WorldWideScience

Sample records for source emissions control

  1. 40 CFR 63.2343 - What are my requirements for emission sources not requiring control?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true What are my requirements for emission sources not requiring control? 63.2343 Section 63.2343 Protection of Environment ENVIRONMENTAL PROTECTION... (Non-Gasoline) What This Subpart Covers § 63.2343 What are my requirements for emission sources not...

  2. Emission Inventory Development and Application Based On an Atmospheric Emission Source Priority Control Classification Technology Method, a Case Study in the Middle Reaches of Yangtze River Urban Agglomerations, China

    Science.gov (United States)

    Sun, X.; Cheng, S.

    2017-12-01

    This paper presents the first attempt to investigate the emission source control of the Middle Reaches of Yangtze River Urban Agglomerations (MRYRUA), one of the national urban agglomerations in China. An emission inventory of the MRYRUA was the first time to be developed as inputs to the CAMx model based on county-level activity data obtained by full-coverage investigation and source-based spatial surrogates. The emission inventory was proved to be acceptable owing to the atmospheric modeling verification. A classification technology method for atmospheric pollution source priority control was the first time to be introduced and applied in the MRYRUA for the evaluation of the emission sources control on the region-scale and city-scale. MICAPS (Meteorological Information comprehensive Analysis and Processing System) was applied for the regional meteorological condition and sensitivity analysis. The results demonstrated that the emission sources in the Hefei-center Urban Agglomerations contributed biggest on the mean PM2.5 concentrations of the MRYRUA and should be taken the priority to control. The emission sources in the Ma'anshan city, Xiangtan city, Hefei city and Wuhan city were the bigger contributors on the mean PM2.5 concentrations of the MRYRUA among the cities and should be taken the priority to control. In addition, the cities along the Yangtze River and the tributary should be given the special attention for the regional air quality target attainments. This study provide a valuable preference for policy makers to develop effective air pollution control strategies.

  3. Krakow conference on low emissions sources: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, B.L.; Butcher, T.A. [eds.

    1995-12-31

    The Krakow Conference on Low Emission Sources presented the information produced and analytical tools developed in the first phase of the Krakow Clean Fossil Fuels and Energy Efficiency Program. This phase included: field testing to provide quantitative data on missions and efficiencies as well as on opportunities for building energy conservation; engineering analysis to determine the costs of implementing pollution control; and incentives analysis to identify actions required to create a market for equipment, fuels, and services needed to reduce pollution. Collectively, these Proceedings contain reports that summarize the above phase one information, present the status of energy system management in Krakow, provide information on financing pollution control projects in Krakow and elsewhere, and highlight the capabilities and technologies of Polish and American companies that are working to reduce pollution from low emission sources. It is intended that the US reader will find in these Proceedings useful results and plans for control of pollution from low emission sources that are representative of heating systems in central and Eastern Europe. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  4. Conference on alternatives for pollution control from coal-fired low emission sources, Plzen, Czech Republic. Plzen Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The Conference on Alternatives for Pollution Control from Coal-Fired Emission Sources presented cost-effective approaches for pollution control of low emission sources (LES). It also identified policies and strategies for implementation of pollution control measures at the local level. Plzen, Czech Republic, was chosen as the conference site to show participants first hand the LES problems facing Eastern Europe today. Collectively, these Proceedings contain clear reports on: (a) methods for evaluating the cost effectiveness of alternative approaches to control pollution from small coal-fired boilers and furnaces; (b) cost-effective technologies for controlling pollution from coal-fired boilers and furnaces; (c) case studies of assessment of cost effective pollution control measures for selected cities in eastern Europe; and (d) approaches for actually implementing pollution control measures in cities in Eastern Europe. It is intended that the eastern/central European reader will find in these Proceedings useful measures that can be applied to control emissions and clean the air in his city or region. The conference was sponsored by the United States Agency for International Development (AID), the United States Department of Energy (DOE), and the Czech Ministry of Industry and Trade. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  5. California Air Resources board's mobil source emission reduction credit guidelines

    International Nuclear Information System (INIS)

    Dunwoody Lentz, C.; Werner, B.

    1993-01-01

    The California Air Resources Board has developed guidance for the generation and use of mobil source emission reduction credits. Mobil source credits can be used to improve air quality, or to mitigate increases in emissions associated with industrial and non-industrial sources. They are created by programs which reduce mobile source emission beyond the reductions required by federal, state, and local laws or air quality attainment plans. Significant amounts of credit can be generated by some types of programs which reduce mobile source emissions of oxides of nitrogen (NO x ) and reactive organic gases (ROG). Mobile source credit programs must be carefully structured to ensure that emission reductions are real, accurately quantified, enforceable, and have a defined life. Three potentially feasible programs for the creation of mobile source credits include accelerated retirement of older vehicles, purchase of low-emission buses, and purchase of zero-emission vehicles. These programs are evaluated for their ability to generate credit and to assess their cost effectiveness. Based on the examples presented, two methods of generating mobile source credits, the accelerated retirement of older vehicles and the purchase of low-emission buses, appear to be cost-effective when compared to other emission control measures

  6. Emission sources and quantities

    International Nuclear Information System (INIS)

    Heinen, B.

    1991-01-01

    The paper examines emission sources and quantities for SO 2 and NO x . Natural SO 2 is released from volcanic sources and to a much lower extent from marsh gases. In nature NO x is mainly produced in the course of the chemical and bacterial denitrification processes going on in the soil. Manmade pollutants are produced in combustion processes. The paper concentrates on manmade pollution. Aspects discussed include: mechanism of pollution development; manmade emission sources (e.g. industry, traffic, power plants and domestic sources); and emission quantities and forecasts. 11 refs., 2 figs., 5 tabs

  7. Control of emissions from stationary combustion sources: Pollutant detection and behavior in the atmosphere

    International Nuclear Information System (INIS)

    Licht, W.; Engel, A.J.; Slater, S.M.

    1979-01-01

    Stationary combustion resources continue to be significant sources of NOx and SOx pollutants in the ambient atmosphere. This volume considers four problem areas: (1) control of emissions from stationary combustion sources, particularly SOx and NOx (2) pollutant behavior in the atmosphere (3) advances in air pollution analysis and (4) air quality management. Topics of interest include carbon slurries for sulfur dioxide abatement, mass transfer in the Kellogg-Weir air quality control system, oxidation/inhibition of sulfite ion in aqueous solution, some micrometeorological methods of measuring dry deposition rates, Spanish moss as an indicator of airborne metal contamination, and air quality impacts from future electric power generation in Texas

  8. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics

    Directory of Open Access Journals (Sweden)

    S. Guo

    2013-08-01

    Full Text Available To assess the primary and secondary sources of fine organic aerosols after the aggressive implementation of air pollution controls during the 2008 Beijing Olympic Games, 12 h PM2.5 values were measured at an urban site at Peking University (PKU and an upwind rural site at Yufa during the CAREBEIJING-2008 (Campaigns of Air quality REsearch in BEIJING and surrounding region summer field campaign. The average PM2.5 concentrations were 72.5 ± 43.6 μg m−3 and 64.3 ± 36.2 μg m−3 (average ± standard deviation, below as the same at PKU and Yufa, respectively, showing the lowest concentrations in recent years. Combining the results from a CMB (chemical mass balance model and secondary organic aerosol (SOA tracer-yield model, five primary and four secondary fine organic aerosol sources were compared with the results from previous studies in Beijing. The relative contribution of mobile sources to PM2.5 concentrations was increased in 2008, with diesel engines contributing 16.2 ± 5.9% and 14.5 ± 4.1% and gasoline vehicles contributing 10.3 ± 8.7% and 7.9 ± 6.2% to organic carbon (OC at PKU and Yufa, respectively. Due to the implementation of emission controls, the absolute OC concentrations from primary sources were reduced during the Olympics, and the contributions from secondary formation of OC represented a larger relative source of fine organic aerosols. Compared with the non-controlled period prior to the Olympics, primary vehicle contributions were reduced by 30% at the urban site and 24% at the rural site. The reductions in coal combustion contributions were 57% at PKU and 7% at Yufa. Our results demonstrate that the emission control measures implemented in 2008 significantly alleviated the primary organic particle pollution in and around Beijing. However, additional studies are needed to provide a more comprehensive assessment of the emission control effectiveness on SOA formation.

  9. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  10. Source apportionment of sulfate and nitrate particulate matter in the Eastern United States and effectiveness of emission control programs.

    Science.gov (United States)

    Zhang, Hongliang; Hu, Jianlin; Kleeman, Michael; Ying, Qi

    2014-08-15

    Reducing population exposure to PM2.5 in the eastern US will require control of secondary sulfate and nitrate. A source-oriented Community Multi-scale Air Quality (CMAQ) model is used to determine contributions of major emission sources to nitrate and sulfate concentrations in the seven eastern US cities (New York City, Pittsburgh, Baltimore, Chicago, Detroit, St. Paul, and Winston-Salem) in January and August of 2000 and 2006. Identified major nitrate sources include on-road gasoline-powered vehicles, diesel engines, natural gas and coal combustion. From 2000 to 2006, January nitrate concentrations decreased by 25-68% for all the seven cities. On average, ~53% of this change was caused by emissions controls while 47% was caused by meteorology variations. August nitrate concentrations decreased by a maximum of 68% in New York City but Detroit experienced increasing August nitrate concentrations by up to 33%. On average, ~33% of the reduction in nitrate is offset by increases associated with meteorological conditions that favor nitrate formation. Coal combustion and natural gas are the dominant sources for sulfate in both seasons. January sulfate decrease from 2000 to 2006 in all cities by 4-58% except New York City, which increases by 13%. On average, ~93% of the reduction in sulfate was attributed to emission controls with 7% associated with changes in meteorology. August sulfate concentrations decrease by 11-44% in all cities. On average, emission controls alone between 2000 and 2006 would have caused 6% more reduction but the effectiveness of the controls was mitigated by meteorology conditions more favorable to sulfate production in 2006 vs. 2000. The results of this study suggest that regional emissions controls between 2000 and 2006 have been effective at reducing population exposure to PM2.5 in the eastern US, but yearly variations in meteorology must be carefully considered when assessing the exact magnitude of the control benefits. Copyright © 2014

  11. Coal fired flue gas mercury emission controls

    International Nuclear Information System (INIS)

    Wu, Jiang; Pan, Weiguo; Cao, Yan; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  12. Coal fired flue gas mercury emission controls

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiang; Pan, Weiguo [Shanghai Univ. of Electric Power (China); Cao, Yan; Pan, Weiping [Western Kentucky Univ., Bowling Green, KY (United States)

    2015-05-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  13. Dioxin emissions and sources

    International Nuclear Information System (INIS)

    1994-01-01

    The papers presented at the seminar discussed dioxin emissions and sources, dioxin pollution of soils, waste water and sewage sludge, stocktaking of emission sources, and exposure and risk analyses for dioxin and other pollutants. (EF) [de

  14. Sources of atmospheric emissions in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    An inventory of emissions for the Athabasca oil sands airshed that can be used as a basis for air quality assessments was presented. This report was prepared for the Suncor Steepbank Mine Environmental Impact Assessment (EIA) and for the Syncrude Aurora Mine EIA. Both Syncrude and Suncor have plans to develop new oil sands leases and to increase their crude oil and bitumen production. Suncor has proposed modifications to reduce SO 2 emissions to the atmosphere and Syncrude will develop additional ambient air quality, sulphur deposition and biomonitoring programs to ensure that environmental quality is not compromised because of atmospheric emissions associated with their operations. Major emission sources are controlled and monitored by regulatory statutes, regulations and guidelines. In this report, the following four types of emission sources were identified and quantified: (1) major industrial sources associated with Suncor's and Syncrude's current oil sands operations, (2) fugitive and area emission sources such as volatilization of hydrocarbons from tanks and tailings ponds, (3) other industrial emission sources in the area, including oil sands and non-oil sands related facilities, and (4) highway and residential emission sources. Emissions associated with mining operations include: SO 2 , NO x , CO, and CO 2 . The overall conclusion was that although there are other smaller sources of emissions that can influence air quality, there is no reason to doubt that Suncor and Syncrude oil sands operations are the major sources of emissions to the atmosphere. 13 refs., 12 tabs., 8 figs

  15. SOURCE CHARACTERIZATION AND CONTROL TECHNOLOGY ASSESSMENT OF METHYLENE CHLORIDE EMISSIONS FROM EASTMAN KODAK COMPANY, ROCHESTER, NY

    Science.gov (United States)

    The report gives results of an assessment of potential control technologies for methylene chloride (also known as dichloromethane or DCM) emission sources at Eastman Kodak Company's Kodak Park facility in Rochester, NY. DCM is a solvent used by Kodak in the manufacture of cellulo...

  16. Biogenic Emission Sources

    Science.gov (United States)

    Biogenic emissions sources come from natural sources and need to accounted for in photochemical grid models. They are computed using a model which utilizes spatial information on vegetation and land use.

  17. New directions: Beyond sulphur, vanadium and nickel - About source apportionment of ship emissions in emission control areas

    Science.gov (United States)

    Czech, Hendryk; Schnelle-Kreis, Jürgen; Streibel, Thorsten; Zimmermann, Ralf

    2017-08-01

    During the oil crises of the 70s and the associated increase of the oil price, the usage of marine fuels shifted from middle distillates of the crude oil refinery, such as marine diesel oil (MDO) or marine gas oil (MGO), towards cheaper heavy fuel oils (HFO), or also called residual fuel oil. The latter refers to the vacuum residue of the crude oil refinery blended by lighter refinery products, such as kerosene, to meet a certain maximum viscosity. Those HFOs are rich in sulphur and heavy metals which end up as significant constituents in emitted fine particulate matter (PM2.5) after the combustion. Especially for harbour cities or highly frequented ship traffic routes, HFO-derived PM2.5 has been identified as a globally important perpetrator of increased mortality by cardiopulmonary diseases and lung cancer (e.g. Corbett et al., 2007). However, the emitted hazardous species provide reliable markers to assess the contribution of this emission source to air pollution in source apportionment studies. Such studies are often performed utilising positive matrix factorisation, whose score matrix can be interpreted as temporal contribution of k identified emission sources and factors represent the k corresponding emission profiles. If one of the k factors contains moderate to high amounts of sulphate, vanadium and nickel with a high ratio of the two latter ones, the ship identification was unambiguous (e.g. Viana et al., 2009). Even more sensitive towards emission profiles are receptor models such as chemical mass balance, which require detailed prior knowledge about the assumed emission sources (Jeong et al., 2017).

  18. Dynamical structure of hadron emission sources

    International Nuclear Information System (INIS)

    Zhao Xi; Huang Bangrong; Zhao Shusong

    2000-01-01

    NA22 experimental data of the triplet seagull effects show that the Doppler effects of the hadron emission sources exist exactly in the hadron-hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ) ν K ν (aQ) distributions (Generalized functions). The dynamical structure of a hadron emission source is described by the (aQ) ν K ν (aQ) distributions. The anomalous dimensions of the pionic quantum fields are γ B (g R ) = - 0.045 +- 0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter ε = 4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous γ B (g R ) of the quantum fields for the regularization. (-2γ B (g R )↔ε/2 1/ln(Λ 2 /m 2 )Λ→∞)

  19. Highly controlled, reproducible measurements of aerosol emissions from combustion of a common African biofuel source

    Science.gov (United States)

    Haslett, Sophie L.; Thomas, J. Chris; Morgan, William T.; Hadden, Rory; Liu, Dantong; Allan, James D.; Williams, Paul I.; Keita, Sekou; Liousse, Cathy; Coe, Hugh

    2018-01-01

    Particulate emissions from biomass burning can both alter the atmosphere's radiative balance and cause significant harm to human health. However, due to the large effect on emissions caused by even small alterations to the way in which a fuel burns, it is difficult to study particulate production of biomass combustion mechanistically and in a repeatable manner. In order to address this gap, in this study, small wood samples sourced from Côte D'Ivoire in West Africa were burned in a highly controlled laboratory environment. The shape and mass of samples, available airflow and surrounding thermal environment were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. This methodology produced remarkably repeatable results, allowing aerosol emissions to be mapped directly onto different phases of combustion. Emissions from pyrolysis were visible as a distinct phase before flaming was established. After flaming combustion was initiated, a black-carbon-dominant flame was observed during which very little organic aerosol was produced, followed by a period that was dominated by organic-carbon-producing smouldering combustion, despite the presence of residual flaming. During pyrolysis and smouldering, the two phases producing organic aerosol, distinct mass spectral signatures that correspond to previously reported variations in biofuel emissions measured in the atmosphere are found. Organic aerosol emission factors averaged over an entire combustion event were found to be representative of the time spent in the pyrolysis and smouldering phases, rather than reflecting a coupling between emissions and the mass loss of the sample. Further exploration of aerosol yields from similarly carefully controlled fires and a careful comparison with data from macroscopic fires and real-world emissions will help to deliver greater constraints on the

  20. Premature deaths attributed to source-specific BC emissions in six urban US regions

    International Nuclear Information System (INIS)

    Turner, Matthew D; Henze, Daven K; Capps, Shannon L; Hakami, Amir; Zhao, Shunliu; Resler, Jaroslav; Carmichael, Gregory R; Stanier, Charles O; Baek, Jaemeen; Sandu, Adrian; Russell, Armistead G; Nenes, Athanasios; Pinder, Rob W; Napelenok, Sergey L; Bash, Jesse O; Percell, Peter B; Chai, Tianfeng

    2015-01-01

    Recent studies have shown that exposure to particulate black carbon (BC) has significant adverse health effects and may be more detrimental to human health than exposure to PM 2.5 as a whole. Mobile source BC emission controls, mostly on diesel-burning vehicles, have successfully decreased mobile source BC emissions to less than half of what they were 30 years ago. Quantification of the benefits of previous emissions controls conveys the value of these regulatory actions and provides a method by which future control alternatives could be evaluated. In this study we use the adjoint of the Community Multiscale Air Quality (CMAQ) model to estimate highly-resolved spatial distributions of benefits related to emission reductions for six urban regions within the continental US. Emissions from outside each of the six chosen regions account for between 7% and 27% of the premature deaths attributed to exposure to BC within the region. While we estimate that nonroad mobile and onroad diesel emissions account for the largest number of premature deaths attributable to exposure to BC, onroad gasoline is shown to have more than double the benefit per unit emission relative to that of nonroad mobile and onroad diesel. Within the region encompassing New York City and Philadelphia, reductions in emissions from large industrial combustion sources that are not classified as EGUs (i.e., non-EGU) are estimated to have up to triple the benefits per unit emission relative to reductions to onroad diesel sectors, and provide similar benefits per unit emission to that of onroad gasoline emissions in the region. While onroad mobile emissions have been decreasing in the past 30 years and a majority of vehicle emission controls that regulate PM focus on diesel emissions, our analysis shows the most efficient target for stricter controls is actually onroad gasoline emissions. (letter)

  1. Multi-source SO2 emission retrievals and consistency of satellite and surface measurements with reported emissions

    NARCIS (Netherlands)

    Fioletov, V.; McLinden, C.A.; Kharol, S.K.; Krotkov, N.A.; Li, C.; Joiner, J.; Moran, M.D.; Vet, R.; Visschedijk, A.J.H.; Denier Van Der Gon, H.A.C.

    2017-01-01

    Reported sulfur dioxide (SO2) emissions from US and Canadian sources have declined dramatically since the 1990s as a result of emission control measures. Observations from the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and ground-based in situ measurements are examined to verify

  2. Dynamical structure of hadron emission sources

    CERN Document Server

    Zhao Xi; Zhao Shu Song

    2000-01-01

    NA22 experimental data of the triplet seagull effects show that the Doppler effects of hadron emission sources exist exactly in hadron- hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ)/sup nu /K/sub nu / (aQ) distributions (generalized functions). The dynamical structure of a hadron emission source is described by the (aQ)/sup nu /K/sub nu / (aQ) distributions. The anomalous dimensions of the pionic quantum fields are gamma /sub B/(g/sub R/)=-0.045+or-0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter epsilon =4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous gamma /sub B/(g/sub R/) of the quantum fields for the regularization. (-2 gamma /sub B/(g/sub R/) to or from epsilon /2=1/ln( Lambda /sup 2//m /sup 2/) Lambda to infinity ). (26 refs).

  3. 2011 NATA - Emissions Sources

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes all emissions sources that were modeled in the 2011 National Air Toxics Assessment (NATA), inlcluding point, nonpoint, and mobile sources, and...

  4. Reduction of NOx emission from stationary combustion sources

    International Nuclear Information System (INIS)

    Nelson, P.F.

    1992-01-01

    The environmental impacts of NO x emission from stationary combustion sources are briefly described. These include the formation of both acid rain and photochemical smog, major environmental problems. The three mechanisms which have been identified for the formation of NO x in combustion (thermal, prompt and fuel) are also briefly outlined. Recently stringent standards have been introduced to control emissions of NO x and the review describes the major primary and secondary measures. 10 refs. 2 tabs., 5 figs

  5. Controlling nitrous oxide emissions from grassland livestock production systems

    NARCIS (Netherlands)

    Oenema, O.; Gebauer, G.; Rodriguez, M.; Sapek, A.; Jarvis, S.C.; Corré, W.J.; Yamulki, S.

    1998-01-01

    There is growing awareness that grassland livestock production systems are major sources of nitrous oxide (N2O). Controlling these emissions requires a thorough understanding of all sources and controlling factors at the farm level. This paper examines the various controlling factors and proposes

  6. Source Classification Framework for an optimized European wide Emission Control Strategy

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Donner, Erica; Ledin, Anna

    2011-01-01

    of the PS environmental emission. The SCF also provides a well structured approach for European pollutant source and release classification and management. With further European wide implementation, the SCF has the potential or an optimized ECS in order to obtain good chemical status of European water...

  7. Highly controlled, reproducible measurements of aerosol emissions from combustion of a common African biofuel source

    Directory of Open Access Journals (Sweden)

    S. L. Haslett

    2018-01-01

    Full Text Available Particulate emissions from biomass burning can both alter the atmosphere's radiative balance and cause significant harm to human health. However, due to the large effect on emissions caused by even small alterations to the way in which a fuel burns, it is difficult to study particulate production of biomass combustion mechanistically and in a repeatable manner. In order to address this gap, in this study, small wood samples sourced from Côte D'Ivoire in West Africa were burned in a highly controlled laboratory environment. The shape and mass of samples, available airflow and surrounding thermal environment were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. This methodology produced remarkably repeatable results, allowing aerosol emissions to be mapped directly onto different phases of combustion. Emissions from pyrolysis were visible as a distinct phase before flaming was established. After flaming combustion was initiated, a black-carbon-dominant flame was observed during which very little organic aerosol was produced, followed by a period that was dominated by organic-carbon-producing smouldering combustion, despite the presence of residual flaming. During pyrolysis and smouldering, the two phases producing organic aerosol, distinct mass spectral signatures that correspond to previously reported variations in biofuel emissions measured in the atmosphere are found. Organic aerosol emission factors averaged over an entire combustion event were found to be representative of the time spent in the pyrolysis and smouldering phases, rather than reflecting a coupling between emissions and the mass loss of the sample. Further exploration of aerosol yields from similarly carefully controlled fires and a careful comparison with data from macroscopic fires and real-world emissions will help to deliver

  8. Source mechanism of Saturn narrowband emission

    Directory of Open Access Journals (Sweden)

    J. D. Menietti

    2010-04-01

    Full Text Available Narrowband emission (NB is observed at Saturn centered near 5 kHz and 20 kHz and harmonics. This emission appears similar in many ways to Jovian kilometric narrowband emission observed at higher frequencies, and therefore may have a similar source mechanism. Source regions of NB near 20 kHz are believed to be located near density gradients in the inner magnetosphere and the emission appears to be correlated with the occurrence of large neutral plasma clouds observed in the Saturn magnetotail. In this work we present the results of a growth rate analysis of NB emission (~20 kHz near or within a probable source region. This is made possible by the sampling of in-situ wave and particle data. The results indicate waves are likely to be generated by the mode-conversion of directly generated Z-mode emission to O-mode near a density gradient. When the local hybrid frequency is close n fce (n is an integer and fce is the electron cyclotron frequency with n=4, 5 or 6 in our case, electromagnetic Z-mode and weak ordinary (O-mode emission can be directly generated by the cyclotron maser instability.

  9. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan

    Science.gov (United States)

    Wang, Qiaoli; Li, Sujing; Dong, Minli; Li, Wei; Gao, Xiang; Ye, Rongmin; Zhang, Dongxiao

    2018-06-01

    Zhoushan is an island city with booming tourism and service industry, but also has many developed VOCs and/or NOX emission industries. It is necessary to carry out regional VOCs and O3 pollution control in Zhoushan as the only new area owns the provincial economic and social administration rights. Anthropogenic VOCs emission inventories were built based on emission factor method and main emission sources were identified according to the emission inventories. Then, localized VOCs source profiles were built based on in-site sampling and referring to other studies. Furthermore, ozone formation potentials (OFPs) profiles were built through VOCs source profiles and maximum incremental reactivity (MIR) theory. At last, the priority control analysis results showed that industrial processes, especially surface coating, are the key of VOCs and O3 control. Alkanes were the most emitted group, accounting for 58.67%, while aromatics contributed the most to ozone production accounting for 69.97% in total OFPs. n-butane, m/p-xylene, i-pentane, n-decane, toluene, propane, n-undecane, o-xylene, methyl cyclohexane and ethyl benzene were the top 10 VOC species that should be preferentially controlled for VOCs emission control. However, m/p-xylene, o-xylene, ethylene, n-butane, toluene, propene, 1,2,4-trimethyl benzene, 1,3,5-trimethyl benzene, ethyl benzene and 1,2,3-trimethyl benzene were the top 10 VOC species that required preferential control for O3 pollution control.

  10. Emission sources in scanning electron microscopy

    International Nuclear Information System (INIS)

    Malkusch, W.

    1990-01-01

    Since the beginning of the commercial scanning electron microscopy, there are two kinds of emission sources generally used for generation of the electron beam. The first group covers the cathodes heated directly and indirectly (tungsten hair-needle cathodes and lanthanum hexaboride single crystals, LaB 6 cathode). The other group is the field emission cathodes. The advantages of the thermal sources are their low vacuum requirement and their high beam current which is necessary for the application of microanalysis units. Disadvantages are the short life and the low resolution. Advantages of the field emission cathode unambiguously are the possibilities of the very high resolution, especially in the case of low acceleration voltages. Disadvantages are the necessary ultra-high vacuum and the low beam current. An alternative source is the thermally induced ZrO/W field emission cathode which works stably as compared to the cold field emission and does not need periodic flashing for emitter tip cleaning. (orig.) [de

  11. Primary sources of selected POPs: regional and global scale emission inventories

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M

    2004-03-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale.

  12. Primary sources of selected POPs: regional and global scale emission inventories

    International Nuclear Information System (INIS)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M.

    2004-01-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale

  13. Emissions inventories and options for control. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Swart, R.J.; Van Amstel, A.R.; Van den Born, G.J.; Kroeze, C.

    1995-10-01

    This report is the final summary report of the project `Social causes of the greenhouse effect, emissions inventories and options for control`. The objectives of the project, that started in 1990, were to support the development of a comprehensive Dutch climate policy and to identify gaps in the knowledge about sources of greenhouse gases. The four phases of the project are summarized. In the first phase, a first national inventory of greenhouse gas emissions was made, capturing carbon dioxide (CO{sub 2}), chlorofluorocarbons (CFCs), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and the ozone precursors carbon monoxide (CO), nitrogen oxides (NO{sub x} ) and volatile organic compounds (VOC). In the second phase, the acquired expertise was used to support the development of Guidelines for National Emissions Inventories by the joint OECD/IPCC programme through workshop organization and participation in the international planning group. In the third phase, a detailed analysis was performed of the sources of methane, its current and future emissions and the options for control. Finally, a similar analysis was performed for nitrous oxide. In these studies, it was found that policies not specifically aiming at mitigating climate change, would help to control the emissions of the non-CO{sub 2} greenhouse gases. While for methane, national emissions would even decrease because of measures in the livestock management and waste disposal sectors, for nitrous oxide the reductions in agricultural emissions would be outweighed by increases, especially in the transportation sector. The project shows that the application of more detailed information leads to differences with the Guidelines, both because of the limited number of source categories in the Guidelines and because of different, locally specific emissions factors. 4 figs., 2 tabs., 14 refs.

  14. Control of volatile organic compound emissions: the issues

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, M.; Marlowe, I.

    1989-11-01

    This review paper outlines the problems caused by the emissions of volatile organic compounds (VOC) which are causing increasing concern because of their part in the formation of photochemical oxidation that causes damage to crops and vegetation and because of the toxic and climatic effects. It briefly summarises current knowledge of VOC emissions and their effects and then suggests options for abatement of VOC emissions in the UK and the EEC. A comparison of anthropogenic VOC emission in the UK and the EEC from various sources is given. Further information is needed on current emissions, on the costs and efficiencies of control technologies and on the effects of control on industry before decisions can be made on the suitability, extent and strategy to control VOC emissions in the UK. The report was prepared for the UK Department of Trade and Industry (Headquarters).

  15. New approach for location of continuously emitting acoustic emission sources by phase-controlled probe arrays

    International Nuclear Information System (INIS)

    Hoeller, P.; Klein, M.; Waschkies, E.; Deuster, G.

    1991-01-01

    Usually burst-like acoustic emission (AE) is localized by triangulation. For continuous AE, e.g. from leakages, this method is not feasible. Therefore a new method for localization of continuous AE has been developed. It is based on a phase-controlled probe array which consists of many single sensor elements. The AE signals received by the different sensor elements are delayed according to their time-of-flight differences from the source to the single elements of the receiver array. By choosing special combinations of time differences between the array elements the directivity pattern of the sensitivity of the array can be changed, e.g. rotated in the plane of a large plate. Thus, the source direction can be determined by one array. Some preliminary experiments with an artificial noise source, positioned on a large steel plate, have been performed and have demonstrated the feasibility of this approach. (orig.)

  16. Source apportionment of particulate matter in Chinese megacities: the implication for emission control strategies

    Science.gov (United States)

    Huang, Ru-Jin; Elser, Miriam; Wang, Qiyuan Wang; Bozzetti, Carlo; Wolf, Robert; Wang, Yichen; Ni, Haiyan; Wang, Meng; Ho, Kin-Fai; Han, Yongming; Dällenbach, Kaspar; Canonaco, Francesco; Slowik, Jay; El Haddad, Imad; Baltensperger, Urs; Cao, Junji; Prévôt, André S. H.

    2015-04-01

    The rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. A quantitative understanding of these effects has proven extremely challenging due to spatial and temporal variability in the sources of aerosols and their precursors, the complexity of particle composition, and uncertainties associated with the atmospheric aging of existing particles (Pöschl 2005; Hallquist et al., 2009; Huang et al., 2014). Nowadays the average PM2.5 concentrations in China are approximately one to two orders of magnitude higher than those observed in urban areas in the US and European countries (Cao 2012). This has forced the Chinese government to announce its first national environmental standard for PM2.5 in 2012 and to make highly ambitious plans for emission control. The Chinese aim to reduce the PM2.5 concentrations by up to 25% of the 2012 levels by 2017, backed by 277 billion investments from the central government. To achieve this ambitious aim, a better understanding of the aerosol composition, sources, and atmospheric processing is required. In this study, we present the results from intensive field measurement campaigns carried out in Chinese megacities in 2013/2014. The sources of PM2.5 and the organic aerosol (OA) were investigated by applying the multi-linear engine (ME-2) receptor model (Canonaco et al., 2013) to a comprehensive dataset. Primary sources including vehicle emissions, biomass burning, coal burning, and dust-related emissions were identified and quantified. The contributions from secondary aerosol formation processes to total PM2.5 mass and OA mass were evaluated. Detailed results will be presented and discussed. References Cao, J. J. (2012) J. Earth Environ., 3, 1030

  17. Russia's black carbon emissions: focus on diesel sources

    Directory of Open Access Journals (Sweden)

    N. Kholod

    2016-09-01

    Full Text Available Black carbon (BC is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder. Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  18. Long-term trends in California mobile source emissions and ambient concentrations of black carbon and organic aerosol.

    Science.gov (United States)

    McDonald, Brian C; Goldstein, Allen H; Harley, Robert A

    2015-04-21

    A fuel-based approach is used to assess long-term trends (1970-2010) in mobile source emissions of black carbon (BC) and organic aerosol (OA, including both primary emissions and secondary formation). The main focus of this analysis is the Los Angeles Basin, where a long record of measurements is available to infer trends in ambient concentrations of BC and organic carbon (OC), with OC used here as a proxy for OA. Mobile source emissions and ambient concentrations have decreased similarly, reflecting the importance of on- and off-road engines as sources of BC and OA in urban areas. In 1970, the on-road sector accounted for ∼90% of total mobile source emissions of BC and OA (primary + secondary). Over time, as on-road engine emissions have been controlled, the relative importance of off-road sources has grown. By 2010, off-road engines were estimated to account for 37 ± 20% and 45 ± 16% of total mobile source contributions to BC and OA, respectively, in the Los Angeles area. This study highlights both the success of efforts to control on-road emission sources, and the importance of considering off-road engine and other VOC source contributions when assessing long-term emission and ambient air quality trends.

  19. Development of unauthorized airborne emission source identification procedure

    Science.gov (United States)

    Shtripling, L. O.; Bazhenov, V. V.; Varakina, N. S.; Kupriyanova, N. P.

    2018-01-01

    The paper presents the procedure for searching sources of unauthorized airborne emissions. To make reasonable regulation decisions on airborne pollutant emissions and to ensure the environmental safety of population, the procedure provides for the determination of a pollutant mass emission value from the source being the cause of high pollution level and the search of a previously unrecognized contamination source in a specified area. To determine the true value of mass emission from the source, the minimum of the mean-root-square mismatch criterion between the computed and measured pollutant concentration in the given location is used.

  20. Background information on sources of low-level radionuclide emissions to air

    International Nuclear Information System (INIS)

    Corbit, C.D.; Herrington, W.N.; Higby, D.P.; Stout, L.A.; Corley, J.P.

    1983-09-01

    This report provides a general description and reported emissions for eight low-level radioactive source categories, including facilties that are licensed by the Nuclear Regulatory Commission (NRC) and Agreement States, and non-Department of Energy (DOE) federal facilities. The eight categories of low-level radioactive source facilities covered by this report are: research and test reactors, accelerators, the radiopharmaceutical industry, source manufacturers, medical facilities, laboratories, naval shipyards, and low-level commercial waste disposal sites. Under each category five elements are addressed: a general description, a facility and process description, the emission control systems, a site description, and the radionuclides released to air (from routine operations)

  1. Background information on sources of low-level radionuclide emissions to air

    Energy Technology Data Exchange (ETDEWEB)

    Corbit, C.D.; Herrington, W.N.; Higby, D.P.; Stout, L.A.; Corley, J.P.

    1983-09-01

    This report provides a general description and reported emissions for eight low-level radioactive source categories, including facilties that are licensed by the Nuclear Regulatory Commission (NRC) and Agreement States, and non-Department of Energy (DOE) federal facilities. The eight categories of low-level radioactive source facilities covered by this report are: research and test reactors, accelerators, the radiopharmaceutical industry, source manufacturers, medical facilities, laboratories, naval shipyards, and low-level commercial waste disposal sites. Under each category five elements are addressed: a general description, a facility and process description, the emission control systems, a site description, and the radionuclides released to air (from routine operations).

  2. The effects of emission control strategies on light-absorbing carbon emissions from a modern heavy-duty diesel engine.

    Science.gov (United States)

    Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J

    2015-06-01

    Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating

  3. Landfill is an important atmospheric mercury emission source

    Institute of Scientific and Technical Information of China (English)

    FENG Xinbin; TANG Shunlin; LI Zhonggen; WANG Shaofeng; LIANG Lian

    2004-01-01

    Since municipal wastes contain refuses with high mercury contents, incineration of municipal wastes becomes the major anthropogenic atmospheric mercury emission source. In China, landfills are however the main way to dispose of municipal wastes. Total gaseous mercury (TGM) concentrations in landfill gas of Gaoyan sanitary landfill located in suburb of Guiyang City were monitored using a high temporal resolved automated mercury analyzer, and mono-methylmercury (MMHg) and dimethylmercury (DMHg) concentrations in landfill gas were also measured using GC coupled with the cold vapor atomic fluorescence (CVAFS) method. Meanwhile, the TGM exchange fluxes between exposed waste and air and the soil surface of the landfill and air, were measured using low Hg blank quartz flux chamber coupled with high temporal resolved automated mercury analyzer technique. TGM concentrations in landfill gas from half year filling area averaged out at 665.52±291.25 ng/m3, which is comparable with TGM concentrations from flue gas of a small coal combustion boiler in Guiyang. The average MMHg and DMHg concentrations averaged out at 2.06±1.82 ng/m3 and 9.50±5.18 ng/m3, respectively. It is proven that mercury emission is the predominant process at the surfaces of both exposed wastes and soil of landfill. Landfills are not only TGM emission source, but also methylmercury emission source to the ambient air. There are two ways to emit mercury to the air from landfills, one is with the landfill gas through landfill gas duct, and the other through soil/air exchange. The Hg emission processes from landfills are controlled by meteorological parameters.

  4. Controlling fugitive emissions from mechanical seals

    International Nuclear Information System (INIS)

    Adams, W.V.

    1992-01-01

    This paper reports that enactment of the 1990 Federal Clean Air Amendments will sharply focus efforts in the process industries to reduce fugitive emissions. Moreover, state and local governments may be imposing stricter laws and regulations which will affect allowable fugitive emissions from U.S. refineries and process plants. Plants outside the U.S. have similar concerns. Clearly, mechanical seals for process pumps represent an enormous population and is one category of equipment destined for careful evaluation as a means to control fugitive emissions. Fugitive are unintentional emissions from valves, pumps, flanges, compressors, etc., as opposed to point-source emissions from stacks, vents and flares. Fugitive emissions do not occur as a part of normal plant operations, but result from the effects of: Malfunctions, Age, Lack of proper maintenance, Operator error, Improper equipment specification, Use of inferior technology, and externally caused damage

  5. Effectiveness evaluation of temporary emission control action in 2016 in winter in Shijiazhuang, China

    Directory of Open Access Journals (Sweden)

    B. Liu

    2018-05-01

    Full Text Available To evaluate the environmental effectiveness of the control measures for atmospheric pollution in Shijiazhuang, China, a large-scale controlling experiment for emission sources of atmospheric pollutants (i.e. a temporary emission control action, TECA was designed and implemented during 1 November 2016 to 9 January 2017. Compared to the no-control action and heating period (NCAHP, under unfavourable meteorological conditions, the mean concentrations of PM2.5, PM10, SO2, NO2, and chemical species (Si, Al, Ca2+, Mg2+ in PM2.5 during the control action and heating period (CAHP still decreased by 8, 8, 5, 19, 30.3, 4.5, 47.0, and 45.2 %, respectively, indicating that the control measures for atmospheric pollution were effective. The effects of control measures in suburbs were better than those in urban area, especially for the control effects of particulate matter sources. The control effects for emission sources of carbon monoxide (CO were not apparent during the TECA period, especially in suburbs, likely due to the increasing usage of domestic coal in suburbs along with the temperature decreasing.The results of positive matrix factorization (PMF analysis showed that crustal dust, secondary sources, vehicle emissions, coal combustion and industrial emissions were main PM2.5 sources. Compared to the whole year (WY and the no-control action and no-heating period (NCANHP, the contribution concentrations and proportions of coal combustion to PM2.5 increased significantly during other stages of the TECA period. The contribution concentrations and proportions of crustal dust and vehicle emissions to PM2.5 decreased noticeably during the CAHP compared to other stages of the TECA period. The contribution concentrations and proportions of industrial emissions to PM2.5 during the CAHP decreased noticeably compared to the NCAHP. The pollutants' emission sources during the CAHP were in effective control, especially for crustal dust and vehicles. However

  6. Effectiveness evaluation of temporary emission control action in 2016 in winter in Shijiazhuang, China

    Science.gov (United States)

    Liu, Baoshuang; Cheng, Yuan; Zhou, Ming; Liang, Danni; Dai, Qili; Wang, Lu; Jin, Wei; Zhang, Lingzhi; Ren, Yibin; Zhou, Jingbo; Dai, Chunling; Xu, Jiao; Wang, Jiao; Feng, Yinchang; Zhang, Yufen

    2018-05-01

    To evaluate the environmental effectiveness of the control measures for atmospheric pollution in Shijiazhuang, China, a large-scale controlling experiment for emission sources of atmospheric pollutants (i.e. a temporary emission control action, TECA) was designed and implemented during 1 November 2016 to 9 January 2017. Compared to the no-control action and heating period (NCAHP), under unfavourable meteorological conditions, the mean concentrations of PM2.5, PM10, SO2, NO2, and chemical species (Si, Al, Ca2+, Mg2+) in PM2.5 during the control action and heating period (CAHP) still decreased by 8, 8, 5, 19, 30.3, 4.5, 47.0, and 45.2 %, respectively, indicating that the control measures for atmospheric pollution were effective. The effects of control measures in suburbs were better than those in urban area, especially for the control effects of particulate matter sources. The control effects for emission sources of carbon monoxide (CO) were not apparent during the TECA period, especially in suburbs, likely due to the increasing usage of domestic coal in suburbs along with the temperature decreasing.The results of positive matrix factorization (PMF) analysis showed that crustal dust, secondary sources, vehicle emissions, coal combustion and industrial emissions were main PM2.5 sources. Compared to the whole year (WY) and the no-control action and no-heating period (NCANHP), the contribution concentrations and proportions of coal combustion to PM2.5 increased significantly during other stages of the TECA period. The contribution concentrations and proportions of crustal dust and vehicle emissions to PM2.5 decreased noticeably during the CAHP compared to other stages of the TECA period. The contribution concentrations and proportions of industrial emissions to PM2.5 during the CAHP decreased noticeably compared to the NCAHP. The pollutants' emission sources during the CAHP were in effective control, especially for crustal dust and vehicles. However, the necessary coal

  7. Status and Needs Research for On-line Monitoring of VOCs Emissions from Stationary Sources

    Science.gov (United States)

    Zhou, Gang; Wang, Qiang; Zhong, Qi; Zhao, Jinbao; Yang, Kai

    2018-01-01

    Based on atmospheric volatile organic compounds (VOCs) pollution control requirements during the twelfth-five year plan and the current status of monitoring and management at home and abroad, instrumental architecture and technical characteristics of continuous emission monitoring systems (CEMS) for VOCs emission from stationary sources are investigated and researched. Technological development needs of VOCs emission on-line monitoring techniques for stationary sources in china are proposed from the system sampling pretreatment technology and analytical measurement techniques.

  8. Registration for the Hanford Site: Sources of radioactive emissions

    International Nuclear Information System (INIS)

    Silvia, M.J.

    1993-04-01

    This Registration Application serves to renew the registration for all Hanford Site sources of radioactive air emissions routinely reported to the State of Washington Department of Health (DOH). The current registration expires on August 15, 1993. The Application is submitted pursuant to the Washington Administrative Code (WAC) Chapter 246--247, and is consistent with guidance provided by DOH for renewal. The Application subdivides the Hanford Site into six major production, processing or research areas. Those six areas are in the 100 Area, 200 East Area, 200 West Area, 300 Area, 400 Area, and 600 Area. Each major group of point sources within the six areas listed above is represented by a Source Registration for Radioactive Air Emissions form. Annual emissions. for the sources are listed in the ''Radionuclide Air Emissions Report for the Hanford Site,'' published annually. It is a requirement that the following Statement of Compliance be provided: ''The radioactive air emissions from the above sources do meet the emissions standards contained in Chapter 173-480-040 WAC, Ambient Air Quality Standards and Emissions Limits for Radionuclides. As the Statement of Compliance pertains to this submittal, the phrase ''above sources'' is to be understood as meaning the combined air emissions from all sources registered by this submittal

  9. Procedures for identifying reasonably available control technology for stationary sources of PM-10. Final report

    International Nuclear Information System (INIS)

    Fitzpatrick, M.J.; Ellefson, R.

    1992-09-01

    The guidance document sets forth procedures and identifies sources of information that will assist State and local air pollution control agencies in determining Reasonably Available Control Technology (RACT) for PM-10 (particulate matter having a nominal aerometric diameter of 10 microns or less) emission from existing stationary sources on a case-by-case basis. It provides an annotated bibliography of documents to aid in identifying the activities that cause PM-10 emissions as well as applicable air pollution control measures and their effectiveness in reducing emissions. The most stringent state total particulate matter (PM) emission limits are identified for several categories of PM-10 sources and compared to available emission test data. Finally, guidance is provided on procedures for estimating total capital investment and total annual cost of the control measures which are generally used to control PM-10 emissions

  10. Deterministic control of the emission from light sources in 1D nanoporous photonic crystals (Conference Presentation)

    Science.gov (United States)

    Galisteo-López, Juan F.

    2017-02-01

    Controlling the emission of a light source demands acting on its local photonic environment via the local density of states (LDOS). Approaches to exert such control on large scale samples, commonly relying on self-assembly methods, usually lack from a precise positioning of the emitter within the material. Alternatively expensive and time consuming techniques can be used to produce samples of small dimensions where a deterministic control on emitter position can be achieved. In this work we present a full solution process approach to fabricate photonic architectures containing nano-emitters which position can be controlled with nanometer precision over squared milimiter regions. By a combination of spin and dip coating we fabricate one-dimensional (1D) nanoporous photonic crystals, which potential in different fields such as photovoltaics or sensing has been previously reported, containing monolayers of luminescent polymeric nanospheres. We demonstrate how, by modifying the position of the emitters within the photonic crystal, their emission properties (photoluminescence intensity and angular distribution) can be deterministically modified. Further, the nano-emitters can be used as a probe to study the LDOS distribution within these systems with a spatial resolution of 25 nm (provided by the probe size) carrying out macroscopic measurements over squared milimiter regions. Routes to enhance light-matter interaction in this kind of systems by combining them with metallic surfaces are finally discussed.

  11. Nitrogen source effects on soil nitrous oxide emissions from strip-till corn.

    Science.gov (United States)

    Halvorson, Ardell D; Del Grosso, Stephen J; Jantalia, Claudia Pozzi

    2011-01-01

    Nitrogen (N) application to crops generally results in increased nitrous oxide (NO) emissions. Commercially available, enhanced-efficiency N fertilizers were evaluated for their potential to reduce NO emissions from a clay loam soil compared with conventionally used granular urea and urea-ammonium nitrate (UAN) fertilizers in an irrigated strip-till (ST) corn ( L.) production system. Enhanced-efficiency N fertilizers evaluated were a controlled-release, polymer-coated urea (ESN), stabilized urea, and UAN products containing nitrification and urease inhibitors (SuperU and UAN+AgrotainPlus), and UAN containing a slow-release N source (Nfusion). Each N source was surface-band applied (202 kg N ha) at corn emergence and watered into the soil the next day. A subsurface-band ESN treatment was included. Nitrous oxide fluxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. All N sources had significantly lower growing season NO emissions than granular urea, with UAN+AgrotainPlus and UAN+Nfusion having lower emissions than UAN. Similar trends were observed when expressing NO emissions on a grain yield and N uptake basis. Loss of NO-N per kilogram of N applied was <0.8% for all N sources. Corn grain yields were not different among N sources but greater than treatments with no N applied. Selection of N fertilizer source can be a mitigation practice for reducing NO emissions in strip-till, irrigated corn in semiarid areas. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. 75 FR 68296 - Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources...

    Science.gov (United States)

    2010-11-05

    ... Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources: Sewage... ``Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources: Sewage... performance standards for new units and emission guidelines for existing units for specific categories of...

  13. Atmospheric toxic metals emission inventory and spatial characteristics from anthropogenic sources of Guangdong province, China

    Science.gov (United States)

    Cher, S.; Menghua, L.; Xiao, X.; Yuqi, W.; Zhuangmin, Z.; Zhijiong, H.; Cheng, L.; Guanglin, J.; Zibing, Y.; Junyu, Z.

    2017-12-01

    Atmospheric toxic metals (TMs) are part of particulate matters, and may create adverse effects on the environment and human health depending upon their bioavailability and toxicity. Localized emission inventory is fundamental for parsing of toxic metals to identify key sources in order to formulate efficient toxic metals control strategies. With the use of the latest municipal level environment statistical data, this study developed a bottom-up emission inventory of five toxic metals (Hg, As, Pb, Cd, Cr) from anthropogenic activities in Guangdong province for the year of 2014. Major atmospheric toxic metals sources including combustion sources (coal, oil, biomass, municipal solid waste) and industrial process sources (cement production, nonferrous metal smelting, iron and steel industry, battery and fluorescent lamp production) were investigated. Results showed that: (1) The total emissions of Hg, As, Pb, Cd, Cr in Guangdong province were 18.14, 32.59, 411.34, 13.13, 84.16 t, respectively. (2) Different pollutants have obvious characteristics of emission sources. For total Hg emission, 46% comes from combustion sources, of which 32% from coal combustion and 8% from MSW combustion. Other 54% comes from industrial processes, which dominated by the cement (19%), fluorescent lamp (18%) and battery production (13%). Of the total Hg emission, 69% is released as Hg0 , 29% as Hg2+ , and only 2% as Hgp due to strict particulate matters controls policies. For As emissions, coal combustion, nonferrous metal smelting and iron and steel industry contributed approximate 48%, 25% and 24%, respectively. Pb emissions primarily come from battery production (42%), iron and steel industry (21%) and on-road mobile gasoline combustion (17%). Cd and Cr emissions were dominated by nonferrous metal smelting (71%) and iron and steel industry (82%), respectively. (3) In term of the spatial distribution, emissions of atmospheric toxic metals are mainly concentrated in the central region of

  14. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles

    Science.gov (United States)

    L.-W. Anthony Chen; Hans Moosmuller; W. Patrick Arnott; Judith C. Chow; John G. Watson; Ronald A. Susott; Ronald E. Babbitt; Cyle E. Wold; Emily N. Lincoln; Wei Min Hao

    2007-01-01

    Combustion of wildland fuels represents a major source of particulate matter (PM) and light-absorbing elemental carbon (EC) on a national and global scale, but the emission factors and source profiles have not been well characterized with respect to different fuels and combustion phases. These uncertainties limit the accuracy of current emission inventories, smoke...

  15. Global organic carbon emissions from primary sources from 1960 to 2009

    Science.gov (United States)

    Huang, Ye; Shen, Huizhong; Chen, Yilin; Zhong, Qirui; Chen, Han; Wang, Rong; Shen, Guofeng; Liu, Junfeng; Li, Bengang; Tao, Shu

    2015-12-01

    In an attempt to reduce uncertainty, global organic carbon (OC) emissions from a total of 70 sources were compiled at 0.1° × 0.1° resolution for 2007 (PKU-OC-2007) and country scale from 1960 to 2009. The compilation took advantage of a new fuel-consumption data product (PKU-Fuel-2007) and a series of newly published emission factors (EFOC) in developing countries. The estimated OC emissions were 32.9 Tg (24.1-50.6 Tg as interquartile range), of which less than one third was anthropogenic in origin. Uncertainty resulted primarily from variations in EFOC. Asia, Africa, and South America had high emissions mainly because of residential biomass fuel burning or wildfires. Per-person OC emission in rural areas was three times that of urban areas because of the relatively high EFOC of residential solid fuels. Temporal trend of anthropogenic OC emissions depended on rural population, and was influenced primarily by residential crop residue and agricultural waste burning. Both the OC/PM2.5 ratio and emission intensity, defined as quantity of OC emissions per unit of fuel consumption for all sources, of anthropogenic OC followed a decreasing trend, indicating continuous improvement in combustion efficiency and control measures.

  16. Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China.

    Science.gov (United States)

    Hong-Li, Wang; Sheng-Ao, Jing; Sheng-Rong, Lou; Qing-Yao, Hu; Li, Li; Shi-Kang, Tao; Cheng, Huang; Li-Ping, Qiao; Chang-Hong, Chen

    2017-12-31

    Volatile Organic Compounds (VOCs) source profiles of on-road vehicles were widely studied as their critical roles in VOCs source apportionment and abatement measures in megacities. Studies of VOCs source profiles from on-road motor vehicles from 2001 to 2016 were summarized in this study, with a focus on the comparisons among different studies and the potential impact of different factors. Generally, non-methane hydrocarbons dominated the source profile of on-road vehicle emissions. Carbonyls, potential important components of vehicle emission, were seldom considered in VOCs emissions of vehicles in the past and should be paid more attention to in further study. VOCs source profiles showed some variations among different studies, and 6 factors were extracted and studied due to their impact to VOCs source profile of on-road vehicles. Vehicle types, being dependent on engine types, and fuel types were two dominant factors impacting VOCs sources profiles of vehicles. In comparison, impacts of ignitions, driving conditions and accumulated mileage were mainly due to their influence on the combustion efficiency. An opening and interactive database of VOCs from vehicle emissions was critically essential in future, and mechanisms of sharing and inputting relative research results should be formed to encourage researchers join the database establishment. Correspondingly, detailed quality assurance and quality control procedures were also very important, which included the information of test vehicles and test methods as detailed as possible. Based on the community above, a better uncertainty analysis could be carried out for the VOCs emissions profiles, which was critically important to understand the VOCs emission characteristics of the vehicle emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Process control with optical emission spectroscopy in triode ion plating

    International Nuclear Information System (INIS)

    Salmenoja, K.; Korhonen, A.S.; Sulonen, M.S.

    1985-01-01

    Physical vapor deposition (PVD) techniques used to prepare, e.g., hard TiN, HfN, or ZrN coatings include a great variety of processes ranging from reactive evaporation to sputtering and ion plating. In ion plating one effective way to enhance ionization is to use a negatively biased hot filament. The use of an electron emitting filament brings an extra variable to be taken into account in developing the process control. In addition, proper control of the evaporation source is critical in ensuring reproducible results. With optical emission spectroscopy (OES) it should be possible to control the coating process more accurately. The stoichiometry and the composition of the growing coating may then be ensured effectively in subsequent runs. In this work the application of optical emission spectroscopy for process control in triode ion plating is discussed. The composition of the growing coating is determined experimentally using the relative intensities of specific emission lines. Changes in the evaporation rate and the gas flow can be seen directly from emission line intensities. Even the so-called poisoning of the evaporation source with reactive gas can be detected. Several experimental runs were carried out and afterwards the concentration profiles of the deposited coatings were checked with the nuclear resonance broadening (NRB) method. The results show the usefulness of emission spectroscopy in discharge control

  18. Pulsed, atmospheric pressure plasma source for emission spectrometry

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  19. Nitrogen source and placement effects on soil nitrous oxide emissions from no-till corn.

    Science.gov (United States)

    Halvorson, Ardell D; Del Grosso, Stephen J

    2012-01-01

    A nitrogen (N) source comparison study was conducted to further evaluate the effects of inorganic N source and placement on growing-season and non-crop period soil nitrous oxide (NO). Commercially available controlled-release N fertilizers were evaluated for their potential to reduce NO emissions from a clay loam soil compared with conventionally used granular urea and urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn ( L.) production system. Controlled-release N fertilizers evaluated were: a polymer-coated urea (ESN), stabilized urea (SuperU), and UAN+AgrotainPlus (SuperU and AgrotainPlus contain nitrification and urease inhibitors). Each N source was surface band applied (202 kg N ha) near the corn row at emergence and watered into the soil the next day. Subsurface banded ESN (ESNssb) and check (no N applied) treatments were included. Nitrous oxide fluxes were measured during two growing seasons and after harvest using static, vented chambers. All N sources had significantly lower growing-season NO emissions than granular urea (0.7% of applied N), with UAN+AgrotainPlus (0.2% of applied N) and ESN (0.3% of applied N) having lower emissions than UAN (0.4% of applied N). Similar trends were observed when expressing NO emissions on a grain yield and N uptake basis. Corn grain yields were not different among N sources but were greater than the check. Selection of N fertilizer source can be a mitigation practice for reducing NO emissions in NT, irrigated corn in semiarid areas. In our study, UAN+AgrotainPlus consistently had the lowest level of NO emissions with no yield loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    Directory of Open Access Journals (Sweden)

    M. Zavala

    2009-01-01

    Full Text Available The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies and improvements in fuel quality, among others. Along with these changes, concurrent non-linear changes in photochemical levels and criteria pollutants have been observed, providing a unique opportunity to understand the effects of perturbations of mobile emission levels on the photochemistry in the region using observational and modeling approaches. The observed historical trends of ozone (O3, carbon monoxide (CO and nitrogen oxides (NOx suggest that ozone production in the MCMA has changed from a low to a high VOC-sensitive regime over a period of 20 years. Comparison of the historical emission trends of CO, NOx and hydrocarbons derived from mobile-source emission studies in the MCMA from 1991 to 2006 with the trends of the concentrations of CO, NOx, and the CO/NOx ratio during peak traffic hours also indicates that fuel-based fleet average emission factors have significantly decreased for CO and VOCs during this period whereas NOx emission factors do not show any strong trend, effectively reducing the ambient VOC/NOx ratio.

    This study presents the results of model analyses on the sensitivity of the observed ozone levels to the estimated historical changes in its precursors. The model sensitivity analyses used a well-validated base case simulation of a high pollution episode in the MCMA with the mathematical Decoupled Direct Method (DDM and the standard Brute Force Method (BFM in the 3-D CAMx chemical transport model. The model reproduces adequately the observed historical trends and current photochemical levels. Comparison of the BFM and the DDM sensitivity techniques indicates that the model yields ozone values that increase linearly with

  1. Plasma control for efficient extreme ultra-violet source

    International Nuclear Information System (INIS)

    Takahashi, Kensaku; Nakajima, Mitsuo; Kawamura, Tohru; Shiho, Makoto; Hotta, Eiki; Horioka, Kazuhiko

    2008-01-01

    To generate a high efficiency extreme-ultraviolet (EUV) source, effects of plasma shape for controlling radiative plasmas based on xenon capillary discharge are experimentally investigated. The radiation characteristics observed via tapered capillary discharge are compared with those of straight one. From the comparison, the long emission period and different plasma behaviors of tapered capillary discharge are confirmed. This means that control of the plasma geometry is effective for prolonging the EUV emission period. This result also indicates that the plasma shape control seems to have a potential for enhancing the conversion efficiency. (author)

  2. 76 FR 18407 - Standards of Performance for New Stationary Sources and Emissions Guidelines for Existing Sources...

    Science.gov (United States)

    2011-04-04

    ... Standards of Performance for New Stationary Sources and Emissions Guidelines for Existing Sources: Hospital... performance standards and emissions guidelines for hospital/medical/infectious waste incinerators by the U.S... amendments to the new source performance standards and emissions guidelines, correcting inadvertent drafting...

  3. NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    Science.gov (United States)

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  4. Source apportionment of secondary organic aerosol in China using a regional source-oriented chemical transport model and two emission inventories.

    Science.gov (United States)

    Wang, Peng; Ying, Qi; Zhang, Hongliang; Hu, Jianlin; Lin, Yingchao; Mao, Hongjun

    2018-06-01

    A Community Multiscale Air Quality (CMAQ) model with source-oriented lumped SAPRC-11 (S11L) photochemical mechanism and secondary organic aerosol (SOA) module was applied to determine the contributions of anthropogenic and biogenic sources to SOA concentrations in China. A one-year simulation of 2013 using the Multi-resolution Emission Inventory for China (MEIC) shows that summer SOA are generally higher (10-15 μg m -3 ) due to large contributions of biogenic (country average 60%) and industrial sources (17%). In winter, SOA formation was mostly due to anthropogenic emissions from industries (40%) and residential sources (38%). Emissions from other countries in southeast China account for approximately 14% of the SOA in both summer and winter, and 46% in spring due to elevated open biomass burning in southeast Asia. The Regional Emission inventory in ASia v2.1 (REAS2) was applied in this study for January and August 2013. Two sets of simulations with the REAS2 inventory were conducted using two different methods to speciate total non-methane carbon into model species. One approach uses total non-methane hydrocarbon (NMHC) emissions and representative speciation profiles from the SPECIATE database. The other approach retains the REAS2 speciated species that can be directly mapped to S11L model species and uses source specific splitting factors to map other REAS2 lumped NMHC species. Biogenic emissions are still the most significant contributor in summer based on these two sets of simulations. However, contributions from the transportation sector to SOA in January are predicted to be much more important based on the two REAS2 emission inventories (∼30-40% vs. ∼5% by MEIC), and contributions from residential sources according to REAS2 was much lower (∼21-24% vs. ∼42%). These discrepancies in source contributions to SOA need to be further investigated as the country seeks for optimal emission control strategies to fight severe air pollution. Copyright

  5. Controls of nitrous oxide emission after simulated cattle urine deposition

    DEFF Research Database (Denmark)

    Baral, Khagendra Raj; Thomsen, Anton Gårde; Olesen, Jørgen E

    2014-01-01

    Urine deposited during grazing is a significant source of atmospheric nitrous oxide (N2O). The potential for N2O emissions from urine patches is high, and a better understanding of controls is needed. This study investigated soil nitrogen (N) dynamics and N2O emissions from cattle urine...

  6. Characterizing sources of emissions from wildland fires

    Science.gov (United States)

    Roger D. Ottmar; Ana Isabel Miranda; David V. Sandberg

    2009-01-01

    Smoke emissions from wildland fire can be harmful to human health and welfare, impair visibility, and contribute to greenhouse gas emissions. The generation of emissions and heat release need to be characterized to estimate the potential impacts of wildland fire smoke. This requires explicit knowledge of the source, including size of the area burned, burn period,...

  7. An emission inventory of sulfur from anthropogenic sources in Antarctica

    Directory of Open Access Journals (Sweden)

    S. V. Shirsat

    2009-05-01

    Full Text Available This paper presents first results of a comprehensive emission inventory of chemical species from anthropogenic activities (power generation, vehicles, ships and aircraft in Antarctica, covering the 2004–2005 period.

    The inventory is based on estimated emission rates of fuel consumption provided by some of the Antarctic research stations. Since the emission sources have different modes of operation and use a variety of fuel, the emission flux rate of chemical species is calculated by multiplying the fuel consumption value with the density of fuel and appropriate emission factors. A separate inventory is prepared for each anthropogenic emission source in Antarctica.

    Depending on the type of operation, emission rates of SO2, and BC (Black Carbon, from shipping only have been calculated using the above technique. However, only results of SO2 emissions from each source are presented here. Emission inventory maps of SO2 depicting the track/path taken by each mobile source are shown. The total annual SO2 is 158 Mg from power generation and vehicle operations, 3873 Mg from ships and 56 Mg from aircraft for 2004–2005 and these values undergo strong seasonality following the human activity in Antarctica. Though these figures are small when compared to the emissions at most other regions of the world, they are an indication that human presence in Antarctica leads to at least local pollution. The sources are mainly line and point sources and thus the local pollution potentially is relatively strong.

  8. Alternative control technology document for bakery oven emissions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, C.W.

    1992-12-01

    The document was produced in response to a request by the baking industry for Federal guidance to assist in providing a more uniform information base for State decision-making with regard to control of bakery oven emissions. The information in the document pertains to bakeries that produce yeast-leavened bread, rolls, buns, and similar products but not crackers, sweet goods, or baked foodstuffs that are not yeast leavened. Information on the baking processes, equipment, operating parameters, potential emissions from baking, and potential emission control options are presented. Catalytic and regenerative oxidation are identified as the most appropriate existing control technologies applicable to VOC emissions from bakery ovens. Cost analyses for catalytic and regenerative oxidation are included. A predictive formula for use in estimating oven emissions has been derived from source tests done in junction with the development of the document. Its use and applicability are described.

  9. Two Model-Based Methods for Policy Analyses of Fine Particulate Matter Control in China: Source Apportionment and Source Sensitivity

    Science.gov (United States)

    Li, X.; Zhang, Y.; Zheng, B.; Zhang, Q.; He, K.

    2013-12-01

    Anthropogenic emissions have been controlled in recent years in China to mitigate fine particulate matter (PM2.5) pollution. Recent studies show that sulfate dioxide (SO2)-only control cannot reduce total PM2.5 levels efficiently. Other species such as nitrogen oxide, ammonia, black carbon, and organic carbon may be equally important during particular seasons. Furthermore, each species is emitted from several anthropogenic sectors (e.g., industry, power plant, transportation, residential and agriculture). On the other hand, contribution of one emission sector to PM2.5 represents contributions of all species in this sector. In this work, two model-based methods are used to identify the most influential emission sectors and areas to PM2.5. The first method is the source apportionment (SA) based on the Particulate Source Apportionment Technology (PSAT) available in the Comprehensive Air Quality Model with extensions (CAMx) driven by meteorological predictions of the Weather Research and Forecast (WRF) model. The second method is the source sensitivity (SS) based on an adjoint integration technique (AIT) available in the GEOS-Chem model. The SA method attributes simulated PM2.5 concentrations to each emission group, while the SS method calculates their sensitivity to each emission group, accounting for the non-linear relationship between PM2.5 and its precursors. Despite their differences, the complementary nature of the two methods enables a complete analysis of source-receptor relationships to support emission control policies. Our objectives are to quantify the contributions of each emission group/area to PM2.5 in the receptor areas and to intercompare results from the two methods to gain a comprehensive understanding of the role of emission sources in PM2.5 formation. The results will be compared in terms of the magnitudes and rankings of SS or SA of emitted species and emission groups/areas. GEOS-Chem with AIT is applied over East Asia at a horizontal grid

  10. Nitrous oxide emissions respond differently to mineral and organic nitrogen sources in contrasting soil types.

    Science.gov (United States)

    Pelster, David E; Chantigny, Martin H; Rochette, Philippe; Angers, Denis A; Rieux, Christine; Vanasse, Anne

    2012-01-01

    The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. 75 FR 63259 - Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources...

    Science.gov (United States)

    2010-10-14

    ... Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources: Sewage... performance standards for new units and emission guidelines for existing units for specific categories of... standards and emission guidelines for large municipal waste combustion units, small municipal waste...

  12. Megacity and country emissions from combustion sources-Buenos Aires-Argentina

    Science.gov (United States)

    Dawidowski, L.; Gomez, D.; Matranga, M.; D'Angiola, A.; Oreggioni, G.

    2010-12-01

    Historic time series (1970-2006) emissions of greenhouse gases and air pollutants arising from stationary and mobile combustion sources were estimated at national level for Argentina and at regional level for the metropolitan area of Buenos Aires (MABA). All emissions were estimated using a bottom-up approach following the IPCC good practice guidance. For mobile sources, national emissions include all transport categories. Regional emissions account thus far only for on-road. For national emissions, methodologies and guidance by the IPCC were employed, applying the highest possible tier and using: i)country-specific emission factors for carbon and sulphur and technology-based information for other species, ii)activity data from energy balance series (1970-2007), and iii)complementary information concerning the non-energy use of fuels. Regional emissions in 2006 were estimated in-depth using a technology-based approach for the city of Buenos Aires (CBA) and the 24 neighboring districts composing the MABA. A regional emissions factors database was developed to better characterize Latin American fleets and driving conditions employing COPERT III-IV algorithms and emission factors measured in dynamometers and circulating vehicles in Argentina, Brazil, Chile and Colombia. Past emissions were back estimated from 2005 to 1970 using the best available information, which differs greatly among categories, spatial disaggregation and time periods. The time series of stationary and mobile combustion sources at the national and regional level allowed the identification of distinct patterns. National greenhouse gas emissions in 2006 amounted to ~ 150 million ton CO2-equivalent, 70% of which were contributed by stationary sources. On-road transport was the major contributor within mobile sources (28.1 %). The increasing emissions trends are dominated by on-road transport, agriculture and residential categories while the variability is largely associated with energy industries

  13. Source Attribution of Methane Emissions in Northeastern Colorado Using Ammonia to Methane Emission Ratios

    Science.gov (United States)

    Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; Perring, A. E.; Robinson, E. S.; Holloway, M.; Trainer, M.

    2015-12-01

    Due to recent advances in extraction technology, oil and natural gas extraction and processing in the Denver-Julesburg basin has increased substantially in the past decade. Northeastern Colorado is also home to over 250 concentrated animal feeding operations (CAFOs), capable of hosting over 2 million head of ruminant livestock (cattle and sheep). Because of methane's high Global Warming Potential, quantification and attribution of methane emissions from oil and gas development and agricultural activity are important for guiding greenhouse gas emission policy. However, due to the co-location of these different sources, top-down measurements of methane are often unable to attribute emissions to a specific source or sector. In this work, we evaluate the ammonia:methane emission ratio directly downwind of CAFOs using a mobile laboratory. Several CAFOs were chosen for periodic study over a 12-month period to identify diurnal and seasonal variation in the emission ratio as well as differences due to livestock type. Using this knowledge of the agricultural ammonia:methane emission ratio, aircraft measurements of ammonia and methane over oil and gas basins in the western US during the Shale Oil and Natural Gas Nexus (SONGNEX) field campaign in March and April 2015 can be used for source attribution of methane emissions.

  14. CAPSULE REPORT: SOURCES AND AIR EMISSION CONTROL TECHNOLOGIES AT WASTE MANAGEMENT FACILITIES

    Science.gov (United States)

    The chemicals processed during waste management operations can volatilize into the atmosphere and cause carcinogenic or other toxic effects or contribute to ozone formation. Regulations have been developed to control air emissions from these operations. The EPA has promulgated st...

  15. Emissions control of volatile organic compounds in petroleum industry; Controle de emissoes de compostos organicos volateis na industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Gutierres, Ricardo; Moreira, Andrea Cristina de Castro Araujo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). P e D de Energia e Desenvolvimento Sustentavel (PDEDS)

    2004-07-01

    Volatile organic compounds are among the most common pollutants emitted by refining processes. The sources of these emissions should be controlled for preserving the ambient air quality. This article outlines the main factors to be considered for defining an effective emissions control strategy and compares the major characteristics of the available control technologies. (author)

  16. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories

    Science.gov (United States)

    Steenhuisen, Frits; Wilson, Simon J.

    2015-07-01

    Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important sectors and industries responsible for emissions at a national level; however, to be useful for air transport modelling, more precise information on the locations of emission is required. This paper describes the methodology applied, and the results of work that was conducted to assign anthropogenic mercury emissions to point sources as part of geospatial mapping of the 2010 global anthropogenic mercury emissions inventory prepared by AMAP/UNEP. Major point-source emission sectors addressed in this work account for about 850 tonnes of the emissions included in the 2010 inventory. This work allocated more than 90% of these emissions to some 4600 identified point source locations, including significantly more point source locations in Africa, Asia, Australia and South America than had been identified during previous work to geospatially-distribute the 2005 global inventory. The results demonstrate the utility and the limitations of using existing, mainly public domain resources to accomplish this work. Assumptions necessary to make use of selected online resources are discussed, as are artefacts that can arise when these assumptions are applied to assign (national-sector) emissions estimates to point sources in various countries and regions. Notwithstanding the limitations of the available information, the value of this procedure over alternative methods commonly used to geo-spatially distribute emissions, such as use of 'proxy' datasets to represent emissions patterns, is illustrated. Improvements in information that would facilitate greater use of these methods in future work to assign emissions to point-sources are discussed. These include improvements to both national

  17. Classification of nutrient emission sources in the Vistula River system

    International Nuclear Information System (INIS)

    Kowalkowski, Tomasz

    2009-01-01

    Eutrophication of the Baltic sea still remains one of the biggest problems in the north-eastern area of Europe. Recognizing the sources of nutrient emission, classification of their importance and finding the way towards reduction of pollution are the most important tasks for scientists researching this area. This article presents the chemometric approach to the classification of nutrient emission with respect to the regionalisation of emission sources within the Vistula River basin (Poland). Modelled data for mean yearly emission of nitrogen and phosphorus in 1991-2000 has been used for the classification. Seventeen subcatchements in the Vistula basin have been classified according to cluster and factor analyses. The results of this analysis allowed determination of groups of areas with similar pollution characteristics and indicate the need for spatial differentiation of policies and strategies. Three major factors indicating urban, erosion and agricultural sources have been identified as major discriminants of the groups. - Two classification methods applied to evaluate the results of nutrient emission allow definition of major sources of the emissions and classification of catchments with similar pollution.

  18. PM, NOx and butane emissions from on-road vehicle fleets in Hong Kong and their implications on emission control policy

    Science.gov (United States)

    Ning, Zhi; Wubulihairen, Maimaitireyimu; Yang, Fenhuan

    2012-12-01

    Vehicular emissions are the major sources of air pollution in urban areas. For metropolitan cities with large population working and living in environments with direct traffic impact, emission control is of great significance to protect public health. Implementation of more stringent emission standards, retrofitting fleet with emission control devices and switching to clearer fuel has been commonly practiced in different cities including Hong Kong. The present study employed a new plume chasing method for effective and quick evaluation of on-road fleet emission factors of particulate matter (PM), nitrogen oxides (NOx), and butane from heavy duty diesel trucks, diesel buses and liquefied petroleum gas (LPG) vehicles. The results showed distinct profiles of the emissions from different fleets with excessive butane emissions from LPG fleet and contrasting PM and NOx emissions from diesel trucks and buses fleets. A cross comparison was also made with emission data from other cities and from historic local studies. The implications of the observed difference on the effectiveness of emission control measures and policy are discussed with recommendations of direction for future research and policy making.

  19. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    International Nuclear Information System (INIS)

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-01-01

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled

  20. A chemometric investigation of aromatic emission profiles from a marine engine in comparison with residential wood combustion and road traffic: Implications for source apportionment inside and outside sulphur emission control areas

    Science.gov (United States)

    Czech, Hendryk; Stengel, Benjamin; Adam, Thomas; Sklorz, Martin; Streibel, Thorsten; Zimmermann, Ralf

    2017-10-01

    Ship emissions are known to cause severe impacts on human health, but are less restricted than land-based emissions. A regulation to improve air quality in coastal regions and frequented waterways is the limitation of fuel sulphur content to 0.1% in sulphur emission control areas (SECAs), which has caused a switch from heavy fuel oil (HFO) towards diesel-like marine gas oil (MGO) or marine diesel oil (MDO). The fraction of aromatic organic vapours in the exhaust from a marine engine, operating on HFO and MGO, was investigated by resonance-enhanced multi-photon ionisation time-of-flight mass spectrometry (REMPI-TOFMS). MGO with fuel sulphur content (FSC) below 0.1% and HFO with an average FSC of 2.7% denote representative marine fuels inside and outside SECAs, respectively. The obtained emission spectra were combined with data of previous REMPI-TOFMS studies of combustion engines and wood combustion in statistical analyses to derive marker substances for ship emissions inside and outside SECAs. A diagnostic ratio of C2-naphthalenes to methyl-naphthalenes was found to hold for a good discriminator between ship emissions on the one hand and road traffic and wood combustion on the other hand. Furthermore, random REMPI spectra from all emission sources were mixed with different proportions in a simulation to create a model based on partial least square (PLS) regression for the prediction of ship contribution to aromatic organic vapours. We point out that in particular PAHs with higher degree of alkylation are significant markers for primary ship emissions which may support source apportionment studies inside and outside SECAs to assess the benefits of fuel sulphur content regulation on air quality.

  1. VOC from Vehicular Evaporation Emissions: Status and Control Strategy.

    Science.gov (United States)

    Liu, Huan; Man, Hanyang; Tschantz, Michael; Wu, Ye; He, Kebin; Hao, Jiming

    2015-12-15

    Vehicular evaporative emissions is an important source of volatile organic carbon (VOC), however, accurate estimation of emission amounts and scientific evaluation of control strategy for these emissions have been neglected outside of the United States. This study provides four kinds of basic emission factors: diurnal, hot soak, permeation, and refueling. Evaporative emissions from the Euro 4 vehicles (1.6 kg/year/car) are about four times those of U.S. vehicles (0.4 kg/year/car). Closing this emissions gap would have a larger impact than the progression from Euro 3 to Euro 6 tailpipe HC emission controls. Even in the first 24 h of parking, China's current reliance upon the European 24 h diurnal standard results in 508 g/vehicle/year emissions, higher than 32 g/vehicle/year from Tier 2 vehicles. The U.S. driving cycle matches Beijing real-world conditions much better on both typical trip length and average speed than current European driving cycles. At least two requirements should be added to the Chinese emissions standards: an onboard refueling vapor recovery to force the canister to be sized sufficiently large, and a 48-h evaporation test requirement to ensure that adequate purging occurs over a shorter drive sequence.

  2. Control of combustion generated emissions from spark ignition engines: a review

    International Nuclear Information System (INIS)

    Mansha, M.; Shahid, E.M.; Qureshi, A.H.

    2012-01-01

    For the past several decades automobiles have been a major source of ground level emissions of various pollutants like CO, HC, NO/sub x/, SO/sub x/ CO/sub 2/, etc. Due to their dangerous effects on human health, vegetation and on climate, various pre combustion, in-cylinder and post. combustion techniques have been tried for their abatement. This paper reviews all of the workable measures taken so far to controlling the combustion generated emissions from 4-stroke Spark Ignition Vehicular Engines ever since the promulgation of emission control legislation/standards and their subsequent enforcement in the late 1960s. (author)

  3. Control strategies for nitrous oxide emissions reduction on wastewater treatment plants operation.

    Science.gov (United States)

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2017-11-15

    The present paper focused on reducing greenhouse gases emissions in wastewater treatment plants operation by application of suitable control strategies. Specifically, the objective is to reduce nitrous oxide emissions during the nitrification process. Incomplete nitrification in the aerobic tanks can lead to an accumulation of nitrite that triggers the nitrous oxide emissions. In order to avoid the peaks of nitrous oxide emissions, this paper proposes a cascade control configuration by manipulating the dissolved oxygen set-points in the aerobic tanks. This control strategy is combined with ammonia cascade control already applied in the literature. This is performed with the objective to take also into account effluent pollutants and operational costs. In addition, other greenhouse gases emissions sources are also evaluated. Results have been obtained by simulation, using a modified version of Benchmark Simulation Model no. 2, which takes into account greenhouse gases emissions. This is called Benchmark Simulation Model no. 2 Gas. The results show that the proposed control strategies are able to reduce by 29.86% of nitrous oxide emissions compared to the default control strategy, while maintaining a satisfactory trade-off between water quality and costs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Development of an emissions inventory model for mobile sources

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, A W; Broderick, B M [Trinity College, Dublin (Ireland). Dept. of Civil, Structural and Environmental Engineering

    2000-07-01

    Traffic represents one of the largest sources of primary air pollutants in urban areas. As a consequence, numerous abatement strategies are being pursued to decrease the ambient concentrations of a wide range of pollutants. A mutual characteristic of most of these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emissions inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for a wide range of vehicle types. The majority of inventories are compiled using 'passive' data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. Current trends are towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this paper. a methodology for estimating emissions from mobile sources using real-time data is described. This methodology is used to calculate emissions of sulphur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), carbon monoxide (CO). volatile organic compounds (VOC), particulate matter less than 10 {mu}m aerodynamic diameter (PM{sub 10}), 1,3-butadiene (C{sub 4}H{sub 6}) and benzene (C{sub 6}H{sub 6}) at a test junction in Dublin. Traffic data, which are required on a street-by-street basis, is obtained from induction loops and closed circuit televisions (CCTV) as well as statistical data. The observed traffic data are compared to simulated data from a travel demand model. As a test case, an emissions inventory is compiled for a heavily trafficked signalized junction in an urban environment using the measured data. In order that the model may be validated, the predicted emissions are employed in a dispersion model along with local meteorological conditions and site geometry. The resultant pollutant concentrations are compared to average ambient kerbside conditions

  5. Biomass Burning Emissions of Black Carbon from African Sources

    Science.gov (United States)

    Aiken, A. C.; Leone, O.; Nitschke, K. L.; Dubey, M. K.; Carrico, C.; Springston, S. R.; Sedlacek, A. J., III; Watson, T. B.; Kuang, C.; Uin, J.; McMeeking, G. R.; DeMott, P. J.; Kreidenweis, S. M.; Robinson, A. L.; Yokelson, R. J.; Zuidema, P.

    2016-12-01

    Biomass burning (BB) emissions are a large source of carbon to the atmosphere via particles and gas phase species. Carbonaceous aerosols are emitted along with gas-phase carbon monoxide (CO) and carbon dioxide (CO2) that can be used to determine particulate emission ratios and modified combustion efficiencies. Black carbon (BC) aerosols are potentially underestimated in global models and are considered to be one of the most important global warming factors behind CO2. Half or more BC in the atmosphere is from BB, estimated at 6-9 Tg/yr (IPCC, 5AR) and contributing up to 0.6 W/m2 atmospheric warming (Bond et al., 2013). With a potential rise in drought and extreme events in the future due to climate change, these numbers are expected to increase. For this reason, we focus on BC and organic carbon aerosol species that are emitted from forest fires and compare their emission ratios, physical and optical properties to those from controlled laboratory studies of single-source BB fuels to understand BB carbonaceous aerosols in the atmosphere. We investigate BC in concentrated BB plumes as sampled from the new U.S. DOE ARM Program campaign, Layered Atlantic Smoke Interactions with Clouds (LASIC). The ARM Aerosol Mobile Facility 1 (AMF1) and Mobile Aerosol Observing System (MAOS) are currently located on Ascension Island in the South Atlantic Ocean, located midway between Angola and Brazil. The location was chosen for sampling maximum aerosol outflow from Africa. The far-field aged BC from LASIC is compared to BC from indoor generation from single-source fuels, e.g. African grass, sampled during Fire Lab At Missoula Experiments IV (FLAME-IV). BC is measured with a single-particle soot photometer (SP2) alongside numerous supporting instrumentation, e.g. particle counters, CO and CO2 detectors, aerosol scattering and absorption measurements, etc. FLAME-IV includes both direct emissions and well-mixed aerosol samples that have undergone dilution, cooling, and condensation. BC

  6. Acidification policy - control of acidifying emissions in Germany

    International Nuclear Information System (INIS)

    Schaerer, B.

    1992-01-01

    Since the mid-eighties total annual acidifying emissions have started to decline in West Germany. There was considerable impact on this positive trend in air pollution by the control of SO 2 and NO x emissions from large boilers, which were reduced by more than 80%. Corresponding control programmes have been established for other groups of sources as well as other pollutants and - with unification - for East Germany. The driving force behind this development was and still is first of all the legal principle of anticipatory action or precaution which means in practical terms 'emission minimization'. This cornerstone of German clean air legislation is the most powerful components of Germany's 'acidification policy', as it requires policy-makers to draw up new or review existing regulations for emission reduction based on requirements according to the state of the art and forces operators to apply the most modern ways and means of operation. This paper describes the system used in Germany to deal with air pollution, the emission minimization strategy, and the actions against acidifying emissions based thereon. In addition, an outlook on what might be necessary to cope with the challenges of a sustainable development concerning acidification is given. 1 ref., 1 fig., 2 tabs

  7. 76 FR 15553 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Science.gov (United States)

    2011-03-21

    ... firms to operate and maintain the emissions control systems. Consistent with the legislative history, we... stores/malls, laundries, apartments, restaurants, and hotels/motels. The institutional boiler source...

  8. Visualization of NO2 emission sources using temporal and spatial pattern analysis in Asia

    Science.gov (United States)

    Schütt, A. M. N.; Kuhlmann, G.; Zhu, Y.; Lipkowitsch, I.; Wenig, M.

    2016-12-01

    Nitrogen dioxide (NO2) is an indicator for population density and level of development, but the contributions of the different emission sources to the overall concentrations remains mostly unknown. In order to allocate fractions of OMI NO2 to emission types, we investigate several temporal cycles and regional patterns.Our analysis is based on daily maps of tropospheric NO2 vertical column densities (VCDs) from the Ozone Monitoring Instrument (OMI). The data set is mapped to a high resolution grid by a histopolation algorithm. This algorithm is based on a continuous parabolic spline, producing more realistic smooth distributions while reproducing the measured OMI values when integrating over ground pixel areas.In the resulting sequence of zoom in maps, we analyze weekly and annual cycles for cities, countryside and highways in China, Japan and Korea Republic and look for patterns and trends and compare the derived results to emission sources in Middle Europe and North America. Due to increased heating in winter compared to summer and more traffic during the week than on Sundays, we dissociate traffic, heating and power plants and visualized maps with different sources. We will also look into the influence of emission control measures during big events like the Olympic Games 2008 and the World Expo 2010 as a possibility to confirm our classification of NO2 emission sources.

  9. Effect of low emission sources on air quality in Cracow

    Energy Technology Data Exchange (ETDEWEB)

    Nedoma, J. [EKOPOL Environmental Engineering Studies and Design Office, Co. Ltd., Cracow (Poland)

    1995-12-31

    The paper presents calculation of power engineering low emission and results of stimulation of the effect of this emission on air quality in Cracow, Poland. It has been stated that the segment of low emission in central areas of the town makes up ca. 40% of the observed concentration of sulfur dioxide. Furthermore it has been stated that the capital investment must be concentrated in the central part of the town in order to reach noticeable improvement of air quality in Cracow. Neither the output of a separate power source nor the emission level and its individual harmful effect, but the location of the source and especially packing density of the sources must decide the priority of upgrading actions.

  10. Black carbon emissions from diesel sources in Russia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kholod, Nazar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Evans, Meredydd [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-31

    This report presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this report analyzes BC emissions from diesel on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the report also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC in 2014.

  11. Application of microwave energy in the control of DPM, oxides of nitrogen and VOC emissions

    Science.gov (United States)

    Pallavkar, Sameer M.

    The emissions of DPM (diesel particulate matter), NOx (oxides of nitrogen), and toxic VOCs (volatile organic compounds) from diesel engine exhaust gases and other sources such as chemical process industry and manufacturing industry have been a great environmental and health concern. Most control technologies for these emissions require elevated temperatures. The use of microwave energy as a source of heat energy, however, has not been fully explored. In this study, the microwave energy was used as the energy source in three separate emission control processes, namely, the regeneration of diesel particulate filter (DPF) for DPM control, the NOx reduction using a platinum catalyst, and the VOC destruction involving a ceramic based material. The study has demonstrated that microwave heating is an effective method in providing heat for the studied processes. The control efficiencies associated with the microwave-assisted processes have been observed to be high and acceptable. Further research, however, is required for the commercial use of these technologies.

  12. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources

    Science.gov (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  13. The Sources of Air Pollution and Their Control.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Arlington, VA.

    The problems of air pollution and its control are discussed. Major consideration is given the sources of pollution - motor vehicles, industry, power plants, space heating, and refuse disposal. Annual emission levels of five principle pollutants - carbon monoxide, sulfur dioxide, nitrogen oxides, hydrocarbons, and particulate matter - are listed…

  14. Simple, sensitive nitrogen analyzer based on pulsed miniplasma source emission spectrometry

    International Nuclear Information System (INIS)

    Jin Zhe; Duan Yixiang

    2003-01-01

    The development of pulsed miniplasma source emission spectrometry for trace nitrogen determination in inert gases is described in this article. The instrument consists of a pulsed miniplasma source generated by an in-house fabricated portable high-voltage supply, an optical beam collection system, an integrated small spectrometer with a charge-coupled-device detector, an interface card, and a notebook computer for controlling spectrometer parameters and signal processing. Trace nitrogen in the inert gases, such as helium and argon, was determined by monitoring the emission intensities from nitrogen molecules at 357 and 337 nm. The analytical performance was examined under various experimental conditions. The system has a detection limit of about 15 ppb (v/v) for nitrogen in helium with a relative standard deviation of 1.5%. The newly developed instrument offers a simple, low-cost, and sensitive method for continuously monitoring trace nitrogen in high-purity inert gases

  15. Evaluating measurements of carbon dioxide emissions using a precision source--A natural gas burner.

    Science.gov (United States)

    Bryant, Rodney; Bundy, Matthew; Zong, Ruowen

    2015-07-01

    A natural gas burner has been used as a precise and accurate source for generating large quantities of carbon dioxide (CO2) to evaluate emissions measurements at near-industrial scale. Two methods for determining carbon dioxide emissions from stationary sources are considered here: predicting emissions based on fuel consumption measurements-predicted emissions measurements, and direct measurement of emissions quantities in the flue gas-direct emissions measurements. Uncertainty for the predicted emissions measurement was estimated at less than 1%. Uncertainty estimates for the direct emissions measurement of carbon dioxide were on the order of ±4%. The relative difference between the direct emissions measurements and the predicted emissions measurements was within the range of the measurement uncertainty, therefore demonstrating good agreement. The study demonstrates how independent methods are used to validate source emissions measurements, while also demonstrating how a fire research facility can be used as a precision test-bed to evaluate and improve carbon dioxide emissions measurements from stationary sources. Fossil-fuel-consuming stationary sources such as electric power plants and industrial facilities account for more than half of the CO2 emissions in the United States. Therefore, accurate emissions measurements from these sources are critical for evaluating efforts to reduce greenhouse gas emissions. This study demonstrates how a surrogate for a stationary source, a fire research facility, can be used to evaluate the accuracy of measurements of CO2 emissions.

  16. Using mobile source emission reductions to offset stationary surce rule requirements

    International Nuclear Information System (INIS)

    Nazemi, M.A.; Beruldsen, K.J.

    1993-01-01

    A number of mobile source strategies have been evaluated that could potentially be used as an alternative means of compliance with existing stationary source regulations, at a lower cost. The evaluation was spurred by both public and private sector interest in identifying the lowest cost air pollution reduction strategies, and the realization that mobile sources are the predominate contributor to the air pollution problem in the South Coast Air Quality Basin. Strategies evaluated included removing older vehicles from the in-use population, use of alternative fuels, inspection and maintenance measures, application of remote sensing technology, exceeding AVR requirements, as well as a number of other strategies. Key implementation issues have been identified, so that the viability of each mobile source strategies could be assessed. These issues include: (1) quantification of emissions benefits, (2) determining whether the mobile source strategy would generate emission reductions surplus to existing and planned mobile source regulations, and (3) assessing the potential for enforceability. The results of evaluation indicate that there are a number of promising mobile source emission strategies that could provide quantifiable, surplus, and enforceable emission reductions

  17. Source apportionment of traffic emissions of particulate matter using tunnel measurements

    Science.gov (United States)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal; Mao, Hongjun; Prain, Hunter Douglas; Bull, Ian D.

    2013-10-01

    This study aims to quantify exhaust/non-exhaust emissions and the uncertainties associated with them by combining innovative motorway tunnel sampling and source apportionment modelling. Analytical techniques ICP-AES and GC-MS were used to identify the metallic and organic composition of PM10, respectively. Good correlation was observed between Fe, Cu, Mn, Ni, Pb and Sb and change in traffic volume. The concentration of polycyclic aromatic hydrocarbons and other organics varies significantly at the entrance and exit site of the tunnel, with fluoranthene, pyrene, benzo[a]pyrene, chrysene and benzothiazole having the highest incremented concentrations. The application of Principal Component Analysis and Multiple Linear Regression Analysis helped to identify the emission sources for 82% of the total PM10 mass inside the tunnel. Identified sources include resuspension (27%), diesel exhaust emissions (21%), petrol exhaust emissions (12%), brake wear emissions (11%) and road surface wear (11%). This study shows that major health related chemical species of PM10 originate from non-exhaust sources, further signifying the need for legislation to reduce these emissions.

  18. Analysis of the emission characteristics of ion sources for high-value optical counting processes

    International Nuclear Information System (INIS)

    Beermann, Nils

    2009-01-01

    The production of complex high-quality thin film systems requires a detailed understanding of all partial processes. One of the most relevant partial processes is the condensation of the coating material on the substrate surface. The optical and mechanical material properties can be adjusted by the well-defined impingement of energetic ions during deposition. Thus, in the past, a variety of different ion sources were developed. With respect to the present and future challenges in the production of precisely fabricated high performance optical coatings, the ion emission of the sources has commonly not been characterized sufficiently so far. This question is addressed in the frame of this work which itself is thematically integrated in the field of process-development and -control of ion assisted deposition processes. In a first step, a Faraday cup measurement system was developed which allows the spatially resolved determination of the ion energy distribution as well as the ion current distribution. Subsequently, the ion emission profiles of six ion sources were determined depending on the relevant operating parameters. Consequently, a data pool for process planning and supplementary process analysis is made available. On the basis of the acquired results, the basic correlations between the operating parameters and the ion emission are demonstrated. The specific properties of the individual sources as well as the respective control strategies are pointed out with regard to the thin film properties and production yield. Finally, a synthesis of the results and perspectives for future activities are given. (orig.)

  19. Advanced Emissions Control Development Program: Mercury Control

    International Nuclear Information System (INIS)

    Evans, A.P.; Redinger, K.W.; Holmes, M.J.

    1997-07-01

    McDermott Technology, Inc. (a subsidiary of Babcock ampersand Wilcox) is conducting the Advanced Emissions Control Development Project (AECDP) which is aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPS) from coal-fired electric utility plants. The need for such controls may arise as the US Environmental Protection Agency (EPA) proceeds with implementation of requirements set forth in the Clean Air Act Amendments (CAAA's) of 1990. Promulgation of air toxics emissions regulations for electric utility plants could dramatically impact utilities burning coal, their industrial and residential customers, and the coal industry. AECDP project work will supply the information needed by utilities to respond to potential HAPs regulations in a timely, cost-effective, enviromnentally-sound manner which supports the continued use of the Nation's abundant reserves of coal, such as those in the State of Ohio. The development work is being carried out using the 10 MW Clean Environment Development Facility wherein air toxics emissions control strategies can be developed under controlled conditions. The specific objectives of the project are to (1) measure and understand production and partitioning of air toxics species for a variety of coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems, (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. This project is supported by the Department of Energy, the Ohio Coal Development Office within the Ohio Department of Development and Babcock ampersand Wilcox. A comprehensive assessment of HAP emissions from coal-fired electric utility boilers sponsored by the Department of Energy and the Electric Power Research Institute concluded that with the exception of

  20. Field emission from a new type of electron source

    International Nuclear Information System (INIS)

    Mousa, M.S.

    1987-01-01

    A new type of field emission electron source has been developed. In this paper, the construction, characteristics and behaviour of tungsten micropoint emitters coated with a sub-micron layer of hydrocarbon using a TEM with poor ( ∼ 1 0 -3 torr) vacuum conditions are described. The hydrocarbon coating has been verified using the X-Ray energy dispersive analysis technique of a SEM. The technical capabilities and potential of the new type of electron source are compared with those of other comparable composite micropoint field emitters and other types of electron sources currently in use. The emission properties presented here include I-V characteristics, emission images and electron energy spectra of this type of composite micropoint emitters. The effect on the behaviour and characteristics of baking the coated emitters at temperatures ranging between 140 0 C and 350 0 C is also studied. The behaviour of the emitter has been interpreted in terms of a field-induced hot-electron emission mechanism associated with metal-insulator-vacuum (M-I-V) regime

  1. Emission Control Technologies for Thermal Power Plants

    Science.gov (United States)

    Nihalani, S. A.; Mishra, Y.; Juremalani, J.

    2018-03-01

    Coal thermal power plants are one of the primary sources of artificial air emissions, particularly in a country like India. Ministry of Environment and Forests has proposed draft regulation for emission standards in coal-fired power plants. This includes significant reduction in sulphur-dioxide, oxides of nitrogen, particulate matter and mercury emissions. The first step is to evaluate the technologies which represent the best selection for each power plant based on its configuration, fuel properties, performance requirements, and other site-specific factors. This paper will describe various technology options including: Flue Gas Desulfurization System, Spray Dryer Absorber (SDA), Circulating Dry Scrubber (CDS), Limestone-based Wet FGD, Low NOX burners, Selective Non Catalytic Reduction, Electrostatic Precipitator, Bag House Dust Collector, all of which have been evaluated and installed extensively to reduce SO2, NOx, PM and other emissions. Each control technology has its advantages and disadvantages. For each of the technologies considered, major features, potential operating and maintenance cost impacts, as well as key factors that contribute to the selection of one technology over another are discussed here.

  2. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies

    Science.gov (United States)

    Duan, Jingchun; Tan, Jihua

    2013-08-01

    In recent years, heavy metal pollution accidents were reported frequently in China. The atmospheric heavy metal pollution is drawing all aspects of attention. This paper summarizes the recent research results from our studies and previous studies in recent years in China. The level, temporal variation, seasonal variation and size distribution of the heavy metals of atmospheric Lead(Pb), Vanadium(V), Manganese(Mn), Nickel(Ni), Chromium(Cr), Cadmium(Cd), Copper(Cu), Zinc(Zn) and Arsenic(As) were characterized in China. The emission characteristics and sources of atmospheric heavy metals and As in China were reviewed. Coal burning, iron and steel industry and vehicle emission are important sources in China. Control policies and effects in China were reviewed including emission standards, ambient air quality standards, phase out of leaded gasoline and so on, and further works for atmospheric heavy metals control were suggested. The comprehensive heavy metals pollution control measures and suggestions were put forward based on the summarization of the development and experience of the atmospheric heavy metal pollution control abroad.

  3. Mobile Source Emissions Regulatory Compliance Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Mobile Source Emissions Regulatory Compliance Data Inventory data asset contains measured summary compliance information on light-duty, heavy-duty, and non-road...

  4. Field-emission liquid-metal ion source and triode ion gun

    International Nuclear Information System (INIS)

    Komuro, M.; Kawakatsu, H.

    1981-01-01

    A pointed-filament-type field-emission liquid-metal ion source is designed and employed as a gold ion source. By adding a crossbar across a hairpin bend, the amount of the gold adhering on the filament is increased. The lifetime is estimated to be over 200 h at 10-mA emission current. The emission current increases with increasing extraction voltage up to a saturation value which is ascribed to a limitation of the supply of liquid gold to the needle apex. The value of current density per unit solid angle is 30 mA/sr at a total current of 30 mA, which is of the same order as that obtained from a gallium ion source previously reported. Emission current fluctuations of a few tens of percent of the dc component are observed. In order to regulate the emission current and suppress current fluctuations, a bias electrode in addition to a counterelectrode is placed close to the needle apex. With such a triode structure, the emission current is regulated by a bias voltage of several hundred volts and stabilized to within 1% by means of feedback to the bias voltage of a current monitor output

  5. ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Tomoya; Matsumoto, Naoko [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka-shi, Tokyo 181-8588 (Japan); Machida, Masahiro N.; Matsushita, Yuko [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395 (Japan); Motogi, Kazuhito; Honma, Mareki [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Hoshigaoka2-12, Mizusawa-ku, Oshu-shi, Iwate 023-0861 (Japan); Kim, Mi Kyoung [Korea Astronomy and Space Science Institute, Hwaam-dong 61-1, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Burns, Ross A., E-mail: tomoya.hirota@nao.ac.jp [Joint Institute for VLBI in Europe, Postbus 2, 7990 AA, Dwingeloo (Netherlands)

    2016-12-20

    We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperature is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.

  6. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    Science.gov (United States)

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  7. Legal and financial methods for reducing low emission sources: Options for incentives

    Energy Technology Data Exchange (ETDEWEB)

    Samitowski, W. [Office of Economic and Legal Advisors POLINVEST Ltd., Cracow (Poland)

    1995-12-31

    There are two types of the so-called low emission sources in Cracow: over 1,000 local boiler houses and several thousand solid fuel-fired stoves. The accomplishment of each of 5 sub-projects offered under the American-Polish program entails solving the technical, financial, legal and public relations-related problems. The elimination of the low emission source requires, therefore, a joint effort of the following pairs: (a) local authorities, (b) investors, (c) owners and users of low emission sources, and (d) inhabitants involved in particular projects. The results of the studies developed by POLINVEST indicate that the accomplishment of the projects for the elimination of low emission sources will require financial incentives. Bearing in mind the today`s resources available from the community budget, this process may last as long as a dozen or so years. The task of the authorities of Cracow City is making a long-range operational strategy enabling reduction of low emission sources in Cracow.

  8. A 2009 Mobile Source Carbon Dioxide Emissions Inventory for the University of Central Florida.

    Science.gov (United States)

    Clifford, Johanna M; Cooper, C David

    2012-09-01

    A mobile source carbon dioxide (CO2) emissions inventory for the University of Central Florida (UCF) has been completed. Fora large urban university, more than 50% of the CO2 emissions can come from mobile sources, and the vast majority of mobile source emissions come from on-road sources: personal vehicles and campus shuttles carrying students, faculty, staff and administrators to and from the university as well as on university business trips. In addition to emissions from on-road vehicles, emissions from airplane-based business travel are significant, along with emissions from nonroad equipment such as lawnmowers, leaf blowers, and small maintenance vehicles utilized on campus. UCF has recently become one of the largest universities in the nation (with over 58,000 students enrolled in the fall 2011 semester) and emits a substantial amount of CO2 in the Central Florida area. For this inventory, students, faculty, staff and administrators were first surveyed to determine their commuting distances and frequencies. Information was also gathered on vehicle type and age distribution of the personal vehicles of students, faculty, administrators, and staff as well as their bus, car-pool, and alternate transportation usage. The latest US. Environmental Protection Agency (EPA)-approved mobile source emissions model, Motor Vehicle Emissions Simulator (MOVES2010a), was used to calculate the emissions from on-road vehicles, and UCF fleet gasoline consumption records were used to calculate the emissions from nonroad equipment and from on-campus UCF fleet vehicles. The results of this UCF mobile source emissions inventory were compared with those for another large U.S. university. With the growing awareness of global climate change, a number of colleges/universities and other organizations are completing greenhouse gas emission inventories. Assumptions often are made in order to calculate mobile source emissions, but without field data or valid reasoning, the accuracy of those

  9. Impacts of Aging Emission Control Systems on In-Use Heavy-Duty Diesel Truck Emission Rates

    Science.gov (United States)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2017-12-01

    Heavy-duty diesel trucks are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems have become standard equipment on new trucks. Particle filters can also be installed as a retrofit on older engines. Prior work has shown that exhaust filters and SCR systems effectively reduce BC and NOx emission rates by up to 90 and 80%, respectively (Preble et al., ES&T 2015). There is concern, however, that DPFs may promote the formation of ultrafine particles (UFP) and increase tailpipe emissions of nitrogen dioxide (NO2). Additionally, urea-based SCR systems for NOx control may form nitrous oxide (N2O), an important contributor to stratospheric ozone depletion. The effectiveness of these emission controls has been thoroughly evaluated in the laboratory, but the long-term durability of in-use systems and their impacts on co-emitted species have not been well characterized. To evaluate the in-use performance of DPF and SCR systems, pollutant emissions from thousands of diesel trucks were measured over several years at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Pollutants present in the exhaust plumes of individual trucks were measured at high time resolution (≥1 Hz) as trucks passed under a mobile lab stationed on an overpass. Fuel-based emission factors (g pollutant emitted per kg fuel burned) were calculated for individual trucks and linked via recorded license plates to vehicle attributes, including engine model year and installed emission control systems. Use of DPFs reduced the BC emission rate by up to 95% at both locations. SCR systems were more effective at reducing NOx emissions under the uphill, highway driving conditions at the Caldecott Tunnel. The emission rates of co-emitted species NO2, UFP, and N2O depended on driving

  10. An evaluation of the use of mobile source emissions trading: Locomotive case study

    International Nuclear Information System (INIS)

    West, W.R.; Brazell, M.M.

    1993-01-01

    There are many proposals for generating mobil source credits for use by stationary and other sources. This paper examines the benefits and practicality of including locomotive rail emissions in proposed emissions trading programs in california. In particular, this paper examines (1) if trading of locomotive rail emissions will result in lower compliance costs for railroads than traditional open-quotes command and controlclose quotes approaches, and (2) if emissions trading programs provide large enough incentives to entice railroads to seek to meet or exceed expected emissions reduction open-quotes command and controlclose quotes targets. The paper also examines under what circumstances stationary sources would be willing to purchase mobile source credits from railroads, in order to offset some of the stationary source's emissions reductions requirements. Stated simply, this analysis examines whether proposed trading programs offer enough benefits to both trading partners to warrant their use

  11. Screening the Emission Sources of Volatile Organic Compounds (VOCs) in China Based on Multi-effect Evaluation

    Science.gov (United States)

    Niu, H., Jr.

    2015-12-01

    Volatile organic compounds (VOCs) in the atmosphere have adverse impacts via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Few studies have integrated these effects to prioritize control measures for VOCs sources. In this study, we developed a multi-effect evaluation methodology based on updated emission inventories and source profiles, which was combined with ozone formation potential (OFP), secondary organic aerosol potential (SOAP), and VOC toxicity data to identify important emission sources and key species. We derived species-specific emission inventories for 152 sources. The OFPs, SOAPs, and toxicity of each source were determined, and the contribution and share of each source to each of these adverse effects was calculated. Weightings were given to the three adverse effects by expert scoring, and the integrated impact was determined. Using 2012 as the base year, solvent usage and industrial process were found to be the most important anthropogenic sources, accounting for 24.2 and 23.1% of the integrated environmental effect, respectively. This was followed by biomass burning, transportation, and fossil fuel combustion, all of which had a similar contribution ranging from 16.7 to 18.6%. The top five industrial sources, including plastic products, rubber products, chemical fiber products, the chemical industry, and oil refining, accounted for nearly 70.0% of industrial emissions. In China, emissions reductions are required for styrene, toluene, ethylene, benzene, and m/p-xylene. The 10 most abundant chemical species contributed 76.5% of the integrated impact. Beijing, Chongqing, Shanghai, Jiangsu, and Guangdong were the five leading provinces when considering the integrated effects. Besides, the chemical mass balance model (CMB) was used to verify the VOCs inventories of 47 cities in China, so as to optimize our evaluation results. We suggest that multi-effect evaluation is necessary to

  12. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region

    Science.gov (United States)

    Pirrone, N.; Costa, P.; Pacyna, J. M.; Ferrara, R.

    This report discusses past, current and projected mercury emissions to the atmosphere from major industrial sources, and presents a first assessment of the contribution to the regional mercury budget from selected natural sources. Emissions (1995 estimates) from fossil fuels combustion (29.8 t yr -1) , cement production (28.8 t yr -1) and incineration of solid wastes (27.6 t yr -1) , all together account for about 82% of the regional anthropogenic total (105.7 t yr -1) . Other industrial sources in the region are smelters (4.8 t yr -1) , iron-steel plants (4.8 t yr -1) and other minor sources (chlor-alkali plants, crematoria, chemicals production) that have been considered together in the miscellaneous category (9.6 t yr -1) . Regional emissions from anthropogenic sources increased at a rate of 3% yr-1 from 1983 to 1995 and are projected to increase at a rate of 1.9% yr-1 in the next 25 years, if no improvement in emission control policy occurs. On a country-by-country basis, France is the leading emitter country with 22.6 t yr -1 followed by Turkey (16.1 t yr -1) , Italy (11.4 t yr -1) , Spain (9.1 t yr -1) , the former Yugoslavia 7.9 ( t yr -1) , Morocco (6.9 t yr -1) , Bulgaria (6.8 t yr -1) , Egypt (6.1 t yr -1) , Syria (3.6 t yr -1) , Libya (2.9 t yr -1) , Tunisia (2.8 t yr -1) and Greece (2.7 t yr -1) , whereas the remaining countries account for less than 7% of the regional total. The annual emission from natural sources is 110 t yr -1, although this figure only includes the volatilisation of elemental mercury from surface waters and emissions from volcanoes, whereas the contribution due to the degassing of mercury from top soil and vegetation has not been included in this first assessment. Therefore, natural and anthropogenic sources in the Mediterranean region release annually about 215 t of mercury, which represents a significant contribution to the total mercury budget released in Europe and to the global atmosphere.

  13. Agricultural sources of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Rochette, P.

    2003-01-01

    The author described different sources of greenhouse gas emissions resulting from agricultural activities and the process by which carbon dioxide, nitrous oxide, and methane are generated on Canadian farms. The author also proposed some practices that would contribute to the reduction of greenhouse gas emissions. A brief description of the greenhouse effect was also provided with special emphasis on the agricultural sector. In 1996, the Canadian agricultural sector was responsible for approximately 10 per cent of greenhouse gas emissions in the country. Given the increase in farm animals and more intensive agricultural activities, it is estimated that greenhouse gas emissions generated by the agricultural sector will increase by 20 per cent by 2010 if current practices remain in effect. The most optimistic scenarios indicate that the agricultural sector could achieve or even exceed Canada's Kyoto Protocol commitments mainly through organic material sequestration in soils. The possibility for farmers to sell greenhouse gas credits could motivate farmers into adopting various practices that reduce emissions of greenhouse gases. However, the author indicated that the best motivation for farmers is the fact that adopting such practices would also lead to more efficient agricultural production. 5 refs., 4 figs

  14. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China.

    Science.gov (United States)

    Ou, Jiamin; Zheng, Junyu; Li, Rongrong; Huang, Xiaobo; Zhong, Zhuangmin; Zhong, Liuju; Lin, Hui

    2015-10-15

    The increasing ground-ozone (O3) levels, accompanied by decreasing SO2, NO2, PM10 and PM2.5 concentrations benefited from air pollution control measures implemented in recent years, initiated a serious challenge to control Volatile Organic Compound (VOC) emissions in the Pearl River Delta (PRD) region, China. Speciated VOC emission inventory is fundamental for estimating Ozone Formation Potentials (OFPs) to identify key reactive VOC species and sources in order to formulate efficient O3 control strategies. With the use of the latest bulk VOC emission inventory and local source profiles, this study developed the PRD regional speciated Oxygenated Volatile Organic Compound (OVOC) and VOC emission inventories to identify the key emission-based and OFP-based VOC sources and species. Results showed that: (1) Methyl alcohol, acetone and ethyl acetate were the major constituents in the OVOC emissions from industrial solvents, household solvents, architectural paints and biogenic sources; (2) from the emission-based perspective, aromatics, alkanes, OVOCs and alkenes made up 39.2%, 28.2%, 15.9% and 10.9% of anthropogenic VOCs; (3) from the OFP-based perspective, aromatics and alkenes become predominant with contributions of 59.4% and 25.8% respectively; (4) ethene, m/p-xylene, toluene, 1,2,4-trimethyl benzene and other 24 high OFP-contributing species were the key reactive species that contributed to 52% of anthropogenic emissions and up to 80% of OFPs; and (5) industrial solvents, industrial process, gasoline vehicles and motorcycles were major emission sources of these key reactive species. Policy implications for O3 control strategy were discussed. The OFP cap was proposed to regulate VOC control policies in the PRD region due to its flexibility in reducing the overall OFP of VOC emission sources in practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Mercury emissions control technologies for mixed waste thermal treatment

    International Nuclear Information System (INIS)

    Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D.

    1997-01-01

    EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates

  16. Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control

    Directory of Open Access Journals (Sweden)

    Magdalena Penkała

    2018-01-01

    Full Text Available Along with house heating and industry, emissions from road traffic (exhaust and tire, brake, car body or road surface abrasions are one of the primary sources of particulate matter (PM in the atmosphere in urban areas. Though numerous regulations and vehicle-control mechanisms have led to a significant decline of PM emissions from vehicle exhaust gases, other sources of PM remain related to road and car abrasion are responsible for non-exhaust emissions. Quantifying these emissions is a hard problem in both laboratory and field conditions. First, we must recognize the physicochemical properties of the PM that is emitted by various non-exhaust sources. In this paper, we underline the problem of information accessibility with regards to the properties and qualities of PM from non-exhaust sources. We also indicate why scarce information is available in order to find the possible solution to this ongoing issue.

  17. Satellite constraint for emissions of nitrogen oxides from anthropogenic, lightning and soil sources over East China on a high-resolution grid

    Directory of Open Access Journals (Sweden)

    J.-T. Lin

    2012-03-01

    Full Text Available Vertical column densities (VCDs of tropospheric nitrogen dioxide (NO2 retrieved from space provide valuable information to estimate emissions of nitrogen oxides (NOx inversely. Accurate emission attribution to individual sources, important both for understanding the global biogeochemical cycling of nitrogen and for emission control, remains difficult. This study presents a regression-based multi-step inversion approach to estimate emissions of NOx from anthropogenic, lightning and soil sources individually for 2006 over East China on a 0.25° long × 0.25° lat grid, employing the DOMINO product version 2 retrieved from the Ozone Monitoring Instrument. The inversion is done gridbox by gridbox to derive the respective emissions, taking advantage of differences in seasonality between anthropogenic and natural sources. Lightning and soil emissions are combined together for any given gridbox due to their similar seasonality; and their different spatial distributions are used implicitly for source separation to some extent. The nested GEOS-Chem model for East Asia is used to simulate the seasonal variations of different emission sources and impacts on VCDs of NO2 for the inversion purpose. Sensitivity tests are conducted to evaluate key assumptions embedded in the inversion process. The inverse estimate suggests annual budgets of about 7.1 TgN (±39%, 0.21 TgN (±61%, and 0.38 TgN (±65% for the a posteriori anthropogenic, lightning and soil emissions, respectively, about 18–23% higher than the respective a priori values. The enhancements in anthropogenic emissions are largest in cities and areas with extensive use of coal, particularly in the north in winter, as evident on the high-resolution grid. Derived soil emissions are consistent with recent bottom-up estimates. They are less than 6% of anthropogenic emissions annually, increasing to about 13% for July. Derived lightning emissions are about 3% of

  18. Waveguide source of amplified spontaneous emission ASE 1550 nm

    International Nuclear Information System (INIS)

    Razik, M.; Budnicki, A.; Abramski, M.

    2003-01-01

    Light source of amplified spontaneous emission (ASE) type has been built on the base of double-clad waveguide doped with ytterbium and erbium. The characteristics and applications of the ASE source have been also presented

  19. Airborne reduced nitrogen: ammonia emissions from agriculture and other sources.

    Science.gov (United States)

    Anderson, Natalie; Strader, Ross; Davidson, Cliff

    2003-06-01

    Ammonia is a basic gas and one of the most abundant nitrogen-containing compounds in the atmosphere. When emitted, ammonia reacts with oxides of nitrogen and sulfur to form particles, typically in the fine particle size range. Roughly half of the PM(2.5) mass in eastern United States is ammonium sulfate, according to the US EPA. Results from recent studies of PM(2.5) show that these fine particles are typically deposited deep in the lungs and may lead to increased morbidity and/or mortality. Also, these particles are in the size range that will degrade visibility. Ammonia emission inventories are usually constructed by multiplying an activity level by an experimentally determined emission factor for each source category. Typical sources of ammonia include livestock, fertilizer, soils, forest fires and slash burning, industry, vehicles, the oceans, humans, pets, wild animals, and waste disposal and recycling activities. Livestock is the largest source category in the United States, with waste from livestock responsible for about 3x10(9) kg of ammonia in 1995. Volatilization of ammonia from livestock waste is dependent on many parameters, and thus emission factors are difficult to predict. Despite a seasonal variation in these values, the emission factors for general livestock categories are usually annually averaged in current inventories. Activity levels for livestock are from the USDA Census of Agriculture, which does not give information about animal raising practices such as housing types and grazing times, waste handling systems, and approximate animal slurry spreading times or methods. Ammonia emissions in the United States in 1995 from sources other than livestock are much lower; for example, annual emissions are roughly 8x10(8) kg from fertilizer, 7x10(7) kg from industry, 5x10(7) kg from vehicles and 1x10(8) kg from humans. There is considerable uncertainty in the emissions from soil and vegetation, although this category may also be significant

  20. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source

    Science.gov (United States)

    Liu, Jun; Mauzerall, Denise L.; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R.; Zhu, Tong

    2016-01-01

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m−3 (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m−3; mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m−3 (40 ± 9% of 67 ± 41 μg⋅m−3), 44 ± 27 μg⋅m−3 (43 ± 10% of 99 ± 54 μg⋅m−3), and 25 ± 14 μg⋅m−3 (35 ± 8% of 70 ± 35 μg⋅m−3) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level. PMID:27354524

  1. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    Science.gov (United States)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and

  2. The infrared emission bands. III. Southern IRAS sources.

    Science.gov (United States)

    Cohen, M; Tielens, A G; Bregman, J; Witteborn, F C; Rank, D M; Allamandola, L J; Wooden, D H; de Muizon, M

    1989-06-01

    We present airborne 5-8 micrometers spectra of southern IRAS sources which reveal strong polycyclic aromatic hydrocarbon (PAH) emission features. The good correlation between the bands, in particular the dominant 6.2 and "7.7" micrometers features, strongly imply a common carrier, reinforcing the PAH hypothesis. However, small but detectable spectral variations exist. Planetaries have a distinctly different ratio of I(6.2)/I(7.7) than other nebulae, accompanied by a redward shift in the actual wavelength of the "7.7" micrometers peak. Further, we have detected a new feature, previously predicted from laboratory spectra of PAH molecules, at 5.2 micrometers in many of these sources. Spectra of two rare [WC 10] planetary nebular nuclei indicate a very prominent plateau of emission, linking the 6.2 and 7.7 micrometers bands. Several of our sources show definite evidence for emission structure between 14 and 23 micrometers in their IRAS Low-Resolution Spectral Atlas spectra: we attribute this structure to PAH bands. too. We have defined the "generic" spectrum of emission bands relating the mean intensities of each band to that of the strongest, near 7.7 micrometers. We have added three more planetary or protoplanetary nebulae to our correlation between 7.7 micrometers band intensity and nebular gas phase C/O ratio, namely NGC 6302, HR 4049, and the highly carbon-rich [WC 10] nucleus, CPD--56 degrees 8032. For the latter we have determined a ratio for C/O of approximately 4.8 from IUE observations. The good correlation between the intensity ratio of the "7.7" micrometers feature relative to the far-infrared dust continuum and nebular C/O also supports a carbonaceous carrier for these emission features.

  3. Method to Locate Contaminant Source and Estimate Emission Strength

    Directory of Open Access Journals (Sweden)

    Qu Hongquan

    2013-01-01

    Full Text Available People greatly concern the issue of air quality in some confined spaces, such as spacecraft, aircraft, and submarine. With the increase of residence time in such confined space, contaminant pollution has become a main factor which endangers life. It is urgent to identify a contaminant source rapidly so that a prompt remedial action can be taken. A procedure of source identification should be able to locate the position and to estimate the emission strength of the contaminant source. In this paper, an identification method was developed to realize these two aims. This method was developed based on a discrete concentration stochastic model. With this model, a sensitivity analysis algorithm was induced to locate the source position, and a Kalman filter was used to further estimate the contaminant emission strength. This method could track and predict the source strength dynamically. Meanwhile, it can predict the distribution of contaminant concentration. Simulation results have shown the virtues of the method.

  4. Polychlorinated Biphenyl Sources, Emissions, and Environmental Levels in school Buildings (PCB Workshop presentation)

    Science.gov (United States)

    Measure PCB emission rates from primary sources in laboratory chambersMeasure transport and sorption by materials and dust in laboratory chambersCharacterize PCBs in school building materialsEstimate PCB emission rates from sources in schoolsExamine congener patterns in sources a...

  5. Anthropogenic Methane Emissions in California's San Joaquin Valley: Characterizing Large Point Source Emitters

    Science.gov (United States)

    Hopkins, F. M.; Duren, R. M.; Miller, C. E.; Aubrey, A. D.; Falk, M.; Holland, L.; Hook, S. J.; Hulley, G. C.; Johnson, W. R.; Kuai, L.; Kuwayama, T.; Lin, J. C.; Thorpe, A. K.; Worden, J. R.; Lauvaux, T.; Jeong, S.; Fischer, M. L.

    2015-12-01

    Methane is an important atmospheric pollutant that contributes to global warming and tropospheric ozone production. Methane mitigation could reduce near term climate change and improve air quality, but is hindered by a lack of knowledge of anthropogenic methane sources. Recent work has shown that methane emissions are not evenly distributed in space, or across emission sources, suggesting that a large fraction of anthropogenic methane comes from a few "super-emitters." We studied the distribution of super-emitters in California's southern San Joaquin Valley, where elevated levels of atmospheric CH4 have also been observed from space. Here, we define super-emitters as methane plumes that could be reliably detected (i.e., plume observed more than once in the same location) under varying wind conditions by airborne thermal infrared remote sensing. The detection limit for this technique was determined to be 4.5 kg CH4 h-1 by a controlled release experiment, corresponding to column methane enhancement at the point of emissions greater than 20% above local background levels. We surveyed a major oil production field, and an area with a high concentration of large dairies using a variety of airborne and ground-based measurements. Repeated airborne surveys (n=4) with the Hyperspectral Thermal Emission Spectrometer revealed 28 persistent methane plumes emanating from oil field infrastructure, including tanks, wells, and processing facilities. The likelihood that a given source type was a super-emitter varied from roughly 1/3 for processing facilities to 1/3000 for oil wells. 11 persistent plumes were detected in the dairy area, and all were associated with wet manure management. The majority (11/14) of manure lagoons in the study area were super-emitters. Comparing to a California methane emissions inventory for the surveyed areas, we estimate that super-emitters comprise a minimum of 9% of inventoried dairy emissions, and 13% of inventoried oil emissions in this region.

  6. Numerical simulations for the sources apportionment and control strategies of PM2.5 over Pearl River Delta, China, part I: Inventory and PM2.5 sources apportionment.

    Science.gov (United States)

    Huang, Yeqi; Deng, Tao; Li, Zhenning; Wang, Nan; Yin, Chanqin; Wang, Shiqiang; Fan, Shaojia

    2018-09-01

    This article uses the WRF-CMAQ model to systematically study the source apportionment of PM 2.5 under typical meteorological conditions in the dry season (November 2010) in the Pearl River Delta (PRD). According to the geographical location and the relative magnitude of pollutant emission, Guangdong Province is divided into eight subdomains for source apportionment study. The Brute-Force Method (BFM) method was implemented to simulate the contribution from different regions to the PM 2.5 pollution in the PRD. Results show that the industrial sources accounted for the largest proportion. For emission species, the total amount of NO x and VOC in Guangdong Province, and NH 3 and VOC in Hunan Province are relatively larger. In Guangdong Province, the emission of SO 2 , NO x and VOC in the PRD are relatively larger, and the NH 3 emissions are higher outside the PRD. In northerly-controlled episodes, model simulations demonstrate that local emissions are important for PM 2.5 pollution in Guangzhou and Foshan. Meanwhile, emissions from Dongguan and Huizhou (DH), and out of Guangdong Province (SW) are important contributors for PM 2.5 pollution in Guangzhou. For PM 2.5 pollution in Foshan, emissions in Guangzhou and DH are the major contributors. In addition, high contribution ratio from DH only occurs in severe pollution periods. In southerly-controlled episode, contribution from the southern PRD increases. Local emissions and emissions from Shenzhen, DH, Zhuhai-Jiangmen-Zhongshan (ZJZ) are the major contributors. Regional contribution to the chemical compositions of PM 2.5 indicates that the sources of chemical components are similar to those of PM 2.5 . In particular, SO 4 2- is mainly sourced from emissions out of Guangdong Province, while the NO 3- and NH 4+ are more linked to agricultural emissions. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. REGIONAL DRAINWATER MANAGEMENT: SOURCE CONTROL, AGROFORESTRY, AND EVAPORATION PONDS

    OpenAIRE

    Posnikoff, Judith F.; Knapp, Keith C.

    1996-01-01

    Source control is one way to address salinity and drainage problems in irrigated agriculture, and reuse of drainage flows on salt-tolerant crops or trees in agroforestry production is another. A regional model of agricultural production with drainwater reuse and disposal is developed. Deep percolation flows are controlled through choice of crop areas, irrigation systems, and applied-water quantities. Crop drainwater may by reused in agroforestry production, and residual emissions are disposed...

  8. Experimental Development of Low-emittance Field-emission Electron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Lueangaranwong, A. [Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Buzzard, C. [Northern Illinois Univ., DeKalb, IL (United States); Divan, R. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Korampally, V. [Northern Illinois Univ., DeKalb, IL (United States); Piot, P. [Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-10-10

    Field emission electron sources are capable of extreme brightness when excited by static or time-dependent electro- magnetic fields. We are currently developing a cathode test stand operating in DC mode with possibility to trigger the emission using ultra-short (~ 100-fs) laser pulses. This contribution describes the status of an experiment to investigate field-emission using cathodes under development at NIU in collaboration with the Argonne’s Center for Nanoscale Materials.

  9. A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    V. E. Fioletov

    2016-09-01

    Full Text Available Sulfur dioxide (SO2 measurements from the Ozone Monitoring Instrument (OMI satellite sensor processed with the new principal component analysis (PCA algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr−1 to more than 4000 kt yr−1 of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources; power plants (297; smelters (53; and sources related to the oil and gas industry (65. The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005–2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30 % of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80 % over the 2005–2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr−1 and not detected by OMI.

  10. A Global Catalogue of Large SO2 Sources and Emissions Derived from the Ozone Monitoring Instrument

    Science.gov (United States)

    Fioletov, Vitali E.; McLinden, Chris A.; Krotkov, Nickolay; Li, Can; Joiner, Joanna; Theys, Nicolas; Carn, Simon; Moran, Mike D.

    2016-01-01

    Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr(exp -1) to more than 4000 kt yr(exp -1) of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005- 2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30% of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80% over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr(exp -1) and not detected by OMI.

  11. Mercury emission, control and measurement from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering; Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Cao, Yan [Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Zhang, Kai [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering

    2013-07-01

    Coal-fired electric power generation accounts for 65% of U.S. emissions of sulfur dioxide (SO2), 22% of nitrogen oxides (NOx), and 37% of mercury (Hg). The proposed Clear Air Interstate Rule (CAIR) and Clean Air Mercury Rule (CAMR) will attempt to regulate these emissions using a cap-and-trade program to replace a number of existing regulatory requirements that will impact this industry over the next decade. Mercury emissions remain the largest source that has not yet been efficiently controlled, in part because this is one of the most expensive to control. Mercury is a toxic, persistent pollutant that accumulates in the food chain. During the coal combustion process, when both sampling and accurate measurements are challenging, we know that mercury is present in three species: elemental, oxidized and particulate. There are three basic types of mercury measurement methods: Ontario Hydro Method, mercury continuous emission monitoring systems (CEMS) and sorbent-based monitoring. Particulate mercury is best captured by electrostatic precipitators (ESP). Oxidized mercury is best captured in wet scrubbers. Elemental mercury is the most difficult to capture, but selective catalytic reduction units (SCRs) are able to convert elemental mercury to oxidized mercury allowing it to be captured by wet flue gas desulfurization (FGD). This works well for eastern coals with high chlorine contents, but this does not work well on the Wyoming Powder River Basin (PRB) coals. However, no good explanation for its mechanism, correlations of chlorine content in coal with SCR performance, and impacts of higher chlorine content in coal on FGD re-emission are available. The combination of SCR and FGD affords more than an 80% reduction in mercury emissions in the case of high chlorine content coals. The mercury emission results from different coal ranks, boilers, and the air pollution control device (APCD) in power plant will be discussed. Based on this UAEPA new regulation, most power plants

  12. An atmospheric emission inventory of anthropogenic and biogenic sources for Lebanon

    Science.gov (United States)

    Waked, Antoine; Afif, Charbel; Seigneur, Christian

    2012-04-01

    A temporally-resolved and spatially-distributed emission inventory was developed for Lebanon to provide quantitative information for air pollution studies as well as for use as input to air quality models. This inventory covers major anthropogenic and biogenic sources in the region with 5 km spatial resolution for Lebanon and 1 km spatial resolution for its capital city Beirut and its suburbs. The results obtained for CO, NOx, SO2, NMVOC, NH3, PM10 and PM2.5 for the year 2010 were 563, 75, 62, 115, 4, 12, and 9 Gg, respectively. About 93% of CO emissions, 67% of NMVOC emissions and 52% of NOx emissions are calculated to originate from the on-road transport sector while 73% of SO2 emissions, 62% of PM10 emissions and 59% of PM2.5 emissions are calculated to originate from power plants and industrial sources. The spatial allocation of emissions shows that the city of Beirut and its suburbs encounter a large fraction of the emissions from the on-road transport sector while urban areas such as Zouk Mikael, Jieh, Chekka and Selaata are mostly affected by emissions originating from the industrial and energy production sectors. Temporal profiles were developed for several emission sectors.

  13. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources

    Directory of Open Access Journals (Sweden)

    Cai Bo-Feng

    2014-01-01

    Citation: Cai, B.-F., Liu, J.-G., Gao, Q.-X., et al., 2014. Estimation of methane emissions from municipal solid waste landfills in China based on point emission sources. Adv. Clim. Change Res. 5(2, doi: 10.3724/SP.J.1248.2014.081.

  14. Inventory of emissions to the air from Danish sources 1972-1992

    International Nuclear Information System (INIS)

    Fenhann, J.; Kilde, N.A.

    1994-07-01

    The report covers the emissions to the air from Danish sources in the period 1972-1992. The pollutant covered are SO 2 , NO x , CH 4 , N 2 O, NMVOC, CO, ultimate CO 2 and at source CO 2 . Both energy and non-energy sources are covered. For each energy sector, like power plants, district heating plants, process, residential and transport time series for the various fuels consumed and resulting emissions are shown. The full table of emission factors used are presented. The result are additionally shown in the IPCC format. The report was a background report to the report 'climate protection in Denmark' the National report of the Danish Government in accordance with the United Nations Framework Convention on Climate on Climate Change. (au) 38 refs

  15. Towards controlling dioxins emissions from power boilers fuelled with salt-laden wood waste

    International Nuclear Information System (INIS)

    Luthe, C.; Karidio, I.; Uloth, V.

    1997-01-01

    An evaluation of the dioxins emissions from a power boiler fuelled with salt-laden wood waste has provided insights on potential control technologies. Whereas a reduction in stack particulate levels does not preclude a corresponding reduction in dioxins emissions, good combustion conditions, in combination with an efficient secondary collection device for particulate removal, were found to offer effective control (stack emissions of 0.064 to 0.086 ng TEQ/m 3 ). Regarding minimization of dioxins formation at source, a preliminary assessment of the possible beneficial effect of an attenuated chlorine:sulphur ratio was encouraging. A more accurate assessment requires additional trials, preferably longer in duration, to eliminate any possible memory effects. (author)

  16. Danish emission inventories for road transport and other mobile sources

    DEFF Research Database (Denmark)

    Winther, M.

    gasoline catalyst cars. For other mobile sources the fuel use, CO2 and NOX emissions have decreased with 15% from 1985 to 2002, and the PM emission decline is in the order of 13%. For SO2 the emission drop is 74% from 1985 to 2002, due to gradually lower fuel sulphur contents. In the same period...... the emissions of NMVOC and CO has increased with 32 and 6%, mainly due to the increased use of small gasoline boats. Uncertainties for the emissions and trends have been estimated...

  17. Identification of emission sources of umbral flashes using phase congruency

    International Nuclear Information System (INIS)

    Feng Song; Yang Yun-Fei; Ji Kai-Fan; Yu Lan

    2014-01-01

    The emission sources of umbral flashes (UFs) are believed to be closely related to running umbral and penumbral waves, and are concluded to be associated with umbral dots in the solar photosphere. Accurate identification of emission sources of UFs is crucial for investigating these physical phenomena and their inherent relationships. A relatively novel model of shape perception, namely phase congruency (PC), uses phase information in the Fourier domain to identify the geometrical shape of the region of interest in different intensity levels, rather than intensity or gradient. Previous studies indicate that the model is suitable for identifying features with low contrast and low luminance. In the present paper, we applied the PC model to identify the emission sources of UFs and to locate their positions. For illustrating the high performance of our proposed method, two time sequences of Ca II H images derived from the Hinode/SOT on 2010 August 10 and 2013 August 20 were used. Furthermore, we also compared these results with the analysis results that are identified by the traditional/classical identification methods, including the gray-scale adjusted technique and the running difference technique. The result of our analysis demonstrates that our proposed method is more accurate and effective than the traditional identification methods when applied to identifying the emission sources of UFs and to locating their positions. (research papers)

  18. A Fuel-Based Assessment of On-Road and Off-Road Mobile Source Emission Trends

    Science.gov (United States)

    Dallmann, T. R.; Harley, R. A.

    2009-12-01

    Mobile sources contribute significantly to emissions of nitrogen oxides (NOx) and fine particulate matter (PM2.5) in the United States. These emissions lead to a variety of environmental concerns including adverse human health effects and climate change. In the electric power sector, sulfur dioxide (SO2) and NOx emissions from power plants are measured directly using continuous emission monitoring systems. In contrast for mobile sources, statistical models are used to estimate average emissions from a very large and diverse population of engines. Despite much effort aimed at improving them, mobile source emission inventories continue to have large associated uncertainties. Alternate methods are needed to help evaluate estimates of mobile source emissions and quantify and reduce the associated uncertainties. In this study, a fuel-based approach is used to estimate emissions from mobile sources, including on-road and off-road gasoline and diesel engines. In this approach, engine activity is measured by fuel consumed (in contrast EPA mobile source emission models are based on vehicle km of travel and total amount of engine work output for on-road and off-road engines, respectively). Fuel consumption is defined in this study based on highway fuel tax reports for on-road engines, and from surveys of fuel wholesalers who sell tax-exempt diesel fuel for use in various off-road sectors such as agriculture, construction, and mining. Over the decade-long time period (1996-2006) that is the focus of the present study, national sales of taxable gasoline and diesel fuel intended for on-road use increased by 15 and 43%, respectively. Diesel fuel use by off-road equipment increased by about 20% over the same time period. Growth in fuel consumption offset some of the reductions in pollutant emission factors that occurred during this period. This study relies on in-use measurements of mobile source emission factors, for example from roadside and tunnel studies, remote sensing, and

  19. Extended emission sources observed via two-proton correlations

    International Nuclear Information System (INIS)

    Awes, T.C.; Ferguson, R.L.; Obenshain, F.E.

    1988-01-01

    Two-proton correlations were measured as a function of the total energy and relative momentum of the proton. The correlation is analyzed for different orientations of the relative momentum, which allows information on the size and lifetime of the emission source to be extracted. The most energetic particles are emitted from a short- lived source of compound nucleus dimensions while the lower energy protons appear to be emitted from a source considerably larger than the compound nucleus. 9 refs., 3 figs

  20. Controlling radiated emissions by design

    CERN Document Server

    Mardiguian, Michel

    2014-01-01

    The 3rd edition of Controlling Radiated Emissions by Design has been updated to reflect the latest changes in the field. New to this edition is material related to technical advances, specifically super-fast data rates on wire pairs, with no increase in RF interference. Throughout the book, details are given to control RF emissions using EMC design techniques. This book retains the step-by-step approach for incorporating EMC into every new design from the ground up. It describes the selection of quieter IC technologies, their implementation into a noise-free printed circuit layout, and the gathering of these into a low emissions package. Also included is how to design an I/O filter, along with connectors and cable considerations. All guidelines are supported throughout with comprehensive calculated examples. Design engineers, EMC specialists, and technicians will benefit from learning about the development of more efficient and economical control of emissions.

  1. Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data

    International Nuclear Information System (INIS)

    Squalli, Jay

    2017-01-01

    This paper examines the relationship between renewable energy production and greenhouse gas emissions (GHG) using U.S. state-level data for 2010. After controlling for other sources of emissions, U.S. states that produce a larger share of renewable energy are found to have lower GHG emissions. It is estimated that a 10% increase in the share of renewable energy could decrease CH_4 emissions by about 0.26%. Since the use of renewable energy sources does not release GHG emissions, this effect can be interpreted as stabilizing if renewable energy is added to coal use or as corrective if it replaces coal. After accounting for the role of coal as a baseload power source, an increase in the share of renewable energy is estimated to mitigate N_2O emissions at the U.S. state level only if states individually decrease their share of coal use to levels below 41.47%. These findings have significant policy implications for the provision of guidance to policymakers in identifying optimal energy mixes and in pursuing realistic goals to enhance renewable energy penetration and to contribute to the current efforts of tackling climate change. - Highlights: • The paper examines the link between renewable energy, coal, and GHG emissions. • The analysis accounts for the role of coal as a baseload power source. • A 10% increase in renewable energy share decreases CH_4 emissions by about 0.26%. • Renewable energy can mitigate emissions if the share of coal drops below 41.47%.

  2. A young source of optical emission from distant radio galaxies.

    Science.gov (United States)

    Hammer, F; Fèvre, O Le; Angonin, M C

    1993-03-25

    DISTANT radio galaxies provide valuable insights into the properties of the young Universe-they are the only known extended optical sources at high redshift and might represent an early stage in the formation and evolution of galaxies in general. This extended optical emission often has very complex morphologies, but the origin of the light is still unclear. Here we report spectroscopic observations for several distant radio galaxies (0.75≤ z ≤ 1.1) in which the rest-frame spectra exhibit featureless continua between 2,500 Å and 5,000 Å. We see no evidence for the break in the spectrum at 4,000 Å expected for an old stellar population 1-3 , and suggest that young stars or scattered emissions from the active nuclei are responsible for most of the observed light. In either case, this implies that the source of the optical emission is com-parable in age to the associated radio source, namely 10 7 years or less.

  3. Applications of Ground-based Mobile Atmospheric Monitoring: Real-time Characterization of Source Emissions and Ambient Concentrations

    Science.gov (United States)

    Goetz, J. Douglas

    Gas and particle phase atmospheric pollution are known to impact human and environmental health as well as contribute to climate forcing. While many atmospheric pollutants are regulated or controlled in the developed world uncertainty still remains regarding the impacts from under characterized emission sources, the interaction of anthropogenic and naturally occurring pollution, and the chemical and physical evolution of emissions in the atmosphere, among many other uncertainties. Because of the complexity of atmospheric pollution many types of monitoring have been implemented in the past, but none are capable of perfectly characterizing the atmosphere and each monitoring type has known benefits and disadvantages. Ground-based mobile monitoring with fast-response in-situ instrumentation has been used in the past for a number of applications that fill data gaps not possible with other types of atmospheric monitoring. In this work, ground-based mobile monitoring was implemented to quantify emissions from under characterized emission sources using both moving and portable applications, and used in a novel way for the characterization of ambient concentrations. In the Marcellus Shale region of Pennsylvania two mobile platforms were used to estimate emission rates from infrastructure associated with the production and transmission of natural gas using two unique methods. One campaign investigated emissions of aerosols, volatile organic compounds (VOCs), methane, carbon monoxide (CO), nitrogen dioxide (NO2), and carbon dioxide (CO 2) from natural gas wells, well development practices, and compressor stations using tracer release ratio methods and a developed fenceline tracer release correction factor. Another campaign investigated emissions of methane from Marcellus Shale gas wells and infrastructure associated with two large national transmission pipelines using the "Point Source Gaussian" method described in the EPA OTM-33a. During both campaigns ambient concentrations

  4. EFFECT OF THE TYPE OF HEAT SOURCES ON CARBON DIOXIDE EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sławomir Rabczak

    2016-11-01

    Full Text Available A lot of attention is nowadays devoted to the problem of generally defined ecology. It is absolutely essential in case of systems and sources generating heat due to their direct influence on the environment through emitting post-process products to the atmosphere which are, most frequently a result of combustion. Therefore, constant searchers are made to optimize the operation of heat sources and to acquire energy from sources for which the general balance of carbon dioxide emission is zero or close to zero. This work compares the emissions of equivalent CO2 from selected systems with the following heat sources: coal, gas furnace, heat pump, and refers results of the analysis to aspects connected with regulations concerning environmental protection. The systems generating thermal energy in the gas furnaces, coal, biomass, as well as the compression heat pumps with the lower heat source as ambient air or ground were taken under consideration, as well as centralized systems for the production of heat based on the combustion of coal, gas, oil, and biomass. the Emission of carbon dioxide for the installation of cogeneration and absorption heat pump were also calculated. Similarly obtained amount of extra emission necessary for the proper operation maintenance of heating devices via the supplied electricity from external source, the mostly fuel-fired power plants for fuels as previously mentioned. The results of the calculations were presented in tables and graphs.

  5. Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources

    Science.gov (United States)

    Nelson, Peter F.; Morrison, Anthony L.; Malfroy, Hugh J.; Cope, Martin; Lee, Sunhee; Hibberd, Mark L.; Meyer, C. P. (Mick); McGregor, John

    2012-12-01

    The United Nations Environment Programme (UNEP) has begun a process of developing a legally binding instrument to manage emissions of mercury from anthropogenic sources. The UNEP Governing Council has concluded that there is sufficient evidence of significant global adverse impacts from mercury to warrant further international action; and that national, regional and global actions should be initiated as soon as possible to identify populations at risk and to reduce human generated releases. This paper describes the development of, and presents results from, a comprehensive, spatially and temporally resolved inventory of atmospheric mercury emissions from the Australian landmass. Results indicate that the best estimate of total anthropogenic emissions of mercury to the atmosphere in 2006 was 15 ± 5 tonnes. Three industrial sectors contribute substantially to Australian anthropogenic emissions: gold smelting (˜50%, essentially from a single site/operation), coal combustion in power plants (˜15%) and alumina production from bauxite (˜12%). A diverse range of other sectors contribute smaller proportions of the emitted mercury, but industrial emissions account for around 90% of total anthropogenic mercury emissions. The other sectors include other industrial sources (mining, smelting, and cement production) and the use of products containing mercury. It is difficult to determine historical trends in mercury emissions given the large uncertainties in the data. Estimates for natural and re-emitted emissions from soil, water, vegetation and fires are made using meteorological models, satellite observations of land cover and soil and vegetation type, fuel loading, fire scars and emission factors which account for the effects of temperature, insolation and other environmental variables. These natural and re-emitted sources comfortably exceed the anthropogenic emissions, and comprise 4-12 tonnes per year from vegetation, 70-210 tonnes per year from soils, and 21-63 tonnes

  6. Source apportionment vs. emission inventories of non-methane hydrocarbons (NMHC in an urban area of the Middle East: local and global perspectives

    Directory of Open Access Journals (Sweden)

    T. Salameh

    2016-03-01

    Full Text Available We applied the positive matrix factorization model to two large data sets collected during two intensive measurement campaigns (summer 2011 and winter 2012 at a sub-urban site in Beirut, Lebanon, in order to identify NMHC (non-methane hydrocarbons sources and quantify their contribution to ambient levels. Six factors were identified in winter and five factors in summer. PMF-resolved source profiles were consistent with source profiles established by near-field measurements. The major sources were traffic-related emissions (combustion and gasoline evaporation in winter and in summer accounting for 51 and 74 wt %, respectively, in agreement with the national emission inventory. The gasoline evaporation related to traffic source had a significant contribution regardless of the season (22 wt % in winter and 30 wt % in summer. The NMHC emissions from road transport are estimated from observations and PMF results, and compared to local and global emission inventories. The PMF analysis finds reasonable differences on emission rates, of 20–39 % higher than the national road transport inventory. However, global inventories (ACCMIP, EDGAR, MACCity underestimate the emissions up to a factor of 10 for the transportation sector. When combining emission inventory to our results, there is strong evidence that control measures in Lebanon should be targeted on mitigating the NMHC emissions from the traffic-related sources. From a global perspective, an assessment of VOC (volatile organic compounds anthropogenic emission inventories for the Middle East region as a whole seems necessary as these emissions could be much higher than expected at least from the road transport sector.

  7. Mitigation strategies for methane emissions from agricultural sources

    Energy Technology Data Exchange (ETDEWEB)

    Duxbury, J.M. [Cornell Univ., Ithaca, NY (United States)

    1993-12-31

    Anthropogenic emissions of CH{sub 4} account for 70% of total global emissions of this greenhouse gas. Current anthropogenic emissions of CH{sub 4} in the US are estimated to be between 24-30 Tg CH{sub 4} or 7-9% of the global anthropogenic total. By comparison the US is responsible for 27% of anthropogenic emissions of CO{sub 2} from fossil fuel use. Table 1 shows that the major anthropogenic sources of CH{sub 4} in the US are landfills (37%), domestic livestock and livestock waste (31%) and the coal mining/natural gas/petroleum industries (28%). On a global basis it is estimated that US landfills contribute 30% to the global landfill total, whereas livestock (including waste) and the coal mining/natural gas/petroleum industries each contribute about 8% to their respective global totals. The US is an insignificant contributor (< 1%) to global emissions of CH{sub 4} from rice paddies.

  8. Particulate monitoring, modeling, and management: natural sources, long-range transport, and emission control options: a case study of Cyprus

    Science.gov (United States)

    Kleanthous, Savvas; Savvides, Chrysanthos; Christofides, Ioannis; Hadjimitsis, Diofantos G.; Themistocleous, Kyriacos; Achilleos, Constantia; Akylas, Evangelos; Demetriadou, Chrystalla; Christodoulides, Pavlos; Douros, Ioannis; Moussiopoulos, Nicolas; Panayiotou, Charalambos; Gregoris, Charalambous; Fedra, Kurt; Kubat, Milan; Mihalopoulos, Nicolaos

    2013-08-01

    The LIFE+ Project PM3: Particulate Monitoring, Modeling, Management is coordinated by the Department of Labour Inspection in Cyprus and funded in part by LIFE+ Environment Policy & Governance. The project aims at the analysis of dust emissions, transport, and control options for Cyprus, as well as at the identification of "natural" contributions (Directive 2008/50/EC). The ultimate objective is to provide inputs for the design of a dust management plan to improve compliance to EC Directives and minimise impacts to human health and environment. This paper presents a short analysis of historical monitoring data and their patterns as well as a description of a dynamic dust entrainment model. The pyrogenic PM10 emissions combined with the wind driven emissions, are subject to a two phase non-linear multi-criteria emission control optimization procedure. The resulting emission scenarios with an hourly resolution provide input to the Comprehensive Air quality Model with extensions (CAMx) 3D fate and transport model, implemented for the 4,800 km master domain and embedded subdomains (270 km around the island of Cyprus and embedded smaller city domains of up to 30 km down to street canyon modeling). The models test the feasibility of candidate emission control solutions over a range of weather conditions. Model generated patterns of local emissions and long-range transport are discussed compared with the monitoring data, remote sensing (MODIS derived AOT), and the chemical analysis of dust samples.

  9. Noise source emissions, Richton Dome site, Mississippi

    International Nuclear Information System (INIS)

    1987-01-01

    Noise source data and use factors for modeling the environmental noise environment expected from salt-site repository activity were provided by Battelle Columbus Division. This report has been prepared for the purpose of documenting the development of the data provided to the Repository Project Management (RPM) organization. The data provided encompasses all phases of activity, from site preparation through construction of the exploratory shaft facility (ESF). Noise environments expected from construction and operation of transportation corridors associated with the activity were also modeled. Data for the construction of transportation corridors were provided. The equipment inventory, including sound-power levels for each item is included as Appendix A. Emission source terms provided by Parsons Brinckerhoff/PB-KBB for the ESF were used as a basis for the noise source emission inventory development. Where available, research results containing complete spectra were used. In cases where complete data were not available, a sound-pressure spectrum was synthesized from a characteristic spectrum shape from a similar piece of equipment. For example, a front-shovel excavator might be approximated by data from a front-end loader of similar horsepower range. Sound-power-level spectra were then calculated from the sound-pressure-level data. 14 refs

  10. Outer heliospheric radio emissions. II - Foreshock source models

    Science.gov (United States)

    Cairns, Iver H.; Kurth, William S.; Gurnett, Donald A.

    1992-01-01

    Observations of LF radio emissions in the range 2-3 kHz by the Voyager spacecraft during the intervals 1983-1987 and 1989 to the present while at heliocentric distances greater than 11 AU are reported. New analyses of the wave data are presented, and the characteristics of the radiation are reviewed and discussed. Two classes of events are distinguished: transient events with varying starting frequencies that drift upward in frequency and a relatively continuous component that remains near 2 kHz. Evidence for multiple transient sources and for extension of the 2-kHz component above the 2.4-kHz interference signal is presented. The transient emissions are interpreted in terms of radiation generated at multiples of the plasma frequency when solar wind density enhancements enter one or more regions of a foreshock sunward of the inner heliospheric shock. Solar wind density enhancements by factors of 4-10 are observed. Propagation effects, the number of radiation sources, and the time variability, frequency drift, and varying starting frequencies of the transient events are discussed in terms of foreshock sources.

  11. Fission-neutrons source with fast neutron-emission timing

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G., E-mail: rusev@lanl.gov; Baramsai, B.; Bond, E.M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of {sup 252}Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  12. Open Source Tools for Numerical Simulation of Urban Greenhouse Gas Emissions

    Science.gov (United States)

    Nottrott, A.; Tan, S. M.; He, Y.

    2016-12-01

    There is a global movement toward urbanization. Approximately 7% of the global population lives in just 28 megacities, occupying less than 0.1% of the total land area used by human activity worldwide. These cities contribute a significant fraction of the global budget of anthropogenic primary pollutants and greenhouse gasses. The 27 largest cities consume 9.9%, 9.3%, 6.7% and 3.0% of global gasoline, electricity, energy and water use, respectively. This impact motivates novel approaches to quantify and mitigate the growing contribution of megacity emissions to global climate change. Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model methane (CH4) emissions from various components of the natural gas distribution system, to investigate the impact of urban meteorology on mobile CH4 measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in

  13. Characterization of carbonaceous aerosol emissions from selected combustion sources

    International Nuclear Information System (INIS)

    Martinez, J.P.G.; Espino, M.P.M.; Pabroa, P.C.B.; Bautista, A.T. VII

    2015-01-01

    Carbonaceous Particulates are carbon-containing solid or liquid matter which form a significant portion of the fine particulate mass (PM2.5) and these have known profound adverse effects on health, climate and visibility. This study aims to characterize carbonaceous aerosol emissions from different combustion sources to establish fingerprints for these for use in the refinement of improvement of the resolution of sources apportionment studies being done by the Philippine Nuclear Research Institute (PNRI), i.e. to resolve vehicular emission sources. Fine air particulate sample were collected in pre-baked Quartz filters using an improvised collection set-up with a Gent sampler. Concentrations of organic and elemental carbon (OC and EC, respectively) in PM2.5 were measured for the different combustion sources—vehicular emissions, tire pyrolysis, and biomass burning, using a thermal-optical method of analysis following the IMPROVE_A protocol. Measured OC ad EC concentrations are shown as percentages with respect to the total carbon (TC) and are illustrated in a 100% stacked chart. Predominance of the EC2 fraction is exhibited in both the diesel fuelled vehicle and tire pyrolysis emissions with EC2/OC2 ratio distinguishing one from the other, EC2/OC2 is 1.63 and 8.41, respectively. Predominance of either OC2 or OC3 fraction is shown in the unleaded gasoline and LPG Fuelled vehicles and in biomass burning with the OC2/OC3 ratio distinguishing one from the others. OC2/OC3 ratios are 1.33 for unleaded gasoline fuelled vehicle, 1.89 for LPG-fuelled vehicle, 0.55 for biomass burning (leaves) and 0.82 biomass burning (wood). The study has shown probable use of the EC2/OC2 and OC2/OC3 ratios to distinguish fingerprints for combustion sources covered in this study. (author)

  14. Formaldehyde and acetaldehyde exposure mitigation in US residences: In-home measurements of ventilation control and source control

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Willem, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Russell, Marion L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-01

    Measurements were taken in new US residences to assess the extent to which ventilation and source control can mitigate formaldehyde exposure. Increasing ventilation consistently lowered indoor formaldehyde concentrations. However, at a reference air exchange rate of 0.35 h-1, increasing ventilation was up to 60% less effective than would be predicted if the emission rate were constant. This is consistent with formaldehyde emission rates decreasing as air concentrations increase, as observed in chamber studies. In contrast, measurements suggest acetaldehyde emission was independent of ventilation rate. To evaluate the effectiveness of source control, formaldehyde concentrations were measured in Leadership in Energy and Environmental Design (LEED) certified/Indoor airPLUS homes constructed with materials certified to have low emission rates of volatile organic compounds (VOC). At a reference air exchange rate of 0.35 h-1, and adjusting for home age, temperature and relative humidity, formaldehyde concentrations in homes built with low-VOC materials were 42% lower on average than in reference new homes with conventional building materials. Without adjustment, concentrations were 27% lower in the low-VOC homes. The mean and standard deviation of formaldehyde concentration were 33 μg m-3 and 22 μg m-3 for low-VOC homes and 45 μg m-3 and 30 μg m-3 for conventional.

  15. 40 CFR Table 1 to Subpart Nnnnnn... - HAP Emissions Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false HAP Emissions Sources 1 Table 1 to Subpart NNNNNN of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...: Chromium Compounds Pt. 63, Subpt. NNNNNN, Table 1 Table 1 to Subpart NNNNNN of Part 63—HAP Emissions...

  16. Calendar Year 2016 Stationary Source Emissions Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    The City of Albuquerque (COA) Environmental Health Department Air Quality Program has issued stationary source permits and registrations the Department of Energy/Sandia Field Office for operations at the Sandia National Laboratories/New Mexico. This emission inventory report meets the annual reporting compliance requirements for calendar year (CY) 2016 as required by the COA.

  17. [Research advances in control of N2O emission from municipal solid waste landfill sites].

    Science.gov (United States)

    Cai, Chuan-Yu; Li, Bo; Lü, Hao-Hao; Wu, Wei-Xiang

    2012-05-01

    Landfill is one of the main approaches for municipal solid waste treatment, and landfill site is a main emission source of greenhouse gases nitrous oxide (N2O) and methane (CH4). As a high-efficient trace greenhouse gas, N2O has a very high warming potential, with a warming capacity 296 times of CO2, and has a long-term stability in atmosphere, giving greater damage to the ozone layer. Aiming at the researches in the control of N2O emission from municipal solid waste landfill sites, this paper summarized the characteristics and related affecting factors of the N2O emission from the landfill sites, and put forward a series of the measures adaptable to the N2O emission control of present municipal solid waste landfill sites in China. Some further research focuses on the control of N2O emission from the landfill sites were also presented.

  18. Comparison of CO2 Emissions Data for 30 Cities from Different Sources

    Science.gov (United States)

    Nakagawa, Y.; Koide, D.; Ito, A.; Saito, M.; Hirata, R.

    2017-12-01

    Many sources suggest that cities account for a large proportion of global anthropogenic greenhouse gas emissions. Therefore, in search for the best ways to reduce total anthropogenic greenhouse gas emissions, a focus on the city emission is crucial. In this study, we collected CO2 emissions data in 30 cities during 1990-2015 and evaluated the degree of variance between data sources. The CO2 emissions data were obtained from academic papers, municipal reports, and high-resolution emissions maps (CIDIACv2016, EDGARv4.2, ODIACv2016, and FFDASv2.0). To extract urban CO2 emissions from the high-resolution emissions maps, urban fraction ranging from 0 to 1 was calculated for each 1×1 degree grid cell using the global land cover data (SYNMAP). Total CO2 emissions from the grid cells in which urban fraction occupies greater than or equal to 0.9 were regarded as urban CO2 emissions. The estimated CO2 emissions varied greatly depending on the information sources, even in the same year. There was a large difference between CO2 emissions collected from academic papers, municipal reports, and those extracted from high-resolution emissions maps. One reason is that they use different city boundaries. That is, the city proper (i.e. the political city boundary) is often defined as the city boundary in academic papers and municipal reports, whereas the urban area is used in the high-resolution emissions maps. Furthermore, there was a large variation in CO2 emissions collected from academic papers and municipal reports. These differences may be due to the difference in the assumptions such as allocation ratio of CO2 emissions to producers and consumers. In general, the consumption-based assignment of emissions gives higher estimates of urban CO2 emission in comparison with production-based assignment. Furthermore, there was also a large variation in CO2 emissions extracted from high-resolution emissions maps. This difference would be attributable to differences in information used

  19. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    Science.gov (United States)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  20. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun

    2018-01-12

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation directivity in far fields. The strong directivity formed in the presence of the enclosure is attributed to interference of sources under degenerate Mie resonances in the enclosure of anisotropic property. Our numerical simulations of sound emission from the sources demonstrate the radiation of a highly directed sound beam of unidirectional or bidirectional patterns, depending on how the sources are configured inside the enclosure. Our scheme, if achieved, can solve the challenging problem of poor directivity of a subwavelength sound system, and can guide beam forming and collimation by miniaturized devices.

  1. Inventory of U.S. 2012 dioxin emissions to atmosphere.

    Science.gov (United States)

    Dwyer, Henri; Themelis, Nickolas J

    2015-12-01

    In 2006, the U.S. EPA published an inventory of dioxin emissions for the U.S. covering the period from 1987-2000. This paper is an updated inventory of all U.S. dioxin emissions to the atmosphere in the year 2012. The sources of emissions of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), collectively referred to in this paper as "dioxins", were separated into two classes: controlled industrial and open burning sources. Controlled source emissions decreased 95.5% from 14.0 kg TEQ in 1987 to 0.6 kg in 2012. Open burning source emissions increased from 2.3 kg TEQ in 1987 to 2.9 kg in 2012. The 2012 dioxin emissions from 53 U.S. waste-to-energy (WTE) power plants were compiled on the basis of detailed data obtained from the two major U.S. WTE companies, representing 84% of the total MSW combusted (27.4 million metric tons). The dioxin emissions of all U.S. WTE plants in 2012 were 3.4 g TEQ and represented 0.54% of the controlled industrial dioxin emissions, and 0.09% of all dioxin emissions from controlled and open burning sources. Copyright © 2015. Published by Elsevier Ltd.

  2. Ambiguity of source location in acoustic emission technique

    International Nuclear Information System (INIS)

    Barat, P.; Mukherjee, P.; Kalyanasundaram, P.; Raj, B.

    1996-01-01

    Location of acoustic emission (AE) source in a plane is detected from the difference of the arrival times of the AE signal to at least three sensors placed on it. The detected location may not be unique in all cases. In this paper, the condition for the unambiguous solution for the location of the source has been deduced mathematically in terms of arrival times of the AE signal, the coordinate of the three sensors and the acoustic velocity. (author)

  3. Noise source emissions, Deaf Smith County site, Texas

    International Nuclear Information System (INIS)

    1987-01-01

    Noise source data and use factors for modeling the noise environment expected from salt site repository activity were provided by Battelle Columbus Division. This report has been prepared for the purpose of documenting the development of the data provided to the Repository Project Management (RPM) organization. The data provided encompass all phases of activity from site preparation through construction of the exploratory shaft facility (ESF). Noise environments expected from construction and operation of transportation corridors associated with the activity were also modeled. The equipment inventory, including sound-power levels for each item, is included. Emission source terms provided by Parsons Brinckerhoff/PB-KBB for the ESF were used as a basis for the noise-source emission inventory development. Where available, research results containing complete spectra were used. In cases where complete data were not available, a sound-pressure spectrum was synthesized from a characteristic spectrum shape from a similar piece of equipment. For example, a front-shovel excavator might be approximated by data from a front-end loader of similar horsepower range. Sound-power-level spectra were then calculated from the sound-pressure-level data. 2 refs

  4. Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China

    Science.gov (United States)

    Liang, Xiaoming; Chen, Xiaofang; Zhang, Jiani; Shi, Tianli; Sun, Xibo; Fan, Liya; Wang, Liming; Ye, Daiqi

    2017-08-01

    Increasingly serious ozone (O3) pollution, along with decreasing NOx emission, is creating a big challenge in the control of volatile organic compounds (VOCs) in China. More efficient and effective measures are assuredly needed for controlling VOCs. In this study, a reactivity-based industrial VOCs emission inventory was established in China based on the concept of ozone formation potential (OFP). Key VOCs species, major VOCs sources, and dominant regions with high reactivity were identified. Our results show that the top 15 OFP-based species, including m/p-xylene, toluene, propene, o-xylene, and ethyl benzene, contribute 69% of the total OFP but only 30% of the total emission. The architectural decoration industry, oil refinery industry, storage and transport, and seven other sources constituted the top 10 OFP subsectors, together contributing a total of 85%. The provincial and spatial characteristics of OFP are generally consistent with those of mass-based inventory. The implications for O3 control strategies in China are discussed. We propose a reactivity-based national definition of VOCs and low-reactive substitution strategies, combined with evaluations of health risks. Priority should be given to the top 15 or more species with high reactivity through their major emission sources. Reactivity-based policies should be flexibly applied for O3 mitigation based on the sensitivity of O3 formation conditions.

  5. Advanced Emissions Control Development Program

    Energy Technology Data Exchange (ETDEWEB)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  6. Biomass fueled fluidized bed combustion: atmospheric emissions, emission control devices and environmental regulations

    International Nuclear Information System (INIS)

    Grass, S.W.; Jenkins, B.M.

    1994-01-01

    Fluidized bed combustors have become the technological choice for power generation from biomass fuels in California. Atmospheric emission data obtained during compliance tests are compared for five operating 18 to 32 MW fluidized bed combustion power plants. The discussion focuses on the impact of fuel properties and boiler design criteria on the emission of pollutants, the efficiency of pollution control devices, and regulations affecting atmospheric emissions. Stack NO x emission factors are shown not to vary substantially among the five plants which burn fuels with nitrogen concentrations between 0.3 and 1.1% dry weight. All facilities use at least one particular control device, but not all use limestone injection or other control techniques for sulfur and chlorine. The lack of control for chlorine suggests the potential for emission of toxic species due to favorable temperature conditions existing in the particulate control devices, particularly when burning fuels containing high concentrations of chlorine. (Author)

  7. Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?

    Directory of Open Access Journals (Sweden)

    M. L. White

    2009-01-01

    Full Text Available Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequently, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004–2006. These included: (1 increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG content to meet US EPA summertime volatility standards, (2 local industrial emissions and (3 local vegetative emissions. The contribution of fuel evaporation emission to summer toluene mixing ratios was estimated to range from 16 to 30 pptv d−1, and did not fully account for the observed enhancements (20–50 pptv in 2004–2006. Static chamber measurements of alfalfa, a crop at Thompson Farm, and dynamic branch enclosure measurements of loblolly pine trees in North Carolina suggested vegetative emissions of 5 and 12 pptv d−1 for crops and coniferous trees, respectively. Toluene emission rates from alfalfa are potentially much larger as these plants were only sampled at the end of the growing season. Measured biogenic fluxes were on the same order of magnitude as the influence from gasoline evaporation and industrial sources (regional industrial emissions estimated at 7 pptv d−1 and indicated that local vegetative emissions make a significant contribution to summertime toluene enhancements. Additional studies are needed to characterize the variability and factors controlling toluene emissions from alfalfa and other vegetation types throughout the growing season.

  8. MILAGRO OBSERVATIONS OF MULTI-TeV EMISSION FROM GALACTIC SOURCES IN THE FERMI BRIGHT SOURCE LIST

    International Nuclear Information System (INIS)

    Abdo, A. A.; Linnemann, J. T.; Allen, B. T.; Chen, C.; Aune, T.; Berley, D.; Goodman, J. A.; Christopher, G. E.; Kolterman, B. E.; Mincer, A. I.; Nemethy, P.; DeYoung, T.; Dingus, B. L.; Hoffman, C. M.; Ellsworth, R. W.; Gonzalez, M. M.; Hays, E.; McEnery, J. E.; Huentemeyer, P. H.; Morgan, T.

    2009-01-01

    We present the result of a search of the Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large Area Telescope. We select sources based on their categorization in the BSL, taking all confirmed or possible Galactic sources in the field of view of Milagro. Of the 34 Fermi sources selected, 14 are observed by Milagro at a significance of 3 standard deviations or more. We conduct this search with a new analysis which employs newly optimized gamma-hadron separation and utilizes the full eight-year Milagro data set. Milagro is sensitive to gamma rays with energy from 1 to 100 TeV with a peak sensitivity from 10 to 50 TeV depending on the source spectrum and declination. These results extend the observation of these sources far above the Fermi energy band. With the new analysis and additional data, multi-TeV emission is definitively observed associated with the Fermi pulsar, J2229.0+6114, in the Boomerang pulsar wind nebula (PWN). Furthermore, an extended region of multi-TeV emission is associated with the Fermi pulsar, J0634.0+1745, the Geminga pulsar.

  9. Biosolid stockpiles are a significant point source for greenhouse gas emissions.

    Science.gov (United States)

    Majumder, Ramaprasad; Livesley, Stephen J; Gregory, David; Arndt, Stefan K

    2014-10-01

    The wastewater treatment process generates large amounts of sewage sludge that are dried and then often stored in biosolid stockpiles in treatment plants. Because the biosolids are rich in decomposable organic matter they could be a significant source for greenhouse gas (GHG) emissions, yet there are no direct measurements of GHG from stockpiles. We therefore measured the direct emissions of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) on a monthly basis from three different age classes of biosolid stockpiles at the Western Treatment Plant (WTP), Melbourne, Australia, from December 2009 to November 2011 using manual static chambers. All biosolid stockpiles were a significant point source for CH4 and N2O emissions. The youngest biosolids (nitrate and ammonium concentration. We also modeled CH4 emissions based on a first order decay model and the model based estimated annual CH4 emissions were higher as compared to the direct field based estimated annual CH4 emissions. Our results indicate that labile organic material in stockpiles is decomposed over time and that nitrogen decomposition processes lead to significant N2O emissions. Carbon decomposition favors CO2 over CH4 production probably because of aerobic stockpile conditions or CH4 oxidation in the outer stockpile layers. Although the GHG emission rate decreased with biosolid age, managers of biosolid stockpiles should assess alternate storage or uses for biosolids to avoid nutrient losses and GHG emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Attributing Methane and Carbon Dioxide Emissions from Anthropogenic and Natural Sources Using AVIRIS-NG

    Science.gov (United States)

    Thorpe, A. K.; Frankenberg, C.; Thompson, D. R.; Duren, R. M.; Aubrey, A. D.; Bue, B. D.; Green, R. O.; Gerilowski, K.; Krings, T.; Borchardt, J.; Kort, E. A.; Sweeney, C.; Conley, S. A.; Roberts, D. A.; Dennison, P. E.; Ayasse, A.

    2016-12-01

    Imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) can map large regions with the high spatial resolution necessary to resolve methane (CH4) and carbon dioxide (CO2) emissions. This capability is aided by real time detection and geolocation of gas plumes, permitting unambiguous identification of individual emission source locations and communication to ground teams for rapid follow up. We present results from AVIRIS-NG flight campaigns in the Four Corners region (Colorado and New Mexico) and the San Joaquin Valley (California). Over three hundred plumes were observed, reflecting emissions from anthropogenic and natural sources. Examples of plumes will be shown for a number of sources, including CH4 from well completions, gas processing plants, tanks, pipeline leaks, natural seeps, and CO2 from power plants. Despite these promising results, an imaging spectrometer built exclusively for quantitative mapping of gas plumes would have improved sensitivity compared to AVIRIS-NG. For example, an instrument providing a 1 nm spectral sampling (2,000-2,400 micron) would permit mapping CH4, CO2, H2O, CO, and N2O from more diffuse sources using both airborne and orbital platforms. The ability to identify emission sources offers the potential to constrain regional greenhouse gas budgets and improve partitioning between anthropogenic and natural emission sources. Because the CH4 lifetime is only about 9 years and CH4 has a Global Warming Potential 86 times that of CO2 for a 20 year time interval, mitigating these emissions is a particularly cost-effective approach to reduce overall atmospheric radiative forcing. Fig. 1. True color image subset with superimposed gas plumes showing concentrations in ppmm. Left: AVIRIS-NG observed CH4 plumes from natural gas processing plant extending over 500 m downwind of multiple emissions sources. Right: Multiple CO2 plumes observed from coal-fired power plant.

  11. Consideration of the Change of Material Emission Signatures due to Longterm Emissions for Enhancing VOC Source Identification

    DEFF Research Database (Denmark)

    Han, K. H.; Zhang, J. S.; Knudsen, Henrik Nellemose

    2011-01-01

    The objectives of this study were to characterize the changes of VOC material emission profiles over time and develop a method to account for such changes in order to enhance a source identification technique that is based on the measurements of mixed air samples and the emission signatures of in...

  12. 40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.

    Science.gov (United States)

    2010-07-01

    ... maintain the daily average outlet gas stream temperature from each final condenser in a material recovery... combust the emissions; (B) Combust the emissions in a boiler or process heater with a design heat input...) Combust the emissions in a boiler or process heater with a design heat input capacity of 150 million Btu...

  13. Control of Several Emissions during Olive Pomace Thermal Degradation

    Directory of Open Access Journals (Sweden)

    Teresa Miranda

    2014-10-01

    Full Text Available Biomass plays an important role as an energy source, being an interesting alternative to fossil fuels due to its environment-friendly and sustainable characteristics. However, due to the exposure of customers to emissions during biomass heating, evolved pollutants should be taken into account and controlled. Changing raw materials or mixing them with another less pollutant biomass could be a suitable step to reduce pollution. This work studied the thermal behaviour of olive pomace, pyrenean oak and their blends under combustion using thermogravimetric analysis. It was possible to monitor the emissions released during the process by coupling mass spectrometry analysis. The experiments were carried out under non-isothermal conditions at the temperature range 25–750 °C and a heating rate of 20 °C·min−1. The following species were analysed: aromatic compounds (benzene and toluene, sulphur emissions (sulphur dioxide, 1,4-dioxin, hydrochloric acid, carbon dioxide and nitrogen oxides. The results indicated that pollutants were mainly evolved in two different stages, which are related to the thermal degradation steps. Thus, depending on the pollutant and raw material composition, different emission profiles were observed. Furthermore, intensity of the emission profiles was related, in some cases, to the composition of the precursor.

  14. Data structure for estimating emissions from non-road sources

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, S C; Kalivoda, M; Vacarro, R; Trozzi, C; Samaras, Z; Lewis, C A

    1997-03-01

    The work described in the following is a portion of the MEET project (Methodologies for Estimation Air Pollutant Emissions from Transport). The overall goal of the MEET project is to consolidate and present methodologies which can be used to estimate air pollutant emissions from various types of traffic sources. One of the goals of MEET is to provide methodologies to be used in the COMMUTE project also funded by DG VII. COMMUTE is developing computer software which can be used to provide emissions inventories on the European scale. Although COMMUTE is viewed as a prime user of the information generated in MEET, the MEET results are intended to be used in a broader area, and on both smaller and larger spatial scales. The methodologies and data presented will be useful for planners on a more local scale than a national or continental basis. While most attention in previous years has been concentrated on emissions from road transport, it has become increasingly apparent in later years that the so-called off road transportation contributes significantly to the emission of air pollutants. The three most common off-road traffic modes are Air Traffic, Rail Traffic, and Ship or Marine traffic. In the following, the basic structure of the methods for estimating the emissions from these sectors will be given and of the input and output data associated with these calculations. The structures will of necessity be different for the different types of traffic. The data structures in the following reflect these variations and uncertainties. In some instances alternative approaches to emissions estimation will be suggested. The user must evaluate the amount and reliability of available data for the application at hand, and select the method which would be expected to give the highest accuracy. In any event, a large amount of uncertainty is inherent in the estimation of emissions from the non-road traffic sources, particularly those involving rail and maritime transport. (EG)

  15. Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions

    Directory of Open Access Journals (Sweden)

    S. Ars

    2017-12-01

    Full Text Available This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping

  16. Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions

    Science.gov (United States)

    Ars, Sébastien; Broquet, Grégoire; Yver Kwok, Camille; Roustan, Yelva; Wu, Lin; Arzoumanian, Emmanuel; Bousquet, Philippe

    2017-12-01

    This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping with the distances

  17. Assessment of control strategies for reducing volatile organic compound emissions from the polyvinyl chloride wallpaper production industry in Taiwan.

    Science.gov (United States)

    Chang, Chang-Tang; Chiou, Chyow-Shan

    2006-05-01

    This study attempts to assess the effectiveness of control strategies for reducing volatile organic compound (VOC) emission from the polyvinyl chloride (PVC) wallpaper production industry. In Taiwan, methyl ethyl ketone, TOL, and cyclohexanone have comprised the major content of solvents, accounting for approximately 113,000 t/yr to avoid excessive viscosity of plasticizer dioctyl phthalate (DOP) and to increase facility in working. Emissions of these VOCs from solvents have caused serious odor and worse air quality problems. In this study, 80 stacks in five factories were tested to evaluate emission characteristics at each VOC source. After examining the VOC concentrations in the flue gases and contents, the VOC emission rate before treatment and from fugitive sources was 93,000 and 800 t/yr, respectively. In this study, the semiwet electrostatic precipitator is recommended for use as cost-effective control equipment.

  18. 76 FR 4155 - National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

    Science.gov (United States)

    2011-01-24

    ... 63 National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities; and Gasoline Dispensing Facilities; Final...] RIN 2060-AP16 National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

  19. Emissions Trading Resources

    Science.gov (United States)

    Learn about emissions trading programs, also known as cap and trade programs, which are market-based policy tools for protecting human health and the environment by controlling emissions from a group of sources.

  20. Self-organized global control of carbon emissions

    Science.gov (United States)

    Zhao, Zhenyuan; Fenn, Daniel J.; Hui, Pak Ming; Johnson, Neil F.

    2010-09-01

    There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens’ everyday health), industrial efficiency (affecting the nation’s economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks. The control of volatility also has important implications for any future derivative carbon emissions market.

  1. Past and future cadmium emissions from municipal solid-waste incinerators in Japan for the assessment of cadmium control policy.

    Science.gov (United States)

    Ono, Kyoko

    2013-11-15

    Cadmium (Cd) is a harmful pollutant emitted from municipal solid-waste incinerators (MSWIs). Cd stack emissions from MSWIs have been estimated between 1970 and 2030 in Japan. The aims of this study are to quantify emitted Cd by category and to analyze Cd control policies to reduce emissions. Emissions were estimated using a dynamic substance flow analysis (SFA) that took into account representative waste treatment flows and historical changes in emission factors. This work revealed that the emissions peaked in 1973 (11.1t) and were ten times those in 2010 (1.2 t). Emission from MSWIs was two-thirds of that from non-ferrous smelting in 2010. The main Cd emission source was pigment use in the 1970s, but after 2000 it had shifted to nickel-cadmium (Ni-Cd) batteries. Future emissions were estimated for 2030. Compared to the business-as-usual scenario, an intensive collection of used Ni-Cd batteries and a ban on any future use of Ni-Cd batteries will reduce emissions by 0.09 and 0.3 1t, respectively, in 2030. This approach enables us to identify the major Cd emission source from MSWIs, and to prioritize the possible Cd control policies. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Advanced CIDI Emission Control System Development

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key

  3. Volatile chemical products emerging as largest petrochemical source of urban organic emissions

    Science.gov (United States)

    McDonald, Brian C.; de Gouw, Joost A.; Gilman, Jessica B.; Jathar, Shantanu H.; Akherati, Ali; Cappa, Christopher D.; Jimenez, Jose L.; Lee-Taylor, Julia; Hayes, Patrick L.; McKeen, Stuart A.; Cui, Yu Yan; Kim, Si-Wan; Gentner, Drew R.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Harley, Robert A.; Frost, Gregory J.; Roberts, James M.; Ryerson, Thomas B.; Trainer, Michael

    2018-02-01

    A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.

  4. A model to relate wind tunnel measurements to open field odorant emissions from liquid area sources

    Science.gov (United States)

    Lucernoni, F.; Capelli, L.; Busini, V.; Sironi, S.

    2017-05-01

    Waste Water Treatment Plants are known to have significant emissions of several pollutants and odorants causing nuisance to the near-living population. One of the purposes of the present work is to study a suitable model to evaluate odour emissions from liquid passive area sources. First, the models describing volatilization under a forced convection regime inside a wind tunnel device, which is the sampling device that typically used for sampling on liquid area sources, were investigated. In order to relate the fluid dynamic conditions inside the hood to the open field and inside the hood a thorough study of the models capable of describing the volatilization phenomena of the odorous compounds from liquid pools was performed and several different models were evaluated for the open field emission. By means of experimental tests involving pure liquid acetone and pure liquid butanone, it was verified that the model more suitable to describe precisely the volatilization inside the sampling hood is the model for the emission from a single flat plate in forced convection and laminar regime, with a fluid dynamic boundary layer fully developed and a mass transfer boundary layer not fully developed. The proportionality coefficient for the model was re-evaluated in order to account for the specific characteristics of the adopted wind tunnel device, and then the model was related with the selected model for the open field thereby computing the wind speed at 10 m that would cause the same emission that is estimated from the wind tunnel measurement furthermore, the field of application of the proposed model was clearly defined for the considered models during the project, discussing the two different kinds of compounds commonly found in emissive liquid pools or liquid spills, i.e. gas phase controlled and liquid phase controlled compounds. Lastly, a discussion is presented comparing the presented approach for emission rates recalculation in the field, with other approaches

  5. Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US/Mexico border

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.G.; Chow, J.C. [Desert Research Institute, 2215 Raggio Pkwy., 89512 Reno, NV (United States)

    2001-08-10

    Chemical profiles for particle emissions are needed for source apportionment studies using the chemical mass balance (CMB) receptor model. Source measurements of geological sources, motor vehicle exhaust, vegetative burning (e.g. asparagus, field burning, charbroil cooking), and industrial sources (e.g. oil-fueled glass plant, manure-fueled power plants) were acquired as part of the Imperial/Mexicali Valley Cross Border PM{sub 10} Transport Study in 1992. Six different source sampling techniques (i.e. hot- and diluted-exhaust sampling, ground-based source sampling, particle sweeping/grab sampling, vacuum sampling, and laboratory resuspension sampling) were applied to acquire filter samples of PM{sub 2.5} and PM{sub 10} (particulate matter with aerodynamic diameters <2.5 and 10 {mu}m, respectively). Filter samples were analyzed for mass by gravimetry, elements (Na to U) by X-ray fluorescence, anions (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup =}) by ion chromatography, ammonium (NH{sub 4}{sup +}) by automated colorimetry, soluble sodium (Na{sup +}) and potassium (K{sup +}) by atomic absorption spectrophotometry, and organic and elemental carbon (OC, EC) by thermal/optical reflectance. Concentration data were acquired for a total of 50 chemical species. Elevated abundances of crustal components (Al, Si, K, Ca, Fe) from geological material, carbon (OC, EC) and trace elements (Br, Pb) from vehicle exhausts, carbon (OC, EC) and ions (K{sup +}, Cl{sup -}) from vegetative burning, ions (SO{sub 4}{sup =}, NH{sub 4}{sup +}, Na{sup +}, K{sup +}, Cl{sup -}) and elements (Cl, Se) from a manure-fueled power plants, and sulfur and trace elements (Na{sup +}, Pb, Se, Ni, V) from an oil-fueled glass plant were found in the resulting source profiles. Abundances of crustal species (e.g. Al, Si, Ca) in the Imperial/Mexicali Valley geological profiles are more than twice those found in central and southern California. Abundances of lead in motor vehicle exhausts indicate different

  6. Near-source mobile methane emission estimates using EPA Method33a and a novel probabilistic approach as a basis for leak quantification in urban areas

    Science.gov (United States)

    Albertson, J. D.

    2015-12-01

    Methane emissions from underground pipeline leaks remain an ongoing issue in the development of accurate methane emission inventories for the natural gas supply chain. Application of mobile methods during routine street surveys would help address this issue, but there are large uncertainties in current approaches. In this paper, we describe results from a series of near-source (< 30 m) controlled methane releases where an instrumented van was used to measure methane concentrations during both fixed location sampling and during mobile traverses immediately downwind of the source. The measurements were used to evaluate the application of EPA Method 33A for estimating methane emissions downwind of a source and also to test the application of a new probabilistic approach for estimating emission rates from mobile traverse data.

  7. Source-receptor relationships between East Asian sulfur dioxide emissions and Northern Hemisphere sulfate concentrations

    Directory of Open Access Journals (Sweden)

    J. Liu

    2008-07-01

    Full Text Available We analyze the effect of varying East Asian (EA sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2. We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80%–20% of sulfate at the surface, but at least 50% at 500 hPa. Surface sulfate concentrations are dominated by local anthropogenic sources. Of the sulfate produced from sources other than local anthropogenic emissions (defined here as "background" sulfate, EA sources account for approximately 30%–50% (over the Western US and 10%–20% (over the Eastern US. The surface concentrations of sulfate from EA sources over the Western US are highest in MAM (up to 0.15 μg/m3, and lowest in DJF (less than 0.06 μg/m3. Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence (represented by the areas where at least 0.1 μg m−3 of sulfate originates from EA over the North Pacific both at the surface and at 500 hPa in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (in particular of H2O2, which oxidizes SO2 to sulfate in the aqueous phase. We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be

  8. NMHC emissions from Asia: sources and transport

    Science.gov (United States)

    Shirai, T.; Blake, D. R.; Barletta, B.; Meinardi, S.; Rowland, F. S.; Chan, J. C.; Takegawa, N.; Kondo, Y.; Koike, M.; Kita, K.; Takigawa, M.; Kawakami, S.; Ogawa, T.

    2002-12-01

    Recent rapid industrialization and economic growth in Asia changed the industrial structure, land use, and people's lifestyle resulting in a dramatic change in the amount and composition of the gas emissions from Asia. Because emissions can be transported very rapidly once convected to the free troposphere, Asian emissions can affect both local and regional air quality and climate. To access the impact of changing emission from Asia, an airborne observation campaign PEACE (the Pacific Exploration of Asian Continental Emission) phase-A and B were conducted in January and April - May 2002, respectively, sponsored by NASDA (National Space Development Agency of Japan). The concentrations of NMHCs (nonmethanehydrocarbons) and halocarbons were obtained by whole air sampling and subsequent gas chromatography analyses in the laboratory. Quantified onboard the aircraft were CO, CO2, O3, NO, NO2, NOy, H2O, SO2, aerosols, and condensation nuclei. The experiment was conducted in the vicinity of Japan and PEACE-A and B represent the local winter and spring weather conditions. The trace gas distributions in the lower troposphere were often influenced by local pollution (i.e. from Japan, Korea) while those of the long-range transport (i.e. from Europe) were occasionally seen in the upper troposphere. This is confirmed by the airmass age estimation using the ratios of short-lived gases (i.e. C2H4) vs. more stable compounds (i.e. CO). Emissions from China were distinguished using data obtained from ground-based sampling and measurements. Transport from China was seen both in the lower troposphere and upper troposphere. Some case studies on source identification will be discussed.

  9. An inventory of potential PCDD and PCDF emission sources in the mainland of China

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jun; Xiaoyan, Tang [Peking Univ., Beijing (China); Peng, Hao [Central Univ. for Nationalities, Beijing (China)

    2004-09-15

    Polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofurans (PCDF) are widespread environmental pollutants. A number of countries have developed national inventories of PCDD/F emission, such as USA, EU Nations and Japan. However, due to the lack of PCDD/F data measured in China and the uncertain nature of the documentation available on emission factors, the report on inventories of dioxin emission is absent. With the municipal population growth, economic development and living-standard improvement, China faces many severe environment issues including potential problems related to PCDD/F. The country is aware of potential dioxin sources such as: incineration, iron and steel industry, chemical industry, fires, coal power plant, foundries, PCB in capacitors and transformers, sintering, traffic emission. In 2001, China signed the Stockholm Convention on Persistent Organic Pollutants in Stockholm. Therefore, there is a need for information regarding dioxin emission from these sources for taking actions to reduce and/or eliminate the release of dioxins in China, and reduce human exposure. In this study, we identify those potential PCDD/F emission sources and work out the first inventory on PCDD/F emission into the environment in China.

  10. Quantifying the isotopic composition of NOx emission sources: An analysis of collection methods

    Science.gov (United States)

    Fibiger, D.; Hastings, M.

    2012-04-01

    We analyze various collection methods for nitrogen oxides, NOx (NO2 and NO), used to evaluate the nitrogen isotopic composition (δ15N). Atmospheric NOx is a major contributor to acid rain deposition upon its conversion to nitric acid; it also plays a significant role in determining air quality through the production of tropospheric ozone. NOx is released by both anthropogenic (fossil fuel combustion, biomass burning, aircraft emissions) and natural (lightning, biogenic production in soils) sources. Global concentrations of NOx are rising because of increased anthropogenic emissions, while natural source emissions also contribute significantly to the global NOx burden. The contributions of both natural and anthropogenic sources and their considerable variability in space and time make it difficult to attribute local NOx concentrations (and, thus, nitric acid) to a particular source. Several recent studies suggest that variability in the isotopic composition of nitric acid deposition is related to variability in the isotopic signatures of NOx emission sources. Nevertheless, the isotopic composition of most NOx sources has not been thoroughly constrained. Ultimately, the direct capture and quantification of the nitrogen isotopic signatures of NOx sources will allow for the tracing of NOx emissions sources and their impact on environmental quality. Moreover, this will provide a new means by which to verify emissions estimates and atmospheric models. We present laboratory results of methods used for capturing NOx from air into solution. A variety of methods have been used in field studies, but no independent laboratory verification of the efficiencies of these methods has been performed. When analyzing isotopic composition, it is important that NOx be collected quantitatively or the possibility of fractionation must be constrained. We have found that collection efficiency can vary widely under different conditions in the laboratory and fractionation does not vary

  11. [Inventory and environmental impact of VOCs emission from the typical anthropogenic sources in Sichuan province].

    Science.gov (United States)

    Han, Li; Wang, Xing-Rui; He, Min; Guo, Wei-Guang

    2013-12-01

    Based on Sichuan province environmental statistical survey data and other relevant activity data, volatile organic compounds (VOCs) emissions from typical anthropogenic sources in Sichuan province were calculated for the year of 2011 by applying the emission factor method. Besides, ozone and secondary organic aerosol formation potentials of these typical anthropogenic sources were discussed. The total VOC emission from these sources was about 482 kt in Sichuan province, biomass burning, solvent utilization, industrial processes, storage and distribution of fuel, and fossil fuel combustion contributed 174 kt, 153 kt, 121 kt, 21 kt and 13 kt, respectively; architecture wall painting, furniture coating, wood decoration painting and artificial board were the major emission sectors of the solvent utilization; while for the industrial processes, 19.4% of VOCs emission was from the wine industry. Chengdu was the largest contributor compared to the other cities in Sichuan, whose VOCs emission from these typical anthropogenic sources in 2011 was 112 kt. OFP of these sources was 1,930 kt altogether. Solvent utilization contributed 50.5% of the total SOA formation potentials, biomass burning and industrial processes both contributed about 23% , with storage and distribution of fuel and fossil fuel combustion accounting for 1% and 1.4%, respectively.

  12. Quantifying emissions of NH3 and NOx from Agricultural Sources and Biomass Burning using SOF

    Science.gov (United States)

    Kille, N.; Volkamer, R. M.; Dix, B. K.

    2017-12-01

    Column measurements of trace gas absorption along the direct solar beam present a powerful yet underused approach to quantify emission fluxes from area sources. The University of Colorado Solar Occultation Flux (CU SOF) instrument (Kille et al., 2017, AMT, doi:10.5194/amt-10-373-2017) features a solar tracker that is self-positioning for use from mobile platforms that are in motion (Baidar et al., 2016, AMT, doi: 10.5194/amt-9-963-2016). This enables the use from research aircraft, as well as the deployment under broken cloud conditions, while making efficient use of aircraft time. First airborne SOF measurements have been demonstrated recently, and we discuss applications to study emissions from biomass burning using aircraft, and to study primary emissions of ammonia and nitrogen oxides (= NO + NO2) from area sources such as concentrated animal feeding operations (CAFO). SOF detects gases in the open atmosphere (no inlets), does not require access to the source, and provides results in units that can be directly compared with emission inventories. The method of emission quantification is relatively straightforward. During FRAPPE (Front Range Air Pollution and Photochemistry Experiment) in Colorado in 2014, we measured emission fluxes of NH3, and NOx from CAFO, quantifying the emissions from 61400 of the 535766 cattle in Weld County, CO (11.4% of the cattle population). We find that NH3 emissions from dairy and cattle farms are similar after normalization by the number of cattle, i.e., we find emission factors, EF, of 11.8 ± 2.0 gNH3/h/head for the studied CAFOs; these EFs are at the upper end of reported values. Results are compared to daytime NEI emissions for case study days. Furthermore, biologically active soils are found to be a strong source of NOx. The NOx sources account for 1.2% of the N-flux (i.e., NH3), and can be competitive with other NOx sources in Weld, CO. The added NOx is particularly relevant in remote regions, where O3 formation and oxidative

  13. Emissions from Combustion of Open Area Sources: Prescribed Forest and Agricultural Burns

    Science.gov (United States)

    Emissions from wildfires and prescribed forest and agricultural burns generate a variety of emissions that can cause adverse health effects for humans, contribute to climate change, and decrease visibility. Only limited pollutant data are available for these sources, particularly...

  14. Towards an Integrated Assessment Model for Tropospheric Ozone-Emission Inventories, Scenarios and Emission-control Options

    OpenAIRE

    Olsthoorn, X.

    1994-01-01

    IIASA intends to extend its RAINS model for addressing the issue of transboundary ozone air pollution. This requires the development of a VOC-emissions module, VOCs being precursors in ozone formation. The module should contain a Europe-wide emission inventory, a submodule for developing emission scenarios and a database of measures for VOC-emission control, including data about control effectiveness and control costs. It is recommended to use the forthcoming CORINAIR90 inventory for construc...

  15. Source profiles of particulate matter emissions from a pilot-scale boiler burning North American coal blends.

    Science.gov (United States)

    Lee, S W

    2001-11-01

    Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 microm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships. A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 pm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented. Preliminary results indicate that volatile trace elements such as Pb, Zn, Ti, and Se are preferentially enriched in PM2.5. PM2.5 is also more concentrated in soluble sulfates relative to total PM. Coal fly ash collected at the outlet of the electrostatic precipitator (ESP) contains about 85-90% PM10 and 30-50% PM2.5. Particles contain the highest elemental concentrations of Si and Al while Ca, Fe, Na, Ba, and K also exist as major elements. Approximately 4-12% of the materials exists as soluble sulfates in fly ash generated by coal blends containing 0.2-0.8% sulfur by mass

  16. Factors influencing mobile source particulate matter emissions-to-exposure relationships in the Boston urban area.

    Science.gov (United States)

    Greco, Susan L; Wilson, Andrew M; Hanna, Steven R; Levy, Jonathan I

    2007-11-15

    Benefit-cost and regulatory impact analyses often use atmospheric dispersion models with coarse resolution to estimate the benefits of proposed mobile source emission control regulations. This approach may bias health estimates or miss important intra-urban variability for primary air pollutants. In this study, we estimate primary fine particulate matter (PM2.5) intake fractions (iF; the fraction of a pollutant emitted from a source that is inhaled by the population) for each of 23 398 road segments in the Boston Metro Core area to evaluate the potential for intra-urban variability in the emissions-to-exposure relationship. We estimate iFs using the CAL3QHCR line source model combined with residential populations within 5000 m of each road segment. The annual average values for the road segments range from 0.8 to 53 per million, with a mean of 12 per million. On average, 46% of the total exposure is realized within 200 m of the road segment, though this varies from 0 to 93% largely due to variable population patterns. Our findings indicate the likelihood of substantial intra-urban variability in mobile source primary PM2.5 iF that accounting for population movement with time, localized meteorological conditions, and street-canyon configurations would likely increase.

  17. Liming induces carbon dioxide (CO2) emission in PSB inoculated alkaline soil supplemented with different phosphorus sources.

    Science.gov (United States)

    Adnan, Muhammad; Shah, Zahir; Sharif, Muhammad; Rahman, Hidayatur

    2018-04-01

    Agricultural land is a major sink of global organic carbon (C). Its suitable management is crucial for improving C sequestration and reducing soil CO 2 emission. Incubation experiments were performed to assess the impact of phosphate solubilizing bacterial (PSB) inoculation (inoculated and uninoculated) and soil calcification (4.78, 10, 15, and 20% crushed CaCO 3 ) with phosphorus (P) sources [single superphosphate (SSP), rock phosphate (RP), farm yard manure (FYM), and poultry manure (PM)] in experiment 1 and with various rates of PM (4, 8, and 12 kg ha -1 ) in experiment 2 on cumulative soil respiration. These experiments were arranged in three factorial, complete randomize design (CRD) with three replications. Interactively, lime with P sources (at day 1 and 3) and lime with PSB (at day 1) significantly expedited soil respiration. Mainly, PSB inoculation, liming, PM fertilization, and its various rates significantly enhanced soil respiration with time over control/minimum in alkaline soil at all incubation periods. Higher CO 2 emission was detected in soil supplemented with organic P sources (PM and FYM) than mineral sources (SSP and RP). CO 2 emission was noted to increase with increasing PM content. Since liming intensified CO 2 discharge from soil, therefore addition of lime to an alkaline soil should be avoided; instead, integrated approaches must be adopted for P management in alkaline calcareous soils for climate-smart agriculture.

  18. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    Science.gov (United States)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  19. Evaluation of non-enteric sources of non-methane volatile organic compound (NMVOC) emissions from dairies

    Science.gov (United States)

    Chung, Myeong Y.; Beene, Matt; Ashkan, Shawn; Krauter, Charles; Hasson, Alam S.

    2010-02-01

    Dairies are believed to be a major source of volatile organic compounds (VOC) in Central California, but few studies have characterized VOC emissions from these facilities. In this work, samples were collected from six sources of VOCs (Silage, Total Mixed Rations, Lagoons, Flushing Lanes, Open Lots and Bedding) at six dairies in Central California during 2006-2007 using emission isolation flux chambers and polished stainless steel canisters. Samples were analyzed by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Forty-eight VOCs were identified and quantified in the samples, including alcohols, carbonyls, alkanes and aromatics. Silage and Total Mixed Rations are the dominant sources of VOCs tested, with ethanol as the major VOC present. Emissions from the remaining sources are two to three orders of magnitude smaller, with carbonyls and aromatics as the main components. The data suggest that animal feed rather than animal waste are the main source of non-enteric VOC emissions from dairies.

  20. Air Pollutant Emissions Projections for the Cement and Steel Industry in China and the Impact of Emissions Control Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Khanna, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-03-01

    China’s cement and steel industry accounts for approximately half of the world’s total cement and steel production. These two industries are two of the most energy-intensive and highest carbon dioxide (CO2)-emitting industries and two of the key industrial contributors to air pollution in China. For example, the cement industry is the largest source of particulate matter (PM) emissions in China, accounting for 40 percent of its industrial PM emissions and 27 percent of its total national PM emissions. The Chinese steel industry contributed to approximately 20 percent of sulfur dioxide (SO2) emissions and 27 percent of PM emissions for all key manufacturing industries in China in 2013. In this study, we analyzed and projected the total PM and SO2 emissions from the Chinese cement and steel industry from 2010–2050 under three different scenarios: a Base Case scenario, an Advanced scenario, and an Advanced EOP (end-of-pipe) scenario. We used bottom-up emissions control technologies data and assumptions to project the emissions. In addition, we conducted an economic analysis to estimate the cost for PM emissions reductions in the Chinese cement industry using EOP control technologies, energy efficiency measures, and product change measures. The results of the emissions projection showed that there is not a substantial difference in PM emissions between the Base Case and Advanced scenarios, for both the cement and steel industries. This is mainly because PM emissions in the cement industry caused mainly by production process and not the fuel use. Since our forecast for the cement production in the Base Case and Advanced scenarios are not too different from each other, this results in only a slight difference in PM emissions forecast for these two scenarios. Also, we assumed a similar share and penetration rate of control technologies from 2010 up to 2050 for these two scenarios for the cement and steel industry. However, the Advanced EOP

  1. NOx and N2O emission control with catalyst's

    International Nuclear Information System (INIS)

    Hiltunen, M.

    1994-01-01

    Due to the increasingly stringent emission regulations, new technologies are needed to be developed for improving emission control in circulating fluidized-bed boilers. The objective of this project is to test the concept of using catalysts for NO x and N 2 O emission control. N 2 O emission is in the range of 30 - 100 ppm from fluidized bed combustors burning coal. Since it is a greenhouse gas an effective means of controlling N 2 O emission is needed

  2. Savannah River Site radionuclide air emissions annual report for national emission standards for hazardous air pollutants

    International Nuclear Information System (INIS)

    Sullivan, I.K.

    1993-01-01

    The radiological air emission sources at the SRS have been divided into three categories, Point, Grouped and Non-Point, for this report. Point sources, analyzed individually, are listed with a listing of the control devices, and the control device efficiency. The sources listed have been grouped together either for security reasons or where individual samples are composited for analytical purposes. For grouped sources the listed control devices may not be on all sources within a group. Point sources that did not have continuous effluent monitoring/sampling in 1993 are noted. The emissions from these sources was determined from Health Protection smear data, facility radionuclide content or other calculational methods, including process knowledge, utilizing existing analytical data. This report also contain sections on facility descriptions, dose assessment, and supplemental information

  3. BLACK Carbon Emissions from Diesel Sources in the Largest Arctic City: Case Study of Murmansk

    Science.gov (United States)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2014-12-01

    Russia has very little data on its black carbon (BC) emissions. Because Russia makes up such a large share of the Arctic, understanding Russian emissions will improve our understanding of overall BC levels, BC in the Arctic and the link between BC and climate change. This paper provides a detailed, bottom-up inventory of BC emissions from diesel sources in Murmansk, Russia, along with uncertainty estimates associated with these emissions. The research team developed a detailed data collection methodology. The methodology involves assessing the vehicle fleet and activity in Murmansk using traffic, parking lot and driver surveys combined with an existing database from a vehicle inspection station and statistical data. The team also assessed the most appropriate emission factors, drawing from both Russian and international inventory methodologies. The researchers also compared fuel consumption using statistical data and bottom-up fuel calculations. They then calculated emissions for on-road transportation, off-road transportation (including mines), diesel generators, fishing and other sources. The article also provides a preliminary assessment of Russia-wide emissions of black carbon from diesel sources.

  4. Using an Explicit Emission Tagging Method in Global Modeling of Source-Receptor Relationships for Black Carbon in the Arctic: Variations, Sources and Transport Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong; Rasch, Philip J.; Easter, Richard C.; Singh, Balwinder; Zhang, Rudong; Ma, Po-Lun; Qian, Yun; Ghan, Steven J.; Beagley, Nathaniel

    2014-11-27

    We introduce an explicit emission tagging technique in the Community Atmosphere Model to quantify source-region-resolved characteristics of black carbon (BC), focusing on the Arctic. Explicit tagging of BC source regions without perturbing the emissions makes it straightforward to establish source-receptor relationships and transport pathways, providing a physically consistent and computationally efficient approach to produce a detailed characterization of the destiny of regional BC emissions and the potential for mitigation actions. Our analysis shows that the contributions of major source regions to the global BC burden are not proportional to the respective emissions due to strong region-dependent removal rates and lifetimes, while the contributions to BC direct radiative forcing show a near-linear dependence on their respective contributions to the burden. Distant sources contribute to BC in remote regions mostly in the mid- and upper troposphere, having much less impact on lower-level concentrations (and deposition) than on burden. Arctic BC concentrations, deposition and source contributions all have strong seasonal variations. Eastern Asia contributes the most to the wintertime Arctic burden. Northern Europe emissions are more important to both surface concentration and deposition in winter than in summer. The largest contribution to Arctic BC in the summer is from Northern Asia. Although local emissions contribute less than 10% to the annual mean BC burden and deposition within the Arctic, the per-emission efficiency is much higher than for major non-Arctic sources. The interannual variability (1996-2005) due to meteorology is small in annual mean BC burden and radiative forcing but is significant in yearly seasonal means over the Arctic. When a slow aging treatment of BC is introduced, the increase of BC lifetime and burden is source-dependent. Global BC forcing-per-burden efficiency also increases primarily due to changes in BC vertical distributions. The

  5. Evaporation Controlled Emission in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    -scale ventilated room when the emission is fully or partly evaporation controlled. The objective of the present research work has been to investigate the change of emission rates from small-scale experiments to full-scale ventilated rooms and to investigate the influence of the local air velocity field near......Emission of volatile organic compounds (VOCs) from materials is traditionally determined from tests carried out in small-scale test chambers. However, a difference in scale may lead to a difference in the measured emission rate in a small-scale test chamber and the actual emission rate in a full...

  6. Characterization of emissions sources in the California-Mexico Border Region during Cal-Mex 2010

    Science.gov (United States)

    Zavala, M. A.; Lei, W.; Li, G.; Bei, N.; Barrera, H.; Tejeda, D.; Molina, L. T.; Cal-Mex 2010 Emissions Team

    2010-12-01

    The California-Mexico border region provides an opportunity to evaluate the characteristics of the emission processes in rapidly expanding urban areas where intensive international trade and commerce activities occur. Intense anthropogenic activities, biomass burning, as well as biological and geological sources significantly contribute to high concentration levels of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitrogen oxides (NOx), volatile organic compounds (VOCs), air toxics, and ozone observed in the California-US Baja California-Mexico border region. The continued efforts by Mexico and US for improving and updating the emissions inventories in the sister cities of San Diego-Tijuana and Calexico-Mexicali has helped to understand the emission processes in the border region. In addition, the recent Cal-Mex 2010 field campaign included a series of measurements aimed at characterizing the emissions from major sources in the California-Mexico border region. In this work we will present our analyzes of the data obtained during Cal-Mex 2010 for the characterization of the emission sources and their use for the evaluation of the recent emissions inventories for the Mexican cities of Tijuana and Mexicali. The developed emissions inventories will be implemented in concurrent air quality modeling efforts for understanding the physical and chemical transformations of air pollutants in the California-Mexico border region and their impacts.

  7. Impacts of temporary traffic control measures on vehicular emissions during the Asian games in Guangzhou, China.

    Science.gov (United States)

    Yao, Zhiliang; Zhang, Yingzhi; Shen, Xianbao; Wang, Xintong; Wu, Ye; He, Kebin

    2013-01-01

    To guarantee good traffic and air quality during the 16th Asian Games in Guangzhou, China, the government carried out two traffic control Drills before the Games and adopted traffic control measures during the Games. Vehicle activities before and during the first and second Drills, and during the Games, were surveyed. Based on the data under investigation, the impacts of control measures on traffic volumes and driving characteristics were analyzed during the first and second Drills, and the Games. The emission reduction of traffic control measures was also evaluated during the three stages using the MOBILE-China model. The results show that there were significant effects of implementing temporary traffic control measures on transportation activity and vehicular emissions. During the first and second Drills, and the Games, the average traffic volumes in monitored roads decreased, and the average speed of vehicles increased significantly The co-effects of traffic flow reduction, traffic congestion improvement, and the banning of high-emitting vehicles helped to greatly reduce the estimated emissions from motor vehicles in Guangzhou during the first and second Drills, and the Games. Estimated vehicular emissions were reduced by 38-52% during the first Drill and 28-36% for the second Drill. During the Asian Games, vehicular emissions of carbon monoxide (CO), hydrocarbon (HC), oxides of nitrogen (NO), and particulate matter with an aerodynamic diameter vehicular emissions of CO, HC, NOx, and PM10. Motor vehicles have become the most prevalent source of emissions and subsequently air pollution within Chinese cities. Understanding the impacts that different control measures have on vehicular emissions is very important in order to be able to control vehicle emissions. The results of this study will be very helpful for the further control of vehicle emissions in Guangzhou in the future. In addition, the effects of temporary transportation control measures will provide

  8. Danish emission inventories for road transport and other mobile sources. Inventories until year 2004

    International Nuclear Information System (INIS)

    Winther, M.

    2007-01-01

    This report explains the parts of the Danish inventories related to road transport and other mobile sources. Emission results for CO 2 , CH 4 , N 2 O, SO 2 , NO X , NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH are shown from 1985 to 2004. In this period the fuel use and CO 2 emissions for road transport have increased by 48%. The emission decreases for PM (exhaust only), CO, NO X and NMVOC are 35, 58, 34 and 66% respectively, due to the introduction of vehicles complying with gradually stricter emission standards. A N 2 O emission increase of 301% is related to the high emissions from gasoline catalyst cars. For other mobile sources the fuel use and CO 2 emissions have decreased by 15% from 1985 to 2004. The PM, NO x and NMVOC emission declines are 46, 14 and 10%, respectively. For SO 2 the emission drop is 74% from 1985 to 2004, due to gradually lower fuel sulphur contents. For CO the 1985 and 2004 emissions are the same. Uncertainties for the emissions and trends have been estimated. (au)

  9. Danish emission inventories for road transport and other mobile sources. Inventories until year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M. [DMU, Dept. of Policy Analysis (Denmark)

    2007-01-15

    This report explains the parts of the Danish inventories related to road transport and other mobile sources. Emission results for CO{sub 2}, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub X}, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH are shown from 1985 to 2004. In this period the fuel use and CO{sub 2} emissions for road transport have increased by 48%. The emission decreases for PM (exhaust only), CO, NO{sub X} and NMVOC are 35, 58, 34 and 66% respectively, due to the introduction of vehicles complying with gradually stricter emission standards. A N{sub 2}O emission increase of 301% is related to the high emissions from gasoline catalyst cars. For other mobile sources the fuel use and CO{sub 2} emissions have decreased by 15% from 1985 to 2004. The PM, NO{sub x} and NMVOC emission declines are 46, 14 and 10%, respectively. For SO{sub 2} the emission drop is 74% from 1985 to 2004, due to gradually lower fuel sulphur contents. For CO the 1985 and 2004 emissions are the same. Uncertainties for the emissions and trends have been estimated. (au)

  10. Mobile source pollution control in the United States and China

    International Nuclear Information System (INIS)

    Menz, Fredric C

    2002-01-01

    This paper reviews policies for the control of mobile source pollution and their potential application in China. The first section of the paper reviews the U.S. experience with mobile source pollution control since regulations were first established in the Clean Air Act of 1970. Highlights in the policy and trends in vehicle emissions over the 1970 to 2000 time period are discussed. The second section of the paper discusses the range of policy instruments that could be used to control vehicle pollution, ranging from traditional direct regulations to market-based instruments. Experiences with the use of economic incentives in the United States and elsewhere are also discussed. The third section of the paper discusses possible implications of the U.S. experience for controlling vehicle pollution in China. While market-based instruments might be particularly appropriate for use in several aspects of China's pollution control policies, important differences between the institutional structures in China and the United States suggest that they should be phased in gradually. The paper closes with concluding remarks. (author)

  11. Mobile source pollution control in the United States and China

    Energy Technology Data Exchange (ETDEWEB)

    Menz, Fredric C

    2002-07-01

    This paper reviews policies for the control of mobile source pollution and their potential application in China. The first section of the paper reviews the U.S. experience with mobile source pollution control since regulations were first established in the Clean Air Act of 1970. Highlights in the policy and trends in vehicle emissions over the 1970 to 2000 time period are discussed. The second section of the paper discusses the range of policy instruments that could be used to control vehicle pollution, ranging from traditional direct regulations to market-based instruments. Experiences with the use of economic incentives in the United States and elsewhere are also discussed. The third section of the paper discusses possible implications of the U.S. experience for controlling vehicle pollution in China. While market-based instruments might be particularly appropriate for use in several aspects of China's pollution control policies, important differences between the institutional structures in China and the United States suggest that they should be phased in gradually. The paper closes with concluding remarks. (author)

  12. TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES DONALDSON COMPANY INC.SERIES 6100 DIESEL OXIDATION CATALYST MUFFLER AND SPIRACLE CLOSED CRANKCASE FILTRATION SYSTEM

    Science.gov (United States)

    This report is on an environmental verification of the emissions characteristics of a Donaldson Corp. catalytic muffler and catalyic crankcase emissions control. It was found the systems reduced emissions.

  13. Strategies for decreasing nitrous oxide emissions from agricultural sources

    Energy Technology Data Exchange (ETDEWEB)

    Oenema, O. [AB-DLO, Wageningen (Netherlands)

    1999-08-01

    Following the Kyoto Conference of 1997, declaring the urgency of implementing strategies for decreasing greenhouse gas emissions, there are several valid arguments to examine the opportunities for reducing nitrous oxide emissions from agriculture. This paper provides a review of the state-of-the-art of emission reduction, discusses two strategies for decreasing emissions and identifies various gaps in current knowledge in this field and the need for relevant scientific research. The two strategies discussed are (1) increasing the nitrogen use efficiency toward the goal of lowering total nitrogen input, and (2) decreasing the release of nitrous oxide per unit of nitrogen from the processes of nitrification and denitrification. Increasing nitrogen use efficiency is thought to be the most effective strategy. To that end, the paper discusses several practical actions and measures based on decisions at tactical and operational management levels. Knowledge gaps identified include (1) incomplete understanding of nitrogen cycling in farming systems, (2) incomplete quantitative understanding of emission controlling factors, (3) information gap between science and policy, and (4) information gap between science and practice. Appropriate research needs are suggested for each of these areas. It is suggested that the highest priority should be given to improving the understanding of emission controlling factors in the field and on the farm. 23 refs., 2 figs.

  14. Diffusion and Evaporation-Controlled Emission in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus

    and sources. This work provides an investigation based on fundamental fluid dynamics and mass transfer theory to obtain a general understanding of the mechanisms involved in the emission from building materials in ventilated rooms. In addition, a generally applicable model for prediction of surface emission...... is proposed. The interest has been focused on the emission of vapours and gases as no particulate emissions have been considered. The methods used are numerical calculations by computational fluid dynamics (CFD) and full-scale laboratory experiments. It was found that the emission is a strong function of air......In emission studies reported in literature little effort has been made to investigate the emission from building materials in ventilated enclosures from a fluid dynamics point of view. Furthermore, most of the existing emission models are empirical relations that are based on specific pollutants...

  15. UV emissions from low energy artificial light sources.

    Science.gov (United States)

    Fenton, Leona; Moseley, Harry

    2014-01-01

    Energy efficient light sources have been introduced across Europe and many other countries world wide. The most common of these is the Compact Fluorescent Lamp (CFL), which has been shown to emit ultraviolet (UV) radiation. Light Emitting Diodes (LEDs) are an alternative technology that has minimal UV emissions. This brief review summarises the different energy efficient light sources available on the market and compares the UV levels and the subsequent effects on the skin of normal individuals and those who suffer from photodermatoses. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. VOC emissions control systems

    International Nuclear Information System (INIS)

    Spessard, J.E.

    1993-01-01

    The air pollution control equipment marketplace offers many competing technologies for controlling emissions of volatile organic compounds (VOC) in air. If any technology was economically and technically superior under all conditions, it would be the only one on the market. In fact, each technology used to control VOCs is superior under some set of conditions. The reasons for choosing one control technology over another are situation-specific. Some general guidelines to VOC control technologies and the situations where each may be appropriate are presented in this article. The control technologies and applications are summarized in a table

  17. Lidar method to estimate emission rates from extended sources

    Science.gov (United States)

    Currently, point measurements, often combined with models, are the primary means by which atmospheric emission rates are estimated from extended sources. However, these methods often fall short in their spatial and temporal resolution and accuracy. In recent years, lidar has emerged as a suitable to...

  18. 40 CFR 63.5985 - What are my alternatives for meeting the emission limits for tire production affected sources?

    Science.gov (United States)

    2010-07-01

    ... the emission limits for tire production affected sources? 63.5985 Section 63.5985 Protection of... Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Production Affected Sources § 63.5985 What are my alternatives for meeting the emission limits for tire production affected sources? You must use...

  19. Reduction of PM emissions from specific sources reflected on key components concentrations of ambient PM10

    Science.gov (United States)

    Minguillon, M. C.; Querol, X.; Monfort, E.; Alastuey, A.; Escrig, A.; Celades, I.; Miro, J. V.

    2009-04-01

    The relationship between specific particulate emission control and ambient levels of some PM10 components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits (middle product for the manufacture of ceramic glaze) are produced. The PM10 emissions from the ceramic processes were calculated over the period 2000 to 2007 taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems (mainly bag filters) were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/CE, leading to a marked decrease in PM10 emissions. On the other hand, ambient PM10 sampling was carried out from April 2002 to July 2008 at three urban sites and one suburban site of the area and a complete chemical analysis was made for about 35 % of the collected samples, by means of different techniques (ICP-AES, ICP-MS, Ion Chromatography, selective electrode and elemental analyser). The series of chemical composition of PM10 allowed us to apply a source contribution model (Principal Component Analysis), followed by a multilinear regression analysis, so that PM10 sources were identified and their contribution to bulk ambient PM10 was quantified on a daily basis, as well as the contribution to bulk ambient concentrations of the identified key components (Zn, As, Pb, Cs, Tl). The contribution of the sources identified as the manufacture and use of ceramic glaze components, including the manufacture of ceramic frits, accounted for more than 65, 75, 58, 53, and 53% of ambient Zn, As, Pb, Cs and Tl levels, respectively (with the exception of Tl contribution at one of the sites). The important emission reductions of these sources during the study period had an impact on ambient key components levels, such that there was a high

  20. Particle and VOC emission factor measurements for anthropogenic sources in West Africa

    Directory of Open Access Journals (Sweden)

    S. Keita

    2018-06-01

    Full Text Available A number of campaigns have been carried out to establish the emission factors of pollutants from fuel combustion in West Africa, as part of work package 2 (Air Pollution and Health of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa FP7 program. Emission sources considered here include wood (hevea and iroko and charcoal burning, charcoal making, open trash burning, and vehicle emissions, including trucks, cars, buses and two-wheeled vehicles. Emission factors of total particulate matter (TPM, elemental carbon (EC, primary organic carbon (OC and volatile organic compounds (VOCs have been established. In addition, emission factor measurements were performed in combustion chambers in order to reproduce field burning conditions for a tropical hardwood (hevea, and obtain particulate emission factors by size (PM0.25, PM1, PM2.5 and PM10. Particle samples were collected on quartz fiber filters and analyzed using gravimetric method for TPM and thermal methods for EC and OC. The emission factors of 58 VOC species were determined using offline sampling on a sorbent tube. Emission factor results for two species of tropical hardwood burning of EC, OC and TPM are 0.98 ± 0.46 g kg−1 of fuel burned (g kg−1, 11.05 ± 4.55 and 41.12 ± 24.62 g kg−1, respectively. For traffic sources, the highest emission factors among particulate species are found for the two-wheeled vehicles with two-stroke engines (2.74 g kg−1 fuel for EC, 65.11 g kg−1 fuel for OC and 496 g kg−1 fuel for TPM. The largest VOC emissions are observed for two-stroke two-wheeled vehicles, which are up to 3 times higher than emissions from light-duty and heavy-duty vehicles. Isoprene and monoterpenes, which are usually associated with biogenic emissions, are present in almost all anthropogenic sources investigated during this work and could be as significant as aromatic emissions in wood burning (1 g kg−1 fuel. EC is

  1. Fugitive emission source characterization using a gradient-based optimization scheme and scalar transport adjoint

    Science.gov (United States)

    Brereton, Carol A.; Joynes, Ian M.; Campbell, Lucy J.; Johnson, Matthew R.

    2018-05-01

    Fugitive emissions are important sources of greenhouse gases and lost product in the energy sector that can be difficult to detect, but are often easily mitigated once they are known, located, and quantified. In this paper, a scalar transport adjoint-based optimization method is presented to locate and quantify unknown emission sources from downstream measurements. This emission characterization approach correctly predicted locations to within 5 m and magnitudes to within 13% of experimental release data from Project Prairie Grass. The method was further demonstrated on simulated simultaneous releases in a complex 3-D geometry based on an Alberta gas plant. Reconstructions were performed using both the complex 3-D transient wind field used to generate the simulated release data and using a sequential series of steady-state RANS wind simulations (SSWS) representing 30 s intervals of physical time. Both the detailed transient and the simplified wind field series could be used to correctly locate major sources and predict their emission rates within 10%, while predicting total emission rates from all sources within 24%. This SSWS case would be much easier to implement in a real-world application, and gives rise to the possibility of developing pre-computed databases of both wind and scalar transport adjoints to reduce computational time.

  2. Aging of plumes from emission sources based on chamber simulation

    Science.gov (United States)

    Wang, X.; Deng, W.; Fang, Z.; Bernard, F.; Zhang, Y.; Yu, J.; Mellouki, A.; George, C.

    2017-12-01

    Study on atmospheric aging of plumes from emission sources is essential to understand their contribution to both secondary and primary pollutants occurring in the ambient air. Here we directly introduced vehicle exhaust, biomass burning plume, industrial solvents and cooking plumes into a smog chamber with 30 m3 fluorinated ethylene propylene (FEP) Teflon film reactor housed in a temperature-controlled enclosure, for characterizing primarily emitted air pollutants and for investigating secondarily formed products during photo-oxidation. Moreover, we also initiated study on the formation of secondary aerosols when gasoline vehicle exhaust is mixed with typical coal combustion pollutant SO2 or typical agricultural-related pollutant NH3. Formation of secondary organic aerosols (SOA) from typical solvent toluene was also investigated in ambient air matrix in comparison with purified air matrix. Main findings include: 1) Except for exhaust from idling gasoline vehicles, traditional precursor volatile organic compounds could only explain a very small fraction of SOA formed from vehicle exhaust, biomass burning or cooking plumes, suggesting knowledge gap in SOA precursors; 2) There is the need to re-think vehicle emission standards with a combined primary and/or secondary contribution of vehicle exhaust to PM2.5 or other secondary pollutants such as ozone; 3) When mixed with SO2, the gasoline vehicle exhaust revealed an increase of SOA production factor by 60-200% and meanwhile SO2 oxidation rates increased about a factor of 2.7; when the aged gasoline vehicle exhaust were mixing with NH3, both particle number and mass concentrations were increasing explosively. These phenomenons implied the complex interaction during aging of co-existing source emissions. 4) For typical combination of "tolune+SO2+NOx", when compared to chamber simulation with purified air as matrix, both SOA formation and SO2 oxidation were greatly enhanced under ambient air matrix, and the enhancement

  3. Development of a novel methodology for indoor emission source identification

    DEFF Research Database (Denmark)

    Han, K.H.; Zhang, J.S.; Knudsen, H.N.

    2011-01-01

    The objective of this study was to develop and evaluate a methodology to identify individual sources of emissions based on the measurements of mixed air samples and the emission signatures of individual materials previously determined by Proton Transfer Reaction-Mass Spectrometry (PTR-MS), an on......-line analytical device. The methodology based on signal processing principles was developed by employing the method of multiple regression least squares (MRLS) and a normalization technique. Samples of nine typical building materials were tested individually and in combination, including carpet, ceiling material...... experiments and investigation are needed for cases where the relative emission rates among different compounds may change over a long-term period....

  4. Urban sources and emissions of nitrous oxide and methane in southern California, USA

    Science.gov (United States)

    Townsend-Small, A.; Pataki, D.; Tyler, S. C.; Czimczik, C. I.; Xu, X.; Christensen, L. E.

    2012-12-01

    Anthropogenic activities have resulted in increasing levels of greenhouse gases, including carbon dioxide, methane, and nitrous oxide. While global and regional emissions sources of carbon dioxide are relatively well understood, methane and nitrous oxide are less constrained, particularly at regional scales. Here we present the results of an investigation of sources and emissions of methane and nitrous oxide in Los Angeles, California, USA, one of Earth's largest urban areas. The original goal of the project was to determine whether isotopes are useful tracers of agricultural versus urban nitrous oxide and methane sources. For methane, we found that stable isotopes (carbon-13 and deuterium) and radiocarbon are good tracers of biogenic versus fossil fuel sources. High altitude observations of methane concentration, measured continuously using tunable laser spectroscopy, and isotope ratios, measured on discrete flask samples using mass spectrometry, indicate that the predominant methane source in Los Angeles is from fossil fuels, likely from "fugitive" emissions from geologic formations, natural gas pipelines, oil refining, or power plants. We also measured nitrous oxide emissions and isotope ratios from urban (landscaping and wastewater treatment) and agricultural sources (corn and vegetable fields). There was no difference in nitrous oxide isotope ratios between the different types of sources, although stable isotopes did differ between nitrous oxide produced in oxic and anoxic wastewater treatment tanks. Our nitrous oxide flux data indicate that landscaped turfgrass emits nitrous oxide at rates equivalent to agricultural systems, indicating that ornamental soils should not be disregarded in regional nitrous oxide budgets. However, we also showed that wastewater treatment is a much greater source of nitrous oxide than soils regionally. This work shows that global nitrous oxide and methane budgets are not easily downscaled to regional, urban settings, which has

  5. Measurements of Parameters Controlling the Emissions of Organophosphate Flame Retardants in Indoor Environments.

    Science.gov (United States)

    Liang, Yirui; Liu, Xiaoyu; Allen, Matthew R

    2018-05-15

    Emission of semivolatile organic compounds (SVOCs) from source materials usually occurs very slowly in indoor environments due to their low volatility. When the SVOC emission process is controlled by external mass transfer, the gas-phase concentration in equilibrium with the material ( y 0 ) is used as a key parameter to simplify the source models that are based on solid-phase diffusion. A material-air-material (M-A-M) configured microchamber method was developed to rapidly measure y 0 for a polyisocyanurate rigid foam material containing organophosphate flame retardants (OPRFs). The emission test was conducted in 44 mL microchambers for target OPFRs, including tris(2-chloroethyl) phosphate (CASRN: 115-96-8), tris(1-chloro-2-propyl) phosphate (CASRN: 13674-84-5), and tris(1,3-dichloro-2-propyl) phosphate (CASRN: 13674-87-8). In addition to the microchamber emission test, two other types of tests were conducted to determine y 0 for the same foam material: OPFR diffusive tube sampling tests from the OPFR source foam using stainless-steel thermal desorption tubes and sorption tests of OPFR on an OPFR-free foam in a 53 L small chamber. Comparison of parameters obtained from the three methods suggests that the discrepancy could be caused by a combination of theoretical, experimental, and computational differences. Based on the y 0 measurements, a linear relationship between the ratio of y 0 to saturated vapor pressure concentration and material-phase mass fractions has been found for phthalates and OPFRs.

  6. Mobil emission reduction credits for natural gas vehicle programs

    International Nuclear Information System (INIS)

    Baker, G.F.

    1993-01-01

    Since the passage of the Clean Air Act Amendments in 1990, there has been increasing interest among regulators and business interests alike in innovative, market-based strategies to air quality control. In particular, larger metropolitan areas have begun to examine marketable emission reduction credit (ERC) programs. These programs limit the total allowable emissions in a non-attainment area, allocate these emission open-quotes creditsclose quotes among sources in the region, and allow the sources to redistribute their allowances through trading. This approach provides for the most cost-effective distribution of control burdens among affected sources, taking advantage of the differences in marginal control costs. Some control measures applied to mobile sources may be significantly less expensive than those applied to stationary sources, making mobile sources an excellent candidate for inclusion in an ERC program. However, there are several potential problems involving quantification, enforcement, and credit trading issues that hinder the development of mobile source ERC programs. This paper will evaluate those obstacles and discuss how they are being addressed in a Natural Gas Vehicle (NGV) program currently under development for the Houston ozone non-attainment area. Specifically, the study will outline the credit validation (i.e., quantification) procedure, including baseline emission determination and emission testing for each NGV in the program. In addition, the study will describe the vehicle/fuel consumption tracking system, and discuss issues related to credit trading with stationary sources. Finally, observations are made concerning the applicability of mobile ERC programs for other emission control measures such as old vehicle scrappage and vehicle Inspection and Maintenance programs

  7. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources

    Directory of Open Access Journals (Sweden)

    Neil J. Hime

    2018-06-01

    Full Text Available This article briefly reviews evidence of health effects associated with exposure to particulate matter (PM air pollution from five common outdoor emission sources: traffic, coal-fired power stations, diesel exhaust, domestic wood combustion heaters, and crustal dust. The principal purpose of this review is to compare the evidence of health effects associated with these different sources with a view to answering the question: Is exposure to PM from some emission sources associated with worse health outcomes than exposure to PM from other sources? Answering this question will help inform development of air pollution regulations and environmental policy that maximises health benefits. Understanding the health effects of exposure to components of PM and source-specific PM are active fields of investigation. However, the different methods that have been used in epidemiological studies, along with the differences in populations, emission sources, and ambient air pollution mixtures between studies, make the comparison of results between studies problematic. While there is some evidence that PM from traffic and coal-fired power station emissions may elicit greater health effects compared to PM from other sources, overall the evidence to date does not indicate a clear ‘hierarchy’ of harmfulness for PM from different emission sources. Further investigations of the health effects of source-specific PM with more advanced approaches to exposure modeling, measurement, and statistics, are required before changing the current public health protection approach of minimising exposure to total PM mass.

  8. What Is Emissions Trading?

    Science.gov (United States)

    Learn the basics about how emissions trading uses a market-based policy tool used to control large amounts of pollution emissions from a group of sources in order to protect human health and the environment.

  9. Emission control at stationary sources in the Federal Republic of Germany. Vol 1. Sulphur oxide and nitrogen oxide emission control; Massnahmen zur Emissionsminderung bei stationaeren Quellen in der Bundesrepublik Deutschland. Bd. 1. Minderung der SO{sub 2}- und NO{sub x}-Emissionen

    Energy Technology Data Exchange (ETDEWEB)

    Rentz, O; Schleef, H J; Dorn, R; Sasse, H; Karl, U

    1997-05-01

    The first volume of the report covers the state of implementation of primary and secondary measures for SO{sub 2}- and NO{sub x} control applied in the most important industrial sectors in Germany. Integrated pollution abatement techniques, called primary measures in this report, such as process integrated measures and low emission processes, have gained increased importance in recent years. The end-of-pipe processes, described here as secondary measures, are generally highly effective. They represent mature technologies, which are capable of achieving significant reductions in SO{sub 2}- and NO{sub x} emissions, and which have been used in particular for retrofitting existing plants. At first, an overview is given regarding the development of SO{sub 2}- and NO{sub x} emissions in selected European countries during the last 20 years and in Europe. Current national and European emission limits and emission guidelines on SO{sub 2}- and NO{sub x} emissions from stationary sources are discussed as well. The state of implementation of measures for the reduction of SO{sub 2}- and NO{sub x} emissions is analysed for each relevant industrial sector and primary emission reduction options are described. Special units designede for direct contact of flame and process materials are dealt with in the different sector descriptions, while external combustion processes providing process heat and power are dealt with in a separate chapter. In the final section an overview of secondary emission reduction measures covering SO{sub 2}- and NO{sub x} control technology is given. For the various sectors, examples of investments and costs for installed emission reduction measures are given, which have to be considered as highly case specific. In addition, the suppliers of the various control technologies have given specific aspects related to specific process layout of their systems as well as references. (orig.) [Deutsch] Der erste Band des Berichts beschreibt den Anwendungsstand von

  10. Economic growth and carbon emission control

    Science.gov (United States)

    Zhang, Zhenyu

    The question about whether environmental improvement is compatible with continued economic growth remains unclear and requires further study in a specific context. This study intends to provide insight on the potential for carbon emissions control in the absence of international agreement, and connect the empirical analysis with theoretical framework. The Chinese electricity generation sector is used as a case study to demonstrate the problem. Both social planner and private problems are examined to derive the conditions that define the optimal level of production and pollution. The private problem will be demonstrated under the emission regulation using an emission tax, an input tax and an abatement subsidy respectively. The social optimal emission flow is imposed into the private problem. To provide tractable analytical results, a Cobb-Douglas type production function is used to describe the joint production process of the desired output and undesired output (i.e., electricity and emissions). A modified Hamiltonian approach is employed to solve the system and the steady state solutions are examined for policy implications. The theoretical analysis suggests that the ratio of emissions to desired output (refer to 'emission factor'), is a function of productive capital and other parameters. The finding of non-constant emission factor shows that reducing emissions without further cutting back the production of desired outputs is feasible under some circumstances. Rather than an ad hoc specification, the optimal conditions derived from our theoretical framework are used to examine the relationship between desired output and emission level. Data comes from the China Statistical Yearbook and China Electric Power Yearbook and provincial information of electricity generation for the year of 1993-2003 are used to estimate the Cobb-Douglas type joint production by the full information maximum likelihood (FIML) method. The empirical analysis shed light on the optimal

  11. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2006-03-01

    TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) involves exposing laboratory rats to realistic coal-fired power plant and mobile source emissions to help determine the relative toxicity of these PM sources. There are three coal-fired power plants in the TERESA program; this report describes the results of fieldwork conducted at the first plant, located in the Upper Midwest. The project was technically challenging by virtue of its novel design and requirement for the development of new techniques. By examining aged, atmospherically transformed aerosol derived from power plant stack emissions, we were able to evaluate the toxicity of PM derived from coal combustion in a manner that more accurately reflects the exposure of concern than existing methodologies. TERESA also involves assessment of actual plant emissions in a field setting--an important strength since it reduces the question of representativeness of emissions. A sampling system was developed and assembled to draw emissions from the stack; stack sampling conducted according to standard EPA protocol suggested that the sampled emissions are representative of those exiting the stack into the atmosphere. Two mobile laboratories were then outfitted for the study: (1) a chemical laboratory in which the atmospheric aging was conducted and which housed the bulk of the analytical equipment; and (2) a toxicological laboratory, which contained animal caging and the exposure apparatus. Animal exposures were carried out from May-November 2004 to a number of simulated atmospheric scenarios. Toxicological endpoints included (1) pulmonary function and breathing pattern; (2) bronchoalveolar lavage fluid cytological and biochemical analyses; (3) blood cytological analyses; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. Results indicated no differences between exposed and control animals in any of the endpoints examined. Exposure concentrations for the

  12. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements - a sensitivity analysis based on multiple field surveys.

    Science.gov (United States)

    Mønster, Jacob G; Samuelsson, Jerker; Kjeldsen, Peter; Rella, Chris W; Scheutz, Charlotte

    2014-08-01

    Using a dual species methane/acetylene instrument based on cavity ring down spectroscopy (CRDS), the dynamic plume tracer dispersion method for quantifying the emission rate of methane was successfully tested in four measurement campaigns: (1) controlled methane and trace gas release with different trace gas configurations, (2) landfill with unknown emission source locations, (3) landfill with closely located emission sources, and (4) comparing with an Fourier transform infrared spectroscopy (FTIR) instrument using multiple trace gasses for source separation. The new real-time, high precision instrument can measure methane plumes more than 1.2 km away from small sources (about 5 kg h(-1)) in urban areas with a measurement frequency allowing plume crossing at normal driving speed. The method can be used for quantification of total methane emissions from diffuse area sources down to 1 kg per hour and can be used to quantify individual sources with the right choice of wind direction and road distance. The placement of the trace gas is important for obtaining correct quantification and uncertainty of up to 36% can be incurred when the trace gas is not co-located with the methane source. Measurements made at greater distances are less sensitive to errors in trace gas placement and model calculations showed an uncertainty of less than 5% in both urban and open-country for placing the trace gas 100 m from the source, when measurements were done more than 3 km away. Using the ratio of the integrated plume concentrations of tracer gas and methane gives the most reliable results for measurements at various distances to the source, compared to the ratio of the highest concentration in the plume, the direct concentration ratio and using a Gaussian plume model. Under suitable weather and road conditions, the CRDS system can quantify the emission from different sources located close to each other using only one kind of trace gas due to the high time resolution, while the FTIR

  13. NOx emissions trading: Precursor to future growth

    International Nuclear Information System (INIS)

    Colella, A.

    1993-01-01

    Title I of the Clean Air Act Amendments (CAAA) of 1990 specified the framework for enhanced regulation in ozone non-attainment areas with increasingly stringent requirements dependent on the area classification - marginal, moderate, serious, severe or extreme. Before the CAAA were passed, only volatile organic compounds (VOCs) were regulated as precursors to ozone formation, Now, by statute, emissions of nitrogen oxides (NO x ) are also regulated as ozone precursor. Under the CAAA, new sources and modifications of existing sources are subject to Title I permitting requirements in ozone non-attainment areas if emissions of NO x and/or VOCs exceed certain triggering levels. For many new or facility expansion projects, especially power generation, the NO x thresholds are easily exceeded thus triggering Title I non-attainment new source review which requires application of control technology to new equipment which results in the Lowest Achievable Emission Rate (LAER), and securing emission reductions either internally or from other major sources to offset the increased emission from the new or modified source. The selection of a LAER technology is generally within an applicant's control. An applicant can determine up-front the engineering and cost considerations associated with LAER technology is assessing a project's viability. However, without a clear source of emission offsets of a means to secure them, assessing project viability could be difficult if not impossible. No available emission offsets means no industrial growth. For sources of NO x undergoing Title I new source review, a regional or state banking system that facilitates NO x emissions trading is needed as a precursor to future growth. This paper presents an overview of EPA's Emissions Trading Policy and Title I new source review offset provisions. Industry's concerns about emissions trading and recommendations for future trading programs are presented

  14. Real-time particle monitor calibration factors and PM2.5 emission factors for multiple indoor sources.

    Science.gov (United States)

    Dacunto, Philip J; Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Klepeis, Neil E; Repace, James L; Ott, Wayne R; Hildemann, Lynn M

    2013-08-01

    Indoor sources can greatly contribute to personal exposure to particulate matter less than 2.5 μm in diameter (PM2.5). To accurately assess PM2.5 mass emission factors and concentrations, real-time particle monitors must be calibrated for individual sources. Sixty-six experiments were conducted with a common, real-time laser photometer (TSI SidePak™ Model AM510 Personal Aerosol Monitor) and a filter-based PM2.5 gravimetric sampler to quantify the monitor calibration factors (CFs), and to estimate emission factors for common indoor sources including cigarettes, incense, cooking, candles, and fireplaces. Calibration factors for these indoor sources were all significantly less than the factory-set CF of 1.0, ranging from 0.32 (cigarette smoke) to 0.70 (hamburger). Stick incense had a CF of 0.35, while fireplace emissions ranged from 0.44-0.47. Cooking source CFs ranged from 0.41 (fried bacon) to 0.65-0.70 (fried pork chops, salmon, and hamburger). The CFs of combined sources (e.g., cooking and cigarette emissions mixed) were linear combinations of the CFs of the component sources. The highest PM2.5 emission factors per time period were from burned foods and fireplaces (15-16 mg min(-1)), and the lowest from cooking foods such as pizza and ground beef (0.1-0.2 mg min(-1)).

  15. X-ray emission as a diagnostic from pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, D., E-mail: david.bowes@strath.ac.uk [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H.; He, W.; Zhang, L.; Cross, A.W.; Ronald, K.; Phelps, A.D.R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Chen, D.; Zhang, P. [Computed Tomography Lab, School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Chen, X.; Li, D. [Department of Electronic Engineering, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-09-15

    X-ray emission has been achieved using an electron beam generated by a pseudospark low-pressure discharge and utilised as a diagnostic for beam detection. A 300 A, 34 kV PS-sourced electron beam pulse of 3 mm diameter impacting on a 0.1 mm-thick molybdenum target generated X-rays which were detected via the use of a small, portable X-ray detector. Clear X-ray images of a micro-sized object were captured using an X-ray photodetector. This demonstrates the inducement of proton induced X-ray emission (PIXE) not only as an indicator of beam presence but also as a future X-ray source for small-spot X-ray imaging of materials.

  16. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Science.gov (United States)

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  17. Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China.

    Science.gov (United States)

    Liu, Yayong; Xing, Jia; Wang, Shuxiao; Fu, Xiao; Zheng, Haotian

    2018-08-01

    Heavy metals are concerned for its adverse effect on human health and long term burden on biogeochemical cycling in the ecosystem. In this study, a provincial-level emission inventory of 13 kinds of heavy metals including V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Sn, Sb, Ba and Pb from 10 anthropogenic sources was developed for China, based on the 2015 national emission inventory of primary particulate matters and source category-specific speciation profiles collected from 50 previous studies measured in China. Uncertainties associated with the speciation profiles were also evaluated. Our results suggested that total emissions of the 13 types of heavy metals in China are estimated at about 58000 ton for the year 2015. The iron production is the dominant source of heavy metal, contributing 42% of total emissions of heavy metals. The emissions of heavy metals vary significantly at regional scale, with largest amount of emissions concentrated in northern and eastern China. Particular, high emissions of Cr, Co, Ni, As and Sb (contributing 8%-18% of the national emissions) are found in Shandong where has large capacity of industrial production. Uncertainty analysis suggested that the implementation of province-specific source profiles in this study significantly reduced the emission uncertainties from (-89%, 289%) to (-99%, 91%), particularly for coal combustion. However, source profiles for industry sectors such as non-metallic mineral manufacturing are quite limited, resulting in a relative high uncertainty. The high-resolution emission inventories of heavy metals are essential not only for their distribution, deposition and transport studies, but for the design of policies to redress critical atmospheric environmental hazards at local and regional scales. Detailed investigation on source-specific profile in China are still needed to achieve more accurate estimations of heavy metals in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Emission characteristics and stability of laser ion sources

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Velyhan, Andriy; Krouský, Eduard; Láska, Leoš; Rohlena, Karel; Jungwirth, Karel; Ullschmied, Jiří; Lorusso, A.; Velardi, L.; Nassisi, V.; Czarnecka, A.; Ryc, L.; Parys, P.; Wolowski, J.

    2010-01-01

    Roč. 85, č. 5 (2010), s. 617-621 ISSN 0042-207X R&D Projects: GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser ion sources * ion emission reproducibility * thermal and fast ions * ion temperature * centre-of-mass velocity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.048, year: 2010

  19. Emission of nitrous acid from soil and biological soil crusts as a major source of atmospheric HONO on Cyprus

    Science.gov (United States)

    Meusel, Hannah; Tamm, Alexandra; Wu, Dianming; Kuhn, Uwe; Leifke, Anna-Lena; Weber, Bettina; Su, Hang; Lelieveld, Jos; Hoffmann, Thorsten; Pöschl, Ulrich; Cheng, Yafang

    2017-04-01

    Elucidation of the sources and atmospheric chemistry of nitrous acid (HONO) is highly relevant, as HONO is an important precursor of OH radicals. Up to 30% of the OH budget are formed by photolysis of HONO, whereas major fractions of HONO measured in the field derive from yet unidentified sources. Heterogeneous conversion of nitrogen dioxide (NO2) to HONO on a variety of surfaces (soot, humic acid aerosol) is assumed to be a major HONO source (Stemmler et al., 2007, Ammann et al., 1998). In rural regions, however, NO2 concentrations were found to be too low to explain observed HONO concentrations, as e.g., in the case of a recent field study on the Mediterranean island of Cyprus (Meusel et al., 2016). In this study a good correlation between missing sources of HONO and nitrogen oxide (NO) was found indicating a common origin of both reactive nitrogen compounds. Simultaneous emission of HONO and NO from soil was reported earlier (Oswald et al., 2013), and enhanced emission rates were found when soil was covered by biological soil crusts in arid and semi-arid ecosystems (Weber et al., 2015). In the present study we measured HONO and NO emissions of 43 soil and soil crust samples from Cyprus during full wetting and drying cycles under controlled laboratory conditions by means of a dynamic chamber system. The observed range of HONO and NO emissions was in agreement with earlier studies, but unlike the study of Weber et al. (2015), we found highest emission from bare soil, followed by soil covered by light and dark cyanobacteria-dominated biological soil crusts. Emission rates correlated well with the nitrite and nitrate contents of soil and biological soil crust samples, and higher nutrient contents of bare soil samples, as compared to the previous biological soil crust study, explain the higher bare soil emissions. Integrating the emission rates of bare soil and the different types of biological soil crusts, based on their local relative abundance, the calculated

  20. Broadband transmission grating spectrometer for measuring the emission spectrum of EUV sources

    NARCIS (Netherlands)

    Bayraktar, Muharrem; Bastiaens, Hubertus M.J.; Bruineman, Caspar; Vratzov, Boris; Bijkerk, Frederik

    2016-01-01

    Extreme ultraviolet (EUV) light sources and their optimization for emission within a narrow wavelength band are essential in applications such as photolithography. Most light sources however also emit radiation outside this wavelength band and have a spectrum extending up to deep ultraviolet (DUV)

  1. Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part II. Emission sector and source region contributions.

    Science.gov (United States)

    Qiao, Xue; Tang, Ya; Kota, Sri Harsha; Li, Jingyi; Wu, Li; Hu, Jianlin; Zhang, Hongliang; Ying, Qi

    2015-11-01

    A source-oriented Community Multiscale Air Quality (CMAQ) model driven by the meteorological fields generated by the Weather Research and Forecasting (WRF) model was used to study the dry and wet deposition of nitrate (NO3(-)), sulfate (SO4(2-)), and ammonium (NH4(+)) ions in the Jiuzhaigou National Nature Reserve (JNNR), China from June to August 2010 and to identify the contributions of different emission sectors and source regions that were responsible for the deposition fluxes. Contributions from power plants, industry, transportation, domestic, biogenic, windblown dust, open burning, fertilizer, and manure management sources to deposition fluxes in JNNR watershed and four EANET sites are determined. In JNNR, 96%, 82%, and 87% of the SO4(2-), NO3(-) and NH4(+) deposition fluxes are in the form of wet deposition of the corresponding aerosol species. Industry and power plants are the two major sources of SO4(2-) deposition flux, accounting for 86% of the total wet deposition of SO4(2-), and industry has a higher contribution (56%) than that of power plants (30%). Power plants and industry are also the top sources that are responsible for NO3(-) wet deposition, and contributions from power plants (30%) are generally higher than those from industries (21%). The major sources of NH4(+) wet deposition flux in JNNR are fertilizer (48%) and manure management (39%). Source-region apportionment confirms that SO2 and NOx emissions from local and two nearest counties do not have a significant impact on predicted wet deposition fluxes in JNNR, with contributions less than 10%. While local NH3 emissions account for a higher fraction of the NH4(+) deposition, approximately 70% of NH4(+) wet deposition in JNNR originated from other source regions. This study demonstrates that S and N deposition in JNNR is mostly from long-range transport rather than from local emissions, and to protect JNNR, regional emission reduction controls are needed. Copyright © 2015 Elsevier B.V. All

  2. Search for continuous and single day emission from ultra-high-energy sources

    International Nuclear Information System (INIS)

    Chen, Mei-Li.

    1993-01-01

    Data from the CYGNUS experiment has been used to search the northern sky for point sources of continuous ultra-high-energy gamma radiation and to examine 51 candidate sources on a daily basis to search for episodic emission. In this paper, we make use of our most recent data to update our previously published results from these searches. The data sample is approximately twice as large as the published data set for continuous emission, and contains an additional year for the daily search. The latest results, up to the time of the conference, will be presented at the meeting

  3. Test Method for High β Particle Emission Rate of 63Ni Source Plate

    OpenAIRE

    ZHANG Li-feng

    2015-01-01

    For the problem of measurement difficulties of β particle emission rate of Ni-63 source plate used for Ni-63 betavoltaic battery, a relative test method of scintillation current method was erected according to the measurement principle of scintillation detector.β particle emission rate of homemade Ni-63 source plate was tested by the method, and the test results were analysed and evaluated, it was initially thought that scintillation current method was a feasible way of testing β particle emi...

  4. The extinction to the H2 line emission in the DR 21 outflow source

    International Nuclear Information System (INIS)

    Nadeau, D.; Riopel, M.; Geballe, T.R.

    1991-01-01

    The v = 1-0 S(1) and Q(3) lines of H2 have been measured in four regions of the DR 21 H2 line-emission source, in order to determine whether the observed morphology of the emission represents the distribution of the excited H2 or is modified by nonuniform extinction across the source. The measured lines originate from the same upper level, and their ratio is a direct measure of the reddening. The line ratios show that the extinction is quite uniform across the source and that there is no correlation between the intensity and the extinction. This result implies that the gap between the two lobes of emission is not due to increased extinction but rather is a region where there is little excited H2 gas. 13 refs

  5. Process system and method for fabricating submicron field emission cathodes

    Science.gov (United States)

    Jankowski, Alan F.; Hayes, Jeffrey P.

    1998-01-01

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.

  6. Diverse origins of Arctic and Subarctic methane point source emissions identified with multiply-substituted isotopologues

    Science.gov (United States)

    Douglas, P. M. J.; Stolper, D. A.; Smith, D. A.; Walter Anthony, K. M.; Paull, C. K.; Dallimore, S.; Wik, M.; Crill, P. M.; Winterdahl, M.; Eiler, J. M.; Sessions, A. L.

    2016-09-01

    Methane is a potent greenhouse gas, and there are concerns that its natural emissions from the Arctic could act as a substantial positive feedback to anthropogenic global warming. Determining the sources of methane emissions and the biogeochemical processes controlling them is important for understanding present and future Arctic contributions to atmospheric methane budgets. Here we apply measurements of multiply-substituted isotopologues, or clumped isotopes, of methane as a new tool to identify the origins of ebullitive fluxes in Alaska, Sweden and the Arctic Ocean. When methane forms in isotopic equilibrium, clumped isotope measurements indicate the formation temperature. In some microbial methane, however, non-equilibrium isotope effects, probably related to the kinetics of methanogenesis, lead to low clumped isotope values. We identify four categories of emissions in the studied samples: thermogenic methane, deep subsurface or marine microbial methane formed in isotopic equilibrium, freshwater microbial methane with non-equilibrium clumped isotope values, and mixtures of deep and shallow methane (i.e., combinations of the first three end members). Mixing between deep and shallow methane sources produces a non-linear variation in clumped isotope values with mixing proportion that provides new constraints for the formation environment of the mixing end-members. Analyses of microbial methane emitted from lakes, as well as a methanol-consuming methanogen pure culture, support the hypothesis that non-equilibrium clumped isotope values are controlled, in part, by kinetic isotope effects induced during enzymatic reactions involved in methanogenesis. Our results indicate that these kinetic isotope effects vary widely in microbial methane produced in Arctic lake sediments, with non-equilibrium Δ18 values spanning a range of more than 5‰.

  7. Modeling the effects of changes in new source review on national SO2 and NOx emissions from electricity-generating units.

    Science.gov (United States)

    Evans, David A; Hobbs, Benjamin F; Oren, Craig; Palmer, Karen L

    2008-01-15

    The Clean Air Act establishes New Source Review (NSR) programs that apply to construction or modification of major stationary sources. In 2002 and 2003, EPA revised its rules to narrow NSR's coverage of renovations. Congress mandated a National Research Council study of the revisions' impacts. In that study, we used an electricity-sector model to explore possible effects of the equipment replacement provision (ERP), the principal NSR change directed at power plants. We find that, assuming implementation of the Clean Air Interstate Rule (CAIR), tight enforcement of the prerevision NSR rules would likely lead to no or limited decreases in national emissions compared to policies such as ERP. However, emissions might shift forward in time because the previous NSR rules would depress allowance prices, discouraging banking and encouraging allowance use. Only under the most aggressive prerevision NSR enforcement scenario, in which essentially all coal capacity is compelled to retrofit controls by 2020, do NOx emissions fall below ERP levels. Even then, total 2007-2020 SO2 emissions are unaffected. Further decreases in national emissions could be accomplished more cheaply by tighter emissions caps than through NSR because caps provide incentives for efficient operating strategies, such as fuel switching, as well as retrofits.

  8. Effects of carbon sources and COD/N ratio on N2O emissions in subsurface flow constructed wetlands.

    Science.gov (United States)

    Lyu, Wanlin; Huang, Lei; Xiao, Guangquan; Chen, Yucheng

    2017-12-01

    A set of constructed wetlands under two different carbon sources, namely, glucose (CW) and sodium acetate (YW), was established at a laboratory scale with influent COD/N ratios of 20:1, 10:1, 7:1, 4:1, and 0 to analyze the influence of carbon supply on nitrous oxide emissions. Results showed that the glucose systems generated higher N 2 O emissions than those of the sodium acetate systems. The higher amount of N 2 O-releasing fluxes in the CWs than in the YWs was consistent with the higher NO 2 - -N accumulation in the former than in the latter. Moreover, electron competition was tighter in the CWs and contributed to the incomplete denitrification with poor N 2 O production performance. Illumina MiSeq sequencing demonstrated that some denitrifying bacteria, such as Denitratisoma, Bacillus, and Zoogloea, were higher in the YWs than in the CWs. This result indicated that the carbon source is important in controlling N 2 O emissions in microbial communities. Copyright © 2017. Published by Elsevier Ltd.

  9. Control mechanisms for Nordic ship emissions

    Energy Technology Data Exchange (ETDEWEB)

    Martinsen, K. [DNV, Oslo (Norway); Torvanger, A. [Cicero, Oslo (Norway)

    2013-04-15

    Shipping today operates under a complex set of international and domestic regulations. However, the environmental regulations have lagged behind those of other industries. This situation is now changing quite dramatically. The increased focus on environmental issues, combined with the growing realisation of the actual pollution burden imposed by shipping, has led to an upsurge in both international and national regulations. Some are ready and will enter into force in the near future, while others are still being developed. On behalf of the Nordic Council of Ministers DNV has carried out a study on possible control mechanisms for Nordic ship emission. The aim is to assess the baseline shipping emissions and reduction potential and the possible controlling mechanisms (both incentives and regulations) available for reducing the emissions to air from shipping within the Nordic region. (Author)

  10. Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures

    Science.gov (United States)

    Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang

    2016-10-01

    Residential coal combustion is considered to be an important source of air pollution in Beijing. However, knowledge regarding the emission characteristics of residential coal combustion and the related impacts on the air quality is very limited. In this study, we have developed an emission inventory for multiple hazardous air pollutants (HAPs) associated with residential coal combustion in Beijing for the period of 2000-2012. Furthermore, a widely used regional air quality model, the Community Multi-Scale Air Quality model (CMAQ), is applied to analyze the impact of residential coal combustion on the air quality in Beijing in 2012. The results show that the emissions of primary air pollutants from residential coal combustion have basically remained the same levels during the past decade, however, along with the strict emission control imposed on major industrial sources, the contribution of residential coal combustion emissions to the overall emissions from anthropogenic sources have increased obviously. In particular, the contributions of residential coal combustion to the total air pollutants concentrations of PM10, SO2, NOX, and CO represent approximately 11.6%, 27.5%, 2.8% and 7.3%, respectively, during the winter heating season. In terms of impact on the spatial variation patterns, the distributions of the pollutants concentrations are similar to the distribution of the associated primary HAPs emissions, which are highly concentrated in the rural-urban fringe zones and rural suburb areas. In addition, emissions of primary pollutants from residential coal combustion are forecasted by using a scenario analysis. Generally, comprehensive measures must be taken to control residential coal combustion in Beijing. The best way to reduce the associated emissions from residential coal combustion is to use economic incentive means to promote the conversion to clean energy sources for residential heating and cooking. In areas with reliable energy supplies, the coal used

  11. Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: The influence of aging and emission source

    International Nuclear Information System (INIS)

    Owsianiak, Mikołaj; Holm, Peter E.; Fantke, Peter; Christiansen, Karen S.; Borggaard, Ole K.; Hauschild, Michael Z.

    2015-01-01

    Metal exposure to terrestrial organisms is influenced by the reactivity of the solid-phase metal pool. This reactivity is thought to depend on the type of emission source, on aging mechanisms that are active in the soil, and on ambient conditions. Our work shows, that when controlling for soil pH or soil organic carbon, emission source occasionally has an effect on reactivity of Cd, Co, Cu, Ni, Pb and Zn emitted from various anthropogenic sources followed by aging in the soil from a few years to two centuries. The uncertainties in estimating the age prevent definitive conclusions about the influence of aging time on the reactivity of metals from anthropogenic sources in soils. Thus, for calculating comparative toxicity potentials of man-made metal contaminations in soils, we recommend using time-horizon independent accessibility factors derived from source-specific reactive fractions. - Highlights: • We found an effect of source on reactivity of anthropogenic metals in soils. • The influence of aging on reactivity of anthropogenic metals was not consistent. • We recommend including source and disregarding aging in calculation of CTPs values. - Improving current life cycle inventory (LCI) and life cycle impact assessment (LCIA) practice in terrestrial ecotoxicity assessment of metals.

  12. Environmental effects of energy production and utilization in the U.S. Volume I. Sources, trends, and costs of control

    International Nuclear Information System (INIS)

    Newkirk, H.W.

    1976-01-01

    Volume I deals with sources (what the emissions are and where they come from), trends (quantities of emissions and their dispersion with time), and costs of control (what it takes in time, energy, and money to meet minimum standards). Volume II concerns itself with the public health effects of energy production and utilization. Volume III summarizes the various techniques for controlling emissions, technological as well as economic, social, and political. Each volume is divided into sections dealing with the atmosphere, water, land, and social activities--each division indicating a particular sphere of man's environment affected by energy production and use. The sources of information that were used in this study included textbooks, journal articles, technical reports, memoranda, letters, and personal communications. These are cited in the text at the end of each subsection and on the applicable tables and figures

  13. Influence of fertilizer nitrogen source and management practice of N2O emissions from two black chernozemic soils

    International Nuclear Information System (INIS)

    Burton, D.L.

    2008-01-01

    Nitrous oxide (N 2 O) is a major anthropogenic greenhouse gas (GHG) emitted by Canadian agricultural systems. Emissions of N 2 O are sporadic, which complicates their accurate quantification as well as the development of adequate management practices. This study was conducted to determine the relative N 2 O production potentials of various nitrogen (N) fertilizer sources and application methods used in cereal production practices in Manitoba. Wheat crops were used to examine variations in N 2 O emissions associated with N formulations applied at the same rate. Treatments included urea surface broadcast in the spring; urea subsurface bands in spring; urea subsurface bands in the fall; anhydrous ammonia subsurface bands in spring and fall; and a control plot where no N was applied. Treatments of polymer-coated urea were also applied. The treatments were established in the fall of 1999. N 2 O fluxes were measured using vented static chambers. Samples were analyzed using gas chromatography. Analysis of variance (ANOVA) was performed in order to obtain cumulative annual N 2 O emissions. Results of the study showed that N 2 O emissions associated with the use of anhydrous ammonia were no greater than emissions associated with urea. Higher N 2 O emissions were observed in fall applications of N fertilizer. The dominant factors controlling differences in N 2 O emissions between sites and years included precipitation, soil water content, and soil texture. 26 refs., 6 tabs

  14. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  15. Danish emission inventories for road transport and other mobile sources. Inventories until year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.

    2008-09-15

    This report explains the parts of the Danish inventories related to road transport and other mobile sources. Emission results are shown for CO{sub 2}, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub X}, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH. From 1990-2006 the fuel use and CO{sub 2} emissions for road transport have increased by 36 %, and CH{sub 4} emissions have decreased by 51 %. A N{sub 2}O emission increase of 29 % is related to the relatively high emissions from older gasoline catalyst cars. The 1985-2006 emission decreases for PM (exhaust only), CO, NO{sub X} and NMVOC are 30, 69, 28 and 71 % respectively, due to the introduction of vehicles complying with gradually stricter emission standards. For SO{sub 2} the emission drop is 99% (due to reduced sulphur content in the diesel fuel), whereas the NH{sub 3} emissions increase by 3065% (due to the introduction of catalyst cars). For other mobile sources the calculated emission changes for CO{sub 2} (and fuel use), CH{sub 4} and N{sub 2}O are -10, 5 and -11%, from 1990 to 2006. The emissions of SO{sub 2}, particulates (all size fractions), NO{sub X}, NMVOC and CO have decreased by 88, 56, 14, 12 and 9% from 1985 to 2006. For NH{sub 3} the emissions have increased by 8% in the same time period. Uncertainties for the emissions and trends have been estimated. (au)

  16. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun; Jadhali, Rasha Al; Zhang, Likun; Wu, Ying

    2018-01-01

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation

  17. The Development and Application of Spatiotemporal Metrics for the Characterization of Point Source FFCO2 Emissions and Dispersion

    Science.gov (United States)

    Roten, D.; Hogue, S.; Spell, P.; Marland, E.; Marland, G.

    2017-12-01

    There is an increasing role for high resolution, CO2 emissions inventories across multiple arenas. The breadth of the applicability of high-resolution data is apparent from their use in atmospheric CO2 modeling, their potential for validation of space-based atmospheric CO2 remote-sensing, and the development of climate change policy. This work focuses on increasing our understanding of the uncertainty in these inventories and the implications on their downstream use. The industrial point sources of emissions (power generating stations, cement manufacturing plants, paper mills, etc.) used in the creation of these inventories often have robust emissions characteristics, beyond just their geographic location. Physical parameters of the emission sources such as number of exhaust stacks, stack heights, stack diameters, exhaust temperatures, and exhaust velocities, as well as temporal variability and climatic influences can be important in characterizing emissions. Emissions from large point sources can behave much differently than emissions from areal sources such as automobiles. For many applications geographic location is not an adequate characterization of emissions. This work demonstrates the sensitivities of atmospheric models to the physical parameters of large point sources and provides a methodology for quantifying parameter impacts at multiple locations across the United States. The sensitivities highlight the importance of location and timing and help to highlight potential aspects that can guide efforts to reduce uncertainty in emissions inventories and increase the utility of the models.

  18. Optimizing critical source control of five priority-regulatory trace elements from industrial wastewater in China: Implications for health management.

    Science.gov (United States)

    Wu, Wenjun; Wang, Jinnan; Yu, Yang; Jiang, Hongqiang; Liu, Nianlei; Bi, Jun; Liu, Miaomiao

    2018-04-01

    Anthropogenic emissions of toxic trace elements (TEs) have caused worldwide concern due to their adverse effects on human health and ecosystems. Based on a stochastic simulation of factors' probability distribution, we established a bottom-up model to estimate the amounts of five priority-regulatory TEs released to aquatic environments from industrial processes in China. Total TE emissions in China in 2010 were estimated at approximately 2.27 t of Hg, 310.09 t of As, 318.17 t of Pb, 79.72 t of Cd, and 1040.32 t of Cr. Raw chemicals, smelting, and mining were the leading sources of TE emissions. There are apparent regional differences in TE pollution. TE emissions are much higher in eastern and central China than in the western provinces and are higher in the south than in the north. This spatial distribution was characterized in detail by allocating the emissions to 10 km × 10 km grid cells. Furthermore, the risk control for the overall emission grid was optimized according to each cell's emission and risk rank. The results show that to control 80% of TE emissions from major sources, the number of top-priority control cells would be between 200 and 400, and less than 10% of the total population would be positively affected. Based on TE risk rankings, decreasing the population weighted risk would increase the number of controlled cells by a factor of 0.3-0.5, but the affected population would increase by a factor of 0.8-1.5. In this case, the adverse effects on people's health would be reduced significantly. Finally, an optimized strategy to control TE emissions is proposed in terms of a cost-benefit trade-off. The estimates in this paper can be used to help establish a regional TE inventory and cyclic simulation, and it can also play supporting roles in minimizing TE health risks and maximizing resilience. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Guaranteed Unresolved Point Source Emission and the Gamma-ray Background

    International Nuclear Information System (INIS)

    Pavlidou, Vasiliki; Siegal-Gaskins, Jennifer M.; Brown, Carolyn; Fields, Brian D.; Olinto, Angela V.

    2007-01-01

    The large majority of EGRET point sources remain without an identified low-energy counterpart, and a large fraction of these sources are most likely extragalactic. Whatever the nature of the extragalactic EGRET unidentified sources, faint unresolved objects of the same class must have a contribution to the diffuse extragalactic gamma-ray background (EGRB). Understanding this component of the EGRB, along with other guaranteed contributions from known sources (blazars and normal galaxies), is essential if we are to use this emission to constrain exotic high-energy physics. Here, we follow an empirical approach to estimate whether the contribution of unresolved unidentified sources to the EGRB is likely to be important. Additionally, we discuss how upcoming GLAST observations of EGRET unidentified sources, their fainter counterparts, and the Galactic and extragalactic diffuse backgrounds, will shed light on the nature of the EGRET unidentified sources even without any positional association of such sources with low-energy counterparts

  20. Diffuse emissions of PCDD/F and dioxin-like PCB from industrial sources in the Flemish region (Belgium)

    Energy Technology Data Exchange (ETDEWEB)

    Francois, F.; Blondeel, M.; Bernaert, P.; Baert, R. [Ministry of the Flemish Community - Environmental Inspection Section, Brussels (Belgium)

    2004-09-15

    In Belgium, and especially in the Flemish region, the contamination of the environment and food chain with PCDD/F and PCB has been a major public concern during the past decade. The largest point sources of PCDD/F emissions have been monitored and tackled by the Environment Inspection Section (EIS) since 1993. This has caused a very significant emission reduction, which in its turn had a considerable impact on lowering the environmental and food PCDD/F levels, both in the immediate surroundings of the sources and on a regional scale. However, at a few measurement locations, levels of PCDD/F in deposition samples and in cow's milk remained increased despite the stack emission reduction of nearby sources. Recently, also increased dioxinlike PCB levels were found at some locations. This has led to an investigation of the contribution of diffuse emission sources, revealing the importance of such sources at particular plants, mainly in the non-ferrous metal and scrap metal sectors.

  1. A New Global Open Source Marine Hydrocarbon Emission Site Database

    Science.gov (United States)

    Onyia, E., Jr.; Wood, W. T.; Barnard, A.; Dada, T.; Qazzaz, M.; Lee, T. R.; Herrera, E.; Sager, W.

    2017-12-01

    Hydrocarbon emission sites (e.g. seeps) discharge large volumes of fluids and gases into the oceans that are not only important for biogeochemical budgets, but also support abundant chemosynthetic communities. Documenting the locations of modern emissions is a first step towards understanding and monitoring how they affect the global state of the seafloor and oceans. Currently, no global open source (i.e. non-proprietry) detailed maps of emissions sites are available. As a solution, we have created a database that is housed within an Excel spreadsheet and use the latest versions of Earthpoint and Google Earth for position coordinate conversions and data mapping, respectively. To date, approximately 1,000 data points have been collected from referenceable sources across the globe, and we are continualy expanding the dataset. Due to the variety of spatial extents encountered, to identify each site we used two different methods: 1) point (x, y, z) locations for individual sites and; 2) delineation of areas where sites are clustered. Certain well-known areas, such as the Gulf of Mexico and the Mediterranean Sea, have a greater abundance of information; whereas significantly less information is available in other regions due to the absence of emission sites, lack of data, or because the existing data is proprietary. Although the geographical extent of the data is currently restricted to regions where the most data is publicly available, as the database matures, we expect to have more complete coverage of the world's oceans. This database is an information resource that consolidates and organizes the existing literature on hydrocarbons released into the marine environment, thereby providing a comprehensive reference for future work. We expect that the availability of seafloor hydrocarbon emission maps will benefit scientific understanding of hydrocarbon rich areas as well as potentially aiding hydrocarbon exploration and environmental impact assessements.

  2. A comparison of PCA and PMF models for source identification of fugitive methane emissions

    Science.gov (United States)

    Assan, Sabina; Baudic, Alexia; Bsaibes, Sandy; Gros, Valerie; Ciais, Philippe; Staufer, Johannes; Robinson, Rod; Vogel, Felix

    2017-04-01

    Methane (CH_4) is a greenhouse gas with a global warming potential 28-32 times that of carbon dioxide (CO_2) on a 100 year period, and even greater on shorter timescales [Etminan, et al., 2016, Allen, 2014]. Thus, despite its relatively short life time and smaller emission quantities compared to CO_2, CH4 emissions contribute to approximately 20{%} of today's anthropogenic greenhouse gas warming [Kirschke et al., 2013]. Major anthropogenic sources include livestock (enteric fermentation), oil and gas production and distribution, landfills, and wastewater emissions [EPA, 2011]. Especially in densely populated areas multiple CH4 sources can be found in close vicinity. Thus, when measuring CH4 emissions at local scales it is necessary to distinguish between different CH4 source categories to effectively quantify the contribution of each sector and aid the implementation of greenhouse gas reduction strategies. To this end, source apportionment models can be used to aid the interpretation of spatial and temporal patterns in order to identify and characterise emission sources. The focus of this study is to evaluate two common linear receptor models, namely Principle Component Analysis (PCA) and Positive Matrix Factorisation (PMF) for CH4 source apportionment. The statistical models I will present combine continuous in-situ CH4 , C_2H_6, δ^1^3CH4 measured using a Cavity Ring Down Spectroscopy (CRDS) instrument [Assan et al. 2016] with volatile organic compound (VOC) observations performed using Gas Chromatography (GC) in order to explain the underlying variance of the data. The strengths and weaknesses of both models are identified for data collected in multi-source environments in the vicinity of four different types of sites; an agricultural farm with cattle, a natural gas compressor station, a wastewater treatment plant, and a pari-urban location in the Ile de France region impacted by various sources. To conclude, receptor model results to separate statistically the

  3. The potential near-source ozone impacts of upstream oil and gas industry emissions.

    Science.gov (United States)

    Olaguer, Eduardo P

    2012-08-01

    Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour ofnatural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhatfurther (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution.

  4. Emission characteristics of laser ablation-hollow cathode glow discharge spectral source

    Directory of Open Access Journals (Sweden)

    Karatodorov Stefan

    2014-11-01

    Full Text Available The emission characteristics of a scheme combining laser ablation as sample introduction source and hollow cathode discharge as excitation source are presented. The spatial separation of the sample material introduction by laser ablation and hollow cathode excitation is achieved by optimizing the gas pressure and the sample-cathode gap length. At these conditions the discharge current is maximized to enhance the analytical lines intensity.

  5. PREVENTION AND CONTROL OF DIMETHYLAMINE VAPORS EMISSION: HERBICIDE PRODUCTION PLANT

    Directory of Open Access Journals (Sweden)

    Zorana Arsenijević

    2008-11-01

    Full Text Available The widely used herbicide, dimethylamine salt of 2,4-dichlorophenoxy acetic acid (2,4-D-DMA, is usually prepared by mixing a dimethylamine (DMA aqueous solution with a solid 2,4-dichlorophenoxy acetic acid (2,4-D. The vapors of the both, reactants and products, are potentially hazardous for the environment. The contribution of DMA vapors in overall pollution from this process is most significant, concerning vapor pressures data of these pollutants. Therefore, the control of the air pollution in the manufacture and handling of methylamines is very important. Within this paper, the optimal air pollution control system in preparation of 2,4-D-DMA was developed for the pesticides manufacturing industry. This study employed the simple pollution prevention concept to reduce the emission of DMA vapors at the source. The investigations were performed on the pilot plant scale. To reduce the emission of DMA vapors, the effluent gases from the herbicide preparation zone were passed through the packed bed scrubber (water - scrubbing medium, and the catalytic reactor in sequence. The end result is a substantially improved air quality in the working area, as well as in the urbanized areas located near the chemical plant.

  6. Modeling the effects of changes in new source review on national SO{sub 2} and NOx emissions from electricity-generating units

    Energy Technology Data Exchange (ETDEWEB)

    David A. Evans; Benjamin F. Hobbs; Craig Oren; Karen L. Palmer [Johns Hopkins University, Baltimore, MD (United States)

    2008-01-15

    The Clean Air Act establishes New Source Review (NSR) programs that apply to construction or modification of major stationary sources. In 2002 and 2003, EPA revised its rules to narrow NSR's coverage of renovations. Congress mandated a National Research Council study of the revisions' impacts. In that study, we used an electricity-sector model to explore possible effects of the equipment replacement provision (ERP), the principal NSR change directed at power plants. We find that, assuming implementation of the Clean Air Interstate Rule (CAIR), tight enforcement of the prerevision NSR rules would likely lead to no or limited decreases in national emissions compared to policies such as ERP. However, emissions might shift forward in time because the previous NSR rules would depress allowance prices, discouraging banking and encouraging allowance use. Only under the most aggressive prerevision NSR enforcement scenario, in which essentially all coal capacity is compelled to retrofit controls by 2020, do NOx emissions fall below ERP levels. Even then, total 2007-2020 SO{sub 2} emissions are unaffected. Further decreases in national emissions could be accomplished more cheaply by tighter emissions caps than through NSR because caps provide incentives for efficient operating strategies, such as fuel switching, as well as retrofits. 23 refs., 2 figs., 1 tab.

  7. A Comparison of Emission Taxes and Permit Markets for Controlling Correlated Externalities

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, A.J. [Department of Economics, Utah State University, 3530 Old Main Hill, Logan, UT 84322-3530 (United States)

    2006-08-15

    This paper provides an answer to the question: Are emission taxes an efficient and self-enforcing mechanism to control correlated externality problems? By 'correlated externalities' we mean multiple pollutants that are jointly produced by a single source but cause differentiated regional and global externalities. By 'self-enforcing' we mean a mechanism that accounts for the endogeneity that exists between competing jurisdictions in the setting of environmental policy within a federation of regions. This mechanism incorporates sequential decision making among the jurisdictions and therefore determines an equilibrium based on the concept of subgame perfection. We find that, unlike joint domestic and international tradable permit markets, joint emission taxes and a hybrid scheme of permits and taxes are neither efficient nor self-enforcing.

  8. A Comparison of Emission Taxes and Permit Markets for Controlling Correlated Externalities

    International Nuclear Information System (INIS)

    Caplan, A.J.

    2006-01-01

    This paper provides an answer to the question: Are emission taxes an efficient and self-enforcing mechanism to control correlated externality problems? By 'correlated externalities' we mean multiple pollutants that are jointly produced by a single source but cause differentiated regional and global externalities. By 'self-enforcing' we mean a mechanism that accounts for the endogeneity that exists between competing jurisdictions in the setting of environmental policy within a federation of regions. This mechanism incorporates sequential decision making among the jurisdictions and therefore determines an equilibrium based on the concept of subgame perfection. We find that, unlike joint domestic and international tradable permit markets, joint emission taxes and a hybrid scheme of permits and taxes are neither efficient nor self-enforcing

  9. OVERVIEW OF ADVANCED PETROLEUM-BASED FUELS-DIESEL EMISSIONS CONTROL PROGRAM (APBF-DEC)

    Energy Technology Data Exchange (ETDEWEB)

    Sverdrup, George M.

    2000-08-20

    The Advanced Petroleum-Based Fuels-Diesel Emissions Control Program (APBF-DEC) began in February 2000 and is supported by government agencies and industry. The purpose of the APBF-DEC program is to identify and evaluate the optimal combinations of fuels, lubricants, diesel engines, and emission control systems to meet the projected emission standards for the 2000 to 2010 time period. APBF-DEC is an outgrowth of the earlier Diesel Emission Control-Sulfur Effects Program (DECSE), whose objective is to determine the impact of the sulfur levels in fuel on emission control systems that could lower the emissions of NOx and particulate matter (PM) from diesel powered vehicles in the 2002 to 2004 period. Results from the DECSE studies of two emission control technologies-diesel particle filter (DPF) and NOx adsorber-will be used in the APBF-DEC program. These data are expected to provide initial information on emission control technology options and the effects of fuel properties (including additives) on the performance of emission control systems.

  10. Very high energy emission sources beyond the Galaxy

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Active Galactic Nuclei (AGN are considered as potential extragalactic sources of very and ultra high energy cosmic rays. According to theoretical predictions cosmic ray acceleration can take place at the shock created by the expanding cocoons around active galactic nuclei as well as at AGN jets. The measurements of AGN TeV spectra, the variability time scale of TeV emission can provide essential information on the dynamics of AGN jets, the localization of acceleration region and an estimation of its size. SHALON observations yielded data on extragalactic sources of different AGN types in the energy range of 800 GeV–100 TeV. The data from SHALON observations are compared with those from other experiments at high and very high energies.

  11. A plasma process controlled emissions off-gas demonstration

    International Nuclear Information System (INIS)

    Battleson, D.; Kujawa, S.T.; Leatherman, G.

    1995-01-01

    Thermal technologies are currently identified as playing an important role in the treatment of many DOE waste streams, and emissions from these processes will be scrutinized by the public, regulators, and stakeholders. For some time, there has been a hesitancy by the public to accept thermal treatment of radioactive contaminated waste because of the emissions from these processes. While the technology for treatment of emissions from these processes is well established, it is not possible to provide the public complete assurance that the system will be in compliance with air quality regulations 100% of the operating time in relation to allowing noncompliant emissions to exit the system. Because of the possibility of noncompliant emissions and the public's concern over thermal treatment systems, it has been decided that the concept of a completely controlled emissions off-gas system should be developed and implemented on Department of Energy (DOE) thermal treatment systems. While the law of conservation of mass precludes a completely closed cycle system, it is possible to apply the complete control concept to emissions

  12. Path-integral method for the source apportionment of photochemical pollutants

    Science.gov (United States)

    Dunker, A. M.

    2015-06-01

    A new, path-integral method is presented for apportioning the concentrations of pollutants predicted by a photochemical model to emissions from different sources. A novel feature of the method is that it can apportion the difference in a species concentration between two simulations. For example, the anthropogenic ozone increment, which is the difference between a simulation with all emissions present and another simulation with only the background (e.g., biogenic) emissions included, can be allocated to the anthropogenic emission sources. The method is based on an existing, exact mathematical equation. This equation is applied to relate the concentration difference between simulations to line or path integrals of first-order sensitivity coefficients. The sensitivities describe the effects of changing the emissions and are accurately calculated by the decoupled direct method. The path represents a continuous variation of emissions between the two simulations, and each path can be viewed as a separate emission-control strategy. The method does not require auxiliary assumptions, e.g., whether ozone formation is limited by the availability of volatile organic compounds (VOCs) or nitrogen oxides (NOx), and can be used for all the species predicted by the model. A simplified configuration of the Comprehensive Air Quality Model with Extensions (CAMx) is used to evaluate the accuracy of different numerical integration procedures and the dependence of the source contributions on the path. A Gauss-Legendre formula using three or four points along the path gives good accuracy for apportioning the anthropogenic increments of ozone, nitrogen dioxide, formaldehyde, and nitric acid. Source contributions to these increments were obtained for paths representing proportional control of all anthropogenic emissions together, control of NOx emissions before VOC emissions, and control of VOC emissions before NOx emissions. There are similarities in the source contributions from the

  13. Nitrogen source effects on nitrous oxide emissions from irrigated no-till corn.

    Science.gov (United States)

    Halvorson, Ardell D; Del Grosso, Stephen J; Francesco, Alluvione

    2010-01-01

    Nitrogen fertilization is essential for optimizing crop yields; however, it may potentially increase nitrous oxide (N2O) emissions. The study objective was to assess the ability of commercially available enhanced-efficiency N fertilizers to reduce N2O emissions following their application in comparison with conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. Four enhanced-efficiency fertilizers were evaluated: two polymer-coated urea products (ESN and Duration III) and two fertilizers containing nitrification and urease inhibitors (SuperU and UAN+AgrotainPlus). Nitrous oxide fluxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. Enhanced-efficiency fertilizers significantly reduced growing-season N2O-N emissions in comparison with urea, including UAN. SuperU and UAN+AgrotainPlus had significantly lower N2O-N emissions than UAN. Compared with urea, SuperU reduced N2O-N emissions 48%, ESN 34%, Duration III 31%, UAN 27%, and UAN+AgrotainPlus 53% averaged over 2 yr. Compared with UAN, UAN+AgrotainPlus reduced N2O emissions 35% and SuperU 29% averaged over 2 yr. The N2O-N loss as a percentage of N applied was 0.3% for urea, with all other N sources having significantly lower losses. Grain production was not reduced by the use of alternative N sources. This work shows that enhanced-efficiency N fertilizers can potentially reduce N2O-N emissions without affecting yields from irrigated NT corn systems in the semiarid central Great Plains.

  14. Air pollutant emission rates for sources at the Davis Canyon Repository site

    International Nuclear Information System (INIS)

    1985-11-01

    This document summarizes the air-quality source terms used for the Davis Canyon, Utah environmental assessment report and explains their derivation. The engineering data supporting these source terms appear as appendixes to the report and include summary equipment lists for the repository (December, 1984) and detailed equipment lists for the exploratory shaft (June and July, 1985). Although substantial work has been performed in establishing the current repository design, a greater effort will be required for the final design. Consequently, the repository emission rates presented here should be considered as preliminary estimates. Another set of air pollutant emission rates will be calculated after design data are more firmly established. 19 refs., 18 tabs

  15. Air pollution from motor vehicle emissions

    International Nuclear Information System (INIS)

    Petrushevska, Ljubica

    1996-01-01

    This paper presents some aspects of air pollution from motor vehicle emissions as: characteristic primary and secondary pollutants, dependence of the motor vehicle emission from the engine type; the relationship of typical engine emission and performance to air-fuel ratio, transport of pollutants from mobile sources of emissions, as well as some world experiences in the control approaches for exhaust emissions. (author)

  16. On-line Field Measurements of Speciated PM1 Emission Factors from Common South Asian Combustion Sources

    Science.gov (United States)

    DeCarlo, P. F.; Goetz, J. D.; Giordano, M.; Stockwell, C.; Maharjan, R.; Adhikari, S.; Bhave, P.; Praveen, P. S.; Panday, A. K.; Jayarathne, T. S.; Stone, E. A.; Yokelson, R. J.

    2017-12-01

    Characterization of aerosol emissions from prevalent but under sampled combustion sources in South Asia was performed as part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) in April 2015. Targeted emission sources included cooking stoves with a variety of solid fuels, brick kilns, garbage burning, crop-residue burning, diesel irrigation pumps, and motorcycles. Real-time measurements of submicron non-refractory particulate mass concentration and composition were obtained using an Aerodyne mini Aerosol Mass Spectrometer (mAMS). Speciated PM1 mass emission factors were calculated for all particulate species (e.g. organics, sulfates, nitrates, chlorides, ammonium) and for each source type using the carbon mass balance approach. Size resolved emission factors were also acquired using a novel high duty cycle particle time-of-flight technique (ePTOF). Black carbon and brown carbon absorption emission factors and absorption Angström exponents were measured using filter loading and scattering corrected attenuation at 370 nm and 880 nm with a dual spot aethalometer (Magee Scientific AE-33). The results indicate that open garbage burning is a strong emitter of organic aerosol, black carbon, and internally mixed particle phase hydrogen chloride (HCl). Emissions of HCl were attributed to the presence chlorinated plastics. The primarily coal fired brick kilns were found to be large emitters of sulfate but large differences in the organic and light absorbing component of emissions were observed between the two kiln types investigated (technologically advanced vs. traditional). These results, among others, bring on-line and field-tested aerosol emission measurements to an area of atmoshperic research dominated by off-line or laboratory based measurements.

  17. Diesel Catalytic Converters As Emission Control Devices

    International Nuclear Information System (INIS)

    El Banna, S.; El Deen, O.N.

    2004-01-01

    Internal combustion engines are devices that generate work from combustion reactions. Combustion products under high pressure produce work by expansion through a turbine or piston. The combustion reactions inside these engines are not necessarily neutralizing or complete and air pollutants are produced. There are three major types of internal combustion engine(l) in use today: I) the spark ignition engine, which is used primarily in automobiles; 2) the diesel engine, which is used in large vehicles and industrial systems where cycle efficiency offers advantages over the more compact and lighter-weight spark ignition engine and; 3) the gas turbine, which is used in aircraft due to its high power/weight ratio and is also used for stationary power generation. Each of these types of engine is an important source of atmospheric pollutants. Automobiles are the one of the major source of carbon monoxide, unburned hydrocarbons, and nitrogen oxides. Probably more than any other combustion system, the design of automobile engines is now being guided by requirements to reduce emissions of these pollutants. While substantial progress has been made in emission reduction, automobiles remain important sources of air pollutants

  18. Normal and anomalous diffusion in fluctuations of dust concentration nearby emission source

    Science.gov (United States)

    Szczurek, Andrzej; Maciejewska, Monika; Wyłomańska, Agnieszka; Sikora, Grzegorz; Balcerek, Michał; Teuerle, Marek

    2018-02-01

    Particulate matter (PM) is an important component of air. Nowadays, major attention is payed to fine dust. It has considerable environmental impact, including adverse effect on human health. One of important issues regarding PM is the temporal variation of its concentration. The variation contains information about factors influencing this quantity in time. The work focuses on the character of PM concentration dynamics indoors, in the vicinity of emission source. The objective was to recognize between the homogeneous or heterogeneous dynamics. The goal was achieved by detecting normal and anomalous diffusion in fluctuations of PM concentration. For this purpose we used anomalous diffusion exponent, β which was derived from Mean Square Displacement (MSD) analysis. The information about PM concentration dynamics may be used to design sampling strategy, which serves to attain representative information about PM behavior in time. The data analyzed in this work was collected from single-point PM concentration monitoring in the vicinity of seven emission sources in industrial environment. In majority of cases we observed heterogeneous character of PM concentration dynamics. It confirms the complexity of interactions between the emission sources and indoor environment. This result also votes against simplistic approach to PM concentration measurement indoors, namely their occasional character, short measurement periods and long term averaging.

  19. Circadian control of isoprene emissions from oil palm (Elaeis guineensis).

    Science.gov (United States)

    Wilkinson, Michael J; Owen, Susan M; Possell, Malcolm; Hartwell, James; Gould, Peter; Hall, Anthony; Vickers, Claudia; Nicholas Hewitt, C

    2006-09-01

    The emission of isoprene from the biosphere to the atmosphere has a profound effect on the Earth's atmospheric system. Until now, it has been assumed that the primary short-term controls on isoprene emission are photosynthetically active radiation and temperature. Here we show that isoprene emissions from a tropical tree (oil palm, Elaeis guineensis) are under strong circadian control, and that the circadian clock is potentially able to gate light-induced isoprene emissions. These rhythms are robustly temperature compensated with isoprene emissions still under circadian control at 38 degrees C. This is well beyond the acknowledged temperature range of all previously described circadian phenomena in plants. Furthermore, rhythmic expression of LHY/CCA1, a genetic component of the central clock in Arabidopsis thaliana, is still maintained at these elevated temperatures in oil palm. Maintenance of the CCA1/LHY-TOC1 molecular oscillator at these temperatures in oil palm allows for the possibility that this system is involved in the control of isoprene emission rhythms. This study contradicts the accepted theory that isoprene emissions are primarily light-induced.

  20. Testing and modeling the influence of reclamation and control methods for reducing nonpoint mercury emissions associated with industrial open pit gold mines.

    Science.gov (United States)

    Miller, Matthieu B; Gustin, Mae S

    2013-06-01

    Industrial gold mining is a significant source of mercury (Hg) emission to the atmosphere. To investigate ways to reduce these emissions, reclamation and dust and mercury control methods used at open pit gold mining operations in Nevada were studied in a laboratory setting. Using this information along with field data, and building off previous work, total annual Hg emissions were estimated for two active gold mines in northern Nevada. Results showed that capping mining waste materials with a low-Hg substrate can reduce Hg emissions from 50 to nearly 100%. The spraying of typical dust control solutions often results in higher Hg emissions, especially as materials dry after application. The concentrated application of a dithiocarbamate Hg control reagent appears to reduce Hg emissions, but further testing mimicking the actual distribution of this chemical within an active leach solution is needed to make a more definitive assessment.

  1. Acoustic emission non-destructive testing of structures using source location techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

  2. Emission and thermal performance upgrade through advanced control backfit

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, A.K. [Stone & Webster Engineering Corporation, Boston, MA (United States)

    1994-12-31

    Reducing emission and improving thermal performance of currently operating power plants is a high priority. A majority of these power plants are over 20 years old with old control systems. Upgrading the existing control systems with the latest technology has many benefits, the most cost beneficial are the reduction of emission and improving thermal performance. The payback period is usually less than two years. Virginia Power is installing Stone & Webster`s NO{sub x} Emissions Advisor and Advanced Steam Temperature Control systems on Possum Point Units 3 and 4 to achieve near term NO{sub x} reductions while maintaining high thermal performance. Testing has demonstrated NO{sub x} reductions of greater than 20 percent through the application of NO{sub x} Emissions Advisor on these units. The Advanced Steam Temperature Control system which has been operational at Virginia Power`s Mt. Storm Unit 1 has demonstrated a signification improvement in unit thermal performance and controllability. These control systems are being combined at Units 3 and 4 to reduce NO{sub x} emissions and achieve improved unit thermal performance and control response with the existing combustion hardware. Installation has been initiated and is expected to be completed by the spring of 1995. Possum Point Power Station Units 3 and 4 are pulverized coal, tangentially fired boilers producing 107 and 232 MW and have a distributed control system and a PC based performance monitoring system. The installation of the advanced control and automation system will utilize existing control equipment requiring the addition of several PCs and PLC.

  3. Arc structure of the DAM Jupiter Emission

    International Nuclear Information System (INIS)

    Leblanc, Y.

    1981-01-01

    An analysis of the dynamic spectra of the Jovian DAM emission (1.3--40 MHz) has been made from Voyager data; it appears that the different Jovian 'sources' can be defined by spectral chaaracteristics, rather than by occurrence probability. The non-Io emission consists of two families: vertex early arcs (VEA) and vertex late arcs (VLA). These two families are superimposed at all longitudes, but one is always more intense than the other. The characterics of the two families are specified; in particular, it is shown that the VEA family is more stable in time than the VLA family. The Io-controlled emission consists of the four sources already known from the ground-based observations in addition to a new source (Io-A')sp, identified by its dynamic spectrum alone. All of the sources are partially superimposed on non-Io emission. The (Io-B)sp and (Io-A')sp sources are made up of low-curvature arcs having low-frequency limits above 5 MHz. The high-frequency limit of the (Io-B)sp source is strongly modulated by Io-phase. The (Io-A)sp source has a specturm similar to the non-Io VLA emission. The other two sources, (Io-C)sp and (Io-D)sp, are not structured into well-defined arcs. A comparsion is made between the occurrence of these sources in the Io-CML plane with the sources defined from ground observations by probability of occurrence. Local time effects are observed only in the non-Io emission when compared before and after encounter. Before encounter, the VEA family is very weak and the VLA family very intense. After encounter, the opposite effect is observed. The Io-controlled sources are not affected by these local time effects

  4. On - road mobile source pollutant emissions : identifying hotspots and ranking roads.

    Science.gov (United States)

    2010-12-30

    A considerable amount of pollution to the air in the forms of hydrocarbons, carbon : monoxide (CO), nitrogen oxides (NOx), particulate matter (PM) and air toxics comes : from the on-road mobile sources. Estimation of the emissions of these pollutants...

  5. Danish emission inventories for road transport and other mobile sources. Inventories until the year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.

    2012-08-15

    This report explains the parts of the Danish emission inventories related to road transport and other mobile sources. Emission results are shown for CO{sub 2}, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub X}, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH. From 1990-2010 the fuel consumption and CO{sub 2} emissions for road transport increased by 30 %, and CH{sub 4} emissions have decreased by 74 %. A N{sub 2}O emission increase of 29 % is related to the relatively high emissions from older gasoline catalyst cars. The 1985-2010 emission decrease for NO{sub X}, NMVOC, CO and particulates (exhaust only: Size is below PM{sub 2.5}) -52, -84, -81, and -65 %, respectively, due to the introduction of vehicles complying with gradually stricter emission standards. For SO{sub 2} the emission drop 99 % (due to reduced sulphur content in the diesel fuel), whereas the NH{sub 3} emissions increased by 2232 % (due to the introduction of catalyst cars). For other mobile sources the calculated emission changes for CO{sub 2} (and fuel use), CH{sub 4} and N{sub 2}O were -2, 5 and -1 %, from 1990 to 2010. The emissions of SO{sub 2}, particulates (all size fractions), NO{sub X}, NMVOC and CO decreased by 88, 65, 17, 28 and 2 % from 1985 to 2010. For NH{sub 3} the emissions increased by 17 % in the same time period. Uncertainties for the emissions and trends were estimated. (Author)

  6. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China's Yangtze River Delta region.

    Science.gov (United States)

    Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wu, Xiaomeng; Shu, Jiawei; Hao, Jiming

    2017-01-01

    The Yangtze River Delta (YRD) region is one of the most prosperous and densely populated regions in China and is facing tremendous pressure to mitigate vehicle emissions and improve air quality. Our assessment has revealed that mitigating vehicle emissions of NOx would be more difficult than reducing the emissions of other major vehicular pollutants (e.g., CO, HC and PM 2.5 ) in the YRD region. Even in Shanghai, where the emission control implemented are more stringent than in Jiangsu and Zhejiang, we observed little to no reduction in NOx emissions from 2000 to 2010. Emission-reduction targets for HC, NOx and PM 2.5 are determined using a response surface modeling tool for better air quality. We design city-specific emission control strategies for three vehicle-populated cities in the YRD region: Shanghai and Nanjing and Wuxi in Jiangsu. Our results indicate that even if stringent emission control consisting of the Euro 6/VI standards, the limitation of vehicle population and usage, and the scrappage of older vehicles is applied, Nanjing and Wuxi will not be able to meet the NOx emissions target by 2020. Therefore, additional control measures are proposed for Nanjing and Wuxi to further mitigate NOx emissions from heavy-duty diesel vehicles. Copyright © 2016. Published by Elsevier B.V.

  7. Global Scale Attribution of Anthropogenic and Natural Dust Sources and their Emission Rates Based on MODIS Deep Blue Aerosol Products

    Science.gov (United States)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-01-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  8. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products

    Science.gov (United States)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-09-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  9. Environmental effects of energy production and utilization in the U. S. Volume I. Sources, trends, and costs of control

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W. (comp.)

    1976-05-01

    Volume I deals with sources (what the emissions are and where they come from), trends (quantities of emissions and their dispersion with time), and costs of control (what it takes in time, energy, and money to meet minimum standards). Volume II concerns itself with the public health effects of energy production and utilization. Volume III summarizes the various techniques for controlling emissions, technological as well as economic, social, and political. (For abstracts of Vols. II and III, see ERDA Energy Research Abstracts, Vol. 2, Absts. 5764 and 5670, respectively) Each volume is divided into sections dealing with the atmosphere, water, land, and social activities--each division indicating a particular sphere of man's environment affected by energy production and use. The sources of information that were used in this study included textbooks, journal articles, technical reports, memoranda, letters, and personal communications. These are cited in the text at the end of each subsection and on the applicable tables and figures.

  10. Measuring Trace Gas Emission from Multi-Distributed Sources Using Vertical Radial Plume Mapping (VRPM and Backward Lagrangian Stochastic (bLS Techniques

    Directory of Open Access Journals (Sweden)

    Thomas K. Flesch

    2011-09-01

    Full Text Available Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The vertical radial plume mapping (VRPM and the backward Lagrangian stochastic (bLS techniques with an open-path optical spectroscopic sensor were evaluated for relative accuracy for multiple emission-source and sensor configurations. The relative accuracy was calculated by dividing the measured emission rate by the actual emission rate; thus, a relative accuracy of 1.0 represents a perfect measure. For a single area emission source, the VRPM technique yielded a somewhat high relative accuracy of 1.38 ± 0.28. The bLS technique resulted in a relative accuracy close to unity, 0.98 ± 0.24. Relative accuracies for dual source emissions for the VRPM and bLS techniques were somewhat similar to single source emissions, 1.23 ± 0.17 and 0.94 ± 0.24, respectively. When the bLS technique was used with vertical point concentrations, the relative accuracy was unacceptably low,

  11. Emission quantification using the tracer gas dispersion method: The influence of instrument, tracer gas species and source simulation

    DEFF Research Database (Denmark)

    Delre, Antonio; Mønster, Jacob; Samuelsson, Jerker

    2018-01-01

    The tracer gas dispersion method (TDM) is a remote sensing method used for quantifying fugitive emissions by relying on the controlled release of a tracer gas at the source, combined with concentration measurements of the tracer and target gas plumes. The TDM was tested at a wastewater treatment...... plant for plant-integrated methane emission quantification, using four analytical instruments simultaneously and four different tracer gases. Measurements performed using a combination of an analytical instrument and a tracer gas, with a high ratio between the tracer gas release rate and instrument...... precision (a high release-precision ratio), resulted in well-defined plumes with a high signal-to-noise ratio and a high methane-to-tracer gas correlation factor. Measured methane emission rates differed by up to 18% from the mean value when measurements were performed using seven different instrument...

  12. Benefits of China's efforts in gaseous pollutant control indicated by the bottom-up emissions and satellite observations 2000-2014

    Science.gov (United States)

    Xia, Yinmin; Zhao, Yu; Nielsen, Chris P.

    2016-07-01

    To evaluate the effectiveness of national air pollution control policies, the emissions of SO2, NOX, CO and CO2 in China are estimated using bottom-up methods for the most recent 15-year period (2000-2014). Vertical column densities (VCDs) from satellite observations are used to test the temporal and spatial patterns of emissions and to explore the ambient levels of gaseous pollutants across the country. The inter-annual trends in emissions and VCDs match well except for SO2. Such comparison is improved with an optimistic assumption in emission estimation that the emission standards for given industrial sources issued after 2010 have been fully enforced. Underestimation of emission abatement and enhanced atmospheric oxidization likely contribute to the discrepancy between SO2 emissions and VCDs. As suggested by VCDs and emissions estimated under the assumption of full implementation of emission standards, the control of SO2 in the 12th Five-Year Plan period (12th FYP, 2011-2015) is estimated to be more effective than that in the 11th FYP period (2006-2010), attributed to improved use of flue gas desulfurization in the power sector and implementation of new emission standards in key industrial sources. The opposite was true for CO, as energy efficiency improved more significantly from 2005 to 2010 due to closures of small industrial plants. Iron & steel production is estimated to have had particularly strong influence on temporal and spatial patterns of CO. In contrast to fast growth before 2011 driven by increased coal consumption and limited controls, NOX emissions decreased from 2011 to 2014 due to the penetration of selective catalytic/non-catalytic reduction systems in the power sector. This led to reduced NO2 VCDs, particularly in relatively highly polluted areas such as the eastern China and Pearl River Delta regions. In developed areas, transportation is playing an increasingly important role in air pollution, as suggested by the increased ratio of NO2 to SO

  13. Water management in cities of the future using emission control strategies for priority hazardous substances.

    Science.gov (United States)

    Eriksson, E; Revitt, D M; Ledin, A; Lundy, L; Holten Lützhøft, H C; Wickman, T; Mikkelsen, P S

    2011-01-01

    Cities of the future face challenges with respect to the quantity and quality of water resources, and multiple managerial options need to be considered in order to safeguard urban surface water quality. In a recently completed project on 'Source control options for reducing emissions of Priority Pollutants' (ScorePP), seven emission control strategies (ECSs) were developed and tested within a semi-hypothetical case city (SHCC) to evaluate their potential to reduce the emission of selected European priority hazardous substances (PHSs) to surface waters. The ECSs included (1) business-as-usual, (2) full implementation of relevant European (EU) directives, (3) ECS2 in combination with voluntary options for household, municipalities and industry, (4) ECS2 combined with industrial treatment and best available technologies (BAT), (5) ECS2 in combination with stormwater and combined sewer overflow treatment, (6) ECS2 in combination with advanced wastewater treatment, and (7) combinations of ECS3-6. The SHCC approach was chosen to facilitate transparency, to allow compensating for data gaps and to decrease the level of uncertainty in the results. The selected PHSs: cadmium (Cd), hexachlorobenzene (HCB), nonylphenol (NP) and pentabromodiphenyl ether (PBDE) differ in their uses and environmental fate and therefore accumulate in surface waters to differing extents in response to the application of alternative ECS. To achieve the required reduction in PHS levels in urban waters the full implementation of existing EU regulation is prioritised and feasible combinations of managerial and technological options (source control and treatment) can be highly relevant for mitigating releases.

  14. Spontaneous emission control in a tunable hybrid photonic system

    NARCIS (Netherlands)

    Frimmer, M.; Koenderink, A.F.

    2013-01-01

    We experimentally demonstrate control of the rate of spontaneous emission in a tunable hybrid photonic system that consists of two canonical building blocks for spontaneous emission control, an optical antenna and a mirror, each providing a modification of the local density of optical states (LDOS).

  15. Evaluating the effectiveness of joint emission control policies on the reduction of ambient VOCs: Implications from observation during the 2014 APEC summit in suburban Beijing

    Science.gov (United States)

    Li, Kun; Li, Junling; Wang, Weigang; Tong, Shengrui; Liggio, John; Ge, Maofa

    2017-09-01

    Ambient volatile organic compounds (VOCs) at a suburban Beijing site were on-line detected using proton transfer reaction-mass spectrometry (PTR-MS) during autumn of 2014, near the location of the Asia-Pacific Economic Cooperation (APEC) summit. During the APEC summit, the Chinese government enacted strict emission control policies. It was found that VOC concentrations only slightly decreased during the first emission control period (EC I), when control policies were performed in Beijing and 5 cities along the Tai-hang Mountains. However, most of the VOCs (10 out of 12 non-biogenic species) significantly decreased (more than 40%) during the second emission control period (EC II), when control policies were carried out in 16 cities including Beijing, Tianjin, 8 cities of Hebei province and 6 cities of Shandong province. Also the ratio of toluene and benzene decreased during EC II, likely because the emission control policies changed the proportions of different anthropogenic sources. Using the positive matrix factorization (PMF) source apportionment method, five factors are analyzed: (1) vehicle + fuel, (2) solvent, (3) biomass burning, (4) secondary, and (5) background + long-lived. Among them, vehicle + fuel, solvent and biomass burning contribute most of the VOCs concentrations (60%-80%) during the polluted periods and are affected most by emission control policies. During EC II, the reductions of vehicle + fuel, solvent, biomass burning and secondary species were all no less than 50%. Overall, when emission control policies were carried out in many North China Plain (NCP) cities (i.e. EC II), the VOC concentrations of suburban Beijing markedly decreased. This indicates the cross-regional joint-control policies have a large influence on reductions of organic gas species. The findings of this study have vital implications for helping formulate effective emission control policies in China and other countries.

  16. Using air quality modeling to study source-receptor relationships between nitrogen oxides emissions and ozone exposures over the United States.

    Science.gov (United States)

    Tong, Daniel Q; Muller, Nicholas Z; Kan, Haidong; Mendelsohn, Robert O

    2009-11-01

    Human exposure to ambient ozone (O(3)) has been linked to a variety of adverse health effects. The ozone level at a location is contributed by local production, regional transport, and background ozone. This study combines detailed emission inventory, air quality modeling, and census data to investigate the source-receptor relationships between nitrogen oxides (NO(x)) emissions and population exposure to ambient O(3) in 48 states over the continental United States. By removing NO(x) emissions from each state one at a time, we calculate the change in O(3) exposures by examining the difference between the base and the sensitivity simulations. Based on the 49 simulations, we construct state-level and census region-level source-receptor matrices describing the relationships among these states/regions. We find that, for 43 receptor states, cumulative NO(x) emissions from upwind states contribute more to O(3) exposures than the state's own emissions. In-state emissions are responsible for less than 15% of O(3) exposures in 90% of U.S. states. A state's NO(x) emissions can influence 2 to 40 downwind states by at least a 0.1 ppbv change in population-averaged O(3) exposure. The results suggest that the U.S. generally needs a regional strategy to effectively reduce O(3) exposures. But the current regional emission control program in the U.S. is a cap-and-trade program that assumes the marginal damage of every ton of NO(x) is equal. In this study, the average O(3) exposures caused by one ton of NO(x) emissions ranges from -2.0 to 2.3 ppm-people-hours depending on the state. The actual damage caused by one ton of NO(x) emissions varies considerably over space.

  17. The environmental convergence hypothesis: Carbon dioxide emissions according to the source of energy

    International Nuclear Information System (INIS)

    Herrerias, M.J.

    2013-01-01

    The aim of this paper is to investigate the environmental convergence hypothesis in carbon dioxide emissions for a large group of developed and developing countries from 1980 to 2009. The novel aspect of this work is that we distinguish among carbon dioxide emissions according to the source of energy (coal, natural gas and petroleum) instead of considering the aggregate measure of per capita carbon dioxide emissions, where notable interest is given to the regional dimension due to the application of new club convergence tests. This allows us to determine the convergence behaviour of emissions in a more precise way and to detect it according to the source of energy used, thereby helping to address the environmental targets. More specifically, the convergence hypothesis is examined with a pair-wise test and another one is used to test for the existence of club convergence. Our results from using the pair-wise test indicate that carbon dioxide emissions for each type of energy diverge. However, club convergence is found for a large group of countries, although some still display divergence. These findings point to the need to apply specific environmental policies to each club detected, since specific countries converge to different clubs. - Highlights: • The environmental convergence hypothesis is investigated across countries. • We perform a pair-wise test and a club convergence test. • Results from the first of these two tests suggest that carbon dioxide emissions are diverging. • However, we find that carbon dioxide emissions are converging within groups of countries. • Active environmental policies are required

  18. Air pollutant emission rates for sources at the Deaf Smith County repository site

    International Nuclear Information System (INIS)

    1985-11-01

    This document summarizes the air-quality source terms used for the Deaf Smith County, Texas environmental assessment report and explains their derivation. The engineering data supporting these source terms appear as appendixes to this report and include summary equipment lists for the repository and detailed equipment lists for the exploratory shaft. Although substantial work has been performed in establishing the current repository design, a greater effort will be required for the final design. Consequently, the repository emission rates presented here should be considered as preliminary estimates. Another set of air pollution emission rates will be calculated after design data are more firmly established. 18 refs., 15 tabs

  19. Investigating Ammonia Emission Sources in a Coastal Urban Air Shed Using Stable Isotope Techniques

    Science.gov (United States)

    Berner, A.; Felix, J. D. D.

    2017-12-01

    For nearly 100 years, mankind has met the food demands of a growing population by commercially producing and consuming reactive nitrogen fertilizers. So much so, that now 40-60% of the population relies on them. This increase has drastically altered the global nitrogen (N) cycle. Specifically, ammonia (NH3) emissions to the atmosphere have increased, resulting in wet and dry NHx (NH3 + NH4+) deposition products that can be substantial sources of N to sensitive ecosystems. Excess N can wreak havoc on these environments, causing soil acidification, water body eutrophication, and decreases in biodiversity. Despite these effects, NH3 remains generally unregulated in the U.S. Should policymakers elect to regulate NH3, quantification of NH3 emission sources and transport is essential. This has proven to be particularly difficult in urban regions, where ambient NH3 may result from local urban sources and/or NH3 transport from rural agricultural sources. The presented work investigates potential NH3 emission sources within a South Texas coastal urban air shed, Corpus Christi, TX, U.S.A. Previous work has shown an increasing fine particulate matter (PM2.5) trend within the region, which may be attributable to NH3 emissions from a variety of local sources, including vehicle traffic, shipping traffic, the petrochemical industry, and/or surrounding agricultural cropland and livestock. NH3 was collected monthly at a set of 8 sites within the Corpus Christi air shed, analyzed for NH3 concentration and N isotopic composition (d15N-NH3), and compared to known isotopic compositions of NH3 sources. Low and seasonally variable d15N-NH3 values are associated with varying agricultural sources (fertilizer, livestock waste, etc.), while higher and more seasonally constant d15N-NH3 values are associated with non-agricultural sources (vehicles, industry, etc.). Several other physical and chemical atmospheric components (e.g. SO2, NO2, O3, PM2.5, temperature, relative humidity) were also

  20. Sources of uncertainty in characterizing health risks from flare emissions

    International Nuclear Information System (INIS)

    Hrudey, S.E.

    2000-01-01

    The assessment of health risks associated with gas flaring was the focus of this paper. Health risk assessments for environmental decision-making includes the evaluation of scientific data to identify hazards and to determine dose-response assessments, exposure assessments and risk characterization. Gas flaring has been the cause for public health concerns in recent years, most notably since 1996 after a published report by the Alberta Research Council. Some of the major sources of uncertainty associated with identifying hazardous contaminants in flare emissions were discussed. Methods to predict human exposures to emitted contaminants were examined along with risk characterization of predicted exposures to several identified contaminants. One of the problems is that elemental uncertainties exist regarding flare emissions which places limitations of the degree of reassurance that risk assessment can provide, but risk assessment can nevertheless offer some guidance to those responsible for flare emissions

  1. PM10 standards and nontraditional particulate source controls: A summary of the A ampersand WMA/EPA international specialty conference

    International Nuclear Information System (INIS)

    Chow, J.C.; Watson, J.G.; Ono, D.M.; Mathai, C.V.

    1993-01-01

    An international specialty conference, jointly sponsored by the Air ampersand Waste Management Association (A ampersand WMA) and the US Environmental Protection Agency (EPA), entitled open-quotes PM 10 Standards and Nontraditional Particulate Source Controls,close quotes was held in Scottsdale, Arizona, January 12-15, 1992. The conference included 92 presentations in 17 technical sessions. Eight-one peer-reviewed technical papers, two keynote addresses and one panel session summary describing novel applications, measurement processes, modeling techniques and control measures for nontraditional pollution sources are assembled in the Transactions. The technical issues addressed during the conference included: (1) measurement methods and data bases; (2) emissions source characterization; (3) source apportionment of nontraditional sources; (4) fugitive dust characterization and control technologies; (5) vegetative burning characterization and control technologies; (6) sources and controls of secondary aerosol and motor vehicle precursors; and (7) regulatory policies and State Implementation Plan (SIP) development. This paper gives an overview of the technical program. 105 refs., 1 tab

  2. Aviation and climate change : aircraft emissions expected to grow, but technological and operational improvements and government policies can help control emissions

    Science.gov (United States)

    2009-06-01

    A number of policy options to address aircraft emissions are available to governments and can be part of broader policies to address emissions from many sources including aircraft. Market-based measures can establish a price for emissions and provide...

  3. A Cherenkov-emission Microwave Source*

    Science.gov (United States)

    Lai, C. H.; Yoshii, J.; Katsouleas, T.; Hairapetian1, G.; Joshi, C.; Mori, W.

    1996-11-01

    In an unmagnetized plasma, there is no Cherenkov emission because the phase velocity vf of light is greater than c. In a magnetized plasma, the situation is completely changed. There is a rich variety of plasma modes with phase velocities vf 2 c which can couple to a fast particle. In the magnetized plasma, a fast particle, a particle beam, or even a short laser pulse excites a Cherenkov wake that has both electrostatic and electromagnetic components. Preliminary simulations indicate that at the vacuum/plasma boundary, the wake couples to a vacuum microwave with an amplitude equal to the electromagnetic component in the plasma. For a weakly magnetized plasma, the amplitude of the out-coupled radiation is approximately wc/wp times the amplitude of the wake excited in the plasma by the beam, and the frequency is approximately wp. Since plasma wakes as high as a few GeV/m are produced in current experiments, the potential for a high-power (i.e., GWatt) coherent microwave to THz source exists. In this talk, a brief overview of the scaling laws will be presented, followed by 1-D and 2-D PIC simulations. Prospects for a tuneable microwave source experiment based on this mechanism at the UCLA plasma wakefield accelerator facility will be discussed. *Work supported by AFOSR Grant #F4 96200-95-0248 and DOE Grant # DE-FG03-92ER40745. 1Now at Hughes Research Laboratories, Malibu, CA 90265

  4. Controlling spontaneous emission of light by photonic crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2005-01-01

    Photonic bandgap crystals were proposed almost two decades ago as a unique tool for controlling propagation and emission of light. Since then the research field of photonic crystals has exploded and many beautiful demonstrations of the use of photonic crystals and fibers for molding light...... propagation have appeared that hold great promises for integrated optics. These major achievements solidly demonstrate the ability to control propagation of light. In contrast, an experimental demonstration of the use of photonic crystals for timing the emission of light has so far lacked. In a recent...... publication in Nature, we have demonstrated experimentally that both the direction and time of spontaneous emission can be controlled, thereby confirming the original proposal by Eli Yablonovich that founded the field of photonic crystals. We believe that this work opens new opportunities for solid...

  5. Scenario Study on PM emission Reduction in Cement Industry

    Science.gov (United States)

    Tang, Qian; Chen, Xiaojun; Xia, Xin; Wang, Lijuan; Wang, Huili; Jin, Ling; Yan, Zhen

    2018-01-01

    Cement industry is one of the high pollution industries in China. Evaluation of the primary particulate matter (PM) emission status and the reduction potential is not only important for our understanding of the effectiveness of current pollution control measures but also vital for future policy design. In this study, PM emitted from cement producing process in 2014 was calculated using an emission factor method. Three PM emission control scenarios were set up considering source control, process management and end-of-pipe treatment, and the PM emission reduction by 2020 under the three scenarios was predicted, respectively. In 2014, the primary PM emission from cement industry was 1.95 million tons. By 2020, the productions of cement and clinker were expected to increase by 12% and 7%, respectively, and the PM emission would increase by about 10%. By implementation of GB4915-2013 and comprehensive control of fugitive PM emission, the PM emission would probably be reduced by 34%. Another 7% decrease would be expected from source control. The second scenario can be considered as an assessment of the effectiveness of the revised emission standard, and this research can be used as a technical support to the environmental management authorities to make relevant policies.

  6. Deciphering acoustic emission signals in drought stressed branches: the missing link between source and sensor

    Directory of Open Access Journals (Sweden)

    Lidewei L Vergeynst

    2015-07-01

    Full Text Available When drought occurs in plants, acoustic emission signals can be detected, but the actual causes of these signals are still unknown. By analyzing the waveforms of the measured signals, it should however be possible to trace the characteristics of the acoustic emission source and get information about the underlying physiological processes. A problem encountered during this analysis is that the waveform changes significantly from source to sensor and lack of knowledge on wave propagation impedes research progress made in this field. We used finite element modeling and the well-known pencil lead break source to investigate wave propagation in a branch. A cylindrical rod of polyvinyl chloride was first used to identify the theoretical propagation modes. Two wave propagation modes could be distinguished and we used the finite element model to interpret their behavior in terms of source position for both the PVC rod and a wooden rod. Both wave propagation modes were also identified in drying-induced signals from woody branches, and we used the obtained insights to provide recommendations for further acoustic emission research in plant science.

  7. Control strategies for vehicular NOx emissions in Guangzhou, China

    International Nuclear Information System (INIS)

    Shao Min; Zhang Yuanhang; Raufer, Roger

    2001-01-01

    Guangzhou is a city in southern China that has experienced very rapid economic development in recent years. The city's air has very high concentrations of various pollutants, including sulphur dioxide (SO 2 , oxides of nitrogen (NOx), ozone (O 3 ) and particulate. This paper reviews the changes in air quality in the city over the past 15 years, and notes that a serious vehicular-related emissions problem has been superimposed on the traditional coal-burning problem evident in most Chinese cities. As NOx concentrations have increased, oxidants and photochemical smog now interact with the traditional SO 2 and particulate pollutants, leading to increased health risks and other environmental concerns. Any responsible NOx control strategy for the city must include vehicle emission control measures. This paper reviews control strategies designed to abate vehicle emissions to fulfill the city's air quality improvement target in 2010. A cost-effectiveness analysis suggests that, while NOx emission control is expensive, vehicular emission standards could achieve a relatively sizable emissions reduction at reasonable cost. To achieve the 2010 air quality target of NOx, advanced implementation of EURO3 standards is recommended, substituting for the EURO2 currently envisioned in the national regulations Related technical options, including fuel quality improvements and inspection/maintenance (I/M) upgrades (ASM or IM240) are assessed as well. (author)

  8. On-road vehicle emission control in Beijing: past, present, and future.

    Science.gov (United States)

    Wu, Ye; Wang, Renjie; Zhou, Yu; Lin, Bohong; Fu, Lixin; He, Kebin; Hao, Jiming

    2011-01-01

    Beijing, the capital of China, has experienced rapid motorization since 1990; a trend that is likely to continue. The growth in vehicles and the corresponding emissions create challenges to improving the urban air quality. In an effort to reduce the impact of vehicle emissions on urban air quality, Beijing has adopted a number of vehicle emission control strategies and policies since the mid 1990 s. These are classified into seven categories: (1) emission control on new vehicles; (2) emission control on in-use vehicles; (3) fuel quality improvements; (4) alternative-fuel and advanced vehicles; (5) economic policies; (6) public transport; and (7) temporal traffic control measures. Many have proven to be successful, such as the Euro emission standards, unleaded gasoline and low sulfur fuel, temporal traffic control measures during the Beijing Olympic Games, etc. Some, however, have been failures, such as the gasoline-to-LPG taxi retrofit program. Thanks to the emission standards for new vehicles as well as other controls, the fleet-average emission rates of CO, HC, NO(X), and PM(10) by each major vehicle category are decreasing over time. For example, gasoline cars decreased fleet-average emission factors by 12.5% for CO, 10.0% for HC, 5.8% for NO(X), and 13.0% for PM(10) annually since 1995, and such a trend is likely to continue. Total emissions for Beijing's vehicle fleet increased from 1995 to 1998. However, they show a clear and steady decrease between 1999 and 2009. In 2009, total emissions of CO, HC, NO(X), and PM(10) were 845,000 t, 121,000 t, 84,000 t, and 3700 t, respectively; with reductions of 47%, 49%, 47%, and 42%, relative to 1998. Beijing has been considered a pioneer in controlling vehicle emissions within China, similar to the role of California to the U.S. The continued rapid growth of vehicles, however, is challenging Beijing's policy-makers.

  9. National pollutants emission limits

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Pawelec, A.

    2011-01-01

    Fossil fuels are the main energy sources. Unfortunately the vast quantities of pollutants are emitted to the atmosphere during their combustion. These emissions lead to the environment degradation and affect human health. Therefore most of the countries have introduced the standards concerning emission control. These regulations for some countries are presented in the paper. (author)

  10. National pollutants emission limits

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A. G.; Pawelec, A. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    Fossil fuels are the main energy sources. Unfortunately the vast quantities of pollutants are emitted to the atmosphere during their combustion. These emissions lead to the environment degradation and affect human health. Therefore most of the countries have introduced the standards concerning emission control. These regulations for some countries are presented in the paper. (author)

  11. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes

    Science.gov (United States)

    Crawford, John T.; Dornblaser, Mark M.; Stanley, Emily H.; Clow, David W.; Striegl, Robert G.

    2015-01-01

    Inland waters are an important component of the global carbon cycle through transport, storage, and direct emissions of CO2 and CH4 to the atmosphere. Despite predictions of high physical gas exchange rates due to turbulent flows and ubiquitous supersaturation of CO2—and perhaps also CH4—patterns of gas emissions are essentially undocumented for high mountain ecosystems. Much like other headwater networks around the globe, we found that high-elevation streams in Rocky Mountain National Park, USA, were supersaturated with CO2 during the growing season and were net sources to the atmosphere. CO2concentrations in lakes, on the other hand, tended to be less than atmospheric equilibrium during the open water season. CO2 and CH4 emissions from the aquatic conduit were relatively small compared to many parts of the globe. Irrespective of the physical template for high gas exchange (high k), we found evidence of CO2 source limitation to mountain streams during the growing season, which limits overall CO2emissions. Our results suggest a reduced importance of aquatic ecosystems for carbon cycling in high-elevation landscapes having limited soil development and high CO2 consumption via mineral weathering.

  12. Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin

    Science.gov (United States)

    Ferrara; Mazzolai; Lanzillotta; Nucaro; Pirrone

    2000-10-02

    Emissions from volcanoes, fumaroles and solfataras as well as contributions from widespread geological anomalies could represent an important source of mercury released to the atmosphere in the Mediterranean basin. Volcanoes located in this area (Etna, Stromboli and Vulcano) are the most active in Europe; therefore, it is extremely important to know their mercury contributions to the regional atmospheric budget. Two main methods are used for the evaluation of volcanic mercury flux: a direct determination of the flux (by measuring in the plume) and an indirect one derived from the determination of the Hg/SO2 (or Hg/S) ratio value, as SO2 emissions are constantly monitored by volcanologists. An attempt to estimate mercury flux from the Vulcano volcano and to establish the Hg/S ratio value has been made along three field campaigns carried out in October 1998, in February and May 1999 sampling several fumaroles. Traditional sampling methods were used to collect both total Hg and S. The average Hg/S ratio value resulted to be 1.2 x 10(-7). From the Hg/S value we derived the Hg/SO2 value, and by assuming that all the volcanoes located in this area have the same Hg/SO2 ratio, mercury emissions from Vulcano and Stromboli were estimated to be in the range 1.3-5.5 kg/year and 7.3-76.6 kg/year respectively, while for Etna mercury flux ranged from 61.8 to 536.5 kg/year. Data reported in literature appear to be overestimated (Fitzgerald WF. Mercury emission from volcanos. In: 4th International conference on mercury as a global pollutant, August 4-8 1996, Hamburg, Germany), volcanic mercury emission does not constitute the main natural source of the metal.

  13. Evidence for Radiative Recombination of O+ Ions as a Significant Source of O 844.6 nm Emission Excitation

    Science.gov (United States)

    Waldrop, L.; Kerr, R. B.; Huang, Y.

    2018-04-01

    Photoelectron (PE) impact on ground-state O(3P) atoms is well known as a major source of twilight 844.6 nm emission in the midlatitude thermosphere. Knowledge of the PE flux can be used to infer thermospheric oxygen density, [O], from photometric measurements of 844.6 nm airglow, provided that PE impact is the dominant process generating the observed emission. During several spring observational campaigns at Arecibo Observatory, however, we have observed significant 844.6 nm emission throughout the night, which is unlikely to arise from PE impact excitation which requires solar illumination of either the local or geomagnetically conjugate thermosphere. Here we show that radiative recombination (RR) of O+ ions is likely responsible for the observed nighttime emission, based on model predictions of electron and O+ ion density and temperature by the Incoherent Scatter Radar Ionosphere Model. The calculated emission brightness produced by O + RR exhibits good agreement with the airglow data, in that both decay approximately monotonically throughout the night at similar rates. We conclude that the conventional assumption of a pure PE impact source is most likely to be invalid during dusk twilight, when RR-generated emission is most significant. Estimation of [O] from measurements of 844.6 nm emission demands isolation of the PE impact source via coincident estimation of the RR source, and the effective cross section for RR-generated emission is found here to be consistent with optically thin conditions.

  14. Application of optical emission spectroscopy to high current proton sources

    International Nuclear Information System (INIS)

    Castro, G; Mazzaglia, M; Nicolosi, D; Mascali, D; Reitano, R; Celona, L; Leonardi, O; Leone, F; Naselli, E; Neri, L; Torrisi, G; Gammino, S; Zaniol, B

    2017-01-01

    Optical Emission Spectroscopy (OES) represents a very reliable technique to carry out non-invasive measurements of plasma density and plasma temperature in the range of tens of eV. With respect to other diagnostics, it also can characterize the different populations of neutrals and ionized particles constituting the plasma. At INFN-LNS, OES techniques have been developed and applied to characterize the plasma generated by the Flexible Plasma Trap, an ion source used as 'testbench' of the proton source built for European Spallation Source. This work presents the characterization of the parameters of a hydrogen plasma in different conditions of neutral pressure, microwave power and magnetic field profile, along with perspectives for further upgrades of the OES diagnostics system. (paper)

  15. Modeling of EUV emission from xenon and tin plasma sources for nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Service Photons, Atomes, et Molecules, CEA Saclay, bat. 522, F91191 Gif/Yvette Cedex (France)]. E-mail: michel.poirier@cea.fr; Blenski, T. [Service Photons, Atomes, et Molecules, CEA Saclay, bat. 522, F91191 Gif/Yvette Cedex (France); Gaufridy de Dortan, F. de [Service Photons, Atomes, et Molecules, CEA Saclay, bat. 522, F91191 Gif/Yvette Cedex (France); Gilleron, F. [CEA-DAM, F91680 Bruyeres-le-Chatel (France)

    2006-05-15

    Over the last decade there has been a major effort devoted to the development of efficient extreme UV sources designed for nanolithography, operating in the 13.5-nm range. Possible sources include laser-produced plasmas and discharge-produced plasmas. This paper, devoted to the modeling of such emission, emphasizes the atomic physics effects and particularly the effects of configuration interaction. Two types of theoretical approaches are presented, one involving the detailed computation with the parametric potential code HULLAC, the other based on the superconfiguration code SCO. Computations of emission spectra in xenon and tin are presented. The possible influence of non-local thermodynamic equilibrium (NLTE) effects is investigated using populations given by the simple collisional-radiative formulas from Colombant and Tonon. Convergence to LTE is analyzed in the tin case.

  16. 77 FR 73968 - Reconsideration of Certain New Source and Startup/Shutdown Issues: National Emission Standards...

    Science.gov (United States)

    2012-12-12

    ...; FRL-9762-1] RIN 2060-AR62 Reconsideration of Certain New Source and Startup/Shutdown Issues: National... Source and Startup/Shutdown Issues: National Emission Standards for Hazardous Air Pollutants from Coal... November 30, 2012, proposed ``Reconsideration of Certain New Source and Startup/Shutdown Issues: National...

  17. Emission Sectoral Contributions of Foreign Emissions to Particulate Matter Concentrations over South Korea

    Science.gov (United States)

    Kim, E.; Kim, S.; Kim, H. C.; Kim, B. U.; Cho, J. H.; Woo, J. H.

    2017-12-01

    In this study, we investigated the contributions of major emission source categories located upwind of South Korea to Particulate Matter (PM) in South Korea. In general, air quality in South Korea is affected by anthropogenic air pollutants emitted from foreign countries including China. Some studies reported that foreign emissions contributed 50 % of annual surface PM total mass concentrations in the Seoul Metropolitan Area, South Korea in 2014. Previous studies examined PM contributions of foreign emissions from all sectors considering meteorological variations. However, little studies conducted to assess contributions of specific foreign source categories. Therefore, we attempted to estimate sectoral contributions of foreign emissions from China to South Korea PM using our air quality forecasting system. We used Model Inter-Comparison Study in Asia 2010 for foreign emissions and Clean Air Policy Support System 2010 emission inventories for domestic emissions. To quantify contributions of major emission sectors to South Korea PM, we applied the Community Multi-scale Air Quality system with brute force method by perturbing emissions from industrial, residential, fossil-fuel power plants, transportation, and agriculture sectors in China. We noted that industrial sector was pre-dominant over the region except during cold season for primary PMs when residential emissions drastically increase due to heating demand. This study will benefit ensemble air quality forecasting and refined control strategy design by providing quantitative assessment on seasonal contributions of foreign emissions from major source categories.

  18. Controls on boreal peat combustion and resulting emissions of carbon and mercury

    Science.gov (United States)

    Kohlenberg, Andrew J.; Turetsky, Merritt R.; Thompson, Dan K.; Branfireun, Brian A.; Mitchell, Carl P. J.

    2018-03-01

    Warming in the boreal forest region has already led to changes in the fire regime. This may result in increasing fire frequency or severity in peatlands, which could cause these ecosystems to shift from a net sink of carbon (C) to a net source of C to the atmosphere. Similar to C cycling, peatlands serve as a net sink for mercury (Hg), which binds strongly to organic matter and accumulates in peat over time. This stored Hg is also susceptible to re-release to the atmosphere during peat fires. Here we investigate the physical properties that influence depth of burn in experimental peat columns and the resulting emissions of CO, CO2, CH4, and gaseous and particulate Hg. As expected, bulk density and soil moisture content were important controls on depth of burn, CO2 emissions, and CO emissions. However, our results show that CH4 and Hg emissions are insensitive to combustion temperature or fuel moisture content. Emissions during the burning of peat, across a wide range of moisture conditions, were associated with low particulate Hg and high gaseous Hg release. Due to strong correlations between total Hg and CO emissions and because high Hg emissions occurred despite incomplete combustion of total C, our results suggest that Hg release during peat burning is governed by the thermodynamics of Hg reduction more so than by the release of Hg associated with peat combustion. Our measured emissions ratios, particularly for CH4:CO2, are higher than values typically used in the upscaling of boreal forest or peatland fire emissions. These emission ratios have important implications not only for our understanding of smouldering chemistry, but also for potential influences of peat fires on the Earth’s climate system.

  19. Analysis and control design of sustainable policies for greenhouse gas emissions

    International Nuclear Information System (INIS)

    Chu, Bing; Duncan, Stephen; Papachristodoulou, Antonis; Hepburn, Cameron

    2013-01-01

    Reducing greenhouse gas emissions is now an urgent priority. Systems control theory, and in particular feedback control, can be helpful in designing policies that achieve sustainable levels of emissions of CO 2 (and other greenhouse gases) while minimizing the impact on the economy, and at the same time explicitly addressing the high levels of uncertainty associated with predictions of future emissions. In this paper, we describe preliminary results for an approach where model predictive control (MPC) is applied to a model of the UK economy (UK 4see model) as a test bed to design sustainable policies for greenhouse gas emissions. Using feedback control, the policies are updated on the basis of the actual emissions, rather than on the predicted level of emissions. The basic structure and principle of the UK 4see model is described and its implementation in Simulink is presented. A linearized state space model is obtained and model predictive control is applied to design policies for CO 2 emissions. Simulation results are presented to demonstrate the effectiveness of the proposed method. The preliminary results obtained in this paper illustrate the strength of the proposed design approach and form the basis for future research on using systems control theory to design optimal sustainable policies

  20. Full energy chain analysis of greenhouse gas emissions from different energy sources

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    The field of work of the Advisory Group Meeting/Workshop, i.e. full-energy chain emissions of greenhouse gases, is defined, and its environment, i.e. the Earth Summit -the 1992 UN Conference on Environment and Development in Rio-, is discussed. It is inferred that countries that ratified the Earth Summit's Convention on Climate Change have committed themselves to lower the greenhouse gas emissions from their energy use, and that this can be done most effectively by accounting in energy planning for the full-energy chain emissions of all greenhouse gases. The scatter in literature values of greenhouse gas emission factors of the full energy chain of individual energy sources is discussed. The scatter among others is due to different analytical methods, data bases and system boundaries, and due to neglect of the non-CO 2 greenhouse gases and professional biases. Generic values for greenhouse gas emission factors of energy and materials use are proposed. (author). 10 refs, 2 tabs

  1. Emission of toxic air pollutants from biomass combustion

    International Nuclear Information System (INIS)

    Houck, J.E.; Barnett, S.G.; Roholt, R.B.; Rock, M.E.

    1991-01-01

    Combustion of biomass for power generation, home heating, process steam generation, and waste disposal constitutes a major source of air pollutants nationwide. Emissions from hog-fueled boilers, demolition wood-fired power plants, municipal waste incinerators, woodstoves, fireplaces, pellet stoves, agricultural burning, and forestry burning have been characterized for a variety of purposes. These have included risk assessment, permitting, emission inventory development, source profiling for receptor modeling, and control technology evaluations. From the results of the source characterization studies a compilation of emission factors for criteria and non-criteria pollutants are presented here. Key among these pollutants are polycyclic aromatic hydrocarbons, priority pollutant metals, carbon monoxide, sulfur dioxide, nitrous oxides, and PM 10 particles. The emission factors from the biomass combustion processes are compared and contrasted with other pollutant sources. In addition, sampling and analysis procedures most appropriate for characterizing emissions from the biomass combustion sources are also discussed

  2. Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions

    Science.gov (United States)

    Ganesan, A. L.; Stell, A. C.; Gedney, N.; Comyn-Platt, E.; Hayman, G.; Rigby, M.; Poulter, B.; Hornibrook, E. R. C.

    2018-04-01

    We present the first spatially resolved wetland δ13C(CH4) source signature map based on data characterizing wetland ecosystems and demonstrate good agreement with wetland signatures derived from atmospheric observations. The source signature map resolves a latitudinal difference of 10‰ between northern high-latitude (mean -67.8‰) and tropical (mean -56.7‰) wetlands and shows significant regional variations on top of the latitudinal gradient. We assess the errors in inverse modeling studies aiming to separate CH4 sources and sinks by comparing atmospheric δ13C(CH4) derived using our spatially resolved map against the common assumption of globally uniform wetland δ13C(CH4) signature. We find a larger interhemispheric gradient, a larger high-latitude seasonal cycle, and smaller trend over the period 2000-2012. The implication is that erroneous CH4 fluxes would be derived to compensate for the biases imposed by not utilizing spatially resolved signatures for the largest source of CH4 emissions. These biases are significant when compared to the size of observed signals.

  3. Proceedings of the 10th world clean air congress. Emissions and control

    International Nuclear Information System (INIS)

    Tolvanen, M.; Anttila, P.; Kaemaeri, J.

    1995-01-01

    Rapid economical growth and expansion of human population have produced a number of environmental problems with varying geographic dimensions. While local problems remain near the pollution sources, the focus of the scientific community is more and more shifted towards regional, continental and global consequences of air pollutants. The theme of the 10th Clean Air Congress 'Growing Challenges from Local to Global' reflects the growing demand from the scientific and professional community working in air pollution prevention and environmental protection - more and more complex mechanisms should be understood on a growing spatial scale. The 10th World Clean Air Congress addresses in its more than 400 presentations, documented in three Volumes of Proceedings, the history, the present and the potential futures of the air pollution problems. Air has during different times always represented something valuable to people: the logo of the Congress, the octahedron sign, sympolizes the element of air in acient Greek philosophy. Today air quality is not only valued as important, it is a death serious matter. This Volume includes the presentations of the path A 'Emissions and Control' of the Congress. This path deals with issues related to measurement, monitoring and inventories of air pollutants from mobile and stationary sources, and the various ways to control the emissions of acidifying pollutants, air toxics and aerosols, volatile organic compounds, and odours. Integrated approaches to pollution prevention and non-waste technologies in various industrial sectors, have recently obtained special attention

  4. Emissions balancing of renewable energy sources. Avoided emissions due to the use of renewable energies in 2007; Emissionsbilanz erneuerbarer Energietraeger. Durch Einsatz erneuerbarer Energien vermiedene Emissionen im Jahr 2007

    Energy Technology Data Exchange (ETDEWEB)

    Memmler, Michael; Mohrbach, Elke; Schneider, Sven; Dreher, Marion; Herbener, Reinhard

    2009-10-15

    The report on the emissions accounting with respect to renewable energy covers the following issues: 1. Introduction and purpose. 2. Methodology concerning the balancing for electricity, heat and traffic, uncertainties due to lack of data. 3. Energy supply from renewable energy sources in 2007. 4. Fossil energy substitution by renewable energy sources: electricity, heat and traffic. 5. Emissions from different energy supply lines: electricity, heat, traffic. 6. Results of the emissions accounting for renewable energy sources: electricity, heat, traffic and comprehensive review. 7. Retroacting accounting and forward projection.

  5. Industrial point source CO2 emission strength estimation with aircraft measurements and dispersion modelling.

    Science.gov (United States)

    Carotenuto, Federico; Gualtieri, Giovanni; Miglietta, Franco; Riccio, Angelo; Toscano, Piero; Wohlfahrt, Georg; Gioli, Beniamino

    2018-02-22

    CO 2 remains the greenhouse gas that contributes most to anthropogenic global warming, and the evaluation of its emissions is of major interest to both research and regulatory purposes. Emission inventories generally provide quite reliable estimates of CO 2 emissions. However, because of intrinsic uncertainties associated with these estimates, it is of great importance to validate emission inventories against independent estimates. This paper describes an integrated approach combining aircraft measurements and a puff dispersion modelling framework by considering a CO 2 industrial point source, located in Biganos, France. CO 2 density measurements were obtained by applying the mass balance method, while CO 2 emission estimates were derived by implementing the CALMET/CALPUFF model chain. For the latter, three meteorological initializations were used: (i) WRF-modelled outputs initialized by ECMWF reanalyses; (ii) WRF-modelled outputs initialized by CFSR reanalyses and (iii) local in situ observations. Governmental inventorial data were used as reference for all applications. The strengths and weaknesses of the different approaches and how they affect emission estimation uncertainty were investigated. The mass balance based on aircraft measurements was quite succesful in capturing the point source emission strength (at worst with a 16% bias), while the accuracy of the dispersion modelling, markedly when using ECMWF initialization through the WRF model, was only slightly lower (estimation with an 18% bias). The analysis will help in highlighting some methodological best practices that can be used as guidelines for future experiments.

  6. Current Status of Air Toxics Management and Its Strategies for Controlling Emissions in Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2016-04-01

    Full Text Available Since the 1970s, hazardous air pollutants (HAPs, so-called air toxics, have been of great concern because they can cause serious human health effects and have adverse effects on the environment. More noticeably, some of them are known to be human carcinogens. The objective of this paper is to investigate the regulatory systems and human health effects of air toxics which have been designated by the Taiwan government under the Air Pollution Control Act. These toxic air pollutants include acutely toxic gas (i.e., ammonia, chlorine, fluorides, hydrochloric acid, hydrogen cyanide, hydrogen sulfide, nitric acid, phosphoric acid and sulfuric acid, gas containing heavy metals, and carcinogenic chemicals (including formaldehyde, vinyl chloride, asbestos and matter containing asbestos, dioxins and furans, volatile organic compounds, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls. In line with international concern about the carcinogenic risk and environmental persistence of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs and heavy metals in recent years, the current status in monitoring and reducing the emissions of PCDDs/PCDFs from stationary sources was analyzed as a case study in the present study. Furthermore, the control strategies for reducing emissions of air toxics from stationary sources in Taiwan were also addressed.

  7. Remote sensing FTIR-system for emission monitoring and ambient air control of atmospheric trace gases and air pollutants; Remote sensing FTIR-System zur Emissions- und Immissionsmessung atmosphaerischer Spurengasse und Luftschadstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, T; Mosebach, H; Bittner, H [Kayser-Threde GmbH, Muenchen (Germany)

    1994-01-01

    The Fourier Transform Infrared spectrometer K300, based on the double-pendulum interferometer, is due to its optical design particularly suitable for high resolution remote sensing emission and transmission (long path monitoring) measurements of air pollutants and atmospheric trace gases in the field. The applications encompass direct emission measurements of hot flue gases and aircraft engine exhaust as well as surveillance of industrial complexes and waste disposal sites and ambient air control of e.g. traffic polluted sites. For direct emission measurements the infrared radiation of hot gases is utilized. Monitoring of cold diffuse emissions (e.g. at waste disposal sites) and ambient air control is carried out applying a bistatic transmission configuration with an artificial infrared source (glowbar) facing the instrument from a distance up to several hundred meters (long-path monitoring). Following a short introduction of the measurement technique and system, results from the above mentioned applications, obtained during several field studies are depicted and discussed. 19 refs., 8 figs., 12 tabs.

  8. Advanced Combustion and Emission Control Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  9. Radon-222 emissions and control practices for licensed uranium mills and their associated tailings piles. Final report

    International Nuclear Information System (INIS)

    1985-06-01

    The report is organized into five main sections. The conclusions of the effort are summarized in Chapter 2. A general description of current milling and tailings management practices and a summary of the site-specific characteristics of operating and standby uranium mills are contained in Chapter-3. The sources and emission rates of radon-222 at licensed mills and their associated tailings piles are contained in Chapter 4 along with the results of an effort to develop generic procedures to estimate radon-222 emissions for milling operations and tailings disposal. Control practices that are being or could be applied to the milling operation and tailings disposal areas and their estimated cost and effectiveness in reducing radon-222 emissions are presented in Chapter 5. The appendices contain detailed information on mill site data and emission estimates

  10. Quantifying the uncertainties of China's emission inventory for industrial sources: From national to provincial and city scales

    Science.gov (United States)

    Zhao, Yu; Zhou, Yaduan; Qiu, Liping; Zhang, Jie

    2017-09-01

    A comprehensive uncertainty analysis was conducted on emission inventories for industrial sources at national (China), provincial (Jiangsu), and city (Nanjing) scales for 2012. Based on various methods and data sources, Monte-Carlo simulation was applied at sector level for national inventory, and at plant level (whenever possible) for provincial and city inventories. The uncertainties of national inventory were estimated at -17-37% (expressed as 95% confidence intervals, CIs), -21-35%, -19-34%, -29-40%, -22-47%, -21-54%, -33-84%, and -32-92% for SO2, NOX, CO, TSP (total suspended particles), PM10, PM2.5, black carbon (BC), and organic carbon (OC) emissions respectively for the whole country. At provincial and city levels, the uncertainties of corresponding pollutant emissions were estimated at -15-18%, -18-33%, -16-37%, -20-30%, -23-45%, -26-50%, -33-79%, and -33-71% for Jiangsu, and -17-22%, -10-33%, -23-75%, -19-36%, -23-41%, -28-48%, -45-82%, and -34-96% for Nanjing, respectively. Emission factors (or associated parameters) were identified as the biggest contributors to the uncertainties of emissions for most source categories except iron & steel production in the national inventory. Compared to national one, uncertainties of total emissions in the provincial and city-scale inventories were not significantly reduced for most species with an exception of SO2. For power and other industrial boilers, the uncertainties were reduced, and the plant-specific parameters played more important roles to the uncertainties. Much larger PM10 and PM2.5 emissions for Jiangsu were estimated in this provincial inventory than other studies, implying the big discrepancies on data sources of emission factors and activity data between local and national inventories. Although the uncertainty analysis of bottom-up emission inventories at national and local scales partly supported the ;top-down; estimates using observation and/or chemistry transport models, detailed investigations and

  11. Mercury emission to the atmosphere from municipal solid waste landfills: A brief review

    Science.gov (United States)

    Tao, Zhengkai; Dai, Shijin; Chai, Xiaoli

    2017-12-01

    Municipal solid waste (MSW) landfill is regarded as an important emission source of atmospheric mercury (Hg), which is associated with potential health and environmental risks, as outlined by the Minamata Convention on Hg. This review presents the current state of knowledge with regards to landfill Hg sources, Hg levels in MSW and cover soils, Hg emission to the atmosphere, available Hg biogeochemical transformations, research methods for Hg emission, and important areas for future research. In addition, strategies for controlling landfill Hg emissions are considered, including reducing the Hg load in landfill and in situ controls. These approaches mainly focus on Hg source reduction, Hg recycling programs, public education, and in situ technology such as timely soil cover, vegetation, and end-of-pipe technology for controlling Hg emission from landfill gas.

  12. 40 CFR 1060.104 - What running loss emission control requirements apply?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What running loss emission control... STATIONARY EQUIPMENT Emission Standards and Related Requirements § 1060.104 What running loss emission control requirements apply? (a) Engines and equipment must meet running loss requirements as follows: (1...

  13. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    OpenAIRE

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquified petroleum gas, compressed natural gas, and electricity. Vehicle emission es...

  14. Rate Proposal for Remuneration of Air Pollutants Emissions From Stationary Sources Located in Bogota D.C.

    Directory of Open Access Journals (Sweden)

    Gabriel Herrera Torres

    2011-04-01

    Full Text Available The objective of this project is to develop a methodological proposal for the establishment of the retributive rate for the direct use of the atmosphere as the receptor of pollutant emissions that come from stationary resources on Bogotá D.C. By means of the emissions from stationary sources inventory and the air quality analysis, the pollutant that are emitted by the industries and the ones that are regulated by the network observations of the were identified selecting the particulated matter (PM10, sulfur oxides (SOx, and nitrogen oxides (NOx as the atmospheric pollutants that should be the object of payment in the retributive rate. Besides the selection of the pollutants that should be in the payment, the analysis of the retributive rate structure was made witch was based on the description or four key elements the generated fact, the tax base, the passive subject, and the fee of the rate. taking into account the social costs which are related to the investment being made by the district for the treatment of patients that present acute respiratory diseases ERA´s, associated and the costs of program control and monitoring of the air quality in Bogotá, the tariffs of the payment of the retributive rate were redefined in 281 $/Kg for the PM10, 2816 $/kg for the SOX and 2866 $/kg for NOX. Finally a new model of the payment was established, which is the result of the multiplication of the respective tariff for each of the pollutants that were selected as object of payment, expressed in ($/kg times, the charge of the pollutants emitted by the source expressed in (kg/ day.times the total number of days of the operation of the source emissions in a year.

  15. Frozen cropland soil in northeast China as source of N2O and CO2 emissions.

    Science.gov (United States)

    Miao, Shujie; Qiao, Yunfa; Han, Xiaozeng; Brancher Franco, Roberta; Burger, Martin

    2014-01-01

    Agricultural soils are important sources of atmospheric N2O and CO2. However, in boreal agro-ecosystems the contribution of the winter season to annual emissions of these gases has rarely been determined. In this study, soil N2O and CO2 fluxes were measured for 6 years in a corn-soybean-wheat rotation in northeast China to quantify the contribution of wintertime N2O and CO2 fluxes to annual emissions. The treatments were chemical fertilizer (NPK), chemical fertilizer plus composted pig manure (NPKOM), and control (Cont.). Mean soil N2O fluxes among all three treatments in the winter (November-March), when soil temperatures are below -7°C for extended periods, were 0.89-3.01 µg N m(-2) h(-1), and in between the growing season and winter (October and April), when freeze-thaw events occur, 1.73-5.48 µg N m(-2) h(-1). The cumulative N2O emissions were on average 0.27-1.39, 0.03-0.08 and 0.03-0.11 kg N2O_N ha(-1) during the growing season, October and April, and winter, respectively. The average contributions of winter N2O efflux to annual emissions were 6.3-12.1%. In all three seasons, the highest N2O emissions occurred in NPKOM, while NPK and Cont. emissions were similar. Cumulative CO2 emissions were 2.73-4.94, 0.13-0.20 and 0.07-0.11 Mg CO2-C ha(-1) during growing season, October and April, and winter, respectively. The contribution of winter CO2 to total annual emissions was 2.0-2.4%. Our results indicate that in boreal agricultural systems in northeast China, CO2 and N2O emissions continue throughout the winter.

  16. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    Science.gov (United States)

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  17. Online Traffic Signal Control for Reducing Vehicle Carbon Dioxide Emissions

    Science.gov (United States)

    Oda, Toshihiko; Otokita, Tohru; Niikura, Satoshi

    In Japan, carbon dioxide (CO2) emissions caused by vehicles have been increasing year by year and it is well known that CO2 causes a serious global warming problem. For urban traffic control systems, there is a great demand for realization of signal control measures as soon as possible due to the urgency of the recent environmental situation. This paper describes a new traffic signal control for reducing vehicle CO2 emissions on an arterial road. First, we develop a model for estimating the emissions using the traffic delay and the number of stops a driver makes. Second, to find the optimal control parameters, we introduce a random search method with rapid convergence suitable for an online traffic control. We conduct experiments in Kawasaki to verify the effectiveness of our method. The experiments show that our approach decreases not only the emissions but also congestion and travel time significantly, compared to the method implemented in the real system.

  18. Air Emission Inventory for the INEEL -- 1999 Emission Report

    Energy Technology Data Exchange (ETDEWEB)

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  19. Strategies for controlling pollution from vehicular emissions in Beijing

    International Nuclear Information System (INIS)

    Wang, Qidong; He, Kebin; Li, Tiejun; Fu, Lixin

    2002-01-01

    The paper describes the severe situation of vehicular emission in Beijing and discusses the following mitigation strategies: Improving fuel quality, controlling the exhaust from new vehicles, controlling the emissions from vehicles in use through e.g. Inspection Maintenance (I/M), renovating in-use vehicles and scrapping of old vehicles and road infrastructure and traffic policies. (Author)

  20. Strategies for controlling pollution from vehicular emissions in Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qidong; He, Kebin; Li, Tiejun; Fu, Lixin

    2002-07-01

    The paper describes the severe situation of vehicular emission in Beijing and discusses the following mitigation strategies: Improving fuel quality, controlling the exhaust from new vehicles, controlling the emissions from vehicles in use through e.g. Inspection Maintenance (I/M), renovating in-use vehicles and scrapping of old vehicles and road infrastructure and traffic policies. (Author)

  1. Evaluation of the Inductive Coupling between Equivalent Emission Sources of Components

    Directory of Open Access Journals (Sweden)

    Moisés Ferber

    2012-01-01

    Full Text Available The electromagnetic interference between electronic systems or between their components influences the overall performance. It is important thus to model these interferences in order to optimize the position of the components of an electronic system. In this paper, a methodology to construct the equivalent model of magnetic field sources is proposed. It is based on the multipole expansion, and it represents the radiated emission of generic structures in a spherical reference frame. Experimental results for different kinds of sources are presented illustrating our method.

  2. Interface control: A modified rooting technique for enhancing field emission from multiwall carbon nanotube based bulk emitters

    Energy Technology Data Exchange (ETDEWEB)

    Lahiri, Indranil [Nanomaterials and Device Lab, Department of Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 (United States); Choi, Wonbong, E-mail: choiw@fiu.edu [Nanomaterials and Device Lab, Department of Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 (United States)

    2011-08-15

    The unique properties of carbon nanotubes (CNTs) have raised hopes that these materials might find wide application as cold cathodes in various electron sources. The excellent field emission properties shown by CNT-based field emitters has further stimulated this expectation. However, efficient performance of a practical field emitter, which comprises a large number of randomly or regularly oriented CNTs, is restricted primarily due to poor junctions formed between CNTs and substrates. This study is aimed at enhancing the junction performance by way of a modified 'rooting' technique-interface control. In this process, the interface between CNTs and substrate has been tailored with different metals in an attempt to improve the CNT-substrate junction performance. Multiwall carbon nanotubes (MWCNTs) were synthesized on different interface-controlled substrates, i.e. Cu, Al, W, Si and low-temperature co-fired ceramic. All the samples produced mat-type, randomly oriented MWCNT structures. Among the four different substrates studied, MWCNT-based field emitters on Cu substrate demonstrated the best field emission response, in terms of low turn-on field, high emission current, good field enhancement factor and excellent stability in long-term operation. Emitter structures and their field emission behavior were correlated and it was shown that interface control, as an advanced 'rooting' process, plays an important role in determining the emission response from a bulk field emitter.

  3. Interface control: A modified rooting technique for enhancing field emission from multiwall carbon nanotube based bulk emitters

    International Nuclear Information System (INIS)

    Lahiri, Indranil; Choi, Wonbong

    2011-01-01

    The unique properties of carbon nanotubes (CNTs) have raised hopes that these materials might find wide application as cold cathodes in various electron sources. The excellent field emission properties shown by CNT-based field emitters has further stimulated this expectation. However, efficient performance of a practical field emitter, which comprises a large number of randomly or regularly oriented CNTs, is restricted primarily due to poor junctions formed between CNTs and substrates. This study is aimed at enhancing the junction performance by way of a modified 'rooting' technique-interface control. In this process, the interface between CNTs and substrate has been tailored with different metals in an attempt to improve the CNT-substrate junction performance. Multiwall carbon nanotubes (MWCNTs) were synthesized on different interface-controlled substrates, i.e. Cu, Al, W, Si and low-temperature co-fired ceramic. All the samples produced mat-type, randomly oriented MWCNT structures. Among the four different substrates studied, MWCNT-based field emitters on Cu substrate demonstrated the best field emission response, in terms of low turn-on field, high emission current, good field enhancement factor and excellent stability in long-term operation. Emitter structures and their field emission behavior were correlated and it was shown that interface control, as an advanced 'rooting' process, plays an important role in determining the emission response from a bulk field emitter.

  4. Sourcing methane and carbon dioxide emissions from a small city: Influence of natural gas leakage and combustion.

    Science.gov (United States)

    Chamberlain, Samuel D; Ingraffea, Anthony R; Sparks, Jed P

    2016-11-01

    Natural gas leakage and combustion are major sources of methane (CH 4 ) and carbon dioxide (CO 2 ), respectively; however, our understanding of emissions from cities is limited. We mapped distribution pipeline leakage using a mobile CH 4 detection system, and continuously monitored atmospheric CO 2 and CH 4 concentrations and carbon isotopes (δ 13 C-CO 2 and δ 13 C-CH 4 ) for one-year above Ithaca, New York. Pipeline leakage rates were low (emission source in that wind sector. Our results demonstrate pipeline leakage rates are low in cities with a low extent of leak prone pipe, and natural gas power facilities may be an important source of urban and suburban emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Characterization of selenium in ambient aerosols and primary emission sources.

    Science.gov (United States)

    De Santiago, Arlette; Longo, Amelia F; Ingall, Ellery D; Diaz, Julia M; King, Laura E; Lai, Barry; Weber, Rodney J; Russell, Armistead G; Oakes, Michelle

    2014-08-19

    Atmospheric selenium (Se) in aerosols was investigated using X-ray absorption near-edge structure (XANES) spectroscopy and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the oxidation state and elemental associations of Se in common primary emission sources and ambient aerosols collected from the greater Atlanta area. In the majority of ambient aerosol and primary emission source samples, the spectroscopic patterns as well as the absence of elemental correlations suggest Se is in an elemental, organic, or oxide form. XRF microscopy revealed numerous Se-rich particles, or hotspots, accounting on average for ∼16% of the total Se in ambient aerosols. Hotspots contained primarily Se(0)/Se(-II). However, larger, bulk spectroscopic characterizations revealed Se(IV) as the dominant oxidation state in ambient aerosol, followed by Se(0)/Se(-II) and Se(VI). Se(IV) was the only observed oxidation state in gasoline, diesel, and coal fly ash, while biomass burning contained a combination of Se(0)/Se(-II) and Se(IV). Although the majority of Se in aerosols was in the most toxic form, the Se concentration is well below the California Environmental Protection Agency chronic exposure limit (∼20000 ng/m(3)).

  6. Control of sealed radioactive sources in Peru

    International Nuclear Information System (INIS)

    Ramirez Quijada, R.

    2001-01-01

    The paper describes the inventory of radioactive sources in Peru and assesses the control. Three groups of source conditions are established: controlled sources, known sources, and lost and orphan sources. The potential risk, described as not significant, for producing accidents is established and the needed measures are discussed. The paper concludes that, while the control on sealed sources is good, there is still room for improvement. (author)

  7. Environmental emissions control programs at Lambton TGS [Thermal Generating Station

    International Nuclear Information System (INIS)

    Kalvins, A.K.

    1992-01-01

    Ontario Hydro's air emissions control programs at Lambton thermal generating station, both committed and planned, are reviewed, and their potential impacts on emissions, effluents and wastes are discussed. Control technologies examined include flue gas conditioning, wet limestone scrubbing, combustion process modifications, urea injection, and selective catalytic reduction. The implementation of these technologies has the potential to create new solid and liquid waste disposal problems, the full extent of which is often not realized at the process selection stage. For example, selective noncatalytic reduction using urea injection can lead to increased CO emissions, escape of unreacted ammonia from the stack at levels of 5-50 ppM, increase in N 2 O emissions, contamination of fly ash, gypsum and waste water with ammonia, and an increase in CO 2 emissions of less than 0.4% due to increased power consumption. Optimum performance of the air emissions control systems, with minimum negative impact on the environment, requires consideration of the impact of these systems on all waste streams. 11 refs., 3 figs., 1 tab

  8. 40 CFR 75.34 - Units with add-on emission controls.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Units with add-on emission controls... add-on emission controls. (a) The owner or operator of an affected unit equipped with add-on SO2 and... assurance/quality control program for the unit, required by section 1 in appendix B of this part. To provide...

  9. An approach to evaluating the economic impact of emissions trading

    International Nuclear Information System (INIS)

    Lieu, S.; Johnson, S.L.; Dabirian, S.

    1993-01-01

    The command-and-control system to air quality controls is a mixture of technology-forcing standards for existing sources and offset for new sources. More stringent controls are required to achieve the ambient air quality standards in non-attainment urban areas which have been conformed with burgeoning economic growth. Due to the economy of scale and locale of polluting sources, some sources can implement these controls in a more cost-effective manner than others. In order to minimize the control costs of regulated sources, trading of emissions has been stipulated and has occurred among power plants to curb acid rain at the national level. Southern California is currently embarking on the trading of oxides of nitrogen, reactive organic compounds, and oxides of sulfur among existing and new stationary sources. New economic opportunities for entrepreneurs with advances control technology will arise under emissions trading. Trading will also result in the redistribution of emissions geographically and across industries. Through the linkage of a linear-programming trading model, a regional econometric model, and an urban airshed model, the impact of trading on the Southern California economy can thus be examined. This paper describes a framework which can be used to compare and contrast RECLAIM with the command-and-control system; and discusses a few issues which may arise in a trading market and how these issues can be dealt with are also examined

  10. Multi-Sensor Constrained Time Varying Emissions Estimation of Black Carbon: Attributing Urban and Fire Sources Globally

    Science.gov (United States)

    Cohen, J. B.

    2015-12-01

    The short lifetime and heterogeneous distribution of Black Carbon (BC) in the atmosphere leads to complex impacts on radiative forcing, climate, and health, and complicates analysis of its atmospheric processing and emissions. Two recent papers have estimated the global and regional emissions of BC using advanced statistical and computational methods. One used a Kalman Filter, including data from AERONET, NOAA, and other ground-based sources, to estimate global emissions of 17.8+/-5.6 Tg BC/year (with the increase attributable to East Asia, South Asia, Southeast Asia, and Eastern Europe - all regions which have had rapid urban, industrial, and economic expansion). The second additionally used remotely sensed measurements from MISR and a variance maximizing technique, uniquely quantifying fire and urban sources in Southeast Asia, as well as their large year-to-year variability over the past 12 years, leading to increases from 10% to 150%. These new emissions products, when run through our state-of-the art modelling system of chemistry, physics, transport, removal, radiation, and climate, match 140 ground stations and satellites better in both an absolute and a temporal sense. New work now further includes trace species measurements from OMI, which are used with the variance maximizing technique to constrain the types of emissions sources. Furthermore, land-use change and fire estimation products from MODIS are also included, which provide other constraints on the temporal and spatial nature of the variations of intermittent sources like fires or new permanent sources like expanded urbanization. This talk will introduce a new, top-down constrained, weekly varying BC emissions dataset, show that it produces a better fit with observations, and draw conclusions about the sources and impacts from urbanization one hand, and fires on another hand. Results specific to the Southeast and East Asia will demonstrate inter- and intra-annual variations, such as the function of

  11. An Equivalent Emission Minimization Strategy for Causal Optimal Control of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Stephan Zentner

    2014-02-01

    Full Text Available One of the main challenges during the development of operating strategies for modern diesel engines is the reduction of the CO2 emissions, while complying with ever more stringent limits for the pollutant emissions. The inherent trade-off between the emissions of CO2 and pollutants renders a simultaneous reduction difficult. Therefore, an optimal operating strategy is sought that yields minimal CO2 emissions, while holding the cumulative pollutant emissions at the allowed level. Such an operating strategy can be obtained offline by solving a constrained optimal control problem. However, the final-value constraint on the cumulated pollutant emissions prevents this approach from being adopted for causal control. This paper proposes a framework for causal optimal control of diesel engines. The optimization problem can be solved online when the constrained minimization of the CO2 emissions is reformulated as an unconstrained minimization of the CO2 emissions and the weighted pollutant emissions (i.e., equivalent emissions. However, the weighting factors are not known a priori. A method for the online calculation of these weighting factors is proposed. It is based on the Hamilton–Jacobi–Bellman (HJB equation and a physically motivated approximation of the optimal cost-to-go. A case study shows that the causal control strategy defined by the online calculation of the equivalence factor and the minimization of the equivalent emissions is only slightly inferior to the non-causal offline optimization, while being applicable to online control.

  12. Goods in the Anthroposphere as a Metal Emission Source A Case Study of Stockholm, Sweden

    International Nuclear Information System (INIS)

    Soerme, L.; Bergbaeck, B.; Lohm, U.

    2001-01-01

    The aim of this study was to quantify the diffuse emissions during use of metal containing goods in the capital of Sweden,Stockholm. The following metals were studied: Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni) and Zinc (Zn).A major part of the metals are found in a protected environment where degrading processes like corrosion are most limited. However, during the lifetime of some goods the metal release to the environment is significant. The quantitatively most dominant emissions were found for Cu and Zn. The tap water system and roofs/fronts (Cu) represent goods with large exposed areas but with relatively small release rates per unit. In contrast, brake linings, aerial lines and electrical grounding (Cu) and tyres, brake linings and chemicals (Zn) are all goods with high release rates but mostly limited exposed stocks.High yearly emissions are also found for Pb, ammunition and sinkers dominate the calculated emissions totally. For Cr and Ni, stainless steel represent the major part of the stocks, but corrosion was estimated to give only a minor contribution to the emissions. Potential emission sources, i.e. stabilisers,pigments and plated goods dominate the exposed Cd stock. These emissions were not quantified due to lack of data. Hg is currently phased out, but one major source of emission, i.e. the use of amalgam, will be continuously significant for several decades. The importance of the traffic sector is obvious. The emissions from brake linings (Cu, Zn and Pb), tyres (Zn, Pb, Cr and Ni)and asphalt wear (Cu, Zn, Cr, Ni and Pb) are all of large importance for the total emission from respectively metal

  13. Emission estimates for some acidifying and greenhouse gases and options for their control in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pipatti, R. [VTT Energy, Espoo (Finland). Energy Systems

    1998-11-01

    This thesis presents estimates and options for control of anthropogenic ammonia (NH{sub 3}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and some halocarbon emissions in Finland. Ammonia is an air pollutant which contributes to both acidification and nitrogen eutrophication of ecosystems. Its emissions are mainly caused by livestock manure. In Finland the anthropogenic emissions of NH{sub 3} have been estimated to be approximately 44 Gg in 1985 and 43 Gg in 1990. In the 1990`s the emissions have declined due to the reduced number of cattle and voluntary implementation of emission reducing measures. The impact of NH{sub 3} emissions on acidification is serious but in Finland it is less than the impact of the other acidifying gases sulphur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}). All three gases and their transformation products are transported by the atmosphere up to distances of hundreds or even more than a thousand kilometres. NH{sub 3} emissions can be reduced with relatively cost-effective measures and the measures can partly replace the implementation of more costly abatement measures on SO{sub 2} and NO{sub x} emissions needed to lower the acidifying deposition in Finland. The other gases studied in this thesis are greenhouse gases. Some of the gases also deplete stratospheric ozone. Finnish anthropogenic CH{sub 4} emissions have been estimated to be around 250 Gg per year during the 1990`s. The emissions come mainly from landfills and agricultural sources (enteric fermentation and manure). The significance of other CH{sub 4} sources in Finland is minor. The potential to reduce the Finnish CH{sub 4} emissions is estimated to be good. Landfill gas recovery offers an option to reduce the emissions significantly at negligible cost if the energy produced can be utilised in electricity and/or heat production. Measures directed at reducing the emissions from livestock manure management are more costly, and the achievable reduction in the emissions

  14. Characterizing and sourcing ambient PM2.5 over key emission regions in China II: Organic molecular markers and CMB modeling

    Science.gov (United States)

    Zhou, Jiabin; Xiong, Ying; Xing, Zhenyu; Deng, Junjun; Du, Ke

    2017-08-01

    From November 2012 to July 2013, a sampling campaign was completed for comprehensive characterization of PM2.5 over four key emission regions in China: Beijing-Tianjin-Hebei (BTH), Yangzi River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB). A multi-method approach, adopting different analytical and receptor modeling methods, was employed to determine the relative abundances of region-specific air pollution constituents and contributions of emission sources. This paper is focused on organic molecular marker based source apportionment using chemical mass balance (CMB) receptor modeling. Analyses of the organic molecular markers revealed that vehicle emission, coal combustion, biomass burning, meat cooking and natural gas combustion were the major contributors to organic carbon (OC) in PM2.5. The vehicle emission dominated the sources contributing to OC in spring at four sampling sites. During wintertime, the coal combustion had highest contribution to OC at BTH site, while the major source contributing to OC at YRD and PRD sites was vehicle emission. In addition, the relative contributions of different emission sources to PM2.5 mass at a specific location site and in a specific season revealed seasonal and spatial variations across all four sampling locations. The largest contributor to PM2.5 mass was secondary sulfate (14-17%) in winter at the four sites. The vehicle emission was found to be the major source (14-21%) for PM2.5 mass at PRD site. The secondary ammonium has minor variation (4-5%) across the sites, confirming the influences of regional emission sources on these sites. The distinct patterns of seasonal and spatial variations of source apportionment observed in this study were consistent with the findings in our previous paper based upon water-soluble ions and carbonaceous fractions. This makes it essential for the local government to make season- and region-specific mitigation strategies for abating PM2.5 pollution in China.

  15. Coherent control of atto-second emission from aligned molecules

    Energy Technology Data Exchange (ETDEWEB)

    Boutu, W; Haessler, S; Merdji, H; Breger, P; Monchicourt, P; Carre, B; Salieres, P [CEA Saclay, DSM, Serv Photons Atomes Mol, F-91191 Gif Sur Yvette, (France); Waters, G [Univ Reading, JJ Thomson Phys Lab, Reading RG6 6AF, Berks, (United Kingdom); Stankiewicz, M [Jagiellonian Univ, Inst Phys, PL-30059 Krakow, (Poland); Frasinski, L J [Univ London Imperial Coll Sci Technol and Med, Blackett Lab, London SW7 2BW, (United Kingdom); Taieb, R; Caillat, J; Maquet, A [Univ Paris 06, UMR 7614, Lab Chim Phys Matiere Rayonnement, F-75231 Paris 05, (France); Taieb, R; Caillat, J; Maquet, A [LCPMR, UMR 7614, CNRS, F-75005 Paris, (France)

    2008-07-01

    Controlling atto-second electron wave packets and soft X-ray pulses represents a formidable challenge of general implication to many areas of science. A strong laser field interacting with atoms or molecules drives ultrafast intra-atomic/molecular electron wave packets on a sub femtosecond timescale, resulting in the emission of atto-second bursts of extreme-ultraviolet light. Controlling the intra-atomic/molecular electron dynamics enables steering of the atto-second emission. Here, we carry out a coherent control in linear molecules, where the interaction of the laser-driven electron wave packet with the core leads to quantum interferences. We demonstrate that these interferences can be finely controlled by turning the molecular axis relative to the laser polarization, that is, changing the electron re-collision angle. The wave-packet coulombic distortion modifies the spectral phase jump measured in the extreme-ultraviolet emission. Our atto-second control of the interference results in atto-second pulse shaping, useful for future applications in ultrafast coherent control of atomic and molecular processes. (authors)

  16. Emission trading: A discussion paper

    International Nuclear Information System (INIS)

    1992-05-01

    Emission trading is a market-based incentive program designed to control air emissions in which a cap is placed on the total quantity of pollutants allowed to be emitted in an airshed. Appropriate shares of this amount are allocated among participating emission sources, and participants can buy or sell their shares. Advantages of emission trading include its potential to achieve air emission targets at a lower cost than the traditional command and control approach, and its ability to accommodate economic growth without compromising environmental quality. A study was conducted to evaluate the potential use of emission trading programs to achieve emission reduction goals set for nitrogen oxides, volatile organic compounds (VOC), and sulfur oxides. Emission trading programs in the USA are reviewed and a set of factors important for the success of emission trading are identified. Key policy and design issues related to an emission trading program are identified, explained, and discussed. Administrative issues are then analyzed, such as legislative authority, monitoring and enforcement requirements, and trading between jurisdictions. A preliminary assessment of emission trading for control of NOx and VOC in the Lower Fraser Valley indicates that emission trading would be feasible, but legislative authority to implement such a program would have to be introduced

  17. Control of fine particulate (PM2.5) emissions from restaurant operations.

    Science.gov (United States)

    Whynot, J; Quinn, G; Perryman, P; Votlucka, P

    1999-09-01

    This paper describes efforts to reduce particulate matter (PM) emissions from restaurant operations, including application of an existing control method to a new equipment type. Commercial charbroiling in the South Coast Air Basin results in emissions of approximately 10 tons/day of fine particulate matter (PM2.5) and 1.3 tons/day of volatile organic compounds (VOCs). Over a seven-year period, the South Coast Air Quality Management District worked with industry to develop test methods for measuring emissions from various cooking operations, evaluate control technologies, and develop a rule to reduce these emissions. Of the two basic types of charbroilers--chain-driven and underfired--underfired produce four times the emissions when equivalent amounts of product are cooked. Cost-effective control technology is currently available only for chain-driven charbroilers. The application of flameless catalytic oxidizers to chain-driven charbroilers was found to effectively reduce emissions by at least 83% and is cost-effective. The catalysts have been used worldwide at restaurants for several years. Research efforts are underway to identify control options for underfired charbroilers. Implementation of Rule 1138, Control of Emissions from Restaurant Operations, adopted November 14, 1997, will result in reductions of 0.5 tons/day of PM2.5 and 0.2 tons/day of VOCs. Future rules will result in reductions from underfired charbroilers and possibly other restaurant equipment when cost-effective solutions are available.

  18. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.V. [Global Environmental Solutions, Inc., Morton Grove, IL (United States)

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  19. Technologies and policies for "hard to scrub" emissions sources

    Science.gov (United States)

    Friedmann, J.

    2016-12-01

    The science of climate change yields harsh math regarding atmospheric accumulations of GHGs. The world is far from target trajectories for 2C or 1.5C, and the global carbon budget is severe. To achieve those targets requires two things. First, we must field technologies that reduce emissions from the "hard to scrub" parts of the US and global economies, such as heavy industry (cement and steel), aviation, ocean shipping, and household cooking and heating. Second, we will likely need negative emissions pathways for those sources that prove extremely difficult to remove or reduce - the climate equivalent of adding revenue to one's budget. Such pathways may well need to convert GHG emissions (especially CO2 and methane) into useful products with minimal infrastructure builds. Dramatic advances in advanced manufacturing, 3D printing, simulation, modeling, and data analytics have made possible solutions which were previously unthinkable or impossible. This include "bespoke reactors", which can simultaneously perform separations and conversions; low-cost modular chemical systems of any scale; biologically inspired or biologically mediated energy services; direct air carbon-capture systems; and electrochemical pathways for emissions reduction and conversion. However, these approaches are unlikely to be fielded without policy actions or reforms that support such systems in competitive global energy markets. Such policy measures do NOT require a carbon price. Rather, they could include individual or combined measures such as emission or performance standards, financial incentives (like tax credits or low-cost access to capital), border adjustable tariffs, creation of CO2 utilities, ands public good surcharges. Innovation in both technical and policy arenas are needed to achieve the goals of the Paris agreement signatories, and these innovations can be simultaneously configured to deliver substantive greenhouse gas mitigation.

  20. Determination of the power of multielement aerosol composition emission from distant industrial sources

    International Nuclear Information System (INIS)

    Popova, S.A.; Kutsenogij, K.P.; Chankina, O.V.

    2008-01-01

    The results from the monitoring of the temporal variability of the multielement composition of atmospheric aerosols are presented. They are used to determine the emission power of a series of elements from distant sources.

  1. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Williams, A.; Mitchell, C.

    1993-01-01

    This paper outlines some of the problems associated with the prediction of levels of methane emission from underground and surface coal mines. Current knowledge of coal mining emissions sources is outlined. On the basis of this information the methodology proposed by the IPCC/OECD Programme on National Inventories is critically examined and alternatives considered. Finally, the technical options for emissions control are examined together with their feasibility. 8 refs., 6 figs., 2 tabs

  2. 40 CFR Table 1 to Subpart Xxxx of... - Emission Limits for Tire Production Affected Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Emission Limits for Tire Production Affected Sources 1 Table 1 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION.... 63, Subpt. XXXX, Table 1 Table 1 to Subpart XXXX of Part 63—Emission Limits for Tire Production...

  3. Management practices and controls on methane emissions from sub-tropical wetlands

    Science.gov (United States)

    DeLucia, Nicholas; Casa-Nova Gomez, Nuri; Bernacchi, Carl

    2015-04-01

    It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on any combination of climate conditions, natural and anthropogenic disturbances, or ecosystem perturbations. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are the main source for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. CH4 is one of the most damaging green house gases with current emission estimates ranging from 55 to 231 Tg CH4 yr-1. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04"N, 81o21'8.56"W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified

  4. Detection of critical PM2.5 emission sources and their contributions to a heavy haze episode in Beijing, China, using an adjoint model

    Science.gov (United States)

    Zhai, Shixian; An, Xingqin; Zhao, Tianliang; Sun, Zhaobin; Wang, Wei; Hou, Qing; Guo, Zengyuan; Wang, Chao

    2018-05-01

    Air pollution sources and their regional transport are important issues for air quality control. The Global-Regional Assimilation and Prediction System coupled with the China Meteorological Administration Unified Atmospheric Chemistry Environment (GRAPES-CUACE) aerosol adjoint model was applied to detect the sensitive primary emission sources of a haze episode in Beijing occurring between 19 and 21 November 2012. The high PM2.5 concentration peaks occurring at 05:00 and 23:00 LT (GMT+8) over Beijing on 21 November 2012 were set as the cost functions for the aerosol adjoint model. The critical emission regions of the first PM2.5 concentration peak were tracked to the west and south of Beijing, with 2 to 3 days of cumulative transport of air pollutants to Beijing. The critical emission regions of the second peak were mainly located to the south of Beijing, where southeasterly moist air transport led to the hygroscopic growth of particles and pollutant convergence in front of the Taihang Mountains during the daytime on 21 November. The temporal variations in the sensitivity coefficients for the two PM2.5 concentration peaks revealed that the response time of the onset of Beijing haze pollution from the local primary emissions is approximately 1-2 h and that from the surrounding primary emissions it is approximately 7-12 h. The upstream Hebei province has the largest impact on the two PM2.5 concentration peaks, and the contribution of emissions from Hebei province to the first PM2.5 concentration peak (43.6 %) is greater than that to the second PM2.5 concentration peak (41.5 %). The second most influential province for the 05:00 LT PM2.5 concentration peak is Beijing (31.2 %), followed by Shanxi (9.8 %), Tianjin (9.8 %), and Shandong (5.7 %). The second most influential province for the 23:00 LT PM2.5 concentration peak is Beijing (35.7 %), followed by Shanxi (8.1 %), Shandong (8.0 %), and Tianjin (6.7 %). The adjoint model results were compared with the forward

  5. Commercial and Industrial Solid Waste Incineration Units (CISWI): New Source Performance Standards (NSPS) and Emission Guidelines (EG) for Existing Sources

    Science.gov (United States)

    Learn about the New Source Performance Standards (NSPS) for commercial and industrial solid waste incineration (CISWI) units including emission guidelines and compliance times for the rule. Read the rule history and summary, and find supporting documents

  6. A new oxidation flow reactor for measuring secondary aerosol formation of rapidly changing emission sources

    Science.gov (United States)

    Simonen, Pauli; Saukko, Erkka; Karjalainen, Panu; Timonen, Hilkka; Bloss, Matthew; Aakko-Saksa, Päivi; Rönkkö, Topi; Keskinen, Jorma; Dal Maso, Miikka

    2017-04-01

    Oxidation flow reactors (OFRs) or environmental chambers can be used to estimate secondary aerosol formation potential of different emission sources. Emissions from anthropogenic sources, such as vehicles, often vary on short timescales. For example, to identify the vehicle driving conditions that lead to high potential secondary aerosol emissions, rapid oxidation of exhaust is needed. However, the residence times in environmental chambers and in most oxidation flow reactors are too long to study these transient effects ( ˜ 100 s in flow reactors and several hours in environmental chambers). Here, we present a new oxidation flow reactor, TSAR (TUT Secondary Aerosol Reactor), which has a short residence time ( ˜ 40 s) and near-laminar flow conditions. These improvements are achieved by reducing the reactor radius and volume. This allows studying, for example, the effect of vehicle driving conditions on the secondary aerosol formation potential of the exhaust. We show that the flow pattern in TSAR is nearly laminar and particle losses are negligible. The secondary organic aerosol (SOA) produced in TSAR has a similar mass spectrum to the SOA produced in the state-of-the-art reactor, PAM (potential aerosol mass). Both reactors produce the same amount of mass, but TSAR has a higher time resolution. We also show that TSAR is capable of measuring the secondary aerosol formation potential of a vehicle during a transient driving cycle and that the fast response of TSAR reveals how different driving conditions affect the amount of formed secondary aerosol. Thus, TSAR can be used to study rapidly changing emission sources, especially the vehicular emissions during transient driving.

  7. Considering the future of anthropogenic gas-phase organic compound emissions and the increasing influence of non-combustion sources on urban air quality

    Science.gov (United States)

    Khare, Peeyush; Gentner, Drew R.

    2018-04-01

    Decades of policy in developed regions has successfully reduced total anthropogenic emissions of gas-phase organic compounds, especially volatile organic compounds (VOCs), with an intentional, sustained focus on motor vehicles and other combustion-related sources. We examine potential secondary organic aerosol (SOA) and ozone formation in our case study megacity (Los Angeles) and demonstrate that non-combustion-related sources now contribute a major fraction of SOA and ozone precursors. Thus, they warrant greater attention beyond indoor environments to resolve large uncertainties in their emissions, oxidation chemistry, and outdoor air quality impacts in cities worldwide. We constrain the magnitude and chemical composition of emissions via several bottom-up approaches using chemical analyses of products, emissions inventory assessments, theoretical calculations of emission timescales, and a survey of consumer product material safety datasheets. We demonstrate that the chemical composition of emissions from consumer products as well as commercial and industrial products, processes, and materials is diverse across and within source subcategories. This leads to wide ranges of SOA and ozone formation potentials that rival other prominent sources, such as motor vehicles. With emission timescales from minutes to years, emission rates and source profiles need to be included, updated, and/or validated in emissions inventories with expected regional and national variability. In particular, intermediate-volatility and semi-volatile organic compounds (IVOCs and SVOCs) are key precursors to SOA, but are excluded or poorly represented in emissions inventories and exempt from emissions targets. We present an expanded framework for classifying VOC, IVOC, and SVOC emissions from this diverse array of sources that emphasizes a life cycle approach over longer timescales and three emission pathways that extend beyond the short-term evaporation of VOCs: (1) solvent evaporation, (2

  8. Neutron generator tube ion source control

    International Nuclear Information System (INIS)

    Bridges, J.R.

    1982-01-01

    A system is claimed for controlling the output of a neutron generator tube of the deuterium-tritium accelerator type and having an ion source to produce sharply defined pulses of neutrons for well logging use. It comprises: means for inputting a relatively low voltage input control pulse having a leading edge and a trailing edge; means, responsive to the input control pulse, for producing a relatively high voltage ion source voltage pulse after receipt of the input pulse; and means, responsive to the input control pulse, for quenching, after receipt of the input pulse, the ion source control pulse, thereby providing a sharply time defined neutron output from the generator tube

  9. Evidence for denitrification as main source of N2O emission from residue-amended soil

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Sørensen, Peter; Olesen, Jørgen Eivind

    2016-01-01

    -leguminous species (ryegrass). Plant material was placed in a discrete layer surrounded by soil in which the nitrate View the MathML source pool was enriched with 15N to distinguish N2O derived from denitrification and nitrification. Net N mineralisation from leguminous catch crops was significant (30–48 mg N kg−1....... Emission of N2O occurred at all moisture levels, but was higher at 50 and 60% WFPS than at 40% in soil with leguminous residues. The 15N enrichment of N2O indicated that denitrification was the dominant source independent of moisture level and residue type. We conclude that catch crop residues...... will stimulate N2O emissions via denitrification over a wide range of soil moisture conditions, but that emission levels may depend significantly on residue quality and soil moisture....

  10. Production and characterization of 228Th calibration sources with low neutron emission for GERDA

    Science.gov (United States)

    Baudis, L.; Benato, G.; Carconi, P.; Cattadori, C.; De Felice, P.; Eberhardt, K.; Eichler, R.; Petrucci, A.; Tarka, M.; Walter, M.

    2015-12-01

    The GERDA experiment at the Laboratori Nazionali del Gran Sasso (LNGS) searches for the neutrinoless double beta decay of 76Ge. In view of the GERDA Phase II data collection, four new 228Th radioactive sources for the calibration of the germanium detectors enriched in 76Ge have been produced with a new technique, leading to a reduced neutron emission rate from (α, n) reactions. The gamma activities of the sources were determined with a total uncertainty of ~4% using an ultra-low background HPGe detector operated underground at LNGS. The neutron emission rate was determined using a low background LiI(Eu) detector and a 3He counter at LNGS. In both cases, the measured neutron activity is ~10-6 n/(sṡBq), with a reduction of about one order of magnitude with respect to commercially available 228Th sources. Additionally, a specific leak test with a sensitivity to leaks down to ~10 mBq was developed to investigate the tightness of the stainless steel capsules housing the sources after their use in cryogenic environment.

  11. 40 CFR 1060.102 - What permeation emission control requirements apply for fuel lines?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What permeation emission control... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY EQUIPMENT Emission Standards and Related Requirements § 1060.102 What permeation...

  12. 40 CFR 1060.103 - What permeation emission control requirements apply for fuel tanks?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What permeation emission control... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY EQUIPMENT Emission Standards and Related Requirements § 1060.103 What permeation...

  13. Control of mercury emissions from coal fired electric uitlity boilers: An update

    Science.gov (United States)

    Coal-fired power plants in the U.S. are known to be the major anthropogenic source of domestic mercury emissions. The Environmental Protection Agency (EPA) has recently proposed to reduce emissions of mercury from these plants. In March 2005, EPA plans to promulgate final regulat...

  14. Mobile Source Emissions Regulatory Compliance Data Inventory

    Science.gov (United States)

    The Mobile Source Emissions Regulatory Compliance Data Inventory data asset contains measured summary compliance information on light-duty, heavy-duty, and non-road engine manufacturers by model, as well as fee payment data required by Title II of the 1990 Amendments to the Clean Air Act, to certify engines for sale in the U.S. and collect compliance certification fees. Data submitted by manufacturers falls into 12 industries: Heavy Duty Compression Ignition, Marine Spark Ignition, Heavy Duty Spark Ignition, Marine Compression Ignition, Snowmobile, Motorcycle & ATV, Non-Road Compression Ignition, Non-Road Small Spark Ignition, Light-Duty, Evaporative Components, Non-Road Large Spark Ignition, and Locomotive. Title II also requires the collection of fees from manufacturers submitting for compliance certification. Manufacturers submit data on an annual basis, to document engine model changes for certification. Manufacturers also submit compliance information on already certified in-use vehicles randomly selected by the EPA (1) year into their life and (4) years into their life to ensure that emissions systems continue to function appropriately over time.The EPA performs targeted confirmatory tests on approximately 15% of vehicles submitted for certification. Confirmatory data on engines is associated with its corresponding submission data to verify the accuracy of manufacturer submission beyond standard business rules.Section 209 of the 1990 Amendments to the Clea

  15. The Effects of Different External Carbon Sources on Nitrous Oxide Emissions during Denitrification in Biological Nutrient Removal Processes

    Science.gov (United States)

    Hu, Xiang; Zhang, Jing; Hou, Hongxun

    2018-01-01

    The aim of this study was to investigate the effects of two different external carbon sources (acetate and ethanol) on the nitrous oxide (N2O) emissions during denitrification in biological nutrient removal processes. Results showed that external carbon source significantly influenced N2O emissions during the denitrification process. When acetate served as the external carbon source, 0.49 mg N/L and 0.85 mg N/L of N2O was produced during the denitrificaiton processes in anoxic and anaerobic/anoxic experiments, giving a ratio of N2O-N production to TN removal of 2.37% and 4.96%, respectively. Compared with acetate, the amount of N2O production is negligible when ethanol used as external carbon addition. This suggested that ethanol is a potential alternative external carbon source for acetate from the point of view of N2O emissions.

  16. Optimal control for integrated emission management in diesel engines

    NARCIS (Netherlands)

    Donkers, M.C.F.; van Schijndel, J.; Heemels, W.P.M.H.; Willems, F.

    2017-01-01

    Integrated Emission Management (IEM) is a supervisory control strategy that minimises operational costs (consisting of fuel and AdBlue) for diesel engines with an aftertreatment system, while satisfying emission constraints imposed by legislation. In most work on IEM, a suboptimal heuristic

  17. Optimal control for integrated emission management in diesel engines

    NARCIS (Netherlands)

    Donkers, M.C.F.; Schijndel, J. van; Heemels, W.P.M.H.; Willems, F.P.T.

    2016-01-01

    Integrated Emission Management (IEM) is a supervisory control strategy that minimises operational costs (consisting of fuel and AdBlue) for diesel engines with an aftertreatment system, while satisfying emission constraints imposed by legislation. In most work on IEM, a suboptimal heuristic

  18. Revisiting factors controlling methane emissions from high-Arctic tundra

    DEFF Research Database (Denmark)

    Mastepanov, M.; Sigsgaard, C.; Tagesson, T.

    2013-01-01

    controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010) despite large differences in climatic factors (temperature and water table). Late-season bursts of CH4...... short-term control factors (temperature and water table). Our findings suggest the importance of multiyear studies with a continued focus on shoulder seasons in Arctic ecosystems....

  19. CO2 emission factors for waste incineration: Influence from source separation of recyclable materials

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Astrup, Thomas

    2011-01-01

    variations between emission factors for different incinerators, but the background for these variations has not been thoroughly examined. One important reason may be variations in collection of recyclable materials as source separation alters the composition of the residual waste incinerated. The objective...... routed to incineration. Emission factors ranged from 27 to 40kg CO2/GJ. The results appeared most sensitive towards variations in waste composition and water content. Recycling rates and lower heating values could not be used as simple indicators of the resulting emission factors for residual household...... different studies and when using the values for environmental assessment purposes....

  20. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    Energy Technology Data Exchange (ETDEWEB)

    England, G.C.; McGrath, T.P. [GE-Energy and Environmental Research Corp., Irvine, CA (United States); Gilmer, L. [Equilon Enterprises, Bellaire, TX (United States); Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States); Lev-On, M. [ARCO, Los Angeles, CA (United States); Hunt, T. [American Petroleum Institute, Washington, DC (United States)

    2001-07-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NO{sub x} emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. (author)

  1. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    International Nuclear Information System (INIS)

    England, G.C.; McGrath, T.P.; Gilmer, L.; Seebold, J.G.; Lev-On, M.; Hunt, T.

    2001-01-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NO x emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. (author)

  2. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    Science.gov (United States)

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  3. Vehicle Emissions Risk Management

    International Nuclear Information System (INIS)

    Ibrahem, L.G.

    2004-01-01

    Vehicle emissions are considered as a main source for air pollution. Emissions regulation is now well developed in most countries to meet cleaner air quality. Reducing emissions by using cleaner fuels, which meet certain specification, is not enough to get cleaner air, yet the vehicle technology is not improved. Here we will outline the following: - development in fuel specification and emissions regulation. main facts linking vehicle emissions, fuel properties and air quality. catalytic converter technology. Emissions sources: In modem cities, vehicle traffic is potentially a major source of emissions. However sometimes other sources of emissions from industry and other stationary sources can be equally important and include emissions that are of greater toxicity than those from vehicles

  4. Characterization of emission factors related to source activity for trichloroethylene degreasing and chrome plating processes.

    Science.gov (United States)

    Wadden, R A; Hawkins, J L; Scheff, P A; Franke, J E

    1991-09-01

    A study at an automotive parts fabrication plant evaluated four metal surface treatment processes during production conditions. The evaluation provides examples of how to estimate process emission factors from activity and air concentration data. The processes were open tank and enclosed tank degreasing with trichloroethylene (TCE), chromium conversion coating, and chromium electroplating. Area concentrations of TCE and chromium (Cr) were monitored for 1-hr periods at three distances from each process. Source activities at each process were recorded during each sampling interval. Emission rates were determined by applying appropriate mass balance models to the concentration patterns around each source. The emission factors obtained from regression analysis of the emission rate and activity data were 16.9 g TCE/basket of parts for the open-top degreaser; 1.0 g TCE/1000 parts for the enclosed degreaser; 1.48-1.64 mg Cr/1000 parts processed in the hot CrO3/HNO3 tank for the chrome conversion coating; and 5.35-9.17 mg Cr/rack of parts for chrome electroplating. The factors were also used to determine the efficiency of collection for the local exhaust systems serving each process. Although the number of observations were limited, these factors may be useful for providing initial estimates of emissions from similar processes in other settings.

  5. 40 CFR 63.3555 - How do I determine the outlet THC emissions and add-on control device emission destruction or...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true How do I determine the outlet THC.../outlet Concentration Option § 63.3555 How do I determine the outlet THC emissions and add-on control... section to determine either the outlet THC emissions or add-on control device emission destruction or...

  6. Regulatory Control of Radioactive Sources in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.; Martin, J.L., E-mail: mrm@csn.es [Nuclear Safety Council, Madrid (Spain)

    2011-07-15

    The arrangements for the regulatory control of the safety and security of sealed radioactive sources in Spain are described. Emphasis is given to the situations which are most likely to result in the loss of control of sources and on the procedures introduced to reduce the likelihood of losses in these cases. Finally, the strategy for locating sources which have been lost from control (orphan sources) is described. (author)

  7. Advanced Catalytic Converter in Gasoline Enginer Emission Control: A Review

    OpenAIRE

    Leman A.M.; Jajuli Afiqah; Feriyanto Dafit; Rahman Fakhrurrazi; Zakaria Supaat

    2017-01-01

    Exhaust emission from automobile source has become a major contributor to the air pollution and environmental problem. Catalytic converter is found to be one of the most effective tools to reduce the overwhelming exhaust pollutants in our environment. The development of sustainable catalytic converter still remains a critical issue due to the stringent exhaust emission regulations. Another issue such as price and availability of the precious metal were also forced the automotive industry to i...

  8. Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic.

    Science.gov (United States)

    McEwing, Katherine Rose; Fisher, James Paul; Zona, Donatella

    Despite multiple studies investigating the environmental controls on CH 4 fluxes from arctic tundra ecosystems, the high spatial variability of CH 4 emissions is not fully understood. This makes the upscaling of CH 4 fluxes from plot to regional scale, particularly challenging. The goal of this study is to refine our knowledge of the spatial variability and controls on CH 4 emission from tundra ecosystems. CH 4 fluxes were measured in four sites across a variety of wet-sedge and tussock tundra ecosystems in Alaska using chambers and a Los Gatos CO 2 and CH 4 gas analyser. All sites were found to be sources of CH 4 , with northern sites (in Barrow) showing similar CH 4 emission rates to the southernmost site (ca. 300 km south, Ivotuk). Gross primary productivity (GPP), water level and soil temperature were the most important environmental controls on CH 4 emission. Greater vascular plant cover was linked with higher CH 4 emission, but this increased emission with increased vascular plant cover was much higher (86 %) in the drier sites, than the wettest sites (30 %), suggesting that transport and/or substrate availability were crucial limiting factors for CH 4 emission in these tundra ecosystems. Overall, this study provides an increased understanding of the fine scale spatial controls on CH 4 flux, in particular the key role that plant cover and GPP play in enhancing CH 4 emissions from tundra soils.

  9. Electron dynamics in RF sources with a laser controlled emission

    CERN Document Server

    Khodak, I V; Metrochenko, V V

    2001-01-01

    Photoemission radiofrequency (RF) electron sources are sources of electron beams with extremely high brightness. Beam bunching processes in such devices are well studied in case when laser pulse duration is much lower of rf oscillation period.At the same time photoemission RF guns have some merits when operating in 'long-pulse' mode. In this case the laser pulse duration is much higher of rf oscillation period but much lower of rise time of oscillations in a gun cavity. Beam parameters at the gun output are compared for photoemission and thermoemission cathode applications. The paper presents results of a beam dynamics simulation in such guns with different resonance structures. Questions connected with defining of the current pulse peak value that can be obtained in such guns are discussed.

  10. Analytical estimation of emission zone mean position and width in organic light-emitting diodes from emission pattern image-source interference fringes

    International Nuclear Information System (INIS)

    Epstein, Ariel; Tessler, Nir; Einziger, Pinchas D.; Roberts, Matthew

    2014-01-01

    We present an analytical method for evaluating the first and second moments of the effective exciton spatial distribution in organic light-emitting diodes (OLED) from measured emission patterns. Specifically, the suggested algorithm estimates the emission zone mean position and width, respectively, from two distinct features of the pattern produced by interference between the emission sources and their images (induced by the reflective cathode): the angles in which interference extrema are observed, and the prominence of interference fringes. The relations between these parameters are derived rigorously for a general OLED structure, indicating that extrema angles are related to the mean position of the radiating excitons via Bragg's condition, and the spatial broadening is related to the attenuation of the image-source interference prominence due to an averaging effect. The method is applied successfully both on simulated emission patterns and on experimental data, exhibiting a very good agreement with the results obtained by numerical techniques. We investigate the method performance in detail, showing that it is capable of producing accurate estimations for a wide range of source-cathode separation distances, provided that the measured spectral interval is large enough; guidelines for achieving reliable evaluations are deduced from these results as well. As opposed to numerical fitting tools employed to perform similar tasks to date, our approximate method explicitly utilizes physical intuition and requires far less computational effort (no fitting is involved). Hence, applications that do not require highly resolved estimations, e.g., preliminary design and production-line verification, can benefit substantially from the analytical algorithm, when applicable. This introduces a novel set of efficient tools for OLED engineering, highly important in the view of the crucial role the exciton distribution plays in determining the device performance.

  11. Analytical estimation of emission zone mean position and width in organic light-emitting diodes from emission pattern image-source interference fringes

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Ariel, E-mail: ariel.epstein@utoronto.ca; Tessler, Nir, E-mail: nir@ee.technion.ac.il; Einziger, Pinchas D. [Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Roberts, Matthew, E-mail: mroberts@cdtltd.co.uk [Cambridge Display Technology Ltd, Building 2020, Cambourne Business Park, Cambourne, Cambridgeshire CB23 6DW (United Kingdom)

    2014-06-14

    We present an analytical method for evaluating the first and second moments of the effective exciton spatial distribution in organic light-emitting diodes (OLED) from measured emission patterns. Specifically, the suggested algorithm estimates the emission zone mean position and width, respectively, from two distinct features of the pattern produced by interference between the emission sources and their images (induced by the reflective cathode): the angles in which interference extrema are observed, and the prominence of interference fringes. The relations between these parameters are derived rigorously for a general OLED structure, indicating that extrema angles are related to the mean position of the radiating excitons via Bragg's condition, and the spatial broadening is related to the attenuation of the image-source interference prominence due to an averaging effect. The method is applied successfully both on simulated emission patterns and on experimental data, exhibiting a very good agreement with the results obtained by numerical techniques. We investigate the method performance in detail, showing that it is capable of producing accurate estimations for a wide range of source-cathode separation distances, provided that the measured spectral interval is large enough; guidelines for achieving reliable evaluations are deduced from these results as well. As opposed to numerical fitting tools employed to perform similar tasks to date, our approximate method explicitly utilizes physical intuition and requires far less computational effort (no fitting is involved). Hence, applications that do not require highly resolved estimations, e.g., preliminary design and production-line verification, can benefit substantially from the analytical algorithm, when applicable. This introduces a novel set of efficient tools for OLED engineering, highly important in the view of the crucial role the exciton distribution plays in determining the device performance.

  12. Control system for Siam photon source

    CERN Document Server

    Apiwatwaja, R; Isoyama, G; Ishii, T; Pairsuwan, W

    2003-01-01

    A new computer control system has been developed for Siam photon source, which is the first synchrotron light source in Thailand, personal computers and PLC's have been employed which are connected together through Ethernet. Man Machine Interface Stations (MMIS) at the front end act as a graphical user interface within Windows environment. The monitoring and controlling of individual devices is handled through several pairs of digital control station and the device interface located in each part of the synchrotron complex. The installation of the control system has been completed. The commissioning test of the control system is underway and the reliability of the system is on the positive side. Details of commissioning tests as well as characteristics of this newly built control system for the Siam photon source are described in this report.

  13. Assessment of possible strategies to reduce mobile sources emissions in Costa Rica, 2010-2015 projection

    Directory of Open Access Journals (Sweden)

    Jorge Herrera-Murillo

    2014-02-01

    Full Text Available The impacts of the possible strategies to reduce the emissions from mobile sources in Costa Rica were evaluated for the 2010-2015 period. The total emissions were estimated using emission factors obtained from Mobile 6 model and activity data like fuel and vehicle type distribution. This study found that 50% substitution of public transport vehicles was the most effective measure to lower the anual rate increase for NOx and Total Organic Gases (TOG. Both around 14,3% and 11,7% anually, respectively.

  14. Emissions of acidifying air pollutants in the North West region of England

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, J.W.S.; Lindley, S.J.; Conlan, D.E. [Manchester Metropolitan University, Manchester (United Kingdom). Dept. of Environmental and Geographical Sciences

    1995-12-01

    Most estimates of emission are concerned with the nation state level. This paper discusses methods utilised in the estimates of emissions to the atmosphere of sulphur dioxide, volatile organic compounds and oxides of nitrogen from a densely populated and heavily industrialised region of the United Kingdom. Data on power generation from coal, industrial plant, fuel usage, air, sea and road transportation, and human population statistics have been integrated into a method to provide regional emission estimates. The resulting emission patterns are described in terms of sources and emission density. Spatial and temporal patterns are identified and major sources of emissions discussed in terms of national control programmes. Transportation is the dominant source of oxides of nitrogen emissions whilst power generation is the dominant source of sulphur dioxide. The relative importance of the North West as an emission source within the UK is assessed. The change in the strengths of acidifying emissions between 1987 and 1992 is discussed and the rate of change in emission magnitudes between the North West region and the UK as a whole compared. 9 refs., 4 tabs.

  15. Emissions of acidifying air pollutants in the North West region of England

    International Nuclear Information System (INIS)

    Longhurst, J.W.S.; Lindley, S.J.; Conlan, D.E.

    1995-01-01

    Most estimates of emission are concerned with the nation state level. This paper discusses methods utilised in the estimates of emissions to the atmosphere of sulphur dioxide, volatile organic compounds and oxides of nitrogen from a densely populated and heavily industrialised region of the United Kingdom. Data on power generation from coal, industrial plant, fuel usage, air, sea and road transportation, and human population statistics have been integrated into a method to provide regional emission estimates. The resulting emission patterns are described in terms of sources and emission density. Spatial and temporal patterns are identified and major sources of emissions discussed in terms of national control programmes. Transportation is the dominant source of oxides of nitrogen emissions whilst power generation is the dominant source of sulphur dioxide. The relative importance of the North West as an emission source within the UK is assessed. The change in the strengths of acidifying emissions between 1987 and 1992 is discussed and the rate of change in emission magnitudes between the North West region and the UK as a whole compared. 9 refs., 4 tabs

  16. Atmospheric polychlorinated biphenyls in Indian cities: Levels, emission sources and toxicity equivalents

    International Nuclear Information System (INIS)

    Chakraborty, Paromita; Zhang, Gan; Eckhardt, Sabine; Li, Jun; Breivik, Knut; Lam, Paul K.S.; Tanabe, Shinsuke; Jones, Kevin C.

    2013-01-01

    Atmospheric concentration of Polychlorinated biphenyls (PCBs) were measured on diurnal basis by active air sampling during Dec 2006 to Feb 2007 in seven major cities from the northern (New Delhi and Agra), eastern (Kolkata), western (Mumbai and Goa) and southern (Chennai and Bangalore) parts of India. Average concentration of Σ 25 PCBs in the Indian atmosphere was 4460 (±2200) pg/m −3 with a dominance of congeners with 4–7 chlorine atoms. Model results (HYSPLIT, FLEXPART) indicate that the source areas are likely confined to local or regional proximity. Results from the FLEXPART model show that existing emission inventories cannot explain the high concentrations observed for PCB-28. Electronic waste, ship breaking activities and dumped solid waste are attributed as the possible sources of PCBs in India. Σ 25 PCB concentrations for each city showed significant linear correlation with Toxicity equivalence (TEQ) and Neurotoxic equivalence (NEQ) values. Highlights: •Unlike decreasing trend of PCBs in United States and European countries, high levels of PCBs remain in the Indian atmosphere. •Existing emission inventories cannot explain the high PCB concentrations in Indian atmosphere. •Electronic waste recycling, ship dismantling and open burning of municipal solid waste are implicated as potential sources. -- Measurement of atmospheric Polychlorinated biphenyls in seven major Indian cities

  17. Quantification and Controls of Wetland Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McNicol, Gavin [Univ. of California, Berkeley, CA (United States)

    2016-05-10

    Wetlands cover only a small fraction of the Earth’s land surface, but have a disproportionately large influence on global climate. Low oxygen conditions in wetland soils slows down decomposition, leading to net carbon dioxide sequestration over long timescales, while also favoring the production of redox sensitive gases such as nitrous oxide and methane. Freshwater marshes in particular sustain large exchanges of greenhouse gases under temperate or tropical climates and favorable nutrient regimes, yet have rarely been studied, leading to poor constraints on the magnitude of marsh gas sources, and the biogeochemical drivers of flux variability. The Sacramento-San Joaquin Delta in California was once a great expanse of tidal and freshwater marshes but underwent drainage for agriculture during the last two centuries. The resulting landscape is unsustainable with extreme rates of land subsidence and oxidation of peat soils lowering the surface elevation of much of the Delta below sea level. Wetland restoration has been proposed as a means to slow further subsidence and rebuild peat however the balance of greenhouse gas exchange in these novel ecosystems is still poorly described. In this dissertation I first explore oxygen availability as a control on the composition and magnitude of greenhouse gas emissions from drained wetland soils. In two separate experiments I quantify both the temporal dynamics of greenhouse gas emission and the kinetic sensitivity of gas production to a wide range of oxygen concentrations. This work demonstrated the very high sensitivity of carbon dioxide, methane, and nitrous oxide production to oxygen availability, in carbon rich wetland soils. I also found the temporal dynamics of gas production to follow a sequence predicted by thermodynamics and observed spatially in other soil or sediment systems. In the latter part of my dissertation I conduct two field studies to quantify greenhouse gas exchange and understand the carbon sources for

  18. Emissions of chlorinated dioxins and furans

    International Nuclear Information System (INIS)

    Broeker, G.; Bruckmann, P.; Gliwa, H.

    1994-01-01

    Already now the estimated daily average input of about 2 pg I-TEQ/kg body weight for an adult exceeds the preventive value of 1 pg I-TEQ/(kg x d) proposed by the Federal Environmental Agency (UBA) and the Federal Health Office (BGA), although the intervention value of 10 pg/(kg x d) also proposed by UBA and BGA has not been reached yet. To be able to take well-aimed measures to reduce dioxin emissions into the environment, it is necessary to collect sufficient information about the sources, the history of origins and the efficiency of control measures. The high number of investigations conducted into waste incineration plants, which can be explained by increasing public awareness of the disposal problem, gave the impression that waste incineration is one of the major causes of dioxin emissions into the environment. Analyses of the ambient air situation revealed that there is a considerable lack of information about the sources of dioxin emissions. For example, systematic investigations in North Rhine-Westphalia, which have not been finished yet, identified sintering plants as the main dioxin emittors. It can be concluded already now that control measures are indispensable for these plants to improve the ambient air situation; a few waste gas cleaning methods were tested. The realisation of the 17th Order Implementing the Federal Immission Control Act (17th BImSchV) (emission control of dioxins from waste incineration plants), the 19th BImSchV (prohibition of Cl and Br additions to fuels) and the further spread of the controlled catalytic coverter for passenger cars will make industrial dioxin sources even more relevant. This underlines the necessity for control measures in this field. (orig.) [de

  19. Direction-division multiplexed holographic free-electron-driven light sources

    Science.gov (United States)

    Clarke, Brendan P.; MacDonald, Kevin F.; Zheludev, Nikolay I.

    2018-01-01

    We report on a free-electron-driven light source with a controllable direction of emission. The source comprises a microscopic array of plasmonic surface-relief holographic domains, each tailored to direct electron-induced light emission at a selected wavelength into a collimated beam in a prescribed direction. The direction-division multiplexed source is tested by driving it with the 30 kV electron beam of a scanning electron microscope: light emission, at a wavelength of 800 nm in the present case, is switched among different output angles by micron-scale repositioning of the electron injection point among domains. Such sources, with directional switching/tuning possible at picosecond timescales, may be applied to field-emission and surface-conduction electron-emission display technologies, optical multiplexing, and charged-particle-beam position metrology.

  20. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2004-12-02

    This report documents progress made on the subject project during the period of March 1, 2004 through August 31, 2004. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the analysis and interpretation of the field data collected at the first power plant (henceforth referred to as Plant 0, and located in the Upper Midwest), followed by the performance and analysis of similar field experiments at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. Significant progress was made on the Project during this reporting period, with field work being initiated at Plant 0. Initial testing of the stack sampling system and reaction apparatus revealed that primary particle concentrations were lower than expected in the emissions entering the mobile chemical laboratory. Initial animal exposures to primary emissions were carried out (Scenario 1) to ensure successful implementation of all study methodologies and toxicological assessments. Results indicated no significant toxicological effects in response to primary emissions exposures. Exposures were then carried out to diluted, oxidized, neutralized emissions with the addition of secondary organic aerosol (Scenario 5), both during the day and also at night when primary particle concentrations in the sampled stack emissions

  1. Sewage Sludge Incinerators: Final Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources Final Rule Fact Sheets

    Science.gov (United States)

    This page contains a February 2011 fact sheet with information regarding the final NSPS and Emission Guidelines for Existing Sources for Sewage Sludge Incinerators (SSI). This document provides a summary of the information for these regulations.

  2. The potentional of renewable energy sources for greenhouse gases emissions reduction in Macedonia

    Directory of Open Access Journals (Sweden)

    Dedinec Aleksandar

    2012-01-01

    Full Text Available As European Union (EU candidate country, Macedonia is in the process of adoption of the EU strategic energy policies, harmonization of the national legislation with the EU legislation and defining the respective national goals. In this regard, the government has recently adopted a National Strategy for Utilization of Renewable Energy Sources (RES, prepared by ICEIM-MANU. The main goal of this paper is to assess the potential for greenhouse gases (GHG emissions reduction by implementation of 21%-RES-scenarios from the Strategy. The corresponding emissions reduction is calculated against the baseline (reference scenario developed within the Second National Communication on Climate Change. Furthermore, all potential RES technologies are analyzed from economic aspect and combined in a form of emissions reduction cost curve, displaying the total marginal cost of the GHG emissions reduction by RES. Finally, on the bases of the environmental and economic effectiveness of the considered RES technologies, as well as taking into account the country specific barriers, the priority actions for GHG emissions reduction are identified.

  3. An Investigation on the Effects of Ship Sourced Emissions in Izmir Port, Turkey

    Directory of Open Access Journals (Sweden)

    Halil Saraçoğlu

    2013-01-01

    Full Text Available Maritime transportation is a major source of climate change and air pollution. Shipping emissions cause severe impacts on health and environment. These effects of emissions are emerged especially in territorial waters, inland seas, canals, straits, bays, and port regions. In this paper, exhaust gas emissions from ships in Izmir Port, which is one of the main ports in Turkey, are calculated by the ship activity-based methodology. Total emissions from ships in the port is estimated as 1923 ton y−1 for , 1405 ton y−1 for SO2, 82753 ton y−1 for CO2, ton y−1 for HC, and 165 ton y−1 for PM in the year 2007. These emissions are classified regarding operation modes and types of ships. The results are compared with the other studies including amounts of exhaust pollutants generated by ships. According to the findings, it is clear that the ships calling the Izmir Port are important air polluting causes of the Izmir city and its surroundings.

  4. An Investigation on the Effects of Ship Sourced Emissions in Izmir Port, Turkey

    Science.gov (United States)

    Saraçoğlu, Halil; Kılıç, Alper

    2013-01-01

    Maritime transportation is a major source of climate change and air pollution. Shipping emissions cause severe impacts on health and environment. These effects of emissions are emerged especially in territorial waters, inland seas, canals, straits, bays, and port regions. In this paper, exhaust gas emissions from ships in Izmir Port, which is one of the main ports in Turkey, are calculated by the ship activity-based methodology. Total emissions from ships in the port is estimated as 1923 ton y−1 for NOx, 1405 ton y−1 for SO2, 82753 ton y−1 for CO2, ton y−1 for HC, and 165 ton y−1 for PM in the year 2007. These emissions are classified regarding operation modes and types of ships. The results are compared with the other studies including amounts of exhaust pollutants generated by ships. According to the findings, it is clear that the ships calling the Izmir Port are important air polluting causes of the Izmir city and its surroundings. PMID:24198720

  5. Airborne radioactive emission control technology. Volume II

    International Nuclear Information System (INIS)

    Skoski, L.; Berlin, R.; Corby, D.; Clancy, J.; Hoopes, G.

    1980-03-01

    This report reviews the current and future control technology for airborne emissions from a wide variety of industries/facilities, including uranium mining and milling, other nuclear fuel cycle facilities, other NRC-licensed and DOE facilities, fossil fuel facilities, selected metal and non-metal extraction industries, and others. Where specific radioactivity control technology is lacking, a description of any existing control technology is given. Future control technology is assessed in terms of improvements to equipment performance and process alterations. A catalogue of investigated research on advanced control technologies is presented

  6. Airborne radioactive emission control technology. Volume III

    International Nuclear Information System (INIS)

    Skoski, L.; Berlin, R.; Corby, D.; Clancy, J.; Hoopes, G.

    1980-03-01

    This report reviews the current and future control technology for airborne emissions from a wide variety of industries/facilities, including uranium mining and milling, other nuclear fuel cycle facilities, other NRC-licensed and DOE facilities, fossil fuel facilities, selected metal and non-metal extraction industries, and others. Where specific radioactivity control technology is lacking, a description of any existing control technology is given. Future control technology is assessed in terms of improvements to equipment performance and process alterations. A catalogue of investigated research on advanced control technologies is presented

  7. Airborne radioactive emission control technology. Volume I

    International Nuclear Information System (INIS)

    Skoski, L.; Berlin, R.; Corby, D.; Clancy, J.; Hoopes, G.

    1980-03-01

    This report reviews the current and future control technology for airborne emissions from a wide variety of industries/facilities, includimg uranium mining and milling, other nuclear fuel cycle facilities, other NRC-licensed and DOE facilities, fossil fuel facilities, selected metal and non-metal extraction industries, and others. Where specific radioactivity control technology is lacking a description of any existing control technology is given. Future control technology is assessed in terms of improvements to equipment performance and process alterations. A catalogue of investigated research on advanced control technologies is presented

  8. Nitrous oxide (N2O). Emission inventory and options for control in the Netherlands

    NARCIS (Netherlands)

    Kroeze C; LAE

    1994-01-01

    This study was initiated to overview current knowledge on nitrous oxide (N2O). The report reviews atmospheric behaviour of N2O, global sources and sinks, Dutch emissions in 1990, options to reduce emissions, and past and future emissions. Despite the uncertainties involved, it is likely that without

  9. Methodologies for estimating air emissions from three non-traditional source categories: Oil spills, petroleum vessel loading and unloading, and cooling towers. Final report, October 1991-March 1993

    International Nuclear Information System (INIS)

    Ramadan, W.; Sleva, S.; Dufner, K.; Snow, S.; Kersteter, S.L.

    1993-04-01

    The report discusses part of EPA's program to identify and characterize emissions sources not currently accounted for by either the existing Aerometric Information Retrieval System (AIRS) or State Implementation Plan (SIP) area source methodologies and to develop appropriate emissions estimation methodologies and emission factors for a group of these source categories. Based on the results of the identification and characterization portions of this research, three source categories were selected for methodology and emission factor development: oil spills, petroleum vessel loading and unloading, and cooling towers. The report describes the category selection process and presents emissions estimation methodologies and emission factor data for the selected source categories. The discussions for each category include general background information, emissions generation activities, pollutants emitted, sources of activity and pollutant data, emissions estimation methodologies and data issues. The information used in these discussions was derived from various sources including available literature, industrial and trade association publications and contracts, experts on the category and activity, and knowledgeable federal and state personnel

  10. 40 CFR Table 1 to Subpart Oooo of... - Emission Limits for New or Reconstructed and Existing Affected Sources in the Printing, Coating...

    Science.gov (United States)

    2010-07-01

    ... Reconstructed and Existing Affected Sources in the Printing, Coating and Dyeing of Fabrics and Other Textiles... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Printing, Coating, and Dyeing...—Emission Limits for New or Reconstructed and Existing Affected Sources in the Printing, Coating and Dyeing...

  11. Acoustic Emission Source Location Using a Distributed Feedback Fiber Laser Rosette

    Directory of Open Access Journals (Sweden)

    Fang Li

    2013-10-01

    Full Text Available This paper proposes an approach for acoustic emission (AE source localization in a large marble stone using distributed feedback (DFB fiber lasers. The aim of this study is to detect damage in structures such as those found in civil applications. The directional sensitivity of DFB fiber laser is investigated by calculating location coefficient using a method of digital signal analysis. In this, autocorrelation is used to extract the location coefficient from the periodic AE signal and wavelet packet energy is calculated to get the location coefficient of a burst AE source. Normalization is processed to eliminate the influence of distance and intensity of AE source. Then a new location algorithm based on the location coefficient is presented and tested to determine the location of AE source using a Delta (Δ DFB fiber laser rosette configuration. The advantage of the proposed algorithm over the traditional methods based on fiber Bragg Grating (FBG include the capability of: having higher strain resolution for AE detection and taking into account two different types of AE source for location.

  12. The use of cluster analysis method for the localization of acoustic emission sources detected during the hydrotest of PWR pressure vessels

    International Nuclear Information System (INIS)

    Liska, J.; Svetlik, M.; Slama, K.

    1982-01-01

    The acoustic emission method is a promising tool for checking reactor pressure vessel integrity. Localization of emission sources is the first and the most important step in processing emission signals. The paper describes the emission sources localization method which is based on cluster analysis of a set of points depicting the emission events in the plane of coordinates of their occurrence. The method is based on using this set of points for constructing the minimum spanning tree and its partition into fragments corresponding to point clusters. Furthermore, the laws are considered of probability distribution of the minimum spanning tree edge length for one and several clusters with the aim of finding the optimum length of the critical edge for the partition of the tree. Practical application of the method is demonstrated on localizing the emission sources detected during a hydrotest of a pressure vessel used for testing the reactor pressure vessel covers. (author)

  13. Historical gaseous and primary aerosol emissions in the United States from 1990 to 2010

    Directory of Open Access Journals (Sweden)

    J. Xing

    2013-08-01

    Full Text Available An accurate description of emissions is crucial for model simulations to reproduce and interpret observed phenomena over extended time periods. In this study, we used an approach based on activity data to develop a consistent series of spatially resolved emissions in the United States from 1990 to 2010. The state-level anthropogenic emissions of SO2, NOx, CO, NMVOC (non-methane volatile organic compounds, NH3, PM10 and PM2.5 for a total of 49 sectors were estimated based on several long-term databases containing information about activities and emission controls. Activity data for energy-related stationary sources were derived from the State Energy Data System. Corresponding emission factors reflecting implemented emission controls were calculated back from the National Emissions Inventory (NEI for seven years (i.e., 1990, 1995, 1996, 1999, 2001, 2002 and 2005, and constrained by the AP-42 (US EPA's Compilation of Air Pollutant Emissions Factors dataset. Activity data for mobile sources including different types of highway vehicles and non-highway equipment were obtained from highway statistics reported by the Federal Highway Administration. The trends in emission factors for highway mobile source were informed by the 2011 National Transportation Statistics. Emissions for all non-energy-related sources were either scaled by the growth ratio of activity indicators or adjusted based on the NEI trends report. Because of the strengthened control efforts, particularly for the power sector and mobile sources, emissions of all pollutants except NH3 were reduced by half over the last two decades. The emission trends developed in this study are comparable with the NEI trend report and EDGAR (Emissions Database for Global Atmospheric Research data, but better constrained by trends in activity data. Reductions in SO2, NOx, CO and EC (speciation of PM2.5 by SMOKE, Sparse Matrix Operator Kernel Emissions emissions agree well with the observed changes in

  14. On the nature of emission of the star-gas-dust complex of the W1 radio source

    International Nuclear Information System (INIS)

    Udal'tsov, V.A.; Kovalenko, A.V.

    1982-01-01

    The brightness distribution of the radio source W 1 at 102 MHz has been investigated with the 187x384 m radio telescope in Pushchino. It is shown that W 1 is genetically connected with the stellar association Ceph IV as well as with the extended emission nebula GS 285 which consists of numerous nebulae, including two bright ones, Sharpless (S) 171 and NGC 7822. The radio emission of the nebula S 171 is shown to be thermal, and there is no Supernova remnant in it, in contrast with the other authors' suggestion. By two independent methods, the distance to S 171 has been evaluated to be 840 pc. The emission of NGC 7822 is mainly thermal. The extended nebula GS 285 is a thermal source, not a remnant of a Supernova that had exploded in a dense gas - dust medium, as was believed by other authors. Attention is drawn to the wrong identification by many authors of the radio source in the S 171 region with the nebula NGC 7822. It is shown that when measuring the difference of spectral indices of two sources, the calibration error may be eliminated if their calibration at given frequency is made by means of the same source [ru

  15. 40 CFR Table 3 to Subpart Xxxx of... - Emission Limits for Puncture Sealant Application Affected Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Emission Limits for Puncture Sealant Application Affected Sources 3 Table 3 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL... Manufacturing Pt. 63, Subpt. XXXX, Table 3 Table 3 to Subpart XXXX of Part 63—Emission Limits for Puncture...

  16. 24 CFR 3280.308 - Formaldehyde emission controls for certain wood products.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Formaldehyde emission controls for certain wood products. 3280.308 Section 3280.308 Housing and Urban Development Regulations Relating to... Body and Frame Construction Requirements § 3280.308 Formaldehyde emission controls for certain wood...

  17. Atmospheric observations and inverse modelling for quantifying emissions of point-source synthetic greenhouse gases in East Asia

    Science.gov (United States)

    Arnold, Tim; Manning, Alistair; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Muhle, Jens; Weiss, Ray

    2017-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacements that are emitted from fugitive and mobile emission sources, these gases are mostly emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane (HCFC-22) factories (HFC-23). In this work we show that atmospheric measurements can serve as a basis to calculate emissions of these gases and to highlight emission 'hotspots'. We use measurements from one Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites at Gosan on Jeju Island in the Republic of Korea. This site measures CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over seven years between 2008 and 2015. We show that our 'top-down' emission estimates for NF3 and CF4 are significantly larger than 'bottom-up' estimates in the EDGAR emissions inventory (edgar.jrc.ec.europa.eu). For example we calculate South Korean emissions of CF4 in 2010 to be 0.29±0.04 Gg/yr, which is significantly larger than the Edgar prior emissions of 0.07 Gg/yr. Further, inversions for several separate years indicate that emission hotspots can be found without prior spatial information. At present these gases make a small contribution to global radiative forcing, however, given

  18. Atmospheric observations for quantifying emissions of point-source synthetic greenhouse gases (CF4, NF3 and HFC-23)

    Science.gov (United States)

    Arnold, Tim; Manning, Alistair J.; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Fraser, Paul J.; Mitrevski, Blagoj; Steele, L. Paul; Krummel, Paul B.; Mühle, Jens; Weiss, Ray F.

    2016-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacement compounds that are emitted from fugitive and mobile emission sources, these gases are largely emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane factories (HFC-23). In this work we show the potential for atmospheric measurements to understand regional sources of these gases and to highlight emission 'hotspots'. We target our analysis on measurements from two Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites that are particularly sensitive to regional emissions of these gases: Gosan on Jeju Island in the Republic of Korea and Cape Grim on Tasmania in Australia. These sites measure CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over a decade (2005-2015) at high spatial resolution. At present these gases make a small contribution to global radiative forcing, however, given that their impact could rise significantly and that point sources of such gases can be mitigated, atmospheric monitoring could be an important tool for aiding emissions reduction policy.

  19. Characterization of atmospheric emission sources in lichen from metal and organic contaminant patterns.

    Science.gov (United States)

    Ratier, Aude; Dron, Julien; Revenko, Gautier; Austruy, Annabelle; Dauphin, Charles-Enzo; Chaspoul, Florence; Wafo, Emmanuel

    2018-03-01

    Lichen samples from contrasted environments, influenced by various anthropic activities, were investigated focusing on the contaminant signatures according to the atmospheric exposure typologies. Most of the contaminant concentrations measured in the 27 lichen samples, collected around the industrial harbor of Fos-sur-Mer (France), were moderate in rural and urban environments, and reached extreme levels in industrial areas and neighboring cities (Al up to 6567 mg kg -1 , Fe 42,398 mg kg -1 , or ΣPAH 1417 μg kg -1 for example). At the same time, a strong heterogeneity was noticed in industrial samples while urban and rural ones were relatively homogeneous. Several metals could be associated to steel industry (Fe, Mn, Cd), road traffic, and agriculture (Sb, Cu, Sn), or to a distinct chemical installation (Mo). As well, PCDFs dominated in industrial samples while PCDDs prevailed in urban areas. The particularities observed supported the purpose of this work and discriminated the contributions of various atmospheric pollution emission sources in lichen samples. A statistical approach based on principal component analysis (PCA) was applied and resolved these potential singularities into specific component factors. Even if a certain degree of mixing of the factors is pointed out, relevant relationships were observed with several atmospheric emission sources. By this methodology, the contribution of industrial emissions to the atmospheric metal, PAH, PCB, and PCDD/F levels was roughly estimated to be 60.2%, before biomass burning (10.2%) and road traffic (3.8%). These results demonstrate that lichen biomonitoring offers an encouraging perspective of spatially resolved source apportionment studies.

  20. Tomography feasibility study on the optical emission spectroscopy diagnostic for the negative ion source of the ELISE test facility

    International Nuclear Information System (INIS)

    Bonomo, F; Agostini, M; Brombin, M; Pasqualotto, R; Fantz, U; Franzen, P; Wünderlich, D

    2014-01-01

    A feasibility study of a spectroscopic tomographic diagnostic for the emissivity reconstruction of the plasma parameters in the large negative ion source of the test facility ELISE is described. Tomographic tools are developed to be applied to the measurements of the ELISE optical emission spectroscopy (OES) diagnostic, in order to reconstruct the emissivity distribution from hydrogen (or deuterium) plasma close to the plasma grid, where negative ions are produced and extracted to be accelerated. Various emissivity phantoms, both symmetric and asymmetric, reproducing different plasma experimental conditions have been simulated to test the tomographic algorithm. The simultaneous algebraic reconstruction technique has been applied, accounting for the OES geometrical layout together with a suitable pixel representation. Even with a limited number of 14 lines of sight (LoSs), the plasma emissivity distribution expected on the ELISE source can be successfully reconstructed. In particular, asymmetries in the emissivity pattern can be detected and reproduced with low errors. A systematic investigation of different geometrical layouts of the LoSs as well as of the pixel arrangements has been carried out, and a final configuration has been identified. Noise on the simulated experimental spectroscopic measurements has been tested, confirming the reliability of the adopted tomographic tools for the plasma emissivity reconstructions of the source plasma in ELISE with the actual OES diagnostic system. (paper)

  1. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  2. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    International Nuclear Information System (INIS)

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources

  3. Legislation, standards and methods for mercury emissions control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-15

    Mercury is an element of growing global concern. The United Nations Environment Programme plans to finalise and ratify a new global legally-binding convention on mercury by 2013. Canada already has legislation on mercury emissions from coal-fired utilities and the USA has recently released the new Mercury and Air Toxics Standard. Although other countries may not have mercury-specific legislation as such, many have legislation which results in significant co-benefit mercury reduction due to the installation of effective flue-gas cleaning technologies. This report reviews the current situation and trends in mercury emission legislation and, where possible, discusses the actions that will be taken under proposed or impending standards globally and regionally. The report also reviews the methods currently applied for mercury control and for mercury emission measurement with emphasis on the methodologies most appropriate for compliance. Examples of the methods of mercury control currently deployed in the USA, Canada and elsewhere are included.

  4. An FBG acoustic emission source locating system based on PHAT and GA

    Science.gov (United States)

    Shen, Jing-shi; Zeng, Xiao-dong; Li, Wei; Jiang, Ming-shun

    2017-09-01

    Using the acoustic emission locating technology to monitor the health of the structure is important for ensuring the continuous and healthy operation of the complex engineering structures and large mechanical equipment. In this paper, four fiber Bragg grating (FBG) sensors are used to establish the sensor array to locate the acoustic emission source. Firstly, the nonlinear locating equations are established based on the principle of acoustic emission, and the solution of these equations is transformed into an optimization problem. Secondly, time difference extraction algorithm based on the phase transform (PHAT) weighted generalized cross correlation provides the necessary conditions for the accurate localization. Finally, the genetic algorithm (GA) is used to solve the optimization model. In this paper, twenty points are tested in the marble plate surface, and the results show that the absolute locating error is within the range of 10 mm, which proves the accuracy of this locating method.

  5. Characterizing and sourcing ambient PM2.5 over key emission regions in China III: Carbon isotope based source apportionment of black carbon

    Science.gov (United States)

    Yu, Kuangyou; Xing, Zhenyu; Huang, Xiaofeng; Deng, Junjun; Andersson, August; Fang, Wenzheng; Gustafsson, Örjan; Zhou, Jiabin; Du, Ke

    2018-03-01

    Regional haze over China has severe implications for air quality and regional climate. To effectively combat these effects the high uncertainties regarding the emissions from different sources needs to be reduced. In this paper, which is the third in a series on the sources of PM2.5 in pollution hotspot regions of China, we focus on the sources of black carbon aerosols (BC), using carbon isotope signatures. Four-season samples were collected at two key locations: Beijing-Tianjin-Hebei (BTH, part of Northern China plain), and the Pearl River Delta (PRD). We find that that fossil fuel combustion was the predominant source of BC in both BTH and PRD regions, accounting for 75 ± 5%. However, the contributions of what fossil fuel components were dominating differed significantly between BTH and PRD, and varied dramatically with seasons. Coal combustion is overall the all-important BC source in BTH, accounting for 46 ± 12% of the BC in BTH, with the maximum value (62%) found in winter. In contrast for the PRD region, liquid fossil fuel combustion (e.g., oil, diesel, and gasoline) is the dominant source of BC, with an annual mean value of 41 ± 15% and the maximum value of 55% found in winter. Region- and season-specific source apportionments are recommended to both accurately assess the climate impact of carbonaceous aerosol emissions and to effectively mitigate deteriorating air quality caused by carbonaceous aerosols.

  6. Environmental management control systems for carbon emissions

    Directory of Open Access Journals (Sweden)

    Nadia Di Giacomo

    2017-04-01

    Full Text Available Purpose – This paper aims to focus on a global consulting company and examine how it struggled to establish an effective environmental management control system for carbon emissions for its employees’ air travel. The organisation was motivated to reduce its carbon emissions both to comply with regulation and to enhance or maintain corporate reputation. Design/methodology/approach – The paper takes a case study approach, examining internal and external documents as well as conducting interviews with senior staff. Findings – The case study investigates how Beta’s management implemented a system to reduce carbon emissions. The organisation focused on air travel, but the study finds that employee travel preferences did not radically change. Rather than reduction in carbon emissions, as planned by head office, air travel carbon emissions actually increased during the period, and, as a consequence, the reported reduction targets were significantly adjusted downwards to meet the new realities. Practical implications – The study has implications for both policy and practice for organisations seeking to improve their sustainability performance. Originality/value – The study responds to calls in the literature to undertake research to identify how management practices might reduce negative sustainability impacts, as there is little evidence of what management practices and accounting tools are being adopted, particularly in relation to carbon emissions from air travel. The paper adds to the creation of new accounting, giving visibility to carbon emission management through case study analysis.

  7. HONO and Inorganic Fine Particle Composition in Typical Monsoon Region with Intensive Anthropogenic Emission: In-situ Observations and Source Identification.

    Science.gov (United States)

    Xie, Y.; Nie, W.; Ding, A.; Huang, X.

    2015-12-01

    Yangtze River Delta (YRD) is one of the most typical monsoon area with probably the most largest population intensity in the world. With sharply economic development and the large anthropogenic emissions, fine particle pollution have been one of the major air quality problem and may further have impact on the climate system. Though a lot of control policy (sulfur emission have been decreasing from 2007) have been conducted in the region, studies showed the sulfate in fine particles still take major fraction as the nitrate from nitrogen oxides increased significantly. In this study, the role of inorganic chemical compositions in fine particles was investigated with two years in-situ observation. Sulfate and Nitrate contribute to fine particle mass equally in general, but sulfate contributes more during summer and nitrate played more important role in winter. Using lagrangian dispersion backward modeling and source contribution clustering method, the impact of airmass coming from different source region (industrial, dust, biogenic emissions, etc) on fine particle inorganic compositions were discussed. Furthermore, we found two unique cases showing in-situ implications for sulfate formation by nitrogen dioxide oxidation mechanisms. It was showed that the mixing of anthropogenic pollutants with long-range transported mineral dust and biomass burning plume would enhance the sulfate formation by different chemistry mechanisms. This study focus on the complex aspects of fine particle formation in airmasses from different source regions: . It highlights the effect of NOx in enhancing the atmospheric oxidization capacity and indicates a potentially very important impact of increasing NOx on air pollution formation and regional climate change in East Asia.

  8. Monte Carlo calculation of correction factors for radionuclide neutron source emission rate measurement by manganese bath method

    International Nuclear Information System (INIS)

    Li Chunjuan; Liu Yi'na; Zhang Weihua; Wang Zhiqiang

    2014-01-01

    The manganese bath method for measuring the neutron emission rate of radionuclide sources requires corrections to be made for emitted neutrons which are not captured by manganese nuclei. The Monte Carlo particle transport code MCNP was used to simulate the manganese bath system of the standards for the measurement of neutron source intensity. The correction factors were calculated and the reliability of the model was demonstrated through the key comparison for the radionuclide neutron source emission rate measurements organized by BIPM. The uncertainties in the calculated values were evaluated by considering the sensitivities to the solution density, the density of the radioactive material, the positioning of the source, the radius of the bath, and the interaction cross-sections. A new method for the evaluation of the uncertainties in Monte Carlo calculation was given. (authors)

  9. Application of microturbines to control emissions from associated gas

    Science.gov (United States)

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  10. 40 CFR Table 2 to Subpart Xxxx of... - Emission Limits for Tire Cord Production Affected Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Emission Limits for Tire Cord Production Affected Sources 2 Table 2 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL... Manufacturing Pt. 63, Subpt. XXXX, Table 2 Table 2 to Subpart XXXX of Part 63—Emission Limits for Tire Cord...

  11. A state-of-the-art review on nitrous oxide control from waste treatment and industrial sources.

    Science.gov (United States)

    Frutos, Osvaldo D; Quijano, Guillermo; Aizpuru, Aitor; Muñoz, Raúl

    2018-03-20

    This review aims at holistically analyzing the environmental problems associated with nitrous oxide (N 2 O) emissions by evaluating the most important sources of N 2 O and its environmental impacts. Emissions from wastewater treatment processes and the industrial production of nitric and adipic acid represent nowadays the most important anthropogenic point sources of N 2 O. Therefore, state-of-the-art strategies to mitigate the generation and release to the atmosphere of this greenhouse and O 3 -depleting gas in the waste treatment and industrial sectors are also reviewed. An updated review of the end-of-the-pipe technologies for N 2 O abatement, both in the waste treatment and industrial sectors, is herein presented and critically discussed for the first time. Despite the consistent efforts recently conducted in the development of cost-efficient and eco-friendly N 2 O abatement technologies, physical/chemical technologies still constitute the most popular treatments for the control of industrial N 2 O emissions at commercial scale. The recent advances achieved on biological N 2 O abatement based on heterotrophic denitrification have opened new opportunities for the development of eco-friendly alternatives for the treatment of N 2 O emissions. Finally, the main limitations and challenges faced by these novel N 2 O abatement biotechnologies are identified in order to pave the way for market implementation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Other Solid Waste Incineration (OSWI) Units Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources Fact Sheets

    Science.gov (United States)

    This page contains a November 2005, and and November 2006 fact sheet with information regarding the final and proposed NSPS and Emission Guidelines for Existing Sources for OSWI. This document provides a summary of the information for this regulation

  13. Waterbury, Conn., Incinerator to Control Mercury Emissions

    Science.gov (United States)

    Emission control equipment to limit the discharge of mercury pollution to the atmosphere will be installed at an incinerator owned by the City of Waterbury, Conn., according to a proposed agreement between the city and federal government.

  14. Airborne remote sensing and in situ measurements of atmospheric CO2 to quantify point source emissions

    Science.gov (United States)

    Krings, Thomas; Neininger, Bruno; Gerilowski, Konstantin; Krautwurst, Sven; Buchwitz, Michael; Burrows, John P.; Lindemann, Carsten; Ruhtz, Thomas; Schüttemeyer, Dirk; Bovensmann, Heinrich

    2018-02-01

    Reliable techniques to infer greenhouse gas emission rates from localised sources require accurate measurement and inversion approaches. In this study airborne remote sensing observations of CO2 by the MAMAP instrument and airborne in situ measurements are used to infer emission estimates of carbon dioxide released from a cluster of coal-fired power plants. The study area is complex due to sources being located in close proximity and overlapping associated carbon dioxide plumes. For the analysis of in situ data, a mass balance approach is described and applied, whereas for the remote sensing observations an inverse Gaussian plume model is used in addition to a mass balance technique. A comparison between methods shows that results for all methods agree within 10 % or better with uncertainties of 10 to 30 % for cases in which in situ measurements were made for the complete vertical plume extent. The computed emissions for individual power plants are in agreement with results derived from emission factors and energy production data for the time of the overflight.

  15. Controlling the emission current from a plasma cathode

    International Nuclear Information System (INIS)

    Bagaev, S.P.; Gushenets, V.I.; Schanin, P.M.

    1993-01-01

    The processes determining the time and amplitude characteristics of the grid-controlled electron emission from the plasma of an arc discharge have been analyzed. It has been shown that by applying to the grid confining the plasma emission boundary of a modulated voltage it is possible to form current pulse of up to 1 kA with nanosecond risetimes and falltimes and a pulse repetitive rate of 100 kHz

  16. Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations

    Directory of Open Access Journals (Sweden)

    M. Bauwens

    2016-08-01

    Full Text Available As formaldehyde (HCHO is a high-yield product in the oxidation of most volatile organic compounds (VOCs emitted by fires, vegetation, and anthropogenic activities, satellite observations of HCHO are well-suited to inform us on the spatial and temporal variability of the underlying VOC sources. The long record of space-based HCHO column observations from the Ozone Monitoring Instrument (OMI is used to infer emission flux estimates from pyrogenic and biogenic volatile organic compounds (VOCs on the global scale over 2005–2013. This is realized through the method of source inverse modeling, which consists in the optimization of emissions in a chemistry-transport model (CTM in order to minimize the discrepancy between the observed and modeled HCHO columns. The top–down fluxes are derived in the global CTM IMAGESv2 by an iterative minimization algorithm based on the full adjoint of IMAGESv2, starting from a priori emission estimates provided by the newly released GFED4s (Global Fire Emission Database, version 4s inventory for fires, and by the MEGAN-MOHYCAN inventory for isoprene emissions. The top–down fluxes are compared to two independent inventories for fire (GFAS and FINNv1.5 and isoprene emissions (MEGAN-MACC and GUESS-ES. The inversion indicates a moderate decrease (ca. 20 % in the average annual global fire and isoprene emissions, from 2028 Tg C in the a priori to 1653 Tg C for burned biomass, and from 343 to 272 Tg for isoprene fluxes. Those estimates are acknowledged to depend on the accuracy of formaldehyde data, as well as on the assumed fire emission factors and the oxidation mechanisms leading to HCHO production. Strongly decreased top–down fire fluxes (30–50 % are inferred in the peak fire season in Africa and during years with strong a priori fluxes associated with forest fires in Amazonia (in 2005, 2007, and 2010, bushfires in Australia (in 2006 and 2011, and peat burning in Indonesia (in 2006 and 2009, whereas

  17. Emissions Models and Other Methods to Produce Emission Inventories

    Science.gov (United States)

    An emissions inventory is a summary or forecast of the emissions produced by a group of sources in a given time period. Inventories of air pollution from mobile sources are often produced by models such as the MOtor Vehicle Emission Simulator (MOVES).

  18. Modeling of Control Costs, Emissions, and Control Retrofits for Cost Effectiveness and Feasibility Analyses

    Science.gov (United States)

    Learn about EPA’s use of the Integrated Planning Model (IPM) to develop estimates of SO2 and NOx emission control costs, projections of futureemissions, and projections of capacity of future control retrofits, assuming controls on EGUs.

  19. Sustainable development relevant comparison of the greenhouse gas emissions from the full energy chains of different energy sources

    International Nuclear Information System (INIS)

    Van De Vate, J.F.

    1997-01-01

    It is emphasized that sustainable energy planning should account for the emissions of all greenhouse gases (GHGs) from the whole energy chain, hence accounting not only carbon dioxide as the greenhouse gas and not only for the emissions from the combustion of fossil fuels. Lowering greenhouse gas emissions from the worldwide energy use can be done most effectively by accounting in energy planning for the full-energy-chain (FENCH) emissions of all GHGs. Only energy sources with similar output can be compared. This study investigates electricity generating technologies, which are compared in terms their GHG emission factors to be expressed in CO 2 -equivalents per kW.h(e). Earlier IAEA expert meetings are reviewed. A general meeting made general recommendations about methods and input data bases for FENCH-GHG analysis. Two more recent meetings dealt with the energy chains of nuclear and hydropower. The site-specific character of the emission factors of these energy sources is discussed. Both electricity generators have emission factors in the range of 5-30 g CO 2 -equiv./kW.h(e), which is very low compared to the FENCH-GHG emission factors of fossil-fueled power generation and of most of the renewable power generators. (author)

  20. Biogenic Volatile Organic Compound (BVOC) emissions from agricultural crop species: is guttation a possible source for methanol emissions following light/dark transition ?

    Science.gov (United States)

    Mozaffar, Ahsan; Amelynck, Crist; Bachy, Aurélie; Digrado, Anthony; Delaplace, Pierre; du Jardin, Patrick; Fauconnier, Marie-Laure; Schoon, Niels; Aubinet, Marc; Heinesch, Bernard

    2015-04-01

    In the framework of the CROSTVOC (CROp STress VOC) project, the exchange of biogenic volatile organic compounds (BVOCs) between two important agricultural crop species, maize and winter wheat, and the atmosphere has recently been measured during an entire growing season by using the eddy covariance technique. Because of the co-variation of BVOC emission drivers in field conditions, laboratory studies were initiated in an environmental chamber in order to disentangle the responses of the emissions to variations of the individual environmental parameters (such as PPFD and temperature) and to diverse abiotic stress factors. Young plants were enclosed in transparent all-Teflon dynamic enclosures (cuvettes) through which BVOC-free and RH-controlled air was sent. BVOC enriched air was subsequently sampled from the plant cuvettes and an empty cuvette (background) and analyzed for BVOCs in a high sensitivity Proton Transfer Reaction Mass Spectrometer (hs-PTR-MS) and for CO2 in a LI-7000 non-dispersive IR gas analyzer. Emissions were monitored at constant temperature (25 °C) and at a stepwise varying PPFD pattern (0-650 µmol m-2 s-1). For maize plants, sudden light/dark transitions at the end of the photoperiod were accompanied by prompt and considerable increases in methanol (m/z 33) and water vapor (m/z 39) emissions. Moreover, guttation droplets appeared on the sides and the tips of the leaves within a few minutes after light/dark transition. Therefore the assumption has been raised that methanol is also coming out with guttation fluid from the leaves. Consequently, guttation fluid was collected from young maize and wheat plants, injected in an empty enclosure and sampled by PTR-MS. Methanol and a large number of other compounds were observed from guttation fluid. Recent studies have shown that guttation from agricultural crops frequently occurs in field conditions. Further research is required to find out the source strength of methanol emissions by this guttation

  1. Air Emissions Sources, Charts and Maps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Air Emissions provides (1) interactive charts supporting national, state, or county charts, (2) county maps of criteria air pollutant emissions for a state, and (3)...

  2. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette C. Rohr; Petros Koutrakis; John Godleski

    2011-03-31

    Determining the health impacts of different sources and components of fine particulate matter (PM2.5) is an important scientific goal, because PM is a complex mixture of both inorganic and organic constituents that likely differ in their potential to cause adverse health outcomes. The TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) study focused on two PM sources - coal-fired power plants and mobile sources - and sought to investigate the toxicological effects of exposure to realistic emissions from these sources. The DOE-EPRI Cooperative Agreement covered the performance and analysis of field experiments at three power plants. The mobile source component consisted of experiments conducted at a traffic tunnel in Boston; these activities were funded through the Harvard-EPA Particulate Matter Research Center and will be reported separately in the peer-reviewed literature. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. The study involved withdrawal of emissions directly from power plant stacks, followed by aging and atmospheric transformation of emissions in a mobile laboratory in a manner that simulated downwind power plant plume processing. Secondary organic aerosol (SOA) derived from the biogenic volatile organic compound {alpha}-pinene was added in some experiments, and in others ammonia was added to neutralize strong acidity. Specifically, four scenarios were studied at each plant: primary particles (P); secondary (oxidized) particles (PO); oxidized particles + secondary organic aerosol (SOA) (POS); and oxidized and neutralized particles + SOA (PONS). Extensive exposure characterization was carried out, including gas-phase and particulate species. Male Sprague Dawley rats were exposed for 6 hours to filtered air or different atmospheric mixtures. Toxicological endpoints included (1) breathing pattern; (2) bronchoalveolar lavage

  3. Controlling light emission from single-photon sources using photonic nanowires

    DEFF Research Database (Denmark)

    Gregersen, Niels; Chen, Yuntian; Mørk, Jesper

    2012-01-01

    The photonic nanowire has recently emerged as an promising alternative to microcavity-based single-photon source designs. In this simple structure, a geometrical effect ensures a strong coupling between an embedded emitter and the optical mode of interest and a combination of tapers and mirrors a...

  4. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    Science.gov (United States)

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  5. 78 FR 7487 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Science.gov (United States)

    2013-02-01

    ... small coal-fired units (i.e., with a design heat input capacity of less than 10 MMBtu/hr) are subject to... existing area source coal-fired boilers with heat input capacity of 10 MMBtu/hr or greater may need to... most emissions from area source boilers, two pollutants emitted by coal-fired boilers, POM as 7-PAH and...

  6. Penning plasma based simultaneous light emission source of visible and VUV lights

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, G. L., E-mail: glvyas27@gmail.com [Manipal University Jaipur (India); Prakash, R.; Pal, U. N. [CSIR-Central Electronics and Engineering Research Institute, Microwave Tubes Division (India); Manchanda, R. [Institute for Plasma Research (India); Halder, N. [Manipal University Jaipur (India)

    2016-06-15

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure helium in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20–106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.

  7. VUV emission spectroscopy diagnostics of a 14 GHz ECR negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, R., E-mail: duo0364@mail4.doshisha.ac.jp; Ichikawa, T.; Kasuya, T.; Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Nishiura, M. [Graduate School of Frontier Sciences The University of Tokyo, Kashiwara, Chiba 277-8561 (Japan); Shimozuma, T. [National lnstitute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2015-04-08

    Vacuum Ultra Violet(VUV) emission from a 4 cm diameter 2 cm long compact ion source excited by 14 GHz microwave has been investigated. Intensity ratio of band spectrum emission near Ly-α to Ly-α line spectrum is determined from the measured spectrum. which shows preferential excitation of molecules near the entrance of microwave input power. The ratio does not depend strongly upon pressure nor the input microwave power when the intensity is integrated over the volume of the plasma. The spatial distribution of the spectrum intensity ratio exhibits concentrations near microwave inlet and the opposite side where the microwave matching structure is located. The ratio at these peripheral regions is about two times as high as that of the central region. The ratio increased in proportion to the ion source pressure up to about 3.0 Pa, indicating efficient production of high energy electrons by ECR up to this pressure.

  8. The design and characteristics of direct current glow discharge atomic emission source operated with plain and hollow cathodes

    International Nuclear Information System (INIS)

    Qayyum, A.; Mahmood, M.I.

    2008-01-01

    A compact direct current glow discharge atomic emission source has been designed and constructed for analytical applications. This atomic emission source works very efficiently at a low-input electrical power. The design has some features that make it distinct from that of the conventional Grimm glow discharge source. The peculiar cathode design offered greater flexibility on size and shape of the sample. As a result the source can be easily adopted to operate in Plain or Hollow Cathode configuration. I-V and spectroscopic characteristics of the source were compared while operating it with plain and hollow copper cathodes. It was observed that with hollow cathode, the source can be operated at a less input power and generates greater Cu I and Cu II line intensities. Also, the intensity of Cu II line rise faster than Cu I line with argon pressure for both cathodes. But the influence of pressure on Cu II lines was more significant when the source is operated with hollow cathode

  9. Control technology for radioactive emissions to the atmosphere at US Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Moore, E.B.

    1984-10-01

    The purpose of this report is to provide information to the US Environmental Protection agency (EPA) on existing technology for the control of radionuclide emissions into the air from US Department of Energy (DOE) facilities, and to provide EPA with information on possible additional control technologies that could be used to further reduce these emissions. Included in this report are generic discussions of emission control technologies for particulates, iodine, rare gases, and tritium. Also included are specific discussions of existing emission control technologies at 25 DOE facilities. Potential additional emission control technologies are discussed for 14 of these facilities. The facilities discussed were selected by EPA on the basis of preliminary radiation pathway analyses. 170 references, 131 figures, 104 tables.

  10. Control technology for radioactive emissions to the atmosphere at US Department of Energy facilities

    International Nuclear Information System (INIS)

    Moore, E.B.

    1984-10-01

    The purpose of this report is to provide information to the US Environmental Protection agency (EPA) on existing technology for the control of radionuclide emissions into the air from US Department of Energy (DOE) facilities, and to provide EPA with information on possible additional control technologies that could be used to further reduce these emissions. Included in this report are generic discussions of emission control technologies for particulates, iodine, rare gases, and tritium. Also included are specific discussions of existing emission control technologies at 25 DOE facilities. Potential additional emission control technologies are discussed for 14 of these facilities. The facilities discussed were selected by EPA on the basis of preliminary radiation pathway analyses. 170 references, 131 figures, 104 tables

  11. Gamma-ray emission spectra from spheres with 14 MeV neutron source

    International Nuclear Information System (INIS)

    Yamamoto, Junji; Kanaoka, Takeshi; Murata, Isao; Takahashi, Akito; Sumita, Kenji

    1989-01-01

    Energy spectra of neutron-induced gamma-rays emitted from spherical samples were measured using a 14 MeV neutron source. The samples in use were LiF, Teflon:(CF 2 ) n , Si, Cr, Mn, Co, Cu, Nb, Mo, W and Pb. A diameter of the sphere was either 40 or 60 cm. The gamma-ray energy in the emission spectra covered the range from 500 keV to 10 MeV. Measured spectra were compared with transport calculations using the nuclear data files of JENDL-3T and ENDF/B-IV. The agreements between the measurements and the JENDL-3T calculations were good in the emission spectra for the low energy gamma-rays from inelastic scattering. (author)

  12. Clearinghouse for Inventories and Emissions Factors

    Science.gov (United States)

    Emissions inventories, modeling, and monitoring are the basis for understanding, controlling and tracking stationary sources of air pollution. This technical site provides access to tools and data to support those efforts.

  13. Urban air chemistry and diesel vehicles emissions: Quantifying small and big hydrocarbons by CIMS to improve emission inventories

    Science.gov (United States)

    Jobson, B. T.; Derstroff, B.; Edtbauer, A.; VanderSchelden, G. S.; Williams, J.

    2017-10-01

    Emissions from vehicles are a major source of volatile organic compounds (VOCs) in urban environments. Photochemical oxidation of VOCs emitted from vehicle exhaust contributes to O3 and PM2.5 formation, harmful pollutants that major urban areas struggle to control. How will a shift to a diesel engine fleet impact urban air chemistry? Diesel vehicles are a growing fraction of the passenger vehicle fleet in Europe as a result of a deliberate policy to reduce energy consumption and CO2 emissions from the transportation sector (Sullivan et al., 2004). In countries such as France the diesel passenger fleet was already ∼50% of the total in 2009, up from 20% in 1995. Dunmore et al. (2015) have recently inferred that in London, HO radical loss rates to organic compounds is dominated by diesel engine emissions. In the US, increasingly more stringent vehicles emission standards and requirement for improved energy efficiency means spark ignition passenger vehicle emissions have declined significantly over the last 20 years, resulting in the urban diesel fleet traffic (freight trucks) having a growing importance as a source of vehicle pollution (McDonald et al., 2013). The recent scandal involving a major car manufacturer rigging emission controls for diesel passenger cars is a reminder that real world emissions of VOCs from diesel engines are not well understood nor thoroughly accounted for in air quality modeling.

  14. Life cycle and economic assessment of source-separated MSW collection with regard to greenhouse gas emissions: a case study in China.

    Science.gov (United States)

    Dong, Jun; Ni, Mingjiang; Chi, Yong; Zou, Daoan; Fu, Chao

    2013-08-01

    In China, the continuously increasing amount of municipal solid waste (MSW) has resulted in an urgent need for changing the current municipal solid waste management (MSWM) system based on mixed collection. A pilot program focusing on source-separated MSW collection was thus launched (2010) in Hangzhou, China, to lessen the related environmental loads. And greenhouse gas (GHG) emissions (Kyoto Protocol) are singled out in particular. This paper uses life cycle assessment modeling to evaluate the potential environmental improvement with regard to GHG emissions. The pre-existing MSWM system is assessed as baseline, while the source separation scenario is compared internally. Results show that 23 % GHG emissions can be decreased by source-separated collection compared with the base scenario. In addition, the use of composting and anaerobic digestion (AD) is suggested for further optimizing the management of food waste. 260.79, 82.21, and -86.21 thousand tonnes of GHG emissions are emitted from food waste landfill, composting, and AD, respectively, proving the emission reduction potential brought by advanced food waste treatment technologies. Realizing the fact, a modified MSWM system is proposed by taking AD as food waste substitution option, with additional 44 % GHG emissions saved than current source separation scenario. Moreover, a preliminary economic assessment is implemented. It is demonstrated that both source separation scenarios have a good cost reduction potential than mixed collection, with the proposed new system the most cost-effective one.

  15. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    Energy Technology Data Exchange (ETDEWEB)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  16. Model predictive control for Z-source power converter

    DEFF Research Database (Denmark)

    Mo, W.; Loh, P.C.; Blaabjerg, Frede

    2011-01-01

    This paper presents Model Predictive Control (MPC) of impedance-source (commonly known as Z-source) power converter. Output voltage control and current control for Z-source inverter are analyzed and simulated. With MPC's ability of multi- system variables regulation, load current and voltage...

  17. Source location of chorus emissions observed by Cluster

    Directory of Open Access Journals (Sweden)

    M. Parrot

    Full Text Available One of the objectives of the Cluster mission is to study sources of various electromagnetic waves using the four satellites. This paper describes the methods we have applied to data recorded from the STAFF spectrum analyser. This instrument provides the cross spectral matrix of three magnetic and two electric field components. This spectral matrix is analysed to determine, for each satellite, the direction of the wave normal relative to the Earth’s magnetic field as a function of frequency and of time. Due to the Cluster orbit, chorus emissions are often observed close to perigee, and the data analysis determines the direction of these waves. Three events observed during different levels of magnetic activity are reported. It is shown that the component of the Poynting vector parallel to the magnetic field changes its sense when the satellites cross the magnetic equator, which indicates that the chorus waves propagate away from the equator. Detailed analysis indicates that the source is located in close vicinity of the plane of the geomagnetic equator.

    Key words. Magnetospheric physics (plasma waves and instabilities; storms and substorms; Space plasma physics (waves and instabilities

  18. Bioelectrochemical approach for control of methane emission from wetlands.

    Science.gov (United States)

    Liu, Shentan; Feng, Xiaojuan; Li, Xianning

    2017-10-01

    To harvest electricity and mitigate methane emissions from wetlands, a novel microbial fuel cell coupled constructed wetland (MFC-CW) was assembled with an anode placing in the rhizosphere and a cathode on the water surface. Plant-mediated methane accounted for 71-82% of the total methane fluxes. The bioanode served as an inexhaustible source of electron acceptors and resulted in reduced substantial methane emissions owing to electricigens outcompeting methanogens for carbon and electrons when substrate was deficient. However, when supplying sufficient organic carbon, both electricity and methane increased, indicating that electrogenesis and methanogenesis could co-exist in harmony. Direct methane emission (diffusion/ebullition) and plant-mediated methane emission were affected by operating conditions. Methanogenesis was significantly suppressed (∼98%) at HRT of 96h and with external resistance of 200Ω, accompanied with improved coulombic efficiency of 14.9% and current density of 187mA/m 2 . Contrarily, change of electrode polarity in the rhizosphere led to more methane efflux. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Highly-controlled, reproducible measurements of aerosol emissions from African biomass combustion

    Science.gov (United States)

    Haslett, Sophie; Thomas, J. Chris; Morgan, William; Hadden, Rory; Liu, Dantong; Allan, James; Williams, Paul; Sekou, Keïta; Liousse, Catherine; Coe, Hugh

    2017-04-01

    Particulate emissions from biomass burning can alter the atmosphere's radiative balance and cause significant harm to human health. However, the relationship between these emissions and fundamental combustion processes is, to date, poorly characterised. In atmospheric models, aerosol emissions are represented by emission factors based on mass loss, which are averaged over an entire combustion event for each particulate species. This approach, however, masks huge variability in emissions during different phases of the combustion period. Laboratory tests have shown that even small changes to the burning environment can lead to huge variation in observed aerosol emission factors (Akagi et al., 2011). In order to address this gap in understanding, in this study, small wood samples sourced from Côte D'Ivoire were burned in a highly-controlled laboratory environment. The shape and mass of samples, available airflow and surrounding heat were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real-time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. Both of these instruments are used regularly to measure aerosol concentrations in the field. This methodology produced remarkably repeatable results, allowing three different phases of combustion to be identified by their emissions. Black carbon was emitted predominantly during flaming combustion; organic aerosols were emitted during pyrolysis before ignition and from smouldering-dominated behaviour near the end of combustion. During the flaming period, there was a strong correlation between the emission of black carbon and the rate of mass loss, which suggests there is value in employing a mass-based emission factor for this species. However, very little correlation was seen between organic aerosol and mass loss throughout the tests. As such, results here suggest that emission factors averaged over an entire combustion event are unlikely to be

  20. Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem

    Science.gov (United States)

    Henze, D. K.; Seinfeld, J. H.; Shindell, D. T.

    2009-08-01

    Influences of specific sources of inorganic PM2.5 on peak and ambient aerosol concentrations in the US are evaluated using a combination of inverse modeling and sensitivity analysis. First, sulfate and nitrate aerosol measurements from the IMPROVE network are assimilated using the four-dimensional variational (4D-Var) method into the GEOS-Chem chemical transport model in order to constrain emissions estimates in four separate month-long inversions (one per season). Of the precursor emissions, these observations primarily constrain ammonia (NH3). While the net result is a decrease in estimated US~NH3 emissions relative to the original inventory, there is considerable variability in adjustments made to NH3 emissions in different locations, seasons and source sectors, such as focused decreases in the midwest during July, broad decreases throughout the US~in January, increases in eastern coastal areas in April, and an effective redistribution of emissions from natural to anthropogenic sources. Implementing these constrained emissions, the adjoint model is applied to quantify the influences of emissions on representative PM2.5 air quality metrics within the US. The resulting sensitivity maps display a wide range of spatial, sectoral and seasonal variability in the susceptibility of the air quality metrics to absolute emissions changes and the effectiveness of incremental emissions controls of specific source sectors. NH3 emissions near sources of sulfur oxides (SOx) are estimated to most influence peak inorganic PM2.5 levels in the East; thus, the most effective controls of NH3 emissions are often disjoint from locations of peak NH3 emissions. Controls of emissions from industrial sectors of SOx and NOx are estimated to be more effective than surface emissions, and changes to NH3 emissions in regions dominated by natural sources are disproportionately more effective than regions dominated by anthropogenic sources. NOx controls are most effective in northern states in

  1. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries.

    Science.gov (United States)

    Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Sajjad, Faiza; Khan, Muhammad Azhar; Khan, Muhammad Zahir

    2014-06-01

    The objective of the study is to investigate the long-run relationship between climatic factors (i.e., greenhouse gas emissions, agricultural methane emissions, and industrial nitrous oxide emission), air pollution (i.e., carbon dioxide emissions), and energy sources (i.e., nuclear energy; oil, gas, and coal energy; and fossil fuel energy) in the panel of 35 developed countries (including EU-15, new EU member states, G-7, and other countries) over a period of 1975-2012. In order to achieve this objective, the present study uses sophisticated panel econometric techniques including panel cointegration, panel fully modified OLS (FMOLS), and dynamic OLS (DOLS). The results show that there is a long-run relationship between the variables. Nuclear energy reduces greenhouse gases and carbon emissions; however, the other emissions, i.e., agricultural methane emissions and industrial nitrous oxide, are still to increase during the study period. Electricity production from oil, gas, and coal sources increases the greenhouse gases and carbon emissions; however, the intensity to increase emissions is far less than the intensity to increase emissions through fossil fuel. Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment.

  2. Measurement of electron emission due to energetic ion bombardment in plasma source ion implantation

    Science.gov (United States)

    Shamim, M. M.; Scheuer, J. T.; Fetherston, R. P.; Conrad, J. R.

    1991-11-01

    An experimental procedure has been developed to measure electron emission due to energetic ion bombardment during plasma source ion implantation. Spherical targets of copper, stainless steel, graphite, titanium alloy, and aluminum alloy were biased negatively to 20, 30, and 40 kV in argon and nitrogen plasmas. A Langmuir probe was used to detect the propagating sheath edge and a Rogowski transformer was used to measure the current to the target. The measurements of electron emission coefficients compare well with those measured under similar conditions.

  3. Emission of 2-methyl-3-buten-2-ol by pines: A potentially large natural source of reactive carbon to the atmosphere

    Science.gov (United States)

    Harley, Peter; Fridd-Stroud, Verity; Greenberg, James; Guenther, Alex; Vasconcellos, PéRola

    1998-10-01

    High rates of emission of 2-methyl-3-buten-2-ol (MBO) were measured from needles of several pine species. Emissions of MBO in the light were 1 to 2 orders of magnitude higher than emissions of monoterpenes and, in contrast to monoterpene emissions from pines, were absent in the dark. MBO emissions were strongly dependent on incident light, behaving similarly to net photosynthesis. Emission rates of MBO increased exponentially with temperature up to approximately 35°C. Above approximately 42°C, emission rates declined rapidly. Emissions could be modeled using existing algorithms for isoprene emission. We propose that emissions of MBO from lodgepole and ponderosa pine are the primary source of high concentrations of this compound, averaging 1-3 ppbv, found in ambient air samples collected in Colorado at an isolated mountain site approximately 3050 m above sea level. Subsequent field studies in a ponderosa pine plantation in California confirmed high MBO emissions, which averaged 25 μg C g-1 h-1 for 1-year-old needles, corrected to 30°C and photon flux of 1000 μmol m-2 s-1. A total of 34 pine species growing at Eddy Arboretum in Placerville, California, were investigated, of which 11 exhibited high emissions of MBO (>5 μg C g-1 h-1), and 6 emitted small but detectable amounts. All the emitting species are of North American origin, and most are restricted to western North America. These results indicate that MBO emissions from pines may constitute a significant source of reactive carbon and a significant source of acetone, to the atmosphere, particularly in the western United States.

  4. Microfocus x-ray imaging of traceable pointlike {sup 22}Na sources for quality control

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Oda, K.; Sato, Y.; Ito, H.; Masuda, S.; Yamada, T.; Matsumoto, M.; Murayama, H.; Takei, H. [Allied Health Sciences, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa 252-0373 (Japan); Positron Medical Center, Tokyo Metropolitan Institute of Gerontology Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015 (Japan); Advanced Industrial Science and Technology (AIST) Central 2, Umezono 1-1-1, Tsukuba-shi, Ibaraki 305-8568 (Japan); Kanagawa Industrial Technology Center (KITC) Shimoimazumi 705-1, Ebina-shi, Kanagawa 243-0435 (Japan); Japan Radioisotope Association (JRIA) Komagome 2-28-45, Bunkyo-ku, Tokyo 113-8941 (Japan); Molecular Imaging Center, National Institute of Radiological Sciences Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Graduate School of Medical Sciences, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa 252-0373 (Japan)

    2012-07-15

    Purpose: The purpose of this study is to propose a microfocus x-ray imaging technique for observing the internal structure of small radioactive sources and evaluating geometrical errors quantitatively, and to apply this technique to traceable pointlike {sup 22}Na sources, which were designed for positron emission tomography calibration, for the purpose of quality control of the pointlike sources. Methods: A microfocus x-ray imaging system with a focus size of 0.001 mm was used to obtain projection x-ray images and x-ray CT images of five pointlike source samples, which were manufactured during 2009-2012. The obtained projection and tomographic images were used to observe the internal structure and evaluate geometrical errors quantitatively. Monte Carlo simulation was used to evaluate the effect of possible geometrical errors on the intensity and uniformity of 0.511 MeV annihilation photon pairs emitted from the sources. Results: Geometrical errors were evaluated with sufficient precision using projection x-ray images. CT images were used for observing the internal structure intuitively. As a result, four of the five examined samples were within the tolerance to maintain the total uncertainty below {+-}0.5%, given the source radioactivity; however, one sample was found to be defective. Conclusions: This quality control procedure is crucial and offers an important basis for using the pointlike {sup 22}Na source as a basic calibration tool. The microfocus x-ray imaging approach is a promising technique for visual and quantitative evaluation of the internal geometry of small radioactive sources.

  5. Energy-related carbon dioxide emissions: control targets and long term policy strategies

    International Nuclear Information System (INIS)

    Haites, E.

    1993-01-01

    A number of countries have unilaterally committed themselves to limit emissions of greenhouse gases. Other countries have resisted such commitments; they prefer to engage in further climate research to determine the extent of any emissions reduction that may be necessary before committing themselves to significant costs to implement controls. This paper examines the costs of alternative policies including immediate action to limit emissions and climate research followed by controls if necessary. (Author)

  6. Field determination of multipollutant, open area combustion source emission factors with a hexacopter unmanned aerial vehicle

    Science.gov (United States)

    Aurell, J.; Mitchell, W.; Chirayath, V.; Jonsson, J.; Tabor, D.; Gullett, B.

    2017-10-01

    An emission sensor/sampler system was coupled to a National Aeronautics and Space Administration (NASA) hexacopter unmanned aerial vehicle (UAV) to characterize gases and particles in the plumes emitted from open burning of military ordnance. The UAV/sampler was tested at two field sites with test and sampling flights spanning over 16 h of flight time. The battery-operated UAV was remotely maneuvered into the plumes at distances from the pilot of over 600 m and at altitudes of up to 122 m above ground level. While the flight duration could be affected by sampler payload (3.2-4.6 kg) and meteorological conditions, the 57 sampling flights, ranging from 4 to 12 min, were typically terminated when the plume concentrations of CO2 were diluted to near ambient levels. Two sensor/sampler systems, termed ;Kolibri,; were variously configured to measure particulate matter, metals, chloride, perchlorate, volatile organic compounds, chlorinated dioxins/furans, and nitrogen-based organics for determination of emission factors. Gas sensors were selected based on their applicable concentration range, light weight, freedom from interferents, and response/recovery times. Samplers were designed, constructed, and operated based on U.S. Environmental Protection Agency (EPA) methods and quality control criteria. Results show agreement with published emission factors and good reproducibility (e.g., 26% relative standard deviation for PM2.5). The UAV/Kolibri represents a significant advance in multipollutant emission characterization capabilities for open area sources, safely and effectively making measurements heretofore deemed too hazardous for personnel or beyond the reach of land-based samplers.

  7. DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

    2002-02-01

    The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

  8. Source influence on emission pathways and ambient PM2.5 pollution over India (2015-2050)

    Science.gov (United States)

    Venkataraman, Chandra; Brauer, Michael; Tibrewal, Kushal; Sadavarte, Pankaj; Ma, Qiao; Cohen, Aaron; Chaliyakunnel, Sreelekha; Frostad, Joseph; Klimont, Zbigniew; Martin, Randall V.; Millet, Dylan B.; Philip, Sajeev; Walker, Katherine; Wang, Shuxiao

    2018-06-01

    India is currently experiencing degraded air quality, and future economic development will lead to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015-2050, under specific pathways of diffusion of cleaner and more energy-efficient technologies. The impacts of individual source sectors on PM2.5 concentrations were assessed through systematic simulations of spatially and temporally resolved particulate matter concentrations, using the GEOS-Chem model, followed by population-weighted aggregation to national and state levels. We find that PM2.5 pollution is a pan-India problem, with a regional character, and is not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 annual standard (40 µg m-3). Sources related to human activities were responsible for the largest proportion of the present-day population exposure to PM2.5 in India. About 60 % of India's mean population-weighted PM2.5 concentrations come from anthropogenic source sectors, while the remainder are from other sources, windblown dust and extra-regional sources. Leading contributors are residential biomass combustion, power plant and industrial coal combustion and anthropogenic dust (including coal fly ash, fugitive road dust and waste burning). Transportation, brick production and distributed diesel were other contributors to PM2.5. Future evolution of emissions under regulations set at current levels and promulgated levels caused further deterioration of air quality in 2030 and 2050. Under an ambitious prospective policy scenario, promoting very large shifts away from traditional biomass technologies and coal-based electricity generation, significant reductions in PM2.5 levels are achievable in 2030 and 2050. Effective mitigation of future air pollution in India requires adoption of aggressive prospective regulation, currently not formulated

  9. The IAEA and Control of Radioactive Sources

    International Nuclear Information System (INIS)

    Dodd, B.

    2004-01-01

    The presentation discusses the authoritative functions and the departments of the IAEA, especially the Department of Nuclear Safety and Security and its Safety and Security of Radiation Sources Unit. IAEA safety series and IAEA safety standards series inform about international standards, provide underlying principles, specify obligations and responsibilities and give recommendations to support requirements. Other IAEA relevant publications comprise safety reports, technical documents (TECDOCs), conferences and symposium papers series and accident reports. Impacts of loss of source control is discussed, definitions of orphan sources and vulnerable sources is given. Accidents with orphan sources, radiological accidents statistic (1944-2000) and its consequences are discussed. These incidents lead to development of the IAEA guidance. The IAEA's action plan for the safety of radiation sources and the security of radioactive material was approved by the IAEA Board of Governors and the General Conference in September 1999. This led to the 'Categorization of Radiation Sources' and the 'Code of Conduct on the Safety and Security of Radioactive Sources'. After 0911 the IAEA developed a nuclear security plan of activities including physical protection of nuclear material and nuclear facilities, detection of malicious activities involving nuclear and other radioactive materials, state systems for nuclear material accountancy and control, security of radioactive material other than nuclear material, assessment of safety and security related vulnerability of nuclear facilities, response to malicious acts, or threats thereof, adherence to and implementation of international agreements, guidelines and recommendations and nuclear security co-ordination and information management. The remediation of past problems comprised collection and disposal of known disused sources, securing vulnerable sources and especially high-risk sources (Tripartite initiative), searching for

  10. Micrometeorological methods for measurements of mercury emissions over contaminated soils

    International Nuclear Information System (INIS)

    Kim, K.H.; Lindberg, S.E.; Hanson, P.J.; Owens, J.; Myers, T.P.

    1993-01-01

    As part of a larger study involving development and application of field and laboratory methods (micrometeorological, dynamic enclosure chamber, and controlled laboratory chamber methods) to measure the air/surface exchange of Hg vapor, we performed a series of preliminary measurements over contaminated soils. From March--April 1993, we used the modified Bowen ratio (MBR) method to measure emission rates of mercury over a floodplain contaminated with mercury near Oak Ridge, TN. The mercury emission rates measured from contaminated EFPC soils using the MBR method during early spring show that (1) in all cases, the contaminated soils acted as a source of mercury to the atmosphere with source strengths ranging from 17 to 160 ng m -2 h -1 ; and (2) the strengths of mercury emissions can be greatly influenced by the combined effects of surface soil temperature, residence time of air masses over the source area, and turbulence conditions. The mercury fluxes measured in a controlled flow chamber indicate that contaminated soils can exhibit up to an order of magnitude higher emission rates of Hg under conditions of elevated soil temperature, soil structure disturbance, and high turbulence. Mercury emissions from contaminated soils exceeded emissions from background soils by one to two orders of magnitude

  11. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    Science.gov (United States)

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Anthropogenic Vanadium emissions to air and ambient air concentrations in North-West Europe

    Directory of Open Access Journals (Sweden)

    Visschedijk A. H. J.

    2013-04-01

    Full Text Available An inventory of Vanadium emissions for North-West Europe for the year 2005 was made based on an identification of the major sources. The inventory covers Belgium, Germany, Denmark, France, United Kingdom, Luxembourg, Netherlands and the OSPAR region of the North Sea. Vanadium emission were calculated bottom-up using energy use activity data and collected fuel and sector-specific emissions factors, taking into account various emission control measures. The NW European emissions were dominated by combustion of heavy fuel oil and petroleum cokes. Total emissions for 2005 amounted to 1569 tons/yr. The major sources are sea going ships (39%, petroleum refineries (35% and industry (19%. Emission is strongly concentrated at the densely populated cities with major sea ports. The location of sources at or near the major port cities was confirmed by observational data, as was the downward trend in emissions due to emission control, fuel switches in industry and fuel quality improvement. The results show the positive impact of lower sulphur fuels on other possible health relevant air pollutants such as particle bound Vanadium. The emission inventory can be expanded to the full European domain and can be used to for air quality modeling and particularly for the tracing of source contributions from certain types of fossil fuels (petroleum coke and residual fuel oil. Moreover, it will allow the monitoring of changes in fuel use over time.

  13. Lippmann-Schwinger integral equation approach to the emission of radiation by sources located inside finite-sized dielectric structures

    DEFF Research Database (Denmark)

    Søndergaard, T.; Tromborg, Bjarne

    2002-01-01

    uses for analyzing the emission of light by sources in some antennas and optical components such as vertical cavity surface emitting lasers, microdisk lasers, and light emitting diodes. The methods also have prospective uses in quantum electrodynamics for studies of spontaneous emission from, e...

  14. Advanced Light Source control system

    International Nuclear Information System (INIS)

    Magyary, S.; Chin, M.; Cork, C.; Fahmie, M.; Lancaster, H.; Molinari, P.; Ritchie, A.; Robb, A.; Timossi, C.

    1989-03-01

    The Advanced Light Source (ALS) is a third generation 1--2 GeV synchrotron radiation source designed to provide ports for 60 beamlines. It uses a 50 MeV electron linac and 1.5 GeV, 1 Hz, booster synchrotron for injection into a 1--2 GeV storage ring. Interesting control problems are created because of the need for dynamic closed beam orbit control to eliminate interaction between the ring tuning requirements and to minimize orbit shifts due to ground vibrations. The extremely signal sensitive nature of the experiments requires special attention to the sources of electrical noise. These requirements have led to a control system design which emphasizes connectivity at the accelerator equipment end and a large I/O bandwidth for closed loop system response. Not overlooked are user friendliness, operator response time, modeling, and expert system provisions. Portable consoles are used for local operation of machine equipment. Our solution is a massively parallel system with >120 Mbits/sec I/O bandwidth and >1500 Mips computing power. At the equipment level connections are made using over 600 powerful Intelligent Local Controllers (ILC-s) mounted in 3U size Eurocard slots using fiber-optic cables between rack locations. In the control room, personal computers control and display all machine variables at a 10 Hz rate including the scope signals which are collected though the control system. Commercially available software and industry standards are used extensively. Particular attention is paid to reliability, maintainability and upgradeability. 10 refs., 11 figs

  15. A large source of dust missing in Particulate Matter emission inventories? Wind erosion of post-fire landscapes

    Directory of Open Access Journals (Sweden)

    N.S. Wagenbrenner

    2017-02-01

    Full Text Available Wind erosion of soils burned by wildfire contributes substantial particulate matter (PM in the form of dust to the atmosphere, but the magnitude of this dust source is largely unknown. It is important to accurately quantify dust emissions because they can impact human health, degrade visibility, exacerbate dust-on-snow issues (including snowmelt timing, snow chemistry, and avalanche danger, and affect ecological and biogeochemical cycles, precipitation regimes, and the Earth’s radiation budget. We used a novel modeling approach in which local-scale winds were used to drive a high-resolution dust emission model parameterized for burned soils to provide a first estimate of post-fire PM emissions. The dust emission model was parameterized with dust flux measurements from a 2010 fire scar. Here we present a case study to demonstrate the ability of the modeling framework to capture the onset and dynamics of a post-fire dust event and then use the modeling framework to estimate PM emissions from burn scars left by wildfires in U.S. western sagebrush landscapes during 2012. Modeled emissions from 1.2 million ha of burned soil totaled 32.1 Tg (11.7–352 Tg of dust as PM10 and 12.8 Tg (4.68–141 Tg as PM2.5. Despite the relatively large uncertainties in these estimates and a number of underlying assumptions, these first estimates of annual post-fire dust emissions suggest that post-fire PM emissions could substantially increase current annual PM estimates in the U.S. National Emissions Inventory during high fire activity years. Given the potential for post-fire scars to be a large source of PM, further on-site PM flux measurements are needed to improve emission parameterizations and constrain these first estimates.

  16. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    International Nuclear Information System (INIS)

    1996-06-01

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs)

  17. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  18. Quantification of vehicle fleet PM_1_0 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques

    International Nuclear Information System (INIS)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal

    2016-01-01

    Road tunnels act like large laboratories; they provide an excellent environment to quantify atmospheric particles emission factors from exhaust and non-exhaust sources due to their known boundary conditions. Current work compares the High Volume, Dichotomous Stacked Filter Unit and Partisol Air Sampler for coarse, PM_1_0 and PM_2_._5 particle concentration measurement and found that they do not differ significantly (p = 95%). PM_2_._5 fraction contributes 66% of PM_1_0 proportions and significantly influenced by traffic (turbulence) and meteorological conditions. Mass emission factors for PM_1_0 varies from 21.3 ± 1.9 to 28.8 ± 3.4 mg/vkm and composed of Motorcycle (0.0003–0.001 mg/vkm), Cars (26.1–33.4 mg/vkm), LDVs (2.4–3.0 mg/vkm), HDVs (2.2–2.8 mg/vkm) and Buses (0.1 mg/vkm). Based on Lawrence et al. (2013), source apportionment modelling, the PM_1_0 emission of brake wear (3.8–4.4 mg/vkm), petrol exhaust (3.9–4.5 mg/vkm), diesel exhaust (7.2–8.3 mg/vkm), re-suspension (9–10.4 mg/vkm), road surface wear (3.9–4.5 mg/vkm), and unexplained (7.2 mg/vkm) were also calculated. The current study determined that the combined non-exhaust fleet PM_1_0 emission factor (16.7–19.3 mg/vkm) are higher than the combined exhaust emission factor (11.1–12.8 mg/vkm). Thus, highlight the significance of non-exhaust emissions and the need for legislation and abatement strategies to reduce their contributions to ambient PM concentrations. - Highlights: • Calculations of exhaust/non-exhaust particulate emission factors using tunnel sampling and source apportionment techniques. • Non-exhaust emission dominates in the fine particle fraction, considered responsible for adverse human health impacts. • Emission factors for non-exhaust sources (e.g. tyre and brake) were calculated. • Fleet source PM_1_0 emission factor were also calculated, which can be used in dispersion modelling and health risk assessment. • Tukey mean

  19. Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source.

    Science.gov (United States)

    Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A

    2018-03-01

    We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A shift in emission time profiles of fossil fuel combustion due to energy transitions impacts source receptor matrices for air quality.

    Science.gov (United States)

    Hendriks, Carlijn; Kuenen, Jeroen; Kranenburg, Richard; Scholz, Yvonne; Schaap, Martijn

    2015-03-01

    Effective air pollution and short-lived climate forcer mitigation strategies can only be designed when the effect of emission reductions on pollutant concentrations and health and ecosystem impacts are quantified. Within integrated assessment modeling source-receptor relationships (SRRs) based on chemistry transport modeling are used to this end. Currently, these SRRs are made using invariant emission time profiles. The LOTOS-EUROS model equipped with a source attribution module was used to test this assumption for renewable energy scenarios. Renewable energy availability and thereby fossil fuel back up are strongly dependent on meteorological conditions. We have used the spatially and temporally explicit energy model REMix to derive time profiles for backup power generation. These time profiles were used in LOTOS-EUROS to investigate the effect of emission timing on air pollutant concentrations and SRRs. It is found that the effectiveness of emission reduction in the power sector is significantly lower when accounting for the shift in the way emissions are divided over the year and the correlation of emissions with synoptic situations. The source receptor relationships also changed significantly. This effect was found for both primary and secondary pollutants. Our results indicate that emission timing deserves explicit attention when assessing the impacts of system changes on air quality and climate forcing from short lived substances.

  1. Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring.

    Directory of Open Access Journals (Sweden)

    Costas D Arvanitis

    Full Text Available The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001 larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R(2 = 0.78. Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology.

  2. Water management in cities of the future using emission control strategies for priority hazardous substances

    DEFF Research Database (Denmark)

    Eriksson, Eva; Revitt, D. M.; Ledin, A.

    2011-01-01

    Cities of the future face challenges with respect to the quantity and quality of water resources, and multiple managerial options need to be considered in order to safeguard urban surface water quality. In a recently completed project on “Source Control Options for Reducing Emissions of Priority...... in the results. The selected PPs differ in their uses and environmental fate and therefore accumulate in different urban environmental compartment. To achieve the required reduction in PP levels in urban waters the full implementation of existing EU regulation is essential and appropriate combinations...

  3. Thermo-enhanced field emission from ZnO nanowires: Role of defects and application in a diode flat panel X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhipeng; Chen, Daokun; Chen, Wenqing; Chen, Yicong; Song, Xiaomeng; Zhan, Runze; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun, E-mail: stscjun@mail.sysu.edu.cn

    2017-03-31

    Highlights: • A thermo-enhanced field emission phenomenon was observed from dendritic ZnO nanowires under the temperature of 323–723 K. • Defect-assisted field emission mechanism was proposed and quantitative calculation fits well with the experiment results. • The mechanism was verified by the field emission from ZnO nanowires with different defect concentrations. • A diode X-ray source making use of thermo-enhanced field emission phenomenon was proposed for separate tuning of dose and energy. - Abstract: A thermo-enhanced field emission phenomenon was observed from ZnO nanowires. The field emission current increased by almost two orders of magnitude under a constant applied electric field, and the turn-on field decreased from 6.04 MV/m to 5.0 MV/m when the temperature increased from 323 to 723 K. The Poole–Frenkel electron excitation from the defect-induced trapping centers to the conduction band under high electric fields is believed to be the primary cause of the observed phenomenon. The experimental results fit well with the proposed physical model. The field emission from ZnO nanowires with different defect concentrations further confirmed the role of defects. Using the thermo-enhanced field emission phenomenon, a diode flat panel X-ray source was demonstrated, for which the energy and dose can be separately tuned. The thermo-enhanced field emission phenomenon observed from ZnO nanowires could be an effective way to realize a large area flat panel multi-energy X-ray source.

  4. Polarization control of spontaneous emission for rapid quantum-state initialization

    Science.gov (United States)

    DiLoreto, C. S.; Rangan, C.

    2017-04-01

    We propose an efficient method to selectively enhance the spontaneous emission rate of a quantum system by changing the polarization of an incident control field, and exploiting the polarization dependence of the system's spontaneous emission rate. This differs from the usual Purcell enhancement of spontaneous emission rates as it can be selectively turned on and off. Using a three-level Λ system in a quantum dot placed in between two silver nanoparticles and a linearly polarized, monochromatic driving field, we present a protocol for rapid quantum state initialization, while maintaining long coherence times for control operations. This process increases the overall amount of time that a quantum system can be effectively utilized for quantum operations, and presents a key advance in quantum computing.

  5. Light absorption of biomass burning and vehicle emission-sourced carbonaceous aerosols of the Tibetan Plateau.

    Science.gov (United States)

    Hu, Zhaofu; Kang, Shichang; Li, Chaoliu; Yan, Fangping; Chen, Pengfei; Gao, Shaopeng; Wang, Zhiyong; Zhang, Yulan; Sillanpää, Mika

    2017-06-01

    Carbonaceous aerosols over the Tibetan Plateau originate primarily from biomass burning and vehicle emissions (BB and VEs, respectively). The light absorption characteristics of these carbonaceous aerosols are closely correlated with the burning conditions and represent key factors that influence climate forcing. In this study, the light absorption characteristics of elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM 2.5 (fine particulate matter smaller than 2.5 μm) generated from BB and VEs were investigated over the Tibetan Plateau (TP). The results showed that the organic carbon (OC)/EC ratios from BB- and VE-sourced PM 2.5 were 17.62 ± 10.19 and 1.19 ± 0.36, respectively. These values were higher than the ratios in other regions, which was primarily because of the diminished amount of oxygen over the TP. The mass absorption cross section of EC (MAC EC ) at 632 nm for the BB-sourced PM 2.5 (6.10 ± 1.21 m 2 .g -1 ) was lower than that of the VE-sourced PM 2.5 (8.10 ± 0.98 m 2 .g -1 ), indicating that the EC content of the BB-sourced PM 2.5 was overestimated because of the high OC/EC ratio. The respective absorption per mass (α/ρ) values at 365 nm for the VE- and BB-sourced PM 2.5 were 0.71 ± 0.17 m 2 .g -1 and 0.91 ± 0.18 m 2 .g -1 . The α/ρ value of the VEs was loaded between that of gasoline and diesel emissions, indicating that the VE-sourced PM 2.5 originated from both types of emissions. Because OC and WSOC accounts for most of the carbonaceous aerosols at remote area of the TP, the radiative forcing contributed by the WSOC should be high, and requires further investigation.

  6. Emission of greenhouse gases from controlled incineration of cattle manure.

    Science.gov (United States)

    Oshita, Kazuyuki; Sun, Xiucui; Taniguchi, Miki; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujiwara, Taku

    2012-01-01

    Greenhouse gas emission is a potential limiting factor in livestock farming development. While incineration is one approach to minimize livestock manure, there are concerns about significant levels of nitrogen and organic compounds in manure as potential sources of greenhouse gas emissions (N2O and CH4). In this study, the effects of various incineration conditions, such as the furnace temperature and air ratio on N2O and CH4 formation behaviour, of cattle manure (as a representative livestock manure) were investigated in a pilot rotary kiln furnace. The results revealed that N2O emissions decreased with increasing temperature and decreasing air ratio. In addition, CH4 emissions tended to be high above 800 degrees C at a low air ratio. The emission factors for N2O and CH4 under the general conditions (combustion temperature of 800-850 degrees C and air ratio of 1.4) were determined to be 1.9-6.0% g-N2O-N/g-N and 0.0046-0.26% g-CH4/g-burning object, respectively. The emission factor for CH4 differed slightly from the published values between 0.16 and 0.38% g-CH4/g-burning object. However, the emission factor for N2O was much higher than the currently accepted value of 0.7% g-N2O-N/g-N and, therefore, it is necessary to revise the N2O emission factor for the incineration of livestock manure.

  7. 76 FR 35806 - Amendments to National Emission Standards for Hazardous Air Pollutants for Area Sources: Plating...

    Science.gov (United States)

    2011-06-20

    ...., Washington, DC. The Public Reading Room is open from 8:30 a.m. to 4:30 p.m. Eastern Standard Time (EST... parties interested in commenting must do so at this time. For further information, please see the... chromium anodizing sources, as those sources are subject to 40 CFR part 63, subpart N, ``Chromium Emissions...

  8. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    Science.gov (United States)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  9. Novel techniques for characterization of hydrocarbon emission sources in the Barnett Shale

    Science.gov (United States)

    Nathan, Brian Joseph

    Changes in ambient atmospheric hydrocarbon concentrations can have both short-term and long-term effects on the atmosphere and on human health. Thus, accurate characterization of emissions sources is critically important. The recent boom in shale gas production has led to an increase in hydrocarbon emissions from associated processes, though the exact extent is uncertain. As an original quantification technique, a model airplane equipped with a specially-designed, open-path methane sensor was flown multiple times over a natural gas compressor station in the Barnett Shale in October 2013. A linear optimization was introduced to a standard Gaussian plume model in an effort to determine the most probable emission rate coming from the station. This is shown to be a suitable approach given an ideal source with a single, central plume. Separately, an analysis was performed to characterize the nonmethane hydrocarbons in the Barnett during the same period. Starting with ambient hourly concentration measurements of forty-six hydrocarbon species, Lagrangian air parcel trajectories were implemented in a meteorological model to extend the resolution of these measurements and achieve domain-fillings of the region for the period of interest. A self-organizing map (a type of unsupervised classification) was then utilized to reduce the dimensionality of the total multivariate set of grids into characteristic one-dimensional signatures. By also introducing a self-organizing map classification of the contemporary wind measurements, the spatial hydrocarbon characterizations are analyzed for periods with similar wind conditions. The accuracy of the classification is verified through assessment of observed spatial mixing ratio enhancements of key species, through site-comparisons with a related long-term study, and through a random forest analysis (an ensemble learning method of supervised classification) to determine the most important species for defining key classes. The hydrocarbon

  10. Spatial-temporal Variations and Source Apportionment of typical Heavy Metals in Beijing-Tianjin-Hebei (BTH) region of China Based on Localized Air Pollutants Emission Inventory and WRF-CMAQ modelling

    Science.gov (United States)

    Tian, H.; Liu, S.; Zhu, C.; Liu, H.; Wu, B.

    2017-12-01

    Abstract: Anthropogenic atmospheric emissions of air pollutants have caused worldwide concerns due to their adverse effects on human health and the ecosystem. By determining the best available emission factors for varied source categories, we established the comprehensive atmospheric emission inventories of hazardous air pollutants including 12 typical toxic heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu, and Zn) from primary anthropogenic activities in Beijing-Tianjin-Hebei (BTH) region of China for the period of 2012 for the first time. The annual emissions of these pollutants were allocated at a high spatial resolution of 9km × 9km grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). Notably, the total heavy metal emissions from this region represented about 10.9% of the Chinese national total emissions. The areas with high emissions of heavy metals were mainly concentrated in Tangshan, Shijiazhuang, Handan and Tianjin. Further, WRF-CMAQ modeling system were applied to simulate the regional concentration of heavy metals to explore their spatial-temporal variations, and the source apportionment of these heavy metals in BTH region was performed using the Brute-Force method. Finally, integrated countermeasures were proposed to minimize the final air pollutants discharge on account of the current and future demand of energy-saving and pollution reduction in China. Keywords: heavy metals; particulate matter; emission inventory; CMAQ model; source apportionment Acknowledgment. This work was funded by the National Natural Science Foundation of China (21377012 and 21177012) and the Trail Special Program of Research on the Cause and Control Technology of Air Pollution under the National Key Research and Development Plan of China (2016YFC0201501).

  11. Effects of After-Treatment Control Technologies on Heavy-Duty Diesel Truck Emissions

    Science.gov (United States)

    Preble, C.; Dallmann, T. R.; Kreisberg, N. M.; Hering, S. V.; Harley, R.; Kirchstetter, T.

    2015-12-01

    Diesel engines are major emitters of nitrogen oxides (NOx) and the black carbon (BC) fraction of particulate matter (PM). Diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have recently become standard on new heavy-duty diesel trucks (HDDT). There is concern that DPFs may increase ultrafine particle (UFP) and total particle number (PN) emissions while reducing PM mass emissions. Also, the deliberate catalytic oxidation of engine-out NO to NO2 in continuously regenerating DPFs may lead to increased tailpipe emission of NO2 and near-roadway concentrations that exceed the 1-hr national ambient air quality standard. Increased NO2 emissions can also promote formation of ozone and secondary PM. We report results from ongoing on-road studies of HDDT emissions at the Port of Oakland and the Caldecott Tunnel in California's San Francisco Bay Area. Emission factors (g pollutant per kg diesel) were linked via recorded license plates to each truck's engine model year and installed emission controls. At both sites, DPF use significantly increased the NO2/NOx emission ratio. DPFs also significantly increased NO2 emissions when installed as retrofits on older trucks with higher baseline NOx emissions. While SCR systems on new trucks effectively reduce total NOx emissions and mitigate these undesirable DPF-related NO2 emissions, they also lead to significant emission of N2O, a potent greenhouse gas. When expressed on a CO2-equivalent basis, the N2O emissions increase offsets the fuel economy gain (i.e., the CO2 emission reduction) associated with SCR use. At the Port, average NOx, BC and PN emission factors from new trucks equipped with DPF and SCR were 69 ± 15%, 92 ± 32% and 66 ± 35% lower, respectively, than modern trucks without these emission controls. In contrast, at the Tunnel, PN emissions from older trucks retrofit with DPFs were ~2 times greater than modern trucks without DPFs. The difference

  12. Emissions of perfluorinated alkylated substances (PFAS) from point sources--identification of relevant branches.

    Science.gov (United States)

    Clara, M; Scheffknecht, C; Scharf, S; Weiss, S; Gans, O

    2008-01-01

    Effluents of wastewater treatment plants are relevant point sources for the emission of hazardous xenobiotic substances to the aquatic environment. One group of substances, which recently entered scientific and political discussions, is the group of the perfluorinated alkylated substances (PFAS). The most studied compounds from this group are perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS), which are the most important degradation products of PFAS. These two substances are known to be persistent, bioaccumulative and toxic (PBT). In the present study, eleven PFAS were investigated in effluents of municipal wastewater treatment plants (WWTP) and in industrial wastewaters. PFOS and PFOA proved to be the dominant compounds in all sampled wastewaters. Concentrations of up to 340 ng/L of PFOS and up to 220 ng/L of PFOA were observed. Besides these two compounds, perfluorohexanoic acid (PFHxA) was also present in nearly all effluents and maximum concentrations of up to 280 ng/L were measured. Only N-ethylperfluorooctane sulphonamide (N-EtPFOSA) and its degradation/metabolisation product perfluorooctane sulphonamide (PFOSA) were either detected below the limit of quantification or were not even detected at all. Beside the effluents of the municipal WWTPs, nine industrial wastewaters from six different industrial branches were also investigated. Significantly, the highest emissions or PFOS were observed from metal industry whereas paper industry showed the highest PFOA emission. Several PFAS, especially perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorododecanoic acid (PFDoA) and PFOS are predominantly emitted from industrial sources, with concentrations being a factor of 10 higher than those observed in the municipal WWTP effluents. Perfluorodecane sulphonate (PFDS), N-Et-PFOSA and PFOSA were not detected in any of the sampled industrial point sources. (c) IWA Publishing 2008.

  13. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2005-09-30

    This report documents progress made on the subject project during the period of March 1, 2005 through August 31, 2005. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, fieldwork was completed at Plant 1, located in the Southeast. Stage I toxicological assessments were carried out in normal Sprague-Dawley rats, and Stage II assessments were carried out in a compromised model (myocardial infarction-MI-model). Normal rats were exposed to the following atmospheric scenarios: (1) primary particles; (2) oxidized emissions; (3) oxidized emissions + secondary organic aerosol (SOA)--this scenario was repeated; and (4) oxidized emissions + ammonia + SOA. Compromised animals were exposed to oxidized emissions + SOA (this scenario was also conducted in replicate). Stage I assessment endpoints included breathing pattern/pulmonary function; in vivo chemiluminescence (an indicator of oxidative stress); blood cytology; bronchoalveolar lavage (BAL) fluid analysis; and histopathology. Stage II assessments included continuous ECG monitoring via

  14. Source contributions to atmospheric fine carbon particle concentrations

    Science.gov (United States)

    Andrew Gray, H.; Cass, Glen R.

    A Lagrangian particle-in-cell air quality model has been developed that facilitates the study of source contributions to atmospheric fine elemental carbon and fine primary total carbon particle concentrations. Model performance was tested using spatially and temporally resolved emissions and air quality data gathered for this purpose in the Los Angeles area for the year 1982. It was shown that black elemental carbon (EC) particle concentrations in that city were dominated by emissions from diesel engines including both on-highway and off-highway applications. Fine primary total carbon particle concentrations (TC=EC+organic carbon) resulted from the accumulation of small increments from a great variety of emission source types including both gasoline and diesel powered highway vehicles, stationary source fuel oil and gas combustion, industrial processes, paved road dust, fireplaces, cigarettes and food cooking (e.g. charbroilers). Strategies for black elemental carbon particle concentration control will of necessity need to focus on diesel engines, while controls directed at total carbon particle concentrations will have to be diversified over a great many source types.

  15. Tasks tolerating application of analogue methods for determining acoustic emission source co-ordinates

    International Nuclear Information System (INIS)

    Artyukhov, V.I.; Vakar, K.B.; Makarov, V.I.; Ovchinnikov, N.I.; Perevezentsev, V.N.; Rzhevkin, V.R.; Shemyakin, V.V.; Yakovlev, G.V.

    1980-01-01

    Described are cases of coordinate detection of the acoustic emission (AE) sources during AE-testing of power reactors using analog systems. Five testing variants of design linear elements are considered and fields of their practical application to welded joint testing are pointed out. Described is the method of coordinate detection based on ''multibeam'' effect

  16. X-ray source safety shutter

    International Nuclear Information System (INIS)

    Robinet, M.

    1977-01-01

    An apparatus is provided for controlling the activation of a high energy radiation source having a shutter. The apparatus includes magnets and magnetically responsive switches appropriately placed and interconnected so that only with the shutter and other parts of the source in proper position can safe emission of radiation out an open shutter occur

  17. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere

    International Nuclear Information System (INIS)

    Ma, Denglong; Zhang, Zaoxiao

    2016-01-01

    Highlights: • The intelligent network models were built to predict contaminant gas concentrations. • The improved network models coupled with Gaussian dispersion model were presented. • New model has high efficiency and accuracy for concentration prediction. • New model were applied to indentify the leakage source with satisfied results. - Abstract: Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.

  18. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Denglong [Fuli School of Food Equipment Engineering and Science, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); Zhang, Zaoxiao, E-mail: zhangzx@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); School of Chemical Engineering and Technology, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China)

    2016-07-05

    Highlights: • The intelligent network models were built to predict contaminant gas concentrations. • The improved network models coupled with Gaussian dispersion model were presented. • New model has high efficiency and accuracy for concentration prediction. • New model were applied to indentify the leakage source with satisfied results. - Abstract: Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.

  19. NOx emissions from large point sources: variability in ozone production, resulting health damages and economic costs

    International Nuclear Information System (INIS)

    Mauzerall, D.L.; Namsoug Kim

    2005-01-01

    We present a proof-of-concept analysis of the measurement of the health damage of ozone (O 3 ) produced from nitrogen oxides (NO x =NO+NO 2 ) emitted by individual large point sources in the eastern United States. We use a regional atmospheric model of the eastern United States, the Comprehensive Air quality Model with Extensions (CAMx), to quantify the variable impact that a fixed quantity of NO x emitted from individual sources can have on the downwind concentration of surface O 3 , depending on temperature and local biogenic hydrocarbon emissions. We also examine the dependence of resulting O 3 -related health damages on the size of the exposed population. The investigation is relevant to the increasingly widely used 'cap and trade' approach to NO x regulation, which presumes that shifts of emission over time and space, holding the total fixed over the course of the summer O 3 season, will have minimal effect on the environmental outcome. By contrast, we show that a shift of a unit of NO x emissions from one place or time to another could result in large changes in resulting health effects due to O 3 formation and exposure. We indicate how the type of modeling carried out here might be used to attach externality-correcting prices to emissions. Charging emitters fees that are commensurate with the damage caused by their NO x emissions would create an incentive for emitters to reduce emissions at times and in locations where they cause the largest damage. (author)

  20. Initial emission assessment of hazardous-waste-incineration facilities

    International Nuclear Information System (INIS)

    Harrington, E.S.; Holton, G.A.; O'Donnell, F.R.

    1982-01-01

    Health and Safety Research Division, sponsored by EPA, conducted a study to quantify emission factors from stacks, spills, fugitives, storage, and treatment for a typical hazardous waste incinerator facility. Engineering participated in preparing flowsheets and providing calculations for fugitive emissions. Typical block-flow diagrams were developed two types of hazardous waste incinerators (rotary kiln and liquid-injector) and for three capacities (small: 1 MM Btu/hr, median: 10 MM Btu/hr, and large: 150 MM Btu/hr). Storage reqirements and support services were determined in more detail. Using the properties of a typical waste, fugitive emissions were determined, including emissions from pump leaks, valve leaks, flange leaks, and tank vents. An atmospheric dispersion model was then employed to calculate atmospheric concentration and population exposure estimates. With these estimates, an assessment was performed to determine the percentage of concentrations and exposure associated with selected emissions from each source at the incineration facility. Results indicated the relative importance of each source at the incineration facility. Results indicated the relative importance of each source both in terms of public health and pollution control requirements