-01-01

    The authors use Fresnel diffraction from knife-edges to demonstrate the spatial coherence of a tabletop ultrafast x-ray source produced by laser-plasma interaction. Spatial coherence is achieved in the far field by producing micrometer-scale x-ray spot dimensions. The results show an x-ray source size of 6 μm that leads to a transversal coherence length of 20 μm at a distance of 60 cm from the source. Moreover, they show that the source size is limited by the spatial spread of the absorbed laser energy

  11. The JLab high power ERL light source

    International Nuclear Information System (INIS)

    Neil, G.R.; Behre, C.; Benson, S.V.

    2006-01-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered (superconducting) Linac (ERL). The machine has a 160MeV electron beam and an average current of 10mA in 75MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ∼ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100fs pulses with >200W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10kW of average power in the IR from 1 to 14μm in 400fs pulses at up to 74.85MHz repetition rates and soon will produce similar pulses of 300-1000nm light at up to 3kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and

  12. The JLab high power ERL light source

    Energy Technology Data Exchange (ETDEWEB)

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  13. An innovative expression model of human health risk based on the quantitative analysis of soil metals sources contribution in different spatial scales.

    Science.gov (United States)

    Zhang, Yimei; Li, Shuai; Wang, Fei; Chen, Zhuang; Chen, Jie; Wang, Liqun

    2018-09-01

    Toxicity of heavy metals from industrialization poses critical concern, and analysis of sources associated with potential human health risks is of unique significance. Assessing human health risk of pollution sources (factored health risk) concurrently in the whole and the sub region can provide more instructive information to protect specific potential victims. In this research, we establish a new expression model of human health risk based on quantitative analysis of sources contribution in different spatial scales. The larger scale grids and their spatial codes are used to initially identify the level of pollution risk, the type of pollution source and the sensitive population at high risk. The smaller scale grids and their spatial codes are used to identify the contribution of various sources of pollution to each sub region (larger grid) and to assess the health risks posed by each source for each sub region. The results of case study show that, for children (sensitive populations, taking school and residential area as major region of activity), the major pollution source is from the abandoned lead-acid battery plant (ALP), traffic emission and agricultural activity. The new models and results of this research present effective spatial information and useful model for quantifying the hazards of source categories and human health a t complex industrial system in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. SAGA GIS based processing of spatial high resolution temperature data

    International Nuclear Information System (INIS)

    Gerlitz, Lars; Bechtel, Benjamin; Kawohl, Tobias; Boehner, Juergen; Zaksek, Klemen

    2013-01-01

    Many climate change impact studies require surface and near surface temperature data with high spatial and temporal resolution. The resolution of state of the art climate models and remote sensing data is often by far to coarse to represent the meso- and microscale distinctions of temperatures. This is particularly the case for regions with a huge variability of topoclimates, such as mountainous or urban areas. Statistical downscaling techniques are promising methods to refine gridded temperature data with limited spatial resolution, particularly due to their low demand for computer capacity. This paper presents two downscaling approaches - one for climate model output and one for remote sensing data. Both are methodically based on the FOSS-GIS platform SAGA. (orig.)

  15. Seasonal and Spatial Variability of Anthropogenic and Natural Factors Influencing Groundwater Quality Based on Source Apportionment

    Directory of Open Access Journals (Sweden)

    Xueru Guo

    2018-02-01

    Full Text Available Globally, groundwater resources are being deteriorated by rapid social development. Thus, there is an urgent need to assess the combined impacts of natural and enhanced anthropogenic sources on groundwater chemistry. The aim of this study was to identify seasonal characteristics and spatial variations in anthropogenic and natural effects, to improve the understanding of major hydrogeochemical processes based on source apportionment. 34 groundwater points located in a riverside groundwater resource area in northeast China were sampled during the wet and dry seasons in 2015. Using principal component analysis and factor analysis, 4 principal components (PCs were extracted from 16 groundwater parameters. Three of the PCs were water-rock interaction (PC1, geogenic Fe and Mn (PC2, and agricultural pollution (PC3. A remarkable difference (PC4 was organic pollution originating from negative anthropogenic effects during the wet season, and geogenic F enrichment during the dry season. Groundwater exploitation resulted in dramatic depression cone with higher hydraulic gradient around the water source area. It not only intensified dissolution of calcite, dolomite, gypsum, Fe, Mn and fluorine minerals, but also induced more surface water recharge for the water source area. The spatial distribution of the PCs also suggested the center of the study area was extremely vulnerable to contamination by Fe, Mn, COD, and F−.

  16. Nonuniformity correction of infrared cameras by reading radiance temperatures with a spatially nonhomogeneous radiation source

    International Nuclear Information System (INIS)

    Gutschwager, Berndt; Hollandt, Jörg

    2017-01-01

    We present a novel method of nonuniformity correction (NUC) of infrared cameras and focal plane arrays (FPA) in a wide optical spectral range by reading radiance temperatures and by applying a radiation source with an unknown and spatially nonhomogeneous radiance temperature distribution. The benefit of this novel method is that it works with the display and the calculation of radiance temperatures, it can be applied to radiation sources of arbitrary spatial radiance temperature distribution, and it only requires sufficient temporal stability of this distribution during the measurement process. In contrast to this method, an initially presented method described the calculation of NUC correction with the reading of monitored radiance values. Both methods are based on the recording of several (at least three) images of a radiation source and a purposeful row- and line-shift of these sequent images in relation to the first primary image. The mathematical procedure is explained in detail. Its numerical verification with a source of a predefined nonhomogeneous radiance temperature distribution and a thermal imager of a predefined nonuniform FPA responsivity is presented. (paper)

  17. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Michael R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)], E-mail: armstrong30@llnl.gov; Boyden, Ken [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Browning, Nigel D. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Gibson, David J.; Hartemann, Fred [N Division, Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-280, Livermore, CA 94550 (United States); Kim, Judy S. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)

    2007-04-15

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  18. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Armstrong, Michael R.; Boyden, Ken; Browning, Nigel D.; Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M.; Gibson, David J.; Hartemann, Fred; Kim, Judy S.; King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R.

    2007-01-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10 7 electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution -6 s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed

  19. Antibiotics in the coastal environment of the Hailing Bay region, South China Sea: Spatial distribution, source analysis and ecological risks.

    Science.gov (United States)

    Chen, Hui; Liu, Shan; Xu, Xiang-Rong; Zhou, Guang-Jie; Liu, Shuang-Shuang; Yue, Wei-Zhong; Sun, Kai-Feng; Ying, Guang-Guo

    2015-06-15

    In this study, the occurrence and spatial distribution of 38 antibiotics in surface water and sediment samples of the Hailing Bay region, South China Sea, were investigated. Twenty-one, 16 and 15 of 38 antibiotics were detected with the concentrations ranging from antibiotics in the water phase were correlated positively with chemical oxygen demand and nitrate. The source analysis indicated that untreated domestic sewage was the primary source of antibiotics in the study region. Fluoroquinolones showed strong sorption capacity onto sediments due to their high pseudo-partitioning coefficients. Risk assessment indicated that oxytetracycline, norfloxacin and erythromycin-H2O posed high risks to aquatic organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Very-High-Brightness Picosecond Electron Source

    International Nuclear Information System (INIS)

    Bluem, H.

    2003-01-01

    Bright, RF photocathode electron guns are the source of choice for most high-performance research accelerator applications. Some of these applications are pushing the performance boundaries of the present state-of-the-art guns. Advanced Energy Systems is developing a novel photocathode RF gun that shows excellent promise for extending gun performance. Initial gun simulations with only a short booster accelerator easily break the benchmark emittance of one micron for 1 nC of bunch charge. The pulse length in these simulations is less than 2 ps. It is expected that with more detailed optimization studies, the performance can be further improved. The performance details of the gun will be presented. In addition, we will discuss the present design concept along with the status of the project

  1. Physics of high intensity nanosecond electron source

    International Nuclear Information System (INIS)

    Herrera-Gomez, A.; Spicer, W.E.

    1993-08-01

    A new high-intensity, short-time electron source is now being used at the Stanford Linear Accelerator Center (SLAC). Using a GaAs negative affinity semiconductor in the construction of the cathode, it is possible to fulfill operation requirements such as peak currents of tens of amperes, peak widths of the order of nanoseconds, hundreds of hours of operation stability, and electron spin polarization. The cathode is illuminated with high intensity laser pulses, and photoemitted electrons constitute the yield. Because of the high currents, some nonlinear effects are present. Very noticeable is the so-called Charge Limit (CL) effect, which consists of a limit on the total charge in each pulse-that is, the total bunch charge stops increasing as the light pulse total energy increases. In this paper, we explain the mechanism of the CL and how it is caused by the photovoltaic effect. Our treatment is based on the Three-Step model of photoemission. We relate the CL to the characteristics of the surface and bulk of the semiconductor, such as doping, band bending, surface vacuum level, and density of surface states. We also discuss possible ways to prevent the Char's Level effect

  2. Multi-scale spatial modeling of human exposure from local sources to global intake

    DEFF Research Database (Denmark)

    Wannaz, Cedric; Fantke, Peter; Jolliet, Olivier

    2018-01-01

    Exposure studies, used in human health risk and impact assessments of chemicals are largely performed locally or regionally. It is usually not known how global impacts resulting from exposure to point source emissions compare to local impacts. To address this problem, we introduce Pangea......, an innovative multi-scale, spatial multimedia fate and exposure assessment model. We study local to global population exposure associated with emissions from 126 point sources matching locations of waste-to-energy plants across France. Results for three chemicals with distinct physicochemical properties...... occur within a 100 km radius from the source. This suggests that, by neglecting distant low-level exposure, local assessments might only account for fractions of global cumulative intakes. We also study ~10,000 emission locations covering France more densely to determine per chemical and exposure route...

  3. Spatial Variability of Sources and Mixing State of Atmospheric Particles in a Metropolitan Area.

    Science.gov (United States)

    Ye, Qing; Gu, Peishi; Li, Hugh Z; Robinson, Ellis S; Lipsky, Eric; Kaltsonoudis, Christos; Lee, Alex K Y; Apte, Joshua S; Robinson, Allen L; Sullivan, Ryan C; Presto, Albert A; Donahue, Neil M

    2018-05-30

    Characterizing intracity variations of atmospheric particulate matter has mostly relied on fixed-site monitoring and quantifying variability in terms of different bulk aerosol species. In this study, we performed ground-based mobile measurements using a single-particle mass spectrometer to study spatial patterns of source-specific particles and the evolution of particle mixing state in 21 areas in the metropolitan area of Pittsburgh, PA. We selected sampling areas based on traffic density and restaurant density with each area ranging from 0.2 to 2 km 2 . Organics dominate particle composition in all of the areas we sampled while the sources of organics differ. The contribution of particles from traffic and restaurant cooking varies greatly on the neighborhood scale. We also investigate how primary and aged components in particles mix across the urban scale. Lastly we quantify and map the particle mixing state for all areas we sampled and discuss the overall pattern of mixing state evolution and its implications. We find that in the upwind and downwind of the urban areas, particles are more internally mixed while in the city center, particle mixing state shows large spatial heterogeneity that is mostly driven by emissions. This study is to our knowledge, the first study to perform fine spatial scale mapping of particle mixing state using ground-based mobile measurement and single-particle mass spectrometry.

  4. High repetition rate intense ion beam source

    International Nuclear Information System (INIS)

    Hammer, D.A.; Glidden, S.C.; Noonan, B.

    1992-01-01

    This final report describes a ≤ 150kV, 40kA, 100ns high repetition rate pulsed power system and intense ion beam source which is now in operation at Cornell University. Operation of the Magnetically-controlled Anode Plasma (MAP) ion diode at > 100Hz (burst mode for up to 10 pulse bursts) provides an initial look at repetition rate limitations of both the ion diode and beam diagnostics. The pulsed power systems are capable of ≥ 1kHz operation (up to 10 pulse bursts), but ion diode operation was limited to ∼100Hz because of diagnostic limitations. By varying MAP diode operating parameters, ion beams can be extracted at a few 10s of keV or at up to 150keV, the corresponding accelerating gap impedance ranging from about 1Ω to about 10Ω. The ability to make hundreds of test pulses per day at an average repetition rate of about 2 pulses per minute permits statistical analysis of diode operation as a function of various parameters. Most diode components have now survived more than 10 4 pulses, and the design and construction of the various pulsed power components of the MAP diode which have enabled us to reach this point are discussed. A high speed data acquisition system and companion analysis software capable of acquiring pulse data at 1ms intervals (in bursts of up to 10 pulses) and processing it in ≤ min is described

  5. Highly efficient sources of single indistinguishable photons

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2013-01-01

    be electrically driven. Several design strategies addressing these requirements have been proposed. In the cavity-based source, light emission is controlled using resonant cavity quantum electrodynamics effects, whereas in the waveguide-based source, broadband electric field screening effects are employed......Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable and the source should...

  6. Collimated dual species oven source and its characterisation via spatially resolved fluorescence spectroscopy

    Science.gov (United States)

    Cooper, N.; Da Ros, E.; Nute, J.; Baldolini, D.; Jouve, P.; Hackermüller, L.; Langer, M.

    2018-03-01

    We describe the design, construction and characterisation of a collimated, dual-species oven source for generating intense beams of lithium and caesium in UHV environments. Our design produces full beam overlap for the two species. Using an aligned microtube array the FWHM of the output beam is restricted to  ˜75 milliradians, with an estimated axial brightness of 3.6× 1014 atoms s-1 sr-1 for Li and 7.4× 1015 atoms s-1 sr-1 for Cs. We measure the properties of the output beam using a spatially-resolved fluorescence technique, which allows for the extraction of additional information not accessible without spatial resolution.

  7. Aggregation-cokriging for highly multivariate spatial data

    KAUST Repository

    Furrer, R.; Genton, M. G.

    2011-01-01

    Best linear unbiased prediction of spatially correlated multivariate random processes, often called cokriging in geostatistics, requires the solution of a large linear system based on the covariance and cross-covariance matrix of the observations. For many problems of practical interest, it is impossible to solve the linear system with direct methods. We propose an efficient linear unbiased predictor based on a linear aggregation of the covariables. The primary variable together with this single meta-covariable is used to perform cokriging. We discuss the optimality of the approach under different covariance structures, and use it to create reanalysis type high-resolution historical temperature fields. © 2011 Biometrika Trust.

  8. Super-high magnetic fields in spatially inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nastoyashchiy, Anatoly F.

    2012-01-01

    The new phenomenon of a spontaneous magnetic field in spatially inhomogeneous plasma is found. The criteria for instability are determined, and both the linear and nonlinear stages of the magnetic field growth are considered; it is shown that the magnetic field can reach a considerable magnitude, namely, its pressure can be comparable with the plasma pressure. Especially large magnetic fields can arise in hot plasma with a high electron density, for example, in laser-heated plasma. In steady-state plasma, the magnetic field can be self-sustaining. The considered magnetic fields may play an important role in thermal insulation of the plasma. (author)

  9. Aggregation-cokriging for highly multivariate spatial data

    KAUST Repository

    Furrer, R.

    2011-08-26

    Best linear unbiased prediction of spatially correlated multivariate random processes, often called cokriging in geostatistics, requires the solution of a large linear system based on the covariance and cross-covariance matrix of the observations. For many problems of practical interest, it is impossible to solve the linear system with direct methods. We propose an efficient linear unbiased predictor based on a linear aggregation of the covariables. The primary variable together with this single meta-covariable is used to perform cokriging. We discuss the optimality of the approach under different covariance structures, and use it to create reanalysis type high-resolution historical temperature fields. © 2011 Biometrika Trust.

  10. Escherichia coli pollution in a Baltic Sea lagoon: a model-based source and spatial risk assessment.

    Science.gov (United States)

    Schippmann, Bianca; Schernewski, Gerald; Gräwe, Ulf

    2013-07-01

    Tourism around the Oder (Szczecin) Lagoon, at the southern Baltic coast, has a long tradition, is an important source of income and shall be further developed. Insufficient bathing water quality and frequent beach closings, especially in the Oder river mouth, hamper tourism development. Monitoring data gives only an incomplete picture of Escherichia coli (E. coli) bacteria sources, spatial transport patterns, risks and does neither support an efficient bathing water quality management nor decision making. We apply a 3D ocean model and a Lagrangian particle tracking model to analyse pollution events and to obtain spatial E. coli pollution maps based on scenario simulations. Model results suggests that insufficient sewage treatment in the city of Szczecin is the major source of faecal pollution, even for beaches 20km downstream. E. coli mortality rate and emission intensity are key parameters for concentration levels downstream. Wind and river discharge play a modifying role. Prevailing southwestern wind conditions cause E. coli transport along the eastern coast and favour high concentration levels at the beaches. Our simulations indicate that beach closings in 2006 would not have been necessary according to the new EU-Bathing Water Quality Directive (2006/7/EC). The implementation of the new directive will, very likely, reduce the number of beach closings, but not the risk for summer tourists. Model results suggest, that a full sewage treatment in Szczecin would allow the establishment of new beaches closer to the city (north of Dabie lake). Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. [Research on spatial differentiation of urban stormwater runoff quality by source area monitoring].

    Science.gov (United States)

    Li, Li-Qing; Zhu, Ren-Xiao; Guo, Shu-Gang; Yin, Cheng-Qing

    2010-12-01

    Runoff samples were collected from 14 source areas in Hanyang district during four rain events in an attempt to investigate the spatial differentiation and influencing factors of urban stormwater runoff quality. The outcomes are expected to offer practical guidance in sources control of urban runoff pollution. The results revealed that particle-bound proportion of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in stormwater runoff were 58% +/- 17%, 65% +/- 13% and 92% +/- 6%, respectively. The fractions of ammonia, nitrate and dissolved organic nitrogen were homogeneous in dissolved nitrogen composition. Urban surface function, traffic volume, land use, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. The highest magnitude of urban stormwater runoff pollution was expected in the old urban residential area, followed by general residential with restaurants, commercial and transport area, new developments and green land. In addition, the magnitude of road stormwater runoff pollution is positively correlated to traffic volume, in the following order: the first trunk road > the second trunk road > minor road. Street sweeping and critical source areas controls should be implemented to mitigate the adverse effects of urban stormwater runoff on receive waters.

  12. Dynamic Raman imaging system with high spatial and temporal resolution

    Science.gov (United States)

    Wang, Lei; Dai, Yinzhen; He, Hao; Lv, Ruiqi; Zong, Cheng; Ren, Bin

    2017-09-01

    There is an increasing need to study dynamic changing systems with significantly high spatial and temporal resolutions. In this work, we integrated point-scanning, line-scanning, and wide-field Raman imaging techniques into a single system. By using an Electron Multiplying CCD (EMCCD) with a high gain and high frame rate, we significantly reduced the time required for wide-field imaging, making it possible to monitor the electrochemical reactions in situ. The highest frame rate of EMCDD was ˜50 fps, and the Raman images for a specific Raman peak can be obtained by passing the signal from the sample through the Liquid Crystal Tunable Filter. The spatial resolutions of scanning imaging and wide-field imaging with a 100× objective (NA = 0.9) are 0.5 × 0.5 μm2 and 0.36 × 0.36 μm2, respectively. The system was used to study the surface plasmon resonance of Au nanorods, the surface-enhanced Raman scattering signal distribution for Au Nanoparticle aggregates, and dynamic Raman imaging of an electrochemical reacting system.

  13. Photocathodes for High Repetition Rate Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, Ilan [Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy. Center for Accelerator Science and Education

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-­conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-­antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU -­ BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder-­ and single-­crystal diffraction, x-­ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark period and

  14. [Multiple time scales analysis of spatial differentiation characteristics of non-point source nitrogen loss within watershed].

    Science.gov (United States)

    Liu, Mei-bing; Chen, Xing-wei; Chen, Ying

    2015-07-01

    Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively. Furthermore, multiple linear correlation analysis was conducted to analyze the contribution of natural environment and anthropogenic disturbance on nitrogen loss. The results showed that there were significant spatial differences of TN loss in Shanmei Reservoir watershed at different time scales, and the spatial differentiation degree of nitrogen loss was in the order of monthly average > yearly average > rainstorms flood process. TN loss load mainly came from upland Taoxi subbasin, which was identified as the critical source area. At different time scales, land use types (such as farmland and forest) were always the dominant factor affecting the spatial distribution of nitrogen loss, while the effect of precipitation and runoff on the nitrogen loss was only taken in no fertilization month and several processes of storm flood at no fertilization date. This was mainly due to the significant spatial variation of land use and fertilization, as well as the low spatial variability of precipitation and runoff.

  15. An open source platform for multi-scale spatially distributed simulations of microbial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Segre, Daniel [Boston Univ., MA (United States)

    2014-08-14

    The goal of this project was to develop a tool for facilitating simulation, validation and discovery of multiscale dynamical processes in microbial ecosystems. This led to the development of an open-source software platform for Computation Of Microbial Ecosystems in Time and Space (COMETS). COMETS performs spatially distributed time-dependent flux balance based simulations of microbial metabolism. Our plan involved building the software platform itself, calibrating and testing it through comparison with experimental data, and integrating simulations and experiments to address important open questions on the evolution and dynamics of cross-feeding interactions between microbial species.

  16. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  17. High spatial and temporal resolution cell manipulation techniques in microchannels.

    Science.gov (United States)

    Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P

    2016-03-21

    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.

  18. High spatial resolution infrared camera as ISS external experiment

    Science.gov (United States)

    Eckehard, Lorenz; Frerker, Hap; Fitch, Robert Alan

    High spatial resolution infrared camera as ISS external experiment for monitoring global climate changes uses ISS internal and external resources (eg. data storage). The optical experiment will consist of an infrared camera for monitoring global climate changes from the ISS. This technology was evaluated by the German small satellite mission BIRD and further developed in different ESA projects. Compared to BIRD the presended instrument uses proven sensor advanced technologies (ISS external) and ISS on board processing and storage capabili-ties (internal). The instrument will be equipped with a serial interfaces for TM/TC and several relay commands for the power supply. For data processing and storage a mass memory is re-quired. The access to actual attitude data is highly desired to produce geo referenced maps-if possible by an on board processing.

  19. Science with High Spatial Resolution Far-Infrared Data

    Science.gov (United States)

    Terebey, Susan (Editor); Mazzarella, Joseph M. (Editor)

    1994-01-01

    The goal of this workshop was to discuss new science and techniques relevant to high spatial resolution processing of far-infrared data, with particular focus on high resolution processing of IRAS data. Users of the maximum correlation method, maximum entropy, and other resolution enhancement algorithms applicable to far-infrared data gathered at the Infrared Processing and Analysis Center (IPAC) for two days in June 1993 to compare techniques and discuss new results. During a special session on the third day, interested astronomers were introduced to IRAS HIRES processing, which is IPAC's implementation of the maximum correlation method to the IRAS data. Topics discussed during the workshop included: (1) image reconstruction; (2) random noise; (3) imagery; (4) interacting galaxies; (5) spiral galaxies; (6) galactic dust and elliptical galaxies; (7) star formation in Seyfert galaxies; (8) wavelet analysis; and (9) supernova remnants.

  20. Spatial distribution and potential sources of trace metals in insoluble particles of snow from Urumqi, China.

    Science.gov (United States)

    Li, Xiaolan; Jiang, Fengqing; Wang, Shaoping; Turdi, Muyesser; Zhang, Zhaoyong

    2015-01-01

    The purpose of this work is to characterize trace elements in snow in urban-suburb gradient over Urumqi city, China. The spatial distribution patterns of 11 trace metals in insoluble particulate matters of snow were revealed by using 102 snow samples collected in and around urban areas of Urumqi, a city suffering from severe wintertime air pollution in China. Similar spatial distribution for Mn, Cu, Zn, Ni, and Pb was found and their two significant high-value areas located in the west and east, respectively, and a high-value area in the south, which were correlated with factory emissions, traffic activities, and construction fugitive dust. The high-value areas of Cr, Ni, and V occurred in the northeast corner and along main traffic paths, which were linked to oil refinery and vehicular emissions. High value of Be presented in the west of the city. The high-value area of Co in the northeast could be related to local soil. Cd and U displayed relatively even spatial patterns in the urban area. In view of distance from the urban center, e.g., from the first circular belt to the fourth circular belt, except Be, V, Cd, and U, the contents of other metals generally decreased from the first circular belt to the forth circular belt, implying the effect of human activity clearly. Additionally, prevailing northwesterly winds and occasionally southeasterly winds in winter were associated with decreased, generally, concentrations of trace metal in snow from the urban center to the southern suburb along a northwest and southeast transect. The information on concentrations and spatial distributions of these metals in insoluble particles of snow in winter will be valuable for further environmental protection and planning.

  1. Blind Separation of Nonstationary Sources Based on Spatial Time-Frequency Distributions

    Directory of Open Access Journals (Sweden)

    Zhang Yimin

    2006-01-01

    Full Text Available Blind source separation (BSS based on spatial time-frequency distributions (STFDs provides improved performance over blind source separation methods based on second-order statistics, when dealing with signals that are localized in the time-frequency (t-f domain. In this paper, we propose the use of STFD matrices for both whitening and recovery of the mixing matrix, which are two stages commonly required in many BSS methods, to provide robust BSS performance to noise. In addition, a simple method is proposed to select the auto- and cross-term regions of time-frequency distribution (TFD. To further improve the BSS performance, t-f grouping techniques are introduced to reduce the number of signals under consideration, and to allow the receiver array to separate more sources than the number of array sensors, provided that the sources have disjoint t-f signatures. With the use of one or more techniques proposed in this paper, improved performance of blind separation of nonstationary signals can be achieved.

  2. Spatial and temporal variation of sources contributing to quasi-ultrafine particulate matter PM0.36 in Augsburg, Germany.

    Science.gov (United States)

    Li, Fengxia; Schnelle-Kreis, Jürgen; Cyrys, Josef; Wolf, Kathrin; Karg, Erwin; Gu, Jianwei; Orasche, Jürgen; Abbaszade, Gülcin; Peters, Annette; Zimmermann, Ralf

    2018-08-01

    to study the sources contributing to quasi-ultrafine particle (UFP) organic carbon and the spatial temporal variability of the sources. 24h quasi-UFP (particulate matter quasi-UFP vary among sites and source types and show source-specific characteristics. Therefore, caution should be taken when using one monitor site measurement to assess human exposure in health effect studies of quasi-UFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices - Inter-site comparison.

    Science.gov (United States)

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Branchu, Philippe; Kovacs, Yves; Gromaire, Marie-Christine

    2017-02-01

    Stormwater runoff infiltration brings about some concerns regarding its potential impact on both soil and groundwater quality; besides, the fate of contaminants in source-control devices somewhat suffers from a lack of documentation. The present study was dedicated to assessing the spatial distribution of three heavy metals (copper, lead, zinc) in the surface soil of ten small-scale infiltration facilities, along with several physical parameters (soil moisture, volatile matter, variable thickness of the upper horizon). High-resolution samplings and in-situ measurements were undertaken, followed by X-ray fluorescence analyses and spatial interpolation. Highest metal accumulation was found in a relatively narrow area near the water inflow zone, from which concentrations markedly decreased with increasing distance. Maximum enrichment ratios amounted to >20 in the most contaminated sites. Heavy metal patterns give a time-integrated vision of the non-uniform infiltration fluxes, sedimentation processes and surface flow pathways within the devices. This element indicates that the lateral extent of contamination is mainly controlled by hydraulics. The evidenced spatial structure of soil concentrations restricts the area where remediation measures would be necessary in these systems, and suggests possible optimization of their hydraulic functioning towards an easier maintenance. Heterogeneous upper boundary conditions should be taken into account when studying the fate of micropollutants in infiltration facilities with either mathematical modeling or soil coring field surveys. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Cooperation in carbon source degradation shapes spatial self-organization of microbial consortia on hydrated surfaces.

    Science.gov (United States)

    Tecon, Robin; Or, Dani

    2017-03-06

    Mounting evidence suggests that natural microbial communities exhibit a high level of spatial organization at the micrometric scale that facilitate ecological interactions and support biogeochemical cycles. Microbial patterns are difficult to study definitively in natural environments due to complex biodiversity, observability and variable physicochemical factors. Here, we examine how trophic dependencies give rise to self-organized spatial patterns of a well-defined bacterial consortium grown on hydrated surfaces. The model consortium consisted of two Pseudomonas putida mutant strains that can fully degrade the aromatic hydrocarbon toluene. We demonstrated that obligate cooperation in toluene degradation (cooperative mutualism) favored convergence of 1:1 partner ratio and strong intermixing at the microscale (10-100 μm). In contrast, competition for benzoate, a compound degraded independently by both strains, led to distinct segregation patterns. Emergence of a persistent spatial pattern has been predicted for surface attached microbial activity in liquid films that mediate diffusive exchanges while permitting limited cell movement (colony expansion). This study of a simple microbial consortium offers mechanistic glimpses into the rules governing the assembly and functioning of complex sessile communities, and points to general principles of spatial organization with potential applications for natural and engineered microbial systems.

  5. Antibiotics in the coastal environment of the Hailing Bay region, South China Sea: Spatial distribution, source analysis and ecological risks

    International Nuclear Information System (INIS)

    Chen, Hui; Liu, Shan; Xu, Xiang-Rong; Zhou, Guang-Jie; Liu, Shuang-Shuang; Yue, Wei-Zhong; Sun, Kai-Feng; Ying, Guang-Guo

    2015-01-01

    Highlights: • Thirty-eight antibiotics were systematically investigated in marine environment. • The distribution of antibiotics was significantly correlated with COD and NO 3 –N. • Untreated domestic sewage was the primary source of antibiotics. • Fluoroquinolones showed a strong sorption capacity onto sediments. • Oxytetracycline, norfloxacin and erythromycin–H 2 O indicated high risks. - Abstract: In this study, the occurrence and spatial distribution of 38 antibiotics in surface water and sediment samples of the Hailing Bay region, South China Sea, were investigated. Twenty-one, 16 and 15 of 38 antibiotics were detected with the concentrations ranging from <0.08 (clarithromycin) to 15,163 ng/L (oxytetracycline), 2.12 (methacycline) to 1318 ng/L (erythromycin–H 2 O), <1.95 (ciprofloxacin) to 184 ng/g (chlortetracycline) in the seawater, discharged effluent and sediment samples, respectively. The concentrations of antibiotics in the water phase were correlated positively with chemical oxygen demand and nitrate. The source analysis indicated that untreated domestic sewage was the primary source of antibiotics in the study region. Fluoroquinolones showed strong sorption capacity onto sediments due to their high pseudo-partitioning coefficients. Risk assessment indicated that oxytetracycline, norfloxacin and erythromycin–H 2 O posed high risks to aquatic organisms

  6. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use

    Energy Technology Data Exchange (ETDEWEB)

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale [Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France); Manceron, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France); Laboratoire MONARIS, CNRS-Université Pierre et Marie Curie, UMR 8233, 4 Place Jussieu, F-75252 Paris Cedex (France)

    2016-06-15

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6–20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  7. Spatial Experiences of High Academic Achievers: Insights from a Developmental Perspective

    Science.gov (United States)

    Weckbacher, Lisa Marie; Okamoto, Yukari

    2012-01-01

    The study explored the relationship between types of spatial experiences and spatial abilities among 13- to 14-year-old high academic achievers. Each participant completed two spatial tasks and a survey assessing favored spatial activities across five categories (computers, toys, sports, music, and art) and three developmental periods (early…

  8. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas.

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L

    2012-10-01

    High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  9. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    Directory of Open Access Journals (Sweden)

    Fusheng Wang

    2013-01-01

    validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation.

  10. A high-performance spatial database based approach for pathology imaging algorithm evaluation.

    Science.gov (United States)

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A D; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J; Saltz, Joel H

    2013-01-01

    loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation.

  11. Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution

    International Nuclear Information System (INIS)

    Xu, Wen; Zhao, Yuanhong; Liu, Xuejun; Dore, Anthony J.; Zhang, Lin; Liu, Lei; Cheng, Miaomiao

    2018-01-01

    The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (N r ) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha −1 yr −1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of N r emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH 3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures. - Highlights: • Total DIN deposition fluxes showed a significant spatial variation in the

  12. Proton and Ion Sources for High Intensity Accelerators

    CERN Multimedia

    Scrivens, R

    2004-01-01

    Future high intensity ion accelerators, including the Spallation Neutron Source (SNS), the European Spallation Source (ESS), the Superconducting Proton Linac (SPL) etc, will require high current and high duty factor sources for protons and negative hydrogen ions. In order to achieve these goals, a comparison of the Electron Cyclotron Resonance, radio-frequency and Penning ion sources, among others, will be made. For each of these source types, the present operational sources will be compared to the state-of-the-art research devices with special attention given to reliability and availability. Finally, the future research and development aims will be discussed.

  13. Temporal and spatial distribution of high energy electrons at Jupiter

    Science.gov (United States)

    Jun, I.; Garrett, H. B.; Ratliff, J. M.

    2003-04-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to study the high energy electron environment in the Jovian magnetosphere, especially in the region between 8 to 18 Rj (1 Rj = 1 Jovian radius = 71,400 km). 10-minute averages of the EPD data collected between Jupiter orbit insertion (JOI) in 1995 and the orbit number 33 (I33) in 2002 form an extensive dataset, which has been extremely useful to observe temporal and spatial variability of the Jovian high energy electron environment. The count rates of the EPD electron channels (0.174, 0.304, 0.527, 1.5, 2.0, and 11 MeV) were grouped into 0.5 Rj or 0.5 L bins and analyzed statistically. The results indicate that: (1) a log-normal Gaussian distribution well describes the statistics of the high energy electron environment (for example, electron differential fluxes) in the Jovian magnetosphere, in the region studied here; (2) the high energy electron environments inferred by the Galileo EPD measurements are in a close agreement with the data obtained using the Divine model, which was developed more than 30 years ago from Pioneer 10, 11 and Voyager 1, 2 data; (3) the data are better organized when plotted against magnetic radial parameter L than Rj; (4) the standard deviations of the 0.174, 0.304, 0.527 MeV channel count rates are larger than those of the 1.5, 2.0, 11 MeV count rates in 12 Rj. These observations are very helpful to understand short- and long-term, and local variability of the Jovian high energy electron environment, and are discussed in detail.

  14. High spatial resolution imaging of some of the distant 3CR galaxies

    International Nuclear Information System (INIS)

    Le Fevre, O.; Hammer, F.; Jones, J.

    1988-01-01

    Deep, high spatial resolution imaging of several sources from the high-redshift 3CR galaxy sample is presented. Very complex and unexpected morphologies are found. All the galaxies observed so far are resolved, and most of them show multimodal sources. Significant color differences for the components of each galaxy are measured. An interpretation in terms of gravitational amplification/lensing by foreground galaxies or galactic clusters is proposed for 3C 238, 3C 241, and 3C 305.1, 3C 238 being the strongest candidate. The complexity of the 3CR galaxies like 3C 356, which includes a compact object, and 3C 326.1 shows that they are not normal ellipticals and their use as standard candles to test for galaxy evolution is therefore questionable. 29 references

  15. High spatial resolution mid-infrared spectroscopy of the starburst galaxies NGC3256, IIZw 40 and Henize 2-10

    NARCIS (Netherlands)

    Martin-Hernandez, N. L.; Schaerer, D.; Peeters, E.; Tielens, A. G. G. M.; Sauvage, M.

    Aims. In order to show the importance of high spatial resolution observations of extra-galactic sources when compared to observations obtained with larger apertures such as ISO, we present N-band spectra (8-13 mu m) of some locations in three starburst galaxies. In particular, we show the two

  16. High dose rate brachytherapy source measurement intercomparison.

    Science.gov (United States)

    Poder, Joel; Smith, Ryan L; Shelton, Nikki; Whitaker, May; Butler, Duncan; Haworth, Annette

    2017-06-01

    This work presents a comparison of air kerma rate (AKR) measurements performed by multiple radiotherapy centres for a single HDR 192 Ir source. Two separate groups (consisting of 15 centres) performed AKR measurements at one of two host centres in Australia. Each group travelled to one of the host centres and measured the AKR of a single 192 Ir source using their own equipment and local protocols. Results were compared to the 192 Ir source calibration certificate provided by the manufacturer by means of a ratio of measured to certified AKR. The comparisons showed remarkably consistent results with the maximum deviation in measurement from the decay-corrected source certificate value being 1.1%. The maximum percentage difference between any two measurements was less than 2%. The comparisons demonstrated the consistency of well-chambers used for 192 Ir AKR measurements in Australia, despite the lack of a local calibration service, and served as a valuable focal point for the exchange of ideas and dosimetry methods.

  17. Inverse modelling of fluvial sediment connectivity identifies characteristics and spatial distribution of sediment sources in a large river network.

    Science.gov (United States)

    Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.

    2016-12-01

    Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models

  18. Isotopic source signatures: Impact of regional variability on the δ13CH4 trend and spatial distribution

    Science.gov (United States)

    Feinberg, Aryeh I.; Coulon, Ancelin; Stenke, Andrea; Schwietzke, Stefan; Peter, Thomas

    2018-02-01

    The atmospheric methane growth rate has fluctuated over the past three decades, signifying variations in methane sources and sinks. Methane isotopic ratios (δ13CH4) differ between emission categories, and can therefore be used to distinguish which methane sources have changed. However, isotopic modelling studies have mainly focused on uncertainties in methane emissions rather than uncertainties in isotopic source signatures. We simulated atmospheric δ13CH4 for the period 1990-2010 using the global chemistry-climate model SOCOL. Empirically-derived regional variability in the isotopic signatures was introduced in a suite of sensitivity simulations. These simulations were compared to a baseline simulation with commonly used global mean isotopic signatures. We investigated coal, natural gas/oil, wetland, livestock, and biomass burning source signatures to determine whether regional variations impact the observed isotopic trend and spatial distribution. Based on recently published source signature datasets, our calculated global mean isotopic signatures are in general lighter than the commonly used values. Trends in several isotopic signatures were also apparent during the period 1990-2010. Tropical livestock emissions grew during the 2000s, introducing isotopically heavier livestock emissions since tropical livestock consume more C4 vegetation than midlatitude livestock. Chinese coal emissions, which are isotopically heavy compared to other coals, increase during the 2000s leading to higher global values of δ13CH4 for coal emissions. EDGAR v4.2 emissions disagree with the observed atmospheric isotopic trend for almost all simulations, confirming past doubts about this emissions inventory. The agreement between the modelled and observed δ13CH4 interhemispheric differences improves when regional source signatures are used. Even though the simulated results are highly dependent on the choice of methane emission inventories, they emphasize that the commonly used

  19. Mitigating Uncertainty from Vegetation Spatial Complexity with Highly Portable Lidar

    Science.gov (United States)

    Paynter, I.; Schaaf, C.; Peri, F.; Saenz, E. J.; Genest, D.; Strahler, A. H.; Li, Z.

    2015-12-01

    To fully utilize the excellent spatial coverage and temporal resolution offered by satellite resources for estimating ecological variables, fine-scale observations are required for comparison, calibration and validation. Lidar instruments have proved effective in estimating the properties of vegetation components of ecosystems, but they are often challenged by occlusion, especially in structurally complex and spatially fragmented ecosystems such as tropical forests. Increasing the range of view angles, both horizontally and vertically, by increasing the number of scans, can mitigate occlusion. However these scans must occur within the window of temporal stability for the ecosystem and vegetation property being measured. The Compact Biomass Lidar (CBL) is a TLS optimized for portability and scanning speed, developed and operated by University of Massachusetts Boston. This 905nm wavelength scanner achieves an angular resolution of 0.25 degrees at a rate of 33 seconds per scan. The ability to acquire many scans within narrow windows of temporal stability for ecological variables has facilitated the more complete investigation of ecosystem structural characteristics, and their expression as a function of view angle. The lightweight CBL has facilitated the use of alternative deployment platforms including towers, trams and masts, allowing analysis of the vertical structure of ecosystems, even in highly enclosed environments such as the sub-canopy of tropical forests where aerial vehicles cannot currently operate. We will present results from view angle analyses of lidar surveys of tropical rainforest in La Selva, Costa Rica where the CBL was deployed at heights up to 10m in Carbono long-term research plots utilizing a portable mast, and on a 25m stationary tower; and temperate forest at Harvard Forest, Massachusetts, USA, where the CBL has been deployed biannually at long-term research plots of hardwood and hemlock, as well as at heights of up to 25m utilizing a

  20. Possibilities Of Using Innovative Sources Of Information On Real Estate In The Spatial Data Collection Process

    Directory of Open Access Journals (Sweden)

    Kwartnik-Pruc Anita

    2015-03-01

    Full Text Available The register of land and buildings is an essential source of information on real estate. The use of cadastral data in land management is manifold, starting from spatial planning, through the calculation of taxes, the designation of real estate in land and mortgage registers, and finally, in real estate management. The accuracy of information from public records, i.e. the register of land and buildings, obtained by entities managing property has a direct impact on the correctness of the conducted processes of land management. Data necessary to determine the position of boundaries of cadastral parcels are taken from surveying documentation accepted into the national geodetic and cartographic resource database. If there is no such documentation, or the data contained therein are not reliable, information on the boundaries of cadastral parcels are obtained by means of field or photogrammetric surveys, preceded by the determination of the course of these boundaries.

  1. Atmospheric toxic metals emission inventory and spatial characteristics from anthropogenic sources of Guangdong province, China

    Science.gov (United States)

    Cher, S.; Menghua, L.; Xiao, X.; Yuqi, W.; Zhuangmin, Z.; Zhijiong, H.; Cheng, L.; Guanglin, J.; Zibing, Y.; Junyu, Z.

    2017-12-01

    Atmospheric toxic metals (TMs) are part of particulate matters, and may create adverse effects on the environment and human health depending upon their bioavailability and toxicity. Localized emission inventory is fundamental for parsing of toxic metals to identify key sources in order to formulate efficient toxic metals control strategies. With the use of the latest municipal level environment statistical data, this study developed a bottom-up emission inventory of five toxic metals (Hg, As, Pb, Cd, Cr) from anthropogenic activities in Guangdong province for the year of 2014. Major atmospheric toxic metals sources including combustion sources (coal, oil, biomass, municipal solid waste) and industrial process sources (cement production, nonferrous metal smelting, iron and steel industry, battery and fluorescent lamp production) were investigated. Results showed that: (1) The total emissions of Hg, As, Pb, Cd, Cr in Guangdong province were 18.14, 32.59, 411.34, 13.13, 84.16 t, respectively. (2) Different pollutants have obvious characteristics of emission sources. For total Hg emission, 46% comes from combustion sources, of which 32% from coal combustion and 8% from MSW combustion. Other 54% comes from industrial processes, which dominated by the cement (19%), fluorescent lamp (18%) and battery production (13%). Of the total Hg emission, 69% is released as Hg0 , 29% as Hg2+ , and only 2% as Hgp due to strict particulate matters controls policies. For As emissions, coal combustion, nonferrous metal smelting and iron and steel industry contributed approximate 48%, 25% and 24%, respectively. Pb emissions primarily come from battery production (42%), iron and steel industry (21%) and on-road mobile gasoline combustion (17%). Cd and Cr emissions were dominated by nonferrous metal smelting (71%) and iron and steel industry (82%), respectively. (3) In term of the spatial distribution, emissions of atmospheric toxic metals are mainly concentrated in the central region of

  2. High spatial resolution mapping of folds and fractures using Unmanned Aerial Vehicle (UAV) photogrammetry

    Science.gov (United States)

    Cruden, A. R.; Vollgger, S.

    2016-12-01

    The emerging capability of UAV photogrammetry combines a simple and cost-effective method to acquire digital aerial images with advanced computer vision algorithms that compute spatial datasets from a sequence of overlapping digital photographs from various viewpoints. Depending on flight altitude and camera setup, sub-centimeter spatial resolution orthophotographs and textured dense point clouds can be achieved. Orientation data can be collected for detailed structural analysis by digitally mapping such high-resolution spatial datasets in a fraction of time and with higher fidelity compared to traditional mapping techniques. Here we describe a photogrammetric workflow applied to a structural study of folds and fractures within alternating layers of sandstone and mudstone at a coastal outcrop in SE Australia. We surveyed this location using a downward looking digital camera mounted on commercially available multi-rotor UAV that autonomously followed waypoints at a set altitude and speed to ensure sufficient image overlap, minimum motion blur and an appropriate resolution. The use of surveyed ground control points allowed us to produce a geo-referenced 3D point cloud and an orthophotograph from hundreds of digital images at a spatial resolution automatically extracted from these high-resolution datasets using open-source software. This resulted in an extensive and statistically relevant orientation dataset that was used to 1) interpret the progressive development of folds and faults in the region, and 2) to generate a 3D structural model that underlines the complex internal structure of the outcrop and quantifies spatial variations in fold geometries. Overall, our work highlights how UAV photogrammetry can contribute to new insights in structural analysis.

  3. Quantum Entanglement and High Brightness Laser Source

    Data.gov (United States)

    National Aeronautics and Space Administration — Our focus is on demonstrating high precision (sub-micron) laser ranging for Navigation using a unique high-sensitivity optical correlation receiver with both...

  4. Complex EUV imaging reflectometry: spatially resolved 3D composition determination and dopant profiling with a tabletop 13nm source

    Science.gov (United States)

    Porter, Christina L.; Tanksalvala, Michael; Gerrity, Michael; Miley, Galen P.; Esashi, Yuka; Horiguchi, Naoto; Zhang, Xiaoshi; Bevis, Charles S.; Karl, Robert; Johnsen, Peter; Adams, Daniel E.; Kapteyn, Henry C.; Murnane, Margaret M.

    2018-03-01

    With increasingly 3D devices becoming the norm, there is a growing need in the semiconductor industry and in materials science for high spatial resolution, non-destructive metrology techniques capable of determining depth-dependent composition information on devices. We present a solution to this problem using ptychographic coherent diffractive imaging (CDI) implemented using a commercially available, tabletop 13 nm source. We present the design, simulations, and preliminary results from our new complex EUV imaging reflectometer, which uses coherent 13 nm light produced by tabletop high harmonic generation. This tool is capable of determining spatially-resolved composition vs. depth profiles for samples by recording ptychographic images at multiple incidence angles. By harnessing phase measurements, we can locally and nondestructively determine quantities such as device and thin film layer thicknesses, surface roughness, interface quality, and dopant concentration profiles. Using this advanced imaging reflectometer, we can quantitatively characterize materials-sciencerelevant and industry-relevant nanostructures for a wide variety of applications, spanning from defect and overlay metrology to the development and optimization of nano-enhanced thermoelectric or spintronic devices.

  5. Urban PM in Eastern Germany: Source apportionment and contributions from different spatial scales

    Science.gov (United States)

    van Pinxteren, D.; Fomba, K. W.; Mothes, F.; Spindler, G.; Herrmann, H.

    2017-12-01

    Understanding the contributions of particulate matter (PM) sources and the source areas impacting total PM levels in a city are important requirements for further developing clean air policies and efficient abatement strategies. This presentation reports on two studies in Eastern Germany providing a detailed picture of present-day urban PM sources and discriminating contributions of local, regional and long-range sources. The "Leipzig Aerosol 2013-15" study yielded contributions of 12 sources to coarse, fine, and ultrafine particles, resolved by Positive Matrix Factorization (PMF) from comprehensive chemical speciation of 5-stage Berner impactor samples at 4 different sites in the Leipzig area. Dominant winter-time sources were traffic exhaust and non-exhaust emissions, secondary aerosol formation, and combustion emissions from both biomass and coal burning with different relative importance in different particle size ranges. Local sources dominated PM levels in ultrafine and coarse particles (60% - 80%) while high mass concentrations in accumulation mode particles mainly resulted from regional import into the city (70%). The "PM-East" study compiled PM10 mass and constituents' concentrations at 10 urban and rural sites in Eastern Germany during winter 2016/17, which included a 3-week episode of frequent exceedances of the PM10 limit value. PMF source apportionment is performed for a subset of the sites, including the city of Berlin. Contributions from short-, mid-, and long-range sources, including trans-boundary pollution import from neighbouring countries, are quantitatively assessed by advanced back trajectory statistical methods. Data analysis in PM-East is ongoing and final results will be available by November. Funding is acknowledged from 4 federal states of Germany: Berlin Senate Department for Environment, Transport and Climate Protection; Saxon State Office for Environment, Agriculture and Geology; State Agency for Environment, Nature Conservation and

  6. Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Andreas, E-mail: andreas.beyer@physik.uni-marburg.de; Belz, Jürgen; Knaub, Nikolai; Jandieri, Kakhaber; Volz, Kerstin

    2016-10-15

    Aberration-corrected (scanning) transmission electron microscopy ((S)TEM) has become a widely used technique when information on the chemical composition is sought on an atomic scale. To extract the desired information, complementary simulations of the scattering process are inevitable. Often the partial spatial and temporal coherences are neglected in the simulations, although they can have a huge influence on the high resolution images. With the example of binary gallium phosphide (GaP) we elucidate the influence of the source size and shape as well as the chromatic aberration on the high angle annular dark field (HAADF) intensity. We achieve a very good quantitative agreement between the frozen phonon simulation and experiment for different sample thicknesses when a Lorentzian source distribution is assumed and the effect of the chromatic aberration is considered. Additionally the influence of amorphous layers introduced by the preparation of the TEM samples is discussed. Taking into account these parameters, the intensity in the whole unit cell of GaP, i.e. at the positions of the different atomic columns and in the region between them, is described correctly. With the knowledge of the decisive parameters, the determination of the chemical composition of more complex, multinary materials becomes feasible. - Highlights: • Atomic resolution high angle annular dark field images of gallium phosphide are compared quantitatively with simulated ones. • The influence of partial spatial and temporal coherence on the HAADF-intensity is investigated. • The influence of amorphous layers introduced by the sample preparation is simulated.

  7. Scintillation camera for high activity sources

    International Nuclear Information System (INIS)

    Arseneau, R.E.

    1978-01-01

    The invention described relates to a scintillation camera used for clinical medical diagnosis. Advanced recognition of many unacceptable pulses allows the scintillation camera to discard such pulses at an early stage in processing. This frees the camera to process a greater number of pulses of interest within a given period of time. Temporary buffer storage allows the camera to accommodate pulses received at a rate in excess of its maximum rated capability due to statistical fluctuations in the level of radioactivity of the radiation source measured. (U.K.)

  8. Breast density estimation from high spectral and spatial resolution MRI

    Science.gov (United States)

    Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.

    2016-01-01

    Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (pdensity estimations. An interclass correlation coefficient of 0.99 (pdensity estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590

  9. The chemotherapeutic agent paclitaxel selectively impairs learning while sparing source memory and spatial memory.

    Science.gov (United States)

    Smith, Alexandra E; Slivicki, Richard A; Hohmann, Andrea G; Crystal, Jonathon D

    2017-03-01

    Chemotherapeutic agents are widely used to treat patients with systemic cancer. The efficacy of these therapies is undermined by their adverse side-effect profiles such as cognitive deficits that have a negative impact on the quality of life of cancer survivors. Cognitive side effects occur across a variety of domains, including memory, executive function, and processing speed. Such impairments are exacerbated under cognitive challenges and a subgroup of patients experience long-term impairments. Episodic memory in rats can be examined using a source memory task. In the current study, rats received paclitaxel, a taxane-derived chemotherapeutic agent, and learning and memory functioning was examined using the source memory task. Treatment with paclitaxel did not impair spatial and episodic memory, and paclitaxel treated rats were not more susceptible to cognitive challenges. Under conditions in which memory was not impaired, paclitaxel treatment impaired learning of new rules, documenting a decreased sensitivity to changes in experimental contingencies. These findings provide new information on the nature of cancer chemotherapy-induced cognitive impairments, particularly regarding the incongruent vulnerability of episodic memory and new learning following treatment with paclitaxel. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Performance Analysis of Multi-Dimensional ESPRIT-Type Algorithms for Arbitrary and Strictly Non-Circular Sources With Spatial Smoothing

    Science.gov (United States)

    Steinwandt, Jens; Roemer, Florian; Haardt, Martin; Galdo, Giovanni Del

    2017-05-01

    Spatial smoothing is a widely used preprocessing scheme to improve the performance of high-resolution parameter estimation algorithms in case of coherent signals or if only a small number of snapshots is available. In this paper, we present a first-order performance analysis of the spatially smoothed versions of R-D Standard ESPRIT and R-D Unitary ESPRIT for sources with arbitrary signal constellations as well as R-D NC Standard ESPRIT and R-D NC Unitary ESPRIT for strictly second-order (SO) non-circular (NC) sources. The derived expressions are asymptotic in the effective signal-to-noise ratio (SNR), i.e., the approximations become exact for either high SNRs or a large sample size. Moreover, no assumptions on the noise statistics are required apart from a zero-mean and finite SO moments. We show that both R-D NC ESPRIT-type algorithms with spatial smoothing perform asymptotically identical in the high effective SNR regime. Generally, the performance of spatial smoothing based algorithms depends on the number of subarrays, which is a design parameter and needs to be chosen beforehand. In order to gain more insights into the optimal choice of the number of subarrays, we simplify the derived analytical R-D mean square error (MSE) expressions for the special case of a single source. The obtained MSE expression explicitly depends on the number of subarrays in each dimension, which allows us to analytically find the optimal number of subarrays for spatial smoothing. Based on this result, we additionally derive the maximum asymptotic gain from spatial smoothing and explicitly compute the asymptotic efficiency for this special case. All the analytical results are verified by simulations.

  11. Spatial Variation, Pollution Assessment and Source Identification of Major Nutrients in Surface Sediments of Nansi Lake, China

    Directory of Open Access Journals (Sweden)

    Longfeng Wang

    2017-06-01

    Full Text Available Nansi Lake has been seriously affected by intensive anthropogenic activities in recent years. In this study, an extensive survey on spatial variation, pollution assessment as well as the possible sources identification of major nutrients (Total phosphorus: TP, Total nitrogen: TN, and Total organic carbon: TOC in the surface sediments of Nansi Lake was conducted. Results showed that the mean contents of TP, TN and TOC were 1.13-, 5.40- and 2.50- fold higher than their background values respectively. Most of the TN and TOC contents in the surface sediments of Nansi Lake were four times as high or higher and twice as high or higher than the background values except the Zhaoyang sub-lake, and the spatial distribution of TN and TOC contents were remarkably similar over a large area. Nearly all the TP contents in the surface sediments of Nansi Lake were all higher than its background values except most part of the Zhaoyang sub-lake. Based on the enrichment factor (EF and the organic pollution evaluation index (Org-index, TP, TOC and TN showed minor enrichment (1.13, minor enrichment (2.50 and moderately severe enrichment (5.40, respectively, and most part of the Dushan sub-lake and the vicinity of the Weishan island were in moderate or heavy sediments organic pollution, while the other parts were clean. Moreover, according to the results of multivariate statistical analysis, we deduced that anthropogenic TN and TOC were mainly came from industrial sources including enterprises distributed in Jining, Yanzhou and Zoucheng along with iron and steel industries distributed in the southern of the Weishan sub-lake, whereas TP mainly originated from runoff and soil erosion coming from agricultural lands located in Heze city and Weishan island, the local aquacultural activities as well as the domestic sewage discharge of Jining city.

  12. Accessing High Spatial Resolution in Astronomy Using Interference Methods

    Science.gov (United States)

    Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean

    2018-04-01

    In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of the instrument as shown by Rueckner et al. in a lecture demonstration. The focus of this paper, addressed to teachers and/or students in high schools and universities, is to easily underline both an application of interferometry in astronomy and stress its interest for resolution. To this end very simple optical experiments are presented to explain all the concepts. We show how an interference pattern resulting from the combined signals of two telescopes allows us to measure the distance between two stars with a resolution beyond the diffraction limit. Finally this work emphasizes the breathtaking resolution obtained in state-of-the-art instruments such as the VLTi (Very Large Telescope interferometer).

  13. Dosimetric advancement of high-dose-rate after-loading 192Ir source

    International Nuclear Information System (INIS)

    Zhang Shuxu; Li Wenhua; Xu Hairong

    2004-01-01

    High-dose-rate (HDR) 192 Ir source is a nuclide commonly used in the brachytherapy system. The basic dosimetry data of the near source area is usually measured by pin ion chambers or TLD techniques, but these methods have a lower spatial resolution than Electron spin resonance (ESR) dosimetry which has a spatial resolution of 156 μm, and the Monte Carlo photon transport simulations are taken as the golden standard of those measures. The precision in two-dimensional dose distribution measured by GafChromic film is reported to be 1.0%. In vivo dosimetry using TLD during HDR intracavitary after-loading brachytherapy is a good predictor of late rectal complications. The accuracy of magnetic resonance imaging (MRI) Fricke-gel dosimetry for three-dimensional dose distribution is about 2.5% with a spatial resolution of 1.56 mm. The optical computed tomography polymer gel dosimetry has a unique advance than MRI gel dosimetry

  14. High-power laser source evaluation

    International Nuclear Information System (INIS)

    Back, C.A.; Decker, C.D.; Dipeso, G.J.; Gerassimenko, M.; Managan, R.A.; Serduke, F.J.D.; Simonson, G.F.; Suter, L.J.

    1997-07-01

    This document reports progress in these areas: EXPERIMENTAL RESULTS FROM NOVA: TAMPED XENON UNDERDENSE X-RAY EMITTERS; MODELING MULTI-KEV RADIATION PRODUCTION OF XENON-FILLED BERYLLIUM CANS; MAPPING A CALCULATION FROM LASNEX TO CALE; HOT X RAYS FROM SEEDED NIF CAPSULES; HOHLRAUM DEBRIS MEASUREMENTS AT NOVA; FOAM AND STRUCTURAL RESPONSE CALCULATIONS FOR NIF NEUTRON EXPOSURE SAMPLE CASE ASSEMBLY DESIGN; NON-IGNITION X-RAY SOURCE FLUENCE-AREA PRODUCTS FOR NUCLEAR EFFECTS TESTING ON NIF. Also appended are reprints of two papers. The first is on the subject of ''X-Ray Production in Laser-Heated Xe Gas Targets.'' The second is on ''Efficient Production and Applications of 2- to 10-keV X Rays by Laser-Heated Underdense Radiators.''

  15. Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote Sensing Observations

    Science.gov (United States)

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding

  16. Spatial considerations of snow chemistry as a non-point contamination source in Alpine watersheds

    International Nuclear Information System (INIS)

    Elder, K.; Williams, M.; Dozier, J.

    1991-01-01

    Alpine watersheds act as a temporary storage basin for large volumes of precipitation as snow. Monitoring these basins for the presence and effects of acid precipitation is important because these areas are often weakly buffered and sensitive to acidification. Study of these sensitive areas may provide early detection of trends resulting form anthropogenic atmospheric inputs. In an intensive study of an alpine watershed in the Sierra Nevada in 1987 and 1988, the authors carefully monitored snow distribution and chemistry through space and time. They found that the volume-weighted mean ionic concentrations within the snowpack did not vary greatly over the basin at peak accumulation. However, the distribution of total snow water equivalence (SWE) was highly variable spatially. Coefficients of variation (CV) for SWE lead to a corresponding high spatial variance in the chemical loading of their study basin. Their results show that to obtain accurate estimates of chemical loading they must measure the chemical and physical snow parameters at a resolution proportional to their individual variances. It is therefore necessary to combine many SWE measurements with fewer carefully obtained chemistry measurements. They used a classification method based on physical parameters to partition the basin into similar zones for estimation of SWE distribution. This technique can also be used for sample design

  17. Investigation of gasoline distributions within petrol stations: spatial and seasonal concentrations, sources, mitigation measures, and occupationally exposed symptoms.

    Science.gov (United States)

    Sairat, Theerapong; Homwuttiwong, Sahalaph; Homwutthiwong, Kritsana; Ongwandee, Maneerat

    2015-09-01

    We measured levels of VOCs and determined the distributions of benzene concentrations over the area of two petrol stations in all three seasons. Using the concentrations and sampling positions, we created isoconcentration contour maps. The average concentrations ranged 18-1288 μg m(-3) for benzene and 12-81 μg m(-3) for toluene. The contour maps indicate that high-level contours of benzene were found not only at the fuel dispenser areas but also at the storage tank refilling points, open drainage areas where gasoline-polluted wastewater was flowing, and the auto service center located within the station area. An assessment of the benzene to toluene ratio contour plots implicates that airborne benzene and toluene near the fuel dispenser area were attributed to gasoline evaporation although one of the studied stations may be influenced by other VOC sources besides gasoline evaporation. Additionally, during the routine refilling of the underground fuel storage tanks by a tank truck, the ambient levels of benzene and toluene increased tremendously. The implementation of source control by replacing old dispensers with new fuel dispensers that have an efficient cutoff feature and increased delivery speed can reduce spatial benzene concentrations by 77%. Furthermore, a questionnaire survey among 63 service attendants in ten stations revealed that headache was the most reported health complaint with a response rate of 32%, followed by fatigue with 20%. These prominent symptoms could be related to an exposure to high benzene concentrations.

  18. Near-Infrared Imaging for Spatial Mapping of Organic Content in Petroleum Source Rocks

    Science.gov (United States)

    Mehmani, Y.; Burnham, A. K.; Vanden Berg, M. D.; Tchelepi, H.

    2017-12-01

    Natural gas from unconventional petroleum source rocks (shales) plays a key role in our transition towards sustainable low-carbon energy production. The potential for carbon storage (in adsorbed state) in these formations further aligns with efforts to mitigate climate change. Optimizing production and development from these resources requires knowledge of the hydro-thermo-mechanical properties of the rock, which are often strong functions of organic content. This work demonstrates the potential of near-infrared (NIR) spectral imaging in mapping the spatial distribution of organic content with O(100µm) resolution on cores that can span several hundred feet in depth (Mehmani et al., 2017). We validate our approach for the immature oil shale of the Green River Formation (GRF), USA, and show its applicability potential in other formations. The method is a generalization of a previously developed optical approach specialized to the GRF (Mehmani et al., 2016a). The implications of this work for spatial mapping of hydro-thermo-mechanical properties of excavated cores, in particular thermal conductivity, are discussed (Mehmani et al., 2016b). References:Mehmani, Y., A.K. Burnham, M.D. Vanden Berg, H. Tchelepi, "Quantification of organic content in shales via near-infrared imaging: Green River Formation." Fuel, (2017). Mehmani, Y., A.K. Burnham, M.D. Vanden Berg, F. Gelin, and H. Tchelepi. "Quantification of kerogen content in organic-rich shales from optical photographs." Fuel, (2016a). Mehmani, Y., A.K. Burnham, H. Tchelepi, "From optics to upscaled thermal conductivity: Green River oil shale." Fuel, (2016b).

  19. Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution.

    Science.gov (United States)

    Xu, Wen; Zhao, Yuanhong; Liu, Xuejun; Dore, Anthony J; Zhang, Lin; Liu, Lei; Cheng, Miaomiao

    2018-01-01

    The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (N r ) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha -1 yr -1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of N r emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH 3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures. Copyright © 2017. Published by Elsevier Ltd.

  20. Spatial Heterogeneity and Sources of Soil Carbon in Southern African Savannas

    Science.gov (United States)

    Macko, S.; Wang, L.; Okin, G.

    2007-12-01

    Soil organic carbon (SOC) is one of the largest and most dynamic reservoirs of C on Earth, with nearly twice as much C stored in SOC than in the biosphere and atmosphere combined. SOC storage in global tropical savannas constitutes approximately 56 Gt of C, which rises to 216 Gt of C (i.e., about 17% of the terrestrial non- agricultural SOC), when woodlands, shrublands, and desert scrub are included. Savannas cover about 20% of the global land surface, including about one-half of Africa, Australia and South America. The shared dominance of trees and grasses in savannas, the dominant physiognomy in southern Africa, add more complexity to soil C pool partitioning and dynamics than is found in landscapes with a single physiognomy. Here, the spatial variability of the soil C pool was investigated with particular emphasis on understanding the contribution to SOC from trees and grasses at two savanna sites of the Kalahari Transect, one wet and the other dry. Using a combination of stable isotope techniques and geostatistics, the results showed that spatial patterns of soil δ13 C exist and were related to the distributions of woody (C3) and herbaceous (C4) vegetation at both sites. Heterogeneity of the sources of SOC, as well as heterogeneity in the amount of SOC, was greater at the dry site relative to the wet site. At the dry site, the grasses were the major contributor to soil C whereas in the wet site, woody vegetation was the major contributor, regardless of the location with respect to woody canopies.

  1. Deserts and holy mountains of medieval Serbia: Written sources, spatial patterns, architectural designs

    Directory of Open Access Journals (Sweden)

    Popović Danica

    2007-01-01

    meaning and the function of the monastic locales labeled as deserts and holy mountains (and, in a limited number of cases, also known as caves. The most important conclusions that may be drawn would be the following: the terms are interchangeable and were used both in a broader and a narrower sense, but in either case in reference to the space intended for higher forms of monastic life. A particularly broad range of meanings had the term desert which could refer to a distinct locale, as a rule a river gorge, or a mountain inhabited by hermits, but also a cave hermitage, the hesychasterion of a coenobitic community. The distinct forms of monastic life in such areas were communities of two or three or a few monks, organized as a skete or as a cell. In the deserts and mountains hermits primarily pursued the practice of 'agon and hesychia', but were also engaged in manuscript copying - an important peculiarity of Serbian eremitic monasticism. Finally, such locales were thought of by their dwellers as spiritual cities and the narrow path leading to Heavenly Jerusalem. The other thematic focus is an analysis of spatial patterns and architectural structures based on the relevant examples studied so far. Different types of monastic communities functioning as deserts were considered, from the point of view of their spatial situation and their relationship to the coenobia. In this context, field research identified examples of the so-called internal deserts, which was reconfirmed by the records from written sources. Special attention was given to the mechanism for creating a holy mount in the Serbian environment, according to the recognizable, athonite model. Also analyzed were architectural solutions characteristic of Serbian monastic deserts, from the simplest ones such as wooden huts and walled-up caves to monumental multi-storied edifices, equipped with different features. Finally, the conclusions that have been reached serve as a basis for defining future priorities in the

  2. Characteristics of a high current ion source operated with lithium

    International Nuclear Information System (INIS)

    Bay, H.L.; Dullni, E.; Leismann, P.

    1986-05-01

    A low pressure arc ion source has been tested for operation with lithium. Currents up to 120 mA could be extracted through a multiple aperture extraction system at energies of 30 keV. The ion beam was neutralized up to 70% in a charge exchange cell filled with lithium vapour. The beam divergence ranged from 20 to 25 mrad full angle deduced from the spatial distribution of the collision induced Li I resonance line. Current densities from 2 to 3 mA/m 2 at a distance of 1.9 m from the source were measured either by laser induced fluorescence or with a Faraday cup. (orig.)

  3. High-Current Plasma Electron Sources

    International Nuclear Information System (INIS)

    Gushenets, J.Z.; Krokhmal, V.A.; Krasik, Ya. E.; Felsteiner, J.; Gushenets, V.

    2002-01-01

    In this report we present the design, electrical schemes and preliminary results of a test of 4 different electron plasma cathodes operating under Kg h-voltage pulses in a vacuum diode. The first plasma cathode consists of 6 azimuthally symmetrically distributed arc guns and a hollow anode having an output window covered by a metal grid. Plasma formation is initiated by a surface discharge over a ceramic washer placed between a W-made cathode and an intermediate electrode. Further plasma expansion leads to a redistribution of the discharge between the W-cathode and the hollow anode. An accelerating pulse applied between the output anode grid and the collector extracts electrons from this plasma. The operation of another plasma cathode design is based on Penning discharge for preliminary plasma formation. The main glow discharge occurs between an intermediate electrode of the Penning gun and the hollow anode. To keep the background pressure in the accelerating gap at P S 2.5x10 4 Torr either differential pumping or a pulsed gas puff valve were used. The operation of the latter electron plasma source is based on a hollow cathode discharge. To achieve a sharp pressure gradient between the cathode cavity and the accelerating gap a pulsed gas puff valve was used. A specially designed ferroelectric plasma cathode initiated plasma formation inside the hollow cathode. This type of the hollow cathode discharge ignition allowed to achieve a discharge current of 1.2 kA at a background pressure of 2x10 4 Torr. All these cathodes were developed and initially tested inside a planar diode with a background pressure S 2x10 4 Torr under the same conditions: accelerating voltage 180 - 300 kV, pulse duration 200 - 400 ns, electron beam current - 1 - 1.5 kA, and cross-sectional area of the extracted electron beam 113 cm 2

  4. Spatial Abilities of High-School Students in the Perception of Geologic Structures.

    Science.gov (United States)

    Kali, Yael; Orion, Nir

    1996-01-01

    Characterizes specific spatial abilities required in geology studies through the examination of the performance of high school students in solving structural geology problems on the geologic spatial ability test (GeoSAT). Concludes that visual penetration ability and the ability to perceive the spatial configuration of the structure are…

  5. The French proposal for a high spatial resolution Hyperspectral mission

    Science.gov (United States)

    Carrère, Véronique; Briottet, Xavier; Jacquemoud, Stéphane; Marion, Rodolphe; Bourguignon, Anne; Chami, Malik; Chanussot, Jocelyn; Chevrel, Stéphane; Deliot, Philippe; Dumont, Marie; Foucher, Pierre-Yves; Gomez, Cécile; Roman-Minghelli, Audrey; Sheeren, David; Weber, Christiane; Lefèvre, Marie-José; Mandea, Mioara

    2014-05-01

    More than 25 years of airborne imaging spectroscopy and spaceborne sensors such as Hyperion or HICO have clearly demonstrated the ability of such a remote sensing technique to produce value added information regarding surface composition and physical properties for a large variety of applications. Scheduled missions such as EnMAP and PRISMA prove the increased interest of the scientific community for such a type of remote sensing data. In France, a group of Science and Defence users of imaging spectrometry data (Groupe de Synthèse Hyperspectral, GSH) established an up-to-date review of possible applications, define instrument specifications required for accurate, quantitative retrieval of diagnostic parameters, and identify fields of application where imaging spectrometry is a major contribution. From these conclusions, CNES (French Space Agency) decided a phase 0 study for an hyperspectral mission concept, named at this time HYPXIM (HYPerspectral-X IMagery), the main fields of applications are vegetation biodiversity, coastal and inland waters, geosciences, urban environment, atmospheric sciences, cryosphere and Defence. Results pointed out applications where high spatial resolution was necessary and would not be covered by the other foreseen hyperspectral missions. The phase A started at the beginning of 2013 based on the following HYPXIM characteristics: a hyperspectral camera covering the [0.4 - 2.5 µm] spectral range with a 8 m ground sampling distance (GSD) and a PAN camera with a 1.85 m GSD, onboard a mini-satellite platform. This phase A is currently stopped due to budget constraints. Nevertheless, the Science team is currently focusing on the preparation for the next CNES prospective meeting (March, 2014), an important step for the future of the mission. This paper will provide an update of the status of this mission and of new results obtained by the Science team.

  6. Spatial and Temporal Variations of EC and OC Aerosol Combustion Sources in a Polluted Metropolitan Area

    Science.gov (United States)

    Mouteva, G.; Randerson, J. T.; Fahrni, S.; Santos, G.; Bush, S. E.; Ehleringer, J. R.; Czimczik, C. I.

    2015-12-01

    Anthropogenic emissions of carbonaceous aerosols are a major component of fine air particulate matter (PM2.5) in polluted metropolitan areas and in the global atmosphere. Elemental (EC) and organic carbon (OC) aerosols influence Earth's energy balance by means of direct and indirect pathways and EC has been suggested as a better indicator of public health impacts from combustion-related sources than PM mass. Quantifying the contribution of fossil fuel and biomass combustion to the EC and OC emissions and their temporal and spatial variations is critical for developing efficient legislative air pollution control measures and successful climate mitigation strategies. In this study, we used radiocarbon (14C) to separate and quantify fossil and biomass contributions to a time series of EC and OC collected at 3 locations in Salt Lake City (SLC). Aerosol samples were collected on quartz fiber filters and a modified OC/EC analyzer was used with the Swiss_4S protocol to isolate and trap the EC fraction. Together with the total carbon (TC) content of the samples, the EC was analyzed for its 14C content with accelerator mass spectrometry. The 14C of OC was derived as a mass balance difference between TC and EC. EC had an annual average fraction modern of 0.13±0.06 and did not vary significantly across seasons. OC had an annual average FM of 0.49±0.13, with the winter mean (0.43±0.11) lower than the summer mean (0.64±0.13) at the 5% significance level. While the 3 stations were chosen to represent a variety of environmental conditions within SLC, no major differences in this source partitioning were observed between stations. During winter, the major sources of air pollutants in SLC are motor vehicles and wood stove combustion and determining their relative contributions has been the subject of debate. Our results indicated that fossil fuels were the dominant source of carbonaceous aerosols during winter, contributing 87% or more of the total EC mass and 40-75% of the OC

  7. Atmospheric aerosols in Rome, Italy: sources, dynamics and spatial variations during two seasons

    Directory of Open Access Journals (Sweden)

    C. Struckmeier

    2016-12-01

    both sites. While they were observed every day at the urban location, at the suburban location they were only found under favourable meteorological conditions, but were independent of advection of the Rome emission plume. Particles from sources in the metropolitan area of Rome and particles advected from outside Rome contributed 42–70 and 30–58 % to the total measured PM1, respectively. Apart from the general aerosol characteristics, in this study the properties (e.g. emission strength and dynamics (e.g. temporal behaviour of each identified aerosol type is investigated in detail to provide a better understanding of the observed seasonal and spatial differences.

  8. Characteristics of a High Current Helicon Ion Source With High Monatomic Fraction

    International Nuclear Information System (INIS)

    Jung, Hwa-Dong; Chung, Kyoung-Jae; Hwang, Yong-Seok

    2006-01-01

    Applications of neutron need compact and high yield neutron sources as well as very intense neutron sources from giant devices such as accelerators. Ion source based neutron sources using nuclear fusion reactions such as D(d, 3He)n, D(t, 4He)n can meet the requirements. This type of neutron generators can be simply composed of an ion source and a target. High-performance neutron generators with high yield require ion sources with high beam current, high monatomic fraction and long lifetime. Helicon ion source can meet these requirements. To make high current ion source, characteristics of helicon plasma such as high plasma density can be utilized. Moreover, efficient plasma heating with RF power lead high fraction of monatomic ion beam. Here, Characteristics of helicon plasma sources are described. Design and its performances of a helicon ion source are presented

  9. Application of group analysis to the spatially homogeneous and isotropic Boltzmann equation with source using its Fourier image

    International Nuclear Information System (INIS)

    Grigoriev, Yurii N; Meleshko, Sergey V; Suriyawichitseranee, Amornrat

    2015-01-01

    Group analysis of the spatially homogeneous and molecular energy dependent Boltzmann equations with source term is carried out. The Fourier transform of the Boltzmann equation with respect to the molecular velocity variable is considered. The correspondent determining equation of the admitted Lie group is reduced to a partial differential equation for the admitted source. The latter equation is analyzed by an algebraic method. A complete group classification of the Fourier transform of the Boltzmann equation with respect to a source function is given. The representation of invariant solutions and corresponding reduced equations for all obtained source functions are also presented. (paper)

  10. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.

    Science.gov (United States)

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-08-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.

  11. Improvement of spatial discretization error on the semi-analytic nodal method using the scattered source subtraction method

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Tatsumi, Masahiro

    2006-01-01

    In this paper, the scattered source subtraction (SSS) method is newly proposed to improve the spatial discretization error of the semi-analytic nodal method with the flat-source approximation. In the SSS method, the scattered source is subtracted from both side of the diffusion or the transport equation to make spatial variation of the source term to be small. The same neutron balance equation is still used in the SSS method. Since the SSS method just modifies coefficients of node coupling equations (those used in evaluation for the response of partial currents), its implementation is easy. Validity of the present method is verified through test calculations that are carried out in PWR multi-assemblies configurations. The calculation results show that the SSS method can significantly improve the spatial discretization error. Since the SSS method does not have any negative impact on execution time, convergence behavior and memory requirement, it will be useful to reduce the spatial discretization error of the semi-analytic nodal method with the flat-source approximation. (author)

  12. EUV source development for high-volume chip manufacturing tools

    Science.gov (United States)

    Stamm, Uwe; Yoshioka, Masaki; Kleinschmidt, Jürgen; Ziener, Christian; Schriever, Guido; Schürmann, Max C.; Hergenhan, Guido; Borisov, Vladimir M.

    2007-03-01

    Xenon-fueled gas discharge produced plasma (DPP) sources were integrated into Micro Exposure Tools already in 2004. Operation of these tools in a research environment gave early learning for the development of EUV sources for Alpha and Beta-Tools. Further experiments with these sources were performed for basic understanding on EUV source technology and limits, especially the achievable power and reliability. The intermediate focus power of Alpha-Tool sources under development is measured to values above 10 W. Debris mitigation schemes were successfully integrated into the sources leading to reasonable collector mirror lifetimes with target of 10 billion pulses due to the effective debris flux reduction. Source collector mirrors, which withstand the radiation and temperature load of Xenon-fueled sources, have been developed in cooperation with MediaLario Technologies to support intermediate focus power well above 10 W. To fulfill the requirements for High Volume chip Manufacturing (HVM) applications, a new concept for HVM EUV sources with higher efficiency has been developed at XTREME technologies. The discharge produced plasma (DPP) source concept combines the use of rotating disk electrodes (RDE) with laser exited droplet targets. The source concept is called laser assisted droplet RDE source. The fuel of these sources has been selected to be Tin. The conversion efficiency achieved with the laser assisted droplet RDE source is 2-3x higher compared to Xenon. Very high pulse energies well above 200 mJ / 2π sr have been measured with first prototypes of the laser assisted droplet RDE source. If it is possible to maintain these high pulse energies at higher repetition rates a 10 kHz EUV source could deliver 2000 W / 2π sr. According to the first experimental data the new concept is expected to be scalable to an intermediate focus power on the 300 W level.

  13. A High Reliability Frequency Stabilized Semiconductor Laser Source, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultrastable, narrow linewidth, high reliability MOPA sources are needed for high performance LIDARs in NASA for, wind speed measurement, surface topography and earth...

  14. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    Science.gov (United States)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums

  15. Spatial Multiplexing of Atom-Photon Entanglement Sources using Feedforward Control and Switching Networks.

    Science.gov (United States)

    Tian, Long; Xu, Zhongxiao; Chen, Lirong; Ge, Wei; Yuan, Haoxiang; Wen, Yafei; Wang, Shengzhi; Li, Shujing; Wang, Hai

    2017-09-29

    The light-matter quantum interface that can create quantum correlations or entanglement between a photon and one atomic collective excitation is a fundamental building block for a quantum repeater. The intrinsic limit is that the probability of preparing such nonclassical atom-photon correlations has to be kept low in order to suppress multiexcitation. To enhance this probability without introducing multiexcitation errors, a promising scheme is to apply multimode memories to the interface. Significant progress has been made in temporal, spectral, and spatial multiplexing memories, but the enhanced probability for generating the entangled atom-photon pair has not been experimentally realized. Here, by using six spin-wave-photon entanglement sources, a switching network, and feedforward control, we build a multiplexed light-matter interface and then demonstrate a ∼sixfold (∼fourfold) probability increase in generating entangled atom-photon (photon-photon) pairs. The measured compositive Bell parameter for the multiplexed interface is 2.49±0.03 combined with a memory lifetime of up to ∼51  μs.

  16. Spatial and temporal variations and mobile source emissions of polycyclic aromatic hydrocarbons in Quito, Ecuador

    International Nuclear Information System (INIS)

    Brachtl, Megan V.; Durant, John L.; Perez, Carlos Paez; Oviedo, Jorge; Sempertegui, Fernando; Naumova, Elena N.; Griffiths, Jeffrey K.

    2009-01-01

    Motor vehicles are a major source of air pollution in Quito, Ecuador; however, little work has been done to characterize spatial and temporal variations in traffic-related pollutants, or to measure pollutants in vehicle emissions. We measured PAH continuously for one year at two residential sites in Quito, and PAH and traffic patterns for one week near a busy roadway. Morning rush-hour traffic and temperature inversions caused daily PAH maxima between 06:00 and 08:00. SO 2 , NO x , CO, and PM 2.5 behaved similarly. At the residential sites PAH levels during inversions were 2-3-fold higher than during the afternoon, and 10-16-fold higher than 02:00-03:00 when levels were lowest. In contrast, at the near-roadway site, PAH concentrations were 3-6-fold higher than at the residential sites, and the effects of inversions were less pronounced. Cars and buses accounted for >95% of PAH at the near-roadway site. Near-roadway PAH concentrations were comparable to other polluted cities. - Atmospheric temperature inversions and proximity to roadways strongly influence potential human exposure to ambient airborne PAH in Quito, Ecuador

  17. Effects of the spatial resolution of urban drainage data on nonpoint source pollution prediction.

    Science.gov (United States)

    Dai, Ying; Chen, Lei; Hou, Xiaoshu; Shen, Zhenyao

    2018-03-14

    Detailed urban drainage data are important for urban nonpoint source (NPS) pollution prediction. However, the difficulties in collecting complete pipeline data usually interfere with urban NPS pollution studies, especially in large-scale study areas. In this study, NPS pollution models were constructed for a typical urban catchment using the SWMM, based on five drainage datasets with different resolution levels. The influence of the data resolution on the simulation results was examined. The calibration and validation results of the higher-resolution (HR) model indicated a satisfactory model performance with relatively detailed drainage data. However, the performances of the parameter-regionalized lower-resolution (LR) models were still affected by the drainage data scale. This scale effect was due not only to the pipe routing process but also to changes in the effective impervious area, which could be limited by a scale threshold. The runoff flow and NPS pollution responded differently to changes in scale, primarily because of the difference between buildup and washoff and the more significant decrease in pollutant infiltration loss and the much greater increase of pollutant flooding loss while scaling up. Additionally, scale effects were also affected by the rainfall type. Sub-area routing between impervious and pervious areas could improve the LR model performances to an extent, and this approach is recommended to offset the influence of spatial resolution deterioration.

  18. Visualization of NO2 emission sources using temporal and spatial pattern analysis in Asia

    Science.gov (United States)

    Schütt, A. M. N.; Kuhlmann, G.; Zhu, Y.; Lipkowitsch, I.; Wenig, M.

    2016-12-01

    Nitrogen dioxide (NO2) is an indicator for population density and level of development, but the contributions of the different emission sources to the overall concentrations remains mostly unknown. In order to allocate fractions of OMI NO2 to emission types, we investigate several temporal cycles and regional patterns.Our analysis is based on daily maps of tropospheric NO2 vertical column densities (VCDs) from the Ozone Monitoring Instrument (OMI). The data set is mapped to a high resolution grid by a histopolation algorithm. This algorithm is based on a continuous parabolic spline, producing more realistic smooth distributions while reproducing the measured OMI values when integrating over ground pixel areas.In the resulting sequence of zoom in maps, we analyze weekly and annual cycles for cities, countryside and highways in China, Japan and Korea Republic and look for patterns and trends and compare the derived results to emission sources in Middle Europe and North America. Due to increased heating in winter compared to summer and more traffic during the week than on Sundays, we dissociate traffic, heating and power plants and visualized maps with different sources. We will also look into the influence of emission control measures during big events like the Olympic Games 2008 and the World Expo 2010 as a possibility to confirm our classification of NO2 emission sources.

  19. Accessing High Spatial Resolution in Astronomy Using Interference Methods

    Science.gov (United States)

    Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean

    2018-01-01

    In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of…

  20. Rapid Fear Detection Relies on High Spatial Frequencies

    NARCIS (Netherlands)

    Stein, T.; Seymour, K.; Hebart, M.N.; Sterzer, P.

    Signals of threat—such as fearful faces—are processed with priority and have privileged access to awareness. This fear advantage is commonly believed to engage a specialized subcortical pathway to the amygdala that bypasses visual cortex and processes predominantly low-spatial-frequency information

  1. Improvement of highly charged ion output from an ECR source

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1995-01-01

    The physical limitations of the highly charged ion production in the ECR source is analyzed in this report. General methods to increase the output ion current and the attainable charged states of heavy ions are discussed. Some new ways to improve the output of highly charged ions from the ECR source for heavy ions are proposed. A new library of computer codes for the mathematical simulation of heavy ion production in the ECR ion source is used for numerical experiments to test these ways for improving the operation of the ECR source. (orig.)

  2. Constraints on Circumstellar Dust Grain Sizes from High Spatial Resolution Observations in the Thermal Infrared

    Science.gov (United States)

    Bloemhof, E. E.; Danen, R. M.; Gwinn, C. R.

    1996-01-01

    We describe how high spatial resolution imaging of circumstellar dust at a wavelength of about 10 micron, combined with knowledge of the source spectral energy distribution, can yield useful information about the sizes of the individual dust grains responsible for the infrared emission. Much can be learned even when only upper limits to source size are available. In parallel with high-resolution single-telescope imaging that may resolve the more extended mid-infrared sources, we plan to apply these less direct techniques to interpretation of future observations from two-element optical interferometers, where quite general arguments may be made despite only crude imaging capability. Results to date indicate a tendency for circumstellar grain sizes to be rather large compared to the Mathis-Rumpl-Nordsieck size distribution traditionally thought to characterize dust in the general interstellar medium. This may mean that processing of grains after their initial formation and ejection from circumstellar atmospheres adjusts their size distribution to the ISM curve; further mid-infrared observations of grains in various environments would help to confirm this conjecture.

  3. Spatial and temporal variations of loads and sources of total and dissolved Phosphorus in a set of rivers (Western France).

    Science.gov (United States)

    Legeay, Pierre-Louis; Moatar, Florentina; Gascuel-Odoux, Chantal; Gruau, Gérard

    2015-04-01

    In intensive agricultural regions with important livestock farming, long-term land application of Phosphorus (P) both as chemical fertilizer and animal wastes, have resulted in elevated P contents in soils. Since we know that high P concentrations in rivers is of major concern, few studies have been done at to assess the spatiotemporal variability of P loads in rivers and apportionment of point and nonpoint source in total loads. Here we focus on Brittany (Western France) where even though P is a great issue in terms of human and drinking water safety (cyano-toxins), environmental protection and economic costs for Brittany with regards to the periodic proliferations of cyanobacteria that occur every year in this region, no regional-scale systematic study has been carried out so far. We selected a set of small rivers (stream order 3-5) with homogeneous agriculture and granitic catchment. By gathering data from three water quality monitoring networks, covering more than 100 measurements stations, we provide a regional-scale quantification of the spatiotemporal variability of dissolved P (DP) and total P (TP) interannual loads from 1992 to 2012. Build on mean P load in low flows and statistical significance tests, we developed a new indicator, called 'low flow P load' (LFP-load), which allows us to determine the importance of domestic and industrial P sources in total P load and to assess their spatiotemporal variability compared to agricultural sources. The calculation and the map representation of DP and TP interannual load variations allow identification of the greatest and lowest P contributory catchments over the study period and the way P loads of Brittany rivers have evolved through time. Both mean DP and TP loads have been divided by more than two over the last 20 years. Mean LFDP-load decreased by more than 60% and mean LFTP-load by more than 45% on average over the same period showing that this marked temporal decrease in total load is largely due to the

  4. GIS based optimal impervious surface map generation using various spatial data for urban nonpoint source management.

    Science.gov (United States)

    Lee, Cholyoung; Kim, Kyehyun; Lee, Hyuk

    2018-01-15

    Impervious surfaces are mainly artificial structures such as rooftops, roads, and parking lots that are covered by impenetrable materials. These surfaces are becoming the major causes of nonpoint source (NPS) pollution in urban areas. The rapid progress of urban development is increasing the total amount of impervious surfaces and NPS pollution. Therefore, many cities worldwide have adopted a stormwater utility fee (SUF) that generates funds needed to manage NPS pollution. The amount of SUF is estimated based on the impervious ratio, which is calculated by dividing the total impervious surface area by the net area of an individual land parcel. Hence, in order to identify the exact impervious ratio, large-scale impervious surface maps (ISMs) are necessary. This study proposes and assesses various methods for generating large-scale ISMs for urban areas by using existing GIS data. Bupyeong-gu, a district in the city of Incheon, South Korea, was selected as the study area. Spatial data that were freely offered by national/local governments in S. Korea were collected. First, three types of ISMs were generated by using the land-cover map, digital topographic map, and orthophotographs, to validate three methods that had been proposed conceptually by Korea Environment Corporation. Then, to generate an ISM of higher accuracy, an integration method using all data was proposed. Error matrices were made and Kappa statistics were calculated to evaluate the accuracy. Overlay analyses were performed to examine the distribution of misclassified areas. From the results, the integration method delivered the highest accuracy (Kappa statistic of 0.99) compared to the three methods that use a single type of spatial data. However, a longer production time and higher cost were limiting factors. Among the three methods using a single type of data, the land-cover map showed the highest accuracy with a Kappa statistic of 0.91. Thus, it was judged that the mapping method using the land

  5. Assessing Wildfire Risk in Cultural Heritage Properties Using High Spatial and Temporal Resolution Satellite Imagery and Spatially Explicit Fire Simulations: The Case of Holy Mount Athos, Greece

    Directory of Open Access Journals (Sweden)

    Giorgos Mallinis

    2016-02-01

    Full Text Available Fire management implications and the design of conservation strategies on fire prone landscapes within the UNESCO World Heritage Properties require the application of wildfire risk assessment at landscape level. The objective of this study was to analyze the spatial variation of wildfire risk on Holy Mount Athos in Greece. Mt. Athos includes 20 monasteries and other structures that are threatened by increasing frequency of wildfires. Site-specific fuel models were created by measuring in the field several fuel parameters in representative natural fuel complexes, while the spatial extent of the fuel types was determined using a synergy of high-resolution imagery and high temporal information from medium spatial resolution imagery classified through object-based analysis and a machine learning classifier. The Minimum Travel Time (MTT algorithm, as it is embedded in FlamMap software, was applied in order to evaluate Burn Probability (BP, Conditional Flame Length (CFL, Fire Size (FS, and Source-Sink Ratio (SSR. The results revealed low burn probabilities for the monasteries; however, nine out of the 20 monasteries have high fire potential in terms of fire intensity, which means that if an ignition occurs, an intense fire is expected. The outputs of this study may be used for decision-making for short-term predictions of wildfire risk at an operational level, contributing to fire suppression and management of UNESCO World Heritage Properties.

  6. Applying spatial regression to evaluate risk factors for microbiological contamination of urban groundwater sources in Juba, South Sudan

    Science.gov (United States)

    Engström, Emma; Mörtberg, Ulla; Karlström, Anders; Mangold, Mikael

    2017-06-01

    This study developed methodology for statistically assessing groundwater contamination mechanisms. It focused on microbial water pollution in low-income regions. Risk factors for faecal contamination of groundwater-fed drinking-water sources were evaluated in a case study in Juba, South Sudan. The study was based on counts of thermotolerant coliforms in water samples from 129 sources, collected by the humanitarian aid organisation Médecins Sans Frontières in 2010. The factors included hydrogeological settings, land use and socio-economic characteristics. The results showed that the residuals of a conventional probit regression model had a significant positive spatial autocorrelation (Moran's I = 3.05, I-stat = 9.28); therefore, a spatial model was developed that had better goodness-of-fit to the observations. The most significant factor in this model ( p-value 0.005) was the distance from a water source to the nearest Tukul area, an area with informal settlements that lack sanitation services. It is thus recommended that future remediation and monitoring efforts in the city be concentrated in such low-income regions. The spatial model differed from the conventional approach: in contrast with the latter case, lowland topography was not significant at the 5% level, as the p-value was 0.074 in the spatial model and 0.040 in the traditional model. This study showed that statistical risk-factor assessments of groundwater contamination need to consider spatial interactions when the water sources are located close to each other. Future studies might further investigate the cut-off distance that reflects spatial autocorrelation. Particularly, these results advise research on urban groundwater quality.

  7. Sources for high frequency heating. Performance and limitations

    International Nuclear Information System (INIS)

    Le Gardeur, R.

    1976-01-01

    The various problems encountered in high frequency heating of plasmas can be decomposed into three spheres of action: theoretical development, antenna designing, and utilization of power sources. By classifying heating into three spectral domains, present and future needs are enumerated. Several specific antenna designs are treated. High frequency power sources are reviewed. The actual development of the gyratron is discussed in view of future needs in very high frequency heating of plasmas [fr

  8. Spatial and temporal instabilities in high voltage power devices

    Energy Technology Data Exchange (ETDEWEB)

    Milady, Saeed

    2010-01-29

    Dynamic avalanche can occur during the turn-off process of high voltage bipolar devices, e.g. IGBTs and p{sup +}n{sup -}n{sup +} power diodes, that may result in spatial instabilities of the homogeneous current density distribution across the device and the formation of current filaments. Filaments may cause the destruction of the device, mainly because of the high local temperatures. The first part of this work is dedicated to the current filament behavior. The positive feedback mechanisms caused by the transient current flow through the gate capacitance of an IGBT operating under short circuit conditions may result in oscillations and temporal instabilities of the IGBT current. The oscillations may cause electromagnetic interference (EMI). Furthermore, the positive feedback mechanism may accelerate the over-heating of the device and result in a thermal run-away. This is the subject of the second part of this work. In the first part of this work using the device simulation results of power diodes the underlying physical mechanisms of the filament dynamic is investigated. Simulation results of diode structures with evenly distributed doping inhomogeneities show that, the filament motion gets smoother as the distance between the inhomogeneities decreases. Hopping to faraway inhomogeneities turns into the hopping to neighboring ones and finally a smooth motion. In homogeneous structures the slow inhibitory effect of the electron-hole plasma extraction and the fast activation, due to hole current flowing along the filament, result in a smooth filament motion. An analytical model for the filament velocity under isothermal conditions is presented that can reproduce the simulation data satisfactorily. The influence of the boundary conditions on the filament behavior is discussed. The positive beveled edge termination prohibits a long stay of the filament at the edge reducing the risk of filament pinning. Self-heating effects may turn the initially electrically triggered

  9. High-current negative-ion sources for pulsed spallation neutron sources: LBNL workshop, October 1994

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1995-09-01

    The neutron scattering community has endorsed the need for a high-power (1 to 5 MW) accelerator-driven source of neutrons for materials research. Properly configured, the accelerator could produce very short (sub-microsecond) bursts of cold neutrons, said time structure offering advantages over the continuous flux from a reactor. The recent cancellation of the ANS reactor project has increased the urgency to develop a comprehensive strategy based on the best technological scenarios. Studies to date have built on the experience from ISIS (the 160 kW source in the UK), and call for a high-current (approx. 100 mA peak) H- source-linac combination injecting into one or more accumulator rings in which beam may be further accelerated. The I to 5 GeV proton beam is extracted in a single turn and brought to the target-moderator stations. The high current, high duty-factor, high brightness and high reliability required of the ion source present a very large challenge to the ion source community. The Workshop reported on here, held in Berkeley in October 1994, analyzed in detail the source requirements for proposed accelerator scenarios, the present performance capabilities of different H- source technologies, and identified necessary R ampersand D efforts to bridge the gap

  10. Ultrabright femtosecond source of biphotons based on a spatial mode inverter.

    Science.gov (United States)

    Jarutis, Vygandas; Juodkazis, Saulius; Mizeikis, Vygantas; Sasaki, Keiji; Misawa, Hiroaki

    2005-02-01

    A method of enhancing the efficiency of entangled biphoton sources based on a type II femtosecond spontaneous parametric downconversion (SPDC) process is proposed and implemented experimentally. Enhancement is obtained by mode inversion of one of the SPDC output beams, which allows the beams to overlap completely, thus maximizing the number of SPDC photon pairs with optimum spatiotemporal overlap. By use of this method, biphoton count rates as high as 16 kHz from a single 0.5-mm-long beta-barium borate crystal pumped by second-harmonic radiation from a Ti:sapphire laser were obtained.

  11. High spatial resolution Kelvin probe force microscopy with coaxial probes

    International Nuclear Information System (INIS)

    Brown, Keith A; Westervelt, Robert M; Satzinger, Kevin J

    2012-01-01

    Kelvin probe force microscopy (KPFM) is a widely used technique to measure the local contact potential difference (CPD) between an AFM probe and the sample surface via the electrostatic force. The spatial resolution of KPFM is intrinsically limited by the long range of the electrostatic interaction, which includes contributions from the macroscopic cantilever and the conical tip. Here, we present coaxial AFM probes in which the cantilever and cone are shielded by a conducting shell, confining the tip–sample electrostatic interaction to a small region near the end of the tip. We have developed a technique to measure the true CPD despite the presence of the shell electrode. We find that the behavior of these probes agrees with an electrostatic model of the force, and we observe a factor of five improvement in spatial resolution relative to unshielded probes. Our discussion centers on KPFM, but the field confinement offered by these probes may improve any variant of electrostatic force microscopy. (paper)

  12. A high charge state heavy ion beam source for HIF

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1995-04-01

    A high current low emittance high charge state heavy ion beam source is being developed. This is designed to deliver HIF (heavy ion fusion) driver accelerator scale beam. Using high-charge-state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system which consists of the gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 2D beam envelope simulations and experimental feasibility studies' results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector

  13. A high spatial resolution distributed optical fiber grating sensing system based on OFDR

    Science.gov (United States)

    Dong, Ke; Xiong, Yuchuan; Wen, Hongqiao; Tong, Xinlin; Zhang, Cui; Deng, Chengwei

    2017-10-01

    A distributed optical fiber grating sensing system with large capacity and high spatial resolution is presented. Since highdensity identical weak grating array was utilized as sensing fiber, the multiplexing number was greatly increased, meanwhile, optical frequency domain reflectometry (OFDR) technology was used to implement high resolution distributed sensing system. In order to eliminate the nonlinear effect of tunable light source, a windowed FFT algorithm based on cubic spline interpolation was applied. The feasibility of the algorithm was experimentally testified, ultimately, the spatial resolution of system can reach mm-level. The influence of the crosstalk signal in the grating array on the OFDR system was analyzed. A method that a long enough delay fiber was added before the first FBG to remove crosstalk signal was proposed. The experiment was verified using an optical fiber with 113 uniform Bragg gratings at an interval of 10cm whose reflectivity are less than 1%. It demonstrates that crosstalk signal and measurement signal can be completely separated in the distance domain after adding a long enough delay fiber. Finally, the temperature experiment of distributed grating sensing system was carried out. The results display that each raster's center wavelength in the fiber link is independent of each other and the center wavelength drift has a good linear relationship with the temperature. The sensitivity of linear fitting is equal to 11.1pm/°C.

  14. High-efficiency target-ion sources for RIB generation

    International Nuclear Information System (INIS)

    Alton, G.D.

    1993-01-01

    A brief review is given of high-efficiency ion sources which have been developed or are under development at ISOL facilities which show particular promise for use at existing, future, or radioactive ion beam (RIB) facilities now under construction. Emphasis will be placed on those sources which have demonstrated high ionization efficiency, species versatility, and operational reliability and which have been carefully designed for safe handling in the high level radioactivity radiation fields incumbent at such facilities. Brief discussions will also be made of the fundamental processes which affect the realizable beam intensities in target-ion sources. Among the sources which will be reviewed will be selected examples of state-of-the-art electron-beam plasma-type ion sources, thermal-ionization, surface-ionization, ECR, and selectively chosen ion source concepts which show promise for radioactive ion beam generation. A few advanced, chemically selective target-ion sources will be described, such as sources based on the use of laser-resonance ionization, which, in principle, offer a more satisfactory solution to isobaric contamination problems than conventional electromagnetic techniques. Particular attention will be given to the sources which have been selected for initial or future use at the Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory

  15. Distance education course on spatial multi-hazard risk assessment, using Open Source software

    Science.gov (United States)

    van Westen, C. J.; Frigerio, S.

    2009-04-01

    As part of the capacity building activities of the United Nations University - ITC School on Disaster Geo-Information Management (UNU-ITC DGIM) the International Institute for Geoinformation Science and Earth Observation (ITC) has developed a distance education course on the application of Geographic Information Systems for multi-hazard risk assessment. This course is designed for academic staff, as well as for professionals working in (non-) governmental organizations where knowledge of disaster risk management is essential. The course guides the participants through the entire process of risk assessment, on the basis of a case study of a city exposed to multiple hazards, in a developing country. The courses consists of eight modules, each with a guide book explaining the theoretical background, and guiding the participants through spatial data requirements for risk assessment, hazard assessment procedures, generation of elements at risk databases, vulnerability assessment, qualitative and quantitative risk assessment methods, risk evaluation and risk reduction. Linked to the theory is a large set of exercises, with exercise descriptions, answer sheets, demos and GIS data. The exercises deal with four different types of hazards: earthquakes, flooding, technological hazards, and landslides. One important consideration in designing the course is that people from developing countries should not be restricted in using it due to financial burdens for software acquisition. Therefore the aim was to use Open Source software as a basis. The GIS exercises are written for the ILWIS software. All exercises have also been integrated into a WebGIS, using the Open source software CartoWeb (based on GNU License). It is modular and customizable thanks to its object-oriented architecture and based on a hierarchical structure (to manage and organize every package of information of every step required in risk assessment). Different switches for every component of the risk assessment

  16. Assessing spatial distribution, sources, and potential ecological risk of heavy metals in surface sediments of the Nansi Lake, Eastern China

    International Nuclear Information System (INIS)

    Jianshu Lv; Bin Dai; Zulu Zhang; Yuanyuan Sun; Shuang Li; Yang Liu

    2014-01-01

    The study is conducted to investigate the spatial distribution, sources and ecological risk of seven heavy metals in surface sediments of Nansi Lake, Eastern China. A total of 29 samples were collected in surface sediments of Nansi Lake, and were analyzed for three nutrients (TN, TOC and TP), two major metals (Al and Fe), as well as seven trace metals (As, Cd, Cr, Cu, Hg, Pb and Zn). The mean concentrations of As, Cd, Cr, Cu, Hg, Pb, Zn, Fe and Al were 14.41, 0.22, 71.10, 30.1, 0.048, 29.14, 90.2, 30,816 and 70,653 mg kg -1 , respectively, and the mean contents of these metals were higher than the background values with the exception of Cu and Fe. The spatial distribution indicated that the contents of all seven heavy metals were characterized by relatively higher contents in the upper lake than the lower lake. The hotspots with high values of As, Cd and Hg were associated with the river mouths, and the hotspots of Pb were mainly located around the dam in the central part, while no significant associations were displayed between spatial distribution of Cr, Cu, Zn and the river mouths. The mean enrichment factor (EF) values of As, Cd, Hg and Pb were 2.03, 2.93, 3.21 and 2.18, respectively, showing their moderate enrichment, while Cr, Cu and Zn with mean EF values of 1.19, 0.89 and 1.01 were deficiency to minimal enrichment. Multivariate and geostatistical analyses suggested that PC1 controlled by Cr, Cu and Zn was a lithogenic component, and come from parent rocks leaching. PC2 including Cd and partially Hg represented the factor from industrial wastewater discharge. PC3 showed elevated loadings of As and partially Cd, and could be attributed to the agricultural practices. While PC4 including Pb and partially Hg, was dominated by coal combustion. The results of potential ecological risk suggested that sediment environment of Nansi Lake suffered from high ecological risk. (author)

  17. Source composition of cosmic rays at high energy

    International Nuclear Information System (INIS)

    Juliusson, E.; Cesarsky, C.J.; Meneguzzi, M.; Casse, M.

    1975-01-01

    The source composition of the cosmic ray is usually calculated at an energy of a few GeV per nucleon. Recent measurements have however indicated that the source composition may be energy dependent. In order to give a quantitative answer to this question the source composition at 50GeV/nucleon has been calculated using an exponential distribution of path lengths and in the slab approximation. The results obtained at high energy agree very well with the source composition obtained at lower energies, except the abundance of carbon which is significantly lower than the generally accepted value of low energies [fr

  18. Development of Adaptive Feedback Control System of Both Spatial and Temporal Beam Shaping for UV-Laser Light Source for RF Gun

    CERN Document Server

    Tomizawa, H; Dewa, H; Hanaki, H; Kobayashi, T; Mizuno, A; Suzuki, S; Taniuchi, T; Yanagida, K

    2004-01-01

    The ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from a photo-cathode rf gun. We have been developing highly qualified UV-laser pulse as a light source of the rf gun for an injector candidate of future light sources. The gun cavity is a single-cell pillbox, and the copper inner wall is used as a photo cathode. The electron beam was accelerated up to 4.1 MeV at the maximum electric field on the cathode surface of 175 MV/m. For emittance compensation, two solenoid coils were used. As the first test run, with a microlens array as a simple spatial shaper, we obtained a minimum emittance value of 2 π·mm·mrad with a beam energy of 3.1 MeV, holding its charge to 0.1 nC/bunch. In the next test run, we prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. We applied the both adaptive optics to automatically shape the bot...

  19. Embracing the Open-Source Movement for the Management of Spatial Data: A Case Study of African Trypanosomiasis in Kenya.

    Science.gov (United States)

    Langley, Shaun A; Messina, Joseph P

    2011-01-01

    The past decade has seen an explosion in the availability of spatial data not only for researchers, but the public alike. As the quantity of data increases, the ability to effectively navigate and understand the data becomes more challenging. Here we detail a conceptual model for a spatially explicit database management system that addresses the issues raised with the growing data management problem. We demonstrate utility with a case study in disease ecology: to develop a multi-scale predictive model of African Trypanosomiasis in Kenya. International collaborations and varying technical expertise necessitate a modular open-source software solution. Finally, we address three recurring problems with data management: scalability, reliability, and security.

  20. Quantum Communication with a High-Rate Entangled Photon Source

    Science.gov (United States)

    Wilson, Nathaniel C.; Chaffee, Dalton W.; Lekki, John D.; Wilson, Jeffrey D.

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  1. ERC sources for the production of highly charged ions (invited)

    International Nuclear Information System (INIS)

    Lyneis, C.M.; Antaya, T.A.

    1990-01-01

    Electron cyclotron resonance ion sources (ECRIS) using rf between 5 and 16 GHz have been developed into stable, reliable sources of highly charged ions produced from a wide range of elements. These devices are currently used as ion sources for cyclotrons, synchrotrons, and heavy-ion linacs for nuclear and relativistic heavy-ion physics. They also serve the atomic physics community as a source of low energy multiply charged ions. In order to improve their performance both with respect to maximum charge state and beam intensity, ECRIS builders are now designing and constructing sources which will operate at frequencies up to 30 GHz. In this article we review the present status of operating ECRIS, review recent experimental measurements on plasma parameters, and look at the technology and potential of sources operating at frequencies up to 30 GHz

  2. High-repetition intra-cavity source of Compton radiation

    International Nuclear Information System (INIS)

    Pogorelsky, I; Polyanskiy, M; Agustsson, R; Campese, T; Murokh, A; Ovodenko, A; Shaftan, T

    2014-01-01

    We report our progress in developing a high-power Compton source for a diversity of applications ranging from university-scale compact x-ray light sources and metrology tools for EUV lithography, to high-brilliance gamma-sources for nuclear analysis. Our conceptual approach lies in multiplying the source’s repetition rate and increasing its average brightness by placing the Compton interaction point inside the optical cavity of an active laser. We discuss considerations in its design, our simulations, and tests of the laser’s cavity that confirm the feasibility of the proposed concept. (paper)

  3. High intensity line source for x-ray spectrometer calibration

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 μ x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10 4 ) time-resolved cyrstal spectrometer, will be discussed in detail

  4. Large-eddy simulation of convective boundary layer generated by highly heated source with open source code, OpenFOAM

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Eguchi, Yuzuru; Sano, Tadashi; Shirai, Koji; Ishihara, Shuji

    2011-01-01

    Spatial- and temporal-characteristics of turbulence structures in the close vicinity of a heat source, which is a horizontal upward-facing round plate heated at high temperature, are examined by using well resolved large-eddy simulations. The verification is carried out through the comparison with experiments: the predicted statistics, including the PDF distribution of temperature fluctuations, agree well with measurements, indicating that the present simulations have a capability to appropriately reproduce turbulence structures near the heat source. The reproduced three-dimensional thermal- and fluid-fields in the close vicinity of the heat source reveals developing processes of coherence structures along the surface: the stationary- and streaky-flow patterns appear near the edge, and such patterns randomly shift to cell-like patterns with incursion into the center region, resulting in thermal-plume meandering. Both the patterns have very thin structures, but the depth of streaky structure is considerably small compared with that of cell-like patterns; this discrepancy causes the layered structures. The structure is the source of peculiar turbulence characteristics, the prediction of which is quite difficult with RANS-type turbulence models. The understanding such structures obtained in present study must be helpful to improve the turbulence model used in nuclear engineering. (author)

  5. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China.

    Science.gov (United States)

    Liang, Jie; Feng, Chunting; Zeng, Guangming; Gao, Xiang; Zhong, Minzhou; Li, Xiaodong; Li, Xin; He, Xinyue; Fang, Yilong

    2017-06-01

    In this study, we investigated the pollution degree and spatial distribution of heavy metals and determined their sources in topsoil in a typical coal mine city, Lianyuan, Hunan Province, China. We collected 6078 soil surface samples in different land use types. And the concentrations of Zn, Cd, Cu, Hg, Pb, Sb, As, Mo, V, Mn, Fe and Cr were measured. The average contents of all heavy metals were lower than their corresponding Grade II values of Chinese Soil Quality Standard with the exception of Hg. However, average contents of twelve heavy metals, except for Mn, exceeded their background level in soils in Hunan Province. Based on one-way analysis of variance (ANOVA), the contents of Cu, Zn, Cd, Pb, Hg, Mo and V were related to the anthropogenic source and there were statistically significant differences in their concentrations among different land use patterns. The spatial variation of heavy metal was visualized by GIS. The PMF model was used to ascertain contamination sources of twelve heavy metals and apportion their source contributions in Lianyuan soils. The results showed that the source contributions of the natural source, atmospheric deposition, industrial activities and agricultural activities accounted for 33.6%, 26.05%, 23.44% and 16.91%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. High power pulsed sources based on fiber amplifiers

    Science.gov (United States)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  7. Figure/ground segregation from temporal delay is best at high spatial frequencies

    OpenAIRE

    Kojima, Haruyuki

    1998-01-01

    Two experiments investigated the role of spatial frequency in performance of a figure/ground segregation task based on temporal cues. Figure orientation was much easier to judge when figure and ground portions of the target were defined exclusively by random texture composed entirely of high spatial frequencies. When target components were defined by low spatial frequencies only, the task was nearly impossible except with long temporal delay between figure and ground. These results are incons...

  8. Classificaiton and Discrimination of Sources with Time-Varying Frequency and Spatial Spectra

    National Research Council Canada - National Science Library

    Amin, Moeness G; Zhang, Yimin; Wang, Genyuan; Obeidat, Baha; Setlur, Pawan; Estephan, Habib

    2007-01-01

    .... We have introduced the spatial polarimetric time-frequency distributions (SPTFDs) as a platform for processing polarized nonstationary signals incident on multiple dual-polarized double-feed antennas...

  9. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    Science.gov (United States)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  10. Temporal and Spatial Variability in the Geochemistry of Axial and CoAxial Segment Lavas and their Mantle Sources

    Science.gov (United States)

    Smith, M. C.; Perfit, M. R.; Davis, C.; Kamenov, G. D.

    2011-12-01

    Three spatially related volcanic eruptions along the CoAxial Segment of the Juan de Fuca Ridge (JdFR) have documented emplacements between 1981 and 1993. Two of the historic flows outcrop at the "Flow Site" and were emplaced within less than 12 years and 500 m from one another. The third was emplaced at the "Floc Site" to the south in the 1980s. Previous studies have documented that CoAxial lavas are among the most incompatible element and isotopically depleted lavas along the entire JdFR, whereas the Axial Seamount segment immediately south of CoAxial has erupted the most chemically enriched lavas south of the Endeavor Segment. Geochemical studies have shown little temporal change in the chemistry of recent Axial Seamount eruptives, whereas CoAxial lavas exhibit distinct chemical differences over short time periods. Significant chemical differences observed among depleted CoAxial lavas emplaced close to one another in space and time are in marked contrast to the relatively constant chemical characteristics of enriched lavas erupted at the magmatically more robust Axial segment only 10's of kilometers to the south and west. New trace element and isotopic (Sr, Nd, Pb) geochemical analyses of historic and older CoAxial lavas have resulted in better documentation of interflow and intraflow chemical variation providing an improved understanding of spatial/temporal chemical variability in lavas, and further insight into JdFR magmatic processes. Modeling of major and trace element abundances suggest that the observed intraflow chemical variation within CoAxial lavas is largely due to shallow-level fractional crystallization but that a single fractional crystallization model cannot account for all interflow chemical variation. In fact, elemental and isotopic data require different parental magmas for each of the three recent CoAxial Segment lava flows suggesting very short-term differences or changes in the chemical character of the mantle source region. In particular

  11. Ion source and injection line for high intensity medical cyclotron

    Science.gov (United States)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  12. High current vacuum arc ion source for heavy ion fusion

    International Nuclear Information System (INIS)

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-01-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in ∼0.5 A current beams with ∼20 micros pulse widths and ∼10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce ∼0.5 A, ∼60 keV Gd (A∼158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported

  13. Spatial epidemiology of cancer: a review of data sources, methods and risk factors

    Directory of Open Access Journals (Sweden)

    Rita Roquette

    2017-05-01

    Full Text Available Cancer is a major concern among chronic diseases today. Spatial epidemiology plays a relevant role in this matter and we present here a review of this subject, including a discussion of the literature in terms of the level of geographic data aggregation, risk factors and methods used to analyse the spatial distribution of patterns and spatial clusters. For this purpose, we performed a websearch in the Pubmed and Web of Science databases including studies published between 1979 and 2015. We found 180 papers from 63 journals and noted that spatial epidemiology of cancer has been addressed with more emphasis during the last decade with research based on data mostly extracted from cancer registries and official mortality statistics. In general, the research questions present in the reviewed papers can be classified into three different sets: i analysis of spatial distribution of cancer and/or its temporal evolution; ii risk factors; iii development of data analysis methods and/or evaluation of results obtained from application of existing methods. This review is expected to help promote research in this area through the identification of relevant knowledge gaps. Cancer’s spatial epidemiology represents an important concern, mainly for public health policies design aimed to minimise the impact of chronic disease in specific populations.

  14. Identification, Attribution, and Quantification of Highly Heterogeneous Methane Sources Using a Mobile Stable Isotope Analyzer

    Science.gov (United States)

    Crosson, E.; Rella, C.; Cunningham, K.

    2012-04-01

    Despite methane's importance as a potent greenhouse gas second only to carbon dioxide in the magnitude of its contribution to global warming, natural contributions to the overall methane budget are only poorly understood. A big contributor to this gap in knowledge is the highly spatially and temporally heterogeneous nature of most natural (and for that matter anthropogenic) methane sources. This high degree of heterogeneity, where the methane emission rates can vary over many orders of magnitude on a spatial scale of meters or even centimeters, and over a temporal scale of minutes or even seconds, means that traditional methods of emissions flux estimation, such as flux chambers or eddy-covariance, are difficult or impossible to apply. In this paper we present new measurement methods that are capable of detecting, attributing, and quantifying emissions from highly heterogeneous sources. These methods take full advantage of the new class of methane concentration and stable isotope analyzers that are capable of laboratory-quality analysis from a mobile field platform in real time. In this paper we present field measurements demonstrating the real-time detection of methane 'hot spots,' attribution of the methane to a source process via real-time stable isotope analysis, and quantification of the emissions flux using mobile concentration measurements of the horizontal and vertical atmospheric dispersion, combined with atmospheric transport calculations. Although these techniques are applicable to both anthropogenic and natural methane sources, in this initial work we focus primarily on landfills and fugitive emissions from natural gas distribution, as these sources are better characterized, and because they provide a more reliable and stable source of methane for quantifying the measurement uncertainty inherent in the different methods. Implications of these new technologies and techniques are explored for the quantification of natural methane sources in a variety of

  15. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    Science.gov (United States)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the

  16. High Spatial Resolution Airborne Multispectral Thermal Infrared Remote Sensing Data for Analysis of Urban Landscape Characteristics

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)

    2000-01-01

    We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used

  17. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ...

  18. Pulsed high-current electron source: Final report

    International Nuclear Information System (INIS)

    Spindt, C.A.

    1988-10-01

    The objective of this investigation was to investigate ways to realize the cathode's potential as a source for high power pulse operation. The questions that needed to be studied were those of large area coverage, maximum emission that the cathode arrays are capable of producing practically, uniformity of emission over large areas, and the ability to operate with high voltage anodes. 9 figs

  19. Alpha-particle autoradiography by solid state track detectors to spatial distribution of radioactivity in alpha-counting source

    International Nuclear Information System (INIS)

    Ishigure, Nobuhito; Nakano, Takashi; Enomoto, Hiroko; Koizumi, Akira; Miyamoto, Katsuhiro

    1989-01-01

    A technique of autoradiography using solid state track detectors is described by which spatial distribution of radioactivity in an alpha-counting source can easily be visualized. As solid state track detectors, polymer of allyl diglycol carbonate was used. The advantage of the present technique was proved that alpha-emitters can be handled in the light place alone through the whole course of autoradiography, otherwise in the conventional autoradiography the alpha-emitters, which requires special carefulness from the point of radiation protection, must be handled in the dark place with difficulty. This technique was applied to rough examination of self-absorption of the plutonium source prepared by the following different methods; the source (A) was prepared by drying at room temperature, (B) by drying under an infrared lamp, (C) by drying in ammonia atmosphere after redissolving by the addition of a drop of distilled water which followed complete evaporation under an infrared lamp and (D) by drying under an infrared lamp after adding a drop of diluted neutral detergent. The difference in the spatial distributions of radioactivity could clearly be observed on the autoradiographs. For example, the source (C) showed the most diffuse distribution, which suggested that the self-absorption of this source was the smallest. The present autoradiographic observation was in accordance with the result of the alpha-spectrometry with a silicon surface-barrier detector. (author)

  20. Progress of compact Marx generators high power microwave source

    International Nuclear Information System (INIS)

    Liu Jinliang; Fan Xuliang; Bai Guoqiang; Cheng Xinbing

    2012-01-01

    The compact Marx generators, which can operate at a certain repetition frequency with small size, light weight, and high energy efficiency, are widely used in narrowband, wideband and ultra-wideband high power microwave (HPM) sources. This type of HPM source based on compact Marx generators is a worldwide research focus in recent years, and is important trend of development. The developments of this type of HPM source are described systemically in this paper. The output parameters and structural characteristics are reviewed, and the trends of development are discussed. This work provides reference and evidence for us to master the status of the HPM source based on compact Marx generators correctly and to explore its technical routes scientifically. (authors)

  1. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  2. Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image

    Science.gov (United States)

    Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.

    2018-04-01

    At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.

  3. High-spatial-multiplicity multi-core fibres for future dense space-division-multiplexing system

    DEFF Research Database (Denmark)

    Matsuo, Shoichiro; Takenaga, Katsuhiro; Saitoh, Kunimasa

    2015-01-01

    Design and fabrication results of high-spatial-multiplicity multi-core fibres are presented. A 30-core single-mode multi-core fibre and a 36-spatial-channels multi-core fibre with low differential mode delay have been realized with low-crosstalk characteristics through optimisation of core struct...

  4. Search for high energy cosmic neutrino point sources with ANTARES

    International Nuclear Information System (INIS)

    Halladjian, G.

    2010-01-01

    The aim of this thesis is the search for high energy cosmic neutrinos emitted by point sources with the ANTARES neutrino telescope. The detection of high energy cosmic neutrinos can bring answers to important questions such as the origin of cosmic rays and the γ-rays emission processes. In the first part of the thesis, the neutrino flux emitted by galactic and extragalactic sources and the number of events which can be detected by ANTARES are estimated. This study uses the measured γ-ray spectra of known sources taking into account the γ-ray absorption by the extragalactic background light. In the second part of the thesis, the absolute pointing of the ANTARES telescope is evaluated. Being located at a depth of 2475 m in sea water, the orientation of the detector is determined by an acoustic positioning system which relies on low and high frequency acoustic waves measurements between the sea surface and the bottom. The third part of the thesis is a search for neutrino point sources in the ANTARES data. The search algorithm is based on a likelihood ratio maximization method. It is used in two search strategies; 'the candidate sources list strategy' and 'the all sky search strategy'. Analysing 2007+2008 data, no discovery is made and the world's best upper limits on neutrino fluxes from various sources in the Southern sky are established. (author)

  5. Assessing uncertainty in high-resolution spatial climate data across the US Northeast.

    Science.gov (United States)

    Bishop, Daniel A; Beier, Colin M

    2013-01-01

    Local and regional-scale knowledge of climate change is needed to model ecosystem responses, assess vulnerabilities and devise effective adaptation strategies. High-resolution gridded historical climate (GHC) products address this need, but come with multiple sources of uncertainty that are typically not well understood by data users. To better understand this uncertainty in a region with a complex climatology, we conducted a ground-truthing analysis of two 4 km GHC temperature products (PRISM and NRCC) for the US Northeast using 51 Cooperative Network (COOP) weather stations utilized by both GHC products. We estimated GHC prediction error for monthly temperature means and trends (1980-2009) across the US Northeast and evaluated any landscape effects (e.g., elevation, distance from coast) on those prediction errors. Results indicated that station-based prediction errors for the two GHC products were similar in magnitude, but on average, the NRCC product predicted cooler than observed temperature means and trends, while PRISM was cooler for means and warmer for trends. We found no evidence for systematic sources of uncertainty across the US Northeast, although errors were largest at high elevations. Errors in the coarse-scale (4 km) digital elevation models used by each product were correlated with temperature prediction errors, more so for NRCC than PRISM. In summary, uncertainty in spatial climate data has many sources and we recommend that data users develop an understanding of uncertainty at the appropriate scales for their purposes. To this end, we demonstrate a simple method for utilizing weather stations to assess local GHC uncertainty and inform decisions among alternative GHC products.

  6. (Re)Sources of opportunities – The Role of Spatial Context for Entrepreneurship

    DEFF Research Database (Denmark)

    Müller, Sabine; Korsgaard, Steffen

    2014-01-01

    This study focuses on the types of spatially afforded resources that entrepreneurs extract from their spatial context; how they combine these resources to create opportunities, and how they connect these opportunities to different markets. Through an in-depth analysis of 28 entrepreneurial ventures...... contexts and results in four entrepreneurial types called Attractors, Valorisers, Artisans, and Entrepreneurs in the rural. The typology highlights the diversity of rural entrepreneurs and surfaces the distinguishing characteristics of rural ventures. This brings about the opportunity to identify...... manifestations of the empirical phenomenon in its context. The study shows that spatial context is of considerable significance to the resource affordances that enable entrepreneurial opportunity creation. The paper contributes to a micro-level understanding of place-specific entrepreneurial resource practices...

  7. Multi-Antenna Data Collector for Smart Metering Networks with Integrated Source Separation by Spatial Filtering

    Science.gov (United States)

    Quednau, Philipp; Trommer, Ralph; Schmidt, Lorenz-Peter

    2016-03-01

    Wireless transmission systems in smart metering networks share the advantage of lower installation costs due to the expandability of separate infrastructure but suffer from transmission problems. In this paper the issue of interference of wireless transmitted smart meter data with third party systems and data from other meters is investigated and an approach for solving the problem is presented. A multi-channel wireless m-bus receiver was developed to separate the desired data from unwanted interferers by spatial filtering. The according algorithms are presented and the influence of different antenna types on the spatial filtering is investigated. The performance of the spatial filtering is evaluated by extensive measurements in a realistic surrounding with several hundreds of active wireless m-bus transponders. These measurements correspond to the future environment for data-collectors as they took place in rural and urban areas with smart gas meters equipped with wireless m-bus transponders installed in almost all surrounding buildings.

  8. Disruption simulation experiment using high-frequency rastering electron beam as the heat source

    International Nuclear Information System (INIS)

    Yamazaki, S.; Seki, M.

    1987-01-01

    The disruption is a serious event which possibly reduces the lifetime of plasm interactive components, so the effects of the resulting high heat flux on the wall materials must be clearly identified. The authors performed disruption simulation experiments to investigate melting, evaporation, and crack initiation behaviors using an electron beam facility as the heat source. The facility was improved with a high-frequency beam rastering system which provided spatially and temporally uniform heat flux on wider test surfaces. Along with the experiments, thermal and mechanical analyses were also performed. A two-dimensional disruption thermal analysis code (DREAM) was developed for the analyses

  9. Development of an Objective High Spatial Resolution Soil Moisture Index

    Science.gov (United States)

    Zavodsky, B.; Case, J.; White, K.; Bell, J. R.

    2015-12-01

    Drought detection, analysis, and mitigation has become a key challenge for a diverse set of decision makers, including but not limited to operational weather forecasters, climatologists, agricultural interests, and water resource management. One tool that is heavily used is the United States Drought Monitor (USDM), which is derived from a complex blend of objective data and subjective analysis on a state-by-state basis using a variety of modeled and observed precipitation, soil moisture, hydrologic, and vegetation and crop health data. The NASA Short-term Prediction Research and Transition (SPoRT) Center currently runs a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework. The LIS-Noah is run at 3-km resolution for local numerical weather prediction (NWP) and situational awareness applications at select NOAA/National Weather Service (NWS) forecast offices over the Continental U.S. (CONUS). To enhance the practicality of the LIS-Noah output for drought monitoring and assessing flood potential, a 30+-year soil moisture climatology has been developed in an attempt to place near real-time soil moisture values in historical context at county- and/or watershed-scale resolutions. This LIS-Noah soil moisture climatology and accompanying anomalies is intended to complement the current suite of operational products, such as the North American Land Data Assimilation System phase 2 (NLDAS-2), which are generated on a coarser-resolution grid that may not capture localized, yet important soil moisture features. Daily soil moisture histograms are used to identify the real-time soil moisture percentiles at each grid point according to the county or watershed in which the grid point resides. Spatial plots are then produced that map the percentiles as proxies to the different USDM categories. This presentation will highlight recent developments of this gridded, objective soil moisture index, comparison to subjective

  10. Advances and synergy of high pressure sciences at synchrotron sources

    International Nuclear Information System (INIS)

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  11. The Exponent of High-frequency Source Spectral Falloff and Contribution to Source Parameter Estimates

    Science.gov (United States)

    Kiuchi, R.; Mori, J. J.

    2015-12-01

    As a way to understand the characteristics of the earthquake source, studies of source parameters (such as radiated energy and stress drop) and their scaling are important. In order to estimate source parameters reliably, often we must use appropriate source spectrum models and the omega-square model is most frequently used. In this model, the spectrum is flat in lower frequencies and the falloff is proportional to the angular frequency squared. However, Some studies (e.g. Allmann and Shearer, 2009; Yagi et al., 2012) reported that the exponent of the high frequency falloff is other than -2. Therefore, in this study we estimate the source parameters using a spectral model for which the falloff exponent is not fixed. We analyze the mainshock and larger aftershocks of the 2008 Iwate-Miyagi Nairiku earthquake. Firstly, we calculate the P wave and SH wave spectra using empirical Green functions (EGF) to remove the path effect (such as attenuation) and site effect. For the EGF event, we select a smaller earthquake that is highly-correlated with the target event. In order to obtain the stable results, we calculate the spectral ratios using a multitaper spectrum analysis (Prieto et al., 2009). Then we take a geometric mean from multiple stations. Finally, using the obtained spectra ratios, we perform a grid search to determine the high frequency falloffs, as well as corner frequency of both of events. Our results indicate the high frequency falloff exponent is often less than 2.0. We do not observe any regional, focal mechanism, or depth dependencies for the falloff exponent. In addition, our estimated corner frequencies and falloff exponents are consistent between the P wave and SH wave analysis. In our presentation, we show differences in estimated source parameters using a fixed omega-square model and a model allowing variable high-frequency falloff.

  12. Comparison of Urban Human Movements Inferring from Multi-Source Spatial-Temporal Data

    Science.gov (United States)

    Cao, Rui; Tu, Wei; Cao, Jinzhou; Li, Qingquan

    2016-06-01

    The quantification of human movements is very hard because of the sparsity of traditional data and the labour intensive of the data collecting process. Recently, much spatial-temporal data give us an opportunity to observe human movement. This research investigates the relationship of city-wide human movements inferring from two types of spatial-temporal data at traffic analysis zone (TAZ) level. The first type of human movement is inferred from long-time smart card transaction data recording the boarding actions. The second type of human movement is extracted from citywide time sequenced mobile phone data with 30 minutes interval. Travel volume, travel distance and travel time are used to measure aggregated human movements in the city. To further examine the relationship between the two types of inferred movements, the linear correlation analysis is conducted on the hourly travel volume. The obtained results show that human movements inferred from smart card data and mobile phone data have a correlation of 0.635. However, there are still some non-ignorable differences in some special areas. This research not only reveals the citywide spatial-temporal human dynamic but also benefits the understanding of the reliability of the inference of human movements with big spatial-temporal data.

  13. COMPARISON OF URBAN HUMAN MOVEMENTS INFERRING FROM MULTI-SOURCE SPATIAL-TEMPORAL DATA

    Directory of Open Access Journals (Sweden)

    R. Cao

    2016-06-01

    Full Text Available The quantification of human movements is very hard because of the sparsity of traditional data and the labour intensive of the data collecting process. Recently, much spatial-temporal data give us an opportunity to observe human movement. This research investigates the relationship of city-wide human movements inferring from two types of spatial-temporal data at traffic analysis zone (TAZ level. The first type of human movement is inferred from long-time smart card transaction data recording the boarding actions. The second type of human movement is extracted from citywide time sequenced mobile phone data with 30 minutes interval. Travel volume, travel distance and travel time are used to measure aggregated human movements in the city. To further examine the relationship between the two types of inferred movements, the linear correlation analysis is conducted on the hourly travel volume. The obtained results show that human movements inferred from smart card data and mobile phone data have a correlation of 0.635. However, there are still some non-ignorable differences in some special areas. This research not only reveals the citywide spatial-temporal human dynamic but also benefits the understanding of the reliability of the inference of human movements with big spatial-temporal data.

  14. Effect of spatial coherence of LED sources on image resolution in holographic displays

    NARCIS (Netherlands)

    Pourreza Ghoushchi, Vahid; Aas, Mehdi; Ulusoy, Erdem; Ürey, Hakan

    2017-01-01

    Holographic Displays (HDs) provide 3D images with all natural depth cues via computer generated holograms (CGHs) implemented on spatial light modulators (SLMs). HDs are coherent light processing systems based on interference and diffraction, thus they generally use laser light. However, laser

  15. Quantifying Sources and Fluxes of Aquatic Carbon in U.S. Streams and Reservoirs Using Spatially Referenced Regression Models

    Science.gov (United States)

    Boyer, E. W.; Smith, R. A.; Alexander, R. B.; Schwarz, G. E.

    2004-12-01

    Organic carbon (OC) is a critical water quality characteristic in riverine systems that is an important component of the aquatic carbon cycle and energy balance. Examples of processes controlled by OC interactions are complexation of trace metals; enhancement of the solubility of hydrophobic organic contaminants; formation of trihalomethanes in drinking water; and absorption of visible and UV radiation. Organic carbon also can have indirect effects on water quality by influencing internal processes of aquatic ecosystems (e.g. photosynthesis and autotrophic and heterotrophic activity). The importance of organic matter dynamics on water quality has been recognized, but challenges remain in quantitatively addressing OC processes over broad spatial scales in a hydrological context. In this study, we apply spatially referenced watershed models (SPARROW) to statistically estimate long-term mean-annual rates of dissolved- and total- organic carbon export in streams and reservoirs across the conterminous United States. We make use of a GIS framework for the analysis, describing sources, transport, and transformations of organic matter from spatial databases providing characterizations of climate, land use, primary productivity, topography, soils, and geology. This approach is useful because it illustrates spatial patterns of organic carbon fluxes in streamflow, highlighting hot spots (e.g., organic-rich environments in the southeastern coastal plain). Further, our simulations provide estimates of the relative contributions to streams from allochthonous and autochthonous sources. We quantify surface water fluxes of OC with estimates of uncertainty in relation to the overall US carbon budget; our simulations highlight that aquatic sources and sinks of OC may be a more significant component of regional carbon cycling than was previously thought. Further, we are using our simulations to explore the potential role of climate and other changes in the terrestrial environment on

  16. Geo-Spatial Characterization of Soil Mercury and Arsenic at a High-Altitude Bolivian Gold Mine.

    Science.gov (United States)

    Johnson, Glen D; Pavilonis, Brian; Caravanos, Jack; Grassman, Jean

    2018-02-01

    Soil mercury concentrations at a typical small-scale mine site in the Bolivian Andes were elevated (28-737 mg/kg or ppm) in localized areas where mercury amalgams were either formed or vaporized to release gold, but was not detectable beyond approximately 10 m from its sources. Arsenic was measurable, exceeding known background levels throughout the mine site (77-137,022 ppm), and was also measurable through the local village of Ingenio (36-1803 ppm). Although arsenic levels were high at all surveyed locations, its spatial pattern followed mercury, being highest where mercury was high.

  17. Sources

    International Nuclear Information System (INIS)

    Duffy, L.P.

    1991-01-01

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  18. Spatial Processing of Urban Acoustic Wave Fields from High-Performance Computations

    National Research Council Canada - National Science Library

    Ketcham, Stephen A; Wilson, D. K; Cudney, Harley H; Parker, Michael W

    2007-01-01

    .... The objective of this work is to develop spatial processing techniques for acoustic wave propagation data from three-dimensional high-performance computations to quantify scattering due to urban...

  19. Operation of the ORNL High Particle Flux Helicon Plasma Source

    International Nuclear Information System (INIS)

    Goulding, Richard Howell; Biewer, Theodore M.; Caughman, John B.; Chen, Guangye; Owen, Larry W.; Sparks, Dennis O.

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.

  20. Operation of the ORNL High Particle Flux Helicon Plasma Source

    International Nuclear Information System (INIS)

    Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Chen, G. C.; Owen, L. W.; Sparks, D. O.

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Γ p 10 23 m -3 s -1 , and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of ∼10 MW/m 2 . An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to ∼0.15 T. Maximum densities of 3x10 19 m -3 in He and 2.5x10 19 m -3 in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.

  1. Very high flux steady state reactor and accelerator based sources

    International Nuclear Information System (INIS)

    Ludewig, H.; Todosow, M.; Simos, N.; Shapiro, S.; Hastings, J.

    2004-01-01

    With the number of steady state neutron sources in the US declining (including the demise of the Bnl HFBR) the remaining intense sources are now in Europe (i.e. reactors - ILL and FMR, accelerator - PSI). The intensity of the undisturbed thermal flux for sources currently in operation ranges from 10 14 n/cm 2 *s to 10 15 n/cm 2 *s. The proposed Advanced Neutron Source (ANS) was to be a high power reactor (about 350 MW) with a projected undisturbed thermal flux of 7*10 15 n/cm 2 *s but never materialized. The objective of the current study is to explore the requirements and implications of two source concepts with an undisturbed flux of 10 16 n/cm 2 *s. The first is a reactor based concept operating at high power density (10 MW/l - 15 MW/l) and a total power of 100 MW - 250 MW, depending on fissile enrichment. The second is an accelerator based concept relying on a 1 GeV - 1.5 GeV proton Linac with a total beam power of 40 MW and a liquid lead-bismuth eutectic target. In the reactor source study, the effects of fissile material enrichment, coolant temperature and pressure drop, and estimates of pressure vessel stress levels will be investigated. The fuel form for the reactor will be different from all other operating source reactors in that it is proposed to use an infiltrated graphitic structure, which has been developed for nuclear thermal propulsion reactor applications. In the accelerator based source the generation of spallation products and their activation levels, and the material damage sustained by the beam window will be investigated. (authors)

  2. Cabri 3D - assisted collaborative learning to enhance junior high school students’ spatial ability

    Science.gov (United States)

    Muntazhimah; Miatun, A.

    2018-01-01

    The main purpose of this quasi-experimental study was to determine the enhancement of spatial ability of junior high school students who learned through Cabri-3D assisted collaborative learning. The methodology of this study was the nonequivalent group that was conducted to students of the eighth grade in a junior high school as a population. Samples consisted one class of the experimental group who studied with Cabri-3D assisted collaborative learning and one class as a control group who got regular learning activity. The instrument used in this study was a spatial ability test. Analyzing normalized gain of students’ spatial ability based on mathemathical prior knowledge (MPK) and its interactions was tested by two-way ANOVA at a significance level of 5% then continued with using Post Hoc Scheffe test. The research results showed that there was significant difference in enhancement of the spatial ability between students who learnt with Cabri 3D assisted collaborative learning and students who got regular learning, there was significant difference in enhancement of the spatial ability between students who learnt with cabri 3D assisted collaborative learning and students who got regular learning in terms of MPK and there is no significant interaction between learning (Cabri-3D assisted collaborative learning and regular learning) with students’ MPK (high, medium, and low) toward the enhancement of students’ spatial abilities. From the above findings, it can be seen that cabri-3D assisted collaborative learning could enhance spatial ability of junior high school students.

  3. Role of high-order aberrations in senescent changes in spatial vision

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, S; Choi, S S; Doble, N; Hardy, J L; Evans, J W; Werner, J S

    2009-01-06

    The contributions of optical and neural factors to age-related losses in spatial vision are not fully understood. We used closed-loop adaptive optics to test the visual benefit of correcting monochromatic high-order aberrations (HOAs) on spatial vision for observers ranging in age from 18-81 years. Contrast sensitivity was measured monocularly using a two-alternative forced choice (2AFC) procedure for sinusoidal gratings over 6 mm and 3 mm pupil diameters. Visual acuity was measured using a spatial 4AFC procedure. Over a 6 mm pupil, young observers showed a large benefit of AO at high spatial frequencies, whereas older observers exhibited the greatest benefit at middle spatial frequencies, plus a significantly larger increase in visual acuity. When age-related miosis is controlled, young and old observers exhibited a similar benefit of AO for spatial vision. An increase in HOAs cannot account for the complete senescent decline in spatial vision. These results may indicate a larger role of additional optical factors when the impact of HOAs is removed, but also lend support for the importance of neural factors in age-related changes in spatial vision.

  4. Spatial and temporal variability of nitrate sinks and sources in riparian soils of a restored reach of an Alpine river

    Science.gov (United States)

    Luster, Jörg; Huber, Benjamin; Shrestha, Juna; Samaritani, Emanuela; Niklaus, Pascal A.

    2010-05-01

    grass zone and lower part of the bush zone while the first and third floods were bigger and swept through all the FPZs. Soil solution was sampled periodically using suction cups installed at several soil depths and operated at a constant vacuum. There were six spatial replicates for each FPZ and depth. Overall there was high spatial and temporal variability of leachable nitrate. The local history of environmental conditions was as important as the characteristic behavior of a given FPZ. While the subsoil of the grass zone and the mixed forest often acted as nitrate source when compared to river and groundwater, the bush zone was generally characterized by low nitrate concentrations. The latter were attributed to strong uptake by willow and the occurrence of denitrification hot spots in the subsoil. In the topsoil of all FPZ, however, locally very high nitrate concentrations occurred for short periods after major floods. In this presentation we will relate the variability of nitrate concentrations to (i) groundwater level, (ii) soil environmental parameters, chiefly moisture and temperature, (iii) concentration of related substances in soil solution, (iv) chemical, physical and biological properties of the soil solid phase, and (v) rates of biological nitrogen transformations including nitrification, denitrification and plant uptake.

  5. Evaluation of the influence of source and spatial resolution of DEMs on derivative products used in landslide mapping

    Directory of Open Access Journals (Sweden)

    Rubini Mahalingam

    2016-11-01

    Full Text Available Landslides are a major geohazard, which result in significant human, infrastructure, and economic losses. Landslide susceptibility mapping can help communities plan and prepare for these damaging events. Digital elevation models (DEMs are one of the most important data-sets used in landslide hazard assessment. Despite their frequent use, limited research has been completed to date on how the DEM source and spatial resolution can influence the accuracy of the produced landslide susceptibility maps. The aim of this paper is to analyse the influence of spatial resolutions and source of DEMs on landslide susceptibility mapping. For this purpose, Advanced Spaceborne Thermal Emission and Reflection (ASTER, National Elevation Dataset (NED, and Light Detection and Ranging (LiDAR DEMs were obtained for two study sections of approximately 140 km2 in north-west Oregon. Each DEM was resampled to 10, 30, and 50 m and slope and aspect grids were derived for each resolution. A set of nine spatial databases was constructed using geoinformation science (GIS for each of the spatial resolution and source. Additional factors such as distance to river and fault maps were included. An analytical hierarchical process (AHP, fuzzy logic model, and likelihood ratio-AHP representing qualitative, quantitative, and hybrid landslide mapping techniques were used for generating landslide susceptibility maps. The results from each of the techniques were verified with the Cohen's kappa index, confusion matrix, and a validation index based on agreement with detailed landslide inventory maps. The spatial resolution of 10 m, derived from the LiDAR data-set showed higher predictive accuracy in all the three techniques used for producing landslide susceptibility maps. At a resolution of 10 m, the output maps based on NED and ASTER had higher misclassification compared to the LiDAR-based outputs. Further, the 30-m LiDAR output showed improved results over the 10-m NED and 10-m

  6. Estimating Gross Primary Production in Cropland with High Spatial and Temporal Scale Remote Sensing Data

    Science.gov (United States)

    Lin, S.; Li, J.; Liu, Q.

    2018-04-01

    Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  7. Estimating spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system.

    Science.gov (United States)

    Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten

    2017-05-19

    In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between

  8. High-Throughput Nanoindentation for Statistical and Spatial Property Determination

    Science.gov (United States)

    Hintsala, Eric D.; Hangen, Ude; Stauffer, Douglas D.

    2018-04-01

    Standard nanoindentation tests are "high throughput" compared to nearly all other mechanical tests, such as tension or compression. However, the typical rates of tens of tests per hour can be significantly improved. These higher testing rates enable otherwise impractical studies requiring several thousands of indents, such as high-resolution property mapping and detailed statistical studies. However, care must be taken to avoid systematic errors in the measurement, including choosing of the indentation depth/spacing to avoid overlap of plastic zones, pileup, and influence of neighboring microstructural features in the material being tested. Furthermore, since fast loading rates are required, the strain rate sensitivity must also be considered. A review of these effects is given, with the emphasis placed on making complimentary standard nanoindentation measurements to address these issues. Experimental applications of the technique, including mapping of welds, microstructures, and composites with varying length scales, along with studying the effect of surface roughness on nominally homogeneous specimens, will be presented.

  9. Intense neutron source: high-voltage power supply specifications

    International Nuclear Information System (INIS)

    Riedel, A.A.

    1980-08-01

    This report explains the need for and sets forth the electrical, mechanical and safety specifications for a high-voltage power supply to be used with the intense neutron source. It contains sufficient information for a supplier to bid on such a power supply

  10. Analyses of High-Energy Sources with ESA Gaia

    Czech Academy of Sciences Publication Activity Database

    Hudec, R.; Šimon, Vojtěch; Hudcová, Věra

    2010-01-01

    Roč. 1248, - (2010), s. 583-584 ISSN 1551-7616. [X-ray astronomy 2009. Bologna, 07.09.2009-11.09.2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : high-energy sources * gamma-ray bursts * low-dispersion spectra Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  11. High School Principals as Leaders: Styles and Sources of Power

    Science.gov (United States)

    Brinia, Vasiliki; Papantoniou, Eva

    2016-01-01

    Purpose: The purpose of this paper is to present the characteristics of leadership (style adopted, sources of power exercised and factors affecting leadership) of high school principals in Greece. Design/Methodology/Approach: In total, 235 school principals were surveyed using questionnaires. These questionnaires assessed how often they adopted…

  12. Probing the bias of radio sources at high redshift

    CSIR Research Space (South Africa)

    Passmoor, S

    2012-11-01

    Full Text Available The relationship between the clustering of dark matter and that of luminous matter is often described using the bias parameter. Here, we provide a new method to probe the bias of intermediate-to-high-redshift radio continuum sources for which...

  13. degradable protein sources on performance of high-producing dairy ...

    African Journals Online (AJOL)

    with high-quality, low·degradable protein sources prOViding47% UDP is advocated for ... saliva and through the rumen wall (Waldo, 1968). Based on this type of ... of the feed industry, but is based on very little solid evidence. (Huber, 1984). Chalupa ...... of rumen fermentation in relation to ammonia concentration. Br. J. Nutr.

  14. Experimental validation of the intrinsic spatial efficiency method over a wide range of sizes for cylindrical sources

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Ramŕez, Pablo, E-mail: rapeitor@ug.uchile.cl; Larroquette, Philippe [Departamento de Física, Facultad de Ciencias, Universidad de Chile (Chile); Camilla, S. [Departamento de Física, Universidad Tecnológica Metropolitana (Chile)

    2016-07-07

    The intrinsic spatial efficiency method is a new absolute method to determine the efficiency of a gamma spectroscopy system for any extended source. In the original work the method was experimentally demonstrated and validated for homogeneous cylindrical sources containing {sup 137}Cs, whose sizes varied over a small range (29.5 mm radius and 15.0 to 25.9 mm height). In this work we present an extension of the validation over a wide range of sizes. The dimensions of the cylindrical sources vary between 10 to 40 mm height and 8 to 30 mm radius. The cylindrical sources were prepared using the reference material IAEA-372, which had a specific activity of 11320 Bq/kg at july 2006. The obtained results were better for the sources with 29 mm radius showing relative bias lesser than 5% and for the sources with 10 mm height showing relative bias lesser than 6%. In comparison with the obtained results in the work where we present the method, the majority of these results show an excellent agreement.

  15. Management of spent high activity radioactive sources (SHARS)

    International Nuclear Information System (INIS)

    2002-09-01

    The objective of this report is to provide all people involved in the handling and management of high activity sources with sufficient information about processes that are required for the safe management of spent high activity radioactive sources (SHARS). This includes examples of spent source management that are already taking place and also a description of the range of appropriate options that are available for each stage in the management process. This report also aims to identify the important issues to be addressed in order to develop a waste management strategy as part of the integrated management strategy that takes account of international experience and the guidance and principles that have been learned from that experience. This report relates specifically to SHARS, which are spent sources that have the potential, with short exposures, to produce acute health effects if handled incorrectly. In addition, they may also incur significant economic costs in any retrieval or environmental remediation operation, following loss of or damage to such a source. The report provides guidance on the technical, administrative and economic issues associated with SHARS from the moment they cease to be in use through to disposal, including temporary storage, transport, conditioning and interim storage

  16. Production of highly charged ion beams from ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1997-09-01

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ and U 34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams

  17. Novel high resolution 125I brachytherapy source dosimetry using Ge-doped optical fibres

    International Nuclear Information System (INIS)

    Issa, Fatma; Hugtenburg, Richard P.; Nisbet, Andrew; Bradley, David A.

    2013-01-01

    The steep dose gradients close to brachytherapy sources limit the ability to obtain accurate measurements of dose. Here we use a novel high spatial resolution dosimeter to measure dose around a 125 I source and compare against simulations. Ge-doped optical fibres, used as thermoluminescent dosimeters, offer sub-mm spatial resolution, linear response from 10 cGy to >1 kGy and dose-rate independence. For a 125 I brachytherapy seed in a PMMA phantom, doses were obtained for source-dosimeter separations from 0.1 cm up to several cm, supported by EGSnrc/DOSRZznrc Monte Carlo simulations and treatment planning system data. The measurements agree with simulations to within 2.3%±0.3% along the transverse and perpendicular axes and within 3.0%±0.5% for measurements investigating anisotropy in angular dose distribution. Measured and Veriseed™ brachytherapy treatment planning system (TPS) values agreed to within 2.7%±0.5%. Ge-doped optical fibre dosimeters allow detailed dose mapping around brachytherapy sources, not least in situations of high dose gradient. - Highlights: • We evaluate fall-off in dose for distances from an 125 I source of 1 mm to 60 mm. • The TL of optical fibres accommodate high dose gradients and doses that reduce by a factor of 10 3 across the range of separations. • We verify measured values using DOSRZnrc Monte Carlo code simulations and the Variseed™ Treatment Planning System. • Measured radial and angular dose are obtained with ≤3% uncertainty

  18. An Architecture Offering Mobile Pollution Sensing with High Spatial Resolution

    Directory of Open Access Journals (Sweden)

    Oscar Alvear

    2016-01-01

    Full Text Available Mobile sensing is becoming the best option to monitor our environment due to its ease of use, high flexibility, and low price. In this paper, we present a mobile sensing architecture able to monitor different pollutants using low-end sensors. Although the proposed solution can be deployed everywhere, it becomes especially meaningful in crowded cities where pollution values are often high, being of great concern to both population and authorities. Our architecture is composed of three different modules: a mobile sensor for monitoring environment pollutants, an Android-based device for transferring the gathered data to a central server, and a central processing server for analyzing the pollution distribution. Moreover, we analyze different issues related to the monitoring process: (i filtering captured data to reduce the variability of consecutive measurements; (ii converting the sensor output to actual pollution levels; (iii reducing the temporal variations produced by mobile sensing process; and (iv applying interpolation techniques for creating detailed pollution maps. In addition, we study the best strategy to use mobile sensors by first determining the influence of sensor orientation on the captured values and then analyzing the influence of time and space sampling in the interpolation process.

  19. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China

    Science.gov (United States)

    Zhou, Ying; Xing, Xiaofan; Lang, Jianlei; Chen, Dongsheng; Cheng, Shuiyuan; Wei, Lin; Wei, Xiao; Liu, Chao

    2017-02-01

    Biomass burning injects many different gases and aerosols into the atmosphere that could have a harmful effect on air quality, climate, and human health. In this study, a comprehensive biomass burning emission inventory including domestic and in-field straw burning, firewood burning, livestock excrement burning, and forest and grassland fires is presented, which was developed for mainland China in 2012 based on county-level activity data, satellite data, and updated source-specific emission factors (EFs). The emission inventory within a 1 × 1 km2 grid was generated using geographical information system (GIS) technology according to source-based spatial surrogates. A range of key information related to emission estimation (e.g. province-specific proportion of domestic and in-field straw burning, detailed firewood burning quantities, uneven temporal distribution coefficient) was obtained from field investigation, systematic combing of the latest research, and regression analysis of statistical data. The established emission inventory includes the major precursors of complex pollution, greenhouse gases, and heavy metal released from biomass burning. The results show that the emissions of SO2, NOx, PM10, PM2.5, NMVOC, NH3, CO, EC, OC, CO2, CH4, and Hg in 2012 are 336.8 Gg, 990.7 Gg, 3728.3 Gg, 3526.7 Gg, 3474.2 Gg, 401.2 Gg, 34 380.4 Gg, 369.7 Gg, 1189.5 Gg, 675 299.0 Gg, 2092.4 Gg, and 4.12 Mg, respectively. Domestic straw burning, in-field straw burning, and firewood burning are identified as the dominant biomass burning sources. The largest contributing source is different for various pollutants. Domestic straw burning is the largest source of biomass burning emissions for all the pollutants considered, except for NH3, EC (firewood), and NOx (in-field straw). Corn, rice, and wheat represent the major crop straws. The combined emission of these three straw types accounts for 80 % of the total straw-burned emissions for each specific pollutant mentioned in this study

  20. Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China.

    Science.gov (United States)

    Wang, Zhiqiang; Hong, Chen; Xing, Yi; Wang, Kang; Li, Yifei; Feng, Lihui; Ma, Silu

    2018-06-15

    The characterization of the content and source of heavy metals are essential to assess the potential threat of metals to human health. The present study collected 140 topsoil samples around a Cu-Mo mine (Wunugetushan, China) and investigated the concentrations and spatial distribution pattern of Cr, Ni, Zn, Cu, Mo and Cd in soil using multivariate and geostatistical analytical methods. Results indicated that the average concentrations of six heavy metals, especially Cu and Mo, were obviously higher than the local background values. Correlation analysis and principal component analysis divided these metals into three groups, including Cr and Ni, Cu and Mo, Zn and Cd. Meanwhile, the spatial distribution maps of heavy metals indicated that Cr and Ni in soil were no notable anthropogenic inputs and mainly controlled by natural factors because their spatial maps exhibited non-point source contamination. The concentrations of Cu and Mo gradually decreased with distance away from the mine area, suggesting that human mining activities may be crucial in the spreading of contaminants. Soil contamination of Zn were associated with livestock manure produced from grazing. In addition, the environmental risk of heavy metal pollution was assessed by geo-accumulation index. All the results revealed that the spatial distribution of heavy metals in soil were in agreement with the local human activities. Investigating and identifying the origin of heavy metals in pasture soil will lay the foundation for taking effective measures to preserve soil from the long-term accumulation of heavy metals. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Hard X-Ray Flare Source Sizes Measured with the Ramaty High Energy Solar Spectroscopic Imager

    Science.gov (United States)

    Dennis, Brian R.; Pernak, Rick L.

    2009-01-01

    Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of 18 double hard X-ray sources seen at energies above 25 keV are analyzed to determine the spatial extent of the most compact structures evident in each case. The following four image reconstruction algorithms were used: Clean, Pixon, and two routines using visibilities maximum entropy and forward fit (VFF). All have been adapted for this study to optimize their ability to provide reliable estimates of the sizes of the more compact sources. The source fluxes, sizes, and morphologies obtained with each method are cross-correlated and the similarities and disagreements are discussed. The full width at half-maximum (FWHM) of the major axes of the sources with assumed elliptical Gaussian shapes are generally well correlated between the four image reconstruction routines and vary between the RHESSI resolution limit of approximately 2" up to approximately 20" with most below 10". The FWHM of the minor axes are generally at or just above the RHESSI limit and hence should be considered as unresolved in most cases. The orientation angles of the elliptical sources are also well correlated. These results suggest that the elongated sources are generally aligned along a flare ribbon with the minor axis perpendicular to the ribbon. This is verified for the one flare in our list with coincident Transition Region and Coronal Explorer (TRACE) images. There is evidence for significant extra flux in many of the flares in addition to the two identified compact sources, thus rendering the VFF assumption of just two Gaussians inadequate. A more realistic approximation in many cases would be of two line sources with unresolved widths. Recommendations are given for optimizing the RHESSI imaging reconstruction process to ensure that the finest possible details of the source morphology become evident and that reliable estimates can be made of the source dimensions.

  2. Using Epiphytic Lichens to Elucidate the Sources and Spatial Distribution of Inorganic Air Pollution in the Athabasca Oil Sands Region

    Science.gov (United States)

    Landis, M.; Graney, J. R.; Pancras, P.; Krupa, S.; Edgerton, E.; Puckett, K.; Percy, K.

    2013-12-01

    The Wood Buffalo Environmental Association (WBEA) conducted studies to document the geographic patterns of atmospheric deposition of sulfur (S) and nitrogen (N) in the Athabasca Oil Sands Region (AOSR) using epiphytic lichens as bioindicators of atmospheric pollution. Epiphytic lichen samples (Hypogymnia physodes) were collected from 44 locations in 2002, 359 locations in 2008, and 21 locations in 2011 within the AOSR. A subset of samples from 2002 (15) and 2008 (121); and all the samples from 2011 were microwave extracted and analyzed for a comprehensive suite of trace elements using DRC-ICPMS. In addition, source profiles were developed for samples from a variety of available process stacks, heavy duty diesel fleet vehicles, bulk materials representing the various stages of oil sands processing operations, and forest fires. The lichen monitoring and source profile information were integrated into a receptor modeling framework to elucidate the relative importance of natural and anthropogenic sources to the observed atmospheric deposition of S and N in the AOSR. U.S. EPA implemented statistical receptor models utilized included Positive Matrix Factorization (PMF), Unmix, and Chemical Mass Balance (CMB). The sources uniquely identified that significantly contributed to concentrations of elements in the lichen tissue include: fugitive dust from haul roads, tailing sand, and oil sand mining; oil sand processing; combustion processes; and a general urban regional source. The spatial patterns of CMB, PMF, and Unmix receptor model estimated source impacts on the Hypogymnia physodes tissue concentrations from the oil sand processing and fugitive dust sources had a significant association with the distance from the primary oil sands surface mining operations and related production facilities. The spatial extent of the fugitive dust impact was limited to an approximately 20 km radius around the major mining and oil production facilities, indicative of ground level coarse

  3. ELBE Center for High-Power Radiation Sources

    Directory of Open Access Journals (Sweden)

    Peter Dr. Michel

    2016-01-01

    Full Text Available In the ELBE Center for High-Power Radiation Sources, the superconducting linear electron accelerator ELBE, serving  two free electron lasers, sources for intense coherent THz radiation, mono-energetic positrons, electrons, γ-rays, a neutron time-of-flight system as well as two synchronized ultra-short pulsed Petawatt laser systems are collocated. The characteristics of these beams make the ELBE center a unique research instrument for a variety of external users in fields ranging from material science over nuclear physics to cancer research, as well as scientists of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR.

  4. New sources of high-power coherent radiation

    International Nuclear Information System (INIS)

    Sprehngl, F.

    1985-01-01

    New sources of high-power coherent radiation in the wavelength range from millimeter to ultraviolet are reviewed. Physical mechanisms underlying concepts of free electrons laser, cyclotron resonance laser and other new radiation sources are described. Free electron lasers and cyclotron resonance lasers are shown to suggest excellent possibilities for solving problems of spectroscopy, plasma heating radar and accelerator technology. Results of experiments with free electron laser in the Compton mode using linear accelerators microtrons and storage rings are given. Trends in further investigations are shown

  5. Hydrogen distribution in a containment with a high-velocity hydrogen-steam source

    International Nuclear Information System (INIS)

    Bloom, G.R.; Muhlestein, L.D.; Postma, A.K.; Claybrook, S.W.

    1982-09-01

    Hydrogen mixing and distribution tests are reported for a modeled high velocity hydrogen-steam release from a postulated small pipe break or release from a pressurizer relief tank rupture disk into the lower compartment of an Ice Condenser Plant. The tests, which in most cases used helium as a simulant for hydrogen, demonstrated that the lower compartment gas was well mixed for both hydrogen release conditions used. The gas concentration differences between any spatial locations were less than 3 volume percent during the hydrogen/steam release period and were reduced to less than 0.5 volume percent within 20 minutes after termination of the hydrogen source. The high velocity hydrogen/steam jet provided the dominant mixing mechanism; however, natural convection and forced air recirculation played important roles in providing a well mixed atmosphere following termination of the hydrogen source. 5 figures, 4 tables

  6. CHESS-the Cornell High Energy Synchrotron Source

    International Nuclear Information System (INIS)

    Batterman, B.W.; Cornell Univ., Ithaca, NY

    1980-01-01

    The Wilson Laboratory at Cornell University has done pioneering work on development of high energy synchrotrons. In the last decade, the 12 GeV synchrotron has been the most energetic electron synchrotron in the world. In 1975 plans were formulated to build a 4-8 GeV storage ring in the same tunnel as the synchrotron and to use the latter as the injector for the storage ring. This small radius (the normal bend magnets have R = 87 m), coupled with the relatively high electron energy of the storage ring, makes these magnets potent sources of synchrotron radiation. In June of 1978 the National Science Foundation funded a project to create CHESS, the Cornell High Energy Synchrotron Source. (orig./FKS)

  7. Overcoming High Energy Backgrounds at Pulsed Spallation Sources

    CERN Document Server

    Cherkashyna, Nataliia; DiJulio, Douglas D.; Khaplanov, Anton; Pfeiffer, Dorothea; Scherzinger, Julius; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Ansell, Stuart; Iverson, Erik B.; Ehlers, Georg; Gallmeier, Franz X.; Panzner, Tobias; Rantsiou, Emmanouela; Kanaki, Kalliopi; Filges, Uwe; Kittelmann, Thomas; Extegarai, Maddi; Santoro, Valentina; Kirstein, Oliver; Bentley, Phillip M.

    2015-01-01

    Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument pe...

  8. Very high energy emission sources beyond the Galaxy

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Active Galactic Nuclei (AGN are considered as potential extragalactic sources of very and ultra high energy cosmic rays. According to theoretical predictions cosmic ray acceleration can take place at the shock created by the expanding cocoons around active galactic nuclei as well as at AGN jets. The measurements of AGN TeV spectra, the variability time scale of TeV emission can provide essential information on the dynamics of AGN jets, the localization of acceleration region and an estimation of its size. SHALON observations yielded data on extragalactic sources of different AGN types in the energy range of 800 GeV–100 TeV. The data from SHALON observations are compared with those from other experiments at high and very high energies.

  9. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    Science.gov (United States)

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  10. High-speed limnology: using advanced sensors to investigate spatial variability in biogeochemistry and hydrology.

    Science.gov (United States)

    Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A

    2015-01-06

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  11. Active Galactic Nuclei: Sources for ultra high energy cosmic rays?

    International Nuclear Information System (INIS)

    Biermann, Peter L.; Becker, Julia K.; Caramete, Laurentiu; Curutiu, Alex; Engel, Ralph; Falcke, Heino; Gergely, Laszlo A.; Isar, P. Gina; Maris, Ioana C.; Meli, Athina; Kampert, Karl-Heinz; Stanev, Todor; Tascau, Oana; Zier, Christian

    2009-01-01

    The origin of ultra high energy cosmic rays promises to lead us to a deeper understanding of the structure of matter. This is possible through the study of particle collisions at center-of-mass energies in interactions far larger than anything possible with the Large Hadron Collider, albeit at the substantial cost of no control over the sources and interaction sites. For the extreme energies we have to identify and understand the sources first, before trying to use them as physics laboratories. Here we describe the current stage of this exploration. The most promising contenders as sources are radio galaxies and gamma ray bursts. The sky distribution of observed events yields a hint favoring radio galaxies. Key in this quest are the intergalactic and galactic magnetic fields, whose strength and structure are not yet fully understood. Current data and statistics do not yet allow a final judgement. We outline how we may progress in the near future.

  12. Active Galactic Nuclei: Sources for ultra high energy cosmic rays?

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Peter L. [MPI for Radioastronomy, Bonn (Germany); Dept. of Phys. and Astron., Univ. of Bonn (Germany); Dept. of Phys. and Astr., Univ. of Alabama, Tuscaloosa, AL (United States); Dept. of Phys., Univ. of Alabama at Huntsville, AL (United States); Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Becker, Julia K. [Institution foer Fysik, Goeteborgs Univ. (Sweden); Dept. of Phys., Univ. Dortmund, Dortmund (Germany); Caramete, Laurentiu [MPI for Radioastronomy, Bonn (Germany); Institute for Space Studies, Bucharest (Romania); Curutiu, Alex [MPI for Radioastronomy, Bonn (Germany); Engel, Ralph [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Falcke, Heino [Dept. of Astrophys., IMAP, Radboud Univ., Nijmegen (Netherlands); ASTRON, Dwingeloo (Netherlands); Gergely, Laszlo A. [Dept. Appl. Sci., London South Bank University (United Kingdom); Dept. of Theoret. and Exp. Phys., Univ. of Szeged, Szeged (Hungary); Isar, P. Gina [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Institute for Space Studies, Bucharest (Romania); Maris, Ioana C. [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Meli, Athina [Physik. Inst. Univ. Erlangen-Nuernberg (Germany); Kampert, Karl-Heinz [Phys. Dept., Univ. Wuppertal (Germany); Stanev, Todor [Bartol Research Inst., Univ. of Delaware, Newark, DE (United States); Tascau, Oana [Phys. Dept., Univ. Wuppertal (Germany); Zier, Christian [MPI for Radioastronomy, Bonn (Germany); Raman Res. Inst., Bangalore (India)

    2009-05-15

    The origin of ultra high energy cosmic rays promises to lead us to a deeper understanding of the structure of matter. This is possible through the study of particle collisions at center-of-mass energies in interactions far larger than anything possible with the Large Hadron Collider, albeit at the substantial cost of no control over the sources and interaction sites. For the extreme energies we have to identify and understand the sources first, before trying to use them as physics laboratories. Here we describe the current stage of this exploration. The most promising contenders as sources are radio galaxies and gamma ray bursts. The sky distribution of observed events yields a hint favoring radio galaxies. Key in this quest are the intergalactic and galactic magnetic fields, whose strength and structure are not yet fully understood. Current data and statistics do not yet allow a final judgement. We outline how we may progress in the near future.

  13. Formation of universal and diffusion regions of non-linear spectra of relativistic electrons in spatially limited sources

    International Nuclear Information System (INIS)

    Kontorovich, V.M.; Kochanov, A.E.

    1980-01-01

    It is demonstrated that in the case of hard injection of relativistic electrons accompanied by the joint action of synchrotron (Compton) losses and energy-dependent spatial diffusion, a spectrum with 'breaks' is formed containing universal (with index γ = 2) and diffusion regions, both independent of the injection spectrum. The effect from non-linearity of the electron spectrum is considered in averaged electromagnetic spectra for various geometries of sources (sphere, disk, arm). It is shown that an universal region (with index α = 0.5) can occur in the radiation spectrum. (orig.)

  14. Explorative analysis of long time series of very high resolution spatial rainfall

    DEFF Research Database (Denmark)

    Thomassen, Emma Dybro; Sørup, Hjalte Jomo Danielsen; Scheibel, Marc

    2017-01-01

    . For each method a set of 17 variables are used to describe the properties of each event, e.g. duration, maximum volumes, spatial coverage and heterogeneity, and movement of cells. A total of 5-9 dimensions can be found in the data, which can be interpreted as a rough indication of how many independent...... simple scaling across the set of variables, i.e. the level of each variable varies signicantly, but not the overall structure of the spatial precipitation. The analysis show that there is a good potential for making a spatial weather generator for high spatio-temporal precipitation for precipitation...

  15. A high-power spatial filter for Thomson scattering stray light reduction

    Science.gov (United States)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  16. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  17. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  18. Spatial and temporal characteristics of PM2.5 and source apportionment in Wuhan

    Science.gov (United States)

    Hao, Hanzhou; Guo, Qianqian

    2018-02-01

    In order to study the pollution characteristics and sources of PM2.5, the PM2.5 in Wuhan atmosphere was sampled continuously. Inductively coupled plasma mass spectrometry (ICP-MS) were employed to measure Na, K, Mg, Ca, Al, Mn, Cu, Zn, As, Pb, Cr, Ni, Co, Cd, Fe, V, Ti, Hg, Si, while water soluble ions (Cl-, NO3-, SO4 2-) as well as carbonaceous mass (EC and OC) were analyzed using ion chromatograph(IC) and carbon analyzer, respectively. The results show: (1) In 2014 and 2015, Wuhan PM2.5 values were 81.4μg/m3and 69.2μg/m3 respectively far exceed the national standard level 2, i.e. annual average 35 μg/m3 in China, annual average limit 10 μg/m3 by the World Health Organization, the annual limit of 15 μg/m3 in the United States. (2) Taking Huaqiao and Qihao as research points, the Spring Festival effect of PM2.5 in Wuhan city is analyzed. It shows that the concentration of PM2.5 in 2014 and 2015 is before Spring Festival> during Spring Festival> after Spring Festival. As a backdrop, during the Spring Festival, Qihao PM2.5 concentration than Huaqiao average low 20 μg/m3. (3) The results of positive factor matrix factorization (PMF) analysis show that PM2.5 in Summer in Wuhan mainly comes from the automobile source, soil dust source, biomass combustion, industrial source, secondary aerosol source, combustion coal source, the contribution rate is 37.7%. 25%, 16.4%, 8.1%, 6.5%,6.4%, respectively.

  19. Charge-coupled devices for particle detection with high spatial resolution

    International Nuclear Information System (INIS)

    Farley, F.J.; Damerell, C.J.S.; Gillman, A.R.; Wickens, F.J.

    1980-10-01

    The results of a study of the possible application of a thin microelectronic device (the charge-coupled device) to high energy physics as particle detectors with good spatial resolution which can distinguish between tracks emerging from the primary vertex and those from secondary vertices due to the decay of short lived particles with higher flavours, are reported. Performance characteristics indicating the spatial resolution, particle discrimination, time resolution, readout time and lifetime of such detectors have been obtained. (U.K.)

  20. The new high flux neutron source FRM-2 in Munich

    International Nuclear Information System (INIS)

    Roegler, H.J.; Wierheim, G.

    2002-01-01

    Quite some years ago in 1974 to be exact, the first consideration on a new neutron source started at the technical university of Munich (Germany). 27 years later the new high flux neutron source (FRM-2) was read for hot operation, now delayed by a refused approval for its third partial license by the federal government of Germany despite a wide support from the scientific community. FRM-2 is a tank-type research reactor cooled by water, moderated by heavy water and whose thermal power was limited to 20 MW maximum. The extreme compact core together with the applied inverse flux principle led to a neutron flux design value of 8.10 18 n/m 2 .s at the reflector peak. 10 beam tubes will allow an optimized use of the high neutron flux. A hot neutron source with graphite at about 2200 Celsius degrees and a cold neutron source with liquid D 2 at about 25 K will provide shifted energy spectra. The utilization of FRM-2 is many-fold: neutronography and tomography, medical irradiation, radio-nuclide production, doping of pure silicon, neutron activation analysis. (A.C.)

  1. Synopsis Session-I 'Chemical information under high spatial resolution'

    International Nuclear Information System (INIS)

    2013-01-01

    High spatial resolution in this research field is a prerequisite for a better understanding of governing processes, as individual clay particles are very small in dimension (clay size fraction typically defined as < 2μm). The phenomena that have been looked at under this resolution are narrow alteration zones either due to relatively short term laboratory experiments compared to the repository evolution time scale and/or due to the low reaction rates observed for clay minerals at ambient temperature. Another challenge in the field of chemical information to be extracted from compacted clay systems is that mostly the research is focused on the potential contaminants released from the repository near-field, which will be in the trace element concentration and analytical systems have to be tuned to increase the sensitivity under this high spatial resolution. Therefore, chemical information in form of element maps or correlation maps were shown on the initial clay material composition and its heterogeneities (e.g. phase assemblages), the water composition, sorption and migration effects of trace elements, reaction products of geochemical perturbation/alteration and the surface speciation/binding environment of the radionuclides or their chemical homologues. Overall, six invited presentation were given in this session plus additional poster presentations. Beside this, a number of presentations in the other sessions showed a great overlap presenting also chemical data under high spatial resolution. All these oral contributions have shown the progress in this field focusing on the current resolution limits set by the physics and instrumentation available (C. Jacobsen, APS), the micro-focusing instrumentation available at the Karlsruhe Institute of Technology (KIT) synchrotron light source ANKA (J. Goettlicher, KIT-ISS), the application of nano-SIMS to retrieve elemental/isotope maps on complex organo-mineral structures (C. Hoeschen, TU Muenchen), the application of a

  2. Locating sensors for detecting source-to-target patterns of special nuclear material smuggling: a spatial information theoretic approach.

    Science.gov (United States)

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  3. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    Directory of Open Access Journals (Sweden)

    Xuesong Zhou

    2010-08-01

    Full Text Available In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  4. Analytical solution of spatial kinetics of the diffusion model for subcritical homogeneous systems driven by external source

    International Nuclear Information System (INIS)

    Oliveira, Fernando Luiz de

    2008-01-01

    This work describes an analytical solution obtained by the expansion method for the spatial kinetics using the diffusion model with delayed emission for source transients in homogeneous media. In particular, starting from simple models, and increasing the complexity, numerical results were obtained for different types of source transients. An analytical solution of the one group without precursors was solved, followed by considering one precursors family. The general case of G-groups with R families of precursor although having a closed form solution, cannot be solved analytically, since there are no explicit formulae for the eigenvalues, and numerical methods must be used to solve such problem. To illustrate the general solution, the multi-group (three groups) time-dependent problem without precursors was solved and the numerical results of a finite difference code were compared with the exact results for different transients. (author)

  5. Large area negative ion source for high voltage neutral beams

    International Nuclear Information System (INIS)

    Poulsen, P.; Hooper, E.B. Jr.

    1979-11-01

    A source of negative deuterium ions in the multi-ampere range is described that is readily extrapolated to reactor size, 10 amp or more of neutral beam, that is of interest in future experiments and reactors. The negative ion source is based upon the double charge exchange process. A beam of positive ions is created and accelerated to an energy at which the attachment process D + M → D - + M + proceeds efficiently. The positive ions are atomically neutralized either in D 2 or in the charge exchange medium M. Atomic species make a second charge exchange collision in the charge target to form D - . For a sufficiently thick target, the beam reaches an equilibrium fraction of negative ions. For reasons of efficiency, the target is typically alkali metal vapor; this experiment uses sodium. The beam of negative ions can be accelerated to high (>200 keV) energy, the electrons stripped from the ions, and a high energy neutral beam formed

  6. Aleurone Cell Walls of Wheat Grain: High Spatial Resolution Investigation Using Synchrotron Infrared Microspectroscopy

    International Nuclear Information System (INIS)

    Jamme, F.; Robert, R.; Bouchet, B.; Saulnier, L.; Dumas, P.; Guillon, F.

    2008-01-01

    Infrared microspectroscopy and immunolabeling techniques were employed in order to obtain deeper insight into the biochemical nature of aleurone cell walls of wheat grain. The use of a synchrotron source, thanks to its intrinsic brightness, has provided unprecedented information at the level of a few micrometers and has allowed the discrimination of various polysaccharides in cell walls. The high spectral quality obtained in the small analyzed domain has been beneficial in estimating the relative proportions of Β-glucan and arabinoxylan, through the use of principal component analysis (PCA). The highest amount of Β-glucan is found in periclinal cell walls close to the starchy endosperm. The junction regions between aleurone cells are enriched in arabinoxylan. At the early stage of wheat grain development (271 degrees D), the chemical composition along the cell walls is more heterogeneous than at the mature stage. Both synchrotron infrared microspectroscopy and immunolabeling experiments made it possible to reveal the spatial heterogeneity of the various chemical compositions of aleurone cell walls.

  7. PV source based high voltage gain current fed converter

    Science.gov (United States)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  8. Light and Light Sources High-Intensity Discharge Lamps

    CERN Document Server

    Flesch, Peter G

    2006-01-01

    Light and Light Sources gives an introduction to the working principles of high-intensity discharge (HID) lamps and points out challenges and problems associated with the development and operation of HID lamps. The state-of-the-art in electrode and plasma diagnostics as well as numerical methods used for the understanding of HID lamps are described. This volume addresses students as well as scientists and researchers at universities and in industry.

  9. Proton induction linacs as high-intensity neutron sources

    International Nuclear Information System (INIS)

    Keefe, D.; Hoyer, E.

    1981-01-01

    Proton induction linacs are explored as high intensity neutron sources. The induction linac - concept, properties, experience with electrons, and possibilities - and its limitations for accelerating ions are reviewed. A number of proton induction linac designs are examined with the LIACEP program and general conclusions are given. Results suggest that a proton induction accelerator of the lowest voltage, consistent with good neutron flux, is preferred and could well be cost competitive with the usual rf linac/storage ring designs. (orig.)

  10. Combining MODIS, MISR, CALIOP, OMI, AERONET, and Models to Identify the Spatial and Temporal Distribution, Characterization, and Magnitude of Missing Urban and Wildfire Emissions Sources throughout Asia.

    Science.gov (United States)

    Cohen, J. B.

    2016-12-01

    Due to intense and changing levels of emissions as well as highly non-linear chemical processing, the concentrations of aerosols and thus their impacts are not well known. Urban areas consist of the majority of the emissions of these species and their precursors over large periods of time, while wildfires contribute very large spikes, concentrated in space and over a period of weeks to months. Yet due to urban and economic expansion, as well as clouds amd low intensity burning, the spatial and temporal profiles of these species are changing, with both new sources appearing and old sources decreasing. New work incorporates measurements at different spatial andboptical resolutions from MODIS, MISR, and OMI, coupled with new sampling approaches with CALIOP and AERONET to search for, characterize, and spatially and temporally constrain aerosols. An advanced modeling system including aerosol chemistry, physics, optics, and transport, using a multi-modal and both externally mixed and core-shell mixing is used to quantify the magnitudes of these missing sources. Comparisons between the model and additional dozens of ground stations show extreme improvement when these new sources are included. This new approach is shown to identify new source regions of emissions, many of which were previously non-urbanized or were not found to contain any fire hotspots. In addition, the use of new models run under conditions including both missing local sources from regions such as the expanded urban areas in Southeast and East Asia and advanced chemical and aerosol routines, allow for a comprehensive analysis to be performed. The impacts of insitu chemistry, horizontal, and vertical transport of species, both on the Regional and Continental scale are also included. It is shown that for proper identification, especially on intra-annual and inter-annual variations, this approach is a large improvement throughout Asia, ranging from India, to Indonesia, to China and Japan. Results specific

  11. Investigation of Spatial Data with Open Source Social Network Analysis and Geographic Information Systems Applications

    Science.gov (United States)

    Sabah, L.; Şimşek, M.

    2017-11-01

    Social networks are the real social experience of individuals in the online environment. In this environment, people use symbolic gestures and mimics, sharing thoughts and content. Social network analysis is the visualization of complex and large quantities of data to ensure that the overall picture appears. It is the understanding, development, quantitative and qualitative analysis of the relations in the social networks of Graph theory. Social networks are expressed in the form of nodes and edges. Nodes are people/organizations, and edges are relationships between nodes. Relations are directional, non-directional, weighted, and weightless. The purpose of this study is to examine the effects of social networks on the evaluation of person data with spatial coordinates. For this, the cluster size and the effect on the geographical area of the circle where the placements of the individual are influenced by the frequently used placeholder feature in the social networks have been studied.

  12. Electro-optic spatial decoding on the spherical-wavefront Coulomb fields of plasma electron sources.

    Science.gov (United States)

    Huang, K; Esirkepov, T; Koga, J K; Kotaki, H; Mori, M; Hayashi, Y; Nakanii, N; Bulanov, S V; Kando, M

    2018-02-13

    Detections of the pulse durations and arrival timings of relativistic electron beams are important issues in accelerator physics. Electro-optic diagnostics on the Coulomb fields of electron beams have the advantages of single shot and non-destructive characteristics. We present a study of introducing the electro-optic spatial decoding technique to laser wakefield acceleration. By placing an electro-optic crystal very close to a gas target, we discovered that the Coulomb field of the electron beam possessed a spherical wavefront and was inconsistent with the previously widely used model. The field structure was demonstrated by experimental measurement, analytic calculations and simulations. A temporal mapping relationship with generality was derived in a geometry where the signals had spherical wavefronts. This study could be helpful for the applications of electro-optic diagnostics in laser plasma acceleration experiments.

  13. Spatial GHG Inventory: Analysis of Uncertainty Sources. A Case Study for Ukraine

    International Nuclear Information System (INIS)

    Bun, R.; Gusti, M.; Kujii, L.; Tokar, O.; Tsybrivskyy, Y.; Bun, A.

    2007-01-01

    A geoinformation technology for creating spatially distributed greenhouse gas inventories based on a methodology provided by the Intergovernmental Panel on Climate Change and special software linking input data, inventory models, and a means for visualization are proposed. This technology opens up new possibilities for qualitative and quantitative spatially distributed presentations of inventory uncertainty at the regional level. Problems concerning uncertainty and verification of the distributed inventory are discussed. A Monte Carlo analysis of uncertainties in the energy sector at the regional level is performed, and a number of simulations concerning the effectiveness of uncertainty reduction in some regions are carried out. Uncertainties in activity data have a considerable influence on overall inventory uncertainty, for example, the inventory uncertainty in the energy sector declines from 3.2 to 2.0% when the uncertainty of energy-related statistical data on fuels combusted in the energy industries declines from 10 to 5%. Within the energy sector, the 'energy industries' subsector has the greatest impact on inventory uncertainty. The relative uncertainty in the energy sector inventory can be reduced from 2.19 to 1.47% if the uncertainty of specific statistical data on fuel consumption decreases from 10 to 5%. The 'energy industries' subsector has the greatest influence in the Donetsk oblast. Reducing the uncertainty of statistical data on electricity generation in just three regions - the Donetsk, Dnipropetrovsk, and Luhansk oblasts - from 7.5 to 4.0% results in a decline from 2.6 to 1.6% in the uncertainty in the national energy sector inventory

  14. An obesogenic bias in women's spatial memory for high calorie snack food.

    Science.gov (United States)

    Allan, K; Allan, J L

    2013-08-01

    To help maintain a positive energy balance in ancestral human habitats, evolution appears to have designed a functional bias in spatial memory that enhances our ability to remember the location of high-calorie foodstuffs. Here, we investigated whether this functional bias has obesogenic consequences for individuals living in a modern urban environment. Spatial memory, dietary intentions, and perceived desirability, for high-calorie snacks and lower-calorie fruits and vegetables were measured using a computer-based task in 41 women (age: 18-35, body mass index: 18.5-30.0). Using multiple linear regression, we analyzed whether enhanced spatial memory for high-calorie snacks versus fruits and vegetables predicted BMI, controlling for dietary intention strength and perceived food desirability. We observed that enhanced spatial memory for high-calorie snacks (both independently, and relative to that for fruits and vegetables), significantly predicted higher BMI. The evolved function of high-calorie bias in human spatial memory, to promote positive energy balance, would therefore appear to be intact. But our data reveal that this function may contribute to higher, less healthy BMI in individuals in whom the memory bias is most marked. Our findings reveal a novel cognitive marker of vulnerability to weight gain that, once the proximal mechanisms are understood, may offer new possibilities for weight control interventions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Testing Special Relativity at High Energies with Astrophysical Sources

    Science.gov (United States)

    Stecker, F. W.

    2007-01-01

    Since the group of Lorentz boosts is unbounded, there is a question as to whether Lorentz invariance (LI) holds to infinitely short distances. However, special and general relativity may break down at the Planck scale. Various quantum gravity scenarios such as loop quantum gravity, as well as some forms of string theory and extra dimension models may imply Lorentz violation (LV) at ultrahigh energies. The Gamma-Ray Large Area Space Telescope (GLAST), to be launched in mid-December, will measure the spectra of distant extragalactic sources of high energy gamma-rays, particularly active galactic nuclei and gamma-ray bursts. GLAST can look for energy-dependent gamma-ray propagation effects from such sources as a signal of Lorentz invariance violation. These sources may also exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions with low energy photons having a flux level as determined by various astronomical observations. With LV the threshold for such interactions can be significantly raised, changing the predicted absorption turnover in the observed spectrum of the sources. Stecker and Glashow have shown that the existence such absorption features in the spectra of extragalactic sources puts constraints on LV. Such constraints have important implications for some quantum gravity and large extra dimension models. Future spaceborne detectors dedicated to measuring gamma-ray polarization can look for birefringence effects as a possible signal of loop quantum gravity. A very small LV may also result in the modification or elimination of the GZK effect, thus modifying the spectrum of ultrahigh energy cosmic rays. This possibility can be explored with ground-based arrays such as Auger or with a space based detector system such as the proposed OWL satellite mission.

  16. The fusion of satellite and UAV data: simulation of high spatial resolution band

    Science.gov (United States)

    Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata

    2017-10-01

    Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.

  17. Sources plasma RF magnétisées : applications à la propulsion spatiale

    OpenAIRE

    Gerst , Jan Dennis

    2013-01-01

    The PEGASES thruster (Plasma Propulsion with Electronegative Gases) is a novel type of electric thruster for space propulsion. It uses negative and positive ions produced by an inductively coupled radio frequency discharge to create the thrust by electrostatically accelerating the ions through a set of grids. A magnetic filter is used to increase the amount of negative ions in the cavity of the thruster. The PEGASES thruster is not only a source to create a strongly negative ion plasma or eve...

  18. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  19. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    Science.gov (United States)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  20. The analytical benchmark solution of spatial diffusion kinetics in source driven systems for homogeneous media

    International Nuclear Information System (INIS)

    Oliveira, F.L. de; Maiorino, J.R.; Santos, R.S.

    2007-01-01

    This paper describes a closed form solution obtained by the expansion method for the general time dependent diffusion model with delayed emission for source transients in homogeneous media. In particular, starting from simple models, and increasing the complexity, numerical results were obtained for different types of source transients. Thus, first an analytical solution of the one group without precursors was solved, followed by considering one precursors family. The general case of G-groups with R families of precursor although having a closed form solution, cannot be solved analytically, since there are no explicit formulae for the eigenvalues, and numerical methods must be used to solve such problem. To illustrate the general solution, the multi-group (three groups) time-dependent without precursors was also solved and the results inter compared with results obtained by the previous one group models for a given fast homogeneous media, and different types of source transients. The results are being compared with the obtained by numerical methods. (author)

  1. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China

    Science.gov (United States)

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-03-01

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively.

  2. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China.

    Science.gov (United States)

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-03-07

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively.

  3. A High-Resolution Spatially Explicit Monte-Carlo Simulation Approach to Commercial and Residential Electricity and Water Demand Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Morton, April M [ORNL; McManamay, Ryan A [ORNL; Nagle, Nicholas N [ORNL; Piburn, Jesse O [ORNL; Stewart, Robert N [ORNL; Surendran Nair, Sujithkumar [ORNL

    2016-01-01

    Abstract As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for high resolution spatially explicit estimates for energy and water demand has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy and water consumption, many are provided at a course spatial resolution or rely on techniques which depend on detailed region-specific data sources that are not publicly available for many parts of the U.S. Furthermore, many existing methods do not account for errors in input data sources and may therefore not accurately reflect inherent uncertainties in model outputs. We propose an alternative and more flexible Monte-Carlo simulation approach to high-resolution residential and commercial electricity and water consumption modeling that relies primarily on publicly available data sources. The method s flexible data requirement and statistical framework ensure that the model is both applicable to a wide range of regions and reflective of uncertainties in model results. Key words: Energy Modeling, Water Modeling, Monte-Carlo Simulation, Uncertainty Quantification Acknowledgment This manuscript has been authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  4. Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China

    International Nuclear Information System (INIS)

    Wang Wentao; Massey Simonich, Staci L.; Xue Miao; Zhao Jingyu; Zhang Na; Wang Rong; Cao Jun; Tao Shu

    2010-01-01

    The concentrations, profiles, sources and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) were determined in 40 surface soil samples collected from Beijing, Tianjin and surrounding areas, North China in 2007, and all sampling sites were far from industrial areas, roadsides and other pollution sources, and across a range of soil types in remote, rural villages and urban areas. The total concentrations of 16 PAHs ranged from 31.6 to 1475.0 ng/g, with an arithmetic average of 336.4 ng/g. The highest PAH concentrations were measured in urban soils, followed by rural village soils and soils from remote locations. The remote-rural village-urban PAH concentration gradient was related to population density, gross domestic product (GDP), long-range atmospheric transport and different types of land use. In addition, the PAH concentration was well correlated with the total organic carbon (TOC) concentration of the soil. The PAH profile suggested that coal combustion and biomass burning were primary PAH sources. - The concentration, profiles and possible sources of PAHs in Beijing, Tianjin and surrounding area soils were studied and related to population density and gross domestic product (GDP).

  5. The Relationship between Utilization of Computer Games and Spatial Abilities among High School Students

    Science.gov (United States)

    Motamedi, Vahid; Yaghoubi, Razeyah Mohagheghyan

    2015-01-01

    This study aimed at investigating the relationship between computer game use and spatial abilities among high school students. The sample consisted of 300 high school male students selected through multi-stage cluster sampling. Data gathering tools consisted of a researcher made questionnaire (to collect information on computer game usage) and the…

  6. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  7. Development and application of methods and models for the calculation of spatially and temporally highly resolved emissions in Europe

    International Nuclear Information System (INIS)

    Thiruchittampalam, Balendra

    2014-01-01

    High spatial and temporal resolution models are essential for answering many questions of air quality management and climate modeling. High-resolution emission models are required to determine the concentration of pollutants using chemical transport models, and to quantify the impacts on health and environment and in particular to develop adequate countermeasures. The aim of this work is to develop methods for the calculation of spatially and temporally high-resolved emissions and to apply these exemplarily on a 1 km x 1 km and hourly resolution for the year 2008 in the EU-27 and EFTA countries. The derivation of methods for the spatial and temporal resolution of emissions with corresponding detailed equations is one of the major improvements that have been carried out in the course of this work. The improvement of the spatial distribution of emissions from the point source relevant sectors like energy supply, industry and waste management is achieved by considering sector specific diffuse emission shares. The progress of the spatial distribution of emissions from households is in particular the development of a fuel type weighted distribution over Europe. Another main focus is the development of the spatial distribution of road transport emissions. Due to the restricted access to traffic count data at the European level, methods have been established to provide reliable emissions on grid level for Europe. The progress in the spatial distribution of agricultural emissions is achieved by the consideration of diffuse shares similar to the other point source relevant sectors like energy supply or industry. In addition to the spatial distribution of the emissions the temporal resolution is a main focus of this work, since the state of knowledge of the temporal resolution of emissions in Europe is still rudimentary. Therefore, it was necessary to develop in particular time curves for the hourly resolution of emissions for the main sectors, namely electricity and heat

  8. The Relationship Between Utilization of Computer Games and Spatial Abilities Among High School Students

    Directory of Open Access Journals (Sweden)

    Vahid Motamedi

    2015-07-01

    Full Text Available This study aimed at investigating the relationship between computer game use and spatial abilities among high school students. The sample consisted of 300 high school male students selected through multi-stage cluster sampling. Data gathering tools consisted of a researcher made questionnaire (to collect information on computer game usage and the Newton and Bristol spatial ability questionnaire with reliability value of .85. Data were analyzed using Pearson’s correlation coefficient. Results showed that there was a meaningful relationship between the use of computer games and spatial ability (r = .59 and p = 00.00, there was a meaningful relationship between the use of computer games and the spatial perceived ability (r = .60 and p = .00, there was a meaningful relationship between the use of computer games and mental rotation ability (r = .48 and p = .00 and there was a meaningful relationship between computer game use and spatial visualization ability (r = .48 and p = .00. In general, the findings showed there was a positive and a significant relationship between the use of computer games and spatial abilities in students.

  9. Figure/ground segregation from temporal delay is best at high spatial frequencies.

    Science.gov (United States)

    Kojima, H

    1998-12-01

    Two experiments investigated the role of spatial frequency in performance of a figure/ground segregation task based on temporal cues. Figure orientation was much easier to judge when figure and ground portions of the target were defined exclusively by random texture composed entirely of high spatial frequencies. When target components were defined by low spatial frequencies only, the task was nearly impossible except with long temporal delay between figure and ground. These results are inconsistent with the hypothesis that M-cell activity is primarily responsible for figure/ground segregation from temporal delay. Instead, these results point to a distinction between temporal integration and temporal differentiation. Additionally, the present results can be related to recent work on the binding of spatial features over time.

  10. Development of high current low energy H+ ion source

    International Nuclear Information System (INIS)

    Forrester, A.T.; Crow, J.T.; Goebel, D.M.

    1978-01-01

    The ultimate goal of this work is the development of an ion source suitable for double charge exchange of D + ions to D - ions in cesium or other vapor. Since the fraction of the D + which changes to D - may be as high as 0.35 in the energy below one keV, the process appears very favorable. What is desired is a source of several hundred cm 2 area, with a D + current density greater than, say 0.2A/cm 2 . Small angular spread is essential with up to about 0.1 radian being acceptable. A simple approach to this problem appears to be through fine mesh extraction electrodes. In this system a single grid facing the ion source plasma constitutes the entire extraction electrode system. If the potential difference between the grid and the source plasma is large compared to the ion energy at the plasma boundary, then the distance s 0 is just the Child-Langmuir distance corresponding to the ion current density J and the potential difference V 0 between the plasma and the grid

  11. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  12. Using nitrogen concentration and isotopic composition in lichens to spatially assess the relative contribution of atmospheric nitrogen sources in complex landscapes

    International Nuclear Information System (INIS)

    Pinho, P.; Barros, C.; Augusto, S.; Pereira, M.J.

    2017-01-01

    Reactive nitrogen (Nr) is an important driver of global change, causing alterations in ecosystem biodiversity and functionality. Environmental assessments require monitoring the emission and deposition of both the amount and types of Nr. This is especially important in heterogeneous landscapes, as different land-cover types emit particular forms of Nr to the atmosphere, which can impact ecosystems distinctively. Such assessments require high spatial resolution maps that also integrate temporal variations, and can only be feasibly achieved by using ecological indicators. Our aim was to rank land-cover types according to the amount and form of emitted atmospheric Nr in a complex landscape with multiple sources of N. To do so, we measured and mapped nitrogen concentration and isotopic composition in lichen thalli, which we then related to land-cover data. Results suggested that, at the landscape scale, intensive agriculture and urban areas were the most important sources of Nr to the atmosphere. Additionally, the ocean greatly influences Nr in land, by providing air with low Nr concentration and a unique isotopic composition. These results have important consequences for managing air pollution at the regional level, as they provide critical information for modeling Nr emission and deposition across regional as well as continental scales. - Highlights: • Which land-cover types are reactive nitrogen sources or sinks at a landscape level? • Nitrogen concentration and isotopic composition were analyzed in lichens. • This allowed determination of the main nitrogen sources: agricultural and urban areas. • Marine sources provided persistent low concentrations of reactive nitrogen. • The typical signature of each source was also determined. - Reactive-nitrogen concentration and isotopic composition in lichens were used to rank Nr sources at a landscape level.

  13. A novel power source for high-precision, highly efficient micro w-EDM

    International Nuclear Information System (INIS)

    Chen, Shun-Tong; Chen, Chi-Hung

    2015-01-01

    The study presents the development of a novel power source for high-precision, highly efficient machining of micropart microstructures using micro wire electrical discharge machining (w-EDM). A novel power source based on a pluri resistance–capacitance (pRC) circuit that can generate a high-frequency, high-peak current with a short pulse train is proposed and designed to enhance the performance of micro w-EDM processes. Switching between transistors is precisely controlled in the designed power source to create a high-frequency short-pulse train current. Various microslot cutting tests in both aluminum and copper alloys are conducted. Experimental results demonstrate that the pRC power source creates instant spark erosion resulting in markedly less material for removal, diminishing discharge crater size, and consequently an improved surface finish. A new evaluation approach for spark erosion ability (SEA) to assess the merits of micro EDM power sources is also proposed. In addition to increasing the speed of micro w-EDM by increasing wire feed rates by 1.6 times the original feed rate, the power source is more appropriate for machining micropart microstructures since there is less thermal breaking. Satisfactory cutting of an elaborate miniature hook-shaped structure and a high-aspect ratio microstructure with a squared-pillar array also reveal that the developed pRC power source is effective, and should be very useful in the manufacture of intricate microparts. (paper)

  14. Conceptual design of a high-intensity positron source for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Hulett, L.D.; Eberle, C.C.

    1994-12-01

    The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world's best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world's best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using 64 Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet

  15. Web-based spatial analysis with the ILWIS open source GIS software and satellite images from GEONETCast

    Science.gov (United States)

    Lemmens, R.; Maathuis, B.; Mannaerts, C.; Foerster, T.; Schaeffer, B.; Wytzisk, A.

    2009-12-01

    This paper involves easy accessible integrated web-based analysis of satellite images with a plug-in based open source software. The paper is targeted to both users and developers of geospatial software. Guided by a use case scenario, we describe the ILWIS software and its toolbox to access satellite images through the GEONETCast broadcasting system. The last two decades have shown a major shift from stand-alone software systems to networked ones, often client/server applications using distributed geo-(web-)services. This allows organisations to combine without much effort their own data with remotely available data and processing functionality. Key to this integrated spatial data analysis is a low-cost access to data from within a user-friendly and flexible software. Web-based open source software solutions are more often a powerful option for developing countries. The Integrated Land and Water Information System (ILWIS) is a PC-based GIS & Remote Sensing software, comprising a complete package of image processing, spatial analysis and digital mapping and was developed as commercial software from the early nineties onwards. Recent project efforts have migrated ILWIS into a modular, plug-in-based open source software, and provide web-service support for OGC-based web mapping and processing. The core objective of the ILWIS Open source project is to provide a maintainable framework for researchers and software developers to implement training components, scientific toolboxes and (web-) services. The latest plug-ins have been developed for multi-criteria decision making, water resources analysis and spatial statistics analysis. The development of this framework is done since 2007 in the context of 52°North, which is an open initiative that advances the development of cutting edge open source geospatial software, using the GPL license. GEONETCast, as part of the emerging Global Earth Observation System of Systems (GEOSS), puts essential environmental data at the

  16. A Compact, High-Flux Cold Atom Beam Source

    Science.gov (United States)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  17. Lighting up the World The first global application of the open source, spatial electrification toolkit (ONSSET)

    Science.gov (United States)

    Mentis, Dimitrios; Howells, Mark; Rogner, Holger; Korkovelos, Alexandros; Siyal, Shahid; Broad, Oliver; Zepeda, Eduardo; Bazilian, Morgan

    2016-04-01

    In September 2015, the international community has adopted a new set of targets, following and expanding on the millennium development goals (MDGs), the Sustainable Development Goals (SDGs). Ensuring access to affordable, reliable, sustainable and modern energy for all is one of the 17 set goals that each country should work towards realizing. According to the latest Global Tracking Framework, 15% of the global population live without access to electricity. The majority of those (87%) reside in rural areas. Countries can reach universal access through various electrification options, depending on different levels of energy intensity and local characteristics of the studied areas, such as renewable resources availability, spatially differentiated costs of diesel-fuelled electricity generation, distance from power network and major cities, population density and others, data which are usually inadequate in national databases. This general paucity of reliable energy-related information in developing countries calls for the utilization of geospatial data. This paper presents a Geographic Information Systems (GIS) based electrification analysis for all countries that have not yet reached full access to electricity (Sub-Saharan Africa, Developing Asia, Latin America and Middle East). The cost optimal mix of electrification options ranges from grid extensions to mini-grid and stand-alone applications and is identified for all relevant countries. It is illustrated how this mix is influenced by scrolling through various electrification levels and different oil prices. Such an analysis helps direct donors and investors and inform multinational actions with regards to investments related to energy access.

  18. Spatial analyses identify the geographic source of patients at a National Cancer Institute Comprehensive Cancer Center.

    Science.gov (United States)

    Su, Shu-Chih; Kanarek, Norma; Fox, Michael G; Guseynova, Alla; Crow, Shirley; Piantadosi, Steven

    2010-02-01

    We examined the geographic distribution of patients to better understand the service area of the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, a designated National Cancer Institute (NCI) comprehensive cancer center located in an urban center. Like most NCI cancer centers, the Sidney Kimmel Comprehensive Cancer Center serves a population beyond city limits. Urban cancer centers are expected to serve their immediate neighborhoods and to address disparities in access to specialty care. Our purpose was to learn the extent and nature of the cancer center service area. Statistical clustering of patient residence in the continental United States was assessed for all patients and by gender, cancer site, and race using SaTScan. Primary clusters detected for all cases and demographically and tumor-defined subpopulations were centered at Baltimore City and consisted of adjacent counties in Delaware, Pennsylvania, Virginia, West Virginia, New Jersey and New York, and the District of Columbia. Primary clusters varied in size by race, gender, and cancer site. Spatial analysis can provide insights into the populations served by urban cancer centers, assess centers' performance relative to their communities, and aid in developing a cancer center business plan that recognizes strengths, regional utility, and referral patterns. Today, 62 NCI cancer centers serve a quarter of the U.S. population in their immediate communities. From the Baltimore experience, we might project that the population served by these centers is actually more extensive and varies by patient characteristics, cancer site, and probably cancer center services offered.

  19. Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi'an, China: The effects of suburban scattered emissions in winter.

    Science.gov (United States)

    Wang, Jingzhi; Cao, Junji; Dong, Zhibao; Guinot, Benjamin; Gao, Meiling; Huang, Rujin; Han, Yongming; Huang, Yu; Ho, Steven Sai Hang; Shen, Zhenxing

    2017-12-01

    Seasonal variation and spatial distribution of PM 2.5 bound polycyclic aromatic hydrocarbons (PAHs) were investigated at urban residential, commercial area, university, suburban region, and industry in Xi'an, during summer and winter time at 2013. Much higher levels of total PAHs were obtained in winter. Spatial distributions by kriging interpolations principle showed that relative high PAHs were detected in western Xi'an in both summer and winter, with decreasing trends in winter from the old city wall to the 2 nd -3rd ring road except for the suburban region and industry. Coefficients of diversity and statistics by SPSS method demonstrated that PAHs in suburban have significant differences (t winter and summer in urban, which different with the suburban. The coal combustion was the main source for PAHs in suburban region, which accounted for 46.6% in winter and sharp decreased to 19.2% in summer. Scattered emissions from uncontrolled coal combustion represent an important source of PAHs in suburban in winter and there were about 135 persons in Xi'an will suffer from lung cancer for lifetime exposure at winter levels. Further studies are needed to specify the effluence of the scattered emission in suburban to the city and to develop a strategy for controlling those emissions and lighten possible health effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Source, Spatial Distribution and Risk Assessment of Heavy Metals in Soil from the Pearl River Delta Based on the National Multi-Purpose Regional Geochemical Survey.

    Science.gov (United States)

    Zhang, Lingyan; Guo, Shuhai; Wu, Bo

    2015-01-01

    The data on the heavy metal content at different soil depths derived from a multi-purpose regional geochemical survey in the Pearl River Delta (PRD) were analyzed using ArcGIS 10.0. By comparing their spatial distributions and areas, the sources of heavy metals (Cd, Hg, As and Pb) were quantitatively identified and explored. Netted measuring points at 25 ×25 km were set over the entire PRD according to the geochemical maps. Based on the calculation data obtained from different soil depths, the concentrations of As and Cd in a large area of the PRD exceeded the National Second-class Standard. The spatial disparity of the geometric centers in the surface soil and deep soil showed that As in the surface soil mainly came from parent materials, while Cd had high consistency in different soil profiles because of deposition in the soil forming process. The migration of Cd also resulted in a considerable ecological risk to the Beijiang and Xijiang River watershed. The potential ecological risk index followed the order Cd ≥ Hg > Pb > As. According to the sources, the distribution trends and the characteristics of heavy metals in the soil from the perspective of the whole area, the Cd pollution should be repaired, especially in the upper reaches of the Xijiang and Beijiang watershed to prevent risk explosion while the pollution of Hg and Pb should be controlled in areas with intense human activity, and supervision during production should be strengthened to maintain the ecological balance of As.

  1. Ultra high spatial and temporal resolution breast imaging at 7T.

    Science.gov (United States)

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Analysis of the emission characteristics of ion sources for high-value optical counting processes

    International Nuclear Information System (INIS)

    Beermann, Nils

    2009-01-01

    The production of complex high-quality thin film systems requires a detailed understanding of all partial processes. One of the most relevant partial processes is the condensation of the coating material on the substrate surface. The optical and mechanical material properties can be adjusted by the well-defined impingement of energetic ions during deposition. Thus, in the past, a variety of different ion sources were developed. With respect to the present and future challenges in the production of precisely fabricated high performance optical coatings, the ion emission of the sources has commonly not been characterized sufficiently so far. This question is addressed in the frame of this work which itself is thematically integrated in the field of process-development and -control of ion assisted deposition processes. In a first step, a Faraday cup measurement system was developed which allows the spatially resolved determination of the ion energy distribution as well as the ion current distribution. Subsequently, the ion emission profiles of six ion sources were determined depending on the relevant operating parameters. Consequently, a data pool for process planning and supplementary process analysis is made available. On the basis of the acquired results, the basic correlations between the operating parameters and the ion emission are demonstrated. The specific properties of the individual sources as well as the respective control strategies are pointed out with regard to the thin film properties and production yield. Finally, a synthesis of the results and perspectives for future activities are given. (orig.)

  3. High flux isotope reactor cold source preconceptual design study report

    International Nuclear Information System (INIS)

    Selby, D.L.; Bucholz, J.A.; Burnette, S.E.

    1995-12-01

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH 2 moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project

  4. Progress in extremely high brightness LED-based light sources

    Science.gov (United States)

    Hoelen, Christoph; Antonis, Piet; de Boer, Dick; Koole, Rolf; Kadijk, Simon; Li, Yun; Vanbroekhoven, Vincent; Van De Voorde, Patrick

    2017-09-01

    Although the maximum brightness of LEDs has been increasing continuously during the past decade, their luminance is still far from what is required for multiple applications that still rely on the high brightness of discharge lamps. In particular for high brightness applications with limited étendue, e.g. front projection, only very modest luminance values in the beam can be achieved with LEDs compared to systems based on discharge lamps or lasers. With dedicated architectures, phosphor-converted green LEDs for projection may achieve luminance values up to 200-300 Mnit. In this paper we report on the progress made in the development of light engines based on an elongated luminescent concentrator pumped by blue LEDs. This concept has recently been introduced to the market as ColorSpark High Lumen Density LED technology. These sources outperform the maximum brightness of LEDs by multiple factors. In LED front projection, green LEDs are the main limiting factor. With our green modules, we now have achieved peak luminance values of 2 Gnit, enabling LED-based projection systems with over 4000 ANSI lm. Extension of this concept to yellow and red light sources is presented. The light source efficiency has been increased considerably, reaching 45-60 lm/W for green under practical application conditions. The module architecture, beam shaping, and performance characteristics are reviewed, as well as system aspects. The performance increase, spectral range extensions, beam-shaping flexibility, and cost reductions realized with the new module architecture enable a breakthrough in LED-based projection systems and in a wide variety of other high brightness applications.

  5. Preparation of very small point sources for high resolution radiography

    International Nuclear Information System (INIS)

    Case, F.N.

    1976-01-01

    The need for very small point sources of high specific activity 192 Ir, 169 Yb, 170 Tm, and 60 Co in non-destructive testing has motivated the development of techniques for the fabrication of these sources. To prepare 192 Ir point sources for use in examination of tube sheet welds in LMFBR heat exchangers, 191 Ir enriched to greater than 90 percent was melted in a helium blanketed arc to form spheres as small as 0.38 mm in diameter. Methods were developed to form the roughly spherical shaped arc product into nearly symmetrical spheres that could be used for high resolution radiography. Similar methods were used for spherical shaped sources of 169 Yb and 170 Tm. The oxides were arc melted to form rough spheres followed by grinding to precise dimensions, neutron irradiation of the spheres at a flux of 2 to 3 x 10 15 nv, and use of enriched 168 Yb to provide the maximum specific activity. Cobalt-60 with a specific activity of greater than 1100 Ci/g was prepared by processing 59 Co that had been neutron irradiated to nearly complete burnup of the 59 Co target to produce 60 Co, 61 Ni, and 62 Ni. Ion exchange methods were used to separate the cobalt from the nickel. The cobalt was reduced to metal by plating either onto aluminum foil which was dissolved away from the cobalt plate, or by plating onto mercury to prepare amalgam that could be easily formed into a pellet of cobalt with exclusion of the mercury. Both methods are discussed

  6. Development and features of an X-ray detector with high spatial resolution

    International Nuclear Information System (INIS)

    Hartmann, H.

    1979-09-01

    A laboratory model of an X-ray detector with high spatial resolution was developed and constructed. It has no spectral resolution, but a local resolution of 20 μm which is about ten times as high as that of position-sensitive proportional counters and satisfies the requirements of the very best Wolter telescopes with regard to spatial resolution. The detector will be used for laboratory tests of the 80 cm Wolter telescope which is being developed for Spacelab flights. The theory of the wire grid detector and the physics of the photoelectric effect has been developed, and model calculations and numerical calculations have been carried out. (orig./WB) [de

  7. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Koo, John, E-mail: john-koo@amat.com; Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James [Applied Materials, Inc., Varian Semiconductor Equipment Business Unit, 35 Dory Road, Gloucester, Massachusetts 01930 (United States)

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  8. A high repetition rate XUV seeding source for FLASH2

    International Nuclear Information System (INIS)

    Willner, Arik

    2012-05-01

    Improved performance of free-electron laser (FEL) light sources in terms of timing stability, pulse shape and spectral properties of the amplified FEL pulses is of interest in material science, the fields of ultrafast dynamics, biology, chemistry and even special branches in industry. A promising scheme for such an improvement is direct seeding with high harmonic generation (HHG) in a noble gas target. A free-electron laser seeded by an external extreme ultraviolet (XUV) source is planned for FLASH2 at DESY in Hamburg. The requirements for the XUV/soft X-ray source can be summarized as follows: A repetition rate of at least 100 kHz in a 10 Hz burst is needed at variable wavelengths from 10 to 40 nm and pulse energies of several nJ within a single laser harmonic. This application requires a laser amplifier system with exceptional parameters, mJ-level pulse energy, 10-15 fs pulse duration at 100 kHz (1 MHz) burst repetition rate. A new optical parametric chirped-pulse amplification (OPCPA) system is under development in order to meet these requirements, and very promising results have been achieved in the last three years. In parallel to this development, a new HHG concept is necessary to sustain high average power of the driving laser system and to generate harmonics with high conversion efficiencies. Currently, the highest conversion efficiency with HHG has been demonstrated using gas-filled capillary targets. For our application, only a free-jet target can be used for HHG, in order to overcome damage threshold limitations of HHG target optics at a high repetition rate. A novel dual-gas multijet gas target has been developed and first experiments show remarkable control of the degree of phase matching forming the basis for improved control of the harmonic photon flux and the XUV pulse characteristics. The basic idea behind the dual-gas concept is the insertion of matching zones in between multiple HHG sources. These matching sections are filled with hydrogen which

  9. A high repetition rate XUV seeding source for FLASH2

    Energy Technology Data Exchange (ETDEWEB)

    Willner, Arik

    2012-05-15

    Improved performance of free-electron laser (FEL) light sources in terms of timing stability, pulse shape and spectral properties of the amplified FEL pulses is of interest in material science, the fields of ultrafast dynamics, biology, chemistry and even special branches in industry. A promising scheme for such an improvement is direct seeding with high harmonic generation (HHG) in a noble gas target. A free-electron laser seeded by an external extreme ultraviolet (XUV) source is planned for FLASH2 at DESY in Hamburg. The requirements for the XUV/soft X-ray source can be summarized as follows: A repetition rate of at least 100 kHz in a 10 Hz burst is needed at variable wavelengths from 10 to 40 nm and pulse energies of several nJ within a single laser harmonic. This application requires a laser amplifier system with exceptional parameters, mJ-level pulse energy, 10-15 fs pulse duration at 100 kHz (1 MHz) burst repetition rate. A new optical parametric chirped-pulse amplification (OPCPA) system is under development in order to meet these requirements, and very promising results have been achieved in the last three years. In parallel to this development, a new HHG concept is necessary to sustain high average power of the driving laser system and to generate harmonics with high conversion efficiencies. Currently, the highest conversion efficiency with HHG has been demonstrated using gas-filled capillary targets. For our application, only a free-jet target can be used for HHG, in order to overcome damage threshold limitations of HHG target optics at a high repetition rate. A novel dual-gas multijet gas target has been developed and first experiments show remarkable control of the degree of phase matching forming the basis for improved control of the harmonic photon flux and the XUV pulse characteristics. The basic idea behind the dual-gas concept is the insertion of matching zones in between multiple HHG sources. These matching sections are filled with hydrogen which

  10. High Brightness Neutron Source for Radiography. Final report

    International Nuclear Information System (INIS)

    Cremer, J.T.; Piestrup, Melvin A.; Gary, Charles K.; Harris, Jack L.; Williams, David J.; Jones, Glenn E.; Vainionpaa, J.H.; Fuller, Michael J.; Rothbart, George H.; Kwan, J.W.; Ludewigt, B.A.; Gough, R.A.; Reijonen, Jani; Leung, Ka-Ngo

    2008-01-01

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  11. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Cole, Wesley

    2016-07-18

    This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  12. ESTIMATING GROSS PRIMARY PRODUCTION IN CROPLAND WITH HIGH SPATIAL AND TEMPORAL SCALE REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    S. Lin

    2018-04-01

    Full Text Available Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km. The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012 Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1 the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR is about 50 % (R2 = 0.52 and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64; 2 estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day, which has better performance than using MODIS 1-km NDVI/EVI product import; 3 using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  13. Spatial variations and sources of trace elements in recent snow from glaciers at the Tibetan Plateau.

    Science.gov (United States)

    Huang, Ju; Li, Yuefang; Li, Zhen; Xiong, Longfei

    2018-03-01

    Trace elements (TEs) could pose a potential threat to the environment and human health and hence they have been paid attention increasingly at present. This study presents the acid-leached concentrations of TEs (e.g., Al, As, Ba, Co, Cr, Cs, Cu, Fe, Li, Mn, Mo, Pb, Rb, Sb, Sr, Ti, Tl, U, V) and dust content sampled from Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), Gurenhekou (GRHK) glaciers on the Tibetan Plateau (TP) from April to May in 2013. A nonparametric Jonckheere-Terpstra Method was used to test the trend of spatial distribution of TEs. The statistical analysis indicates that TEs were the highest in the QMLK glacier, lowest in the YZF glacier, and comparable in the other three glaciers. Comparison with other glaciers of the plateau, the statistical analysis on As, Cu, Mo, Pb, and Sb shows that their concentrations had, in general, a decreasing distribution characteristic from the north to the south of TP, which indicates that the northern TP is loading more atmospheric-polluted impurity than central and southern TP. Enrichment factor (EF) analysis indicates that Rb, V, U, Cr, Ba, Cs, Li, As, Co, Mn, Tl, Sr, and Cu originated mainly from crustal dust, while anthropogenic inputs such as nonferrous metals melting, coal combustion, and traffic emission made an important contribution to the Mo, Pb, and Sb. Evidences from air mass back trajectories show that TEs in the five studied glaciers might not only come from surrounding areas of glaciers but also might be long-range transported by atmosphere from the Central Asia and South Asia and deposited on these glaciers.

  14. Dynamical injections as the source of near geostationary quiet time particle spatial boundaries

    International Nuclear Information System (INIS)

    Mauk, B.H.; Meng, C.I.

    1983-01-01

    To test our understanding of quasi-stationary magnetospheric particle convection, we address here a particular class of particle feature (plasma dropouts at 0 eV to 5 keV) observed regularly by near geostationary satellites in the noon to dusk quadrant, often during the apparent absence of recent (hours) substorm activity. At first consideration the feature appears to result from the passage of the satellites toward and into the so-called ''forbidden zones'' of the quasi-stationary particle convection patterns. It is demonstrated here that the energy dispersion of the feature cannot be explained by simple stationary convection models even when loss processes are imposed on those particles that penetrate most closely to the earth. Also, the radial position of the feature does not vary with geomagnetic activity as expected from steady convection models. It is concluded that dynamical processes are responsible. However, models based on the modification of the so-called cross-tail field configuration against initial stationary convection patterns are rejected here because these models preserve the qualitative sense of the energy dispersions of the initial patterns. It is proposed that the spatial structures of pase (24 hours) dynamical, nightside particle injections determine to a great extent the character of the feature. It is shown that detailed simulations based on the double-spiraled ''injection boundary'' concept (used previously to reproduce the fast changing nighttime features) reproduce very well the character and dispersion senses of the noon-to-dusk feature by allowing the distributions to evolve for many hours. It is emphasized that the portion of the original injection boundary which gives rise to this feature of interest is the decidely ''non-Alfvenic'' portion

  15. High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea.

    Science.gov (United States)

    Kim, Yun Jeong; Park, Man Sik; Lee, Eunil; Choi, Jae Wook

    2016-01-01

    We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in R2 from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

  16. High-energy Gamma Rays from the Milky Way: Three-dimensional Spatial Models for the Cosmic-Ray and Radiation Field Densities in the Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Porter, T. A.; Moskalenko, I. V. [W. W. Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Jóhannesson, G., E-mail: tporter@stanford.edu [Science Institute, University of Iceland, IS-107 Reykjavik (Iceland)

    2017-09-01

    High-energy γ -rays of interstellar origin are produced by the interaction of cosmic-ray (CR) particles with the diffuse gas and radiation fields in the Galaxy. The main features of this emission are well understood and are reproduced by existing CR propagation models employing 2D galactocentric cylindrically symmetrical geometry. However, the high-quality data from instruments like the Fermi Large Area Telescope reveal significant deviations from the model predictions on few to tens of degrees scales, indicating the need to include the details of the Galactic spiral structure and thus requiring 3D spatial modeling. In this paper, the high-energy interstellar emissions from the Galaxy are calculated using the new release of the GALPROP code employing 3D spatial models for the CR source and interstellar radiation field (ISRF) densities. Three models for the spatial distribution of CR sources are used that are differentiated by their relative proportion of input luminosity attributed to the smooth disk or spiral arms. Two ISRF models are developed based on stellar and dust spatial density distributions taken from the literature that reproduce local near- to far-infrared observations. The interstellar emission models that include arms and bulges for the CR source and ISRF densities provide plausible physical interpretations for features found in the residual maps from high-energy γ -ray data analysis. The 3D models for CR and ISRF densities provide a more realistic basis that can be used for the interpretation of the nonthermal interstellar emissions from the Galaxy.

  17. A "looming bias" in spatial hearing? Effects of acoustic intensity and spectrum on categorical sound source localization.

    Science.gov (United States)

    McCarthy, Lisa; Olsen, Kirk N

    2017-01-01

    Continuous increases of acoustic intensity (up-ramps) can indicate a looming (approaching) sound source in the environment, whereas continuous decreases of intensity (down-ramps) can indicate a receding sound source. From psychoacoustic experiments, an "adaptive perceptual bias" for up-ramp looming tonal stimuli has been proposed (Neuhoff, 1998). This theory postulates that (1) up-ramps are perceptually salient because of their association with looming and potentially threatening stimuli in the environment; (2) tonal stimuli are perceptually salient because of an association with single and potentially threatening biological sound sources in the environment, relative to white noise, which is more likely to arise from dispersed signals and nonthreatening/nonbiological sources (wind/ocean). In the present study, we extrapolated the "adaptive perceptual bias" theory and investigated its assumptions by measuring sound source localization in response to acoustic stimuli presented in azimuth to imply looming, stationary, and receding motion in depth. Participants (N = 26) heard three directions of intensity change (up-ramps, down-ramps, and steady state, associated with looming, receding, and stationary motion, respectively) and three levels of acoustic spectrum (a 1-kHz pure tone, the tonal vowel /ә/, and white noise) in a within-subjects design. We first hypothesized that if up-ramps are "perceptually salient" and capable of eliciting adaptive responses, then they would be localized faster and more accurately than down-ramps. This hypothesis was supported. However, the results did not support the second hypothesis. Rather, the white-noise and vowel conditions were localized faster and more accurately than the pure-tone conditions. These results are discussed in the context of auditory and visual theories of motion perception, auditory attentional capture, and the spectral causes of spatial ambiguity.

  18. Exploring the potentials of volunteered geographic Information as a source for spatial data acquisition

    International Nuclear Information System (INIS)

    Ariffin, Izyana; Solemon, Badariah; Anwar, Rina Md; Din, Marina Md; Azmi, Nor Nashrah

    2014-01-01

    The advancement of technologies nowadays enables participation by nonprofessionals, known as volunteers to participate in producing, sharing and consuming geographic information. Such information, termed as volunteered geographic Information (VGI) has created a new approach of gathering geographic information. This paper discusses the traditional way of acquiring geographic information and potentials of VGI as an information source in GIS applications. We also review four commonly cited applications which rely on volunteers for their geographic information based on five criteria; the geometry type available in the applications, availability of user profile, average number of attributes used in the applications, data type of the information (raster or vector) and the domain the application belongs to. This review serves as a preliminarv study in designing a GIS application used for asset management which aims at exploiting volunteers to produce geographic information related to assets

  19. Science research with high-brilliance synchrotron light source

    International Nuclear Information System (INIS)

    Sanyal, Milan K.

    2013-01-01

    Synchrotron-science has changed dramatically since the development of high brilliance electron accelerator-based light sources in 1990s. In the last twenty years or so, several such facilities have come up, particularly in developed countries, as material characterizations in relevant atmosphere and protein crystallography with tiny-crystals have strong implications in industrial competitiveness. Moreover several new techniques have been developed recently over the entire spectral range of emitted light, from infra-red to high energy X-rays, which have altered our basic understanding of various materials like biomaterials, nanomaterials, soft-matter and semiconductor quantum structures. In addition, rapid development of various X-ray imaging techniques for nondestructive evaluation of compositional/structural homogeneity of engineering materials with nanometer resolution will have tremendous impact in manufacturing industries. As India becomes a developed country, it must have access to such an advanced synchrotron facility in the country that enables knowledge generation in the ever-expanding fields of design-characterization-production of advanced materials and modern medicines. Development of such state-of-the art facility will also enable us to carry out frontier-basic-research in our own country and help us to retain and bring back Indian talents to India. Here we shall discuss briefly the characteristics of a high brilliance synchrotron source and outline the nature of basic and applied science research that can be done with such a state-of-the-art facility. (author)

  20. Atomic physics at high brilliance synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    Berry, G.; Cowan, P.; Gemmell, D.

    1994-08-01

    This report contains papers on the following topics: present status of SPring-8 and the atomic physics undulator beamline; recent photoabsorption measurements in the rare gases and alkalis in the 3 to 15 keV proton energy region; atomic and molecular physics at LURE; experiments on atoms, ions and small molecules using the new generation of synchrotron radiation sources; soft x-ray fluorescence spectroscopy using tunable synchrotron radiation; soft x-ray fluorescence spectroscopy excited by synchrotron radiation: Inelastic and resonant scattering near threshold; outer-shell photoionization of ions; overview of the APS BESSRC beamline development; the advanced light source: Research opportunities in atomic and molecular physics; Photoionization of the Ba + ion by 4d shell excitation; decay dynamics of inner-shell excited atoms and molecules; absorption of atomic Ca, Cr, Mn and Cu; High-resolution photoelectron studies of resonant molecular photoionization; radiative and radiationless resonant raman scattering by synchrotron radiation; auger spectrometry of atoms and molecules; some thoughts of future experiments with the new generation of storage rings; Electron spectroscopy studies of argon K-shell excitation and vacancy cascades; ionization of atoms by high energy photons; ion coincidence spectroscopy on rare gas atoms and small molecules after photoexcitation at energies of several keV; an EBIS for use with synchrotron radiation photoionization of multiply charged ions and PHOBIS; gamma-2e coincidence measurements the wave of the future in inner-shell electron spectroscopy; recoil momentum spectroscopy in ion-atom and photon-atom collisions; a study of compton ionization of helium; future perspectives of photoionization studies at high photon energies; and status report on the advanced photon source. These papers have been cataloged separately elsewhere

  1. Analysis of the spatial dose according to the type of radiation source used in multi-bed hospital room

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Dong Gun [Dept. of Nuclear Medicine, Dongnam Institute of Radiological and Medical Sciences Cancer center, Busan (Korea, Republic of); Kim, Jung Hoon [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of); Park, Eun Tae [Dept. of Radiation Oncology, Busan Paik Hospital, Inje University, Busan (Korea, Republic of)

    2017-09-15

    Medical radiation offers significant benefits in diagnosing and treating patients, but it also generates unnecessary radiation exposure to those nearby. Accordingly, the objective of the present study was to analyze spatial dose rate according to types of radiation source term in multi-bed hospital rooms occupied by patients and general public. MCNPX was used for geometric simulation of multi-bed hospital rooms and radiation source terms, while the radiation source terms were established as whole body bone scan patients and imaging using a portable X-ray generator. The results of simulation on whole body bone scan patients showed 3.46 μSv/hr to another patient position, while experimental results on imaging using a portable X-ray generator showed 1.47 × 10{sup -8} μSv/irradiation to another patient position in chest imaging and 2.97 × 10{sup -8} μSv/irradiation to another patient position in abdomen imaging. Multi-bed hospital room, unnecessary radiation generated in the surrounding patients, while legal regulations and systematic measures are needed for radiation exposure in multi-bed hospital rooms that are currently lacking in Korea.

  2. Asynchronous Learning Sources in a High-Tech Organization

    Science.gov (United States)

    Bouhnik, Dan; Giat, Yahel; Sanderovitch, Yafit

    2009-01-01

    Purpose: The purpose of this study is to characterize learning from asynchronous sources among research and development (R&D) personnel. It aims to examine four aspects of asynchronous source learning: employee preferences regarding self-learning; extent of source usage; employee satisfaction with these sources and the effect of the sources on the…

  3. An objective method for High Dynamic Range source content selection

    DEFF Research Database (Denmark)

    Narwaria, Manish; Mantel, Claire; Da Silva, Matthieu Perreira

    2014-01-01

    With the aim of improving the immersive experience of the end user, High Dynamic Range (HDR) imaging has been gaining popularity. Therefore, proper validation and performance benchmarking of HDR processing algorithms is a key step towards standardization and commercial deployment. A crucial...... component of such validation studies is the selection of a challenging and balanced set of source (reference) HDR content. In order to facilitate this, we present an objective method based on the premise that a more challenging HDR scene encapsulates higher contrast, and as a result will show up more...

  4. Computational methods for high-energy source shielding

    International Nuclear Information System (INIS)

    Armstrong, T.W.; Cloth, P.; Filges, D.

    1983-01-01

    The computational methods for high-energy radiation transport related to shielding of the SNQ-spallation source are outlined. The basic approach is to couple radiation-transport computer codes which use Monte Carlo methods and discrete ordinates methods. A code system is suggested that incorporates state-of-the-art radiation-transport techniques. The stepwise verification of that system is briefly summarized. The complexity of the resulting code system suggests a more straightforward code specially tailored for thick shield calculations. A short guide line to future development of such a Monte Carlo code is given

  5. High energy neutron source for materials research and development

    International Nuclear Information System (INIS)

    Odera, M.

    1989-01-01

    Requirements for neutron source for nuclear materials research are reviewed and ESNIT, Energy Selective Neutron Irradiation Test facility proposed by JAERI is discussed. Its principal aims of a wide neutron energy tunability and spectra peaking at each energy to enable characterization of material damage process are demanding but attractive goals which deserve detailed study. It is also to be noted that the requirements make a difference in facility design from those of FMIT, IFMIF and other high energy intense neutron sources built or planned to date. Areas of technologies to be addressed to realize the ESNIT facility are defined and discussed. In order to get neutron source having desired spectral characteristics keeping moderate intensity, projectile and target combinations must be examined including experimentation if necessary. It is also desired to minimize change of flux density and energy spectrum according to location inside irradiation chamber. Extended target or multiple targets configuration might be a solution as well as specimen rotation and choice of combination of projectile and target which has minimum velocity of the center of mass. Though relevant accelerator technology exists, it is to be stressed that considerable efforts must be paid, especially in the area of target and irradiation devices to get ESNIT goal. Design considerations to allow hands-on maintenance and future upgrading possibility are important either, in order to exploit the facility fully for nuclear materials research and development. (author)

  6. Spatial and spectral coherence in propagating high-intensity twin beams

    Czech Academy of Sciences Publication Activity Database

    Haderka, O.; Machulka, R.; Peřina ml., Jan; Allevi, A.; Bondani, M.

    2015-01-01

    Roč. 5, Sep (2015), s. 14365 ISSN 2045-2322 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : spatial and spectral coherence * high-intensity twin beams Subject RIV: BH - Optics, Masers, Lasers Impact factor: 5.228, year: 2015

  7. Hierarchical spatial point process analysis for a plant community with high biodiversity

    DEFF Research Database (Denmark)

    Illian, Janine B.; Møller, Jesper; Waagepetersen, Rasmus

    2009-01-01

    A complex multivariate spatial point pattern of a plant community with high biodiversity is modelled using a hierarchical multivariate point process model. In the model, interactions between plants with different post-fire regeneration strategies are of key interest. We consider initially a maxim...

  8. High Spatial Resolution of Atmospheric Particle Mixing State and Its Links to Particle Evolution in a Metropolitan Area

    Science.gov (United States)

    Ye, Q.; Gu, P.; Li, H.; Robinson, E. S.; Apte, J.; Sullivan, R. C.; Robinson, A. L.; Presto, A. A.; Donahue, N.

    2017-12-01

    Traditional air quality studies in urban areas have mostly relied on very few monitoring locations either at urban background sites or at roadside sites.However, air pollution is highly complex and dynamic and will undergo complicated transformations. Therefore, results from one or two monitoring sites may not be sufficient to address the spatial gradients of pollutants and their evolution after atmosphere processing on a local scale. Our study, as part of the Center for Air, Climate, and Energy Solutions, performed stratified mobile sampling of atmospheric particulate matter with high spatial resolution to address intra-city variability of atmospheric particle composition and mixing state. A suite of comprehensive real-time instrumentations including a state-of-the-art aerosol mass spectrometer with single particle measurement capability are deployed on the mobile platform. Our sampling locations covered a wide variety of places with substantial differences in emissions and land use types including tunnels, inter-state highways, commercial areas, residential neighborhood, parks, as well as locations upwind and downwind of the city center. Our results show that particles from traffic emissions and restaurant cookings are two major contributors to fresh particles in the urban environment. In addition, there are large spatial variabilities of source-specific particles and we identify the relevant physicochemical processes governing transformation of particle composition, size and mixing state. We also combine our results with demographic data to study population exposure to particles of specific sources. This work will help evaluate the performance of existing modeling tools for air quality and population exposure studies.

  9. SHARDS: Survey for High-z Absorption Red & Dead Sources

    Science.gov (United States)

    Pérez-González, P. G.; Cava, A.

    2013-05-01

    SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM~17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ~280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg_UV or D(4000) indices; (3) measure their redshift with an accuracy Δz/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

  10. Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer

    Science.gov (United States)

    Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel

    2017-04-01

    This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.

  11. Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications

    Directory of Open Access Journals (Sweden)

    A. Venäläinen

    2017-07-01

    Full Text Available The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount of wind damage for certain forest stand configurations.

  12. HPCAT: an integrated high-pressure synchrotron facility at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shen, Guoyin; Chow, Paul; Xiao, Yuming; Sinogeikin, Stanislav; Meng, Yue; Yang, Wenge; Liermann, Hans-Peter; Shebanova, Olga; Rod, Eric; Bommannavar, Arunkumar; Mao, Ho-Kwang

    2008-01-01

    The high pressure collaborative access team (HPCAT) was established to advance cutting edge, multidisciplinary, high-pressure (HP) science and technology using synchrotron radiation at sector 16 of the Advanced Photon Source of Argonne National Laboratory. The integrated HPCAT facility has established four operating beamlines in nine hutches. Two beamlines are split in energy space from the insertion device (16ID) line, whereas the other two are spatially divided into two fans from the bending magnet (16BM) line. An array of novel X-ray diffraction and spectroscopic techniques has been integrated with HP and extreme temperature instrumentation at HPCAT. With a multidisciplinary approach and multi-institution collaborations, the HP program at the HPCAT has been enabling myriad scientific breakthroughs in HP physics, chemistry, materials, and Earth and planetary sciences.

  13. High performance computation of landscape genomic models including local indicators of spatial association.

    Science.gov (United States)

    Stucki, S; Orozco-terWengel, P; Forester, B R; Duruz, S; Colli, L; Masembe, C; Negrini, R; Landguth, E; Jones, M R; Bruford, M W; Taberlet, P; Joost, S

    2017-09-01

    With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics - that is the combination of landscape ecology with population genomics - include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present samβada, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental data sets. samβada identifies candidate loci using genotype-environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype-environment associations. In addition, samβada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with samβada, bayenv, lfmm and an F ST outlier method (FDIST approach in arlequin) and compare their results. samβada - an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada - outperforms other approaches and better suits whole-genome sequence data processing. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  14. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements

    DEFF Research Database (Denmark)

    Rowlands, D. D.; Luthcke, S. B.; Klosko, S. M.

    2005-01-01

    resolution. Using 4° × 4° blocks at 10-day intervals, we estimate the mass of surplus or deficit water over a 52° × 60° grid centered on the Amazon basin for July 2003. We demonstrate that the recovered signals are coherent and correlate well with the expected hydrological signal....... the estimation of static monthly parameters. Through an analysis of the GRACE data residuals, we show that the fundamental temporal and spatial resolution of the GRACE data is 10 days and 400 km. We present an approach similar in concept to altimetric methods that recovers submonthly mass flux at a high spatial...

  15. Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG

    Directory of Open Access Journals (Sweden)

    A. K. Thorpe

    2017-10-01

    Full Text Available At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.

  16. Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG

    Science.gov (United States)

    Thorpe, Andrew K.; Frankenberg, Christian; Thompson, David R.; Duren, Riley M.; Aubrey, Andrew D.; Bue, Brian D.; Green, Robert O.; Gerilowski, Konstantin; Krings, Thomas; Borchardt, Jakob; Kort, Eric A.; Sweeney, Colm; Conley, Stephen; Roberts, Dar A.; Dennison, Philip E.

    2017-10-01

    At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.

  17. High Current, High Density Arc Plasma as a New Source for WiPAL

    Science.gov (United States)

    Waleffe, Roger; Endrizzi, Doug; Myers, Rachel; Wallace, John; Clark, Mike; Forest, Cary; WiPAL Team

    2016-10-01

    The Wisconsin Plasma Astrophysics Lab (WiPAL) has installed a new array of nineteen plasma sources (plasma guns) on its 3 m diameter, spherical vacuum vessel. Each gun is a cylindrical, molybdenum, washer-stabilized, arc plasma source. During discharge, the guns are maintained at 1.2 kA across 100 V for 10 ms by the gun power supply establishing a high density plasma. Each plasma source is fired independently allowing for adjustable plasma parameters, with densities varying between 1018 -1019 m-3 and electron temperatures of 5-15 eV. Measurements were characterized using a 16 tip Langmuir probe. The plasma source will be used as a background plasma for the magnetized coaxial plasma gun (MCPG), the Terrestrial Reconnection Experiment (TREX), and as the plasma source for a magnetic mirror experiment. Temperature, density, and confinement results will be presented. This work is supported by the DoE and the NSF.

  18. Secondary electron spectroscopy and Auger microscopy at high spatial resolution. Application to scanning electron microscopy

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene

    1979-01-01

    Secondary electron spectroscopy (SES), Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS) are combined with ultra high vacuum scanning microscopy (SEM) for surface analysis at high spatial resolution. Reliability tests for the optical column for the vacuum and for the spectrometer are discussed. Furthermore the sensitivity threshold in AES which is compatible with a non destructive surface analysis at high spatial resolution is evaluated. This combination of all spectroscopies is used in the study of the beam damage correlated with the well known secondary electron image (SEI) darkening still observed in ultra high vacuum. The darkening is explained as a bulk decontamination of the sample rather than as a surface contamination from the residual vacuum gas [fr

  19. Development of highly qualified UV-laser light source for rf gun

    International Nuclear Information System (INIS)

    Tomizawa, H.; Dewa, H.; Taniuchi, T.

    2004-01-01

    We have been developing stable and highly qualified UV-laser pulse as a light source of the rf gun for an injector candidate of future light sources. Our gun cavity is a single-cell pillbox, and the copper inner wall is used as a photo cathode. In present status, the short pulse energy stability of laser has been improved down to 1.3∼1.5% (rms; 10pps; 10000 shots) at the third harmonic generation. The long stability depends on the stability of modelocking at oscillator. In this improvement we just passively stabilized the system. We considered environmental controls in clean room to reduce optical damage accidents and constructed a new humidity-controlled clean room in 2003. And we re-installed the total laser system in this room in 2004. The relative humidity of this new clean room at room temperature is in a region of 50∼60 % with a stability of less than 2% (p-p). On the other hand, the ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from a photo-cathode rf gun. This laser-shaping project has been started in two steps since 2002. As the first successful test run in 2002, with a microlens array as a simple spatial shaper, we obtained a minimum emittance value of 2π mm·mrad with a beam energy of 3.1 MeV, holding its charge to 0.1 nC/bunch. In the next test run in 2004, we prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. We are applying the both adaptive optics to automatically shape the both spatial and temporal UV-laser profiles with a feedback routine at the same time. We report herein the principle and developing process of our laser beam quality control system. (author)

  20. High spatial precision nano-imaging of polarization-sensitive plasmonic particles

    Science.gov (United States)

    Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice

    2018-02-01

    Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.

  1. A high time and spatial resolution MRPC designed for muon tomography

    Science.gov (United States)

    Shi, L.; Wang, Y.; Huang, X.; Wang, X.; Zhu, W.; Li, Y.; Cheng, J.

    2014-12-01

    A prototype of cosmic muon scattering tomography system has been set up in Tsinghua University in Beijing. Multi-gap Resistive Plate Chamber (MRPC) is used in the system to get the muon tracks. Compared with other detectors, MRPC can not only provide the track but also the Time of Flight (ToF) between two detectors which can estimate the energy of particles. To get a more accurate track and higher efficiency of the tomography system, a new type of high time and two-dimensional spatial resolution MRPC has been developed. A series of experiments have been done to measure the efficiency, time resolution and spatial resolution. The results show that the efficiency can reach 95% and its time resolution is around 65 ps. The cluster size is around 4 and the spatial resolution can reach 200 μ m.

  2. Development of a high brightness, high current SRF photo-electron source for ERL applications

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Axel [Helmholtz-Zentrum Berlin (Germany); Collaboration: bERLinPro Team

    2016-07-01

    Energy recovery linacs (ERL) offer the potential to combine major beam properties of the two main domains of particle accelerators: The low emittance of linear accelerators and the high average beam current of storage rings, while also allowing to compress to short bunches below the ps regime. This makes among other applications ERLs an ideal candidate for future light sources. The beam properties of the ERL are given by the performance of the injection section and hence of the beam source. Helmholtz-Zentrum Berlin is currently designing and building a high average current all superconducting CW driven ERL as a prototype to demonstrate low normalized beam emittance of 1 mm*mrad at 100 mA and short pulses of about 2 ps. In this contribution we discuss the development of this class of a high brightness, high current SRF photo-electron source and present recent commissioning results. Also, alternative approaches at other laboratories are shortly reviewed.

  3. Spatial variability of excess mortality during prolonged dust events in a high-density city: a time-stratified spatial regression approach.

    Science.gov (United States)

    Wong, Man Sing; Ho, Hung Chak; Yang, Lin; Shi, Wenzhong; Yang, Jinxin; Chan, Ta-Chien

    2017-07-24

    Dust events have long been recognized to be associated with a higher mortality risk. However, no study has investigated how prolonged dust events affect the spatial variability of mortality across districts in a downwind city. In this study, we applied a spatial regression approach to estimate the district-level mortality during two extreme dust events in Hong Kong. We compared spatial and non-spatial models to evaluate the ability of each regression to estimate mortality. We also compared prolonged dust events with non-dust events to determine the influences of community factors on mortality across the city. The density of a built environment (estimated by the sky view factor) had positive association with excess mortality in each district, while socioeconomic deprivation contributed by lower income and lower education induced higher mortality impact in each territory planning unit during a prolonged dust event. Based on the model comparison, spatial error modelling with the 1st order of queen contiguity consistently outperformed other models. The high-risk areas with higher increase in mortality were located in an urban high-density environment with higher socioeconomic deprivation. Our model design shows the ability to predict spatial variability of mortality risk during an extreme weather event that is not able to be estimated based on traditional time-series analysis or ecological studies. Our spatial protocol can be used for public health surveillance, sustainable planning and disaster preparation when relevant data are available.

  4. High temperature electrons exhausted from rf plasma sources along a magnetic nozzle

    Science.gov (United States)

    Takahashi, Kazunori; Akahoshi, Hikaru; Charles, Christine; Boswell, Rod W.; Ando, Akira

    2017-08-01

    Two dimensional profiles of electron temperature are measured inside and downstream of a radiofrequency plasma thruster source having a magnetic nozzle and being immersed in vacuum. The temperature is estimated from the slope of the fully swept I-V characteristics of a Langmuir probe acquired at each spatial position and with the assumption of a Maxwellian distribution. The results show that the peripheral high temperature electrons in the magnetic nozzle originate from the upstream antenna location and are transported along the "connecting" magnetic field lines. Two-dimensional measurements of electron energy probability functions are also carried out in a second simplified laboratory device consisting of the source contiguously connected to the diffusion chamber: again the high temperature electrons are detected along the magnetic field lines intersecting the wall at the antenna location, even when the antenna location is shifted along the main axis. These results demonstrate that the peripheral energetic electrons in the magnetic nozzle mirror those created in the source tube.

  5. Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015

    Science.gov (United States)

    Thompson, David R.; Kahn, Brian H.; Green, Robert O.; Chien, Steve A.; Middleton, Elizabeth M.; Tran, Daniel Q.

    2018-02-01

    The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.

  6. APPLICABILITY OF VARIOUS INTERPOLATION APPROACHES FOR HIGH RESOLUTION SPATIAL MAPPING OF CLIMATE DATA IN KOREA

    Directory of Open Access Journals (Sweden)

    A. Jo

    2018-04-01

    Full Text Available The purpose of this study is to create a new dataset of spatially interpolated monthly climate data for South Korea at high spatial resolution (approximately 30m by performing various spatio-statistical interpolation and comparing with forecast LDAPS gridded climate data provided from Korea Meterological Administration (KMA. Automatic Weather System (AWS and Automated Synoptic Observing System (ASOS data in 2017 obtained from KMA were included for the spatial mapping of temperature and rainfall; instantaneous temperature and 1-hour accumulated precipitation at 09:00 am on 31th March, 21th June, 23th September, and 24th December. Among observation data, 80 percent of the total point (478 and remaining 120 points were used for interpolations and for quantification, respectively. With the training data and digital elevation model (DEM with 30 m resolution, inverse distance weighting (IDW, co-kriging, and kriging were performed by using ArcGIS10.3.1 software and Python 3.6.4. Bias and root mean square were computed to compare prediction performance quantitatively. When statistical analysis was performed for each cluster using 20 % validation data, co kriging was more suitable for spatialization of instantaneous temperature than other interpolation method. On the other hand, IDW technique was appropriate for spatialization of precipitation.

  7. SYNTHESIS OF ACTIVE SCREENING SYSTEM OF MAGNETIC FIELD OF HIGH VOLTAGE POWER LINES OF DIFFERENT DESIGN TAKING INTO ACCOUNT SPATIAL AND TEMPORAL DISTRIBUTION OF MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    B.I. Kuznetsov

    2017-04-01

    Full Text Available Purpose. Analyze the spatial and temporal distribution of the magnetic field of high voltage power lines with different design allowing and development of recommendations for the design of active screening systems by magnetic field of high voltage power lines. Methodology. Analysis of the spatial and temporal distribution of the magnetic field of high voltage power lines of different design allowing is made on the basis of Maxwell's equations solutions in the quasi-stationary approximation. Determination of the number, configuration, spatial arrangement and the compensation coil currents is formulated in the form of multiobjective optimization problem that is solved by multi-agent multiswarm stochastic optimization based on Pareto optimal solutions. Results of active screening system for the synthesis of various types of transmission lines with different numbers of windings controlled. The possibility of a significant reduction in the level of the flux density of the magnetic field source within a given region of space. Originality. For the first time an analysis of the spatial and temporal distribution of the magnetic field of power lines with different types and based on findings developed recommendations for the design of active screening system by magnetic field of high voltage power lines. Practical value. Practical recommendations on reasonable choice of the number and spatial arrangement of compensating windings of active screening system by magnetic field of high voltage power lines of different design allowing for the spatial and temporal distribution of the magnetic field. Results of active screening system synthesis of the magnetic field of industrial frequency generated by single-circuit 110 kV high voltage power lines with the supports have 330 - 1T «triangle» rotating magnetic field with full polarization in a residential five-storey building, located near the power lines. The system contains three compensating coil and reduces

  8. Every photon counts: improving low, mid, and high-spatial frequency errors on astronomical optics and materials with MRF

    Science.gov (United States)

    Maloney, Chris; Lormeau, Jean Pierre; Dumas, Paul

    2016-07-01

    Many astronomical sensing applications operate in low-light conditions; for these applications every photon counts. Controlling mid-spatial frequencies and surface roughness on astronomical optics are critical for mitigating scattering effects such as flare and energy loss. By improving these two frequency regimes higher contrast images can be collected with improved efficiency. Classically, Magnetorheological Finishing (MRF) has offered an optical fabrication technique to correct low order errors as well has quilting/print-through errors left over in light-weighted optics from conventional polishing techniques. MRF is a deterministic, sub-aperture polishing process that has been used to improve figure on an ever expanding assortment of optical geometries, such as planos, spheres, on and off axis aspheres, primary mirrors and freeform optics. Precision optics are routinely manufactured by this technology with sizes ranging from 5-2,000mm in diameter. MRF can be used for form corrections; turning a sphere into an asphere or free form, but more commonly for figure corrections achieving figure errors as low as 1nm RMS while using careful metrology setups. Recent advancements in MRF technology have improved the polishing performance expected for astronomical optics in low, mid and high spatial frequency regimes. Deterministic figure correction with MRF is compatible with most materials, including some recent examples on Silicon Carbide and RSA905 Aluminum. MRF also has the ability to produce `perfectly-bad' compensating surfaces, which may be used to compensate for measured or modeled optical deformation from sources such as gravity or mounting. In addition, recent advances in MRF technology allow for corrections of mid-spatial wavelengths as small as 1mm simultaneously with form error correction. Efficient midspatial frequency corrections make use of optimized process conditions including raster polishing in combination with a small tool size. Furthermore, a novel MRF

  9. High-Resolution Spatial Distribution and Estimation of Access to Improved Sanitation in Kenya.

    Science.gov (United States)

    Jia, Peng; Anderson, John D; Leitner, Michael; Rheingans, Richard

    2016-01-01

    Access to sanitation facilities is imperative in reducing the risk of multiple adverse health outcomes. A distinct disparity in sanitation exists among different wealth levels in many low-income countries, which may hinder the progress across each of the Millennium Development Goals. The surveyed households in 397 clusters from 2008-2009 Kenya Demographic and Health Surveys were divided into five wealth quintiles based on their national asset scores. A series of spatial analysis methods including excess risk, local spatial autocorrelation, and spatial interpolation were applied to observe disparities in coverage of improved sanitation among different wealth categories. The total number of the population with improved sanitation was estimated by interpolating, time-adjusting, and multiplying the surveyed coverage rates by high-resolution population grids. A comparison was then made with the annual estimates from United Nations Population Division and World Health Organization /United Nations Children's Fund Joint Monitoring Program for Water Supply and Sanitation. The Empirical Bayesian Kriging interpolation produced minimal root mean squared error for all clusters and five quintiles while predicting the raw and spatial coverage rates of improved sanitation. The coverage in southern regions was generally higher than in the north and east, and the coverage in the south decreased from Nairobi in all directions, while Nyanza and North Eastern Province had relatively poor coverage. The general clustering trend of high and low sanitation improvement among surveyed clusters was confirmed after spatial smoothing. There exists an apparent disparity in sanitation among different wealth categories across Kenya and spatially smoothed coverage rates resulted in a closer estimation of the available statistics than raw coverage rates. Future intervention activities need to be tailored for both different wealth categories and nationally where there are areas of greater needs when

  10. High-Resolution Spatial Distribution and Estimation of Access to Improved Sanitation in Kenya.

    Directory of Open Access Journals (Sweden)

    Peng Jia

    Full Text Available Access to sanitation facilities is imperative in reducing the risk of multiple adverse health outcomes. A distinct disparity in sanitation exists among different wealth levels in many low-income countries, which may hinder the progress across each of the Millennium Development Goals.The surveyed households in 397 clusters from 2008-2009 Kenya Demographic and Health Surveys were divided into five wealth quintiles based on their national asset scores. A series of spatial analysis methods including excess risk, local spatial autocorrelation, and spatial interpolation were applied to observe disparities in coverage of improved sanitation among different wealth categories. The total number of the population with improved sanitation was estimated by interpolating, time-adjusting, and multiplying the surveyed coverage rates by high-resolution population grids. A comparison was then made with the annual estimates from United Nations Population Division and World Health Organization /United Nations Children's Fund Joint Monitoring Program for Water Supply and Sanitation.The Empirical Bayesian Kriging interpolation produced minimal root mean squared error for all clusters and five quintiles while predicting the raw and spatial coverage rates of improved sanitation. The coverage in southern regions was generally higher than in the north and east, and the coverage in the south decreased from Nairobi in all directions, while Nyanza and North Eastern Province had relatively poor coverage. The general clustering trend of high and low sanitation improvement among surveyed clusters was confirmed after spatial smoothing.There exists an apparent disparity in sanitation among different wealth categories across Kenya and spatially smoothed coverage rates resulted in a closer estimation of the available statistics than raw coverage rates. Future intervention activities need to be tailored for both different wealth categories and nationally where there are areas of

  11. Spatial and temporal variation of heavy metal risk and source in sediments of Dongting Lake wetland, mid-south China.

    Science.gov (United States)

    Liang, Jie; Liu, Jiayu; Yuan, Xingzhong; Zeng, Guangming; Lai, Xu; Li, Xiaodong; Wu, Haipeng; Yuan, Yujie; Li, Fei

    2015-01-01

    Surface sediments of Dongting Lake wetland were collected from ten sites to investigate variation trend, risk and sources of heavy metal distribution in dry seasons of 2011∼2013. The three-year mean concentrations (mg/kg) of Cr, Cu, Pb, Cd, Hg and As were 91.33, 36.27, 54.82, 4.39, 0.19 and 25.67, respectively, which were all higher than the corresponding background values. Sediment quality guidelines (SQGs) and Geo-accumulation index (Igeo) were used for the assessment of pollution level of heavy metals. The pollution risk of Cd, Hg and As were great and that of Cr needed urgent attention because of its obvious increase. Pollution load index (PLI) and geographic information system (GIS) methods were conducted to assess spatial and temporal variation of heavy metal contamination. Results confirmed an increased contamination contribution inflow from Xiang River. Multivariate statistical analyses were applied to identify contribution sources of heavy metal, which showed anthropogenic origin mainly from mining, smelting, chemical industry and agricultural activity.

  12. The Hestia Project: High Spatial Resolution Fossil Fuel Carbon Dioxide Emissions Quantification at Hourly Scale in Indianapolis, USA

    Science.gov (United States)

    Zhou, Y.; Gurney, K. R.

    2009-12-01

    In order to advance the scientific understanding of carbon exchange with the land surface and contribute to sound, quantitatively-based U.S. climate change policy interests, quantification of greenhouse gases emissions drivers at fine spatial and temporal scales is essential. Quantification of fossil fuel CO2 emissions, the primary greenhouse gases, has become a key component to cost-effective CO2 emissions mitigation options and a carbon trading system. Called the ‘Hestia Project’, this pilot study generated CO2 emissions down to high spatial resolution and hourly scale for the greater Indianapolis region in the USA through the use of air quality and traffic monitoring data, remote sensing, GIS, and building energy modeling. The CO2 emissions were constructed from three data source categories: area, point, and mobile. For the area source emissions, we developed an energy consumption model using DOE/EIA survey data on building characteristics and energy consumption. With the Vulcan Project’s county-level CO2 emissions and simulated building energy consumption, we quantified the CO2 emissions for each individual building by allocating Vulcan emissions to roughly 50,000 structures in Indianapolis. The temporal pattern of CO2 emissions in each individual building was developed based on temporal patterns of energy consumption. The point sources emissions were derived from the EPA National Emissions Inventory data and effluent monitoring of electricity producing facilities. The mobile source CO2 emissions were estimated at the month/county scale using the Mobile6 combustion model and the National Mobile Inventory Model database. The month/county scale mobile source CO2 emissions were downscaled to the “native” spatial resolution of road segments every hour using a GIS road atlas and traffic monitoring data. The result is shown in Figure 1. The resulting urban-scale inventory can serve as a baseline of current CO2 emissions and should be of immediate use to

  13. Use of Z pinch radiation sources for high pressure shock wave studies

    International Nuclear Information System (INIS)

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Trott, W.M.; Chandler, G.A.; Holland, K.G.; Fleming, K.J.; Trucano, T.G.

    1998-01-01

    Recent developments in pulsed power technology demonstrate use of intense radiation sources (Z pinches) for driving planar shock waves in samples with spatial dimensions larger than possible with other radiation sources. Initial indications are that the use of Z pinch sources can be used to produce planar shock waves in samples with diameters of a few millimeters and thicknesses approaching one half millimeter. These dimensions allow increased accuracy of both shock velocity and particle velocity measurements. The Z pinch radiation source uses imploding metal plasma induced by self-magnetic fields applied to wire arrays to produce high temperature x-ray environments in vacuum hohlraum enclosures. Previous experiments have demonstrated that planar shock waves can be produced with this approach. A photograph of a wire array located inside the vacuum hohlraum is shown here. Typically, a few hundred individual wires are used to produce the Z pinch source. For the shock wave experiments being designed, arrays of 120 to 240 tungsten wires with a diameter of 40 mm and with individual diameters of about 10 microm are used. Preliminary experiments have been performed on the Z pulsed radiation source to demonstrate the ability to obtain VISAR measurements in the Z accelerator environment. Analysis of these results indicate that another effect, not initially anticipated, is an apparent change in refractive index that occurs in the various optical components used in the system. This effect results in an apparent shift in the frequency of reflected laser light, and causes an error in the measured particle velocity. Experiments are in progress to understand and minimize this effect

  14. Evidence for Separate Contributions of High and Low Spatial Frequencies during Visual Word Recognition.

    Science.gov (United States)

    Winsler, Kurt; Holcomb, Phillip J; Midgley, Katherine J; Grainger, Jonathan

    2017-01-01

    Previous studies have shown that different spatial frequency information processing streams interact during the recognition of visual stimuli. However, it is a matter of debate as to the contributions of high and low spatial frequency (HSF and LSF) information for visual word recognition. This study examined the role of different spatial frequencies in visual word recognition using event-related potential (ERP) masked priming. EEG was recorded from 32 scalp sites in 30 English-speaking adults in a go/no-go semantic categorization task. Stimuli were white characters on a neutral gray background. Targets were uppercase five letter words preceded by a forward-mask (#######) and a 50 ms lowercase prime. Primes were either the same word (repeated) or a different word (un-repeated) than the subsequent target and either contained only high, only low, or full spatial frequency information. Additionally within each condition, half of the prime-target pairs were high lexical frequency, and half were low. In the full spatial frequency condition, typical ERP masked priming effects were found with an attenuated N250 (sub-lexical) and N400 (lexical-semantic) for repeated compared to un-repeated primes. For HSF primes there was a weaker N250 effect which interacted with lexical frequency, a significant reversal of the effect around 300 ms, and an N400-like effect for only high lexical frequency word pairs. LSF primes did not produce any of the classic ERP repetition priming effects, however they did elicit a distinct early effect around 200 ms in the opposite direction of typical repetition effects. HSF information accounted for many of the masked repetition priming ERP effects and therefore suggests that HSFs are more crucial for word recognition. However, LSFs did produce their own pattern of priming effects indicating that larger scale information may still play a role in word recognition.

  15. The coordination of problem solving strategies: when low competence sources exert more influence on task processing than high competence sources.

    Science.gov (United States)

    Quiamzade, Alain; Mugny, Gabriel; Darnon, Céline

    2009-03-01

    Previous research has shown that low competence sources, compared to highly competent sources, can exert influence in aptitudes tasks in as much as they induce people to focus on the task and to solve it more deeply. Two experiments aimed at testing the coordination between self and source's problem solving strategies as a main explanation of such a difference in influence. The influence of a low versus high competence source has been examined in an anagram task that allows for distinguishing between three response strategies, including one that corresponds to the coordination between the source's strategy and participants' own strategy. In Study 1 the strategy suggested by the source was either relevant and useful or irrelevant and useless for solving the task. Results indicated that participants used the coordination strategy in a larger extend when they had been confronted to a low competence rather than a highly competent source but only when the source displayed a strategy that was useful to solve the task. In Study 2 the source's strategy was always relevant and useful, but a decentring procedure was introduced for half of the participants. This procedure induced participants to consider other points of view than their own. Results replicated the difference observed in Study 1 when no decentring was introduced. The difference however disappeared when decentring was induced, because of an increase of the high competence source's influence. These results highlight coordination of strategies as one mechanism underlying influence from low competence sources.

  16. Pulsars as the sources of high energy cosmic ray positrons

    International Nuclear Information System (INIS)

    Hooper, Dan; Blasi, Pasquale; Serpico, Pasquale Dario

    2009-01-01

    Recent results from the PAMELA satellite indicate the presence of a large flux of positrons (relative to electrons) in the cosmic ray spectrum between approximately 10 and 100 GeV. As annihilating dark matter particles in many models are predicted to contribute to the cosmic ray positron spectrum in this energy range, a great deal of interest has resulted from this observation. Here, we consider pulsars (rapidly spinning, magnetized neutron stars) as an alternative source of this signal. After calculating the contribution to the cosmic ray positron and electron spectra from pulsars, we find that the spectrum observed by PAMELA could plausibly originate from such sources. In particular, a significant contribution is expected from the sum of all mature pulsars throughout the Milky Way, as well as from the most nearby mature pulsars (such as Geminga and B0656+14). The signal from nearby pulsars is expected to generate a small but significant dipole anisotropy in the cosmic ray electron spectrum, potentially providing a method by which the Fermi gamma-ray space telescope would be capable of discriminating between the pulsar and dark matter origins of the observed high energy positrons

  17. Radiation Parameters of High Dose Rate Iridium -192 Sources

    Science.gov (United States)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  18. A high-current pulsed cathodic vacuum arc plasma source

    International Nuclear Information System (INIS)

    Oates, T.W.H.; Pigott, J.; Mckenzie, D.R.; Bilek, M.M.M.

    2003-01-01

    Cathodic vacuum arcs (CVAs) are well established as a method for producing metal plasmas for thin film deposition and as a source of metal ions. Fundamental differences exist between direct current (dc) and pulsed CVAs. We present here results of our investigations into the design and construction of a high-current center-triggered pulsed CVA. Power supply design based on electrolytic capacitors is discussed and optimized based on obtaining the most effective utilization of the cathode material. Anode configuration is also discussed with respect to the optimization of the electron collection capability. Type I and II cathode spots are observed and discussed with respect to cathode surface contamination. An unfiltered deposition rate of 1.7 nm per pulse, at a distance of 100 mm from the source, has been demonstrated. Instantaneous plasma densities in excess of 1x10 19 m -3 are observed after magnetic filtering. Time averaged densities an order of magnitude greater than common dc arc densities have been demonstrated, limited by pulse repetition rate and filter efficiency

  19. High intensity neutrino source superconducting solenoid cyrostat design

    Energy Technology Data Exchange (ETDEWEB)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  20. Calibration of {sup 192}Ir high dose rate brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, M H [Instituto de Radioprotecao e Dozimetria, Rio de Jainero (Brazil); Almeida, C.E. de [Laboratorio de Ciencias Radiologicas, UERL, Rio de Janeiro (Brazil); Sibata, C H [Roswell Park Cancer Inst., Buffalo, NY (United States)

    1996-08-01

    A method for calibration of high dose rate sources used in afterloading brachytherapy systems is described. The calibration for {sup 192}Ir is determined by interpolating {sup 60}Co gamma-rays and 250 kV x-rays calibration factors. All measurements were done using the same build up caps as described by Goetsch et al and recommended by AAPM. The attenuation correction factors were determined to be 0.9903, 0.9928 and 0.9993 for {sup 192}Ir, {sup 60}Co and 250 kV x-ray, respectively. A wall + cap thickness of 0.421 g.cm{sup -2} is recommended for all measurements to ensure electronic equilibrium for {sup 60}Co and {sup 192}Ir gamma-ray beams. A mathematical formalism is described for determination of (N{sub x}){sub Ir}. (author). 5 refs, 1 fig.

  1. Miniaturized High-Speed Modulated X-Ray Source

    Science.gov (United States)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  2. Identifying sources of acidity and spatial distribution of acid sulfate soils in the Anglesea River catchment, southern Australia

    Science.gov (United States)

    Wong, Vanessa; Yau, Chin; Kennedy, David

    2015-04-01

    Globally, coastal and estuarine floodplains are frequently underlain by sulfidic sediments. When exposed to oxygen, sulfidic sediments oxidise to form acid sulfate soils, adversely impacting on floodplain health and adjacent aquatic ecoystems. In eastern Australia, our understanding of the formation of these coastal and estuarine floodplains, and hence, spatial distribution of acid sulfate soils, is relatively well established. These soils have largely formed as a result of sedimentation of coastal river valleys approximately 6000 years BP when sea levels were one to two metres higher. However, our understanding of the evolution of estuarine systems and acid sulfate soil formation, and hence, distribution, in southern Australia remains limited. The Anglesea River, in southern Australia, is subjected to frequent episodes of poor water quality and low pH resulting in closure of the river and, in extreme cases, large fish kill events. This region is heavily reliant on tourism and host to a number of iconic features, including the Great Ocean Road and Twelve Apostles. Poor water quality has been linked to acid leakage from mining activities and Tertiary-aged coal seams, peat swamps and acid sulfate soils in the region. However, our understanding of the sources of acidity and distribution of acid sulfate soils in this region remains poor. In this study, four sites on the Anglesea River floodplain were sampled, representative of the main vegetation communities. Peat swamps and intertidal marshes were both significant sources of acidity on the floodplain in the lower catchment. However, acid neutralising capacity provided by carbonate sands suggests that there are additional sources of acidity higher in the catchment. This pilot study has highlighted the complexity in the links between the floodplain, upper catchment and waterways with further research required to understand these links for targeted acid management strategies.

  3. Handling high data rate detectors at Diamond Light Source

    Science.gov (United States)

    Pedersen, U. K.; Rees, N.; Basham, M.; Ferner, F. J. K.

    2013-03-01

    An increasing number of area detectors, in use at Diamond Light Source, produce high rates of data. In order to capture, store and process this data High Performance Computing (HPC) systems have been implemented. This paper will present the architecture and usage for handling high rate data: detector data capture, large volume storage and parallel processing. The EPICS area Detector frame work has been adopted to abstract the detectors for common tasks including live processing, file format and storage. The chosen data format is HDF5 which provides multidimensional data storage and NeXuS compatibility. The storage system and related computing infrastructure include: a centralised Lustre based parallel file system, a dedicated network and a HPC cluster. A well defined roadmap is in place for the evolution of this to meet demand as the requirements and technology advances. For processing the science data the HPC cluster allow efficient parallel computing, on a mixture of ×86 and GPU processing units. The nature of the Lustre storage system in combination with the parallel HDF5 library allow efficient disk I/O during computation jobs. Software developments, which include utilising optimised parallel file reading for a variety of post processing techniques, are being developed in collaboration as part of the Pan-Data EU Project (www.pan-data.eu). These are particularly applicable to tomographic reconstruction and processing of non crystalline diffraction data.

  4. Spatial distribution of trace elements in the surface sediments of a major European estuary (Loire Estuary, France): Source identification and evaluation of anthropogenic contribution

    Science.gov (United States)

    Coynel, Alexandra; Gorse, Laureline; Curti, Cécile; Schafer, Jörg; Grosbois, Cécile; Morelli, Guia; Ducassou, Emmanuelle; Blanc, Gérard; Maillet, Grégoire M.; Mojtahid, Meryem

    2016-12-01

    Assessing the extent of metal contamination in estuarine surface sediments is hampered by the high heterogeneity of sediment characteristics, the spatial variability of trace element sources, sedimentary dynamics and geochemical processes in addition to the need of accurate reference values for deciphering natural to anthropogenic contribution. Based on 285 surface sediment samples from the Loire Estuary, the first high-resolution spatial distributions are presented for grain-size, particulate organic carbon (POC) and the eight metals/metalloids identified as priority contaminants (Cd, Zn, Pb, Cu, As, Cr, Ni, Hg) plus Ag (an urban tracer). Grain-size and/or POC are major factors controlling the spatial distribution of trace element concentrations. The V-normalized trace metal concentrations divided by the V-normalized concentrations in the basin geochemical background showed the highest Enrichment Factors for Ag and Hg (EF; up to 34 and 140, respectively). These results suggest a severe contamination in the Loire Estuary for both elements. Intra-estuarine Ag and Hg anomalies were identified by comparison between respective normalized concentrations in the Loire Estuary surface sediments and those measured in the surface sediments at the outlet of the Loire River System (watershed-derived). Anthropogenic intra-estuarine Ag and Hg stocks in the uppermost centimetre of the sediment compared with rough annual fluvial flux estimates suggest that the overall strong Enrichment Factors for Ag (EFAg) and and Hg (EFHg) in the Loire Estuary sediments are mainly due to watershed-derived inputs, highlighting the need of high temporal hydro-geochemical monitoring to establish reliable incoming fluxes. Significant correlations obtained between EFCd and EFAg, EFCu and POC and EFHg and POC revealed common behavior and/or sources. Comparison of trace element concentrations with ecotoxicological indices (Sediment Quality Guidelines) provides first standardized information on the

  5. A Langmuir probe system for high power RF-driven negative ion sources on high potential

    International Nuclear Information System (INIS)

    McNeely, P; Christ-Koch, S; Fantz, U; Dudin, S V

    2009-01-01

    A fully automated Langmuir probe system capable of operating simultaneously with beam extraction has been developed and commissioned for the negative hydrogen ion source testbeds at IPP Garching. It allows the measurement of temporal and spatial distributions of the plasma parameters within a single plasma pulse ( 10 18 m -3 ) and hot (T e > 10 eV) plasma with bi-Maxwellian electron energy distribution at low pressures. The plasma found near the plasma grid is very different being of low density (≤10 17 m -3 ) and very cold (T e < 2 eV). This plasma is also strongly influenced by the presence of caesium, the potential of the plasma grid, and if an ion beam is extracted from the source. Caesium strongly reduces the plasma potential of the source and enhances the negative ion density near the plasma grid. Extracting an ion beam is observed to reduce the electron density and increase the potential near the plasma grid. Applying a potential greater than the plasma potential to the plasma grid is found to significantly decrease the electron density near the plasma grid.

  6. Sources and Propagation of High Frequency Waves in the Solar Photosphere and Chromosphere

    Science.gov (United States)

    Lawrence, John K.; Cadavid, A. C.

    2009-05-01

    We study the spatial distribution of oscillatory power in two sequences of high-cadence, high-resolution images taken by the Solar Optical Telescope on board Hinode. The sequences consist of simultaneous, co-registered G-Band (GB) and Ca II H-Line (HL) images with pixel scale 80 km and fields of view 40 x 40 Mm and 80 x 40 Mm. The first sequence has cadence 21 s over 3 hours on 2007 April 14; the other has cadence 24 s over 2 hours on 2007 March 30. Both sequences include network and internetwork at heliocentric angle 35 degrees. Time averaging of Morlet wavelet transforms gives smoothed Fourier spectra for each spatial location in the GB and HL data. We averaged over four different frequency bands to highlight different physical regimes: "evolutionary” timescales (f web of a cellular pattern with scales 2 - 3 Mm. These are found to coincide with the boundaries of stable clusters of granules. These dark boundaries may correspond to downflows that control the cell structuring and that could be the source of acoustic power.

  7. Fabrication of high rate chromium getter sources for fusion applications

    International Nuclear Information System (INIS)

    Gabbard, W.A.; Simpkins, J.E.; Mioduszewski, P.; Edmonds, P.H.

    1983-01-01

    Design and fabrication techniques are described for the manufacture of large-capacity chromium getter sources, analogous to the commercially available titanium getter source known as Ti-Ball, manufactured by Varian Associates

  8. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    International Nuclear Information System (INIS)

    Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei; Wu, Ming-Long; Chuang, Tzu-Chao; Shih, Yi-Yu; Huang, Teng-Yi

    2013-01-01

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm 3 achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm 3 voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm 3 to 0.43 × 0.43 × 2 mm 3 has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain

  9. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Pei-Hsin; Chung, Hsiao-Wen [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Tsai, Ping-Huei [Imaging Research Center, Taipei Medical University, Taipei 11031, Taiwan and Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan (China); Wu, Ming-Long, E-mail: minglong.wu@csie.ncku.edu.tw [Institute of Medical Informatics, National Cheng-Kung University, Tainan 70101, Taiwan and Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China); Chuang, Tzu-Chao [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Shih, Yi-Yu [Siemens Limited Healthcare Sector, Taipei 11503, Taiwan (China); Huang, Teng-Yi [Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2013-12-15

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  10. High-efficiency thermal ionization sources for mass spectrometry

    International Nuclear Information System (INIS)

    Olivares, Jose A.

    1996-01-01

    A version of the thermal ionization cavity (TIC) source developed specifically for use in mass spectrometry is presented. The performance of this ion source has been characterized extensively both with the use of an isotope separator and a quadrupole mass spectrometer. A detailed description of the TIC source for mass spectrometry is given along with the performance characteristics observed

  11. Droplet deposition measurement with high-speed camera and novel high-speed liquid film sensor with high spatial resolution

    International Nuclear Information System (INIS)

    Damsohn, M.; Prasser, H.-M.

    2011-01-01

    Highlights: → Development of a sensor for time- and space-resolved droplet deposition in annular flow. → Experimental measurement of droplet deposition in horizontal annular flow to compare readings of the sensor with images of a high-speed camera when droplets are depositing unto the liquid film. → Self-adaptive signal filter based on autoregression to separate droplet impacts in the sensor signal from waves of liquid films. - Abstract: A sensor based on the electrical conductance method is presented for the measurement of dynamic liquid films in two-phase flow. The so called liquid film sensor consists of a matrix with 64 x 16 measuring points, a spatial resolution of 3.12 mm and a time resolution of 10 kHz. Experiments in a horizontal co-current air-water film flow were conducted to test the capability of the sensor to detect droplet deposition from the gas core onto the liquid film. The experimental setup is equipped with the liquid film sensor and a high speed camera (HSC) recording the droplet deposition with a sampling rate of 10 kHz simultaneously. In some experiments the recognition of droplet deposition on the sensor is enhanced by marking the droplets with higher electrical conductivity. The comparison between the HSC and the sensor shows, that the sensor captures the droplet deposition above a certain droplet diameter. The impacts of droplet deposition can be filtered from the wavy structures respectively conductivity changes of the liquid film using a filter algorithm based on autoregression. The results will be used to locally measure droplet deposition e.g. in the proximity of spacers in a subchannel geometry.

  12. A framework for widespread replication of a highly spatially resolved childhood lead exposure risk model.

    Science.gov (United States)

    Kim, Dohyeong; Galeano, M Alicia Overstreet; Hull, Andrew; Miranda, Marie Lynn

    2008-12-01

    Preventive approaches to childhood lead poisoning are critical for addressing this longstanding environmental health concern. Moreover, increasing evidence of cognitive effects of blood lead levels system-based childhood lead exposure risk models, especially if executed at highly resolved spatial scales, can help identify children most at risk of lead exposure, as well as prioritize and direct housing and health-protective intervention programs. However, developing highly resolved spatial data requires labor-and time-intensive geocoding and analytical processes. In this study we evaluated the benefit of increased effort spent geocoding in terms of improved performance of lead exposure risk models. We constructed three childhood lead exposure risk models based on established methods but using different levels of geocoded data from blood lead surveillance, county tax assessors, and the 2000 U.S. Census for 18 counties in North Carolina. We used the results to predict lead exposure risk levels mapped at the individual tax parcel unit. The models performed well enough to identify high-risk areas for targeted intervention, even with a relatively low level of effort on geocoding. This study demonstrates the feasibility of widespread replication of highly spatially resolved childhood lead exposure risk models. The models guide resource-constrained local health and housing departments and community-based organizations on how best to expend their efforts in preventing and mitigating lead exposure risk in their communities.

  13. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  14. Multi-dimensional water quality assessment of an urban drinking water source elucidated by high resolution underwater towed vehicle mapping.

    Science.gov (United States)

    Lock, Alan; Spiers, Graeme; Hostetler, Blair; Ray, James; Wallschläger, Dirk

    2016-04-15

    Spatial surveys of Ramsey Lake, Sudbury, Ontario water quality were conducted using an innovative underwater towed vehicle (UTV) equipped with a multi-parameter probe providing real-time water quality data. The UTV revealed underwater vent sites through high resolution monitoring of different spatial chemical characteristics using common sensors (turbidity, chloride, dissolved oxygen, and oxidation/reduction sensors) that would not be feasible with traditional water sampling methods. Multi-parameter probe vent site identification is supported by elevated alkalinity and silica concentrations at these sites. The identified groundwater vent sites appear to be controlled by bedrock fractures that transport water from different sources with different contaminants of concern. Elevated contaminants, such as, arsenic and nickel and/or nutrient concentrations are evident at the vent sites, illustrating the potential of these sources to degrade water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A high current, short pulse electron source for wakefield accelerators

    International Nuclear Information System (INIS)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed

  16. Silicon nanowire based high brightness, pulsed relativistic electron source

    Directory of Open Access Journals (Sweden)

    Deep Sarkar

    2017-06-01

    Full Text Available We demonstrate that silicon nanowire arrays efficiently emit relativistic electron pulses under irradiation by a high-intensity, femtosecond, and near-infrared laser (∼1018 W/cm2, 25 fs, 800 nm. The nanowire array yields fluxes and charge per bunch that are 40 times higher than those emitted by an optically flat surface, in the energy range of 0.2–0.5 MeV. The flux and charge yields for the nanowires are observed to be directional in nature unlike that for planar silicon. Particle-in-cell simulations establish that such large emission is caused by the enhancement of the local electric fields around a nanowire, which consequently leads to an enhanced absorption of laser energy. We show that the high-intensity contrast (ratio of picosecond pedestal to femtosecond peak of the laser pulse (10−9 is crucial to this large yield. We extend the notion of surface local-field enhancement, normally invoked in low-order nonlinear optical processes like second harmonic generation, optical limiting, etc., to ultrahigh laser intensities. These electron pulses, expectedly femtosecond in duration, have potential application in imaging, material modification, ultrafast dynamics, terahertz generation, and fast ion sources.

  17. Spallation Neutron Source High Power RF Installation and Commissioning Progress

    CERN Document Server

    McCarthy, Michael P; Bradley, Joseph T; Fuja, Ray E; Gurd, Pamela; Hardek, Thomas; Kang, Yoon W; Rees, Daniel; Roybal, William; Young, Karen A

    2005-01-01

    The Spallation Neutron Source (SNS) linac will provide a 1 GeV proton beam for injection into the accumulator ring. In the normal conducting (NC) section of this linac, the Radio Frequency Quadupole (RFQ) and six drift tube linac (DTL) tanks are powered by seven 2.5 MW, 402.5 MHz klystrons and the four coupled cavity linac (CCL) cavities are powered by four 5.0 MW, 805 MHz klystrons. Eighty-one 550 kW, 805 MHz klystrons each drive a single cavity in the superconducting (SC) section of the linac. The high power radio frequency (HPRF) equipment was specified and procured by LANL and tested before delivery to ensure a smooth transition from installation to commissioning. Installation of RF equipment to support klystron operation in the 350-meter long klystron gallery started in June 2002. The final klystron was set in place in September 2004. Presently, all RF stations have been installed and high power testing has been completed. This paper reviews the progression of the installation and testing of the HPRF Sys...

  18. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  19. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS

    International Nuclear Information System (INIS)

    FISHER, R.K.

    2003-01-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial 5 to 30 (micro), are the most promising approach to imaging NIF target plasmas with the desired 5 (micro) spatial resolution in the target plane. Gel bubble detectors are being tested to record neutron images of ICF implosions in OMEGA experiments. By improving the noise reduction techniques used in analyzing the data taken in June 2000, we have been able to image the neutron emission from 6 · 10 13 yield DT target plasmas with a target plane spatial resolution of ∼ 140 (micro). As expected, the spatial resolution was limited by counting statistics as a result of the low neutron detection efficiency of the easy-to-use gel bubble detectors. The results have been submitted for publication and will be the subject of an invited talk at the October 2001 Meeting of the Division of Plasma Physics of the American Physical Society. To improve the counting statistics, data was taken in May 2001 using a stack of four gel detectors and integrated over a series of up to seven high-yield DT shots. Analysis of the 2001 data is still in its early stages. Gel detectors were chosen for these initial tests since the bubbles can be photographed several hours after the neutron exposure. They consist of ∼ 5000 drops (∼ 100 (micro) in diameter) of bubble detector liquid/cm 3 suspended in an inactive support gel that occupies ∼ 99% of the detector volume. Using a liquid bubble chamber detector and a light scattering system to record the bubble locations a few microseconds after the neutron exposure when the bubbles are ∼ 10 (micro) in diameter, should result in ∼ 1000 times higher neutron detection efficiency and a target plane resolution on OMEGA of ∼ 10 to 50 (micro)

  20. [Temporal-spatial Variation and Source Identification of Hydro-chemical Characteristics in Shima River Catchment, Dongguan City].

    Science.gov (United States)

    Gao, Lei; Chen, Jian-yao; Wang, Jiang; Ke, Zhi-ting; Zhu, Ai-ping; Xu, Kai

    2015-05-01

    Shima River catchment is of strategic importance to urban water supply in Dongjiang portable water source area. To investigate the hydro-chemical characteristics of Shima River, 39 river water samples were collected in February, June and November, 2012 to analyze the major ions (K+, Na+, Ca2+, Mg2+, Cl-, SO4(2-) , HCO3-) and nutritive salts (PO4(3-), NO3- and NH4+) and to discuss the temporal-spatial variation and controlling factors of hydro-chemical composition, relative sources identification of varied ions was performed as well. The results showed that the hydro-chemical composition exhibited significant differences in different periods. The average concentration of total dissolved solid ( TDS) and nutritive salts in different investigated periods followed the decreasing order of November > February > June. The dominant anion of Shima River was HCO3-, and Na+ + K+ were the major cations in February and November which were changed to Ca2+ in June, the hydro-chemical types were determined as HCO(3-)-Na+ and HCO(3-)- Ca2+ in dry (February and November) and rainy (June) seasons, respectively. Spatial variations of concentration of nutritive salts were mainly affected by the discharges of N- and P-containing waste water resulted from human activities. The ratio between N and P of water sample (R7) was 18.4:1 which boosted the "crazy growth" of phytoplankton and led to severe eutrophication. According to Gibbs distribution of water samples, dissolution of hydatogenic rocks was the primary factor to control the major cations of river water in dry season, however, the hydro-chemical composition was significantly affected by the combination of hydatogenic and carbonate rocks in rainy season. The deposition of sea-salts contributed less to chemical substances in river. Correlation analysis revealed that K+, Na+, Mg2+, Cl- and SO4(2-) were partly derived from the application of fertilizer and the discharge of industrial effluent; Waste water of poultry feeding and

  1. H- Ion Sources for High Intensity Proton Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dudnikov, Vadim [Muons, Inc., Batavia, IL (United States)

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  2. Dietary Sources of High Sodium Intake in Turkey: SALTURK II

    Directory of Open Access Journals (Sweden)

    Yunus Erdem

    2017-08-01

    Full Text Available Previous research has shown daily salt intakes in Turkey to be far above the recommended limits. Knowing the sources of dietary salt could form a basis for preventive strategies aimed towards salt reduction. This study aimed to investigate dietary sources of salt in Turkey. A sub-group (n = 657 was selected from the PatenT2 study population, which represented the urban and rural areas of 4 major cities (Ankara, Istanbul, Izmir, and Konya. A questionnaire inquiring about sociodemographic characteristics, medical histories, detailed histories of diet, and salt consumption was completed. Participants were asked to collect a 24-h urine sample and to record their food intake (dietary recall on the same day. Of 925 participants selected, 657 (71% provided accurate 24-h urine collections, based on creatinine excretion data. The mean daily 24-h urinary sodium excretion was 252.0 ± 92.2 mmol/day, equal to daily salt intake of 14.8 ± 5.4 g. Of the 657 participants with accurate 24-h urine collections, 464 (70% provided fully completed dietary recalls. Among these 464 participants, there was a significant difference between the 24-h urinary sodium excretion-based salt intake estimation (14.5 ± 5.1 g/day and the dietary recall-based salt intake estimation (12.0 ± 7.0 g/day (p < 0.001. On the other hand, a positive correlation was obtained between the dietary recall-based daily salt intake and 24-h urinary sodium excretion-based daily salt intake (r = 0.277, p < 0.001. Bread was the main source of salt (34% followed by salt added during cooking and preparing food before serving (30%, salt from various processed foods (21%, and salt added at the table during food consumption (11%. Conclusively, this study confirmed a very high salt intake of the adult population in four major cities in Turkey. The present findings support the emerging salt reduction strategy in Turkey by promoting lower salt content in baked bread, and less salt use in habitual food

  3. Heavy Metal Pollution of Lakes along the Mid-Lower Reaches of the Yangtze River in China: Intensity, Sources and Spatial Patterns

    Science.gov (United States)

    Zeng, Haiao; Wu, Jinglu

    2013-01-01

    Lakes in the middle and lower reaches of the Yangtze River form a shallow lake group unique in the World that is becoming increasingly polluted by heavy metals. Previous studies have largely focused on individual lakes, with limited exploration of the regional pattern of heavy metal pollution of the lake group in this area. This paper explores the sources, intensity and spatial patterns of heavy metal pollution of lake sediments. A total of 45 sample lakes were selected and the concentrations of key metal elements in the sediments of each lake were measured. The cluster analysis (CA), principal component analysis (PCA) and Geo-accumulation index (Ig) analysis permitted analysis of the source and pollution intensity of the target lakes. Results suggested a notable spatial variation amongst the sample lakes. Lakes in the upper part of the lower reach of the Yangtze River surrounded by typical urban landscapes were strongly or extremely polluted, with high concentrations of Pb, Zn, Cu and Cd in their sediments. This was attributed to large amount of untreated industrial discharges and municipal sewage produced within the lake catchments. In contrast, the heavy-metal pollution of lakes in the Taihu Delta area was notably lower due to industrial restructuring and implementation of effective environmental protection measures. Lakes along the middle reach of Yangtze River surrounded by agricultural areas were unpolluted to moderately polluted by heavy metals overall. Our results suggested that lakes in the central part of China require immediate attention and efforts should be made to implement management plans to prevent further degradation of water quality in these lakes. PMID:23442559

  4. Development of temperature profile sensor at high temporal and spatial resolution

    International Nuclear Information System (INIS)

    Takiguchi, Hiroki; Furuya, Masahiro; Arai, Takahiro

    2017-01-01

    In order to quantify thermo-physical flow field for the industrial applications such as nuclear and chemical reactors, high temporal and spatial measurements for temperature, pressure, phase velocity, viscosity and so on are required to validate computational fluid dynamics (CFD) and subchannel analyses. The paper proposes a novel temperature profile sensor, which can acquire temperature distribution in water at high temporal (a millisecond) and spatial (millimeter) resolutions. The devised sensor acquires electric conductance between transmitter and receiver wires, which is a function of temperature. The sensor comprise wire mesh structure for multipoint and simultaneous temperature measurement in water, which indicated that three-dimensional temperature distribution can be detected in flexible resolutions. For the demonstration of the principle, temperature profile in water was estimated according to pre-determined temperature calibration line against time-averaged impedance. The 16×16 grid sensor visualized fast and multi-dimensional mixing process of a hot water jet into a cold water pool. (author)

  5. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone.

    Science.gov (United States)

    Cápiro, Natalie L; Löffler, Frank E; Pennell, Kurt D

    2015-11-01

    Effective treatment of sites contaminated with dense non-aqueous phase liquids (DNAPLs) requires detailed understanding of the microbial community responses to changes in source zone strength and architecture. Changes in the spatial and temporal distributions of the organohalide-respiring Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ) were examined in a heterogeneous tetrachloroethene- (PCE-) DNAPL source zone within a two-dimensional laboratory-scale aquifer flow cell. As part of a combined remedy approach, flushing with 2.3 pore volumes (PVs) of 4% (w/w) solution of the nonionic, biodegradable surfactant Tween® 80 removed 55% of the initial contaminant mass, and resulted in a PCE-DNAPL distribution that contained 51% discrete ganglia and 49% pools (ganglia-to-pool ratio of 1.06). Subsequent bioaugmentation with the PCE-to-ethene-dechlorinating consortium BDI-SZ resulted in cis-1,2-dichloroethene (cis-DCE) formation after 1 PV (ca. 7 days), while vinyl chloride (VC) and ethene were detected 10 PVs after bioaugmentation. Maximum ethene yields (ca. 90 μM) within DNAPL pool and ganglia regions coincided with the detection of the vcrA reductive dehalogenase (RDase) gene that exceeded the Dhc 16S rRNA genes by 2.0±1.3 and 4.0±1.7 fold in the pool and ganglia regions, respectively. Dhc and GeoSZ cell abundance increased by up to 4 orders-of-magnitude after 28 PVs of steady-state operation, with 1 to 2 orders-of-magnitude increases observed in close proximity to residual PCE-DNAPL. These observations suggest the involvement of these dechlorinators the in observed PCE dissolution enhancements of up to 2.3 and 6.0-fold within pool and ganglia regions, respectively. Analysis of the solid and aqueous samples at the conclusion of the experiment revealed that the highest VC (≥155 μM) and ethene (≥65 μM) concentrations were measured in zones where Dhc and GeoSZ were predominately attached to the solids. These findings demonstrate

  6. CO2-Tea pulse clipping using pulsed high voltage preionization for high spatial resolution I.R. Lidar systems

    Directory of Open Access Journals (Sweden)

    Gasmi Taieb

    2018-01-01

    Full Text Available An extra-cavity CO2-TEA laser pulse clipper for high spatial resolution atmospheric monitoring is presented. The clipper uses pulsed high voltageto facilitate the breakdown of the gas within the clipper cell. Complete extinction of the nitrogen tail, that degrades the range resolution of LIDARS, is obtained at pressures from 375 up to 1500 Torr for nitrogen and argon gases whereas an attenuation coefficient of almost 102 is achieved for helium. Excellent energy stability and pulse width repeatability were achieved using high voltage pre-ionized gas technique.

  7. CO2-Tea pulse clipping using pulsed high voltage preionization for high spatial resolution I.R. Lidar systems

    Science.gov (United States)

    Gasmi, Taieb

    2018-04-01

    An extra-cavity CO2-TEA laser pulse clipper for high spatial resolution atmospheric monitoring is presented. The clipper uses pulsed high voltageto facilitate the breakdown of the gas within the clipper cell. Complete extinction of the nitrogen tail, that degrades the range resolution of LIDARS, is obtained at pressures from 375 up to 1500 Torr for nitrogen and argon gases whereas an attenuation coefficient of almost 102 is achieved for helium. Excellent energy stability and pulse width repeatability were achieved using high voltage pre-ionized gas technique.

  8. Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms

    Science.gov (United States)

    Bryson, M.; Johnson-Roberson, M.; Murphy, R.

    2012-07-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  9. DIFET: DISTRIBUTED FEATURE EXTRACTION TOOL FOR HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    S. Eken

    2017-11-01

    Full Text Available In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  10. Difet: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images

    Science.gov (United States)

    Eken, S.; Aydın, E.; Sayar, A.

    2017-11-01

    In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi) algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB) are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  11. High spatial and temporal resolution interrogation of fully distributed chirped fiber Bragg grating sensors

    OpenAIRE

    Ahmad, Eamonn J.; Wang, Chao; Feng, Dejun; Yan, Zhijun; Zhang, Lin

    2017-01-01

    A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are...

  12. Polybrominated Diphenyl Ethers (PBDEs) in Surface Soils across Five Asian Countries: Levels, Spatial Distribution, and Source Contribution.

    Science.gov (United States)

    Li, Wen-Long; Ma, Wan-Li; Jia, Hong-Liang; Hong, Wen-Jun; Moon, Hyo-Bang; Nakata, Haruhiko; Minh, Nguyen Hung; Sinha, Ravindra Kumar; Chi, Kai Hsien; Kannan, Kurunthachalam; Sverko, Ed; Li, Yi-Fan

    2016-12-06

    A total of 23 polybrominated diphenyl ether (PBDE) congeners were measured in soil samples collected in areas with no known point source [urban/rural/background (U/R/B) sites] and in areas with known point source [brominated flame retardant (BFR)-related industrial sites (F sites) and e-waste recycling sites (E sites)] across five Asian countries. The highest PBDE concentrations were found in BFR-related industrial and e-waste recycling sites. The concentrations of PBDEs in U/R/B sites decreased in the following order: urban > rural > background sites. Total PBDE concentrations were dominated by BDE-209, while BDE-17, -85, -138, -191, -204, and -205 were the least abundant compounds. In both urban sites and rural sites, the mean concentrations of total PBDEs (∑ 23 BDEs) in soils decreased in the following order: Japan > China > South Korea > India > Vietnam. The concentrations of PBDEs in soils were comparable with those reported in other studies. Among the three commercial PBDE mixtures, relatively large contributions of commercial penta-BDE were observed in Vietnam, whereas deca-BDE was the dominant form in mixtures contributing from 55.8 ± 2.5 to 100.0 ± 1.2% of the total PBDEs in soils collected from other four countries. Regression analysis suggested that local population density (PD) is a good indicator of PBDEs in soils of each country. Significant and positive correlation between soil organic content and PBDE level was observed in Chinese soil for most nondeca-BDE homologues with their usage stopped 10 years ago, indicating its important role in controlling the revolatilization of PBDEs from soil and changing the spatial trend of PBDE in soil from the primary distribution pattern to the secondary distribution pattern, especially when primary emission is ceased.

  13. Heavy metals in soils and sediments from Dongting Lake in China: occurrence, sources, and spatial distribution by multivariate statistical analysis.

    Science.gov (United States)

    Zhang, Yaxin; Tian, Ye; Shen, Maocai; Zeng, Guangming

    2018-03-03

    Heavy metal contamination in soils/sediments and its impact on human health and ecological environment have aroused wide concerns. Our study investigated 30 samples of soils and sediments around Dongting Lake to analyze the concentration of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in the samples and to distinguish the natural and anthropogenic sources. Also, the relationship between heavy metals and the physicochemical properties of samples was studied by multivariate statistical analysis. Concentration of Cd at most sampling sites were more than five times that of national environmental quality standard for soil in China (GB 15618-1995), and Pb and Zn levels exceeded one to two times. Moreover, Cr in the soil was higher than the national environmental quality standards for one to two times while in sediment was lower than the national standard. The investigation revealed that the accumulations of As, Cd, Mn, and Pb in the soils, and sediments were affected apparently by anthropogenic activities; however, Cr, Fe, and Ni levels were impacted by parent materials. Human activities around Dongting Lake mainly consisted of industrial activities, mining and smelting, sewage discharges, fossil fuel combustion, and agricultural chemicals. The spatial distribution of heavy metal in soil followed the rule of geographical gradient, whereas in sediments, it was significantly affected by the river basins and human activities. The result of principal component analysis (PCA) demonstrated that heavy metals in soils were associated with pH and total phosphorus (TP), while in sediments, As, Cr, Fe, and Ni were closely associated with cation exchange capacity (CEC) and pH, where Pb, Zn, and Cd were associated with total nitrogen (TN), TP, total carbon (TC), moisture content (MC), soil organic matter (SOM), and ignition lost (IL). Our research provides comprehensive approaches to better understand the potential sources and the fate of contaminants in lakeshore soils and sediments.

  14. Development of a web GIS application for emissions inventory spatial allocation based on open source software tools

    Science.gov (United States)

    Gkatzoflias, Dimitrios; Mellios, Giorgos; Samaras, Zissis

    2013-03-01

    Combining emission inventory methods and geographic information systems (GIS) remains a key issue for environmental modelling and management purposes. This paper examines the development of a web GIS application as part of an emission inventory system that produces maps and files with spatial allocated emissions in a grid format. The study is not confined in the maps produced but also presents the features and capabilities of a web application that can be used by every user even without any prior knowledge of the GIS field. The development of the application was based on open source software tools such as MapServer for the GIS functions, PostgreSQL and PostGIS for the data management and HTML, PHP and JavaScript as programming languages. In addition, background processes are used in an innovative manner to handle the time consuming and computational costly procedures of the application. Furthermore, a web map service was created to provide maps to other clients such as the Google Maps API v3 that is used as part of the user interface. The output of the application includes maps in vector and raster format, maps with temporal resolution on daily and hourly basis, grid files that can be used by air quality management systems and grid files consistent with the European Monitoring and Evaluation Programme Grid. Although the system was developed and validated for the Republic of Cyprus covering a remarkable wide range of pollutant and emissions sources, it can be easily customized for use in other countries or smaller areas, as long as geospatial and activity data are available.

  15. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Directory of Open Access Journals (Sweden)

    J. Mejia

    2013-11-01

    Full Text Available The single photon emission microscope (SPEM is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD. Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  16. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    International Nuclear Information System (INIS)

    Mejia, J.; Reis, M.A.; Miranda, A.C.C.; Batista, I.R.; Barboza, M.R.F.; Shih, M.C.; Fu, G.; Chen, C.T.; Meng, L.J.; Bressan, R.A.; Amaro, E. Jr

    2013-01-01

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s -1 ·MBq -1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99m Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99m Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity

  17. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Reis, M.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Miranda, A.C.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Batista, I.R. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Barboza, M.R.F.; Shih, M.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Fu, G. [GE Global Research, Schenectady, NY (United States); Chen, C.T. [Department of Radiology, University of Chicago, Chicago, IL (United States); Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign, IL (United States); Bressan, R.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Amaro, E. Jr [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil)

    2013-11-06

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s{sup -1}·MBq{sup -1} were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging {sup 99m}Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using {sup 99m}Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  18. EGS4CYL a Montecarlo simulation method of a PET or spect equipment at high spatial resolution

    International Nuclear Information System (INIS)

    Ferriani, S.; Galli, M.

    1995-11-01

    This report describes a Montecarlo simulation method for the simulation of a Pet or Spect equipment. The method is based on the Egs4cyl code. This work has been done in the framework of the Hirespet collaboration, for the developing of an high spatial resolution tomograph, the method will be used for the project of the tomograph. The treated geometry consists of a set of coaxial cylinders, surrounded by a ring of detectors. The detectors have a box shape, a collimator in front of each of them can be included, by means of geometrical constraints to the incident particles. An isotropic source is in the middle of the system. For the particles transport the Egs4code is used, for storing and plotting results the Cern packages Higz and Hbook are used

  19. High spatial resolution grain orientation and strain mapping in thin films using polychromatic submicron x-ray diffraction

    Science.gov (United States)

    Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Spolenak, R.; Brown, W. L.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.

    2002-05-01

    The availability of high brilliance synchrotron sources, coupled with recent progress in achromatic focusing optics and large area two-dimensional detector technology, has allowed us to develop an x-ray synchrotron technique that is capable of mapping orientation and strain/stress in polycrystalline thin films with submicron spatial resolution. To demonstrate the capabilities of this instrument, we have employed it to study the microstructure of aluminum thin film structures at the granular and subgranular levels. Due to the relatively low absorption of x-rays in materials, this technique can be used to study passivated samples, an important advantage over most electron probes given the very different mechanical behavior of buried and unpassivated materials.

  20. Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica

    Directory of Open Access Journals (Sweden)

    S. Berger

    2017-11-01

    Full Text Available Ice shelves control the dynamic mass loss of ice sheets through buttressing and their integrity depends on the spatial variability of their basal mass balance (BMB, i.e. the difference between refreezing and melting. Here, we present an improved technique – based on satellite observations – to capture the small-scale variability in the BMB of ice shelves. As a case study, we apply the methodology to the Roi Baudouin Ice Shelf, Dronning Maud Land, East Antarctica, and derive its yearly averaged BMB at 10 m horizontal gridding. We use mass conservation in a Lagrangian framework based on high-resolution surface velocities, atmospheric-model surface mass balance and hydrostatic ice-thickness fields (derived from TanDEM-X surface elevation. Spatial derivatives are implemented using the total-variation differentiation, which preserves abrupt changes in flow velocities and their spatial gradients. Such changes may reflect a dynamic response to localized basal melting and should be included in the mass budget. Our BMB field exhibits much spatial detail and ranges from −14.7 to 8.6 m a−1 ice equivalent. Highest melt rates are found close to the grounding line where the pressure melting point is high, and the ice shelf slope is steep. The BMB field agrees well with on-site measurements from phase-sensitive radar, although independent radar profiling indicates unresolved spatial variations in firn density. We show that an elliptical surface depression (10 m deep and with an extent of 0.7 km × 1.3 km lowers by 0.5 to 1.4 m a−1, which we tentatively attribute to a transient adaptation to hydrostatic equilibrium. We find evidence for elevated melting beneath ice shelf channels (with melting being concentrated on the channel's flanks. However, farther downstream from the grounding line, the majority of ice shelf channels advect passively (i.e. no melting nor refreezing toward the ice shelf front. Although the absolute, satellite

  1. Direct electron acceleration in plasma waveguides for compact high-repetition-rate x-ray sources

    International Nuclear Information System (INIS)

    Lin, M-W; Jovanovic, I

    2014-01-01

    Numerous applications in fundamental and applied research, security, and industry require robust, compact sources of x-rays, with a particular recent interest in monochromatic, spatially coherent, and ultrafast x-ray pulses in well-collimated beams. Such x-ray sources usually require production of high-quality electron beams from compact accelerators. Guiding a radially polarized laser pulse in a plasma waveguide has been proposed for realizing direct laser acceleration (DLA), where the electrons are accelerated by the axial electric field of a co-propagating laser pulse (Serafim et al 2000 IEEE Trans. Plasma Sci. 28 1190). A moderate laser peak power is required for DLA when compared to laser wakefield acceleration, thus offering the prospect for high repetition rate operation. By using a density-modulated plasma waveguide for DLA, the acceleration distance can be extended with pulse guiding, while the density-modulation with proper axial structure can realize the quasi-phase matching between the laser pulses and electrons for a net gain accumulation (York et al 2008 Phys. Rev. Lett. 100 195001; York et al 2008 J. Opt. Soc. Am. B 25 B137; Palastro et al 2008 Phys. Rev. E 77 036405). We describe the development and application of a test particle model and particle-in-cell model for DLA. Experimental setups designed for fabrication of optically tailored plasma waveguides via the ignitor-heater scheme, and for generation and characterization of radially polarized short pulses used to drive DLA, are presented. (paper)

  2. High-current pulsed ion source for metallic ions

    International Nuclear Information System (INIS)

    Gavin, B.; Abbott, S.; MacGill, R.; Sorensen, R.; Staples, J.; Thatcher, R.

    1981-03-01

    A new sputter-ion PIG source and magnet system, optimized for intermediate charge states, q/A of 0.02 to 0.03, is described. This source will be used with the new Wideroe-based injector for the SuperHILAC. Pulsed electrical currents of several emA of heavy metal ions have been produced in a normalized emittance area of .05π cm-mr. The source system is comprised of two electrically separate anode chambers, one in operation and one spare, which can be selected by remote control. The entire source head is small and quickly removable

  3. A Global Survey of Cloud Thermodynamic Phase using High Spatial Resolution VSWIR Spectroscopy, 2005-2015

    Science.gov (United States)

    Thompson, D. R.; Kahn, B. H.; Green, R. O.; Chien, S.; Middleton, E.; Tran, D. Q.

    2017-12-01

    Clouds' variable ice and liquid content significantly influences their optical properties, evolution, and radiative forcing potential (Tan and Storelvmo, J. Atmos. Sci, 73, 2016). However, most remote measurements of thermodynamic phase have spatial resolutions of 1 km or more and are insensitive to mixed phases. This under-constrains important processes, such as spatial partitioning within mixed phase clouds, that carry outsize radiative forcing impacts. These uncertainties could shift Global Climate Model (GCM) predictions of future warming by over 1 degree Celsius (Tan et al., Science 352:6282, 2016). Imaging spectroscopy of reflected solar energy from the 1.4 - 1.8 μm shortwave infrared (SWIR) spectral range can address this observational gap. These observations can distinguish ice and water absorption, providing a robust and sensitive measurement of cloud top thermodynamic phase including mixed phases. Imaging spectrometers can resolve variations at scales of tens to hundreds of meters (Thompson et al., JGR-Atmospheres 121, 2016). We report the first such global high spatial resolution (30 m) survey, based on data from 2005-2015 acquired by the Hyperion imaging spectrometer onboard NASA's EO-1 spacecraft (Pearlman et al., Proc. SPIE 4135, 2001). Estimated seasonal and latitudinal distributions of cloud thermodynamic phase generally agree with observations made by other satellites such as the Atmospheric Infrared Sounder (AIRS). Variogram analyses reveal variability at different spatial scales. Our results corroborate previously observed zonal distributions, while adding insight into the spatial scales of processes governing cloud top thermodynamic phase. Figure: Thermodynamic phase retrievals. Top: Example of a cloud top thermodynamic phase map from the EO-1/Hyperion. Bottom: Latitudinal distributions of pure and mixed phase clouds, 2005-2015, showing Liquid Thickness Fraction (LTF). LTF=0 corresponds to pure ice absorption, while LTF=1 is pure liquid. The

  4. SLC polarized beam source ultra-high-vacuum design

    International Nuclear Information System (INIS)

    Lavine, T.L.; Clendenin, J.E.; Garwin, E.L.; Hoyt, E.W.; Hoyt, M.W.; Miller, R.H.; Nuttall, J.A.; Schultz, D.C.; Wright, D.

    1991-05-01

    This paper describes the design of the ultra-high vacuum system for the beam-line from the 160-kV polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10 -11 -Torr-range pressure for adequate quantum efficiency and longevity. The photo-cathode is illuminated by 3-nsec-long laser pulses. Photo-cathode maintenance and improvements require occasional substitution of guns with rapid restoration of UHV conditions. Differential pumping is crucial since the pressure in the injector is more than 10 times greater than the photocathode can tolerate, and since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line contains a differential pumping region isolated by a pair of valves. Exchange of guns requires venting only this isolated region which can be restored to UHV rapidly by baking. The differential pumping is performed by non-evaporable getters (NEGs) and an ion pump. 3 refs., 3 figs

  5. Spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a century-old nonferrous metal mining and smelting area in China.

    Science.gov (United States)

    Gong, Xing; Chen, Zhihua; Luo, Zhaohui

    2014-12-01

    This study first presents the spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a nonferrous metal mine area in China. Unconfined groundwater was polluted by Pb, Zn, As, and Cu, in order, while confined karst water in the mines showed pollution in the following sequence: Zn, Cd, Cu, Pb, and As. Pollution by Pb was widespread, while Zn, As, Cu, and Cd were found to be high in the north-central industrial region and to decrease gradually with distance from smelters and tailings. Vertically, more Pb, Zn, Cu, and Cd have accumulated in shallow Quaternary groundwater, while more As have migrated into the deeper fracture groundwater in the local discharge area. Zn, Cd, and Cu concentrations in groundwater along the riverside diminished owing to reduced wastewater drainage since 1977, while samples in the confluence area were found to have increasing contents of Pb, Zn, As, Cu, and Cd since industrialization began in the 1990s. Sources of heavy metals in groundwater were of anthropogenic origin except for Cr. Pb originated primarily from airborne volatile particulates, wastewater, and waste residues and deposited continuously, while Zn, Cd, and Cu were derived from the wastewater of smelters and leakage of tailings, which corresponded to the related soil and surface residue researches. Elevated As values around factories might be the result of chemical reactions. Flow patterns in different hydrogeological units and adsorption capability of from Quaternary sediments restricted their cross-border diffusion.

  6. Using nitrogen concentration and isotopic composition in lichens to spatially assess the relative contribution of atmospheric nitrogen sources in complex landscapes.

    Science.gov (United States)

    Pinho, P; Barros, C; Augusto, S; Pereira, M J; Máguas, C; Branquinho, C

    2017-11-01

    Reactive nitrogen (Nr) is an important driver of global change, causing alterations in ecosystem biodiversity and functionality. Environmental assessments require monitoring the emission and deposition of both the amount and types of Nr. This is especially important in heterogeneous landscapes, as different land-cover types emit particular forms of Nr to the atmosphere, which can impact ecosystems distinctively. Such assessments require high spatial resolution maps that also integrate temporal variations, and can only be feasibly achieved by using ecological indicators. Our aim was to rank land-cover types according to the amount and form of emitted atmospheric Nr in a complex landscape with multiple sources of N. To do so, we measured and mapped nitrogen concentration and isotopic composition in lichen thalli, which we then related to land-cover data. Results suggested that, at the landscape scale, intensive agriculture and urban areas were the most important sources of Nr to the atmosphere. Additionally, the ocean greatly influences Nr in land, by providing air with low Nr concentration and a unique isotopic composition. These results have important consequences for managing air pollution at the regional level, as they provide critical information for modeling Nr emission and deposition across regional as well as continental scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Measurement of spatial and temporal evolution of electromagnetic fields in a 100 MHz plasma source using B dot and double dipole probes

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Barton, E-mail: barton.lane@tel.com; Campbell, Colin; Sawada, Ikuo; Ventzek, Peter L. G., E-mail: peter.ventzek@tel.com [Tokyo Electron America, Inc., 2400 Grove Blvd., Austin, Texas 78741 (United States)

    2016-05-15

    Very high frequency plasma sources are often accompanied by plasma density nonuniformities associated with a standing-wave effect. Electron density measurements using a plasma absorption probe show density nonuniformities that can be larger than predicted by a standing wave model. These structures have been associated with harmonics of the electric fields in the plasma. The authors present the first time and phase-resolved measurements of the spatial structure of the electromagnetic waves in a 100 MHz plasma source using argon at 40 mTorr employing a B dot probe. The authors show that the harmonic structure is related to a current reversal and subsequent circulation that appears when the sheath collapses during the radio frequency cycle. The circulation is driven by inward traveling waves that are electromagnetic in nature, not plasma waves traveling at the electron thermal velocity. Double dipole probe measurements were used to validate the B dot probe electric field measurements derived from the time derivative of Β{sub θ} which is derived from the B dot probe signal.

  8. Monitoring of Antarctic moss ecosystems using a high spatial resolution imaging spectroscopy

    Science.gov (United States)

    Malenovsky, Zbynek; Lucieer, Arko; Robinson, Sharon; Harwin, Stephen; Turner, Darren; Veness, Tony

    2013-04-01

    The most abundant photosynthetically active plants growing along the rocky Antarctic shore are mosses of three species: Schistidium antarctici, Ceratodon purpureus, and Bryum pseudotriquetrum. Even though mosses are well adapted to the extreme climate conditions, their existence in Antarctica depends strongly on availability of liquid water from snowmelt during the short summer season. Recent changes in temperature, wind speed and stratospheric ozone are stimulating faster evaporation, which in turn influences moss growing rate, health state and abundance. This makes them an ideal bio-indicator of the Antarctic climate change. Very short growing season, lasting only about three months, requires a time efficient, easily deployable and spatially resolved method for monitoring the Antarctic moss beds. Ground and/or low-altitude airborne imaging spectroscopy (called also hyperspectral remote sensing) offers a fast and spatially explicit approach to investigate an actual spatial extent and physiological state of moss turfs. A dataset of ground-based spectral images was acquired with a mini-Hyperspec imaging spectrometer (Headwall Inc., the USA) during the Antarctic summer 2012 in the surroundings of the Australian Antarctic station Casey (Windmill Islands). The collection of high spatial resolution spectral images, with pixels about 2 cm in size containing from 162 up to 324 narrow spectral bands of wavelengths between 399 and 998 nm, was accompanied with point moss reflectance measurements recorded with the ASD HandHeld-2 spectroradiometer (Analytical Spectral Devices Inc., the USA). The first spectral analysis indicates significant differences in red-edge and near-infrared reflectance of differently watered moss patches. Contrary to high plants, where the Normalized Difference Vegetation Index (NDVI) represents an estimate of green biomass, NDVI of mosses indicates mainly the actual water content. Similarly to high plants, reflectance of visible wavelengths is

  9. High-frequency maximum observable shaking map of Italy from fault sources

    KAUST Repository

    Zonno, Gaetano; Basili, Roberto; Meroni, Fabrizio; Musacchio, Gemma; Mai, Paul Martin; Valensise, Gianluca

    2012-01-01

    We present a strategy for obtaining fault-based maximum observable shaking (MOS) maps, which represent an innovative concept for assessing deterministic seismic ground motion at a regional scale. Our approach uses the fault sources supplied for Italy by the Database of Individual Seismogenic Sources, and particularly by its composite seismogenic sources (CSS), a spatially continuous simplified 3-D representation of a fault system. For each CSS, we consider the associated Typical Fault, i. e., the portion of the corresponding CSS that can generate the maximum credible earthquake. We then compute the high-frequency (1-50 Hz) ground shaking for a rupture model derived from its associated maximum credible earthquake. As the Typical Fault floats within its CSS to occupy all possible positions of the rupture, the high-frequency shaking is updated in the area surrounding the fault, and the maximum from that scenario is extracted and displayed on a map. The final high-frequency MOS map of Italy is then obtained by merging 8,859 individual scenario-simulations, from which the ground shaking parameters have been extracted. To explore the internal consistency of our calculations and validate the results of the procedure we compare our results (1) with predictions based on the Next Generation Attenuation ground-motion equations for an earthquake of M w 7.1, (2) with the predictions of the official Italian seismic hazard map, and (3) with macroseismic intensities included in the DBMI04 Italian database. We then examine the uncertainties and analyse the variability of ground motion for different fault geometries and slip distributions. © 2012 Springer Science+Business Media B.V.

  10. High-frequency maximum observable shaking map of Italy from fault sources

    KAUST Repository

    Zonno, Gaetano

    2012-03-17

    We present a strategy for obtaining fault-based maximum observable shaking (MOS) maps, which represent an innovative concept for assessing deterministic seismic ground motion at a regional scale. Our approach uses the fault sources supplied for Italy by the Database of Individual Seismogenic Sources, and particularly by its composite seismogenic sources (CSS), a spatially continuous simplified 3-D representation of a fault system. For each CSS, we consider the associated Typical Fault, i. e., the portion of the corresponding CSS that can generate the maximum credible earthquake. We then compute the high-frequency (1-50 Hz) ground shaking for a rupture model derived from its associated maximum credible earthquake. As the Typical Fault floats within its CSS to occupy all possible positions of the rupture, the high-frequency shaking is updated in the area surrounding the fault, and the maximum from that scenario is extracted and displayed on a map. The final high-frequency MOS map of Italy is then obtained by merging 8,859 individual scenario-simulations, from which the ground shaking parameters have been extracted. To explore the internal consistency of our calculations and validate the results of the procedure we compare our results (1) with predictions based on the Next Generation Attenuation ground-motion equations for an earthquake of M w 7.1, (2) with the predictions of the official Italian seismic hazard map, and (3) with macroseismic intensities included in the DBMI04 Italian database. We then examine the uncertainties and analyse the variability of ground motion for different fault geometries and slip distributions. © 2012 Springer Science+Business Media B.V.

  11. High-definition, single-scan 2D MRI in inhomogeneous fields using spatial encoding methods.

    Science.gov (United States)

    Ben-Eliezer, Noam; Shrot, Yoav; Frydman, Lucio

    2010-01-01

    An approach has been recently introduced for acquiring two-dimensional (2D) nuclear magnetic resonance images in a single scan, based on the spatial encoding of the spin interactions. This article explores the potential of integrating this spatial encoding together with conventional temporal encoding principles, to produce 2D single-shot images with moderate field of views. The resulting "hybrid" imaging scheme is shown to be superior to traditional schemes in non-homogeneous magnetic field environments. An enhancement of previously discussed pulse sequences is also proposed, whereby distortions affecting the image along the spatially encoded axis are eliminated. This new variant is also characterized by a refocusing of T(2)(*) effects, leading to a restoration of high-definition images for regions which would otherwise be highly dephased and thus not visible. These single-scan 2D images are characterized by improved signal-to-noise ratios and a genuine T(2) contrast, albeit not free from inhomogeneity distortions. Simple postprocessing algorithms relying on inhomogeneity phase maps of the imaged object can successfully remove most of these residual distortions. Initial results suggest that this acquisition scheme has the potential to overcome strong field inhomogeneities acting over extended acquisition durations, exceeding 100 ms for a single-shot image.

  12. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    Science.gov (United States)

    Truong, D D; Austin, M E

    2014-11-01