WorldWideScience

Sample records for source emission regions

  1. Sources of atmospheric emissions in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    An inventory of emissions for the Athabasca oil sands airshed that can be used as a basis for air quality assessments was presented. This report was prepared for the Suncor Steepbank Mine Environmental Impact Assessment (EIA) and for the Syncrude Aurora Mine EIA. Both Syncrude and Suncor have plans to develop new oil sands leases and to increase their crude oil and bitumen production. Suncor has proposed modifications to reduce SO 2 emissions to the atmosphere and Syncrude will develop additional ambient air quality, sulphur deposition and biomonitoring programs to ensure that environmental quality is not compromised because of atmospheric emissions associated with their operations. Major emission sources are controlled and monitored by regulatory statutes, regulations and guidelines. In this report, the following four types of emission sources were identified and quantified: (1) major industrial sources associated with Suncor's and Syncrude's current oil sands operations, (2) fugitive and area emission sources such as volatilization of hydrocarbons from tanks and tailings ponds, (3) other industrial emission sources in the area, including oil sands and non-oil sands related facilities, and (4) highway and residential emission sources. Emissions associated with mining operations include: SO 2 , NO x , CO, and CO 2 . The overall conclusion was that although there are other smaller sources of emissions that can influence air quality, there is no reason to doubt that Suncor and Syncrude oil sands operations are the major sources of emissions to the atmosphere. 13 refs., 12 tabs., 8 figs

  2. WHAT IS THE SOURCE OF QUIET SUN TRANSITION REGION EMISSION?

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, D. J.; De Pontieu, Bart [Lockheed-Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States)

    2016-11-10

    Dating back to the first observations of the on-disk corona, there has been a qualitative link between the photosphere’s magnetic network and enhanced transition-temperature plasma emission. These observations led to the development of a general model that describes emission structures through the partitioning of the atmospheric volume with different magnetic loop geometries that exhibit different energetic equilibria. Does the internetwork produce transition-temperature emission? What fraction of network flux connects to the corona? How does quiet Sun emission compare with low-activity Sun-like stars? In this work, we revisit the canonical model of the quiet Sun, with high-resolution observations from the Interface Region Imaging Spectrograph ( IRIS ) and HMI in hand, to address those questions. We use over 900 deep exposures of Si iv 1393 Å from IRIS along with nearly simultaneous HMI magnetograms to quantify the correlation between transition-temperature emission structures and magnetic field concentrations through a number of novel statistics. Our observational results are coupled with analysis of the Bifrost MHD model and a large-scale potential field model. Our results paint a complex portrait of the quiet Sun. We measure an emission signature in the distant internetwork that cannot be attributed to network contribution. We find that the dimmest regions of emission are not linked to the local vertical magnetic field. Using the MHD simulation, we categorize the emission contribution from cool mid-altitude loops and high-altitude coronal loops and discuss the potential emission contribution of spicules. Our results provide new constraints on the coupled solar atmosphere so that we can build on our understanding of how dynamic thermal and magnetic structures generate the observed phenomena in the transition region.

  3. Premature deaths attributed to source-specific BC emissions in six urban US regions

    International Nuclear Information System (INIS)

    Turner, Matthew D; Henze, Daven K; Capps, Shannon L; Hakami, Amir; Zhao, Shunliu; Resler, Jaroslav; Carmichael, Gregory R; Stanier, Charles O; Baek, Jaemeen; Sandu, Adrian; Russell, Armistead G; Nenes, Athanasios; Pinder, Rob W; Napelenok, Sergey L; Bash, Jesse O; Percell, Peter B; Chai, Tianfeng

    2015-01-01

    Recent studies have shown that exposure to particulate black carbon (BC) has significant adverse health effects and may be more detrimental to human health than exposure to PM 2.5 as a whole. Mobile source BC emission controls, mostly on diesel-burning vehicles, have successfully decreased mobile source BC emissions to less than half of what they were 30 years ago. Quantification of the benefits of previous emissions controls conveys the value of these regulatory actions and provides a method by which future control alternatives could be evaluated. In this study we use the adjoint of the Community Multiscale Air Quality (CMAQ) model to estimate highly-resolved spatial distributions of benefits related to emission reductions for six urban regions within the continental US. Emissions from outside each of the six chosen regions account for between 7% and 27% of the premature deaths attributed to exposure to BC within the region. While we estimate that nonroad mobile and onroad diesel emissions account for the largest number of premature deaths attributable to exposure to BC, onroad gasoline is shown to have more than double the benefit per unit emission relative to that of nonroad mobile and onroad diesel. Within the region encompassing New York City and Philadelphia, reductions in emissions from large industrial combustion sources that are not classified as EGUs (i.e., non-EGU) are estimated to have up to triple the benefits per unit emission relative to reductions to onroad diesel sectors, and provide similar benefits per unit emission to that of onroad gasoline emissions in the region. While onroad mobile emissions have been decreasing in the past 30 years and a majority of vehicle emission controls that regulate PM focus on diesel emissions, our analysis shows the most efficient target for stricter controls is actually onroad gasoline emissions. (letter)

  4. Primary sources of selected POPs: regional and global scale emission inventories

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M

    2004-03-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale.

  5. Primary sources of selected POPs: regional and global scale emission inventories

    International Nuclear Information System (INIS)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M.

    2004-01-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale

  6. Characterization of emissions sources in the California-Mexico Border Region during Cal-Mex 2010

    Science.gov (United States)

    Zavala, M. A.; Lei, W.; Li, G.; Bei, N.; Barrera, H.; Tejeda, D.; Molina, L. T.; Cal-Mex 2010 Emissions Team

    2010-12-01

    The California-Mexico border region provides an opportunity to evaluate the characteristics of the emission processes in rapidly expanding urban areas where intensive international trade and commerce activities occur. Intense anthropogenic activities, biomass burning, as well as biological and geological sources significantly contribute to high concentration levels of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitrogen oxides (NOx), volatile organic compounds (VOCs), air toxics, and ozone observed in the California-US Baja California-Mexico border region. The continued efforts by Mexico and US for improving and updating the emissions inventories in the sister cities of San Diego-Tijuana and Calexico-Mexicali has helped to understand the emission processes in the border region. In addition, the recent Cal-Mex 2010 field campaign included a series of measurements aimed at characterizing the emissions from major sources in the California-Mexico border region. In this work we will present our analyzes of the data obtained during Cal-Mex 2010 for the characterization of the emission sources and their use for the evaluation of the recent emissions inventories for the Mexican cities of Tijuana and Mexicali. The developed emissions inventories will be implemented in concurrent air quality modeling efforts for understanding the physical and chemical transformations of air pollutants in the California-Mexico border region and their impacts.

  7. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region

    Science.gov (United States)

    Pirrone, N.; Costa, P.; Pacyna, J. M.; Ferrara, R.

    This report discusses past, current and projected mercury emissions to the atmosphere from major industrial sources, and presents a first assessment of the contribution to the regional mercury budget from selected natural sources. Emissions (1995 estimates) from fossil fuels combustion (29.8 t yr -1) , cement production (28.8 t yr -1) and incineration of solid wastes (27.6 t yr -1) , all together account for about 82% of the regional anthropogenic total (105.7 t yr -1) . Other industrial sources in the region are smelters (4.8 t yr -1) , iron-steel plants (4.8 t yr -1) and other minor sources (chlor-alkali plants, crematoria, chemicals production) that have been considered together in the miscellaneous category (9.6 t yr -1) . Regional emissions from anthropogenic sources increased at a rate of 3% yr-1 from 1983 to 1995 and are projected to increase at a rate of 1.9% yr-1 in the next 25 years, if no improvement in emission control policy occurs. On a country-by-country basis, France is the leading emitter country with 22.6 t yr -1 followed by Turkey (16.1 t yr -1) , Italy (11.4 t yr -1) , Spain (9.1 t yr -1) , the former Yugoslavia 7.9 ( t yr -1) , Morocco (6.9 t yr -1) , Bulgaria (6.8 t yr -1) , Egypt (6.1 t yr -1) , Syria (3.6 t yr -1) , Libya (2.9 t yr -1) , Tunisia (2.8 t yr -1) and Greece (2.7 t yr -1) , whereas the remaining countries account for less than 7% of the regional total. The annual emission from natural sources is 110 t yr -1, although this figure only includes the volatilisation of elemental mercury from surface waters and emissions from volcanoes, whereas the contribution due to the degassing of mercury from top soil and vegetation has not been included in this first assessment. Therefore, natural and anthropogenic sources in the Mediterranean region release annually about 215 t of mercury, which represents a significant contribution to the total mercury budget released in Europe and to the global atmosphere.

  8. Anthropogenic Sulfur Dioxide Emissions, 1850-2005: National and Regional Data Set by Source Category, Version 2.86

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Sulfur Dioxide Emissions, 1850-2005: National and Regional Data Set by Source Category, Version 2.86 provides annual estimates of anthropogenic...

  9. Dioxin emissions and sources

    International Nuclear Information System (INIS)

    1994-01-01

    The papers presented at the seminar discussed dioxin emissions and sources, dioxin pollution of soils, waste water and sewage sludge, stocktaking of emission sources, and exposure and risk analyses for dioxin and other pollutants. (EF) [de

  10. Diffuse emissions of PCDD/F and dioxin-like PCB from industrial sources in the Flemish region (Belgium)

    Energy Technology Data Exchange (ETDEWEB)

    Francois, F.; Blondeel, M.; Bernaert, P.; Baert, R. [Ministry of the Flemish Community - Environmental Inspection Section, Brussels (Belgium)

    2004-09-15

    In Belgium, and especially in the Flemish region, the contamination of the environment and food chain with PCDD/F and PCB has been a major public concern during the past decade. The largest point sources of PCDD/F emissions have been monitored and tackled by the Environment Inspection Section (EIS) since 1993. This has caused a very significant emission reduction, which in its turn had a considerable impact on lowering the environmental and food PCDD/F levels, both in the immediate surroundings of the sources and on a regional scale. However, at a few measurement locations, levels of PCDD/F in deposition samples and in cow's milk remained increased despite the stack emission reduction of nearby sources. Recently, also increased dioxinlike PCB levels were found at some locations. This has led to an investigation of the contribution of diffuse emission sources, revealing the importance of such sources at particular plants, mainly in the non-ferrous metal and scrap metal sectors.

  11. Characterizing and sourcing ambient PM2.5 over key emission regions in China III: Carbon isotope based source apportionment of black carbon

    Science.gov (United States)

    Yu, Kuangyou; Xing, Zhenyu; Huang, Xiaofeng; Deng, Junjun; Andersson, August; Fang, Wenzheng; Gustafsson, Örjan; Zhou, Jiabin; Du, Ke

    2018-03-01

    Regional haze over China has severe implications for air quality and regional climate. To effectively combat these effects the high uncertainties regarding the emissions from different sources needs to be reduced. In this paper, which is the third in a series on the sources of PM2.5 in pollution hotspot regions of China, we focus on the sources of black carbon aerosols (BC), using carbon isotope signatures. Four-season samples were collected at two key locations: Beijing-Tianjin-Hebei (BTH, part of Northern China plain), and the Pearl River Delta (PRD). We find that that fossil fuel combustion was the predominant source of BC in both BTH and PRD regions, accounting for 75 ± 5%. However, the contributions of what fossil fuel components were dominating differed significantly between BTH and PRD, and varied dramatically with seasons. Coal combustion is overall the all-important BC source in BTH, accounting for 46 ± 12% of the BC in BTH, with the maximum value (62%) found in winter. In contrast for the PRD region, liquid fossil fuel combustion (e.g., oil, diesel, and gasoline) is the dominant source of BC, with an annual mean value of 41 ± 15% and the maximum value of 55% found in winter. Region- and season-specific source apportionments are recommended to both accurately assess the climate impact of carbonaceous aerosol emissions and to effectively mitigate deteriorating air quality caused by carbonaceous aerosols.

  12. 2011 NATA - Emissions Sources

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes all emissions sources that were modeled in the 2011 National Air Toxics Assessment (NATA), inlcluding point, nonpoint, and mobile sources, and...

  13. Biogenic Emission Sources

    Science.gov (United States)

    Biogenic emissions sources come from natural sources and need to accounted for in photochemical grid models. They are computed using a model which utilizes spatial information on vegetation and land use.

  14. Estimation of mercury emissions from forest fires, lakes, regional and local sources using measurements in Milwaukee and an inverse method

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2012-10-01

    Full Text Available Gaseous elemental mercury is a global pollutant that can lead to serious health concerns via deposition to the biosphere and bio-accumulation in the food chain. Hourly measurements between June 2004 and May 2005 in an urban site (Milwaukee, WI show elevated levels of mercury in the atmosphere with numerous short-lived peaks as well as longer-lived episodes. The measurements are analyzed with an inverse model to obtain information about mercury emissions. The model is based on high resolution meteorological simulations (WRF, hourly back-trajectories (WRF-FLEXPART and a chemical transport model (CAMx. The hybrid formulation combining back-trajectories and Eulerian simulations is used to identify potential source regions as well as the impacts of forest fires and lake surface emissions. Uncertainty bounds are estimated using a bootstrap method on the inversions. Comparison with the US Environmental Protection Agency's National Emission Inventory (NEI and Toxic Release Inventory (TRI shows that emissions from coal-fired power plants are properly characterized, but emissions from local urban sources, waste incineration and metal processing could be significantly under-estimated. Emissions from the lake surface and from forest fires were found to have significant impacts on mercury levels in Milwaukee, and to be underestimated by a factor of two or more.

  15. Investigation of error sources in regional inverse estimates of greenhouse gas emissions in Canada

    Science.gov (United States)

    Chan, E.; Chan, D.; Ishizawa, M.; Vogel, F.; Brioude, J.; Delcloo, A.; Wu, Y.; Jin, B.

    2015-08-01

    model can help in the understanding of the posterior estimates and percentage errors. Stable and realistic sub-regional and monthly flux estimates for western region of AB/SK can be obtained, but not for the eastern region of ON. This indicates that it is likely a real observation-based inversion for the annual provincial emissions will work for the western region whereas; improvements are needed with the current inversion setup before real inversion is performed for the eastern region.

  16. Modeling of Regionalized Emissions (MoRE into Water Bodies: An Open-Source River Basin Management System

    Directory of Open Access Journals (Sweden)

    Stephan Fuchs

    2017-03-01

    Full Text Available An accurate budget of substance emissions is fundamental for protecting freshwater resources. In this context, the European Union asks all member states to report an emission inventory of substances for river basins. The river basin management system MoRE (Modeling of Regionalized Emissions was developed as a flexible open-source instrument which is able to model pathway-specific emissions and river loads on a catchment scale. As the reporting tool for the Federal Republic of Germany, MoRE is used to model annual emissions of nutrients, heavy metals, micropollutants like polycyclic aromatic hydrocarbons (PAH, Bis(2-ethylhexylphthalate (DEHP, and certain pharmaceuticals. Observed loads at gauging stations are used to validate the calculated emissions. In addition to its balancing capabilities, MoRE can consider different variants of input data and quantification approaches, in order to improve the robustness of different modeling approaches and to evaluate the quality of different input data. No programming skills are required to set up and run the model. Due to its flexible modeling base, the effect of reduction measures can be assessed. Within strategic planning processes, this is relevant for the allocation of investments or the implementation of specific measures to reduce the overall pollutant emissions into surface water bodies and therefore to meet the requirements of water policy.

  17. Emission sources and quantities

    International Nuclear Information System (INIS)

    Heinen, B.

    1991-01-01

    The paper examines emission sources and quantities for SO 2 and NO x . Natural SO 2 is released from volcanic sources and to a much lower extent from marsh gases. In nature NO x is mainly produced in the course of the chemical and bacterial denitrification processes going on in the soil. Manmade pollutants are produced in combustion processes. The paper concentrates on manmade pollution. Aspects discussed include: mechanism of pollution development; manmade emission sources (e.g. industry, traffic, power plants and domestic sources); and emission quantities and forecasts. 11 refs., 2 figs., 5 tabs

  18. Source apportionment of secondary organic aerosol in China using a regional source-oriented chemical transport model and two emission inventories.

    Science.gov (United States)

    Wang, Peng; Ying, Qi; Zhang, Hongliang; Hu, Jianlin; Lin, Yingchao; Mao, Hongjun

    2018-06-01

    A Community Multiscale Air Quality (CMAQ) model with source-oriented lumped SAPRC-11 (S11L) photochemical mechanism and secondary organic aerosol (SOA) module was applied to determine the contributions of anthropogenic and biogenic sources to SOA concentrations in China. A one-year simulation of 2013 using the Multi-resolution Emission Inventory for China (MEIC) shows that summer SOA are generally higher (10-15 μg m -3 ) due to large contributions of biogenic (country average 60%) and industrial sources (17%). In winter, SOA formation was mostly due to anthropogenic emissions from industries (40%) and residential sources (38%). Emissions from other countries in southeast China account for approximately 14% of the SOA in both summer and winter, and 46% in spring due to elevated open biomass burning in southeast Asia. The Regional Emission inventory in ASia v2.1 (REAS2) was applied in this study for January and August 2013. Two sets of simulations with the REAS2 inventory were conducted using two different methods to speciate total non-methane carbon into model species. One approach uses total non-methane hydrocarbon (NMHC) emissions and representative speciation profiles from the SPECIATE database. The other approach retains the REAS2 speciated species that can be directly mapped to S11L model species and uses source specific splitting factors to map other REAS2 lumped NMHC species. Biogenic emissions are still the most significant contributor in summer based on these two sets of simulations. However, contributions from the transportation sector to SOA in January are predicted to be much more important based on the two REAS2 emission inventories (∼30-40% vs. ∼5% by MEIC), and contributions from residential sources according to REAS2 was much lower (∼21-24% vs. ∼42%). These discrepancies in source contributions to SOA need to be further investigated as the country seeks for optimal emission control strategies to fight severe air pollution. Copyright

  19. Source region and growth analysis of narrowband Z-mode emission

    Czech Academy of Sciences Publication Activity Database

    Menietti, J. D.; Yoon, P. H.; Píša, David; Ye, S.; Y.; Santolík, Ondřej; Arridge, C. S.; Gurnett, D. A.; Coates, A. J.

    2016-01-01

    Roč. 121, č. 12 (2016), s. 11929-11942 ISSN 2169-9380 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : auroral radio emissions * magnetic-field * plasma * magnetosphere * radiation * acceleration * pectrometer * electrons * density Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016JA022913/abstract

  20. Premature Deaths Attributed to Source-Specific BC Emissions in Six Urban US Regions

    Czech Academy of Sciences Publication Activity Database

    Turner, M.D.; Henze, D.K.; Capps, S.; Hakami, A.; Zhao, S.; Resler, Jaroslav; Carmichael, G.; Stanier, C.; Baek, J.; Sandu, A.; Russell, A.G.; Nenes, A.; Pinder, R.; Napelenok, S.; Bash, J.; Percell, P.; Chai, T.

    2015-01-01

    Roč. 10, č. 11 (2015), Article 114014 ISSN 1748-9326 Grant - others:NASA Applied Sciences Program(US) NNX09AN77G Institutional support: RVO:67985807 Keywords : air quality * health impact * source apportionment * adjoint * particulate matter * black car bon Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.134, year: 2015

  1. Premature Deaths Attributed to Source-Specific BC Emissions in Six Urban US Regions

    Czech Academy of Sciences Publication Activity Database

    Turner, M.D.; Henze, D.K.; Capps, S.; Hakami, A.; Zhao, S.; Resler, Jaroslav; Carmichael, G.; Stanier, C.; Baek, J.; Sandu, A.; Russell, A.G.; Nenes, A.; Pinder, R.; Napelenok, S.; Bash, J.; Percell, P.; Chai, T.

    2015-01-01

    Roč. 10, č. 11 (2015), Article 114014 ISSN 1748-9326 Grant - others: NASA Applied Sciences Program(US) NNX09AN77G Institutional support: RVO:67985807 Keywords : air quality * health impact * source apportionment * adjoint * particulate matter * black carbon Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.134, year: 2015

  2. Characterizing and sourcing ambient PM2.5 over key emission regions in China II: Organic molecular markers and CMB modeling

    Science.gov (United States)

    Zhou, Jiabin; Xiong, Ying; Xing, Zhenyu; Deng, Junjun; Du, Ke

    2017-08-01

    From November 2012 to July 2013, a sampling campaign was completed for comprehensive characterization of PM2.5 over four key emission regions in China: Beijing-Tianjin-Hebei (BTH), Yangzi River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB). A multi-method approach, adopting different analytical and receptor modeling methods, was employed to determine the relative abundances of region-specific air pollution constituents and contributions of emission sources. This paper is focused on organic molecular marker based source apportionment using chemical mass balance (CMB) receptor modeling. Analyses of the organic molecular markers revealed that vehicle emission, coal combustion, biomass burning, meat cooking and natural gas combustion were the major contributors to organic carbon (OC) in PM2.5. The vehicle emission dominated the sources contributing to OC in spring at four sampling sites. During wintertime, the coal combustion had highest contribution to OC at BTH site, while the major source contributing to OC at YRD and PRD sites was vehicle emission. In addition, the relative contributions of different emission sources to PM2.5 mass at a specific location site and in a specific season revealed seasonal and spatial variations across all four sampling locations. The largest contributor to PM2.5 mass was secondary sulfate (14-17%) in winter at the four sites. The vehicle emission was found to be the major source (14-21%) for PM2.5 mass at PRD site. The secondary ammonium has minor variation (4-5%) across the sites, confirming the influences of regional emission sources on these sites. The distinct patterns of seasonal and spatial variations of source apportionment observed in this study were consistent with the findings in our previous paper based upon water-soluble ions and carbonaceous fractions. This makes it essential for the local government to make season- and region-specific mitigation strategies for abating PM2.5 pollution in China.

  3. Attribution of aerosol radiative forcing over India during the winter monsoon to emissions from source categories and geographical regions

    Science.gov (United States)

    Verma, S.; Venkataraman, C.; Boucher, O.

    2011-08-01

    We examine the aerosol radiative effects due to aerosols emitted from different emission sectors (anthropogenic and natural) and originating from different geographical regions within and outside India during the northeast (NE) Indian winter monsoon (January-March). These studies are carried out through aerosol transport simulations in the general circulation (GCM) model of the Laboratoire de Météorologie Dynamique (LMD). The model estimates of aerosol single scattering albedo (SSA) show lower values (0.86-0.92) over the region north to 10°N comprising of the Indian subcontinent, Bay of Bengal, and parts of the Arabian Sea compared to the region south to 10°N where the estimated SSA values lie in the range 0.94-0.98. The model estimated SSA is consistent with the SSA values inferred through measurements on various platforms. Aerosols of anthropogenic origin reduce the incoming solar radiation at the surface by a factor of 10-20 times the reduction due to natural aerosols. At the top-of-atmosphere (TOA), aerosols from biofuel use cause positive forcing compared to the negative forcing from fossil fuel and natural sources in correspondence with the distribution of SSA which is estimated to be the lowest (0.7-0.78) from biofuel combustion emissions. Aerosols originating from India and Africa-west Asia lead to the reduction in surface radiation (-3 to -8 W m -2) by 40-60% of the total reduction in surface radiation due to all aerosols over the Indian subcontinent and adjoining ocean. Aerosols originating from India and Africa-west Asia also lead to positive radiative effects at TOA over the Arabian Sea, central India (CNI), with the highest positive radiative effects over the Bay of Bengal and cause either negative or positive effects over the Indo-Gangetic plain (IGP).

  4. Hot emission model for mobile sources: application to the metropolitan region of the city of Santiago, Chile.

    Science.gov (United States)

    Corvalán, Roberto M; Osses, Mauricio; Urrutia, Cristian M

    2002-02-01

    Depending on the final application, several methodologies for traffic emission estimation have been developed. Emission estimation based on total miles traveled or other average factors is a sufficient approach only for extended areas such as national or worldwide areas. For road emission control and strategies design, microscale analysis based on real-world emission estimations is often required. This involves actual driving behavior and emission factors of the local vehicle fleet under study. This paper reports on a microscale model for hot road emissions and its application to the metropolitan region of the city of Santiago, Chile. The methodology considers the street-by-street hot emission estimation with its temporal and spatial distribution. The input data come from experimental emission factors based on local driving patterns and traffic surveys of traffic flows for different vehicle categories. The methodology developed is able to estimate hourly hot road CO, total unburned hydrocarbons (THCs), particulate matter (PM), and NO(x) emissions for predefined day types and vehicle categories.

  5. Relations between turbulent regions of interplanetary magnetic field and Jovian decametric radio wave emissions from the main source

    International Nuclear Information System (INIS)

    Oya, H.; Morioka, A.

    1981-01-01

    Jovian decametric radio wave emissions that were observed at Goddard Space Flight Center, U.S.A. for a period from 1 October to 31 December, 1974 and data obtained at Mt. Zao observatory, Tohoku University, Japan, for a period from 14 July to 6 December, 1975 have been used to investigate the relationship of the occurrence of the Jovian decametric radio waves (JDW), from the main source, to the geomagnetic disturbance index, ΣKAPPA sub(rho). The dynamic cross-correlation between JDW and ΣKAPPAsubrho indicates an enhanced correlation for certain values of delay time. The delay time is consistent with predicted values based on a model of rotating turbulent regions in interplanetary space associated with two sector boundaries of the interplanetary magnetic field, i.e. the rotating sector boundaries of the interplanetary magnetic field first encounter the Earth's magnetosphere producing the geomagnetic field disturbances, and after a certain period, they encounter the Jovian magnetosphere. There are also cases where the order of the encounter is opposite, i.e. the sector boundaries encounter first Jovian magnetosphere and encounter the Earth's magnetosphere after a certain period. (author)

  6. Origin of surface and columnar Indian Ocean Experiment (INDOEX) aerosols using source- and region-tagged emissions transport in a general circulation model

    Science.gov (United States)

    Verma, S.; Venkataraman, C.; Boucher, O.

    2008-12-01

    We study the relative influence of aerosols emitted from different sectors and geographical regions on aerosol loading in south Asia. Sectors contributing aerosol emissions include biofuel and fossil fuel combustion, open biomass burning, and natural sources. Geographical regions include India (the Indo-Gangetic plain, central India, south India, and northwest India), southeast Asia, east Asia, Africa-west Asia, and the rest of the world. Simulations of the Indian Ocean Experiment (INDOEX), from January to March 1999, are made in the general circulation model of Laboratoire de Météorologie Dynamique (LMD-ZT GCM) with emissions tagged by sector and geographical region. Anthropogenic emissions dominate (54-88%) the predicted aerosol optical depth (AOD) over all the receptor regions. Among the anthropogenic sectors, fossil fuel combustion has the largest overall influence on aerosol loading, primarily sulfate, with emissions from India (50-80%) and rest of the world significantly influencing surface concentrations and AOD. Biofuel combustion has a significant influence on both the surface and columnar black carbon (BC) in particular over the Indian subcontinent and Bay of Bengal with emissions largely from the Indian region (60-80%). Open biomass burning emissions influence organic matter (OM) significantly, and arise largely from Africa-west Asia. The emissions from Africa-west Asia affect the carbonaceous aerosols AOD in all receptor regions, with their largest influence (AOD-BC: 60%; and AOD-OM: 70%) over the Arabian Sea. Among Indian regions, the Indo-Gangetic Plain is the largest contributor to anthropogenic surface mass concentrations and AOD over the Bay of Bengal and India. Dust aerosols are contributed mainly through the long-range transport from Africa-west Asia over the receptor regions. Overall, the model estimates significant intercontinental incursion of aerosol, for example, BC, OM, and dust from Africa-west Asia and sulfate from distant regions (rest

  7. Source data supported high resolution carbon emissions inventory for urban areas of the Beijing-Tianjin-Hebei region: Spatial patterns, decomposition and policy implications.

    Science.gov (United States)

    Cai, Bofeng; Li, Wanxin; Dhakal, Shobhakar; Wang, Jianghao

    2018-01-15

    This paper developed internationally compatible methods for delineating boundaries of urban areas in China. By integrating emission source data with existing official statistics as well as using rescaling methodology of data mapping for 1 km grid, the authors constructed high resolution emission gridded data in Beijing-Tianjin-Hebei (Jing-Jin-Ji) region in China for 2012. Comparisons between urban and non-urban areas of carbon emissions from industry, agriculture, household and transport exhibited regional disparities as well as sectoral differences. Except for the Hebei province, per capita total direct carbon emissions from urban extents in Beijing and Tianjin were both lower than provincial averages, indicating the climate benefit of urbanization, comparable to results from developed countries. Urban extents in the Hebei province were mainly industrial centers while those in Beijing and Tianjin were more service oriented. Further decomposition analysis revealed population to be a common major driver for increased carbon emissions but climate implications of urban design, economic productivity of land use, and carbon intensity of GDP were both cluster- and sector-specific. This study disapproves the one-size-fits-all solution for carbon mitigation but calls for down-scaled analysis of carbon emissions and formulation of localized carbon reduction strategies in the Jing-Jin-Ji as well as other regions in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions

    Science.gov (United States)

    Zhou, Jiabin; Xing, Zhenyu; Deng, Junjun; Du, Ke

    2016-06-01

    During the past decade, huge research resources have been devoted into studies of air pollution in China, which generated abundant datasets on emissions and pollution characterization. Due to the complex nature of air pollution as well as the limitations of each individual investigating approach, the published results were sometimes perplexing and even contradicting. This research adopted a multi-method approach to investigate region-specific air pollution characteristics and sources in China, results obtained using different analytical and receptor modeling methods were inter-compared for validation and interpretation. A year-round campaign was completed for comprehensive characterization of PM2.5 over four key emission regions: Beijing-Tianjin-Hebei (BTH), Yangzi River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB). Atmospheric PM2.5 samples were collected from 10/2012 to 08/2013 at four regional sites, located on the diffusion paths of air masses from their corresponding megacities (i.e., Beijing, Shanghai, Guangzhou, and Chengdu). The annual average PM2.5 mass concentrations showed distinct regional difference, with the highest observed at BTH and lowest at PRD site. Nine water-soluble ions together contributed 33-41% of PM2.5 mass, with three dominant ionic species being SO42-, NO3-, NH4+, and carbonaceous particulate matter contributed 16-23% of PM2.5 mass. This implied that combustion and secondary formation were the main sources for PM2.5 in China. In addition, SO42-, NO3-, NH4+, and carbonaceous components (OC, EC) showed clear seasonal patterns with the highest concentration occurring in winter while the lowest in summer. Principal component analysis performed on aerosol data revealed that vehicular emissions, coal/biomass combustion, industry source, soil dust as well as secondary formation were the main potential sources for the ionic components of PM2.5. The characteristic chemical species combined with back trajectory analysis indicated

  9. Characterizing the Sources and Processing of Submicron Aerosols at a Coastal Site near Houston, TX, with a Specific Focus on the Impact of Regional Shipping Emissions

    Science.gov (United States)

    Schulze, B.; Wallace, H. W., IV; Bui, A.; Flynn, J. H., III; Erickson, M. H.; Griffin, R. J.

    2017-12-01

    The Texas Gulf Coast region historically has been influenced heavily by regional shipping emissions. However, the effects of the recent establishment of the North American Emissions Control Area (ECA) on aerosol properties in this region are presently unknown. In order to understand better the current sources and processing mechanisms influencing coastal aerosol near Houston, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed for three weeks at a coastal location during May-June 2016. Total mass loadings of organic and inorganic non-refractory aerosol components during onshore flow periods were similar to those published before establishment of the regulations. Using estimated methanesulfonic acid (MSA) mass loadings and published biogenic MSA:non-sea-salt-sulfate (nss-SO4) ratios, we determined that over 70% of nss-SO4 over the Gulf was from anthropogenic sources, predominantly shipping emissions. Mass spectral analysis indicated that for periods with similar backward-trajectory-averaged meteorological conditions, air masses influenced by shipping emissions have an increased mass fraction of ions related to carboxylic acids and a significantly larger oxygen-to-carbon (O:C) ratio than air masses that stay within the ECA boundary, suggesting that shipping emissions impact marine organic aerosol (OA) oxidation state. Amine fragment mass loadings were positively correlated with anthropogenic nss-SO4 during onshore flow, implying anthropogenic-biogenic interaction in marine OA production. Five OA factors were resolved by positive matrix factorization, corresponding to a hydrocarbon-like OA, a semi-volatile OA, and three different oxygenated organic aerosols ranked by their O:C ratio (OOA-1, OOA-2, and OOA-3). OOA-1 constituted the majority of OA mass during a period likely influenced by aqueous-phase processing and may be linked to local glyoxal/methylglyoxal-related sources. OOA-2 was produced within the Houston urban region and was

  10. HONO and Inorganic Fine Particle Composition in Typical Monsoon Region with Intensive Anthropogenic Emission: In-situ Observations and Source Identification.

    Science.gov (United States)

    Xie, Y.; Nie, W.; Ding, A.; Huang, X.

    2015-12-01

    Yangtze River Delta (YRD) is one of the most typical monsoon area with probably the most largest population intensity in the world. With sharply economic development and the large anthropogenic emissions, fine particle pollution have been one of the major air quality problem and may further have impact on the climate system. Though a lot of control policy (sulfur emission have been decreasing from 2007) have been conducted in the region, studies showed the sulfate in fine particles still take major fraction as the nitrate from nitrogen oxides increased significantly. In this study, the role of inorganic chemical compositions in fine particles was investigated with two years in-situ observation. Sulfate and Nitrate contribute to fine particle mass equally in general, but sulfate contributes more during summer and nitrate played more important role in winter. Using lagrangian dispersion backward modeling and source contribution clustering method, the impact of airmass coming from different source region (industrial, dust, biogenic emissions, etc) on fine particle inorganic compositions were discussed. Furthermore, we found two unique cases showing in-situ implications for sulfate formation by nitrogen dioxide oxidation mechanisms. It was showed that the mixing of anthropogenic pollutants with long-range transported mineral dust and biomass burning plume would enhance the sulfate formation by different chemistry mechanisms. This study focus on the complex aspects of fine particle formation in airmasses from different source regions: . It highlights the effect of NOx in enhancing the atmospheric oxidization capacity and indicates a potentially very important impact of increasing NOx on air pollution formation and regional climate change in East Asia.

  11. Scenarios for global emissions from air traffic. The development of regional and gridded (5 degrees x 5 degrees) emissions scenarios for aircraft and for surface sources, based on CPB scenarios and existing emission inventories for aircraft and surface sources

    NARCIS (Netherlands)

    Olivier JGJ; LAE

    1995-01-01

    An estimate was made of present global emissions from air traffic using statistical information on fuel consumption, aircraft types and applying emission factors for various compounds. To generate scenarios for future emissions from air traffic, assumptions were used regarding the development of the

  12. Source mechanism of Saturn narrowband emission

    Directory of Open Access Journals (Sweden)

    J. D. Menietti

    2010-04-01

    Full Text Available Narrowband emission (NB is observed at Saturn centered near 5 kHz and 20 kHz and harmonics. This emission appears similar in many ways to Jovian kilometric narrowband emission observed at higher frequencies, and therefore may have a similar source mechanism. Source regions of NB near 20 kHz are believed to be located near density gradients in the inner magnetosphere and the emission appears to be correlated with the occurrence of large neutral plasma clouds observed in the Saturn magnetotail. In this work we present the results of a growth rate analysis of NB emission (~20 kHz near or within a probable source region. This is made possible by the sampling of in-situ wave and particle data. The results indicate waves are likely to be generated by the mode-conversion of directly generated Z-mode emission to O-mode near a density gradient. When the local hybrid frequency is close n fce (n is an integer and fce is the electron cyclotron frequency with n=4, 5 or 6 in our case, electromagnetic Z-mode and weak ordinary (O-mode emission can be directly generated by the cyclotron maser instability.

  13. Long-term trends of black carbon and sulphate aerosol in the Arctic: changes in atmospheric transport and source region emissions

    Directory of Open Access Journals (Sweden)

    D. Hirdman

    2010-10-01

    Full Text Available As a part of the IPY project POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols and Transport and building on previous work (Hirdman et al., 2010, this paper studies the long-term trends of both atmospheric transport as well as equivalent black carbon (EBC and sulphate for the three Arctic stations Alert, Barrow and Zeppelin. We find a general downward trend in the measured EBC concentrations at all three stations, with a decrease of −2.1±0.4 ng m−3 yr−1 (for the years 1989–2008 and −1.4±0.8 ng m−3 yr−1 (2002–2009 at Alert and Zeppelin respectively. The decrease at Barrow is, however, not statistically significant. The measured sulphate concentrations show a decreasing trend at Alert and Zeppelin of −15±3 ng m−3 yr−1 (1985–2006 and −1.3±1.2 ng m−3 yr−1 (1990–2008 respectively, while there is no trend detectable at Barrow.

    To reveal the contribution of different source regions on these trends, we used a cluster analysis of the output of the Lagrangian particle dispersion model FLEXPART run backward in time from the measurement stations. We have investigated to what extent variations in the atmospheric circulation, expressed as variations in the frequencies of the transport from four source regions with different emission rates, can explain the long-term trends in EBC and sulphate measured at these stations. We find that the long-term trend in the atmospheric circulation can only explain a minor fraction of the overall downward trend seen in the measurements of EBC (0.3–7.2% and sulphate (0.3–5.3% at the Arctic stations. The changes in emissions are dominant in explaining the trends. We find that the highest EBC and sulphate concentrations are associated with transport from Northern Eurasia and decreasing emissions in this region drive the

  14. Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part II. Emission sector and source region contributions.

    Science.gov (United States)

    Qiao, Xue; Tang, Ya; Kota, Sri Harsha; Li, Jingyi; Wu, Li; Hu, Jianlin; Zhang, Hongliang; Ying, Qi

    2015-11-01

    A source-oriented Community Multiscale Air Quality (CMAQ) model driven by the meteorological fields generated by the Weather Research and Forecasting (WRF) model was used to study the dry and wet deposition of nitrate (NO3(-)), sulfate (SO4(2-)), and ammonium (NH4(+)) ions in the Jiuzhaigou National Nature Reserve (JNNR), China from June to August 2010 and to identify the contributions of different emission sectors and source regions that were responsible for the deposition fluxes. Contributions from power plants, industry, transportation, domestic, biogenic, windblown dust, open burning, fertilizer, and manure management sources to deposition fluxes in JNNR watershed and four EANET sites are determined. In JNNR, 96%, 82%, and 87% of the SO4(2-), NO3(-) and NH4(+) deposition fluxes are in the form of wet deposition of the corresponding aerosol species. Industry and power plants are the two major sources of SO4(2-) deposition flux, accounting for 86% of the total wet deposition of SO4(2-), and industry has a higher contribution (56%) than that of power plants (30%). Power plants and industry are also the top sources that are responsible for NO3(-) wet deposition, and contributions from power plants (30%) are generally higher than those from industries (21%). The major sources of NH4(+) wet deposition flux in JNNR are fertilizer (48%) and manure management (39%). Source-region apportionment confirms that SO2 and NOx emissions from local and two nearest counties do not have a significant impact on predicted wet deposition fluxes in JNNR, with contributions less than 10%. While local NH3 emissions account for a higher fraction of the NH4(+) deposition, approximately 70% of NH4(+) wet deposition in JNNR originated from other source regions. This study demonstrates that S and N deposition in JNNR is mostly from long-range transport rather than from local emissions, and to protect JNNR, regional emission reduction controls are needed. Copyright © 2015 Elsevier B.V. All

  15. A SITELLE view of M31's central region - I. Calibrations and radial velocity catalogue of nearly 800 emission-line point-like sources

    Science.gov (United States)

    Martin, Thomas B.; Drissen, Laurent; Melchior, Anne-Laure

    2018-01-01

    We present a detailed description of the wavelength, astrometric and photometric calibration plan for SITELLE, the imaging Fourier transform spectrometer attached to the Canada-France-Hawaii telescope, based on observations of a red (647-685 nm) data cube of the central region (11 arcmin × 11 arcmin) of M 31. The first application, presented in this paper is a radial-velocity catalogue (with uncertainties of ∼2-6 km s-1) of nearly 800 emission-line point-like sources, including ∼450 new discoveries. Most of the sources are likely planetary nebulae, although we also detect five novae (having erupted in the first eight months of 2016) and one new supernova remnant candidate.

  16. Identification of mercury emissions from forest fires, lakes, regional and local sources using measurements in Milwaukee and an inverse method

    OpenAIRE

    B. de Foy; C. Wiedinmyer; J. J. Schauer

    2012-01-01

    Gaseous elemental mercury is a global pollutant that can lead to serious health concerns via deposition to the biosphere and bio-accumulation in the food chain. Hourly measurements between June 2004 and May 2005 in an urban site (Milwaukee, WI) show elevated levels of mercury in the atmosphere with numerous short-lived peaks as well as longer-lived episodes. The measurements are analyzed with an inverse model to obtain information about mercury emissions. The model is based on high res...

  17. Spatial-temporal Variations and Source Apportionment of typical Heavy Metals in Beijing-Tianjin-Hebei (BTH) region of China Based on Localized Air Pollutants Emission Inventory and WRF-CMAQ modelling

    Science.gov (United States)

    Tian, H.; Liu, S.; Zhu, C.; Liu, H.; Wu, B.

    2017-12-01

    Abstract: Anthropogenic atmospheric emissions of air pollutants have caused worldwide concerns due to their adverse effects on human health and the ecosystem. By determining the best available emission factors for varied source categories, we established the comprehensive atmospheric emission inventories of hazardous air pollutants including 12 typical toxic heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu, and Zn) from primary anthropogenic activities in Beijing-Tianjin-Hebei (BTH) region of China for the period of 2012 for the first time. The annual emissions of these pollutants were allocated at a high spatial resolution of 9km × 9km grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). Notably, the total heavy metal emissions from this region represented about 10.9% of the Chinese national total emissions. The areas with high emissions of heavy metals were mainly concentrated in Tangshan, Shijiazhuang, Handan and Tianjin. Further, WRF-CMAQ modeling system were applied to simulate the regional concentration of heavy metals to explore their spatial-temporal variations, and the source apportionment of these heavy metals in BTH region was performed using the Brute-Force method. Finally, integrated countermeasures were proposed to minimize the final air pollutants discharge on account of the current and future demand of energy-saving and pollution reduction in China. Keywords: heavy metals; particulate matter; emission inventory; CMAQ model; source apportionment Acknowledgment. This work was funded by the National Natural Science Foundation of China (21377012 and 21177012) and the Trail Special Program of Research on the Cause and Control Technology of Air Pollution under the National Key Research and Development Plan of China (2016YFC0201501).

  18. Determining the source region of auroral emissions in the prenoon oval using coordinated Polar BEAR UV-imaging and DMSP particle measurements

    Science.gov (United States)

    Newell, Patrick T.; Meng, CHING-I.; Huffman, Robert E.

    1992-01-01

    The Polar Beacon Experiment and Auroral Research (Polar BEAR) satellite included the capability for imaging the dayside auroral oval in full sunlight at several wavelengths. Particle observations from the DMSP F7 satellite during dayside auroral oval crossings are compared with approximately simultaneous Polar BEAR 1356-A images to determine the magnetospheric source region of the dayside auroral oval. The source region is determined from the DMSP particle data, according to recent work concerning the classification and identification of precipitation source regions. The close DMSP/Polar BEAR coincidences all occur when the former satellite is located between 0945 and 1000 MLT. Instances of auroral arcs mapping to each of several different regions, including the boundary plasma sheet, the low-latitude boundary layer, and the plasma mantle were found. It was determined that about half the time the most prominent auroral arcs are located at the interfaces between distinct plasma regions, at least at the local time studied here.

  19. NMHC emissions from Asia: sources and transport

    Science.gov (United States)

    Shirai, T.; Blake, D. R.; Barletta, B.; Meinardi, S.; Rowland, F. S.; Chan, J. C.; Takegawa, N.; Kondo, Y.; Koike, M.; Kita, K.; Takigawa, M.; Kawakami, S.; Ogawa, T.

    2002-12-01

    Recent rapid industrialization and economic growth in Asia changed the industrial structure, land use, and people's lifestyle resulting in a dramatic change in the amount and composition of the gas emissions from Asia. Because emissions can be transported very rapidly once convected to the free troposphere, Asian emissions can affect both local and regional air quality and climate. To access the impact of changing emission from Asia, an airborne observation campaign PEACE (the Pacific Exploration of Asian Continental Emission) phase-A and B were conducted in January and April - May 2002, respectively, sponsored by NASDA (National Space Development Agency of Japan). The concentrations of NMHCs (nonmethanehydrocarbons) and halocarbons were obtained by whole air sampling and subsequent gas chromatography analyses in the laboratory. Quantified onboard the aircraft were CO, CO2, O3, NO, NO2, NOy, H2O, SO2, aerosols, and condensation nuclei. The experiment was conducted in the vicinity of Japan and PEACE-A and B represent the local winter and spring weather conditions. The trace gas distributions in the lower troposphere were often influenced by local pollution (i.e. from Japan, Korea) while those of the long-range transport (i.e. from Europe) were occasionally seen in the upper troposphere. This is confirmed by the airmass age estimation using the ratios of short-lived gases (i.e. C2H4) vs. more stable compounds (i.e. CO). Emissions from China were distinguished using data obtained from ground-based sampling and measurements. Transport from China was seen both in the lower troposphere and upper troposphere. Some case studies on source identification will be discussed.

  20. Characterizing sources of emissions from wildland fires

    Science.gov (United States)

    Roger D. Ottmar; Ana Isabel Miranda; David V. Sandberg

    2009-01-01

    Smoke emissions from wildland fire can be harmful to human health and welfare, impair visibility, and contribute to greenhouse gas emissions. The generation of emissions and heat release need to be characterized to estimate the potential impacts of wildland fire smoke. This requires explicit knowledge of the source, including size of the area burned, burn period,...

  1. Sources of Regional Banks Capitalization

    Directory of Open Access Journals (Sweden)

    Olga Sergeevna Miroshnichenko

    2018-03-01

    Full Text Available Searching of sources to increase the capitalization of Russian banks is an important economic problem for both the national and regional economy. Moreover, a strong capital base allows to credit institutions to meet the demands of economic agents for banking service. The research focuses on the choice of sources of regulatory capital for the banks of Tyumen region in the context of changing supervisory requirements in the period of 2005–2016, in different phases of the business cycle. We apply econometric methods of statistical information using IBM SPSS Statistics software. We have calculated the individual correlations of regional banks’ capital with gross domestic product (GDP (excluding gross regional product (GRP and GRP (with the exception of the effect of GDP. These calculations have shown that the capital of regional banks is related only to GDP. The increase in the capital of regional banks is accompanied by a change in its structure: the share of authorized capital has halved, and the share of subordinated debt has grown. All sources of capital, other than the reserve fund, are related to GDP. Authorized capital is associated with the profit of profitable lending institutions; retained earnings in the capital of regional banks — with the aggregated amount of risks of the banking system of the Russian Federation. Subordinated debt, like capital as a whole, is negatively affected by the profitability of the banking sector. The change in the capital of regional banks is determined by the change in retained earnings, subordinated debt and reserve fund. Modelling of these relations has allowed to obtain a system of equations. This system synthesizes linear regression models of changing the capital of regional banks in the context of their sourcing. The results of this study are significant for theoretical justification and practical development of a balanced financial policy of regional banks. Our research will contribute to

  2. Russia's black carbon emissions: focus on diesel sources

    Directory of Open Access Journals (Sweden)

    N. Kholod

    2016-09-01

    Full Text Available Black carbon (BC is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder. Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  3. Determining the source region of auroral emissions in the prenoon oval using coordinated Polar BEAR UV-imaging and DMSP particle measurements

    International Nuclear Information System (INIS)

    Newell, P.T.; Meng, C.I.; Huffman, R.E.

    1992-01-01

    The Polar Beacon Experiment and Auroral Research (Polar BEAR) satellite included the capability for imaging the dayside auroral oval in full sunlight at several wavelengths. The authors compare particle observations from the DMSP F7 satellite during dayside auroral oval crossings with approximately simultaneous Polar BEAR 1,356-angstrom images to determine the magnetospheric source region of the dayside auroral oval. The source region is determined from the Defense Meteorological Satellite Program (DMSP) particle data, according to recent work concerning the classification and identification of precipitation source regions. The close DMSP/Polar BEAR coincidences all occur when the former satellite is located between 0945 and 1,000 MLT. The authors found instances of auroral arcs mapping to each of several different regions, including the boundary plasma sheet, the low-latitude boundary layer, and the plasma mantle. However, the results indicate that about half the time the most prominent auroral arcs are located at the interfaces between distinct plasma regions, at least at the local time studied here

  4. Emission sources in scanning electron microscopy

    International Nuclear Information System (INIS)

    Malkusch, W.

    1990-01-01

    Since the beginning of the commercial scanning electron microscopy, there are two kinds of emission sources generally used for generation of the electron beam. The first group covers the cathodes heated directly and indirectly (tungsten hair-needle cathodes and lanthanum hexaboride single crystals, LaB 6 cathode). The other group is the field emission cathodes. The advantages of the thermal sources are their low vacuum requirement and their high beam current which is necessary for the application of microanalysis units. Disadvantages are the short life and the low resolution. Advantages of the field emission cathode unambiguously are the possibilities of the very high resolution, especially in the case of low acceleration voltages. Disadvantages are the necessary ultra-high vacuum and the low beam current. An alternative source is the thermally induced ZrO/W field emission cathode which works stably as compared to the cold field emission and does not need periodic flashing for emitter tip cleaning. (orig.) [de

  5. Mobile Source Emissions Regulatory Compliance Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Mobile Source Emissions Regulatory Compliance Data Inventory data asset contains measured summary compliance information on light-duty, heavy-duty, and non-road...

  6. An emission inventory of sulfur from anthropogenic sources in Antarctica

    Directory of Open Access Journals (Sweden)

    S. V. Shirsat

    2009-05-01

    Full Text Available This paper presents first results of a comprehensive emission inventory of chemical species from anthropogenic activities (power generation, vehicles, ships and aircraft in Antarctica, covering the 2004–2005 period.

    The inventory is based on estimated emission rates of fuel consumption provided by some of the Antarctic research stations. Since the emission sources have different modes of operation and use a variety of fuel, the emission flux rate of chemical species is calculated by multiplying the fuel consumption value with the density of fuel and appropriate emission factors. A separate inventory is prepared for each anthropogenic emission source in Antarctica.

    Depending on the type of operation, emission rates of SO2, and BC (Black Carbon, from shipping only have been calculated using the above technique. However, only results of SO2 emissions from each source are presented here. Emission inventory maps of SO2 depicting the track/path taken by each mobile source are shown. The total annual SO2 is 158 Mg from power generation and vehicle operations, 3873 Mg from ships and 56 Mg from aircraft for 2004–2005 and these values undergo strong seasonality following the human activity in Antarctica. Though these figures are small when compared to the emissions at most other regions of the world, they are an indication that human presence in Antarctica leads to at least local pollution. The sources are mainly line and point sources and thus the local pollution potentially is relatively strong.

  7. Investigations concerning the source term for the emission of fission products and transuranic elements from the highly radioactive waste in the temperature region between 200 and 11000C

    International Nuclear Information System (INIS)

    Baumgartner, F.; Krebs, K.; Merte, B.

    1984-04-01

    Starting point of these investigations was the research report 290 of the former Institute for Reactor Safety, Cologne. The largely incorrect assumptions made in the chemical statement led to high radioactive doses not only for the closer, but also for the further surroundings of a reprocessing plant in case that the cooling system of the fuel element storage or the storage tank for the highly radioactive waste (HAW) should become inoperative for an extended period of time. However, as a result of this temperature region which we used in our experiments, the investigations concerning the source term of the HAW between 1100 and 1200 0 C became interesting again, because a glass melt of about 1100 0 C is used during the PAMELA-process for the vitrification of the HAW. The aqueous HAW-solution is thereby poured onto a hot glass melt. The solution thereby dries up, the HAW-salt is calcined and finally sinks into the glass melt. From today's point of view an investigation concerning the source term of the fission products and transuranic elements from the HAW at 1100 0 C therefore provides information regarding the fission product- and transuranic element volatilization within the melting furnace during the vitrification process. The results may now therefore also be considered a contribution for the layout of the off-gas purification system during the PAMELA-process

  8. Calendar Year 2016 Stationary Source Emissions Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    The City of Albuquerque (COA) Environmental Health Department Air Quality Program has issued stationary source permits and registrations the Department of Energy/Sandia Field Office for operations at the Sandia National Laboratories/New Mexico. This emission inventory report meets the annual reporting compliance requirements for calendar year (CY) 2016 as required by the COA.

  9. Regional landfills methane emission inventory in Malaysia.

    Science.gov (United States)

    Abushammala, Mohammed F M; Noor Ezlin Ahmad Basri; Basri, Hassan; Ahmed Hussein El-Shafie; Kadhum, Abdul Amir H

    2011-08-01

    The decomposition of municipal solid waste (MSW) in landfills under anaerobic conditions produces landfill gas (LFG) containing approximately 50-60% methane (CH(4)) and 30-40% carbon dioxide (CO(2)) by volume. CH(4) has a global warming potential 21 times greater than CO(2); thus, it poses a serious environmental problem. As landfills are the main method for waste disposal in Malaysia, the major aim of this study was to estimate the total CH(4) emissions from landfills in all Malaysian regions and states for the year 2009 using the IPCC, 1996 first-order decay (FOD) model focusing on clean development mechanism (CDM) project applications to initiate emission reductions. Furthermore, the authors attempted to assess, in quantitative terms, the amount of CH(4) that would be emitted from landfills in the period from 1981-2024 using the IPCC 2006 FOD model. The total CH(4) emission using the IPCC 1996 model was estimated to be 318.8 Gg in 2009. The Northern region had the highest CH(4) emission inventory, with 128.8 Gg, whereas the Borneo region had the lowest, with 24.2 Gg. It was estimated that Pulau Penang state produced the highest CH(4) emission, 77.6 Gg, followed by the remaining states with emission values ranging from 38.5 to 1.5 Gg. Based on the IPCC 1996 FOD model, the total Malaysian CH( 4) emission was forecast to be 397.7 Gg by 2020. The IPCC 2006 FOD model estimated a 201 Gg CH(4) emission in 2009, and estimates ranged from 98 Gg in 1981 to 263 Gg in 2024.

  10. Agricultural sources of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Rochette, P.

    2003-01-01

    The author described different sources of greenhouse gas emissions resulting from agricultural activities and the process by which carbon dioxide, nitrous oxide, and methane are generated on Canadian farms. The author also proposed some practices that would contribute to the reduction of greenhouse gas emissions. A brief description of the greenhouse effect was also provided with special emphasis on the agricultural sector. In 1996, the Canadian agricultural sector was responsible for approximately 10 per cent of greenhouse gas emissions in the country. Given the increase in farm animals and more intensive agricultural activities, it is estimated that greenhouse gas emissions generated by the agricultural sector will increase by 20 per cent by 2010 if current practices remain in effect. The most optimistic scenarios indicate that the agricultural sector could achieve or even exceed Canada's Kyoto Protocol commitments mainly through organic material sequestration in soils. The possibility for farmers to sell greenhouse gas credits could motivate farmers into adopting various practices that reduce emissions of greenhouse gases. However, the author indicated that the best motivation for farmers is the fact that adopting such practices would also lead to more efficient agricultural production. 5 refs., 4 figs

  11. Krakow conference on low emissions sources: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, B.L.; Butcher, T.A. [eds.

    1995-12-31

    The Krakow Conference on Low Emission Sources presented the information produced and analytical tools developed in the first phase of the Krakow Clean Fossil Fuels and Energy Efficiency Program. This phase included: field testing to provide quantitative data on missions and efficiencies as well as on opportunities for building energy conservation; engineering analysis to determine the costs of implementing pollution control; and incentives analysis to identify actions required to create a market for equipment, fuels, and services needed to reduce pollution. Collectively, these Proceedings contain reports that summarize the above phase one information, present the status of energy system management in Krakow, provide information on financing pollution control projects in Krakow and elsewhere, and highlight the capabilities and technologies of Polish and American companies that are working to reduce pollution from low emission sources. It is intended that the US reader will find in these Proceedings useful results and plans for control of pollution from low emission sources that are representative of heating systems in central and Eastern Europe. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  12. Sectoral and regional expansion of emissions trading

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Christoph; Bouwe, Dijkstra; Rosendahl, Knut Einar

    2011-07-01

    We consider an international emissions trading scheme with partial sectoral and regional coverage. Sectoral and regional expansion of the trading scheme is beneficial in aggregate, but not necessarily for individual countries. We simulate international CO{sub 2} emission quota markets using marginal abatement cost functions and the Copenhagen 2020 climate policy targets for selected countries that strategically allocate emissions in a bid to manipulate the quota price. Quota exporters and importers generally have conflicting interests about admitting more countries to the trading coalition, and our results indicate that some countries may lose substantially when the coalition expands in terms of new countries. For a given coalition, expanding sectoral coverage makes most countries better off, but some countries (notably the USA and Russia) may lose out due to loss of strategic advantages. In general, exporters tend to have stronger strategic power than importers.(Author)

  13. High Efficiency Light Emission Through Carrier Localization in AlGaN Alloys and Active Regions: Toward Viable Ultraviolet Light Sources for the Objective Force Warrior

    National Research Council Canada - National Science Library

    Wraback, M; Shen, H; Collins, C. J; Sampath, A. V; Garrett, G. A; Sarney, W. L; Nikiforov, A. Y; Cargill, G. S; Dierolf, V

    2004-01-01

    ...) comparable to that seen in low defect density (̂10(exp 8)/sq cm) GaN. Room temperature monochromatic scanning cathodoluminescence images at the red-shifted peak reveal spatially non-uniform emission similar to that observed in In(Al...

  14. Infrared emission from galactic H II regions

    International Nuclear Information System (INIS)

    Zeilik, M. II.

    1975-01-01

    Near-infrared observations are presented of selected galactic HII regions (especially G45.5 + 0.1, G45.1 + 0.1, S88, and W3A) to infer the physical conditions of the dust responsible for the 2 to 25 micron emission. Two-component dust models are developed to match the observed characteristics of the infrared emission from HII regions. The dust, assumed to be bare and well-mixed with the gas in the ionized volume, consists of large (0.1 micron) ''silicate'' grains and small (0.2 micron) graphite grains. The ''silicates'' have their cosmic maximum abundance with respect to hydrogen, but the graphite grains are depleted by factors of 25 to 100 in mass. The Lyman-alpha radiation field predominately heats the ''silicate'' grains, which produce almost all the emission at 20 microns and most of it from 8 to 13 microns. The stellar radiation field predominately heats the graphite grains, which generate most of the emission at 3.5 and 5 microns. Roughly half of the observed 2 to 25 micron luminosity (when corrected for extinction) arises from Lyman-alpha photons and the other half from the Lyman and Balmer continua. The grains are too hot to provide significant emission in the far-infrared; this probably arises from a dust shell around the HII region. This two-component model predicts that HII regions should have smaller sizes at 3.5 and 5 microns than at 10 and 20 microns. The emissivities of fine-structure infrared lines for the regions are calculated. In the one instance where observations of such lines have been published (G29.9 - 0.0), predicted emissivities fall below those observed, especially for the 12.86-micron line of NeII. The discrepancy probably arises from an incorrect modeling of the region's ionization structure, but it might also reflect variations in elemental abundances or deficiencies in model stellar atmospheres for hot stars

  15. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories

    Science.gov (United States)

    Steenhuisen, Frits; Wilson, Simon J.

    2015-07-01

    Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important sectors and industries responsible for emissions at a national level; however, to be useful for air transport modelling, more precise information on the locations of emission is required. This paper describes the methodology applied, and the results of work that was conducted to assign anthropogenic mercury emissions to point sources as part of geospatial mapping of the 2010 global anthropogenic mercury emissions inventory prepared by AMAP/UNEP. Major point-source emission sectors addressed in this work account for about 850 tonnes of the emissions included in the 2010 inventory. This work allocated more than 90% of these emissions to some 4600 identified point source locations, including significantly more point source locations in Africa, Asia, Australia and South America than had been identified during previous work to geospatially-distribute the 2005 global inventory. The results demonstrate the utility and the limitations of using existing, mainly public domain resources to accomplish this work. Assumptions necessary to make use of selected online resources are discussed, as are artefacts that can arise when these assumptions are applied to assign (national-sector) emissions estimates to point sources in various countries and regions. Notwithstanding the limitations of the available information, the value of this procedure over alternative methods commonly used to geo-spatially distribute emissions, such as use of 'proxy' datasets to represent emissions patterns, is illustrated. Improvements in information that would facilitate greater use of these methods in future work to assign emissions to point-sources are discussed. These include improvements to both national

  16. Modelling nitrous oxide emissions from cropland at the regional scale

    Directory of Open Access Journals (Sweden)

    Gabrielle Benoît

    2006-11-01

    Full Text Available Arable soils are a large source of nitrous oxide (N2O emissions, making up half of the biogenic emissions worldwide. Estimating their source strength requires methods capable of capturing the spatial and temporal variability of N2O emissions, along with the effects of crop management. Here, we applied a process-based model, CERES, with geo-referenced input data on soils, weather, and land use to map N2O emissions from wheat-cropped soils in three agriculturally intensive regions in France. Emissions were mostly controlled by soil type and local climate conditions, and only to a minor extent by the doses of fertilizer nitrogen applied. As a result, the direct emission factors calculated at the regional level were much smaller (ranging from 0.0007 to 0.0033 kg N2O-N kg–1 N than the value of 0.0125 kg N2O-N kg–1 N currently recommended in the IPCC Tier 1 methodology. Regional emissions were far more sensitive to the soil microbiological parameter s governing denitrification and its fraction evolved as N2O, soil bulk density, and soil initial inorganic N content. Mitigation measures should therefore target a reduction in the amount of soil inorganic N upon sowing of winter crops, and a decrease of the soil N2O production potential itself. From a general perspective, taking into account the spatial variability of soils and climate thereby appears necessary to improve the accuracy of national inventories, and to tailor mitigation strategies to regional characteristics. The methodology and results presented here may easily be transferred to winter oilseed rape, whose has growing cycle and fertilser requirements are similar.

  17. Identification of emission sources of umbral flashes using phase congruency

    International Nuclear Information System (INIS)

    Feng Song; Yang Yun-Fei; Ji Kai-Fan; Yu Lan

    2014-01-01

    The emission sources of umbral flashes (UFs) are believed to be closely related to running umbral and penumbral waves, and are concluded to be associated with umbral dots in the solar photosphere. Accurate identification of emission sources of UFs is crucial for investigating these physical phenomena and their inherent relationships. A relatively novel model of shape perception, namely phase congruency (PC), uses phase information in the Fourier domain to identify the geometrical shape of the region of interest in different intensity levels, rather than intensity or gradient. Previous studies indicate that the model is suitable for identifying features with low contrast and low luminance. In the present paper, we applied the PC model to identify the emission sources of UFs and to locate their positions. For illustrating the high performance of our proposed method, two time sequences of Ca II H images derived from the Hinode/SOT on 2010 August 10 and 2013 August 20 were used. Furthermore, we also compared these results with the analysis results that are identified by the traditional/classical identification methods, including the gray-scale adjusted technique and the running difference technique. The result of our analysis demonstrates that our proposed method is more accurate and effective than the traditional identification methods when applied to identifying the emission sources of UFs and to locating their positions. (research papers)

  18. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources

    Science.gov (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  19. Dynamical structure of hadron emission sources

    CERN Document Server

    Zhao Xi; Zhao Shu Song

    2000-01-01

    NA22 experimental data of the triplet seagull effects show that the Doppler effects of hadron emission sources exist exactly in hadron- hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ)/sup nu /K/sub nu / (aQ) distributions (generalized functions). The dynamical structure of a hadron emission source is described by the (aQ)/sup nu /K/sub nu / (aQ) distributions. The anomalous dimensions of the pionic quantum fields are gamma /sub B/(g/sub R/)=-0.045+or-0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter epsilon =4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous gamma /sub B/(g/sub R/) of the quantum fields for the regularization. (-2 gamma /sub B/(g/sub R/) to or from epsilon /2=1/ln( Lambda /sup 2//m /sup 2/) Lambda to infinity ). (26 refs).

  20. Dynamical structure of hadron emission sources

    International Nuclear Information System (INIS)

    Zhao Xi; Huang Bangrong; Zhao Shusong

    2000-01-01

    NA22 experimental data of the triplet seagull effects show that the Doppler effects of the hadron emission sources exist exactly in the hadron-hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ) ν K ν (aQ) distributions (Generalized functions). The dynamical structure of a hadron emission source is described by the (aQ) ν K ν (aQ) distributions. The anomalous dimensions of the pionic quantum fields are γ B (g R ) = - 0.045 +- 0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter ε = 4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous γ B (g R ) of the quantum fields for the regularization. (-2γ B (g R )↔ε/2 1/ln(Λ 2 /m 2 )Λ→∞)

  1. Noise source emissions, Richton Dome site, Mississippi

    International Nuclear Information System (INIS)

    1987-01-01

    Noise source data and use factors for modeling the environmental noise environment expected from salt-site repository activity were provided by Battelle Columbus Division. This report has been prepared for the purpose of documenting the development of the data provided to the Repository Project Management (RPM) organization. The data provided encompasses all phases of activity, from site preparation through construction of the exploratory shaft facility (ESF). Noise environments expected from construction and operation of transportation corridors associated with the activity were also modeled. Data for the construction of transportation corridors were provided. The equipment inventory, including sound-power levels for each item is included as Appendix A. Emission source terms provided by Parsons Brinckerhoff/PB-KBB for the ESF were used as a basis for the noise source emission inventory development. Where available, research results containing complete spectra were used. In cases where complete data were not available, a sound-pressure spectrum was synthesized from a characteristic spectrum shape from a similar piece of equipment. For example, a front-shovel excavator might be approximated by data from a front-end loader of similar horsepower range. Sound-power-level spectra were then calculated from the sound-pressure-level data. 14 refs

  2. ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Tomoya; Matsumoto, Naoko [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka-shi, Tokyo 181-8588 (Japan); Machida, Masahiro N.; Matsushita, Yuko [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395 (Japan); Motogi, Kazuhito; Honma, Mareki [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Hoshigaoka2-12, Mizusawa-ku, Oshu-shi, Iwate 023-0861 (Japan); Kim, Mi Kyoung [Korea Astronomy and Space Science Institute, Hwaam-dong 61-1, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Burns, Ross A., E-mail: tomoya.hirota@nao.ac.jp [Joint Institute for VLBI in Europe, Postbus 2, 7990 AA, Dwingeloo (Netherlands)

    2016-12-20

    We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperature is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.

  3. H2O sources in regions of star formation

    International Nuclear Information System (INIS)

    Lo, K.Y.; Burke, B.F.; Haschick, A.D.

    1975-01-01

    Regions and objects believed to be in early stages of stellar formation have been searched for H 2 O 22-GHz line emission with the Haystack 120-foot (37 m) telescope. The objects include radio condensations, infrared objects in H ii regions, and Herbig-Haro objects. Nine new H 2 O sources were detected in the vicinity of such objects, including the Sharpless H ii regions S152, S235, S255, S269, G45.1+0.1, G45.5+0.1, AFCRL infrared object No. 809--2992, and Herbig-Haro objects 1 and 9. The new H 2 O sources detected in H ii regions are associated, but not coincident, with the the radio condensations. Water vapor line emission was detected in approx.25 percent of the regions searched. The association of H 2 O sources with regions of star formation is taken to be real. The spatial relationship of H 2 O sources to infrared objects, radio condensations, class I OH sources, and molecular clouds are discussed. The suggestion is made that an H 2 O source may be excited by a highly obscured star of extreme youth

  4. Emission metrics for quantifying regional climate impacts of aviation

    Directory of Open Access Journals (Sweden)

    M. T. Lund

    2017-07-01

    Full Text Available This study examines the impacts of emissions from aviation in six source regions on global and regional temperatures. We consider the NOx-induced impacts on ozone and methane, aerosols and contrail-cirrus formation and calculate the global and regional emission metrics global warming potential (GWP, global temperature change potential (GTP and absolute regional temperature change potential (ARTP. The GWPs and GTPs vary by a factor of 2–4 between source regions. We find the highest aviation aerosol metric values for South Asian emissions, while contrail-cirrus metrics are higher for Europe and North America, where contrail formation is prevalent, and South America plus Africa, where the optical depth is large once contrails form. The ARTP illustrate important differences in the latitudinal patterns of radiative forcing (RF and temperature response: the temperature response in a given latitude band can be considerably stronger than suggested by the RF in that band, also emphasizing the importance of large-scale circulation impacts. To place our metrics in context, we quantify temperature change in four broad latitude bands following 1 year of emissions from present-day aviation, including CO2. Aviation over North America and Europe causes the largest net warming impact in all latitude bands, reflecting the higher air traffic activity in these regions. Contrail cirrus gives the largest warming contribution in the short term, but remain important at about 15 % of the CO2 impact in several regions even after 100 years. Our results also illustrate both the short- and long-term impacts of CO2: while CO2 becomes dominant on longer timescales, it also gives a notable warming contribution already 20 years after the emission. Our emission metrics can be further used to estimate regional temperature change under alternative aviation emission scenarios. A first evaluation of the ARTP in the context of aviation suggests that further work to account

  5. Water vapor emission from H II regions and infrared stars

    International Nuclear Information System (INIS)

    Cato, B.T.; Ronnang, B.O.; Rydbeck, O.E.H.; Lewin, P.T.; Yngvesson, K.S.; Cardiasmenos, A.G.; Shanley, J.F.

    1976-01-01

    The spatial structure of water vapor microwave line emission has been investigated with moderate angular resolution in several well-known H II regions. New H 2 O sources have been with infrared (1R) sources. One of these sources, IRC: 20411, has been investigated at optical wavelengths. It is found to be of spectral class M3-M5 and by indirect evidence the luminosity class is preliminarily determined to Ib. The distance is estimated to be approx.2 kpc, and the star must be in front of the dust complex which obscures W28 A2. In NGC 7538 new high-velocity features have been discovered. Two new weak water vapor masers, G30.1: 0.7 and G32.8: 0.3, have been detected in a search among eight class II OH/IR sources. H 2 O emission coinciding with the low-velocity OH features of VY Canis Majoris has also been detected. A search for local thermodynamic equilibrium (LTE) water-vapor line emission in molecular clouds associated with H II regions is also reported. No line was detected with the utilized sensitivity. The physical implications of this are discussed and an upper limit of the H 2 O column density has been estimated. Gaussian analysis of the strong, narrow feature in the spectrum of ON 1 indicates a possible presence of two hyperfine components, viz., F→F'=7→6 and 6→5

  6. X-Ray Emission from Compact Sources

    Energy Technology Data Exchange (ETDEWEB)

    Cominsky, L

    2004-03-23

    This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

  7. Source Region Identification Using Kernel Smoothing

    Science.gov (United States)

    As described in this paper, Nonparametric Wind Regression is a source-to-receptor source apportionment model that can be used to identify and quantify the impact of possible source regions of pollutants as defined by wind direction sectors. It is described in detail with an exam...

  8. 75 FR 68296 - Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources...

    Science.gov (United States)

    2010-11-05

    ... Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources: Sewage... ``Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources: Sewage... performance standards for new units and emission guidelines for existing units for specific categories of...

  9. Regional variation in the chemical composition of winter snow pack and terricolous lichens in relation to sources of acid emissions in the Usa river basin, northeast European Russia

    International Nuclear Information System (INIS)

    Walker, T.R.; Crittenden, P.D.; Young, S.D.

    2003-01-01

    The chemistry of winter snow pack and terricolous lichens indicate pollution distribution in Arctic Russia. - The chemical composition of snow and terricolous lichens was determined along transects through the Subarctic towns of Vorkuta (130 km west-east), Inta (240 km south-north) and Usinsk (140 km, southwest-northeast) in the Usa river basin, northeast European Russia. Evidence of pollution gradients was found on two spatial scales. First, on the Inta transect, northward decreases in concentrations of N in the lichen Cladonia stellaris (from 0.57 mmol N g -1 at 90 km south to 0.43 mmol N g -1 at 130 km north of Inta) and winter deposition of non-sea salt sulphate (from 29.3 to 12.8 mol ha -1 at 90 km south and 110 km north of Inta, respectively) were attributed to long range transport of N and S from lower latitudes. Second, increased ionic content (SO 4 2- , Ca 2+ , K + ) and pH of snow, and modified N concentration and the concentration ratios K + :Mg 2+ and K + : (Mg 2+ +Ca 2+ ) in lichens (Cladonia arbuscula and Flavocetraria cucullata) within ca. 25-40 km of Vorkuta and Inta were largely attributed to local deposition of alkaline coal ash. Total sulphate concentrations in snow varied from ca. 5 μmol l -1 at remote sites to ca. 19 μmol l -1 near Vorkuta. Nitrate concentration in snow (typically ca. 9 μmol l -1 ) did not vary with proximity to perceived pollution sources

  10. Mobile Source Emissions Regulatory Compliance Data Inventory

    Science.gov (United States)

    The Mobile Source Emissions Regulatory Compliance Data Inventory data asset contains measured summary compliance information on light-duty, heavy-duty, and non-road engine manufacturers by model, as well as fee payment data required by Title II of the 1990 Amendments to the Clean Air Act, to certify engines for sale in the U.S. and collect compliance certification fees. Data submitted by manufacturers falls into 12 industries: Heavy Duty Compression Ignition, Marine Spark Ignition, Heavy Duty Spark Ignition, Marine Compression Ignition, Snowmobile, Motorcycle & ATV, Non-Road Compression Ignition, Non-Road Small Spark Ignition, Light-Duty, Evaporative Components, Non-Road Large Spark Ignition, and Locomotive. Title II also requires the collection of fees from manufacturers submitting for compliance certification. Manufacturers submit data on an annual basis, to document engine model changes for certification. Manufacturers also submit compliance information on already certified in-use vehicles randomly selected by the EPA (1) year into their life and (4) years into their life to ensure that emissions systems continue to function appropriately over time.The EPA performs targeted confirmatory tests on approximately 15% of vehicles submitted for certification. Confirmatory data on engines is associated with its corresponding submission data to verify the accuracy of manufacturer submission beyond standard business rules.Section 209 of the 1990 Amendments to the Clea

  11. A New Global Open Source Marine Hydrocarbon Emission Site Database

    Science.gov (United States)

    Onyia, E., Jr.; Wood, W. T.; Barnard, A.; Dada, T.; Qazzaz, M.; Lee, T. R.; Herrera, E.; Sager, W.

    2017-12-01

    Hydrocarbon emission sites (e.g. seeps) discharge large volumes of fluids and gases into the oceans that are not only important for biogeochemical budgets, but also support abundant chemosynthetic communities. Documenting the locations of modern emissions is a first step towards understanding and monitoring how they affect the global state of the seafloor and oceans. Currently, no global open source (i.e. non-proprietry) detailed maps of emissions sites are available. As a solution, we have created a database that is housed within an Excel spreadsheet and use the latest versions of Earthpoint and Google Earth for position coordinate conversions and data mapping, respectively. To date, approximately 1,000 data points have been collected from referenceable sources across the globe, and we are continualy expanding the dataset. Due to the variety of spatial extents encountered, to identify each site we used two different methods: 1) point (x, y, z) locations for individual sites and; 2) delineation of areas where sites are clustered. Certain well-known areas, such as the Gulf of Mexico and the Mediterranean Sea, have a greater abundance of information; whereas significantly less information is available in other regions due to the absence of emission sites, lack of data, or because the existing data is proprietary. Although the geographical extent of the data is currently restricted to regions where the most data is publicly available, as the database matures, we expect to have more complete coverage of the world's oceans. This database is an information resource that consolidates and organizes the existing literature on hydrocarbons released into the marine environment, thereby providing a comprehensive reference for future work. We expect that the availability of seafloor hydrocarbon emission maps will benefit scientific understanding of hydrocarbon rich areas as well as potentially aiding hydrocarbon exploration and environmental impact assessements.

  12. A Cherenkov-emission Microwave Source*

    Science.gov (United States)

    Lai, C. H.; Yoshii, J.; Katsouleas, T.; Hairapetian1, G.; Joshi, C.; Mori, W.

    1996-11-01

    In an unmagnetized plasma, there is no Cherenkov emission because the phase velocity vf of light is greater than c. In a magnetized plasma, the situation is completely changed. There is a rich variety of plasma modes with phase velocities vf 2 c which can couple to a fast particle. In the magnetized plasma, a fast particle, a particle beam, or even a short laser pulse excites a Cherenkov wake that has both electrostatic and electromagnetic components. Preliminary simulations indicate that at the vacuum/plasma boundary, the wake couples to a vacuum microwave with an amplitude equal to the electromagnetic component in the plasma. For a weakly magnetized plasma, the amplitude of the out-coupled radiation is approximately wc/wp times the amplitude of the wake excited in the plasma by the beam, and the frequency is approximately wp. Since plasma wakes as high as a few GeV/m are produced in current experiments, the potential for a high-power (i.e., GWatt) coherent microwave to THz source exists. In this talk, a brief overview of the scaling laws will be presented, followed by 1-D and 2-D PIC simulations. Prospects for a tuneable microwave source experiment based on this mechanism at the UCLA plasma wakefield accelerator facility will be discussed. *Work supported by AFOSR Grant #F4 96200-95-0248 and DOE Grant # DE-FG03-92ER40745. 1Now at Hughes Research Laboratories, Malibu, CA 90265

  13. A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    V. E. Fioletov

    2016-09-01

    Full Text Available Sulfur dioxide (SO2 measurements from the Ozone Monitoring Instrument (OMI satellite sensor processed with the new principal component analysis (PCA algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr−1 to more than 4000 kt yr−1 of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources; power plants (297; smelters (53; and sources related to the oil and gas industry (65. The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005–2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30 % of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80 % over the 2005–2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr−1 and not detected by OMI.

  14. A Global Catalogue of Large SO2 Sources and Emissions Derived from the Ozone Monitoring Instrument

    Science.gov (United States)

    Fioletov, Vitali E.; McLinden, Chris A.; Krotkov, Nickolay; Li, Can; Joiner, Joanna; Theys, Nicolas; Carn, Simon; Moran, Mike D.

    2016-01-01

    Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr(exp -1) to more than 4000 kt yr(exp -1) of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005- 2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30% of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80% over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr(exp -1) and not detected by OMI.

  15. Megacity and country emissions from combustion sources-Buenos Aires-Argentina

    Science.gov (United States)

    Dawidowski, L.; Gomez, D.; Matranga, M.; D'Angiola, A.; Oreggioni, G.

    2010-12-01

    Historic time series (1970-2006) emissions of greenhouse gases and air pollutants arising from stationary and mobile combustion sources were estimated at national level for Argentina and at regional level for the metropolitan area of Buenos Aires (MABA). All emissions were estimated using a bottom-up approach following the IPCC good practice guidance. For mobile sources, national emissions include all transport categories. Regional emissions account thus far only for on-road. For national emissions, methodologies and guidance by the IPCC were employed, applying the highest possible tier and using: i)country-specific emission factors for carbon and sulphur and technology-based information for other species, ii)activity data from energy balance series (1970-2007), and iii)complementary information concerning the non-energy use of fuels. Regional emissions in 2006 were estimated in-depth using a technology-based approach for the city of Buenos Aires (CBA) and the 24 neighboring districts composing the MABA. A regional emissions factors database was developed to better characterize Latin American fleets and driving conditions employing COPERT III-IV algorithms and emission factors measured in dynamometers and circulating vehicles in Argentina, Brazil, Chile and Colombia. Past emissions were back estimated from 2005 to 1970 using the best available information, which differs greatly among categories, spatial disaggregation and time periods. The time series of stationary and mobile combustion sources at the national and regional level allowed the identification of distinct patterns. National greenhouse gas emissions in 2006 amounted to ~ 150 million ton CO2-equivalent, 70% of which were contributed by stationary sources. On-road transport was the major contributor within mobile sources (28.1 %). The increasing emissions trends are dominated by on-road transport, agriculture and residential categories while the variability is largely associated with energy industries

  16. Air Emissions Sources, Charts and Maps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Air Emissions provides (1) interactive charts supporting national, state, or county charts, (2) county maps of criteria air pollutant emissions for a state, and (3)...

  17. 76 FR 18407 - Standards of Performance for New Stationary Sources and Emissions Guidelines for Existing Sources...

    Science.gov (United States)

    2011-04-04

    ... Standards of Performance for New Stationary Sources and Emissions Guidelines for Existing Sources: Hospital... performance standards and emissions guidelines for hospital/medical/infectious waste incinerators by the U.S... amendments to the new source performance standards and emissions guidelines, correcting inadvertent drafting...

  18. Regional emission balances for Belgium in the year 1990

    International Nuclear Information System (INIS)

    Bouma, J.W.J.

    1993-01-01

    Regional emission balances are vital with regard to an efficient energy and environmental policy. The emission balances were calculated on the basis of a top-down approach, making use of the regional energy balances for the three regions in Belgium (Wallonie, Brussels, Flanders regions). The emissions of NO X -, SO 2 -and CO 2 -gases in 1990 for the Flanders, the Wallonie and the Brussels region are presented. (A.S.)

  19. Development of unauthorized airborne emission source identification procedure

    Science.gov (United States)

    Shtripling, L. O.; Bazhenov, V. V.; Varakina, N. S.; Kupriyanova, N. P.

    2018-01-01

    The paper presents the procedure for searching sources of unauthorized airborne emissions. To make reasonable regulation decisions on airborne pollutant emissions and to ensure the environmental safety of population, the procedure provides for the determination of a pollutant mass emission value from the source being the cause of high pollution level and the search of a previously unrecognized contamination source in a specified area. To determine the true value of mass emission from the source, the minimum of the mean-root-square mismatch criterion between the computed and measured pollutant concentration in the given location is used.

  20. Emissions of acidifying air pollutants in the North West region of England

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, J.W.S.; Lindley, S.J.; Conlan, D.E. [Manchester Metropolitan University, Manchester (United Kingdom). Dept. of Environmental and Geographical Sciences

    1995-12-01

    Most estimates of emission are concerned with the nation state level. This paper discusses methods utilised in the estimates of emissions to the atmosphere of sulphur dioxide, volatile organic compounds and oxides of nitrogen from a densely populated and heavily industrialised region of the United Kingdom. Data on power generation from coal, industrial plant, fuel usage, air, sea and road transportation, and human population statistics have been integrated into a method to provide regional emission estimates. The resulting emission patterns are described in terms of sources and emission density. Spatial and temporal patterns are identified and major sources of emissions discussed in terms of national control programmes. Transportation is the dominant source of oxides of nitrogen emissions whilst power generation is the dominant source of sulphur dioxide. The relative importance of the North West as an emission source within the UK is assessed. The change in the strengths of acidifying emissions between 1987 and 1992 is discussed and the rate of change in emission magnitudes between the North West region and the UK as a whole compared. 9 refs., 4 tabs.

  1. Emissions of acidifying air pollutants in the North West region of England

    International Nuclear Information System (INIS)

    Longhurst, J.W.S.; Lindley, S.J.; Conlan, D.E.

    1995-01-01

    Most estimates of emission are concerned with the nation state level. This paper discusses methods utilised in the estimates of emissions to the atmosphere of sulphur dioxide, volatile organic compounds and oxides of nitrogen from a densely populated and heavily industrialised region of the United Kingdom. Data on power generation from coal, industrial plant, fuel usage, air, sea and road transportation, and human population statistics have been integrated into a method to provide regional emission estimates. The resulting emission patterns are described in terms of sources and emission density. Spatial and temporal patterns are identified and major sources of emissions discussed in terms of national control programmes. Transportation is the dominant source of oxides of nitrogen emissions whilst power generation is the dominant source of sulphur dioxide. The relative importance of the North West as an emission source within the UK is assessed. The change in the strengths of acidifying emissions between 1987 and 1992 is discussed and the rate of change in emission magnitudes between the North West region and the UK as a whole compared. 9 refs., 4 tabs

  2. California Air Resources board's mobil source emission reduction credit guidelines

    International Nuclear Information System (INIS)

    Dunwoody Lentz, C.; Werner, B.

    1993-01-01

    The California Air Resources Board has developed guidance for the generation and use of mobil source emission reduction credits. Mobil source credits can be used to improve air quality, or to mitigate increases in emissions associated with industrial and non-industrial sources. They are created by programs which reduce mobile source emission beyond the reductions required by federal, state, and local laws or air quality attainment plans. Significant amounts of credit can be generated by some types of programs which reduce mobile source emissions of oxides of nitrogen (NO x ) and reactive organic gases (ROG). Mobile source credit programs must be carefully structured to ensure that emission reductions are real, accurately quantified, enforceable, and have a defined life. Three potentially feasible programs for the creation of mobile source credits include accelerated retirement of older vehicles, purchase of low-emission buses, and purchase of zero-emission vehicles. These programs are evaluated for their ability to generate credit and to assess their cost effectiveness. Based on the examples presented, two methods of generating mobile source credits, the accelerated retirement of older vehicles and the purchase of low-emission buses, appear to be cost-effective when compared to other emission control measures

  3. Waveguide source of amplified spontaneous emission ASE 1550 nm

    International Nuclear Information System (INIS)

    Razik, M.; Budnicki, A.; Abramski, M.

    2003-01-01

    Light source of amplified spontaneous emission (ASE) type has been built on the base of double-clad waveguide doped with ytterbium and erbium. The characteristics and applications of the ASE source have been also presented

  4. High resolution of black carbon and organic carbon emissions in the Pearl River Delta region, China.

    Science.gov (United States)

    Zheng, Junyu; He, Min; Shen, Xingling; Yin, Shasha; Yuan, Zibing

    2012-11-01

    A high-resolution regional black carbon (BC) and organic carbon (OC) emission inventory for the year 2009 was developed for the Pearl River Delta (PRD) region, China, based on the collected activity data and the latest emission factors. PM(2.5), BC and OC emissions were estimated to be 303 kt, 39 kt and 31 kt, respectively. Industrial processes were major contributing sources to PM(2.5) emissions. BC emissions were mainly from mobile sources, accounting for 65.0%, while 34.1% of OC emissions were from residential combustion. The primary OC/BC ratios for individual cities in the PRD region were dependent on the levels of economic development due to differences in source characteristics, with high ratios in the less developed cities and low ratios in the central and southern developed areas. The preliminary temporal profiles were established, showing the highest OC emissions in winter and relatively constant BC emissions throughout the year. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3 km. Large amounts of BC emissions were distributed over the central-southern PRD city clusters, while OC emissions exhibited a relatively even spatial distribution due to the significant biomass burning emissions from the outlying area of the PRD region. Uncertainties in carbonaceous aerosol emissions were usually higher than in other primary pollutants like SO(2), NO(x), and PM(10). One of the key uncertainty sources was the emission factor, due to the absence of direct measurements of BC and OC emission rates. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. REGIONAL DRAINWATER MANAGEMENT: SOURCE CONTROL, AGROFORESTRY, AND EVAPORATION PONDS

    OpenAIRE

    Posnikoff, Judith F.; Knapp, Keith C.

    1996-01-01

    Source control is one way to address salinity and drainage problems in irrigated agriculture, and reuse of drainage flows on salt-tolerant crops or trees in agroforestry production is another. A regional model of agricultural production with drainwater reuse and disposal is developed. Deep percolation flows are controlled through choice of crop areas, irrigation systems, and applied-water quantities. Crop drainwater may by reused in agroforestry production, and residual emissions are disposed...

  6. Very high energy emission sources beyond the Galaxy

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Active Galactic Nuclei (AGN are considered as potential extragalactic sources of very and ultra high energy cosmic rays. According to theoretical predictions cosmic ray acceleration can take place at the shock created by the expanding cocoons around active galactic nuclei as well as at AGN jets. The measurements of AGN TeV spectra, the variability time scale of TeV emission can provide essential information on the dynamics of AGN jets, the localization of acceleration region and an estimation of its size. SHALON observations yielded data on extragalactic sources of different AGN types in the energy range of 800 GeV–100 TeV. The data from SHALON observations are compared with those from other experiments at high and very high energies.

  7. Outer heliospheric radio emissions. II - Foreshock source models

    Science.gov (United States)

    Cairns, Iver H.; Kurth, William S.; Gurnett, Donald A.

    1992-01-01

    Observations of LF radio emissions in the range 2-3 kHz by the Voyager spacecraft during the intervals 1983-1987 and 1989 to the present while at heliocentric distances greater than 11 AU are reported. New analyses of the wave data are presented, and the characteristics of the radiation are reviewed and discussed. Two classes of events are distinguished: transient events with varying starting frequencies that drift upward in frequency and a relatively continuous component that remains near 2 kHz. Evidence for multiple transient sources and for extension of the 2-kHz component above the 2.4-kHz interference signal is presented. The transient emissions are interpreted in terms of radiation generated at multiples of the plasma frequency when solar wind density enhancements enter one or more regions of a foreshock sunward of the inner heliospheric shock. Solar wind density enhancements by factors of 4-10 are observed. Propagation effects, the number of radiation sources, and the time variability, frequency drift, and varying starting frequencies of the transient events are discussed in terms of foreshock sources.

  8. Dynamic emission tomography of regional cerebral blood flow

    International Nuclear Information System (INIS)

    Lassen, N.A.

    1984-01-01

    The author reviews three tomographic methods for measuring the regional cerebral blood flow: single photon transmission tomography; dual photon emission tomography; and single photon emission tomography. The latter technique is discussed in detail. (Auth.)

  9. 75 FR 63259 - Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources...

    Science.gov (United States)

    2010-10-14

    ... Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources: Sewage... performance standards for new units and emission guidelines for existing units for specific categories of... standards and emission guidelines for large municipal waste combustion units, small municipal waste...

  10. Impact of emissions from the Los Angeles port region on San Diego air quality during regional transport events.

    Science.gov (United States)

    Ault, Andrew P; Moore, Meagan J; Furutani, Hiroshi; Prather, Kimberly A

    2009-05-15

    Oceangoing ships emit an estimated 1.2-1.6 million metric tons (Tg) of PM10 per year and represent a significant source of air pollution to coastal communities. As shown herein, ship and other emissions near the Los Angeles and Long Beach Port region strongly influence air pollution levels in the San Diego area. During time periods with regional transport, atmospheric aerosol measurements in La Jolla, California show an increase in 0.5-1 microm sized single particles with unique signatures including soot, metals (i.e., vanadium, iron, and nickel), sulfate, and nitrate. These particles are attributed to primary emissions from residual oil sourcessuch as ships and refineries, as well as traffic in the port region, and secondary processing during transport. During regional transport events, particulate matter concentrations were 2-4 times higher than typical average concentrations from local sources, indicating the health, environmental, and climate impacts from these emission sources must be taken into consideration in the San Diego region. Unless significant regulations are imposed on shipping-related activities, these emission sources will become even more important to California air quality as cars and truck emissions undergo further regulations and residual oil sources such as shipping continue to expand.

  11. Registration for the Hanford Site: Sources of radioactive emissions

    International Nuclear Information System (INIS)

    Silvia, M.J.

    1993-04-01

    This Registration Application serves to renew the registration for all Hanford Site sources of radioactive air emissions routinely reported to the State of Washington Department of Health (DOH). The current registration expires on August 15, 1993. The Application is submitted pursuant to the Washington Administrative Code (WAC) Chapter 246--247, and is consistent with guidance provided by DOH for renewal. The Application subdivides the Hanford Site into six major production, processing or research areas. Those six areas are in the 100 Area, 200 East Area, 200 West Area, 300 Area, 400 Area, and 600 Area. Each major group of point sources within the six areas listed above is represented by a Source Registration for Radioactive Air Emissions form. Annual emissions. for the sources are listed in the ''Radionuclide Air Emissions Report for the Hanford Site,'' published annually. It is a requirement that the following Statement of Compliance be provided: ''The radioactive air emissions from the above sources do meet the emissions standards contained in Chapter 173-480-040 WAC, Ambient Air Quality Standards and Emissions Limits for Radionuclides. As the Statement of Compliance pertains to this submittal, the phrase ''above sources'' is to be understood as meaning the combined air emissions from all sources registered by this submittal

  12. Mobile Source Emissions Regulatory Compliance Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Engine and Vehicle Compliance Certification and Fuel Economy Inventory contains measured emissions and fuel economy compliance information for all types of...

  13. Technical papers 2: regional evaluation of the greenhouse gases emissions bound to the energy; Cahiers techniques 2: bilan regional des emissions de gaz a effet de serre liees a l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The regional evaluation of the greenhouse gases emissions is realized in the framework of the climatic change fight. This technical paper aims to give regions information on the greenhouse gases emissions bound the the energy consumption. It provides a sectoral analysis in function of the energy sources and pollution sources. (A.L.B.)

  14. Source region of aurora kilometric radiation

    International Nuclear Information System (INIS)

    Morioka, Akira; Oya, Hiroshi; Tokumaru, Munetoshi

    1981-01-01

    This paper discusses the source region of aurora kilometric radiation (AKR), and the relation between the particle acceleration region and the polar ionosphere. The observation was made by the satellite 'Jikiken'. The AKR can be transferred to Jikiken without any interception, when the magnetic latitude of the apogee of the satellite is low. The spectra taken in June, 1980, were analyzed. The observed spectra showed the source regions of the AKR were in the aurora bands of the north and south poles. One example showed that the 200 kHz component of AKR from both poles showed the similar behavior, and another example showed that the AKR spectra from both poles showed different behavior. The altitude distribution of source regions was able to be obtained. The altitude of AKR-A was in the range between 6200 and 12000 km, and that of AKR-B was in the range of 3500 and 5200 km. The source of AKR-A was identified as that in the south hemisphere, and that of AKR-B in the north hemisphere. The asymmetric spectra of AKR-A and B showed that the spread and intensity of the electric field along magnetic lines generated above the polar ionosphere were related with the conditions of the ionosphere. (Kato, T.)

  15. Black carbon emissions from diesel sources in Russia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kholod, Nazar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Evans, Meredydd [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-31

    This report presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this report analyzes BC emissions from diesel on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the report also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC in 2014.

  16. Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions

    Science.gov (United States)

    Ganesan, A. L.; Stell, A. C.; Gedney, N.; Comyn-Platt, E.; Hayman, G.; Rigby, M.; Poulter, B.; Hornibrook, E. R. C.

    2018-04-01

    We present the first spatially resolved wetland δ13C(CH4) source signature map based on data characterizing wetland ecosystems and demonstrate good agreement with wetland signatures derived from atmospheric observations. The source signature map resolves a latitudinal difference of 10‰ between northern high-latitude (mean -67.8‰) and tropical (mean -56.7‰) wetlands and shows significant regional variations on top of the latitudinal gradient. We assess the errors in inverse modeling studies aiming to separate CH4 sources and sinks by comparing atmospheric δ13C(CH4) derived using our spatially resolved map against the common assumption of globally uniform wetland δ13C(CH4) signature. We find a larger interhemispheric gradient, a larger high-latitude seasonal cycle, and smaller trend over the period 2000-2012. The implication is that erroneous CH4 fluxes would be derived to compensate for the biases imposed by not utilizing spatially resolved signatures for the largest source of CH4 emissions. These biases are significant when compared to the size of observed signals.

  17. Danish emission inventories for road transport and other mobile sources

    DEFF Research Database (Denmark)

    Winther, M.

    gasoline catalyst cars. For other mobile sources the fuel use, CO2 and NOX emissions have decreased with 15% from 1985 to 2002, and the PM emission decline is in the order of 13%. For SO2 the emission drop is 74% from 1985 to 2002, due to gradually lower fuel sulphur contents. In the same period...... the emissions of NMVOC and CO has increased with 32 and 6%, mainly due to the increased use of small gasoline boats. Uncertainties for the emissions and trends have been estimated...

  18. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles

    Science.gov (United States)

    L.-W. Anthony Chen; Hans Moosmuller; W. Patrick Arnott; Judith C. Chow; John G. Watson; Ronald A. Susott; Ronald E. Babbitt; Cyle E. Wold; Emily N. Lincoln; Wei Min Hao

    2007-01-01

    Combustion of wildland fuels represents a major source of particulate matter (PM) and light-absorbing elemental carbon (EC) on a national and global scale, but the emission factors and source profiles have not been well characterized with respect to different fuels and combustion phases. These uncertainties limit the accuracy of current emission inventories, smoke...

  19. 40 CFR Table 1 to Subpart Nnnnnn... - HAP Emissions Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false HAP Emissions Sources 1 Table 1 to Subpart NNNNNN of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...: Chromium Compounds Pt. 63, Subpt. NNNNNN, Table 1 Table 1 to Subpart NNNNNN of Part 63—HAP Emissions...

  20. Regional analysis of S emission-deposition trends in North America from 1979 through 1988

    International Nuclear Information System (INIS)

    Shannon, J.D.

    1991-01-01

    Variations in SO x emissions weighted by a regional deposition model are shown to account for most of the variance in regionally averaged annual wet deposition (WD) and precipitation-weighted concentrations (PWCs) of sulfate in the United States and Canada during the period 1979--1988. Total emissions decreased about 15% during that time. For all sites combined, weighted emissions accounted for about two-thirds of the variance, with slightly better performance for PWC than for WD. Restricting the emission regions to the states containing the monitoring sites in each region led to very mixed results, with good explanation of WD and PWC variance in the Midwest and in all sites combined but generally poor explanation elsewhere, particularly for WD. In some regions, local emission densities are quite low, and most deposition would be expected to result from outside sources, so no strong relationship between local emission rates and deposition would be expected. Including annual meteorological variability in the emission weighting improved variance explanation in several of the peripheral regions, but reduced variance explanation elsewhere, particularly in the Midwest, the region of the highest emission density. 10 refs., 2 figs., 1 tab

  1. An atmospheric emission inventory of anthropogenic and biogenic sources for Lebanon

    Science.gov (United States)

    Waked, Antoine; Afif, Charbel; Seigneur, Christian

    2012-04-01

    A temporally-resolved and spatially-distributed emission inventory was developed for Lebanon to provide quantitative information for air pollution studies as well as for use as input to air quality models. This inventory covers major anthropogenic and biogenic sources in the region with 5 km spatial resolution for Lebanon and 1 km spatial resolution for its capital city Beirut and its suburbs. The results obtained for CO, NOx, SO2, NMVOC, NH3, PM10 and PM2.5 for the year 2010 were 563, 75, 62, 115, 4, 12, and 9 Gg, respectively. About 93% of CO emissions, 67% of NMVOC emissions and 52% of NOx emissions are calculated to originate from the on-road transport sector while 73% of SO2 emissions, 62% of PM10 emissions and 59% of PM2.5 emissions are calculated to originate from power plants and industrial sources. The spatial allocation of emissions shows that the city of Beirut and its suburbs encounter a large fraction of the emissions from the on-road transport sector while urban areas such as Zouk Mikael, Jieh, Chekka and Selaata are mostly affected by emissions originating from the industrial and energy production sectors. Temporal profiles were developed for several emission sectors.

  2. CHARACTERIZATION OF NITROUS OXIDE EMISSION SOURCES

    Science.gov (United States)

    The report presents a global inventory of nitrous oxide (N2O) based on reevaluation of previous estimates and additions of previously uninventoried source categories. (NOTE: N2O is both a greenhouse gas and a precursor of nitric oxide (NO) which destroys stratospheric ozone.) The...

  3. Effect of low emission sources on air quality in Cracow

    Energy Technology Data Exchange (ETDEWEB)

    Nedoma, J. [EKOPOL Environmental Engineering Studies and Design Office, Co. Ltd., Cracow (Poland)

    1995-12-31

    The paper presents calculation of power engineering low emission and results of stimulation of the effect of this emission on air quality in Cracow, Poland. It has been stated that the segment of low emission in central areas of the town makes up ca. 40% of the observed concentration of sulfur dioxide. Furthermore it has been stated that the capital investment must be concentrated in the central part of the town in order to reach noticeable improvement of air quality in Cracow. Neither the output of a separate power source nor the emission level and its individual harmful effect, but the location of the source and especially packing density of the sources must decide the priority of upgrading actions.

  4. Noise source emissions, Davis Canyon site, Utah

    International Nuclear Information System (INIS)

    1987-07-01

    This report has been prepared for the purpose of documenting the development of the data provided to the Repository Project Management (RPM) organization. The data provided encompass all phases of activity, from site preparation through the exploratory shaft facility (ESF) and repository construction and operation, and decommissioning. Noise environments expected from construction and operation of transportation corridors associated with the activity were also modeled. The data for the construction of transportation corridors were provided by Bechtel National, Inc. Use of the quietest equipment available within the proven state of the art was assumed, as was the use of acoustical enclosures to the extent practical. The programmatic assumptions are based on the noise-sensitive nature of the Canyonlands National Park. Another feature of the data is the use of 1/3-octave-band rather than 1/1-octave-band resolution of emission spectra. This was done to permit evaluation of audibility of sounds reaching the park

  5. emission stars in the region of Lynds 1228

    International Nuclear Information System (INIS)

    Ogura, Katsuo; Sato, Fumio.

    1990-01-01

    The dark cloud L1228 and its surrounding region have been surveyed for candidate pre-main-sequence stars by use of the Kiso Schmidt telescope with an objective prism. 69 Hα emission stars and 49 suspects have been found. Their celestial coordinates and rough estimates of their magnitude and color have been derived from the positions and image diameters on Palomar Sky Survey prints. Nine of them cluster in a small area near the central part of L1228, suggesting active star formation there in the near past. A star with a large color index lying in the northern part has been identified with an IRAS point source having a far-infrared spectrum of moderately low temperature. Preliminary 13 CO (J=1-0) line observations show that the star is embedded in the core of the molecular cloud. (author)

  6. Attributing Methane and Carbon Dioxide Emissions from Anthropogenic and Natural Sources Using AVIRIS-NG

    Science.gov (United States)

    Thorpe, A. K.; Frankenberg, C.; Thompson, D. R.; Duren, R. M.; Aubrey, A. D.; Bue, B. D.; Green, R. O.; Gerilowski, K.; Krings, T.; Borchardt, J.; Kort, E. A.; Sweeney, C.; Conley, S. A.; Roberts, D. A.; Dennison, P. E.; Ayasse, A.

    2016-12-01

    Imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) can map large regions with the high spatial resolution necessary to resolve methane (CH4) and carbon dioxide (CO2) emissions. This capability is aided by real time detection and geolocation of gas plumes, permitting unambiguous identification of individual emission source locations and communication to ground teams for rapid follow up. We present results from AVIRIS-NG flight campaigns in the Four Corners region (Colorado and New Mexico) and the San Joaquin Valley (California). Over three hundred plumes were observed, reflecting emissions from anthropogenic and natural sources. Examples of plumes will be shown for a number of sources, including CH4 from well completions, gas processing plants, tanks, pipeline leaks, natural seeps, and CO2 from power plants. Despite these promising results, an imaging spectrometer built exclusively for quantitative mapping of gas plumes would have improved sensitivity compared to AVIRIS-NG. For example, an instrument providing a 1 nm spectral sampling (2,000-2,400 micron) would permit mapping CH4, CO2, H2O, CO, and N2O from more diffuse sources using both airborne and orbital platforms. The ability to identify emission sources offers the potential to constrain regional greenhouse gas budgets and improve partitioning between anthropogenic and natural emission sources. Because the CH4 lifetime is only about 9 years and CH4 has a Global Warming Potential 86 times that of CO2 for a 20 year time interval, mitigating these emissions is a particularly cost-effective approach to reduce overall atmospheric radiative forcing. Fig. 1. True color image subset with superimposed gas plumes showing concentrations in ppmm. Left: AVIRIS-NG observed CH4 plumes from natural gas processing plant extending over 500 m downwind of multiple emissions sources. Right: Multiple CO2 plumes observed from coal-fired power plant.

  7. Observations of Anomalous Microwave Emission from HII Regions

    Directory of Open Access Journals (Sweden)

    Clive Dickinson

    2013-01-01

    free-free emission from UCHII regions may be also be significant in some cases. The AME emissivity, defined as the ratio of the AME brightness to the 100 μm brightness, is comparable to the value observed in high-latitude diffuse cirrus in some regions, but is significantly lower in others. However, this value is dependent on the dust temperature. More data, both at high frequencies (>~5 GHz and high resolution (~1′ or better is required to disentangle the emission processes in such complex regions.

  8. Pulsed, atmospheric pressure plasma source for emission spectrometry

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  9. Classification of nutrient emission sources in the Vistula River system

    International Nuclear Information System (INIS)

    Kowalkowski, Tomasz

    2009-01-01

    Eutrophication of the Baltic sea still remains one of the biggest problems in the north-eastern area of Europe. Recognizing the sources of nutrient emission, classification of their importance and finding the way towards reduction of pollution are the most important tasks for scientists researching this area. This article presents the chemometric approach to the classification of nutrient emission with respect to the regionalisation of emission sources within the Vistula River basin (Poland). Modelled data for mean yearly emission of nitrogen and phosphorus in 1991-2000 has been used for the classification. Seventeen subcatchements in the Vistula basin have been classified according to cluster and factor analyses. The results of this analysis allowed determination of groups of areas with similar pollution characteristics and indicate the need for spatial differentiation of policies and strategies. Three major factors indicating urban, erosion and agricultural sources have been identified as major discriminants of the groups. - Two classification methods applied to evaluate the results of nutrient emission allow definition of major sources of the emissions and classification of catchments with similar pollution.

  10. Overview of the Lombardy Region (I) Source Apportionment Study

    Science.gov (United States)

    Larsen, B. R.

    2009-04-01

    The Lombardia Region (RL) is situated in the central part of the Po Plain (I) where the mesoscale climatological conditions are determined to a high degree by the orographical characteristics of this area. Encirclement from three sides (North, West and South) by the mountain chains contributes greatly to the climatological peculiarities that are related from the physical point of view to the dynamic of the air mass in this region. The adverse anemological regime and the persistence of atmospheric stability result in low wind speeds, inversion of the temperature, and shallow inversion layers. Due to these particular geographical and the meteorological conditions associated with a high population density (9 million inhabitants) and the connected anthropogenic activities, RL is one of Europe's most polluted regions with regard to PM and photochemical smog. The 24 hours EU air quality limit for PM10 of 50 ug/m3 is exceeded up to 180 days per year and the yearly limit of 40 ug/m3 is in breach for most urban/urban background areas. In order to efficiently plan abatement strategies, quantitative information is required on the pollution sources and available emission inventories need to be compared with source apportionment results derived by receptor modeling of the chemical composition of PM10 in ambient air and in source emissions. The European Commission Joint Research Centre (JRC) has embarked on a major integrated project in RL (2006-2010) in collaboration with the air quality authorities (ARPA) to support the design of appropriate air quality and emission reduction strategies in this area. The present paper presents the first results of this project, carried out during typical winter episodes in 2007 at ten measurement stations distributed over the entire RL. The source contributions to PM10 and the associated air toxics (benzo[a]pyrene, Pb, Ni, Cd and As) have been quantified by Chemical Mass Balance and Positive Matrix Factorization based upon the chemical

  11. Source-receptor relationships between East Asian sulfur dioxide emissions and Northern Hemisphere sulfate concentrations

    Directory of Open Access Journals (Sweden)

    J. Liu

    2008-07-01

    Full Text Available We analyze the effect of varying East Asian (EA sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2. We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80%–20% of sulfate at the surface, but at least 50% at 500 hPa. Surface sulfate concentrations are dominated by local anthropogenic sources. Of the sulfate produced from sources other than local anthropogenic emissions (defined here as "background" sulfate, EA sources account for approximately 30%–50% (over the Western US and 10%–20% (over the Eastern US. The surface concentrations of sulfate from EA sources over the Western US are highest in MAM (up to 0.15 μg/m3, and lowest in DJF (less than 0.06 μg/m3. Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence (represented by the areas where at least 0.1 μg m−3 of sulfate originates from EA over the North Pacific both at the surface and at 500 hPa in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (in particular of H2O2, which oxidizes SO2 to sulfate in the aqueous phase. We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be

  12. Extended emission sources observed via two-proton correlations

    International Nuclear Information System (INIS)

    Awes, T.C.; Ferguson, R.L.; Obenshain, F.E.

    1988-01-01

    Two-proton correlations were measured as a function of the total energy and relative momentum of the proton. The correlation is analyzed for different orientations of the relative momentum, which allows information on the size and lifetime of the emission source to be extracted. The most energetic particles are emitted from a short- lived source of compound nucleus dimensions while the lower energy protons appear to be emitted from a source considerably larger than the compound nucleus. 9 refs., 3 figs

  13. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources

    Directory of Open Access Journals (Sweden)

    Cai Bo-Feng

    2014-01-01

    Citation: Cai, B.-F., Liu, J.-G., Gao, Q.-X., et al., 2014. Estimation of methane emissions from municipal solid waste landfills in China based on point emission sources. Adv. Clim. Change Res. 5(2, doi: 10.3724/SP.J.1248.2014.081.

  14. The extinction to the H2 line emission in the DR 21 outflow source

    International Nuclear Information System (INIS)

    Nadeau, D.; Riopel, M.; Geballe, T.R.

    1991-01-01

    The v = 1-0 S(1) and Q(3) lines of H2 have been measured in four regions of the DR 21 H2 line-emission source, in order to determine whether the observed morphology of the emission represents the distribution of the excited H2 or is modified by nonuniform extinction across the source. The measured lines originate from the same upper level, and their ratio is a direct measure of the reddening. The line ratios show that the extinction is quite uniform across the source and that there is no correlation between the intensity and the extinction. This result implies that the gap between the two lobes of emission is not due to increased extinction but rather is a region where there is little excited H2 gas. 13 refs

  15. Balancing regional industrial development: analysis on regional disparity of China's industrial emissions and policy implications

    DEFF Research Database (Denmark)

    Liang, Hanwei; Dong, Liang; Luo, Xiao

    2016-01-01

    Efficient industrial emissions mitigation strategy is critical for China's national action on climate change and sustainable development, considering its rapid industrialization. Regional disparity brings difficulties and uncertainties to policy implementation in China. Therefore, an investigation...... development, and highlight not only disparity, but also inequity exists. It is concluded that, there is a larger unequal distribution of GDP per unit of air pollutants and CO2 emission between eastern and western regions, reveals that less developed western and central regions suffer from the emission leakage...... on the regional features of industrial emissions is critical to better decision makings. While to date, related studies have been rather few. This paper applies a spatial analysis on regional features of China's industrial emissions (SO2, NOx and PM2.5 and CO2 emission) in 31 provinces. Spatial autocorrelation...

  16. Regional aerosol emissions and temperature response: Local and remote climate impacts of regional aerosol forcing

    Science.gov (United States)

    Lewinschal, Anna; Ekman, Annica; Hansson, Hans-Christen

    2017-04-01

    Emissions of anthropogenic aerosols vary substantially over the globe and the short atmospheric residence time of aerosols leads to a highly uneven radiative forcing distribution, both spatially and temporally. Regional aerosol radiative forcing can, nevertheless, exert a large influence on the temperature field away from the forcing region through changes in heat transport or the atmospheric or ocean circulation. Moreover, the global temperature response distribution to aerosol forcing may vary depending on the geographical location of the forcing. In other words, the climate sensitivity in one region can vary depending on the location of the forcing. The surface temperature distribution response to changes in sulphate aerosol forcing caused by sulphur dioxide (SO2) emission perturbations in four different regions is investigated using the Norwegian Earth System Model (NorESM). The four regions, Europe, North America, East and South Asia, are all regions with historically high aerosol emissions and are relevant from both an air-quality and climate policy perspective. All emission perturbations are defined relative to the year 2000 emissions provided for the Coupled Model Intercomparison Project phase 5. The global mean temperature change per unit SO2 emission change is similar for all four regions for similar magnitudes of emissions changes. However, the global temperature change per unit SO2 emission in simulations where regional SO2 emission were removed is substantially higher than that obtained in simulations where regional SO2 emissions were increased. Thus, the climate sensitivity to regional SO2 emissions perturbations depends on the magnitude of the emission perturbation in NorESM. On regional scale, on the other hand, the emission perturbations in different geographical locations lead to different regional temperature responses, both locally and in remote regions. The results from the model simulations are used to construct regional temperature potential

  17. Reduction of NOx emission from stationary combustion sources

    International Nuclear Information System (INIS)

    Nelson, P.F.

    1992-01-01

    The environmental impacts of NO x emission from stationary combustion sources are briefly described. These include the formation of both acid rain and photochemical smog, major environmental problems. The three mechanisms which have been identified for the formation of NO x in combustion (thermal, prompt and fuel) are also briefly outlined. Recently stringent standards have been introduced to control emissions of NO x and the review describes the major primary and secondary measures. 10 refs. 2 tabs., 5 figs

  18. Method to Locate Contaminant Source and Estimate Emission Strength

    Directory of Open Access Journals (Sweden)

    Qu Hongquan

    2013-01-01

    Full Text Available People greatly concern the issue of air quality in some confined spaces, such as spacecraft, aircraft, and submarine. With the increase of residence time in such confined space, contaminant pollution has become a main factor which endangers life. It is urgent to identify a contaminant source rapidly so that a prompt remedial action can be taken. A procedure of source identification should be able to locate the position and to estimate the emission strength of the contaminant source. In this paper, an identification method was developed to realize these two aims. This method was developed based on a discrete concentration stochastic model. With this model, a sensitivity analysis algorithm was induced to locate the source position, and a Kalman filter was used to further estimate the contaminant emission strength. This method could track and predict the source strength dynamically. Meanwhile, it can predict the distribution of contaminant concentration. Simulation results have shown the virtues of the method.

  19. Development of a novel methodology for indoor emission source identification

    DEFF Research Database (Denmark)

    Han, K.H.; Zhang, J.S.; Knudsen, H.N.

    2011-01-01

    The objective of this study was to develop and evaluate a methodology to identify individual sources of emissions based on the measurements of mixed air samples and the emission signatures of individual materials previously determined by Proton Transfer Reaction-Mass Spectrometry (PTR-MS), an on......-line analytical device. The methodology based on signal processing principles was developed by employing the method of multiple regression least squares (MRLS) and a normalization technique. Samples of nine typical building materials were tested individually and in combination, including carpet, ceiling material...... experiments and investigation are needed for cases where the relative emission rates among different compounds may change over a long-term period....

  20. Tracing meteorite source regions through asteroid spectroscopy

    Science.gov (United States)

    Thomas, Cristina Ana

    By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives the best representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original solar system formation locations for different meteorite classes. To forge the first link between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-micron and 2-micron geometric band centers and their band area ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in the H, L, LL and HED meteorite classes. For each NEO spectrum, we assign a set of probabilities for it being related to each of these meteorite classes. Our NEO- meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. An apparent (significant at the 2.1-sigma level) source region signature is found for the H chondrites to be preferentially delivered to the inner solar system through the 3:1 mean motion resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites. The spectroscopy of asteroids is subject to several sources of inherent error. The source region model used a variety of S-type spectra without

  1. Urban sources and emissions of nitrous oxide and methane in southern California, USA

    Science.gov (United States)

    Townsend-Small, A.; Pataki, D.; Tyler, S. C.; Czimczik, C. I.; Xu, X.; Christensen, L. E.

    2012-12-01

    Anthropogenic activities have resulted in increasing levels of greenhouse gases, including carbon dioxide, methane, and nitrous oxide. While global and regional emissions sources of carbon dioxide are relatively well understood, methane and nitrous oxide are less constrained, particularly at regional scales. Here we present the results of an investigation of sources and emissions of methane and nitrous oxide in Los Angeles, California, USA, one of Earth's largest urban areas. The original goal of the project was to determine whether isotopes are useful tracers of agricultural versus urban nitrous oxide and methane sources. For methane, we found that stable isotopes (carbon-13 and deuterium) and radiocarbon are good tracers of biogenic versus fossil fuel sources. High altitude observations of methane concentration, measured continuously using tunable laser spectroscopy, and isotope ratios, measured on discrete flask samples using mass spectrometry, indicate that the predominant methane source in Los Angeles is from fossil fuels, likely from "fugitive" emissions from geologic formations, natural gas pipelines, oil refining, or power plants. We also measured nitrous oxide emissions and isotope ratios from urban (landscaping and wastewater treatment) and agricultural sources (corn and vegetable fields). There was no difference in nitrous oxide isotope ratios between the different types of sources, although stable isotopes did differ between nitrous oxide produced in oxic and anoxic wastewater treatment tanks. Our nitrous oxide flux data indicate that landscaped turfgrass emits nitrous oxide at rates equivalent to agricultural systems, indicating that ornamental soils should not be disregarded in regional nitrous oxide budgets. However, we also showed that wastewater treatment is a much greater source of nitrous oxide than soils regionally. This work shows that global nitrous oxide and methane budgets are not easily downscaled to regional, urban settings, which has

  2. Light emitting device having peripheral emissive region

    Science.gov (United States)

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  3. Atmospheric emission data inventory for air quality planning at a regional scale

    Energy Technology Data Exchange (ETDEWEB)

    Cosmi, C. [C.N.R., Ist. di Metodologie Avanzate di Analisi Ambientali, Tito Scalo (Italy); Cuomo, V. [Universita degli Studi della Basilicata, Dipt. di Ingegneria e Fisica dell' Ambiente, Potenza (Italy)]|[C.N.R., Ist. di Metodologie Avanzate di Analisi Ambientali, Tito Scalo (Italy); Macchiato, M. [Unita di Napoli, Ist. Nazionale per la Fisica della Materia, Napoli (Italy); Mangiamele, L.; Marmo, G.; Salvia, M. [Universita degli Studi della Basilicata, Dipt. di Ingegneria e Fisica dell' Ambiente, Potenza (Italy)

    1999-07-01

    The inventory of pollutant emissions data and its management is the first step to assess the potential environmental impacts and the social-economic implications of different planning strategies. This requires to prepare a very flexible database which allows the user an easy querying of data, their up-grading, the possibility of comparing different information and to use software tools based on Geographical Information Systems to represent the localisation of emissions sources and their fallout on the territory. This paper describes the pollutant emissions inventory carried out for the Basilicata Region (Southern Italy) in the framework of a regional plan for air quality and environmental recovery. This inventory was built up taking into account the most recent normative framework, and points out the most important features of the emissions sources relatively to the investigated pollutants and to the different territorial areas. (Author)

  4. Carbon Emissions from Deforestation in the Brazilian Amazon Region

    Science.gov (United States)

    Potter, C.; Klooster, S.; Genovese, V.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from

  5. A carbon emissions reduction index: Integrating the volume and allocation of regional emissions

    International Nuclear Information System (INIS)

    Chen, Jiandong; Cheng, Shulei; Song, Malin; Wu, Yinyin

    2016-01-01

    Highlights: • We build a carbon emissions reduction index (CERI). • The aim is to quantify the pressure on policymakers to reduce emissions. • Scale-related effects and carbon emissions allocations are included in the CERI. • Different standards of carbon emissions allocations are also considered. • We decompose the Gini coefficient to evaluate the effects of three factors. - Abstract: Given the acceleration of global warming and rising greenhouse gas emissions, all countries are facing the harsh reality of the need to reduce carbon emissions. In this study, we propose an index to quantify the pressure faced by policymakers to reduce such emissions, termed the carbon emissions reduction index. This index allows us to observe the effect of carbon emissions volume on the pressure faced by policymakers and study the impact of optimizing interregional carbon emissions on reducing this pressure. In addition, we account for several carbon emissions standards in constructing the index. We conclude that the variation in the index is likely to be attributable to carbon emissions volume, regional ranking, and population (population can also be replaced by GDP, resource endowment, or other factors). In addition, based on empirical data on the world’s largest emitter of carbon dioxide (China), this study analyzes the evolution of pressure to reduce emissions on a country’s policymakers. The results show that the growing volume and unsuitable allocation of carbon emissions from 1997 to 2012 imposed increasing pressure on the Chinese government in this regard. In addition, reductions in carbon emissions volume and regional ranking are primary factors that impact pressure on policymakers.

  6. EPA Region 1 Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of...

  7. Ambiguity of source location in acoustic emission technique

    International Nuclear Information System (INIS)

    Barat, P.; Mukherjee, P.; Kalyanasundaram, P.; Raj, B.

    1996-01-01

    Location of acoustic emission (AE) source in a plane is detected from the difference of the arrival times of the AE signal to at least three sensors placed on it. The detected location may not be unique in all cases. In this paper, the condition for the unambiguous solution for the location of the source has been deduced mathematically in terms of arrival times of the AE signal, the coordinate of the three sensors and the acoustic velocity. (author)

  8. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source

    Science.gov (United States)

    Liu, Jun; Mauzerall, Denise L.; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R.; Zhu, Tong

    2016-01-01

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m−3 (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m−3; mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m−3 (40 ± 9% of 67 ± 41 μg⋅m−3), 44 ± 27 μg⋅m−3 (43 ± 10% of 99 ± 54 μg⋅m−3), and 25 ± 14 μg⋅m−3 (35 ± 8% of 70 ± 35 μg⋅m−3) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level. PMID:27354524

  9. Juno/JEDI observations of 0.01 to >10 MeV energetic ions in the Jovian auroral regions: Anticipating a source for polar X-ray emission

    Science.gov (United States)

    Haggerty, D. K.; Mauk, B. H.; Paranicas, C. P.; Clark, G.; Kollmann, P.; Rymer, A. M.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2017-07-01

    After a successful orbit insertion, the Juno spacecraft completed its first 53.5 day orbit and entered a very low altitude perijove with the full scientific payload operational for the first time on 27 August 2016. The Jupiter Energetic particle Detector Instrument measured ions and electrons over the auroral regions and through closest approach, with ions measured from 0.01 to >10 MeV, depending on species. This report focuses on the composition of the energetic ions observed during the first perijove of the Juno mission. Of particular interest are the ions that precipitate from the magnetosphere onto the polar atmosphere and ions that are accelerated locally by Jupiter's powerful auroral processes. We report preliminary findings on the spatial variations, species, including energy and pitch angle distributions throughout the prime science region during the first orbit of the Juno mission. The prime motivation for this work was to examine the heavy ions that are thought to be responsible for the observed polar X-rays. Jupiter Energetic particle Detector Instrument (JEDI) did observe precipitating heavy ions with energies >10 MeV, but for this perijove the intensities were far below those needed to account for previously observed polar X-ray emissions. During this survey we also found an unusual signal of ions between oxygen and sulfur. We include here a report on what appears to be a transitory observation of magnesium, or possibly sodium, at MeV energies through closest approach.

  10. Source Attribution of Methane Emissions in Northeastern Colorado Using Ammonia to Methane Emission Ratios

    Science.gov (United States)

    Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; Perring, A. E.; Robinson, E. S.; Holloway, M.; Trainer, M.

    2015-12-01

    Due to recent advances in extraction technology, oil and natural gas extraction and processing in the Denver-Julesburg basin has increased substantially in the past decade. Northeastern Colorado is also home to over 250 concentrated animal feeding operations (CAFOs), capable of hosting over 2 million head of ruminant livestock (cattle and sheep). Because of methane's high Global Warming Potential, quantification and attribution of methane emissions from oil and gas development and agricultural activity are important for guiding greenhouse gas emission policy. However, due to the co-location of these different sources, top-down measurements of methane are often unable to attribute emissions to a specific source or sector. In this work, we evaluate the ammonia:methane emission ratio directly downwind of CAFOs using a mobile laboratory. Several CAFOs were chosen for periodic study over a 12-month period to identify diurnal and seasonal variation in the emission ratio as well as differences due to livestock type. Using this knowledge of the agricultural ammonia:methane emission ratio, aircraft measurements of ammonia and methane over oil and gas basins in the western US during the Shale Oil and Natural Gas Nexus (SONGNEX) field campaign in March and April 2015 can be used for source attribution of methane emissions.

  11. Volatile chemical products emerging as largest petrochemical source of urban organic emissions

    Science.gov (United States)

    McDonald, Brian C.; de Gouw, Joost A.; Gilman, Jessica B.; Jathar, Shantanu H.; Akherati, Ali; Cappa, Christopher D.; Jimenez, Jose L.; Lee-Taylor, Julia; Hayes, Patrick L.; McKeen, Stuart A.; Cui, Yu Yan; Kim, Si-Wan; Gentner, Drew R.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Harley, Robert A.; Frost, Gregory J.; Roberts, James M.; Ryerson, Thomas B.; Trainer, Michael

    2018-02-01

    A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.

  12. Lidar method to estimate emission rates from extended sources

    Science.gov (United States)

    Currently, point measurements, often combined with models, are the primary means by which atmospheric emission rates are estimated from extended sources. However, these methods often fall short in their spatial and temporal resolution and accuracy. In recent years, lidar has emerged as a suitable to...

  13. Regional differences in the CO_2 emissions of China's iron and steel industry: Regional heterogeneity

    International Nuclear Information System (INIS)

    Xu, Bin; Lin, Boqiang

    2016-01-01

    Identifying the key influencing factors of CO_2 emissions in China's iron and steel industry is vital for mitigating its emissions and formulating effective environmental protection measures. Most of the existing researches utilized time series data to investigate the driving factors of the industry's CO_2 emission at the national level, but regional differences have not been given appropriate attention. This paper adopts provincial panel data from 2000 to 2013 and panel data models to examine the key driving forces of CO_2 emissions at the regional levels in China. The results show that industrialization dominates the industry's CO_2 emissions, but its effect varies across regions. The impact of energy efficiency on CO_2 emissions in the eastern region is greater than in the central and western regions because of a huge difference in R&D investment. The influence of urbanization has significant regional differences due to the heterogeneity in human capital accumulation and real estate development. Energy structure has large potential to mitigate CO_2 emissions on account of increased R&D investment in energy-saving technology and expanded clean energy use. Hence, in order to effectively achieve emission reduction, local governments should consider all these factors as well as regional heterogeneity in formulating appropriate mitigation policies. - Highlights: • We explore the driving forces of CO_2 emissions in China's steel industry. • Industrialization dominates CO_2 emissions in the iron and steel industry. • Energy structure has large potential to mitigate CO_2 emissions in the steel industry. • The influence of urbanization has significant regional differences.

  14. Radiative Forcing from Emissivity Response in Polar Regions

    Science.gov (United States)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Chen, X.; Yang, P.; Kuo, C.

    2016-12-01

    A detailed assessment of the radiative balance and its controlling factors in polar regions is a critical prerequisite for understanding and predicting the polar amplification of climate change. Accordingly, we investigate the role of infrared surface emissivity in polar regions as a potential feedback mechanism following Feldman et al, 2014. In this work, we investigate the climatic response of the Community Earth System Model (CESM) with spectral emissivity values that are implemented in a physically consistent manner for non-vegetated surfaces. In a control model run where 1850 CO2 volume mixing ratio (vmr) is fixed, the updated spectral emissivity values are imposed for modified surface boundary conditions in the atmospheric model component. Climatic stability in the emergent globally averaged surface temperature is observed on decadal scales for an unforced (control) run. Analytic kernels representing the change in top of the atmosphere OLR given changes in emissivity are calculated on-line during the model runs, incorporating spatially and temporally varied humidity profiles impactful to transmission. Globally averaged kernels of the sensitivity of OLR to surface emissivity calculated for control and ramped CO2 runs exhibit temporal evolution with statistically significant differences in shape. Additionally, kernel and spectrally-averaged emissivity differences between monthly-averaged maps of control and ramped runs demonstrate a seasonal cycle. Similar to the treatment of cryosphere radiative forcing in Flanner et al, 2011, we define emissivity response as the product of the emissivity kernel and the change in month-to-month emissivity. At the end of 20th century, the 10-year emissivity forcing averaged at latitudes > 60°, is found to be negative (positive) in January (July), due to increasing (decreasing) sea-ice. These findings indicate that differences in surface emissivity between frozen and unfrozen surfaces decrease wintertime and increase summertime

  15. Data structure for estimating emissions from non-road sources

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, S C; Kalivoda, M; Vacarro, R; Trozzi, C; Samaras, Z; Lewis, C A

    1997-03-01

    The work described in the following is a portion of the MEET project (Methodologies for Estimation Air Pollutant Emissions from Transport). The overall goal of the MEET project is to consolidate and present methodologies which can be used to estimate air pollutant emissions from various types of traffic sources. One of the goals of MEET is to provide methodologies to be used in the COMMUTE project also funded by DG VII. COMMUTE is developing computer software which can be used to provide emissions inventories on the European scale. Although COMMUTE is viewed as a prime user of the information generated in MEET, the MEET results are intended to be used in a broader area, and on both smaller and larger spatial scales. The methodologies and data presented will be useful for planners on a more local scale than a national or continental basis. While most attention in previous years has been concentrated on emissions from road transport, it has become increasingly apparent in later years that the so-called off road transportation contributes significantly to the emission of air pollutants. The three most common off-road traffic modes are Air Traffic, Rail Traffic, and Ship or Marine traffic. In the following, the basic structure of the methods for estimating the emissions from these sectors will be given and of the input and output data associated with these calculations. The structures will of necessity be different for the different types of traffic. The data structures in the following reflect these variations and uncertainties. In some instances alternative approaches to emissions estimation will be suggested. The user must evaluate the amount and reliability of available data for the application at hand, and select the method which would be expected to give the highest accuracy. In any event, a large amount of uncertainty is inherent in the estimation of emissions from the non-road traffic sources, particularly those involving rail and maritime transport. (EG)

  16. Extended Emission-Line Regions: Remnants of Quasar Superwinds?

    Science.gov (United States)

    Fu, Hai; Stockton, Alan

    2009-01-01

    We give an overview of our recent integral-field-unit spectroscopy of luminous extended emission-line regions (EELRs) around low-redshift quasars, including new observations of five fields. Previous work has shown that the most luminous EELRs are found almost exclusively around steep-spectrum radio-loud quasars, with apparently disordered global velocity fields, and little, if any, morphological correlation with either the host galaxy or the radio structure. Our new observations confirm and expand these results. The EELRs often show some clouds with velocities exceeding 500 km s-1, ranging up to 1100 km s-1, but the velocity dispersions, with few exceptions, are in the 30-100 km s-1 range. Emission-line ratios show that the EELRs are clearly photoionized by the quasars. Masses of the EELRs range up to 1010Msun. Essentially all of the EELRs show relatively low metallicities, and they are associated with quasars that, in contrast to most, show similarly low metallicities in their broad-line regions. The two objects in our sample that do not have classical double-lobed radio morphologies (3C 48, with a compact-steep-spectrum source; Mrk 1014, radio quiet, but with a weak compact-steep-spectrum source) are the only ones that appear to have recent star formation. While some of the less luminous EELRs may have other origins, the most likely explanation for those in our sample is that they are examples of gas swept out of the host galaxy by a large-solid-angle blast wave accompanying the production of the radio jets. The triggering of the quasar activity is almost certainly the result of the merger of a gas-rich galaxy with a massive, gas-poor galaxy hosting the supermassive black hole. Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the

  17. Atmospheric toxic metals emission inventory and spatial characteristics from anthropogenic sources of Guangdong province, China

    Science.gov (United States)

    Cher, S.; Menghua, L.; Xiao, X.; Yuqi, W.; Zhuangmin, Z.; Zhijiong, H.; Cheng, L.; Guanglin, J.; Zibing, Y.; Junyu, Z.

    2017-12-01

    Atmospheric toxic metals (TMs) are part of particulate matters, and may create adverse effects on the environment and human health depending upon their bioavailability and toxicity. Localized emission inventory is fundamental for parsing of toxic metals to identify key sources in order to formulate efficient toxic metals control strategies. With the use of the latest municipal level environment statistical data, this study developed a bottom-up emission inventory of five toxic metals (Hg, As, Pb, Cd, Cr) from anthropogenic activities in Guangdong province for the year of 2014. Major atmospheric toxic metals sources including combustion sources (coal, oil, biomass, municipal solid waste) and industrial process sources (cement production, nonferrous metal smelting, iron and steel industry, battery and fluorescent lamp production) were investigated. Results showed that: (1) The total emissions of Hg, As, Pb, Cd, Cr in Guangdong province were 18.14, 32.59, 411.34, 13.13, 84.16 t, respectively. (2) Different pollutants have obvious characteristics of emission sources. For total Hg emission, 46% comes from combustion sources, of which 32% from coal combustion and 8% from MSW combustion. Other 54% comes from industrial processes, which dominated by the cement (19%), fluorescent lamp (18%) and battery production (13%). Of the total Hg emission, 69% is released as Hg0 , 29% as Hg2+ , and only 2% as Hgp due to strict particulate matters controls policies. For As emissions, coal combustion, nonferrous metal smelting and iron and steel industry contributed approximate 48%, 25% and 24%, respectively. Pb emissions primarily come from battery production (42%), iron and steel industry (21%) and on-road mobile gasoline combustion (17%). Cd and Cr emissions were dominated by nonferrous metal smelting (71%) and iron and steel industry (82%), respectively. (3) In term of the spatial distribution, emissions of atmospheric toxic metals are mainly concentrated in the central region of

  18. Modeling and validation of on-road CO2 emissions inventories at the urban regional scale

    International Nuclear Information System (INIS)

    Brondfield, Max N.; Hutyra, Lucy R.; Gately, Conor K.; Raciti, Steve M.; Peterson, Scott A.

    2012-01-01

    On-road emissions are a major contributor to rising concentrations of atmospheric greenhouse gases. In this study, we applied a downscaling methodology based on commonly available spatial parameters to model on-road CO 2 emissions at the 1 × 1 km scale for the Boston, MA region and tested our approach with surface-level CO 2 observations. Using two previously constructed emissions inventories with differing spatial patterns and underlying data sources, we developed regression models based on impervious surface area and volume-weighted road density that could be scaled to any resolution. We found that the models accurately reflected the inventories at their original scales (R 2 = 0.63 for both models) and exhibited a strong relationship with observed CO 2 mixing ratios when downscaled across the region. Moreover, the improved spatial agreement of the models over the original inventories confirmed that either product represents a viable basis for downscaling in other metropolitan regions, even with limited data. - Highlights: ► We model two on-road CO 2 emissions inventories using common spatial parameters. ► Independent CO 2 observations are used to validate the emissions models. ► The downscaled emissions models capture the urban spatial heterogeneity of Boston. ► Emissions estimates show a strong non-linear relationship with observed CO 2 . ► Our study is repeatable, even in areas with limited data. - This work presents a new, reproducible methodology for downscaling and validating on-road CO 2 emissions estimates.

  19. Airborne reduced nitrogen: ammonia emissions from agriculture and other sources.

    Science.gov (United States)

    Anderson, Natalie; Strader, Ross; Davidson, Cliff

    2003-06-01

    Ammonia is a basic gas and one of the most abundant nitrogen-containing compounds in the atmosphere. When emitted, ammonia reacts with oxides of nitrogen and sulfur to form particles, typically in the fine particle size range. Roughly half of the PM(2.5) mass in eastern United States is ammonium sulfate, according to the US EPA. Results from recent studies of PM(2.5) show that these fine particles are typically deposited deep in the lungs and may lead to increased morbidity and/or mortality. Also, these particles are in the size range that will degrade visibility. Ammonia emission inventories are usually constructed by multiplying an activity level by an experimentally determined emission factor for each source category. Typical sources of ammonia include livestock, fertilizer, soils, forest fires and slash burning, industry, vehicles, the oceans, humans, pets, wild animals, and waste disposal and recycling activities. Livestock is the largest source category in the United States, with waste from livestock responsible for about 3x10(9) kg of ammonia in 1995. Volatilization of ammonia from livestock waste is dependent on many parameters, and thus emission factors are difficult to predict. Despite a seasonal variation in these values, the emission factors for general livestock categories are usually annually averaged in current inventories. Activity levels for livestock are from the USDA Census of Agriculture, which does not give information about animal raising practices such as housing types and grazing times, waste handling systems, and approximate animal slurry spreading times or methods. Ammonia emissions in the United States in 1995 from sources other than livestock are much lower; for example, annual emissions are roughly 8x10(8) kg from fertilizer, 7x10(7) kg from industry, 5x10(7) kg from vehicles and 1x10(8) kg from humans. There is considerable uncertainty in the emissions from soil and vegetation, although this category may also be significant

  20. Sources and trends of environmental mercury emissions in Asia

    International Nuclear Information System (INIS)

    Wong, Coby S.C.; Duzgoren-Aydin, Nurdan S.; Aydin, Adnan; Wong, Ming H.

    2006-01-01

    This paper focuses on environmental mercury emissions in Asia and elaborates its probable trend in the future and associated implications given the anticipated socioeconomic outlook and other macro-environmental factors. Among the various regions, Asia has become the largest contributor of anthropogenic atmospheric Hg, responsible for over half of the global emission. In the next few decades, a significant increase in anthropogenic Hg emissions in Asia is likely owing to rapid economic and industrial development, unless drastic measures are taken. In particular, the dominance of Asia in some Hg-emitting industries, such as coal combustion, steel production and gold mining, provokes a serious environmental concern over their potential contributions of incidental Hg in the region. Moreover, the increasing prevalence of electrical and electronic manufacturing industry as a user and a contributor of Hg in Asia is also worrying. Specifically, disposal of obsolete electrical and electronic wastes represents a phenomenon increasingly encountered in Asia. In addition to escalating anthropogenic Hg emissions in Asia, associated environmental and health implications may also exacerbate in the region for the probable effects of a unique combination of climatic (e.g. subtropical climate), environmental (e.g. acid rain) and socioeconomic factors (e.g. high population density). Hence, much effort is still needed to understand the role of Asia in global Hg cycle and associated environmental and health effects in the region

  1. Sources and trends of environmental mercury emissions in Asia.

    Science.gov (United States)

    Wong, Coby S C; Duzgoren-Aydin, Nurdan S; Aydin, Adnan; Wong, Ming H

    2006-09-15

    This paper focuses on environmental mercury emissions in Asia and elaborates its probable trend in the future and associated implications given the anticipated socioeconomic outlook and other macro-environmental factors. Among the various regions, Asia has become the largest contributor of anthropogenic atmospheric Hg, responsible for over half of the global emission. In the next few decades, a significant increase in anthropogenic Hg emissions in Asia is likely owing to rapid economic and industrial development, unless drastic measures are taken. In particular, the dominance of Asia in some Hg-emitting industries, such as coal combustion, steel production and gold mining, provokes a serious environmental concern over their potential contributions of incidental Hg in the region. Moreover, the increasing prevalence of electrical and electronic manufacturing industry as a user and a contributor of Hg in Asia is also worrying. Specifically, disposal of obsolete electrical and electronic wastes represents a phenomenon increasingly encountered in Asia. In addition to escalating anthropogenic Hg emissions in Asia, associated environmental and health implications may also exacerbate in the region for the probable effects of a unique combination of climatic (e.g. subtropical climate), environmental (e.g. acid rain) and socioeconomic factors (e.g. high population density). Hence, much effort is still needed to understand the role of Asia in global Hg cycle and associated environmental and health effects in the region.

  2. MILAGRO OBSERVATIONS OF MULTI-TeV EMISSION FROM GALACTIC SOURCES IN THE FERMI BRIGHT SOURCE LIST

    International Nuclear Information System (INIS)

    Abdo, A. A.; Linnemann, J. T.; Allen, B. T.; Chen, C.; Aune, T.; Berley, D.; Goodman, J. A.; Christopher, G. E.; Kolterman, B. E.; Mincer, A. I.; Nemethy, P.; DeYoung, T.; Dingus, B. L.; Hoffman, C. M.; Ellsworth, R. W.; Gonzalez, M. M.; Hays, E.; McEnery, J. E.; Huentemeyer, P. H.; Morgan, T.

    2009-01-01

    We present the result of a search of the Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large Area Telescope. We select sources based on their categorization in the BSL, taking all confirmed or possible Galactic sources in the field of view of Milagro. Of the 34 Fermi sources selected, 14 are observed by Milagro at a significance of 3 standard deviations or more. We conduct this search with a new analysis which employs newly optimized gamma-hadron separation and utilizes the full eight-year Milagro data set. Milagro is sensitive to gamma rays with energy from 1 to 100 TeV with a peak sensitivity from 10 to 50 TeV depending on the source spectrum and declination. These results extend the observation of these sources far above the Fermi energy band. With the new analysis and additional data, multi-TeV emission is definitively observed associated with the Fermi pulsar, J2229.0+6114, in the Boomerang pulsar wind nebula (PWN). Furthermore, an extended region of multi-TeV emission is associated with the Fermi pulsar, J0634.0+1745, the Geminga pulsar.

  3. Radio emission region exposed: courtesy of the double pulsar

    Science.gov (United States)

    Lomiashvili, David; Lyutikov, Maxim

    2014-06-01

    The double pulsar system PSR J0737-3039A/B offers exceptional possibilities for detailed probes of the structure of the pulsar magnetosphere, pulsar winds and relativistic reconnection. We numerically model the distortions of the magnetosphere of pulsar B by the magnetized wind from pulsar A, including effects of magnetic reconnection and of the geodetic precession. Geodetic precession leads to secular evolution of the geometric parameters and effectively allows a 3D view of the magnetosphere. Using the two complimentary models of pulsar B's magnetosphere, adapted from the Earth's magnetosphere models by Tsyganenko (ideal pressure confinement) and Dungey (highly resistive limit), we determine the precise location and shape of the coherent radio emission generation region within pulsar B's magnetosphere. We successfully reproduce orbital variations and secular evolution of the profile of B, as well as subpulse drift (due to reconnection between the magnetospheric and wind magnetic fields), and determine the location and the shape of the emission region. The emission region is located at about 3750 stellar radii and has a horseshoe-like shape, which is centred on the polar magnetic field lines. The best-fitting angular parameters of the emission region indicate that radio emission is generated on the field lines which, according to the theoretical models, originate close to the poles and carry the maximum current. We resolved all but one degeneracy in pulsar B's geometry. When considered together, the results of the two models converge and can explain why the modulation of B's radio emission at A's period is observed only within a certain orbital phase region. Our results imply that the wind of pulsar A has a striped structure only 1000 light-cylinder radii away. We discuss the implications of these results for pulsar magnetospheric models, mechanisms of coherent radio emission generation and reconnection rates in relativistic plasma.

  4. Greenhouse gas emissions from tropical forest degradation: an underestimated source

    Directory of Open Access Journals (Sweden)

    Timothy R. H. Pearson

    2017-02-01

    Full Text Available Abstract Background The degradation of forests in developing countries, particularly those within tropical and subtropical latitudes, is perceived to be an important contributor to global greenhouse gas emissions. However, the impacts of forest degradation are understudied and poorly understood, largely because international emission reduction programs have focused on deforestation, which is easier to detect and thus more readily monitored. To better understand and seize opportunities for addressing climate change it will be essential to improve knowledge of greenhouse gas emissions from forest degradation. Results Here we provide a consistent estimation of forest degradation emissions between 2005 and 2010 across 74 developing countries covering 2.2 billion hectares of forests. We estimated annual emissions of 2.1 billion tons of carbon dioxide, of which 53% were derived from timber harvest, 30% from woodfuel harvest and 17% from forest fire. These percentages differed by region: timber harvest was as high as 69% in South and Central America and just 31% in Africa; woodfuel harvest was 35% in Asia, and just 10% in South and Central America; and fire ranged from 33% in Africa to only 5% in Asia. Of the total emissions from deforestation and forest degradation, forest degradation accounted for 25%. In 28 of the 74 countries, emissions from forest degradation exceeded those from deforestation. Conclusions The results of this study clearly demonstrate the importance of accounting greenhouse gases from forest degradation by human activities. The scale of emissions presented indicates that the exclusion of forest degradation from national and international GHG accounting is distorting. This work helps identify where emissions are likely significant, but policy developments are needed to guide when and how accounting should be undertaken. Furthermore, ongoing research is needed to create and enhance cost-effective accounting approaches.

  5. Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources

    Science.gov (United States)

    Nelson, Peter F.; Morrison, Anthony L.; Malfroy, Hugh J.; Cope, Martin; Lee, Sunhee; Hibberd, Mark L.; Meyer, C. P. (Mick); McGregor, John

    2012-12-01

    The United Nations Environment Programme (UNEP) has begun a process of developing a legally binding instrument to manage emissions of mercury from anthropogenic sources. The UNEP Governing Council has concluded that there is sufficient evidence of significant global adverse impacts from mercury to warrant further international action; and that national, regional and global actions should be initiated as soon as possible to identify populations at risk and to reduce human generated releases. This paper describes the development of, and presents results from, a comprehensive, spatially and temporally resolved inventory of atmospheric mercury emissions from the Australian landmass. Results indicate that the best estimate of total anthropogenic emissions of mercury to the atmosphere in 2006 was 15 ± 5 tonnes. Three industrial sectors contribute substantially to Australian anthropogenic emissions: gold smelting (˜50%, essentially from a single site/operation), coal combustion in power plants (˜15%) and alumina production from bauxite (˜12%). A diverse range of other sectors contribute smaller proportions of the emitted mercury, but industrial emissions account for around 90% of total anthropogenic mercury emissions. The other sectors include other industrial sources (mining, smelting, and cement production) and the use of products containing mercury. It is difficult to determine historical trends in mercury emissions given the large uncertainties in the data. Estimates for natural and re-emitted emissions from soil, water, vegetation and fires are made using meteorological models, satellite observations of land cover and soil and vegetation type, fuel loading, fire scars and emission factors which account for the effects of temperature, insolation and other environmental variables. These natural and re-emitted sources comfortably exceed the anthropogenic emissions, and comprise 4-12 tonnes per year from vegetation, 70-210 tonnes per year from soils, and 21-63 tonnes

  6. Field emission from a new type of electron source

    International Nuclear Information System (INIS)

    Mousa, M.S.

    1987-01-01

    A new type of field emission electron source has been developed. In this paper, the construction, characteristics and behaviour of tungsten micropoint emitters coated with a sub-micron layer of hydrocarbon using a TEM with poor ( ∼ 1 0 -3 torr) vacuum conditions are described. The hydrocarbon coating has been verified using the X-Ray energy dispersive analysis technique of a SEM. The technical capabilities and potential of the new type of electron source are compared with those of other comparable composite micropoint field emitters and other types of electron sources currently in use. The emission properties presented here include I-V characteristics, emission images and electron energy spectra of this type of composite micropoint emitters. The effect on the behaviour and characteristics of baking the coated emitters at temperatures ranging between 140 0 C and 350 0 C is also studied. The behaviour of the emitter has been interpreted in terms of a field-induced hot-electron emission mechanism associated with metal-insulator-vacuum (M-I-V) regime

  7. How do emission patterns in megacities affect regional air pollution?

    Science.gov (United States)

    Heil, A.; Richter, C.; Schroeder, S.; Schultz, M. G.

    2010-12-01

    Megacities around the world show distinctly different emission patterns in terms of absolute amounts and emission ratios of individual chemical compounds due to varying socio-economic developments and technological standards. The emission patterns influence the chemical reactivity of the urban pollution plume, and hence determine air quality in and around megacity areas. In this study, which is part of the European project CITYZEN (megaCITY - Zoom for the ENvironment), the effects of emission changes in four selected megacity areas on air pollution were investigated: BeNeLux (BNL), Istanbul (IST), Pearl River Delta (PRD) and Sao Paulo (SAP). The study aims at answering the question: how would air pollution in megacity X change if it had the same urban emissions per capita as megacity Y? Model simulations with the global chemistry climate model ECHAM5-MOZ were carried out for the year 2001 using a resolution of about 2 degrees in the horizontal and of 31 levels (surface to 10 hPa) in the vertical. The model was driven by meteorological input data from the ECMWF ERA Interim reanalysis. Emissions were taken from the gridded global ACCMIP emission inventory recently established for use in chemistry-climate simulations in connection to the IPCC-AR5 assessments (Lamarque et al. 2010). We carried out sensitivity simulations where emission patterns from each of the megacity areas were replaced by those from all others. This was done on the basis of the per capita emissions for each species and sector averaged over the respective region. Total per capita CO and NMVOC emissions are highest in PRD and lowest in SAP while total per capita NOx emissions are highest in BNL and lowest in SAP. There are strong differences in the relative contribution of the urban sectors to total emissions of individual compounds. As a result, each of the four megacity areas exhibits a very characteristic NMVOC speciation profile which determines the NMVOC-related photochemical ozone (O_3

  8. Fission-neutrons source with fast neutron-emission timing

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G., E-mail: rusev@lanl.gov; Baramsai, B.; Bond, E.M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of {sup 252}Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  9. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    Directory of Open Access Journals (Sweden)

    M. Zavala

    2009-01-01

    Full Text Available The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies and improvements in fuel quality, among others. Along with these changes, concurrent non-linear changes in photochemical levels and criteria pollutants have been observed, providing a unique opportunity to understand the effects of perturbations of mobile emission levels on the photochemistry in the region using observational and modeling approaches. The observed historical trends of ozone (O3, carbon monoxide (CO and nitrogen oxides (NOx suggest that ozone production in the MCMA has changed from a low to a high VOC-sensitive regime over a period of 20 years. Comparison of the historical emission trends of CO, NOx and hydrocarbons derived from mobile-source emission studies in the MCMA from 1991 to 2006 with the trends of the concentrations of CO, NOx, and the CO/NOx ratio during peak traffic hours also indicates that fuel-based fleet average emission factors have significantly decreased for CO and VOCs during this period whereas NOx emission factors do not show any strong trend, effectively reducing the ambient VOC/NOx ratio.

    This study presents the results of model analyses on the sensitivity of the observed ozone levels to the estimated historical changes in its precursors. The model sensitivity analyses used a well-validated base case simulation of a high pollution episode in the MCMA with the mathematical Decoupled Direct Method (DDM and the standard Brute Force Method (BFM in the 3-D CAMx chemical transport model. The model reproduces adequately the observed historical trends and current photochemical levels. Comparison of the BFM and the DDM sensitivity techniques indicates that the model yields ozone values that increase linearly with

  10. Sources of uncertainty in characterizing health risks from flare emissions

    International Nuclear Information System (INIS)

    Hrudey, S.E.

    2000-01-01

    The assessment of health risks associated with gas flaring was the focus of this paper. Health risk assessments for environmental decision-making includes the evaluation of scientific data to identify hazards and to determine dose-response assessments, exposure assessments and risk characterization. Gas flaring has been the cause for public health concerns in recent years, most notably since 1996 after a published report by the Alberta Research Council. Some of the major sources of uncertainty associated with identifying hazardous contaminants in flare emissions were discussed. Methods to predict human exposures to emitted contaminants were examined along with risk characterization of predicted exposures to several identified contaminants. One of the problems is that elemental uncertainties exist regarding flare emissions which places limitations of the degree of reassurance that risk assessment can provide, but risk assessment can nevertheless offer some guidance to those responsible for flare emissions

  11. Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Regions

    International Nuclear Information System (INIS)

    Pinguelli Rosa, L.; Aurelio dos Santos, M.; Oliveira dos Santos, E.; Matvienko, B.; Sikar, E.

    2004-01-01

    This paper discusses emissions by power-dams in the tropics. Greenhouse gas emissions from tropical power-dams are produced underwater through biomass decomposition by bacteria. The gases produced in these dams are mainly nitrogen, carbon dioxide and methane. A methodology was established for measuring greenhouse gases emitted by various power-dams in Brazil. Experimental measurements of gas emissions by dams were made to determine accurately their emissions of methane (CH4) and carbon dioxide (CO2) gases through bubbles formed on the lake bottom by decomposing organic matter, as well as rising up the lake gradient by molecular diffusion. The main source of gas in power-dams reservoirs is the bacterial decomposition (aerobic and anaerobic) of autochthonous and allochthonous organic matter that basically produces CO2 and CH4. The types and modes of gas production and release in the tropics are reviewed

  12. MEASUREMENT OF FUGITIVE EMISSIONS AT REGION I LANDFILL

    Science.gov (United States)

    This report discusses a new measurement technology for characterizing emissions from large area sources. This work was funded by EPA's Monitoring and Measurement for the 21st Century Initiative, or 21M2. The site selected for demonstrating this technology is a superfund landfil...

  13. The infrared emission bands. III. Southern IRAS sources.

    Science.gov (United States)

    Cohen, M; Tielens, A G; Bregman, J; Witteborn, F C; Rank, D M; Allamandola, L J; Wooden, D H; de Muizon, M

    1989-06-01

    We present airborne 5-8 micrometers spectra of southern IRAS sources which reveal strong polycyclic aromatic hydrocarbon (PAH) emission features. The good correlation between the bands, in particular the dominant 6.2 and "7.7" micrometers features, strongly imply a common carrier, reinforcing the PAH hypothesis. However, small but detectable spectral variations exist. Planetaries have a distinctly different ratio of I(6.2)/I(7.7) than other nebulae, accompanied by a redward shift in the actual wavelength of the "7.7" micrometers peak. Further, we have detected a new feature, previously predicted from laboratory spectra of PAH molecules, at 5.2 micrometers in many of these sources. Spectra of two rare [WC 10] planetary nebular nuclei indicate a very prominent plateau of emission, linking the 6.2 and 7.7 micrometers bands. Several of our sources show definite evidence for emission structure between 14 and 23 micrometers in their IRAS Low-Resolution Spectral Atlas spectra: we attribute this structure to PAH bands. too. We have defined the "generic" spectrum of emission bands relating the mean intensities of each band to that of the strongest, near 7.7 micrometers. We have added three more planetary or protoplanetary nebulae to our correlation between 7.7 micrometers band intensity and nebular gas phase C/O ratio, namely NGC 6302, HR 4049, and the highly carbon-rich [WC 10] nucleus, CPD--56 degrees 8032. For the latter we have determined a ratio for C/O of approximately 4.8 from IUE observations. The good correlation between the intensity ratio of the "7.7" micrometers feature relative to the far-infrared dust continuum and nebular C/O also supports a carbonaceous carrier for these emission features.

  14. Landfill is an important atmospheric mercury emission source

    Institute of Scientific and Technical Information of China (English)

    FENG Xinbin; TANG Shunlin; LI Zhonggen; WANG Shaofeng; LIANG Lian

    2004-01-01

    Since municipal wastes contain refuses with high mercury contents, incineration of municipal wastes becomes the major anthropogenic atmospheric mercury emission source. In China, landfills are however the main way to dispose of municipal wastes. Total gaseous mercury (TGM) concentrations in landfill gas of Gaoyan sanitary landfill located in suburb of Guiyang City were monitored using a high temporal resolved automated mercury analyzer, and mono-methylmercury (MMHg) and dimethylmercury (DMHg) concentrations in landfill gas were also measured using GC coupled with the cold vapor atomic fluorescence (CVAFS) method. Meanwhile, the TGM exchange fluxes between exposed waste and air and the soil surface of the landfill and air, were measured using low Hg blank quartz flux chamber coupled with high temporal resolved automated mercury analyzer technique. TGM concentrations in landfill gas from half year filling area averaged out at 665.52±291.25 ng/m3, which is comparable with TGM concentrations from flue gas of a small coal combustion boiler in Guiyang. The average MMHg and DMHg concentrations averaged out at 2.06±1.82 ng/m3 and 9.50±5.18 ng/m3, respectively. It is proven that mercury emission is the predominant process at the surfaces of both exposed wastes and soil of landfill. Landfills are not only TGM emission source, but also methylmercury emission source to the ambient air. There are two ways to emit mercury to the air from landfills, one is with the landfill gas through landfill gas duct, and the other through soil/air exchange. The Hg emission processes from landfills are controlled by meteorological parameters.

  15. Visualization of NO2 emission sources using temporal and spatial pattern analysis in Asia

    Science.gov (United States)

    Schütt, A. M. N.; Kuhlmann, G.; Zhu, Y.; Lipkowitsch, I.; Wenig, M.

    2016-12-01

    Nitrogen dioxide (NO2) is an indicator for population density and level of development, but the contributions of the different emission sources to the overall concentrations remains mostly unknown. In order to allocate fractions of OMI NO2 to emission types, we investigate several temporal cycles and regional patterns.Our analysis is based on daily maps of tropospheric NO2 vertical column densities (VCDs) from the Ozone Monitoring Instrument (OMI). The data set is mapped to a high resolution grid by a histopolation algorithm. This algorithm is based on a continuous parabolic spline, producing more realistic smooth distributions while reproducing the measured OMI values when integrating over ground pixel areas.In the resulting sequence of zoom in maps, we analyze weekly and annual cycles for cities, countryside and highways in China, Japan and Korea Republic and look for patterns and trends and compare the derived results to emission sources in Middle Europe and North America. Due to increased heating in winter compared to summer and more traffic during the week than on Sundays, we dissociate traffic, heating and power plants and visualized maps with different sources. We will also look into the influence of emission control measures during big events like the Olympic Games 2008 and the World Expo 2010 as a possibility to confirm our classification of NO2 emission sources.

  16. Baseline Map of Carbon Emissions from Deforestation in Tropical Regions

    Science.gov (United States)

    Harris, Nancy L.; Brown, Sandra; Hagen, Stephen C.; Saatchi, Sassan S.; Petrova, Silvia; Salas, William; Hansen, Matthew C.; Potapov, Peter V.; Lotsch, Alexander

    2012-06-01

    Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation.

  17. Baseline map of carbon emissions from deforestation in tropical regions.

    Science.gov (United States)

    Harris, Nancy L; Brown, Sandra; Hagen, Stephen C; Saatchi, Sassan S; Petrova, Silvia; Salas, William; Hansen, Matthew C; Potapov, Peter V; Lotsch, Alexander

    2012-06-22

    Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation.

  18. Emission characteristics and stability of laser ion sources

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Velyhan, Andriy; Krouský, Eduard; Láska, Leoš; Rohlena, Karel; Jungwirth, Karel; Ullschmied, Jiří; Lorusso, A.; Velardi, L.; Nassisi, V.; Czarnecka, A.; Ryc, L.; Parys, P.; Wolowski, J.

    2010-01-01

    Roč. 85, č. 5 (2010), s. 617-621 ISSN 0042-207X R&D Projects: GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser ion sources * ion emission reproducibility * thermal and fast ions * ion temperature * centre-of-mass velocity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.048, year: 2010

  19. Characterization of carbonaceous aerosol emissions from selected combustion sources

    International Nuclear Information System (INIS)

    Martinez, J.P.G.; Espino, M.P.M.; Pabroa, P.C.B.; Bautista, A.T. VII

    2015-01-01

    Carbonaceous Particulates are carbon-containing solid or liquid matter which form a significant portion of the fine particulate mass (PM2.5) and these have known profound adverse effects on health, climate and visibility. This study aims to characterize carbonaceous aerosol emissions from different combustion sources to establish fingerprints for these for use in the refinement of improvement of the resolution of sources apportionment studies being done by the Philippine Nuclear Research Institute (PNRI), i.e. to resolve vehicular emission sources. Fine air particulate sample were collected in pre-baked Quartz filters using an improvised collection set-up with a Gent sampler. Concentrations of organic and elemental carbon (OC and EC, respectively) in PM2.5 were measured for the different combustion sources—vehicular emissions, tire pyrolysis, and biomass burning, using a thermal-optical method of analysis following the IMPROVE_A protocol. Measured OC ad EC concentrations are shown as percentages with respect to the total carbon (TC) and are illustrated in a 100% stacked chart. Predominance of the EC2 fraction is exhibited in both the diesel fuelled vehicle and tire pyrolysis emissions with EC2/OC2 ratio distinguishing one from the other, EC2/OC2 is 1.63 and 8.41, respectively. Predominance of either OC2 or OC3 fraction is shown in the unleaded gasoline and LPG Fuelled vehicles and in biomass burning with the OC2/OC3 ratio distinguishing one from the others. OC2/OC3 ratios are 1.33 for unleaded gasoline fuelled vehicle, 1.89 for LPG-fuelled vehicle, 0.55 for biomass burning (leaves) and 0.82 biomass burning (wood). The study has shown probable use of the EC2/OC2 and OC2/OC3 ratios to distinguish fingerprints for combustion sources covered in this study. (author)

  20. UV emissions from low energy artificial light sources.

    Science.gov (United States)

    Fenton, Leona; Moseley, Harry

    2014-01-01

    Energy efficient light sources have been introduced across Europe and many other countries world wide. The most common of these is the Compact Fluorescent Lamp (CFL), which has been shown to emit ultraviolet (UV) radiation. Light Emitting Diodes (LEDs) are an alternative technology that has minimal UV emissions. This brief review summarises the different energy efficient light sources available on the market and compares the UV levels and the subsequent effects on the skin of normal individuals and those who suffer from photodermatoses. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Mitigation strategies for methane emissions from agricultural sources

    Energy Technology Data Exchange (ETDEWEB)

    Duxbury, J.M. [Cornell Univ., Ithaca, NY (United States)

    1993-12-31

    Anthropogenic emissions of CH{sub 4} account for 70% of total global emissions of this greenhouse gas. Current anthropogenic emissions of CH{sub 4} in the US are estimated to be between 24-30 Tg CH{sub 4} or 7-9% of the global anthropogenic total. By comparison the US is responsible for 27% of anthropogenic emissions of CO{sub 2} from fossil fuel use. Table 1 shows that the major anthropogenic sources of CH{sub 4} in the US are landfills (37%), domestic livestock and livestock waste (31%) and the coal mining/natural gas/petroleum industries (28%). On a global basis it is estimated that US landfills contribute 30% to the global landfill total, whereas livestock (including waste) and the coal mining/natural gas/petroleum industries each contribute about 8% to their respective global totals. The US is an insignificant contributor (< 1%) to global emissions of CH{sub 4} from rice paddies.

  2. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    Science.gov (United States)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  3. EPA Region 1 Sole Source Aquifers

    Science.gov (United States)

    This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.The aquifers were defined by a EPA hydrogeologist. Aquifer boundaries were then drafted by EPA onto 1:24000 USGS quadrangles. For the coastal sole source aquifers the shoreline as it appeared on the quadrangle was used as a boundary. Delineated boundaries were then digitized into ARC/INFO.

  4. A young source of optical emission from distant radio galaxies.

    Science.gov (United States)

    Hammer, F; Fèvre, O Le; Angonin, M C

    1993-03-25

    DISTANT radio galaxies provide valuable insights into the properties of the young Universe-they are the only known extended optical sources at high redshift and might represent an early stage in the formation and evolution of galaxies in general. This extended optical emission often has very complex morphologies, but the origin of the light is still unclear. Here we report spectroscopic observations for several distant radio galaxies (0.75≤ z ≤ 1.1) in which the rest-frame spectra exhibit featureless continua between 2,500 Å and 5,000 Å. We see no evidence for the break in the spectrum at 4,000 Å expected for an old stellar population 1-3 , and suggest that young stars or scattered emissions from the active nuclei are responsible for most of the observed light. In either case, this implies that the source of the optical emission is com-parable in age to the associated radio source, namely 10 7 years or less.

  5. Structure of the radio emission from the NGC 1579/LkH. cap alpha. 101 region

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R L [National Radio Astronomy Observatory, Charlottesville, Va. (USA); Broderick, J J; Knapp, G R

    1976-06-01

    Radio-frequency observations at 3.7 and 11 cm of the NGC 1579/LkH..cap alpha..101 region show that the radio emission arises in a compact, < 1'' core concentric with a more extended approximately 1' emission region. At these wavelengths the compact component is optically thick, with a spectrum increasing as ..nu.., whereas the extended region is optically thin and contributes at least 80 per cent of the total flux density. LkH..cap alpha..101 appears to be the source of excitation for all of the radio emission; this result, together with the total infrared luminosity, suggests that an appropriate spectral classification for LkH..cap alpha..101 is B1 IIe.

  6. The structure of the radio emission from the NGC 1579/LkHα101 region

    International Nuclear Information System (INIS)

    Brown, R.L.; Broderick, J.J.; Knapp, G.R.

    1976-01-01

    Radio-frequency observations at 3.7 and 11 cm of the NGC 1579/LkHα101 region show that the radio emission arises in a compact, < 1'' core concentric with a more extended approximately 1' emission region. At these wavelengths the compact component is optically thick, with a spectrum increasing as ν, whereas the extended region is optically thin and contributes at least 80 per cent of the total flux density. LkHα101 appears to be the source of excitation for all of the radio emission; this result, together with the total infrared luminosity, suggests that an appropriate spectral classification for LkHα101 is B1 IIe. (author)

  7. Biomass Burning Emissions of Black Carbon from African Sources

    Science.gov (United States)

    Aiken, A. C.; Leone, O.; Nitschke, K. L.; Dubey, M. K.; Carrico, C.; Springston, S. R.; Sedlacek, A. J., III; Watson, T. B.; Kuang, C.; Uin, J.; McMeeking, G. R.; DeMott, P. J.; Kreidenweis, S. M.; Robinson, A. L.; Yokelson, R. J.; Zuidema, P.

    2016-12-01

    Biomass burning (BB) emissions are a large source of carbon to the atmosphere via particles and gas phase species. Carbonaceous aerosols are emitted along with gas-phase carbon monoxide (CO) and carbon dioxide (CO2) that can be used to determine particulate emission ratios and modified combustion efficiencies. Black carbon (BC) aerosols are potentially underestimated in global models and are considered to be one of the most important global warming factors behind CO2. Half or more BC in the atmosphere is from BB, estimated at 6-9 Tg/yr (IPCC, 5AR) and contributing up to 0.6 W/m2 atmospheric warming (Bond et al., 2013). With a potential rise in drought and extreme events in the future due to climate change, these numbers are expected to increase. For this reason, we focus on BC and organic carbon aerosol species that are emitted from forest fires and compare their emission ratios, physical and optical properties to those from controlled laboratory studies of single-source BB fuels to understand BB carbonaceous aerosols in the atmosphere. We investigate BC in concentrated BB plumes as sampled from the new U.S. DOE ARM Program campaign, Layered Atlantic Smoke Interactions with Clouds (LASIC). The ARM Aerosol Mobile Facility 1 (AMF1) and Mobile Aerosol Observing System (MAOS) are currently located on Ascension Island in the South Atlantic Ocean, located midway between Angola and Brazil. The location was chosen for sampling maximum aerosol outflow from Africa. The far-field aged BC from LASIC is compared to BC from indoor generation from single-source fuels, e.g. African grass, sampled during Fire Lab At Missoula Experiments IV (FLAME-IV). BC is measured with a single-particle soot photometer (SP2) alongside numerous supporting instrumentation, e.g. particle counters, CO and CO2 detectors, aerosol scattering and absorption measurements, etc. FLAME-IV includes both direct emissions and well-mixed aerosol samples that have undergone dilution, cooling, and condensation. BC

  8. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    Science.gov (United States)

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  9. Sources of spontaneous emission based on indium arsenide

    International Nuclear Information System (INIS)

    Zotova, N. V.; Il'inskaya, N. D.; Karandashev, S. A.; Matveev, B. A.; Remennyi, M. A.; Stus', N. M.

    2008-01-01

    The results obtained for light-emitting diodes based on heterostructures that contain InAs in the active region and are grown by the methods of liquid-phase, molecular-beam, and vapor-phase epitaxy from organometallic compounds are reviewed. The emission intensity, the near-field patterns, and the light-current and current-voltage characteristics of light-emitting diodes that have flip-chip structure or feature a point contact are analyzed.

  10. Sources of spontaneous emission based on indium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Zotova, N V; Il' inskaya, N D; Karandashev, S A; Matveev, B. A., E-mail: bmat@iropt3.ioffe.rssi.ru; Remennyi, M A; Stus' , N M [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2008-06-15

    The results obtained for light-emitting diodes based on heterostructures that contain InAs in the active region and are grown by the methods of liquid-phase, molecular-beam, and vapor-phase epitaxy from organometallic compounds are reviewed. The emission intensity, the near-field patterns, and the light-current and current-voltage characteristics of light-emitting diodes that have flip-chip structure or feature a point contact are analyzed.

  11. Constraints on the outer radius of the broad emission line region of active galactic nuclei

    Science.gov (United States)

    Landt, Hermine; Ward, Martin J.; Elvis, Martin; Karovska, Margarita

    2014-03-01

    Here we present observational evidence that the broad emission line region (BELR) of active galactic nuclei (AGN) generally has an outer boundary. This was already clear for sources with an obvious transition between the broad and narrow components of their emission lines. We show that the narrow component of the higher-order Paschen lines is absent in all sources, revealing a broad emission line profile with a broad, flat top. This indicates that the BELR is kinematically separate from the narrow emission line region. We use the virial theorem to estimate the BELR outer radius from the flat top width of the unblended profiles of the strongest Paschen lines, Paα and Paβ, and find that it scales with the ionizing continuum luminosity roughly as expected from photoionization theory. The value of the incident continuum photon flux resulting from this relationship corresponds to that required for dust sublimation. A flat-topped broad emission line profile is produced by both a spherical gas distribution in orbital motion and an accretion disc wind if the ratio between the BELR outer and inner radius is assumed to be less than ˜100-200. On the other hand, a pure Keplerian disc can be largely excluded, since for most orientations and radial extents of the disc the emission line profile is double-horned.

  12. Quantifying the sources of ozone, fine particulate matter, and regional haze in the Southeastern United States.

    Science.gov (United States)

    Odman, M Talat; Hu, Yongtao; Russell, Armistead G; Hanedar, Asude; Boylan, James W; Brewer, Patricia F

    2009-07-01

    A detailed sensitivity analysis was conducted to quantify the contributions of various emission sources to ozone (O3), fine particulate matter (PM2.5), and regional haze in the Southeastern United States. O3 and particulate matter (PM) levels were estimated using the Community Multiscale Air Quality (CMAQ) modeling system and light extinction values were calculated from modeled PM concentrations. First, the base case was established using the emission projections for the year 2009. Then, in each model run, SO2, primary carbon (PC), NH3, NO(x) or VOC emissions from a particular source category in a certain geographic area were reduced by 30% and the responses were determined by calculating the difference between the results of the reduced emission case and the base case. The sensitivity of summertime O3 to VOC emissions is small in the Southeast and ground-level NO(x) controls are generally more beneficial than elevated NO(x) controls (per unit mass of emissions reduced). SO2 emission reduction is the most beneficial control strategy in reducing summertime PM2.5 levels and improving visibility in the Southeast and electric generating utilities are the single largest source of SO2. Controlling PC emissions can be very effective locally, especially in winter. Reducing NH3 emissions is an effective strategy to reduce wintertime ammonium nitrate (NO3NH4) levels and improve visibility; NO(x) emissions reductions are not as effective. The results presented here will help the development of specific emission control strategies for future attainment of the National Ambient Air Quality Standards in the region.

  13. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region

    International Nuclear Information System (INIS)

    Song Changchun; Sun Xiaoxin; Sun Li; Miao Yuqing; Wang Xianwei; Guo Yuedong; Xu Xiaofeng; Tian Hanqin

    2012-01-01

    The permafrost carbon–climate feedback is one of the major mechanisms in controlling the climate–ecosystem interactions in northern high latitudes. Of this feedback, methane (CH 4 ) emission from natural wetlands is critically important due to its high warming potential. The freeze–thaw transition has been confirmed to play an important role in annual CH 4 budget, yet the magnitude of this effect is uncertain. An intensive field campaign was carried out in the Sanjiang Plain, Northeast China to estimate the CH 4 emission in the spring freeze–thaw transition period. The observation concluded that a large CH 4 source was caused by spring thaw; the maximum hourly emission rate was 48.6 g C m −2 h −1 , more than three orders of the regularly observed CH 4 emission rate in the growing season. In some sporadically observed ‘hot spots’, the spring thawing effect contributed to a large CH 4 source of 31.3± 10.1 g C m −2 , which is approximately 80% of the previously calculated annual CH 4 emission in the same study area. If our results are typical for natural wetlands in the Northern Hemisphere permafrost region, we estimate a global CH 4 source strength of 0.5–1.0 Tg C (1 Tg =10 12 g) caused by spring thaw in the Northern Hemisphere permafrost region in the year 2011. Combining with available satellite and flask data, a regional extrapolation reaches a temporal pattern of CH 4 emission during 2003–2009 which is consistent with recently observed changes in atmospheric CH 4 concentration in the high latitudes. This suggests that the CH 4 emission upon spring thaw in the high latitudes might be enhanced by the projected climate warming. These findings indicate that the spring thawing effect is an important mechanism in the permafrost carbon–climate feedback and needs to be incorporated in Earth system models. (letter)

  14. A methodology for elemental and organic carbon emission inventory and results for Lombardy region, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Caserini, Stefano [Politecnico di Milano, DICA Environmental Engineering Section, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Galante, Silvia, E-mail: silvia1.galante@polimi.it [Politecnico di Milano, DICA Environmental Engineering Section, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Ozgen, Senem; Cucco, Sara; Gregorio, Katia de [Politecnico di Milano, DICA Environmental Engineering Section, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Moretti, Marco [Environmental Protection Agency of Lombardia Region, ARPA, 20124 Milano (Italy)

    2013-04-15

    This paper presents a methodology and its application for the compilation of elemental carbon (EC) and organic carbon (OC) emission inventories. The methodology consists of the estimation of EC and OC emissions from available total suspended particulate matter (TSP) emission inventory data using EC and OC abundances in TSP derived from an extensive literature review, by taking into account the local technological context. In particular, the method is applied to the 2008 emissions of Lombardy region, Italy, considering 148 different activities and 30 types of fuels, typical of Western Europe. The abundances estimated in this study may provide a useful basis to assess the emissions also in other emission contexts with similar prevailing sources and technologies. The dominant sources of EC and OC in Lombardy are diesel vehicles for EC and the residential wood combustion (RWC) for OC which together account for about 83% of the total emissions of both pollutants. The EC and OC emissions from industrial processes and other fuel (e.g., gasoline, kerosene and LPG) combustion are significantly lower, while non-combustion sources give an almost negligible contribution. Total EC + OC contribution to regional greenhouse gas emissions is positive for every sector assuming whichever GWP100 value within the range proposed in literature. An uncertainty assessment is performed through a Monte Carlo simulation for RWC, showing a large uncertainty range (280% of the mean value for EC and 70% for OC), whereas for road transport a qualitative analysis identified a narrower range of uncertainty. - Highlights: ► Diesel and wood combustion contribute to more than 80% of total EC and OC. ► More than 50% of EC emissions come from road transport. ► Monte Carlo method is used to assess the uncertainty of wood combustion emissions. ► Residential wood combustion is the main source of uncertainty of EC OC inventory. ► In terms of CO{sub 2}eq, EC and OC correspond to 3% of CO{sub 2

  15. Quantifying emissions of NH3 and NOx from Agricultural Sources and Biomass Burning using SOF

    Science.gov (United States)

    Kille, N.; Volkamer, R. M.; Dix, B. K.

    2017-12-01

    Column measurements of trace gas absorption along the direct solar beam present a powerful yet underused approach to quantify emission fluxes from area sources. The University of Colorado Solar Occultation Flux (CU SOF) instrument (Kille et al., 2017, AMT, doi:10.5194/amt-10-373-2017) features a solar tracker that is self-positioning for use from mobile platforms that are in motion (Baidar et al., 2016, AMT, doi: 10.5194/amt-9-963-2016). This enables the use from research aircraft, as well as the deployment under broken cloud conditions, while making efficient use of aircraft time. First airborne SOF measurements have been demonstrated recently, and we discuss applications to study emissions from biomass burning using aircraft, and to study primary emissions of ammonia and nitrogen oxides (= NO + NO2) from area sources such as concentrated animal feeding operations (CAFO). SOF detects gases in the open atmosphere (no inlets), does not require access to the source, and provides results in units that can be directly compared with emission inventories. The method of emission quantification is relatively straightforward. During FRAPPE (Front Range Air Pollution and Photochemistry Experiment) in Colorado in 2014, we measured emission fluxes of NH3, and NOx from CAFO, quantifying the emissions from 61400 of the 535766 cattle in Weld County, CO (11.4% of the cattle population). We find that NH3 emissions from dairy and cattle farms are similar after normalization by the number of cattle, i.e., we find emission factors, EF, of 11.8 ± 2.0 gNH3/h/head for the studied CAFOs; these EFs are at the upper end of reported values. Results are compared to daytime NEI emissions for case study days. Furthermore, biologically active soils are found to be a strong source of NOx. The NOx sources account for 1.2% of the N-flux (i.e., NH3), and can be competitive with other NOx sources in Weld, CO. The added NOx is particularly relevant in remote regions, where O3 formation and oxidative

  16. Could aerosol emissions be used for regional heat wave mitigation?

    Directory of Open Access Journals (Sweden)

    D. N. Bernstein

    2013-07-01

    Full Text Available Geoengineering applications by injection of sulfate aerosols into the stratosphere are under consideration as a measure of last resort to counter global warming. Here a potential regional-scale application to offset the impacts of heat waves is critically examined. Using the Weather Research and Forecasting model with fully coupled chemistry (WRF-Chem, the effect of regional-scale sulfate aerosol emission over California in each of two days of the July 2006 heat wave is used to quantify potential reductions in surface temperature as a function of emission rates in a layer at 12 km altitude. Local meteorological factors yield geographical differences in surface air temperature sensitivity. For emission rates of approximately 30 μg m−2 s−1 of sulfate aerosols (with standard WRF-Chem size distribution over the region, temperature decreases of around 7 °C result during the middle part of the day over the Central Valley, one of the areas hardest hit by the heat wave. Regions more ventilated with oceanic air such as Los Angeles have slightly smaller reductions. The length of the hottest part of the day is also reduced. Advection effects on the aerosol cloud must be more carefully forecast for smaller injection regions. Verification of the impacts could be done via measurements of differences in reflected and surface downward shortwave. Such regional geoengineering applications with specific near-term target effects but smaller cost and side effects could potentially provide a means of testing larger scale applications. However, design considerations for regional applications, such as a preference for injection at a level of relatively low wind speed, differ from those for global applications. The size of the required injections and the necessity of injection close to the target region raise substantial concerns. The evaluation of this regional-scale application is thus consistent with global model evaluations, emphasizing that mitigation via

  17. Influence of emissions on regional atmospheric mercury concentrations

    Directory of Open Access Journals (Sweden)

    Bieser J.

    2013-04-01

    Full Text Available Mercury is a global pollutant that is rapidly transported in the atmosphere. Unlike the majority of air pollutants the background concentrations of mercury play a major role for the atmospheric concentrations on a hemispheric scale. In this study the influence of regional anthropogenic emissions in comparison to the global emissions on mercury concentrations over Europe are investigated. For this purpose an advanced threedimensional model system is used that consists of three components. The emission model SMOKE-EU, the meteorological model COSMO-CLM, and the chemistry transport model (CTM CMAQ. A variety of sensitivity runs is performed in order to determine the influence of different driving factors (i.e. boundary conditions, anthropogenic and natural emissions, emission factors, meteorological fields on the atmoshperic concentrations of different mercury species. This study is part of the European FP7 project GMOS (Global Mercury Observation System. The aim is to identify the most important drivers for atmospheric mercury in order to optimize future regional modelling studies in the course of the GMOS project. Moreover, the model results are used to determine areas of interest for air-plane based in-situ measurements which are also part of GMOS.

  18. Separation of source and propagation effects at regional distances

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, P.; Jarpe, S.; Mayeda, K. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-12-31

    Improved estimates of the contributions of source and propagation effects to regional seismic signals are needed to explain the performance of existing discriminants and to help develop more robust methods for identifying underground explosions. In this paper, we use close-in, local, and regional estimates of explosion source time functions to remove source effects from regional recordings of the Non-Proliferation Experiment (NPE), a one kiloton chemical explosion in N-tunnel at Rainier Mesa on the Nevada Test Site, and nearby nuclear explosions and earthquakes. Using source corrected regional waveforms, we find that regional Pg and Lg spectra of shallow explosions have significant low frequency ({approximately}1Hz) enhancements when compared to normal depth earthquakes. Data and simulations suggest that such enhancements are most sensitive to source depth, but may also be a function of mechanism, source receiver distance, and regional structure.

  19. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China

    Directory of Open Access Journals (Sweden)

    C. Huang

    2011-05-01

    Full Text Available The purpose of this study is to develop an emission inventory for major anthropogenic air pollutants and VOC species in the Yangtze River Delta (YRD region for the year 2007. A "bottom-up" methodology was adopted to compile the inventory based on major emission sources in the sixteen cities of this region. Results show that the emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, and NH3 in the YRD region for the year 2007 are 2392 kt, 2293 kt, 6697 kt, 3116 kt, 1511 kt, 2767 kt, and 459 kt, respectively. Ethylene, mp-xylene, o-xylene, toluene, 1,2,4-trimethylbenzene, 2,4-dimethylpentane, ethyl benzene, propylene, 1-pentene, and isoprene are the key species contributing 77 % to the total ozone formation potential (OFP. The spatial distribution of the emissions shows the emissions and OFPs are mainly concentrated in the urban and industrial areas along the Yangtze River and around Hangzhou Bay. The industrial sources, including power plants other fuel combustion facilities, and non-combustion processes contribute about 97 %, 86 %, 89 %, 91 %, and 69 % of the total SO2, NOx, PM10, PM2.5, and VOC emissions. Vehicles take up 12.3 % and 12.4 % of the NOx and VOC emissions, respectively. Regarding OFPs, the chemical industry, domestic use of paint & printing, and gasoline vehicles contribute 38 %, 24 %, and 12 % to the ozone formation in the YRD region.

  20. Benzene observations and source appointment in a region of oil and natural gas development

    Science.gov (United States)

    Halliday, Hannah Selene

    Benzene is a primarily anthropogenic volatile organic compound (VOC) with a small number of well characterized sources. Atmospheric benzene affects human health and welfare, and low level exposure (Atmospheric Observatory (PAO) in Colorado to investigate how O&NG development impacts air quality within the Wattenburg Gas Field (WGF) in the Denver-Julesburg Basin. The measurements were carried out in July and August 2014 as part of NASA's DISCOVER-AQ field campaign. The PTR-QMS data were supported by pressurized whole air canister samples and airborne vertical and horizontal surveys of VOCs. Unexpectedly high benzene mixing ratios were observed at PAO at ground level (mean benzene = 0.53 ppbv, maximum benzene = 29.3 ppbv), primarily at night (mean nighttime benzene = 0.73 ppbv). These high benzene levels were associated with southwesterly winds. The airborne measurements indicate that benzene originated from within the WGF, and typical source signatures detected in the canister samples implicate emissions from O&NG activities rather than urban vehicular emissions as primary benzene source. This conclusion is backed by a regional toluene-to-benzene ratio analysis which associated southerly flow with vehicular emissions from the Denver area. Weak benzene-to-CO correlations confirmed that traffic emissions were not responsible for the observed high benzene levels. Previous measurements at the Boulder Atmospheric Observatory (BAO) and our data obtained at PAO allow us to locate the source of benzene enhancements between the two atmospheric observatories. Fugitive emissions of benzene from O&NG operations in the Platteville area are discussed as the most likely causes of enhanced benzene levels at PAO. A limited information source attribution with the PAO dataset was completed using the EPA's positive matrix factorization (PMF) source receptor model. Six VOCs from the PTR-QMS measurement were used along with CO and NO for a total of eight chemical species. Six sources

  1. Development of an emissions inventory model for mobile sources

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, A W; Broderick, B M [Trinity College, Dublin (Ireland). Dept. of Civil, Structural and Environmental Engineering

    2000-07-01

    Traffic represents one of the largest sources of primary air pollutants in urban areas. As a consequence, numerous abatement strategies are being pursued to decrease the ambient concentrations of a wide range of pollutants. A mutual characteristic of most of these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emissions inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for a wide range of vehicle types. The majority of inventories are compiled using 'passive' data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. Current trends are towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this paper. a methodology for estimating emissions from mobile sources using real-time data is described. This methodology is used to calculate emissions of sulphur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), carbon monoxide (CO). volatile organic compounds (VOC), particulate matter less than 10 {mu}m aerodynamic diameter (PM{sub 10}), 1,3-butadiene (C{sub 4}H{sub 6}) and benzene (C{sub 6}H{sub 6}) at a test junction in Dublin. Traffic data, which are required on a street-by-street basis, is obtained from induction loops and closed circuit televisions (CCTV) as well as statistical data. The observed traffic data are compared to simulated data from a travel demand model. As a test case, an emissions inventory is compiled for a heavily trafficked signalized junction in an urban environment using the measured data. In order that the model may be validated, the predicted emissions are employed in a dispersion model along with local meteorological conditions and site geometry. The resultant pollutant concentrations are compared to average ambient kerbside conditions

  2. NOx emissions from large point sources: variability in ozone production, resulting health damages and economic costs

    International Nuclear Information System (INIS)

    Mauzerall, D.L.; Namsoug Kim

    2005-01-01

    We present a proof-of-concept analysis of the measurement of the health damage of ozone (O 3 ) produced from nitrogen oxides (NO x =NO+NO 2 ) emitted by individual large point sources in the eastern United States. We use a regional atmospheric model of the eastern United States, the Comprehensive Air quality Model with Extensions (CAMx), to quantify the variable impact that a fixed quantity of NO x emitted from individual sources can have on the downwind concentration of surface O 3 , depending on temperature and local biogenic hydrocarbon emissions. We also examine the dependence of resulting O 3 -related health damages on the size of the exposed population. The investigation is relevant to the increasingly widely used 'cap and trade' approach to NO x regulation, which presumes that shifts of emission over time and space, holding the total fixed over the course of the summer O 3 season, will have minimal effect on the environmental outcome. By contrast, we show that a shift of a unit of NO x emissions from one place or time to another could result in large changes in resulting health effects due to O 3 formation and exposure. We indicate how the type of modeling carried out here might be used to attach externality-correcting prices to emissions. Charging emitters fees that are commensurate with the damage caused by their NO x emissions would create an incentive for emitters to reduce emissions at times and in locations where they cause the largest damage. (author)

  3. Application of optical emission spectroscopy to high current proton sources

    International Nuclear Information System (INIS)

    Castro, G; Mazzaglia, M; Nicolosi, D; Mascali, D; Reitano, R; Celona, L; Leonardi, O; Leone, F; Naselli, E; Neri, L; Torrisi, G; Gammino, S; Zaniol, B

    2017-01-01

    Optical Emission Spectroscopy (OES) represents a very reliable technique to carry out non-invasive measurements of plasma density and plasma temperature in the range of tens of eV. With respect to other diagnostics, it also can characterize the different populations of neutrals and ionized particles constituting the plasma. At INFN-LNS, OES techniques have been developed and applied to characterize the plasma generated by the Flexible Plasma Trap, an ion source used as 'testbench' of the proton source built for European Spallation Source. This work presents the characterization of the parameters of a hydrogen plasma in different conditions of neutral pressure, microwave power and magnetic field profile, along with perspectives for further upgrades of the OES diagnostics system. (paper)

  4. Near-infrared observations of the far-infrared source V region in NGC 6334

    International Nuclear Information System (INIS)

    Fischer, J.; Joyce, R.R.; Simon, M.; Simon, T.

    1982-01-01

    We have observed a very red near-infrared source at the center of NGC 6334 FIRS V, a far-infrared source suspected of variability by McBreen et al. The near-infrared source has deep ice and silicate absorption bands, and its half-power size at 20 μm is approx.15'' x 10''. Over the past 2 years we have observed no variability in the near-infrared flux. We have also detected an extended source of H 2 line emission in this region. The total luminosity in the H 2 v-1--0 S(1) line, uncorrected for extinction along the line of sight, is 0.3 L/sub sun/. Detection of emission in high-velocity wings of the J = 1--0 12 CO line suggests that the H 2 emission is associated with a supersonic gas flow

  5. Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Gan, E-mail: zhanggan@gig.ac.c [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li Jun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Xu Yue; Guo Lingli [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Tang Jianhui [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Lee, Celine S.L. [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Liu Xiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen Yingjun [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China)

    2010-11-15

    Carbonaceous aerosols were studied at three background sites in south and southwest China. Hok Tsui in Hong Kong had the highest concentrations of carbonaceous aerosols (OC = 8.7 {+-} 4.5 {mu}g/m{sup 3}, EC = 2.5 {+-} 1.9 {mu}g/m{sup 3}) among the three sites, and Jianfeng Mountains in Hainan Island (OC = 5.8 {+-} 2.6 {mu}g/m{sup 3}, EC = 0.8 {+-} 0.4 {mu}g/m{sup 3}) and Tengchong mountain over the east edge of the Tibetan Plateau (OC = 4.8 {+-} 4.0 {mu}g/m{sup 3}, EC = 0.5 {+-} 0.4 {mu}g/m{sup 3}) showed similar concentration levels. Distinct seasonal patterns with higher concentrations during the winter, and lower concentrations during the summertime were observed, which may be caused by the changes of the regional emissions, and monsoon effects. The industrial and vehicular emissions in East, Southeast and South China, and the regional open biomass burning in the Indo-Myanmar region of Asia were probably the two major potential sources for carbonaceous matters in this region. - Anthropogenic emissions in China and open biomass burning in the Indo-Myanmar region were the two major potential sources for carbonaceous matters in South China region.

  6. Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China

    International Nuclear Information System (INIS)

    Zhang Gan; Li Jun; Li Xiangdong; Xu Yue; Guo Lingli; Tang Jianhui; Lee, Celine S.L.; Liu Xiang; Chen Yingjun

    2010-01-01

    Carbonaceous aerosols were studied at three background sites in south and southwest China. Hok Tsui in Hong Kong had the highest concentrations of carbonaceous aerosols (OC = 8.7 ± 4.5 μg/m 3 , EC = 2.5 ± 1.9 μg/m 3 ) among the three sites, and Jianfeng Mountains in Hainan Island (OC = 5.8 ± 2.6 μg/m 3 , EC = 0.8 ± 0.4 μg/m 3 ) and Tengchong mountain over the east edge of the Tibetan Plateau (OC = 4.8 ± 4.0 μg/m 3 , EC = 0.5 ± 0.4 μg/m 3 ) showed similar concentration levels. Distinct seasonal patterns with higher concentrations during the winter, and lower concentrations during the summertime were observed, which may be caused by the changes of the regional emissions, and monsoon effects. The industrial and vehicular emissions in East, Southeast and South China, and the regional open biomass burning in the Indo-Myanmar region of Asia were probably the two major potential sources for carbonaceous matters in this region. - Anthropogenic emissions in China and open biomass burning in the Indo-Myanmar region were the two major potential sources for carbonaceous matters in South China region.

  7. Searching for Compact Radio Sources Associated with UCH ii Regions

    Energy Technology Data Exchange (ETDEWEB)

    Masqué, Josep M.; Trinidad, Miguel A.; Rodríguez-Rico, Carlos A. [Departamento de Astronomía, Universidad de Guanajuato, Apdo. Postal 144, 36000 Guanajuato, México (Mexico); Rodríguez, Luis F.; Kurtz, Stan; Loinard, Laurent [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58089, México (Mexico); Dzib, Sergio A. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2017-02-10

    Ultra-compact (UC)H ii regions represent a very early stage of massive star formation. The structure and evolution of these regions are not yet fully understood. Interferometric observations showed in recent years that compact sources of uncertain nature are associated with some UCH ii regions. To examine this, we carried out VLA 1.3 cm observations in the A configuration of selected UCH ii regions in order to report additional cases of compact sources embedded in UCH ii regions. With these observations, we find 13 compact sources that are associated with 9 UCH ii regions. Although we cannot establish an unambiguous nature for the newly detected sources, we assess some of their observational properties. According to the results, we can distinguish between two types of compact sources. One type corresponds to sources that are probably deeply embedded in the dense ionized gas of the UCH ii region. These sources are photoevaporated by the exciting star of the region and will last for 10{sup 4}–10{sup 5} years. They may play a crucial role in the evolution of the UCH ii region as the photoevaporated material could replenish the expanding plasma and might provide a solution to the so-called lifetime problem of these regions. The second type of compact sources is not associated with the densest ionized gas of the region. A few of these sources appear resolved and may be photoevaporating objects such as those of the first type, but with significantly lower mass depletion rates. The remaining sources of this second type appear unresolved, and their properties are varied. We speculate on the similarity between the sources of the second type and those of the Orion population of radio sources.

  8. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    Science.gov (United States)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  9. Soil emissions of gaseous reactive nitrogen from North American arid lands: an overlooked source.

    Science.gov (United States)

    Sparks, J. P.; McCalley, C. K.; Strahm, B. D.

    2008-12-01

    The biosphere-atmosphere exchange and transformation of nitrogen has important ramifications for both terrestrial biogeochemistry and atmospheric chemistry. Several important mechanisms within this process (e.g., photochemistry, nitrogen deposition, aerosol formation) are strongly influenced by the emission of reactive nitrogen compounds from the Earth's surface. Therefore, a quantification of emission sources is a high priority for future conceptual understanding. One source largely overlooked in most global treatments are the soil emissions from arid and semi-arid landscapes worldwide. Approximately 35-40% of global terrestrial land cover is aridland and emission of reactive nitrogen from soils in these regions has the potential to strongly influence both regional and global biogeochemistry. Here we present estimates of soil emission of oxidized (NO, total NOy including NO2 and HONO) and reduced (NH3) forms of reactive nitrogen from two North American arid regions: the Mojave Desert and the Colorado Plateau. Soil fluxes in these regions are highly dependent on soil moisture conditions. Soil moisture is largely driven by pulsed rain events with fluxes increasing 20-40 fold after a rain event. Using field measurements made across seasons under an array of moisture conditions, precipitation records, and spatially explicit cover type information we have estimated annual estimates for the Mojave Desert (1.5 ± 0.7 g N ha-1 yr-1), the shale derived (1.4 ± 0.9 g N ha-1 yr-1), and sandy soil derived (2.8 ± 1.2 g N ha-1 yr-1) regions of the Colorado Plateau. The chemical composition of soil emissions varies significantly both with season and soil moisture content. Emissions from dry soils tend to be dominated by ammonia and forms of NOy other than NO. In contrast, NO becomes a dominant portion of the flux post rain events (~30% of the total flux). This variability in chemical form has significant implications for the tropospheric fate of the emitted N. NO and other

  10. 76 FR 4155 - National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

    Science.gov (United States)

    2011-01-24

    ... 63 National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities; and Gasoline Dispensing Facilities; Final...] RIN 2060-AP16 National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

  11. Noise source emissions, Deaf Smith County site, Texas

    International Nuclear Information System (INIS)

    1987-01-01

    Noise source data and use factors for modeling the noise environment expected from salt site repository activity were provided by Battelle Columbus Division. This report has been prepared for the purpose of documenting the development of the data provided to the Repository Project Management (RPM) organization. The data provided encompass all phases of activity from site preparation through construction of the exploratory shaft facility (ESF). Noise environments expected from construction and operation of transportation corridors associated with the activity were also modeled. The equipment inventory, including sound-power levels for each item, is included. Emission source terms provided by Parsons Brinckerhoff/PB-KBB for the ESF were used as a basis for the noise-source emission inventory development. Where available, research results containing complete spectra were used. In cases where complete data were not available, a sound-pressure spectrum was synthesized from a characteristic spectrum shape from a similar piece of equipment. For example, a front-shovel excavator might be approximated by data from a front-end loader of similar horsepower range. Sound-power-level spectra were then calculated from the sound-pressure-level data. 2 refs

  12. A consumption-based, regional input-output analysis of greenhouse gas emissions and the carbon regional index

    DEFF Research Database (Denmark)

    Boyd, Britta; Mangalagiu, Diana; Straatman, Bas

    2018-01-01

    This paper presents a consumption-based method accounting for greenhouse gas emissions at regional level based on a multi-region input-output model. The method is based on regional consumption and includes imports and exports of emissions, factual emission developments, green investments as well...

  13. Technologies and policies for "hard to scrub" emissions sources

    Science.gov (United States)

    Friedmann, J.

    2016-12-01

    The science of climate change yields harsh math regarding atmospheric accumulations of GHGs. The world is far from target trajectories for 2C or 1.5C, and the global carbon budget is severe. To achieve those targets requires two things. First, we must field technologies that reduce emissions from the "hard to scrub" parts of the US and global economies, such as heavy industry (cement and steel), aviation, ocean shipping, and household cooking and heating. Second, we will likely need negative emissions pathways for those sources that prove extremely difficult to remove or reduce - the climate equivalent of adding revenue to one's budget. Such pathways may well need to convert GHG emissions (especially CO2 and methane) into useful products with minimal infrastructure builds. Dramatic advances in advanced manufacturing, 3D printing, simulation, modeling, and data analytics have made possible solutions which were previously unthinkable or impossible. This include "bespoke reactors", which can simultaneously perform separations and conversions; low-cost modular chemical systems of any scale; biologically inspired or biologically mediated energy services; direct air carbon-capture systems; and electrochemical pathways for emissions reduction and conversion. However, these approaches are unlikely to be fielded without policy actions or reforms that support such systems in competitive global energy markets. Such policy measures do NOT require a carbon price. Rather, they could include individual or combined measures such as emission or performance standards, financial incentives (like tax credits or low-cost access to capital), border adjustable tariffs, creation of CO2 utilities, ands public good surcharges. Innovation in both technical and policy arenas are needed to achieve the goals of the Paris agreement signatories, and these innovations can be simultaneously configured to deliver substantive greenhouse gas mitigation.

  14. A high-resolution emission inventory of primary pollutants for the Huabei region, China

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2012-01-01

    Full Text Available Huabei, located between 32° N and 42° N, is part of eastern China and includes administratively the Beijing and Tianjin Municipalities, Hebei and Shanxi Provinces, and Inner-Mongolia Autonomous Region. Over the past decades, the region has experienced dramatic changes in air quality and climate, and has become a major focus of environmental research in China. Here we present a new inventory of air pollutant emissions in Huabei for the year 2003 developed as part of the project Influence of Pollution on Aerosols and Cloud Microphysics in North China (IPAC-NC.

    Our estimates are based on data from the statistical yearbooks of the state, provinces and local districts, including major sectors and activities of power generation, industrial energy consumption, industrial processing, civil energy consumption, crop straw burning, oil and solvent evaporation, manure, and motor vehicles. The emission factors are selected from a variety of literature and those from local measurements in China are used whenever available. The estimated total emissions in the Huabei administrative region in 2003 are 4.73 Tg SO2, 2.72 Tg NOx (in equivalent NO2, 1.77 Tg VOC, 24.14 Tg CO, 2.03 Tg NH3, 4.57 Tg PM10, 2.42 Tg PM2.5, 0.21 Tg EC, and 0.46 Tg OC.

    For model convenience, we consider a larger Huabei region with Shandong, Henan and Liaoning Provinces included in our inventory. The estimated total emissions in the larger Huabei region in 2003 are: 9.55 Tg SO2, 5.27 Tg NOx (in equivalent NO2, 3.82 Tg VOC, 46.59 Tg CO, 5.36 Tg NH3, 10.74 Tg PM10, 5.62 Tg PM2.5, 0.41 Tg EC, and 0.99 Tg OC. The estimated emission rates are projected into grid cells at a horizontal resolution of 0.1° latitude by 0.1° longitude. Our gridded emission inventory consists of area sources, which are classified into industrial, civil, traffic, and

  15. COMPILATION OF REGIONAL TO GLOBAL INVENTORIES OF ANTHROPOGENIC EMISSIONS

    International Nuclear Information System (INIS)

    BENKOVITZ, C.M.

    2002-01-01

    The mathematical modeling of the transport and transformation of trace species in the atmosphere is one of the scientific tools currently used to assess atmospheric chemistry, air quality, and climatic conditions. From the scientific but also from the management perspectives accurate inventories of emissions of the trace species at the appropriate spatial, temporal, and species resolution are required. There are two general methodologies used to estimate regional to global emissions: bottom-up and top-down (also known as inverse modeling). Bottom-up methodologies to estimate industrial emissions are based on activity data, emission factors (amount of emissions per unit activity), and for some inventories additional parameters (such as sulfur content of fuels). Generally these emissions estimates must be given finer sectoral, spatial (usually gridded), temporal, and for some inventories species resolution. Temporal and spatial resolution are obtained via the use of surrogate information, such as population, land use, traffic counts, etc. which already exists in or can directly be converted to gridded form. Speciation factors have been and are being developed to speciate inventories of NO(sub x), particulate matter, and hydrocarbons. Top-down (inverse modeling) methodologies directly invert air quality measurements in terms of poorly known but critical parameters to constrain the emissions needed to explain these measurements; values of these parameters are usually computed using atmospheric transport models. Currently there are several strong limitations of inverse modeling, but the continued evolution of top-down estimates will be facilitated by the development of denser monitoring networks and by the massive amounts of data from satellite observations

  16. Identifying the source region of plasmaspheric hiss

    Czech Academy of Sciences Publication Activity Database

    Laakso, H.; Santolík, Ondřej; Horne, R.; Kolmašová, Ivana; Escoubet, P.; Masson, A.; Taylor, P.

    2015-01-01

    Roč. 42, č. 9 (2015), s. 3141-3149 ISSN 0094-8276 R&D Projects: GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : plasmaspheric hiss * plasmaspheric drainage plumes * plasmasphere * equatorial region of plumes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.212, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2015GL063755/full

  17. Anthropogenic Methane Emissions in California's San Joaquin Valley: Characterizing Large Point Source Emitters

    Science.gov (United States)

    Hopkins, F. M.; Duren, R. M.; Miller, C. E.; Aubrey, A. D.; Falk, M.; Holland, L.; Hook, S. J.; Hulley, G. C.; Johnson, W. R.; Kuai, L.; Kuwayama, T.; Lin, J. C.; Thorpe, A. K.; Worden, J. R.; Lauvaux, T.; Jeong, S.; Fischer, M. L.

    2015-12-01

    Methane is an important atmospheric pollutant that contributes to global warming and tropospheric ozone production. Methane mitigation could reduce near term climate change and improve air quality, but is hindered by a lack of knowledge of anthropogenic methane sources. Recent work has shown that methane emissions are not evenly distributed in space, or across emission sources, suggesting that a large fraction of anthropogenic methane comes from a few "super-emitters." We studied the distribution of super-emitters in California's southern San Joaquin Valley, where elevated levels of atmospheric CH4 have also been observed from space. Here, we define super-emitters as methane plumes that could be reliably detected (i.e., plume observed more than once in the same location) under varying wind conditions by airborne thermal infrared remote sensing. The detection limit for this technique was determined to be 4.5 kg CH4 h-1 by a controlled release experiment, corresponding to column methane enhancement at the point of emissions greater than 20% above local background levels. We surveyed a major oil production field, and an area with a high concentration of large dairies using a variety of airborne and ground-based measurements. Repeated airborne surveys (n=4) with the Hyperspectral Thermal Emission Spectrometer revealed 28 persistent methane plumes emanating from oil field infrastructure, including tanks, wells, and processing facilities. The likelihood that a given source type was a super-emitter varied from roughly 1/3 for processing facilities to 1/3000 for oil wells. 11 persistent plumes were detected in the dairy area, and all were associated with wet manure management. The majority (11/14) of manure lagoons in the study area were super-emitters. Comparing to a California methane emissions inventory for the surveyed areas, we estimate that super-emitters comprise a minimum of 9% of inventoried dairy emissions, and 13% of inventoried oil emissions in this region.

  18. Evaluating measurements of carbon dioxide emissions using a precision source--A natural gas burner.

    Science.gov (United States)

    Bryant, Rodney; Bundy, Matthew; Zong, Ruowen

    2015-07-01

    A natural gas burner has been used as a precise and accurate source for generating large quantities of carbon dioxide (CO2) to evaluate emissions measurements at near-industrial scale. Two methods for determining carbon dioxide emissions from stationary sources are considered here: predicting emissions based on fuel consumption measurements-predicted emissions measurements, and direct measurement of emissions quantities in the flue gas-direct emissions measurements. Uncertainty for the predicted emissions measurement was estimated at less than 1%. Uncertainty estimates for the direct emissions measurement of carbon dioxide were on the order of ±4%. The relative difference between the direct emissions measurements and the predicted emissions measurements was within the range of the measurement uncertainty, therefore demonstrating good agreement. The study demonstrates how independent methods are used to validate source emissions measurements, while also demonstrating how a fire research facility can be used as a precision test-bed to evaluate and improve carbon dioxide emissions measurements from stationary sources. Fossil-fuel-consuming stationary sources such as electric power plants and industrial facilities account for more than half of the CO2 emissions in the United States. Therefore, accurate emissions measurements from these sources are critical for evaluating efforts to reduce greenhouse gas emissions. This study demonstrates how a surrogate for a stationary source, a fire research facility, can be used to evaluate the accuracy of measurements of CO2 emissions.

  19. Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China.

    Science.gov (United States)

    Liu, Yayong; Xing, Jia; Wang, Shuxiao; Fu, Xiao; Zheng, Haotian

    2018-08-01

    Heavy metals are concerned for its adverse effect on human health and long term burden on biogeochemical cycling in the ecosystem. In this study, a provincial-level emission inventory of 13 kinds of heavy metals including V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Sn, Sb, Ba and Pb from 10 anthropogenic sources was developed for China, based on the 2015 national emission inventory of primary particulate matters and source category-specific speciation profiles collected from 50 previous studies measured in China. Uncertainties associated with the speciation profiles were also evaluated. Our results suggested that total emissions of the 13 types of heavy metals in China are estimated at about 58000 ton for the year 2015. The iron production is the dominant source of heavy metal, contributing 42% of total emissions of heavy metals. The emissions of heavy metals vary significantly at regional scale, with largest amount of emissions concentrated in northern and eastern China. Particular, high emissions of Cr, Co, Ni, As and Sb (contributing 8%-18% of the national emissions) are found in Shandong where has large capacity of industrial production. Uncertainty analysis suggested that the implementation of province-specific source profiles in this study significantly reduced the emission uncertainties from (-89%, 289%) to (-99%, 91%), particularly for coal combustion. However, source profiles for industry sectors such as non-metallic mineral manufacturing are quite limited, resulting in a relative high uncertainty. The high-resolution emission inventories of heavy metals are essential not only for their distribution, deposition and transport studies, but for the design of policies to redress critical atmospheric environmental hazards at local and regional scales. Detailed investigation on source-specific profile in China are still needed to achieve more accurate estimations of heavy metals in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. New Constraints on Quasar Broad Absorption and Emission Line Regions from Gravitational Microlensing

    Directory of Open Access Journals (Sweden)

    Damien Hutsemékers

    2017-09-01

    Full Text Available Gravitational microlensing is a powerful tool allowing one to probe the structure of quasars on sub-parsec scale. We report recent results, focusing on the broad absorption and emission line regions. In particular microlensing reveals the intrinsic absorption hidden in the P Cygni-type line profiles observed in the broad absorption line quasar H1413+117, as well as the existence of an extended continuum source. In addition, polarization microlensing provides constraints on the scattering region. In the quasar Q2237+030, microlensing differently distorts the Hα and CIV broad emission line profiles, indicating that the low- and high-ionization broad emission lines must originate from regions with distinct kinematical properties. We also present simulations of the effect of microlensing on line profiles considering simple but representative models of the broad emission line region. Comparison of observations to simulations allows us to conclude that the Hα emitting region in Q2237+030 is best represented by a Keplerian disk.

  1. New Constraints on Quasar Broad Absorption and Emission Line Regions from Gravitational Microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Hutsemékers, Damien; Braibant, Lorraine; Sluse, Dominique [Institut d' Astrophysique et de Géophysique, Université de Liège, Liège (Belgium); Anguita, Timo [Departamento de Ciencias Fisicas, Universidad Andres Bello, Santiago (Chile); Goosmann, René, E-mail: hutsemekers@astro.ulg.ac.be [Observatoire Astronomique de Strasbourg, Université de Strasbourg, Strasbourg (France)

    2017-09-29

    Gravitational microlensing is a powerful tool allowing one to probe the structure of quasars on sub-parsec scale. We report recent results, focusing on the broad absorption and emission line regions. In particular microlensing reveals the intrinsic absorption hidden in the P Cygni-type line profiles observed in the broad absorption line quasar H1413+117, as well as the existence of an extended continuum source. In addition, polarization microlensing provides constraints on the scattering region. In the quasar Q2237+030, microlensing differently distorts the Hα and CIV broad emission line profiles, indicating that the low- and high-ionization broad emission lines must originate from regions with distinct kinematical properties. We also present simulations of the effect of microlensing on line profiles considering simple but representative models of the broad emission line region. Comparison of observations to simulations allows us to conclude that the Hα emitting region in Q2237+030 is best represented by a Keplerian disk.

  2. Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?

    Directory of Open Access Journals (Sweden)

    M. L. White

    2009-01-01

    Full Text Available Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequently, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004–2006. These included: (1 increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG content to meet US EPA summertime volatility standards, (2 local industrial emissions and (3 local vegetative emissions. The contribution of fuel evaporation emission to summer toluene mixing ratios was estimated to range from 16 to 30 pptv d−1, and did not fully account for the observed enhancements (20–50 pptv in 2004–2006. Static chamber measurements of alfalfa, a crop at Thompson Farm, and dynamic branch enclosure measurements of loblolly pine trees in North Carolina suggested vegetative emissions of 5 and 12 pptv d−1 for crops and coniferous trees, respectively. Toluene emission rates from alfalfa are potentially much larger as these plants were only sampled at the end of the growing season. Measured biogenic fluxes were on the same order of magnitude as the influence from gasoline evaporation and industrial sources (regional industrial emissions estimated at 7 pptv d−1 and indicated that local vegetative emissions make a significant contribution to summertime toluene enhancements. Additional studies are needed to characterize the variability and factors controlling toluene emissions from alfalfa and other vegetation types throughout the growing season.

  3. A New Diagnostic Diagram of Ionization Sources for High-redshift Emission Line Galaxies

    Science.gov (United States)

    Zhang, Kai; Hao, Lei

    2018-04-01

    We propose a new diagram, the kinematics–excitation (KEx) diagram, which uses the [O III] λ5007/Hβ line ratio and the [O III] λ5007 emission line width (σ [O III]) to diagnose the ionization source and physical properties of active galactic nuclei (AGNs) and star-forming galaxies (SFGs). The KEx diagram is a suitable tool to classify emission line galaxies at intermediate redshift because it uses only the [O III] λ5007 and Hβ emission lines. We use the main galaxy sample of SDSS DR7 and the Baldwin‑Phillips‑Terlevich (BPT) diagnostic to calibrate the diagram at low redshift. The diagram can be divided into three regions: the KEx-AGN region, which consists mainly of pure AGNs, the KEx-composite region, which is dominated by composite galaxies, and the KEx-SFG region, which contains mostly SFGs. LINERs strongly overlap with the composite and AGN regions. AGNs are separated from SFGs in this diagram mainly because they preferentially reside in luminous and massive galaxies and have higher [O III]/Hβ than SFGs. The separation between AGNs and SFGs is even cleaner thanks to the additional 0.15/0.12 dex offset in σ [O III] at fixed luminosity/stellar mass. We apply the KEx diagram to 7866 galaxies at 0.3 Survey, and compare it to an independent X-ray classification scheme using Chandra observations. X-ray AGNs are mostly located in the KEx-AGN region, while X-ray SFGs are mostly located in the KEx-SFG region. Almost all Type 1 AGNs lie in the KEx-AGN region. These tests support the reliability of this classification diagram for emission line galaxies at intermediate redshift. At z ∼ 2, the demarcation line between SFGs and AGNs is shifted by ∼0.3 dex toward higher values of σ [O III] due to evolution effects.

  4. Characterization of wake region by using and emissive probe

    International Nuclear Information System (INIS)

    Jeong, Yong Ho

    1993-02-01

    An emissive probe was designed and manufactured to measure the floating and the space potentials of plasma in the wake region. The floating potential method' among various schemes was used for the measurement and analysis. To generate the wake, a plane artificial satellite with circular shape was introduced in a simply discharged argon plasma without the magnetic field. Potentials along the radial direction in and out of the wake regions of artificial satellite were measured, and plasma parameters were compared in the both regions. In the wake region, the floating potential was higher than that out of the wake, the space potential was approximately equal to that out of the wake, when the positive voltage was applied to artificial satellite, the floating and the space potentials were lower than that out of the wake and when the negative voltage was applied to artificial satellite, the floating potential was higher, the space potential was lower than that out of the wake

  5. [Regional atmospheric environment risk source identification and assessment].

    Science.gov (United States)

    Zhang, Xiao-Chun; Chen, Wei-Ping; Ma, Chun; Zhan, Shui-Fen; Jiao, Wen-Tao

    2012-12-01

    Identification and assessment for atmospheric environment risk source plays an important role in regional atmospheric risk assessment and regional atmospheric pollution prevention and control. The likelihood exposure and consequence assessment method (LEC method) and the Delphi method were employed to build a fast and effective method for identification and assessment of regional atmospheric environment risk sources. This method was applied to the case study of a large coal transportation port in North China. The assessment results showed that the risk characteristics and the harm degree of regional atmospheric environment risk source were in line with the actual situation. Fast and effective identification and assessment of risk source has laid an important foundation for the regional atmospheric environmental risk assessment and regional atmospheric pollution prevention and control.

  6. From sink to source: Regional variation in U.S. forest carbon futures.

    Science.gov (United States)

    Wear, David N; Coulston, John W

    2015-11-12

    The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests' current net sequestration of atmospheric C to be 173 Tg yr(-1), offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr(-1)) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests' role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength.

  7. Characterization of selenium in ambient aerosols and primary emission sources.

    Science.gov (United States)

    De Santiago, Arlette; Longo, Amelia F; Ingall, Ellery D; Diaz, Julia M; King, Laura E; Lai, Barry; Weber, Rodney J; Russell, Armistead G; Oakes, Michelle

    2014-08-19

    Atmospheric selenium (Se) in aerosols was investigated using X-ray absorption near-edge structure (XANES) spectroscopy and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the oxidation state and elemental associations of Se in common primary emission sources and ambient aerosols collected from the greater Atlanta area. In the majority of ambient aerosol and primary emission source samples, the spectroscopic patterns as well as the absence of elemental correlations suggest Se is in an elemental, organic, or oxide form. XRF microscopy revealed numerous Se-rich particles, or hotspots, accounting on average for ∼16% of the total Se in ambient aerosols. Hotspots contained primarily Se(0)/Se(-II). However, larger, bulk spectroscopic characterizations revealed Se(IV) as the dominant oxidation state in ambient aerosol, followed by Se(0)/Se(-II) and Se(VI). Se(IV) was the only observed oxidation state in gasoline, diesel, and coal fly ash, while biomass burning contained a combination of Se(0)/Se(-II) and Se(IV). Although the majority of Se in aerosols was in the most toxic form, the Se concentration is well below the California Environmental Protection Agency chronic exposure limit (∼20000 ng/m(3)).

  8. Using an Explicit Emission Tagging Method in Global Modeling of Source-Receptor Relationships for Black Carbon in the Arctic: Variations, Sources and Transport Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong; Rasch, Philip J.; Easter, Richard C.; Singh, Balwinder; Zhang, Rudong; Ma, Po-Lun; Qian, Yun; Ghan, Steven J.; Beagley, Nathaniel

    2014-11-27

    We introduce an explicit emission tagging technique in the Community Atmosphere Model to quantify source-region-resolved characteristics of black carbon (BC), focusing on the Arctic. Explicit tagging of BC source regions without perturbing the emissions makes it straightforward to establish source-receptor relationships and transport pathways, providing a physically consistent and computationally efficient approach to produce a detailed characterization of the destiny of regional BC emissions and the potential for mitigation actions. Our analysis shows that the contributions of major source regions to the global BC burden are not proportional to the respective emissions due to strong region-dependent removal rates and lifetimes, while the contributions to BC direct radiative forcing show a near-linear dependence on their respective contributions to the burden. Distant sources contribute to BC in remote regions mostly in the mid- and upper troposphere, having much less impact on lower-level concentrations (and deposition) than on burden. Arctic BC concentrations, deposition and source contributions all have strong seasonal variations. Eastern Asia contributes the most to the wintertime Arctic burden. Northern Europe emissions are more important to both surface concentration and deposition in winter than in summer. The largest contribution to Arctic BC in the summer is from Northern Asia. Although local emissions contribute less than 10% to the annual mean BC burden and deposition within the Arctic, the per-emission efficiency is much higher than for major non-Arctic sources. The interannual variability (1996-2005) due to meteorology is small in annual mean BC burden and radiative forcing but is significant in yearly seasonal means over the Arctic. When a slow aging treatment of BC is introduced, the increase of BC lifetime and burden is source-dependent. Global BC forcing-per-burden efficiency also increases primarily due to changes in BC vertical distributions. The

  9. ENERGY SOURCES AND CARBON EMISSIONS IN THE IRON AND STEEL INDUSTRY SECTOR IN SOUTH ASIA

    Directory of Open Access Journals (Sweden)

    Tapan Sarker

    2013-01-01

    Full Text Available This paper examines CO2 emissions from electricity and fuel consumption of different energy sources consumed in the Iron and Steel Industry sector (non-ferrous included, also known as basic metal in five South Asian countries including Bangladesh, India, Nepal, Sri Lanka and Pakistan. The study finds that about 30% of the total energy in the manufacturing industry is used in this sector, which is about 11% of total industrial input, contributing approximately 13% to the Manufacturing Value Added (MVA. Electricity, on the other hand, shares almost 60% of total energy consumption in the five countries in South Asia, followed by natural gas, coal, kerosene and diesel. The study also finds that CO2 emissions vary across sectors in countries in which the study was conducted. For instance, while in Bangladesh CO2 emissions are primarily caused by electricity generation, in India the majority of CO2 emissions are originated from coal. On the contrary, CO2 emissions in Nepal are mostly generated through other fuels such as Charcoal, Diesel and Kerosene. This study provides some policy recommendations, which could help reduce CO2 emissions in the Iron and Steel Industry sector in the South Asian region.

  10. Regional sulfur dioxide emissions: shall we achieve the goal?

    Science.gov (United States)

    Tan, X.; Shi, L.; Wang, M.; Wang, JY

    2017-01-01

    Although economic growth is slowing down in the new normal period, air pollution is still a very serious problem in China. The 15% binding goal of sulfur dioxide emission reduction from 2016 to 2020, as stipulated in the 13th Five-Year Plan, has been an ambitious target for the Chinese government. This paper studies the synthetic evaluation and forecasting analysis of sulfur dioxide in China by means of a “grey model” approach combined with the grey relational analysis methods, with the panel data of 31 provinces from 2005 to 2015. Grey analysis used to analyse a system with imperfect information, such that a variety of available solutions is reviewed, and the optimal solution is identified. Some encouraging results show that national emissions and a majority of provinces will achieve the target. Over time, the gap of regional differences is rapidly closing. According to the results of grey relational analysis, we find industrial structure and energy consumption have a more significant impact on sulfur dioxide emissions than GDP. Atmospheric treatment investment and environmental protection manpower play a more important role in emissions variation. Based on the findings, we should distinguish different factors and take different measures to protect the environment.

  11. The environmental convergence hypothesis: Carbon dioxide emissions according to the source of energy

    International Nuclear Information System (INIS)

    Herrerias, M.J.

    2013-01-01

    The aim of this paper is to investigate the environmental convergence hypothesis in carbon dioxide emissions for a large group of developed and developing countries from 1980 to 2009. The novel aspect of this work is that we distinguish among carbon dioxide emissions according to the source of energy (coal, natural gas and petroleum) instead of considering the aggregate measure of per capita carbon dioxide emissions, where notable interest is given to the regional dimension due to the application of new club convergence tests. This allows us to determine the convergence behaviour of emissions in a more precise way and to detect it according to the source of energy used, thereby helping to address the environmental targets. More specifically, the convergence hypothesis is examined with a pair-wise test and another one is used to test for the existence of club convergence. Our results from using the pair-wise test indicate that carbon dioxide emissions for each type of energy diverge. However, club convergence is found for a large group of countries, although some still display divergence. These findings point to the need to apply specific environmental policies to each club detected, since specific countries converge to different clubs. - Highlights: • The environmental convergence hypothesis is investigated across countries. • We perform a pair-wise test and a club convergence test. • Results from the first of these two tests suggest that carbon dioxide emissions are diverging. • However, we find that carbon dioxide emissions are converging within groups of countries. • Active environmental policies are required

  12. Separating contributions from natural and anthropogenic sources in atmospheric methane from the Black Sea region, Romania

    International Nuclear Information System (INIS)

    Cuna, Stela; Pendall, Elise; Miller, John B.; Tans, Pieter P.; Dlugokencky, Ed; White, James W.C.

    2008-01-01

    The Danube Delta-Black Sea region of Romania is an important wetland, and this preliminary study evaluates the significance of this region as a source of atmospheric CH 4 . Measurements of the mixing ratio and δ 13 C in CH 4 are reported from air and water samples collected at eight sites in the Danube Delta. High mixing ratios of CH 4 were found in air (2500-14,000 ppb) and dissolved in water samples (∼1-10 μmol L -1 ), demonstrating that the Danube Delta is an important natural source of CH 4 . The intercepts on Keeling plots of about -62 per mille show that the main source of CH 4 in this region is microbial, probably resulting primarily from acetate fermentation. Atmospheric CH 4 and CO data from the NOAA/ESRL (National Oceanic and Atmospheric Administration/Earth System Research Laboratory) were used to make a preliminary estimate of biogenic CH 4 at the Black Sea sampling site at Constanta (BSC). These data were used to calculate ratios of CH 4 /CO in air samples, and using an assumed CH 4 /CO anthropogenic emissions ratio of 0.6, fossil fuel emissions at BSC were estimated. Biogenic CH 4 emissions were then estimated by a simple mass balance approach. Keeling plots of well-mixed air from the BSC site suggested a stronger wetland source in summer and a stronger fossil fuel source in winter

  13. Gravity wave-driven fluctuations in OH nightglow from an extended, dissipative emission region

    International Nuclear Information System (INIS)

    Schubert, G.; Walterscheid, R.L.; Hickey, M.P.

    1991-01-01

    The theory of gravity wave-driven fluctuations in the OH nightglow from an extended source region is generalized to account for effects of eddy kinematic viscosity v and eddy thermal diffusivity κ. In the nondiffusive case, the amplitudes and phases of vertically integrated normalized intensity (δI)/(bar I) and temperature (δT 1 )/(bar T 1 ) perturbations and vertically integrated Krassovsky's ratio (η) as functions of period are influenced by the upper limit of vertical integration of the extended source, especially at long periods when vertical wavelengths γ v are small. The effects, which include oscillations in (δT)/(bar I), (δT 1 )/(bar T 1 ), and (η), particularly at long periods, are due to constructive and destructive interference of nightglow signals from vertically separated levels of the OH emitting region that occur when γ v is comparable to or smaller than the thickness of the main emission region. The sensitivity of these ratios to the upper limit of vertical integration occurs because of the relatively small rate of decay of the intensity of OH emission with height above the peak emission level and the exponential growth with altitude of nondissipative gravity waves. Because eddy diffusion increases γ v , especially at long periods, and reduces wave growth with height compared with the case v = κ = 0, inclusion of eddy diffusion removes the sensitivity of (η) and the other ratios ot the maximum height of vertical integration. It is essential to account for both eddy diffusion and emission from the entire vertically extended emission region to correctly predict (η), (δI)/(bar I), and (δT 1 )/(bar T 1 ) at long gravity wave periods

  14. Source contributions and regional transport of primary particulate matter in China

    International Nuclear Information System (INIS)

    Hu, Jianlin; Wu, Li; Zheng, Bo; Zhang, Qiang; He, Kebin; Chang, Qing; Li, Xinghua; Yang, Fumo; Ying, Qi; Zhang, Hongliang

    2015-01-01

    A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China. Four months were simulated with emissions grouped to eight regions and six sectors. Predicted elemental carbon (EC), primary organic carbon (POC), and PPM concentrations and source contributions agree with measurements and have significant spatiotemporal variations. Residential is a major contributor to spring/winter EC (50–80%), POC (60%–90%), and PPM (30–70%). For summer/fall, industrial contributes 30–50% for EC/POC and 40–60% for PPM. Transportation is more important for EC (20–30%) than POC/PPM ( 90% in Beijing. - Highlights: • A source-oriented CMAQ was established for primary particulate matter (PPM). • Source and region contributions to EC, POC and PPM in China were quantified. • Residential is major in spring/winter and industrial dominates in summer/fall. • Open burning is more important for southern while dust is in contrast. • Both local and Heibei emissions contribute to PPM in Beijing. - Source and region contributions to primary particulate matter in China were quantified for four months during 2012-2013. Residential and industrial are the major contributors.

  15. ANOMALOUS MICROWAVE EMISSION IN H ii REGIONS: IS IT REALLY ANOMALOUS? THE CASE OF RCW 49

    Energy Technology Data Exchange (ETDEWEB)

    Paladini, Roberta [Infrared Processing Analysis Center, California Institute of Technology, 770 South Wilson Ave., Pasadena, CA 91125 (United States); Ingallinera, Adriano; Agliozzo, Claudia; Umana, Grazia; Trigilio, Corrado [Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania Italy (Italy); Tibbs, Christopher T. [Scientific Support Office, Directorate of Science and Robotic Exploration,European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ, Noordwijk (Netherlands); Noriega-Crespo, Alberto [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dickinson, Clive [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2015-11-01

    The detection of an excess of emission at microwave frequencies with respect to the predicted free–free emission has been reported for several Galactic H ii regions. Here, we investigate the case of RCW 49, for which the Cosmic Background Imager tentatively (∼3σ) detected Anomalous Microwave Emission (AME) at 31 GHz on angular scales of 7′. Using the Australia Telescope Compact Array, we carried out a multi-frequency (5, 19, and 34 GHz) continuum study of the region, complemented by observations of the H109α radio recombination line. The analysis shows that: (1) the spatial correlation between the microwave and IR emission persists on angular scales from 3.′4 to 0.″4, although the degree of the correlation slightly decreases at higher frequencies and on smaller angular scales; (2) the spectral indices between 1.4 and 5 GHz are globally in agreement with optically thin free–free emission, however, ∼30% of these are positive and much greater than −0.1, consistent with a stellar wind scenario; and (3) no major evidence for inverted free–free radiation is found, indicating that this is likely not the cause of the Anomalous Emission in RCW 49. Although our results cannot rule out the spinning dust hypothesis to explain the tentative detection of AME in RCW 49, they emphasize the complexity of astronomical sources that are very well known and studied, such as H ii regions, and suggest that, at least in these objects, the reported excess of emission might be ascribed to alternative mechanisms such as stellar winds and shocks.

  16. Investigating Ammonia Emission Sources in a Coastal Urban Air Shed Using Stable Isotope Techniques

    Science.gov (United States)

    Berner, A.; Felix, J. D. D.

    2017-12-01

    For nearly 100 years, mankind has met the food demands of a growing population by commercially producing and consuming reactive nitrogen fertilizers. So much so, that now 40-60% of the population relies on them. This increase has drastically altered the global nitrogen (N) cycle. Specifically, ammonia (NH3) emissions to the atmosphere have increased, resulting in wet and dry NHx (NH3 + NH4+) deposition products that can be substantial sources of N to sensitive ecosystems. Excess N can wreak havoc on these environments, causing soil acidification, water body eutrophication, and decreases in biodiversity. Despite these effects, NH3 remains generally unregulated in the U.S. Should policymakers elect to regulate NH3, quantification of NH3 emission sources and transport is essential. This has proven to be particularly difficult in urban regions, where ambient NH3 may result from local urban sources and/or NH3 transport from rural agricultural sources. The presented work investigates potential NH3 emission sources within a South Texas coastal urban air shed, Corpus Christi, TX, U.S.A. Previous work has shown an increasing fine particulate matter (PM2.5) trend within the region, which may be attributable to NH3 emissions from a variety of local sources, including vehicle traffic, shipping traffic, the petrochemical industry, and/or surrounding agricultural cropland and livestock. NH3 was collected monthly at a set of 8 sites within the Corpus Christi air shed, analyzed for NH3 concentration and N isotopic composition (d15N-NH3), and compared to known isotopic compositions of NH3 sources. Low and seasonally variable d15N-NH3 values are associated with varying agricultural sources (fertilizer, livestock waste, etc.), while higher and more seasonally constant d15N-NH3 values are associated with non-agricultural sources (vehicles, industry, etc.). Several other physical and chemical atmospheric components (e.g. SO2, NO2, O3, PM2.5, temperature, relative humidity) were also

  17. Global and regional emission estimates for HCFC-22

    Directory of Open Access Journals (Sweden)

    E. Saikawa

    2012-11-01

    Full Text Available HCFC-22 (CHClF2, chlorodifluoromethane is an ozone-depleting substance (ODS as well as a significant greenhouse gas (GHG. HCFC-22 has been used widely as a refrigerant fluid in cooling and air-conditioning equipment since the 1960s, and it has also served as a traditional substitute for some chlorofluorocarbons (CFCs controlled under the Montreal Protocol. A low frequency record on tropospheric HCFC-22 since the late 1970s is available from measurements of the Southern Hemisphere Cape Grim Air Archive (CGAA and a few Northern Hemisphere air samples (mostly from Trinidad Head using the Advanced Global Atmospheric Gases Experiment (AGAGE instrumentation and calibrations. Since the 1990s high-frequency, high-precision, in situ HCFC-22 measurements have been collected at these AGAGE stations. Since 1992, the Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL has also collected flasks on a weekly basis from remote sites across the globe and analyzed them for a suite of halocarbons including HCFC-22. Additionally, since 2006 flasks have been collected approximately daily at a number of tower sites across the US and analyzed for halocarbons and other gases at NOAA. All results show an increase in the atmospheric mole fractions of HCFC-22, and recent data show a growth rate of approximately 4% per year, resulting in an increase in the background atmospheric mole fraction by a factor of 1.7 from 1995 to 2009. Using data on HCFC-22 consumption submitted to the United Nations Environment Programme (UNEP, as well as existing bottom-up emission estimates, we first create globally-gridded a priori HCFC-22 emissions over the 15 yr since 1995. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4, and a Bayesian inverse method to estimate global as well as regional annual emissions. Our inversion indicates

  18. Maximum Regional Emission Reduction Potential in Residential Sector Based on Spatial Distribution of Population and Resources

    Science.gov (United States)

    Winijkul, E.; Bond, T. C.

    2011-12-01

    In the residential sector, major activities that generate emissions are cooking and heating, and fuels ranging from traditional (wood) to modern (natural gas, or electricity) are used. Direct air pollutant emissions from this sector are low when natural gas or electricity are the dominant energy sources, as is the case in developed countries. However, in developing countries, people may rely on solid fuels and this sector can contribute a large fraction of emissions. The magnitude of the health loss associated with exposure to indoor smoke as well as its concentration among rural population in developing countries have recently put preventive measures high on the agenda of international development and public health organizations. This study focuses on these developing regions: Central America, Africa, and Asia. Current and future emissions from the residential sector depend on both fuel and cooking device (stove) type. Availability of fuels, stoves, and interventions depends strongly on spatial distribution. However, regional emission calculations do not consider this spatial dependence. Fuel consumption data is presented at country level, without information about where different types of fuel are used. Moreover, information about stove types that are currently used and can be used in the future is not available. In this study, we first spatially allocate current emissions within residential sector. We use Geographic Information System maps of temperature, electricity availability, forest area, and population to determine the distribution of fuel types and availability of stoves. Within each country, consumption of different fuel types, such as fuelwood, coal, and LPG is distributed among different area types (urban, peri-urban, and rural area). Then, the cleanest stove technologies which could be used in the area are selected based on the constraints of each area, i.e. availability of resources. Using this map, the maximum emission reduction compared with

  19. Isotopic source signatures: Impact of regional variability on the δ13CH4 trend and spatial distribution

    Science.gov (United States)

    Feinberg, Aryeh I.; Coulon, Ancelin; Stenke, Andrea; Schwietzke, Stefan; Peter, Thomas

    2018-02-01

    The atmospheric methane growth rate has fluctuated over the past three decades, signifying variations in methane sources and sinks. Methane isotopic ratios (δ13CH4) differ between emission categories, and can therefore be used to distinguish which methane sources have changed. However, isotopic modelling studies have mainly focused on uncertainties in methane emissions rather than uncertainties in isotopic source signatures. We simulated atmospheric δ13CH4 for the period 1990-2010 using the global chemistry-climate model SOCOL. Empirically-derived regional variability in the isotopic signatures was introduced in a suite of sensitivity simulations. These simulations were compared to a baseline simulation with commonly used global mean isotopic signatures. We investigated coal, natural gas/oil, wetland, livestock, and biomass burning source signatures to determine whether regional variations impact the observed isotopic trend and spatial distribution. Based on recently published source signature datasets, our calculated global mean isotopic signatures are in general lighter than the commonly used values. Trends in several isotopic signatures were also apparent during the period 1990-2010. Tropical livestock emissions grew during the 2000s, introducing isotopically heavier livestock emissions since tropical livestock consume more C4 vegetation than midlatitude livestock. Chinese coal emissions, which are isotopically heavy compared to other coals, increase during the 2000s leading to higher global values of δ13CH4 for coal emissions. EDGAR v4.2 emissions disagree with the observed atmospheric isotopic trend for almost all simulations, confirming past doubts about this emissions inventory. The agreement between the modelled and observed δ13CH4 interhemispheric differences improves when regional source signatures are used. Even though the simulated results are highly dependent on the choice of methane emission inventories, they emphasize that the commonly used

  20. Source apportionment and health effect of NO_x over the Pearl River Delta region in southern China

    International Nuclear Information System (INIS)

    Lu, Xingcheng; Yao, Teng; Li, Ying; Fung, Jimmy C.H.; Lau, Alexis K.H.

    2016-01-01

    As one of the most notorious atmospheric pollutants, NO_x not only promotes the formation of ozone but also has adverse health effects on humans. It is therefore of great importance to study the sources of NO_x and its effects on human health. The Comprehensive Air Quality Model (CAMx) modeling system and ozone source apportionment technology (OSAT) were used to study the contribution of NO_x from different emission sources over southern China. The results indicate that heavy duty diesel vehicles (HDDVs) and industrial point sources are the two major local NO_x sources, accounting for 30.8% and 18.5% of local NO_x sources, respectively. In Hong Kong, marine emissions contributed around 43.4% of local NO_x in 2011. Regional transport is another important source of this pollutant, especially in February and November, and it can contribute over 30% of ambient NO_x on average. Power plant point emission is an significant regional source in Zhuhai, Zhongshan and Foshan. The total emission sources are estimated to cause 2119 (0–4405) respiratory deaths and 991 (0–2281) lung cancer deaths due to long-term exposure to NO_x in the Pearl River Delta region. Our results suggest that local governments should combine their efforts and vigorously promote further reduction of NO_x emissions, especially for those sources that make a substantial contribution to NO_x emissions and affect human health: HDDV, LDGV, industrial point sources and marine sources. - Highlights: • WRF-CAMx modeling system with OSAT was used to study the source of NO_x over Pearl River Delta region in China. • The results indicated that local emission and regional transportation are important contributors for NO_x in this region. • Heavy duty diesel vehicle, marine emission and industrial point source are three important contribution sectors. • Long-term exposure to NO_x is estimated to cause 2119 respiratory deaths and 991 lung cancer deaths in PRD during 2011. - Result indicated that heavy duty

  1. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories

    NARCIS (Netherlands)

    Steenhuisen, Frits; Wilson, Simon J.

    Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important

  2. Global Scale Attribution of Anthropogenic and Natural Dust Sources and their Emission Rates Based on MODIS Deep Blue Aerosol Products

    Science.gov (United States)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-01-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  3. Cooperative spontaneous emission from volume sources in layered media

    International Nuclear Information System (INIS)

    Nichelatti, E.

    2009-01-01

    The classical theory of radiation from a dipole located inside a microcavity is extended to the case of a volume source placed inside a layered medium. Cooperation phenomena that can take place in the spontaneous emission process are taken into account with an approach based on the theory of spatial coherence. Three cases are considered: noncooperation, long-range cooperation, and short-range cooperation. In all these cases, the expressions found for the out coupled power are analytical. As an application of the theory, an Alq 3 -based organic light emitting diode is analyzed. The optical properties of the device are evaluated and compared for two different types of cathode, one consisting of an Al layer, the other one consisting of an Al/LiF bi-layer. The results found show that the ultra-thin LiF layer significantly improves extraction efficiency [it

  4. PAH diagnostic ratios for the identification of pollution emission sources

    International Nuclear Information System (INIS)

    Tobiszewski, Marek; Namieśnik, Jacek

    2012-01-01

    Polycyclic aromatic hydrocarbon (PAH) diagnostic ratios have recently come into common use as a tool for identifying and assessing pollution emission sources. Some diagnostic ratios are based on parent PAHs, others on the proportions of alkyl-substituted to non-substituted molecules. The ratios are applicable to PAHs determined in different environmental media: air (gas + particle phase), water, sediment, soil, as well as biomonitor organisms such as leaves or coniferous needles, and mussels. These ratios distinguish PAH pollution originating from petroleum products, petroleum combustion and biomass or coal burning. The compounds involved in each ratio have the same molar mass, so it is assumed they have similar physicochemical properties. Numerous studies show that diagnostic ratios change in value to different extents during phase transfers and environmental degradation. The paper reviews applications of diagnostic ratios, comments on their use and specifies their limitations. - Highlights: ► PAH diagnostic ratios may identify pollution coming from petroleum spills, fuel combustion and coal or biomass burning. ► They are sensitive to changes during PAHs environmental fate processes. ► Some diagnostic ratios are of limited value due to fast photodegradation of one of the compounds. - The paper reviews PAH diagnostic ratios that are applied to identify pollution emission originating from petroleum products, fuel combustion or coal and biomass burning.

  5. PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China

    Science.gov (United States)

    Zong, Zheng; Wang, Xiaoping; Tian, Chongguo; Chen, Yingjun; Fu, Shanfei; Qu, Lin; Ji, Ling; Li, Jun; Zhang, Gan

    2018-05-01

    To apportion regional PM2.5 (atmospheric particles with aerodynamic diameter water-soluble ions and inorganic elements, various approaches, such as Mann-Kendall test, chemical mass closure, ISORROPIA II model, Positive Matrix Factorization (PMF) linked with Potential Source Contribution Function (PSCF), were used to explore the PM2.5 speciation, sources, and source regions. Consequently, distinct seasonal variations of PM2.5 and its main species were found and could be explained by varying emission source characteristics. Based on PMF model, seven source factors for PM2.5 were identified, which were coal combustion + biomass burning, vehicle emission, mineral dust, ship emission, sea salt, industry source, refined chrome industry with the contribution of 48.21%, 30.33%, 7.24%, 6.63%, 3.51%, 3.2%, and 0.88%, respectively. In addition, PSCF analysis using the daily contribution of each factor from PMF result suggested that Shandong peninsula and Hebei province were identified as the high potential region for coal combustion + biomass burning; Beijing-Tianjin-Hebei (BTH) region was the main source region for industry source; Bohai Sea and East China Sea were found to be of high source potential for ship emission; Geographical region located northwest of BH Island was possessed of high probability for sea salt; Mineral dust presumably came from the region of Mongolia; Refined chrome industry mostly came from Liaoning, Jilin province; The vehicle emission was primarily of BTH region origin, centring on metropolises, such as Beijing and Tianjin. These results provided precious implications for PM2.5 control strategies in North China.

  6. A Broad 22 Micron Emission Feature in the Carina Nebula H ii Region.

    Science.gov (United States)

    Chan; Onaka

    2000-04-10

    We report the detection of a broad 22 µm emission feature in the Carina Nebula H ii region by the Infrared Space Observatory (ISO) short-wavelength spectrometer. The feature shape is similar to that of the 22 µm emission feature of newly synthesized dust observed in the Cassiopeia A supernova remnant. This finding suggests that both of the features are arising from the same carrier and that supernovae are probably the dominant production sources of this new interstellar grain. A similar broad emission dust feature is also found in the spectra of two starburst galaxies from the ISO archival data. This new dust grain could be an abundant component of interstellar grains and can be used to trace the supernova rate or star formation rate in external galaxies. The existence of the broad 22 µm emission feature complicates the dust model for starburst galaxies and must be taken into account correctly in the derivation of dust color temperature. Mg protosilicate has been suggested as the carrier of the 22 µm emission dust feature observed in Cassiopeia A. The present results provide useful information in studies on the chemical composition and emission mechanism of the carrier.

  7. Danish emission inventories for road transport and other mobile sources

    DEFF Research Database (Denmark)

    Winther, Morten

    have increased by 36 %, and CH4 emissions have decreased by 51 %. A N2O emission increase of 29 % is related to the relatively high emissions from older gasoline catalyst cars. The 1985-2006 emission decreases for PM (exhaust only), CO, NOX and NMVOC are 30, 69, 28 and 71 % respectively, due...

  8. Danish emission inventories for road transport and other mobile sources

    DEFF Research Database (Denmark)

    Winther, Morten

    for road transport increased by 30 %, and CH4 emissions have decreased by 74 %. A N2O emission increase of 29 % is related to the relatively high emissions from older gasoline catalyst cars. The 1985-2010 emission decrease for NOX, NMVOC, CO and particulates (exhaust only: Size is below PM2.5) -52, -84...

  9. Aging of plumes from emission sources based on chamber simulation

    Science.gov (United States)

    Wang, X.; Deng, W.; Fang, Z.; Bernard, F.; Zhang, Y.; Yu, J.; Mellouki, A.; George, C.

    2017-12-01

    Study on atmospheric aging of plumes from emission sources is essential to understand their contribution to both secondary and primary pollutants occurring in the ambient air. Here we directly introduced vehicle exhaust, biomass burning plume, industrial solvents and cooking plumes into a smog chamber with 30 m3 fluorinated ethylene propylene (FEP) Teflon film reactor housed in a temperature-controlled enclosure, for characterizing primarily emitted air pollutants and for investigating secondarily formed products during photo-oxidation. Moreover, we also initiated study on the formation of secondary aerosols when gasoline vehicle exhaust is mixed with typical coal combustion pollutant SO2 or typical agricultural-related pollutant NH3. Formation of secondary organic aerosols (SOA) from typical solvent toluene was also investigated in ambient air matrix in comparison with purified air matrix. Main findings include: 1) Except for exhaust from idling gasoline vehicles, traditional precursor volatile organic compounds could only explain a very small fraction of SOA formed from vehicle exhaust, biomass burning or cooking plumes, suggesting knowledge gap in SOA precursors; 2) There is the need to re-think vehicle emission standards with a combined primary and/or secondary contribution of vehicle exhaust to PM2.5 or other secondary pollutants such as ozone; 3) When mixed with SO2, the gasoline vehicle exhaust revealed an increase of SOA production factor by 60-200% and meanwhile SO2 oxidation rates increased about a factor of 2.7; when the aged gasoline vehicle exhaust were mixing with NH3, both particle number and mass concentrations were increasing explosively. These phenomenons implied the complex interaction during aging of co-existing source emissions. 4) For typical combination of "tolune+SO2+NOx", when compared to chamber simulation with purified air as matrix, both SOA formation and SO2 oxidation were greatly enhanced under ambient air matrix, and the enhancement

  10. Positron emission tomography (PET) for oncologic applications in oral region

    International Nuclear Information System (INIS)

    Shozushima, Masanori; Terasaki, Kazunori

    2004-01-01

    A rapidly emerging clinical application of positron emission tomography (PET) is the detection of cancer with radionuclide tracer, because it provides information unavailable by ultrasound, computed tomography or magnetic resonance imaging. The most commonly used radiotracer for PET oncologic imaging is fluorine-18-labeled fluorodeoxyglucose ( 18 F-FDG). Early studies show PET has potential value in viewing the region of the tumor, detecting, staging, grading, monitoring response to anticancer therapy, and differentiating recurrent or residual disease from post treatment changes. However, limitations of FDG-PET in the head and neck region, namely, physiological FDG uptake in the salivary glands and palatine tonsils, have been reported, increasing the false-positive rates in image interpretation. This review was designed to address these distinctions of oral cancer PET imaging: specialization of PET equipment, cancer cell metabolism, proliferation and tracers, clinical diagnosis of oral cancer with PET, pitfalls in oncologic diagnosis with FDG-PET imaging. (author)

  11. Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations

    Directory of Open Access Journals (Sweden)

    M. Bauwens

    2016-08-01

    generally increased fluxes are suggested in Indochina and during the 2007 fires in southern Europe. Moreover, changes in fire seasonal patterns are suggested; e.g., the seasonal amplitude is reduced over southeast Asia. In Africa, the inversion indicates increased fluxes due to agricultural fires and decreased maxima when natural fires are dominant. The top–down fire emissions are much better correlated with MODIS fire counts than the a priori inventory in regions with small and agricultural fires, indicating that the OMI-based inversion is well-suited to assess the associated emissions. Regarding biogenic sources, significant reductions in isoprene fluxes are inferred in tropical ecosystems (30–40 %, suggesting overestimated basal emission rates in those areas in the bottom–up inventory, whereas strongly positive isoprene emission updates are derived over semiarid and desert areas, especially in southern Africa and Australia. This finding suggests that the parameterization of the soil moisture stress used in MEGAN greatly exaggerates the flux reduction due to drought in those regions. The isoprene emission trends over 2005–2013 are often enhanced after optimization, with positive top–down trends in Siberia (4.2 % year−1 and eastern Europe (3.9 % year−1, likely reflecting forest expansion and warming temperatures, and negative trends in Amazonia (−2.1 % year−1, south China (−1 % year−1, the United States (−3.7 % year−1, and western Europe (−3.3 % year−1, which are generally corroborated by independent studies, yet their interpretation warrants further investigation.

  12. Contrasting regional versus global radiative forcing by megacity pollution emissions

    Science.gov (United States)

    Dang, H.; Unger, N.

    2015-10-01

    We assess the regional and global integrated radiative forcing on 20- and 100-year time horizons caused by a one-year pulse of present day pollution emissions from 10 megacity areas: Los Angeles, Mexico City, New York City, Sao Paulo, Lagos, Cairo, New Delhi, Beijing, Shanghai and Manila. The assessment includes well-mixed greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4); and short-lived climate forcers: tropospheric ozone (O3) and fine mode aerosol particles (sulfate, nitrate, black carbon, primary and secondary organic aerosol). All megacities contribute net global warming on both time horizons. Most of the 10 megacity areas exert a net negative effect on their own regional radiation budget that is 10-100 times larger in magnitude than their global radiative effects. Of the cities examined, Beijing, New Delhi, Shanghai and New York contribute most to global warming with values ranging from +0.03 to 0.05 Wm-2yr on short timescales and +0.07-0.10 Wm-2yr on long timescales. Regional net 20-year radiative effects are largest for Mexico City (-0.84 Wm-2yr) and Beijing (-0.78 Wm-2yr). Megacity reduction of non-CH4 O3 precursors to improve air quality offers zero co-benefits to global climate. Megacity reduction of aerosols to improve air quality offers co-benefits to the regional radiative budget but minimal or no co-benefits to global climate with the exception of black carbon reductions in a few cities, especially Beijing and New Delhi. Results suggest that air pollution and global climate change mitigation can be treated as separate environmental issues in policy at the megacity level with the exception of CH4 action. Individual megacity reduction of CO2 and CH4 emissions can mitigate global warming and therefore offers climate safety improvements to the entire planet.

  13. An Investigation on the Effects of Ship Sourced Emissions in Izmir Port, Turkey

    Directory of Open Access Journals (Sweden)

    Halil Saraçoğlu

    2013-01-01

    Full Text Available Maritime transportation is a major source of climate change and air pollution. Shipping emissions cause severe impacts on health and environment. These effects of emissions are emerged especially in territorial waters, inland seas, canals, straits, bays, and port regions. In this paper, exhaust gas emissions from ships in Izmir Port, which is one of the main ports in Turkey, are calculated by the ship activity-based methodology. Total emissions from ships in the port is estimated as 1923 ton y−1 for , 1405 ton y−1 for SO2, 82753 ton y−1 for CO2, ton y−1 for HC, and 165 ton y−1 for PM in the year 2007. These emissions are classified regarding operation modes and types of ships. The results are compared with the other studies including amounts of exhaust pollutants generated by ships. According to the findings, it is clear that the ships calling the Izmir Port are important air polluting causes of the Izmir city and its surroundings.

  14. An Investigation on the Effects of Ship Sourced Emissions in Izmir Port, Turkey

    Science.gov (United States)

    Saraçoğlu, Halil; Kılıç, Alper

    2013-01-01

    Maritime transportation is a major source of climate change and air pollution. Shipping emissions cause severe impacts on health and environment. These effects of emissions are emerged especially in territorial waters, inland seas, canals, straits, bays, and port regions. In this paper, exhaust gas emissions from ships in Izmir Port, which is one of the main ports in Turkey, are calculated by the ship activity-based methodology. Total emissions from ships in the port is estimated as 1923 ton y−1 for NOx, 1405 ton y−1 for SO2, 82753 ton y−1 for CO2, ton y−1 for HC, and 165 ton y−1 for PM in the year 2007. These emissions are classified regarding operation modes and types of ships. The results are compared with the other studies including amounts of exhaust pollutants generated by ships. According to the findings, it is clear that the ships calling the Izmir Port are important air polluting causes of the Izmir city and its surroundings. PMID:24198720

  15. Source location of chorus emissions observed by Cluster

    Directory of Open Access Journals (Sweden)

    M. Parrot

    Full Text Available One of the objectives of the Cluster mission is to study sources of various electromagnetic waves using the four satellites. This paper describes the methods we have applied to data recorded from the STAFF spectrum analyser. This instrument provides the cross spectral matrix of three magnetic and two electric field components. This spectral matrix is analysed to determine, for each satellite, the direction of the wave normal relative to the Earth’s magnetic field as a function of frequency and of time. Due to the Cluster orbit, chorus emissions are often observed close to perigee, and the data analysis determines the direction of these waves. Three events observed during different levels of magnetic activity are reported. It is shown that the component of the Poynting vector parallel to the magnetic field changes its sense when the satellites cross the magnetic equator, which indicates that the chorus waves propagate away from the equator. Detailed analysis indicates that the source is located in close vicinity of the plane of the geomagnetic equator.

    Key words. Magnetospheric physics (plasma waves and instabilities; storms and substorms; Space plasma physics (waves and instabilities

  16. Emissions from Combustion of Open Area Sources: Prescribed Forest and Agricultural Burns

    Science.gov (United States)

    Emissions from wildfires and prescribed forest and agricultural burns generate a variety of emissions that can cause adverse health effects for humans, contribute to climate change, and decrease visibility. Only limited pollutant data are available for these sources, particularly...

  17. Radio emission of Abell Clusters in the GB region

    International Nuclear Information System (INIS)

    Michalec, A.

    1977-01-01

    In the GB survey region (Maslowski 1972) there are 102 Abell Clusters (Abell 1958) 31 of them coincide with the positions of Gb radio sources. The number of random coincidences was estimated from a Poisson distribution. For 19 cluster from this group, the observations at 2695 MHz were made with the same instrument. The clusters' redshifts were estimated. On the basis of this material, an analysis of the luminosity function for these cluster was carried out. (author)

  18. A Practical Method of Acoustic Emission Source Location in Anisotropic Composite Laminates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Kon; Kang, Yong Kyu; Kwon, Oh Yang [Inha University, Incheon (Korea, Republic of)

    2003-06-15

    Since the velocity is dependent on the fiber orientation in anisotropic composites, the application of traditional acoustic emission (AE) source location techniques based on the constant velocity to composite structures has been practically impossible. The anisotropy makes the source location procedure complicated and deteriorates the accuracy of the location. In this study, we have divided the region of interest(ROI) into a set of finite elements, taken each element as a virtual source, and calculated the arrival time differences between sensors by using the velocities at every degree from 0 to 90. The calculated and the experimentally measured values of the arrival time difference aye then compared to minimize the location error. The results from two different materials, namely AA6061-T6 and CFRP(uni-directional; UD, [0]{sub 32}4 ) laminate confirmed the practical usefulness of the proposed method

  19. Glacial Fluctuation in the Source Region of the Yangtze River

    International Nuclear Information System (INIS)

    Shengyi, Gao; Qingsong, Fan; Xi, Cao; Li, Ma

    2014-01-01

    Glaciers in the source region of the Yangtze River are not only water resources but also important energy and environmental resources. Glacial fluctuation is an important component of the study of changes in the natural environment, including climate change. We investigated the glaciers in the source region of the Yangtze River, and analyzed the fluctuations using multi-temporal remote sensing data. The trend in glacial fluctuation and the factors that influence it were determined. The results have implications for water resource management and environmental conservation in the Yangtze River region

  20. Ionization, charge exchange, and secondary electron emission in the extractor of an LBL/LLL neutral beam source

    International Nuclear Information System (INIS)

    Fink, J.H.; McDowell, C.E.

    1975-01-01

    Using a computer code, bombardment of the electrodes resulting from ionization, charge-exchange, and back-ion emission from the neutralizer cell is studied in the positive-ion extractor region of a Lawrence Berkeley Laboratory/Lawrence Livermore Laboratory (LBL/LLL) neutral beam source. Ion and electron trajectories are presented, grid dissipations estimated, and proposals made for future designs

  1. Global EDGAR v4.1 emissions of air pollutants: analysis of impacts of emissions abatement in industry and road transport on regional and global scale

    Science.gov (United States)

    Janssens-Maenhout, G.; Olivier, J. G.; Doering, U. M.; van Aardenne, J.; Monni, S.; Pagliari, V.; Peters, J. A.

    2010-12-01

    The new version v4.1 of the Emission Database for Global Atmospheric Research (EDGAR) compiled by JRC and PBL provides independent estimates of the global anthropogenic emissions and emission trends of precursors of tropospheric ozone (CO, NMVOC, NOx) and acidifying substances (NOx, NH3, SO2) for the period 1970-2005. All emissions are detailed at country level consistently using the same technology-based methodology, combining activity data (international statistics) from publicly available sources and to the extent possible emission factors as recommended by the EMEP/EEA air pollutant emission inventory guidebook. By using high resolution global grid maps per source category of area sources and point sources, we also compiled datasets with annual emissions on a 0.1x0.1 degree grid, as input for atmospheric models. We provide full and up-to-date inventories per country, also for developing countries. Moreover, the time series back in time to 1970 provides for the trends in official national inventories a historic perspective. As part of our objective to contribute to more reliable inventories by providing a reference emissions database for emission scenarios, inventory comparisons and for atmospheric modellers, we strive to transparently document all data sources used and assumptions made where data was missing, in particular for assumptions made on the shares of technologies where relevant. Technology mixes per country or region were taken from other data sources (such as the Platts database) or estimated using other sources or countries as proxy. The evolution in the adoption of technologies world-wide over the 35 years covered by EDGAR v4.1 will be illustrated for the power industry and the road transport sectors, in particular for Europe and the US. Similarly the regional and global impacts of implemented control measures and end-of pipe abatements will be illustrated by the examples of - NOx and SO2 end-of pipe abatements being implemented since the late

  2. Polychlorinated Biphenyl Sources, Emissions, and Environmental Levels in school Buildings (PCB Workshop presentation)

    Science.gov (United States)

    Measure PCB emission rates from primary sources in laboratory chambersMeasure transport and sorption by materials and dust in laboratory chambersCharacterize PCBs in school building materialsEstimate PCB emission rates from sources in schoolsExamine congener patterns in sources a...

  3. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    Science.gov (United States)

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  4. A comparison of PCA and PMF models for source identification of fugitive methane emissions

    Science.gov (United States)

    Assan, Sabina; Baudic, Alexia; Bsaibes, Sandy; Gros, Valerie; Ciais, Philippe; Staufer, Johannes; Robinson, Rod; Vogel, Felix

    2017-04-01

    Methane (CH_4) is a greenhouse gas with a global warming potential 28-32 times that of carbon dioxide (CO_2) on a 100 year period, and even greater on shorter timescales [Etminan, et al., 2016, Allen, 2014]. Thus, despite its relatively short life time and smaller emission quantities compared to CO_2, CH4 emissions contribute to approximately 20{%} of today's anthropogenic greenhouse gas warming [Kirschke et al., 2013]. Major anthropogenic sources include livestock (enteric fermentation), oil and gas production and distribution, landfills, and wastewater emissions [EPA, 2011]. Especially in densely populated areas multiple CH4 sources can be found in close vicinity. Thus, when measuring CH4 emissions at local scales it is necessary to distinguish between different CH4 source categories to effectively quantify the contribution of each sector and aid the implementation of greenhouse gas reduction strategies. To this end, source apportionment models can be used to aid the interpretation of spatial and temporal patterns in order to identify and characterise emission sources. The focus of this study is to evaluate two common linear receptor models, namely Principle Component Analysis (PCA) and Positive Matrix Factorisation (PMF) for CH4 source apportionment. The statistical models I will present combine continuous in-situ CH4 , C_2H_6, δ^1^3CH4 measured using a Cavity Ring Down Spectroscopy (CRDS) instrument [Assan et al. 2016] with volatile organic compound (VOC) observations performed using Gas Chromatography (GC) in order to explain the underlying variance of the data. The strengths and weaknesses of both models are identified for data collected in multi-source environments in the vicinity of four different types of sites; an agricultural farm with cattle, a natural gas compressor station, a wastewater treatment plant, and a pari-urban location in the Ile de France region impacted by various sources. To conclude, receptor model results to separate statistically the

  5. OBSERVATIONAL STUDY OF THE CONTINUUM AND WATER MASER EMISSION IN THE IRAS 19217+1651 REGION

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Esnard, T.; Trinidad, M. A. [Departamento de Astronomia, Universidad de Guanajuato, Apdo Postal 144, Guanajuato, GTO, Mexico CP 36000 (Mexico); Migenes, V., E-mail: tatiana@iga.cu, E-mail: trinidad@astro.ugto.mx, E-mail: vmigenes@byu.edu [Department of Physics and Astronomy, Brigham Young University, ESC-N145, Provo, UT 84602 (United States)

    2012-12-20

    We report interferometric observations of the high-mass star-forming region IRAS 19217+1651. We observed the radio continuum (1.3 cm and 3.6 cm) and water maser emission using the Very Large Array (VLA-EVLA) in transition mode (configuration A). Two radio continuum sources were detected at both wavelengths, I19217-A and I19217-B. In addition, 17 maser spots were observed distributed mainly in two groups, M1 and M2, and one isolated maser. This latter could be indicating the relative position of another continuum source which we did not detect. The results indicate that I19217-A appears to be consistent with an ultracompact H II region associated with a zero-age main-sequence B0-type star. Furthermore, the 1.3 cm continuum emission of this source suggests a cometary morphology. In addition, I19217-B appears to be an H II region consisting of at least two stars, which may be contributing to its complex structure. It was also found that the H{sub 2}O masers of the group M1 are apparently associated with the continuum source I19217-A. These are tracing motions which are not gravitationally bound according to their spatial distribution and kinematics. They also seem to be describing outflows in the direction of the elongated cometary region. On the other hand, the second maser group, M2, could be tracing the base of a jet. Finally, infrared data from Spitzer, Midcourse Space Experiment, and IRIS show that IRAS 19217+1651 is embedded inside a large open bubble, like a broken ring, which possibly has affected the morphology of the cometary H II region observed at 1.3 cm.

  6. Changing regional emissions of airborne pollutants reflected in the chemistry of snowpacks and wetfall in the Rocky Mountain region, USA, 1993–2012

    Science.gov (United States)

    Ingersoll, George P.; Miller, Debra C.; Morris, Kristi H.; McMurray, Jill A.; Port, Garrett M.; Caruso, Brian

    2016-01-01

    Wintertime precipitation sample data from 55 Snowpack sites and 17 National Atmospheric Deposition Program (NADP)/National Trends Network Wetfall sites in the Rocky Mountain region were examined to identify long-term trends in chemical concentration, deposition, and precipitation using Regional and Seasonal Kendall tests. The Natural Resources Conservation Service snow-telemetry (SNOTEL) network provided snow-water-equivalent data from 33 sites located near Snowpack- and NADP Wetfall-sampling sites for further comparisons. Concentration and deposition of ammonium, calcium, nitrate, and sulfate were tested for trends for the period 1993–2012. Precipitation trends were compared between the three monitoring networks for the winter seasons and downward trends were observed for both Snowpack and SNOTEL networks, but not for the NADP Wetfall network. The dry-deposition fraction of total atmospheric deposition, relative to wet deposition, was shown to be considerable in the region. Potential sources of regional airborne pollutant emissions were identified from the U.S. Environmental Protection Agency 2011 National Emissions Inventory, and from long-term emissions data for the period 1996–2013. Changes in the emissions of ammonia, nitrogen oxides, and sulfur dioxide were reflected in significant trends in snowpack and wetfall chemistry. In general, ammonia emissions in the western USA showed a gradual increase over the past decade, while ammonium concentrations and deposition in snowpacks and wetfall showed upward trends. Emissions of nitrogen oxides and sulfur dioxide declined while regional trends in snowpack and wetfall concentrations and deposition of nitrate and sulfate were downward.

  7. Applications of Ground-based Mobile Atmospheric Monitoring: Real-time Characterization of Source Emissions and Ambient Concentrations

    Science.gov (United States)

    Goetz, J. Douglas

    Gas and particle phase atmospheric pollution are known to impact human and environmental health as well as contribute to climate forcing. While many atmospheric pollutants are regulated or controlled in the developed world uncertainty still remains regarding the impacts from under characterized emission sources, the interaction of anthropogenic and naturally occurring pollution, and the chemical and physical evolution of emissions in the atmosphere, among many other uncertainties. Because of the complexity of atmospheric pollution many types of monitoring have been implemented in the past, but none are capable of perfectly characterizing the atmosphere and each monitoring type has known benefits and disadvantages. Ground-based mobile monitoring with fast-response in-situ instrumentation has been used in the past for a number of applications that fill data gaps not possible with other types of atmospheric monitoring. In this work, ground-based mobile monitoring was implemented to quantify emissions from under characterized emission sources using both moving and portable applications, and used in a novel way for the characterization of ambient concentrations. In the Marcellus Shale region of Pennsylvania two mobile platforms were used to estimate emission rates from infrastructure associated with the production and transmission of natural gas using two unique methods. One campaign investigated emissions of aerosols, volatile organic compounds (VOCs), methane, carbon monoxide (CO), nitrogen dioxide (NO2), and carbon dioxide (CO 2) from natural gas wells, well development practices, and compressor stations using tracer release ratio methods and a developed fenceline tracer release correction factor. Another campaign investigated emissions of methane from Marcellus Shale gas wells and infrastructure associated with two large national transmission pipelines using the "Point Source Gaussian" method described in the EPA OTM-33a. During both campaigns ambient concentrations

  8. Drive Current Enhancement in TFET by Dual Source Region

    Directory of Open Access Journals (Sweden)

    Zhi Jiang

    2015-01-01

    Full Text Available This paper presents tunneling field-effect transistor (TFET with dual source regions. It explores the physics of drive current enhancement. The novel approach of dual source provides an effective technique for enhancing the drive current. It is found that this structure can offer four tunneling junctions by increasing a source region. Meanwhile, the dual source structure does not influence the excellent features of threshold slope (SS of TFET. The number of the electrons and holes would be doubled by going through the tunneling junctions on the original basis. The overlap length of gate-source is also studied. The dependence of gate-drain capacitance Cgd and gate-source capacitance Cgs on gate-to-source voltage Vgs and drain-to-source voltage Vds was further investigated. There are simulation setups and methodology used for the dual source TFET (DS-TFET assessment, including delay time, total energy per operation, and energy-delay product. It is confirmed that the proposed TFET has strong potentials for VLSI.

  9. Consideration of the Change of Material Emission Signatures due to Longterm Emissions for Enhancing VOC Source Identification

    DEFF Research Database (Denmark)

    Han, K. H.; Zhang, J. S.; Knudsen, Henrik Nellemose

    2011-01-01

    The objectives of this study were to characterize the changes of VOC material emission profiles over time and develop a method to account for such changes in order to enhance a source identification technique that is based on the measurements of mixed air samples and the emission signatures of in...

  10. Multi-source SO2 emission retrievals and consistency of satellite and surface measurements with reported emissions

    NARCIS (Netherlands)

    Fioletov, V.; McLinden, C.A.; Kharol, S.K.; Krotkov, N.A.; Li, C.; Joiner, J.; Moran, M.D.; Vet, R.; Visschedijk, A.J.H.; Denier Van Der Gon, H.A.C.

    2017-01-01

    Reported sulfur dioxide (SO2) emissions from US and Canadian sources have declined dramatically since the 1990s as a result of emission control measures. Observations from the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and ground-based in situ measurements are examined to verify

  11. Impact of Marcellus Shale natural gas development in southwest Pennsylvania on volatile organic compound emissions and regional air quality.

    Science.gov (United States)

    Swarthout, Robert F; Russo, Rachel S; Zhou, Yong; Miller, Brandon M; Mitchell, Brittney; Horsman, Emily; Lipsky, Eric; McCabe, David C; Baum, Ellen; Sive, Barkley C

    2015-03-03

    The Marcellus Shale is the largest natural gas deposit in the U.S. and rapid development of this resource has raised concerns about regional air pollution. A field campaign was conducted in the southwestern Pennsylvania region of the Marcellus Shale to investigate the impact of unconventional natural gas (UNG) production operations on regional air quality. Whole air samples were collected throughout an 8050 km(2) grid surrounding Pittsburgh and analyzed for methane, carbon dioxide, and C1-C10 volatile organic compounds (VOCs). Elevated mixing ratios of methane and C2-C8 alkanes were observed in areas with the highest density of UNG wells. Source apportionment was used to identify characteristic emission ratios for UNG sources, and results indicated that UNG emissions were responsible for the majority of mixing ratios of C2-C8 alkanes, but accounted for a small proportion of alkene and aromatic compounds. The VOC emissions from UNG operations accounted for 17 ± 19% of the regional kinetic hydroxyl radical reactivity of nonbiogenic VOCs suggesting that natural gas emissions may affect compliance with federal ozone standards. A first approximation of methane emissions from the study area of 10.0 ± 5.2 kg s(-1) provides a baseline for determining the efficacy of regulatory emission control efforts.

  12. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China's Yangtze River Delta region.

    Science.gov (United States)

    Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wu, Xiaomeng; Shu, Jiawei; Hao, Jiming

    2017-01-01

    The Yangtze River Delta (YRD) region is one of the most prosperous and densely populated regions in China and is facing tremendous pressure to mitigate vehicle emissions and improve air quality. Our assessment has revealed that mitigating vehicle emissions of NOx would be more difficult than reducing the emissions of other major vehicular pollutants (e.g., CO, HC and PM 2.5 ) in the YRD region. Even in Shanghai, where the emission control implemented are more stringent than in Jiangsu and Zhejiang, we observed little to no reduction in NOx emissions from 2000 to 2010. Emission-reduction targets for HC, NOx and PM 2.5 are determined using a response surface modeling tool for better air quality. We design city-specific emission control strategies for three vehicle-populated cities in the YRD region: Shanghai and Nanjing and Wuxi in Jiangsu. Our results indicate that even if stringent emission control consisting of the Euro 6/VI standards, the limitation of vehicle population and usage, and the scrappage of older vehicles is applied, Nanjing and Wuxi will not be able to meet the NOx emissions target by 2020. Therefore, additional control measures are proposed for Nanjing and Wuxi to further mitigate NOx emissions from heavy-duty diesel vehicles. Copyright © 2016. Published by Elsevier B.V.

  13. Globular clusters as a source of X-ray emission from the neighbourhood of M87

    International Nuclear Information System (INIS)

    Fabian, A.C.; Pringle, J.E.; Rees, M.J.

    1976-01-01

    It is stated that the X-ray emission from globular clusters may be attributable to accretion on to compact objects, the accreting material being supplied from binary companions, or gas trapped in the potential well of the cluster. Counts of objects in the vicinity of the M87 have revealed that it has an extensive halo of globular clusters, the number of which may exceed 10,000 within a radius of 23 arc min. Most of these clusters may be explicable as a population effect, and the similarity of their optical properties to those of cluster in our own Galaxy suggests that they may also contain X-ray sources. The brighter globular clusters in M87 may, however, be substantially more X-ray luminous, and there may be proportionally more gas available in globular clusters in M87 compared with our Galaxy. The average X-ray luminosity of individual globular clusters may be of the order of 10 38 erg/sec., which raises the possibility that the integrated globular cluster emission may account for a substantial fraction of the X-ray emission observed from the region of M87. In support of this it is noted that the extended X-ray emission from the Virgo cluster is centered on M87, which lies approximately 45 arc min from the cluster centroid, and it is expected that the general X-ray emission from the globular cluster will appear to be smoothly and symmetrically distributed about M87 at moderate spatial resolution. A similar situation may apply to the elliptical galaxy NGC 3311 in Abell 1060 which, as a cluster, has been suggested as the identification for the X-ray source 3 U 1044-40, and it seems possible that that galaxy is surrounded by a similar globular cluster population to that of M87. (U.K.)

  14. Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin

    Science.gov (United States)

    Ferrara; Mazzolai; Lanzillotta; Nucaro; Pirrone

    2000-10-02

    Emissions from volcanoes, fumaroles and solfataras as well as contributions from widespread geological anomalies could represent an important source of mercury released to the atmosphere in the Mediterranean basin. Volcanoes located in this area (Etna, Stromboli and Vulcano) are the most active in Europe; therefore, it is extremely important to know their mercury contributions to the regional atmospheric budget. Two main methods are used for the evaluation of volcanic mercury flux: a direct determination of the flux (by measuring in the plume) and an indirect one derived from the determination of the Hg/SO2 (or Hg/S) ratio value, as SO2 emissions are constantly monitored by volcanologists. An attempt to estimate mercury flux from the Vulcano volcano and to establish the Hg/S ratio value has been made along three field campaigns carried out in October 1998, in February and May 1999 sampling several fumaroles. Traditional sampling methods were used to collect both total Hg and S. The average Hg/S ratio value resulted to be 1.2 x 10(-7). From the Hg/S value we derived the Hg/SO2 value, and by assuming that all the volcanoes located in this area have the same Hg/SO2 ratio, mercury emissions from Vulcano and Stromboli were estimated to be in the range 1.3-5.5 kg/year and 7.3-76.6 kg/year respectively, while for Etna mercury flux ranged from 61.8 to 536.5 kg/year. Data reported in literature appear to be overestimated (Fitzgerald WF. Mercury emission from volcanos. In: 4th International conference on mercury as a global pollutant, August 4-8 1996, Hamburg, Germany), volcanic mercury emission does not constitute the main natural source of the metal.

  15. Source-Type Identification Analysis Using Regional Seismic Moment Tensors

    Science.gov (United States)

    Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.

    2012-12-01

    Waveform inversion to determine the seismic moment tensor is a standard approach in determining the source mechanism of natural and manmade seismicity, and may be used to identify, or discriminate different types of seismic sources. The successful applications of the regional moment tensor method at the Nevada Test Site (NTS) and the 2006 and 2009 North Korean nuclear tests (Ford et al., 2009a, 2009b, 2010) show that the method is robust and capable for source-type discrimination at regional distances. The well-separated populations of explosions, earthquakes and collapses on a Hudson et al., (1989) source-type diagram enables source-type discrimination; however the question remains whether or not the separation of events is universal in other regions, where we have limited station coverage and knowledge of Earth structure. Ford et al., (2012) have shown that combining regional waveform data and P-wave first motions removes the CLVD-isotropic tradeoff and uniquely discriminating the 2009 North Korean test as an explosion. Therefore, including additional constraints from regional and teleseismic P-wave first motions enables source-type discrimination at regions with limited station coverage. We present moment tensor analysis of earthquakes and explosions (M6) from Lop Nor and Semipalatinsk test sites for station paths crossing Kazakhstan and Western China. We also present analyses of smaller events from industrial sites. In these sparse coverage situations we combine regional long-period waveforms, and high-frequency P-wave polarity from the same stations, as well as from teleseismic arrays to constrain the source type. Discrimination capability with respect to velocity model and station coverage is examined, and additionally we investigate the velocity model dependence of vanishing free-surface traction effects on seismic moment tensor inversion of shallow sources and recovery of explosive scalar moment. Our synthetic data tests indicate that biases in scalar

  16. Sources and sinks of carbon dioxide in the Arctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1982-01-01

    The data base required to adequately ascertain seasonal source and sink strengths in the arctic regions is difficult to obtain. However, there are now a reasonable quantity of data for this polar region to estimate sources and sinks within the Arctic which may contribute significantly to the annual tropospheric CO/sub 2/ concentration fluctuation. The sea-ice-air and the sea-air interfaces account for most of the contribution to the sources and sinks for carbon dioxide. Although the arctic and subarctic region is small in extent, it certainly is not impervious and ice sealed. Our estimate, based on historical data and current research, indicates that the Arctic, which is about 4% of the earth's surface, is an annual net sink for approx. 10/sup 15/ g CO/sub 2/ accounting for an equivalent of approx. 3% of the annual anthropogenic contribution of CO/sub 2/ to the troposphere.

  17. An evaluation of the use of mobile source emissions trading: Locomotive case study

    International Nuclear Information System (INIS)

    West, W.R.; Brazell, M.M.

    1993-01-01

    There are many proposals for generating mobil source credits for use by stationary and other sources. This paper examines the benefits and practicality of including locomotive rail emissions in proposed emissions trading programs in california. In particular, this paper examines (1) if trading of locomotive rail emissions will result in lower compliance costs for railroads than traditional open-quotes command and controlclose quotes approaches, and (2) if emissions trading programs provide large enough incentives to entice railroads to seek to meet or exceed expected emissions reduction open-quotes command and controlclose quotes targets. The paper also examines under what circumstances stationary sources would be willing to purchase mobile source credits from railroads, in order to offset some of the stationary source's emissions reductions requirements. Stated simply, this analysis examines whether proposed trading programs offer enough benefits to both trading partners to warrant their use

  18. Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000-2005 in the tropics

    Science.gov (United States)

    Roman-Cuesta, Rosa Maria; Rufino, Mariana C.; Herold, Martin; Butterbach-Bahl, Klaus; Rosenstock, Todd S.; Herrero, Mario; Ogle, Stephen; Li, Changsheng; Poulter, Benjamin; Verchot, Louis; Martius, Christopher; Stuiver, John; de Bruin, Sytze

    2016-07-01

    According to the latest report of the Intergovernmental Panel on Climate Change (IPCC), emissions must be cut by 41-72 % below 2010 levels by 2050 for a likely chance of containing the global mean temperature increase to 2 °C. The AFOLU sector (Agriculture, Forestry and Other Land Use) contributes roughly a quarter ( ˜ 10-12 Pg CO2e yr-1) of the net anthropogenic GHG emissions mainly from deforestation, fire, wood harvesting, and agricultural emissions including croplands, paddy rice, and livestock. In spite of the importance of this sector, it is unclear where the regions with hotspots of AFOLU emissions are and how uncertain these emissions are. Here we present a novel, spatially comparable dataset containing annual mean estimates of gross AFOLU emissions (CO2, CH4, N2O), associated uncertainties, and leading emission sources, in a spatially disaggregated manner (0.5°) for the tropics for the period 2000-2005. Our data highlight the following: (i) the existence of AFOLU emissions hotspots on all continents, with particular importance of evergreen rainforest deforestation in Central and South America, fire in dry forests in Africa, and both peatland emissions and agriculture in Asia; (ii) a predominant contribution of forests and CO2 to the total AFOLU emissions (69 %) and to their uncertainties (98 %); (iii) higher gross fluxes from forests, which coincide with higher uncertainties, making agricultural hotspots appealing for effective mitigation action; and (iv) a lower contribution of non-CO2 agricultural emissions to the total gross emissions (ca. 25 %), with livestock (15.5 %) and rice (7 %) leading the emissions. Gross AFOLU tropical emissions of 8.0 (5.5-12.2) were in the range of other databases (8.4 and 8.0 Pg CO2e yr-1 in FAOSTAT and the Emissions Database for Global Atmospheric Research (EDGAR) respectively), but we offer a spatially detailed benchmark for monitoring progress in reducing emissions from the land sector in the tropics. The location of

  19. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    Science.gov (United States)

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  20. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    International Nuclear Information System (INIS)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-01-01

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  1. Emissions implications of future natural gas production and use in the U.S. and in the Rocky Mountain region.

    Science.gov (United States)

    McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B

    2014-11-18

    Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.

  2. A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China

    Science.gov (United States)

    Qi, Ji; Zheng, Bo; Li, Meng; Yu, Fang; Chen, Chuchu; Liu, Fei; Zhou, Xiafei; Yuan, Jing; Zhang, Qiang; He, Kebin

    2017-12-01

    We developed a high-resolution Beijing-Tianjin-Hebei (BTH) regional air pollutants emission inventory for the year 2013. The inventory was established using a bottom-up approach based on facility-level activity data obtained from multiple data sources. The estimates from the BTH 2013 emission inventory show that the total emissions of SO2, NOX, PM2.5, PM10, CO, NMVOC, NH3, BC, and OC were 2,305, 2,686, 1,090, 1,494, 20,567, 2,207, 623, 160, and 254 Gg, respectively. The industry sector is the largest emissions source for SO2, NOX, PM2.5, PM10, CO, and NMVOC in the BTH region, contributing 72.6%, 43.7%, 59.6%, 64.7%, 60.3%, and 70.4% of the total emissions, respectively. Power plants contributed 11.8% and 23.3% of the total SO2 and NOX emissions, respectively. The transportation sector contributed 28.9% of the total NOX emissions. Emissions from the residential sector accounted for 31.3%, 21.5%, 46.6% and 71.7% of the total PM2.5, NMVOC, BC and OC emissions, respectively. In addition, more than 90% of the total NH3 emissions originate from the agriculture sector, with 44.2% from fertilizer use and 47.7% from livestock. The spatial distribution results illustrate that air pollutant emissions are mainly distributed over the eastern and southern BTH regions. Beijing, Tianjin, Shijiazhuang, Tangshan and Handan are the major contributors of air pollutants. The major NMVOC species in the BTH region are ethylene, acetylene, ethane and toluene. Ethylene is the biggest contributor in Tianjin and Hebei. The largest contributor in Beijing is toluene. There is relatively low uncertainty in SO2 and NOX emission estimates, medium uncertainty in PM2.5, PM10 and CO emission estimates, and high uncertainties in VOC, NH3, BC and OC emission estimates. The proposed policy recommendations, based on the BTH 2013 emission inventory, would be helpful to develop strategies for air pollution control.

  3. Considering the future of anthropogenic gas-phase organic compound emissions and the increasing influence of non-combustion sources on urban air quality

    Science.gov (United States)

    Khare, Peeyush; Gentner, Drew R.

    2018-04-01

    Decades of policy in developed regions has successfully reduced total anthropogenic emissions of gas-phase organic compounds, especially volatile organic compounds (VOCs), with an intentional, sustained focus on motor vehicles and other combustion-related sources. We examine potential secondary organic aerosol (SOA) and ozone formation in our case study megacity (Los Angeles) and demonstrate that non-combustion-related sources now contribute a major fraction of SOA and ozone precursors. Thus, they warrant greater attention beyond indoor environments to resolve large uncertainties in their emissions, oxidation chemistry, and outdoor air quality impacts in cities worldwide. We constrain the magnitude and chemical composition of emissions via several bottom-up approaches using chemical analyses of products, emissions inventory assessments, theoretical calculations of emission timescales, and a survey of consumer product material safety datasheets. We demonstrate that the chemical composition of emissions from consumer products as well as commercial and industrial products, processes, and materials is diverse across and within source subcategories. This leads to wide ranges of SOA and ozone formation potentials that rival other prominent sources, such as motor vehicles. With emission timescales from minutes to years, emission rates and source profiles need to be included, updated, and/or validated in emissions inventories with expected regional and national variability. In particular, intermediate-volatility and semi-volatile organic compounds (IVOCs and SVOCs) are key precursors to SOA, but are excluded or poorly represented in emissions inventories and exempt from emissions targets. We present an expanded framework for classifying VOC, IVOC, and SVOC emissions from this diverse array of sources that emphasizes a life cycle approach over longer timescales and three emission pathways that extend beyond the short-term evaporation of VOCs: (1) solvent evaporation, (2

  4. Uncovering China’s transport CO2 emission patterns at the regional level

    International Nuclear Information System (INIS)

    Guo, Bin; Geng, Yong; Franke, Bernd; Hao, Han; Liu, Yaxuan; Chiu, Anthony

    2014-01-01

    With China’s rapid economic development, its transport sector has experienced a dramatic growth, leading to a large amount of related CO 2 emission. This paper aims to uncover China’s transport CO 2 emission patterns at the regional and provincial level. We first present the CO 2 emission features from transport sector in 30 Chinese provinces, including per capita emissions, emission intensities, and historical evolution of annual CO 2 emission. We then quantify the related driving forces by adopting both period-wise and time-series LMDI analysis. Results indicate that significant regional CO 2 emission disparities exist in China’s transport sector. The eastern region had higher total CO 2 emissions and per capita CO 2 emissions, but lower CO 2 emission intensities in its transport sector. The western region had higher CO 2 emission intensities and experienced a rapid CO 2 emission increase. The CO 2 emission increments in the eastern provinces were mainly contributed by both economic activity effect and population effect, while energy intensity partially offset the emission growth and energy structure had a marginal effect. However, in the central and western provinces, both economic activity effect and energy intensity effect induced the CO 2 emission increases, while the effects from population and energy structure change were limited. - Highlights: • The CO 2 emission features from transport sector in 30 Chinese provinces were presented. • The driving forces of CO 2 emissions from transport sector were quantified. • Regional disparities on China’s transport sector CO 2 emission exist. • Region-specific mitigation policies on transport sector CO 2 emission are needed

  5. Viking observations at the source region of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Bahnsen, A.; Jespersen, M.; Ungstrup, E.; Pedersen, B.M.; Eliasson, L.; Murphree, J.S.; Elphinstone, R.D.; Blomberg, L.; Holmgren, G.; Zanetti, L.J.

    1989-01-01

    The orbit of the Swedish satellite Viking was optimized for in situ observations of auroral particle acceleration and related phenomena. In a large number of the orbits, auroral kilometric radiation (AKR) was observed, and in approximately 35 orbits the satellite passed through AKR source regions as evidenced by very strong signals at the local electron cyclotron frequency f ce . These sources were found at the poleward edge of the auroral oval at altitudes, from 5,000 to 8,000 km, predominantly in the evening sector. The strong AKR signal has a sharp low-frequency cutoff at or very close to f ce in the source. In addition to AKR, strong broadband electrostatic noise is measured during the source crossings. Energetic (1-15 keV) electrons are always present at and around the AKR sources. Upward directed ion beams of several keV are closely correlated with the source as are strong and variable electric fields, indicating that a region of upward pointing electric field below the observation point is a necessary condition for AKR generation. The plasma density is measured by three independent experiments and it is generally found that the density is low across the whole auroral oval. For some source crossings the three methods agree and show a density depletion (but not always confined to the source region itself), but in many cases the three measurements do not yield consistent results. The magnetic projection of the satellite passes through auroral forms during the source crossings, and the strongest AKR events seem to be connected with kinks in an arc or more complicated structures

  6. Measurement of regional cerebral blood flow by positron emission tomography

    International Nuclear Information System (INIS)

    Herscovitch, P.; Powers, W.J.

    1987-01-01

    The principal advantage of positron emission tomography over other methods for measuring cerebral blood flow stems from the accurate, quantitative three-dimensional measurements of regional brain radioactivity that are possible with this technique. As a result, accurate quantitative measurements of regional cerebral blood flow can be obtained for both superficial and deep cerebral structures. The value of PET for investigating central nervous system physiology and pathology extends far beyond this, however. Through the use of different radiotracers and appropriate mathematical models, PET can be applied to the measurement of a wide variety of physiologic variables. Measurements of rCBF tell only part of the story. Experience with PET and with a variety of other techniques has taught us that rCBF is at times a poor indicator of the metabolic, functional, and biochemical status of cerebral tissue. It is only by understanding the interaction of all of these factors that our understanding of neurologic disease can advance. It is in the investigation of these complex relationships that the real value of PET resides

  7. VUV emission spectroscopy diagnostics of a 14 GHz ECR negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, R., E-mail: duo0364@mail4.doshisha.ac.jp; Ichikawa, T.; Kasuya, T.; Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Nishiura, M. [Graduate School of Frontier Sciences The University of Tokyo, Kashiwara, Chiba 277-8561 (Japan); Shimozuma, T. [National lnstitute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2015-04-08

    Vacuum Ultra Violet(VUV) emission from a 4 cm diameter 2 cm long compact ion source excited by 14 GHz microwave has been investigated. Intensity ratio of band spectrum emission near Ly-α to Ly-α line spectrum is determined from the measured spectrum. which shows preferential excitation of molecules near the entrance of microwave input power. The ratio does not depend strongly upon pressure nor the input microwave power when the intensity is integrated over the volume of the plasma. The spatial distribution of the spectrum intensity ratio exhibits concentrations near microwave inlet and the opposite side where the microwave matching structure is located. The ratio at these peripheral regions is about two times as high as that of the central region. The ratio increased in proportion to the ion source pressure up to about 3.0 Pa, indicating efficient production of high energy electrons by ECR up to this pressure.

  8. Commercial and Industrial Solid Waste Incineration Units (CISWI): New Source Performance Standards (NSPS) and Emission Guidelines (EG) for Existing Sources

    Science.gov (United States)

    Learn about the New Source Performance Standards (NSPS) for commercial and industrial solid waste incineration (CISWI) units including emission guidelines and compliance times for the rule. Read the rule history and summary, and find supporting documents

  9. High-resolution inventory of NO emissions from agricultural soils over the Ile-de-France region

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, M.-N. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Gabrielle, B., E-mail: Benoit.Gabrielle@agroparistech.f [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Laville, P.; Cellier, P. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Beekmann, M. [Laboratoire Inter-universitaire des Systemes Atmospheriques - CNRS, Universites Paris-Est and Paris 7, F-94 010 Creteil (France); Gilliot, J.-M.; Michelin, J.; Hadjar, D. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Curci, G. [Dipartimento di Fisica - CETEMPS, Universita' degli Studi dell' Aquila, 67010 Coppito, L' Aquila (Italy)

    2010-03-15

    Arable soils are a significant source of nitric oxide (NO), a precursor of tropospheric ozone, and thereby contribute to ozone pollution. However, their actual impact on ozone formation is strongly related to their spatial and temporal emission patterns, which warrant high-resolution estimates. Here, we combined an agro-ecosystem model and geo-referenced databases to map these sources over the 12 000 km{sup 2} administrative region surrounding Paris, France, with a kilometric level resolution. The six most frequent arable crop species were simulated, with emission rates ranging from 1.4 kg N-NO ha{sup -1} yr{sup -1} to 11.1 kg N-NO ha{sup -1} yr{sup -1}. The overall emission factor for fertilizer-derived NO emissions was 1.7%, while background emissions contributed half of the total NO efflux. Emissions were strongly seasonal, being highest in spring due to fertilizer inputs. They were mostly sensitive to soil type, crops' growing season and fertilizer N rates. - The use of an agro-ecosystem model at regional scale makes it possible to map the emissions of nitric oxide from arable soils at a resolution compatible with tropospheric ozone models.

  10. Emission and source characterization of monoaromatic hydrocarbons from coke production

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.S.; Wang, X.M.; Sheng, G.Y.; Fu, J.M. [Chinese Academy of Sciences, Guangzhou (China). State Key Laboratory of Organic Geochemistry

    2005-09-15

    Monoaromatic hydrocarbons (MAHs) from indigenous and industrial coking processes are studied in Shanxi province. They are sampled on the top of coke ovens and in the chimneys using stainless steel canister and determined by GC/MSD after preconcentration with liquid nitrogen. Benzene, toluene and xylene are the main components among MAHs emitted from coking processes. Benzene and the total MAHs concentrations were as high as 3421.0 microg/m3 and 4 865.9 microg/m3 in the air from indigenous coking, 548.7 microg/m3 and 1 054.8 microg/m3 in the oventop air from industrial coking, and 1 376.4 microg/m3 and 1 819.4 microg/m3 in stack gas from industrial coking, respectively. The MAHs concentrations vary greatly during the indigenous coking process, which in the prophase (from firing to 10 days) is obviously higher than in the anaphase (10 days to quenching the coke). In industrial coking the MAHs in the oventop air are highest when charging the coal and next when transferring the hot coke, but in stack gas they are highest when charging coal and lowest when transferring the coke. Benzene, toluene, ethylbenzene and xylene (BTEX) in industrial coking samples show good linearity, indicating that MAHs in industrial coking might come predominantly from coal pyrolysis; but BTEX distribute dispersedly in indigenous coking samples, indicating that its emission might be affected by many factors. In all samples BTEX ratios especially high B/E ratio, is unique among MAHs sources, and might be helpful to characterize pollution from coking.

  11. [Emission and source characterization of monoaromatic hydrocarbons from coke production].

    Science.gov (United States)

    He, Qiu-Sheng; Wang, Xin-Ming; Sheng, Guo-Ying; Fu, Jia-Mo

    2005-09-01

    Monoaromatic hydrocarbons (MAHs) from indigenous and industrial coking processes are studied in Shanxi province. They are sampled on the top of coke ovens and in the chimneys using stainless steel canister and determined by GC/MSD after preconcentration with liquid nitrogen. Benzene, toluene and xylene are the main components among MAHs emitted from coking processes. Benzene and the total MAHs concentrations were as high as 3421.0 microg/m3 and 4 865.9 microg/m3 in the air from indigenous coking, 548.7 microg/m3 and 1 054.8 microg/m3 in the oventop air from industrial coking, and 1 376.4 microg/m3 and 1 819.4 microg/m3 in stack gas from industrial coking, respectively. The MAHs concentrations vary greatly during the indigenous coking process, which in the prophase (from firing to 10 days) is obviously higher than in the anaphase (10 days to quenching the coke). In industrial coking the MAHs in the oventop air are highest when charging the coal and next when transferring the hot coke, but in stack gas they are highest when charging coal and lowest when transferring the coke. Benzene, toluene, ethylbenzene and xylene (BTEX) in industrial coking samples show good linearity, indicating that MAHs in industrial coking might come predominantly from coal pyrolysis; but BTEX distribute dispersedly in indigenous coking samples, indicating that its emission might be affected by many factors. In all samples BTEX ratios especially high B/E ratio, is unique among MAHs sources, and might be helpful to characterize pollution from coking.

  12. Air Pollution Inequality and Its Sources in SO2 and NOX Emissions among Chinese Provinces from 2006 to 2015

    Directory of Open Access Journals (Sweden)

    Mohaddeseh Azimi

    2018-01-01

    Full Text Available This paper investigates inequality in SO2 and NOX emissions, by observing their extraordinary levels and uneven distribution in China during the period of the 11th and 12th Five-Year Plans (FYPs, 2006–2015. This provincial and regional analysis utilizing the Theil index and Kaya factors help us to find the trajectory of inequality and its primary sources. Based on our analysis, we conclude the driving factors behind emissions inequalities are as follows. There are four economic factors of per capita SO2 emission: SO2 emission intensity of coal consumption, coal intensity of power generation, power intensity of GDP, and per capita GDP. Additionally, there are four urban development factors of per capita NOX emission: NOX emission intensity of gasoline consumption, proportion of gasoline vehicles, vehicle use in urban population, and urbanization rate. The SO2 emission results represent an increase of 6% in overall inequality where the inequality of power intensity of GDP is the main contributor. In terms of NOX emission, the 3% growth in total inequality is related to the high effect of NOX emission intensity of gasoline consumption. We also examine the effect of other factors affecting the trajectory of inequalities. To apply these results in practice, we compare the 11th and 12th FYPs and give some policy suggestions.

  13. Atmospheric polychlorinated biphenyls in Indian cities: Levels, emission sources and toxicity equivalents

    International Nuclear Information System (INIS)

    Chakraborty, Paromita; Zhang, Gan; Eckhardt, Sabine; Li, Jun; Breivik, Knut; Lam, Paul K.S.; Tanabe, Shinsuke; Jones, Kevin C.

    2013-01-01

    Atmospheric concentration of Polychlorinated biphenyls (PCBs) were measured on diurnal basis by active air sampling during Dec 2006 to Feb 2007 in seven major cities from the northern (New Delhi and Agra), eastern (Kolkata), western (Mumbai and Goa) and southern (Chennai and Bangalore) parts of India. Average concentration of Σ 25 PCBs in the Indian atmosphere was 4460 (±2200) pg/m −3 with a dominance of congeners with 4–7 chlorine atoms. Model results (HYSPLIT, FLEXPART) indicate that the source areas are likely confined to local or regional proximity. Results from the FLEXPART model show that existing emission inventories cannot explain the high concentrations observed for PCB-28. Electronic waste, ship breaking activities and dumped solid waste are attributed as the possible sources of PCBs in India. Σ 25 PCB concentrations for each city showed significant linear correlation with Toxicity equivalence (TEQ) and Neurotoxic equivalence (NEQ) values. Highlights: •Unlike decreasing trend of PCBs in United States and European countries, high levels of PCBs remain in the Indian atmosphere. •Existing emission inventories cannot explain the high PCB concentrations in Indian atmosphere. •Electronic waste recycling, ship dismantling and open burning of municipal solid waste are implicated as potential sources. -- Measurement of atmospheric Polychlorinated biphenyls in seven major Indian cities

  14. Nitrous oxide emission estimates using atmospheric observations of vertical profiles in a polluted agricultural region

    Science.gov (United States)

    Herrera, S.; Diskin, G. S.; Pusede, S.

    2016-12-01

    Nitrous oxide (N2O) is a long-lived and highly potent greenhouse gas that also destroys stratospheric ozone. Largely attributed to changes in agricultural sources, N2O concentrations are increasing at a steady rate of 0.8 ppb y-1 globally. Emission rates of N2O remain poorly constrained, with N2O sources arguably among the most uncertain of the long-lived greenhouse gases. This study quantifies N2O emissions at the kilometer-spatial scale in the wintertime in a region with both agricultural and urban sources, the San Joaquin Valley of California. To do this, we use the large number vertical profiles of N2O and other relevant trace gases measured by the P3 aircraft during the NASA DISCOVER-AQ campaign that took place throughout the San Joaquin Valley in January-February 2013. We exploit the observed variability in profile shape by time of day, day to day, and location (over urban versus agricultural sources), along with chemical and physical constraints on mixing and the timing of decoupling between the surface boundary layer and residual layers aloft.

  15. Uncertainties in emission estimates of greenhouse gases and air pollutants in China and India and their impacts on regional air quality

    Science.gov (United States)

    Saikawa, E.; Trail, M.; Young, C. L.; Zhong, M.; Avramov, A.; Kim, H.; Wu, Q.; Janssens-Maenhout, G. G. A.; Kurokawa, J. I.; Klimont, Z.; Wagner, F.; Naik, V.; Horowitz, L. W.; Zhao, Y.; Nagpure, A.; Gurjar, B.; Zhang, Q.

    2017-12-01

    Greenhouse gas and air pollutant precursor emissions have been increasing rapidly in both China and India, resulting in local to regional scale effects on air quality. Modelers use emission inventories to represent the temporal and spatial distribution of impacts of air pollutant emissions on regional and global air quality. However, large uncertainties exist in emission inventories. Quantification of uncertainties in emission estimates is essential to better understand the linkages among emissions, air quality, climate, and health. We use Monte Carlo methods to assess the uncertainties of the existing carbon dioxide (CO2), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) emission estimates for both China and India. We focus on the period between 2000 and 2008. In addition to national totals, we also analyze emissions from four source sectors, including industry, transport, power, and residential. We also assess differences in the existing emission estimates within each of the subnational regions. We find large disagreements among the existing inventories at disaggregated levels. We further assess the impact of these differences in emissions on air quality using a chemical transport model. More efforts are needed to constrain emissions, especially in the Indo-Gangetic Plains and in the East and Central regions of China, where large differences across emission inventories result in concomitant large differences in the simulated concentrations of PM and ozone. Our study also highlights the importance of constraining SO2, NOx, and NH3 emissions for secondary PM concentrations over China and India.

  16. On the global and regional potential of renewable energy sources

    NARCIS (Netherlands)

    Hoogwijk, Monique Maria

    2004-01-01

    In this thesis, the central research question is: what can be the contribution of renewable energy sources to the present and future world and regional energy supply system. The focus is on wind, solar PV and biomass energy (energy crops) for electricity generation. For the assessment of the

  17. Aura OMI observations of changes in SO2 and NO2 emissions at local, regional and global scales

    Science.gov (United States)

    Krotkov, N. A.; McLinden, C. A.; Li, C.; Lamsal, L. N.; Celarier, E. A.; Marchenko, S. V.; Swartz, W.; Bucsela, E. J.; Joiner, J.; Duncan, B. N.; Boersma, K. F.; Veefkind, P.; Levelt, P.; Fioletov, V.; Dickerson, R. R.; He, H.; Lu, Z.; Streets, D. G.

    2015-12-01

    Space-based pollution monitoring from current and planned satellite UV-Vis spectrometers play an increasingly important role in studies of tropospheric chemistry and also air quality applications to help mitigate anthropogenic and natural impacts on sensitive ecosystems, and human health. We present long-term changes in tropospheric SO2 and NO2 over some of the most polluted industrialized regions of the world observed by the Ozone Monitoring Instrument (OMI) onboard NASA's Aura satellite. Using OMI data, we identified about 400 SO2 "hot spots" and estimated emissions from them. In many regions emissions and their ambient pollution levels have decreased significantly, such as over eastern US, Europe and China. OMI observed about 50% reduction in SO2 and NO2 pollution over the North China plain in 2012-2014 that can be attributed to both government efforts to restrain emissions from the power and industrial sectors and the economic slowdown. While much smaller, India's SO2 and NO2 emissions from coal power plants and smelters are growing at a fast pace, increasing by about 200% and 50% from 2005 to 2014. Over Europe and the US OMI-observed trends agree well with those from available in situ measurements of surface concentrations, deposition and emissions data. However, for some regions (e.g., Mexico, Middle East) the emission inventories may be incomplete and OMI can provide emission estimates for missing sources, such as SO2 sources observed over the Persian Gulf. It is essential to continue long-term overlapping satellite data records of air quality with increased spatial and temporal resolution to resolve point pollution sources using oversampling technique. We discuss how Aura OMI pollution measurements and emission estimates will be continued with the US JPSS and European Sentinel series for the next 20 years and further enhanced by the addition of three geostationary UV-VIS instruments.

  18. 40 CFR 63.2343 - What are my requirements for emission sources not requiring control?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true What are my requirements for emission sources not requiring control? 63.2343 Section 63.2343 Protection of Environment ENVIRONMENTAL PROTECTION... (Non-Gasoline) What This Subpart Covers § 63.2343 What are my requirements for emission sources not...

  19. Differences in regional emissions in China's transport sector: Determinants and reduction strategies

    International Nuclear Information System (INIS)

    Xu, Bin; Lin, Boqiang

    2016-01-01

    With recent surge in the number of vehicles, particularly private vehicles, the transport sector has significantly contributed to the increase in energy consumption and carbon dioxide emissions in China. Most of the existing researches utilized time series data to investigate the factors influencing transport sector's carbon dioxide emission at the national level while neglecting the level of regional differences. This paper adopts provincial panel data from 2000 to 2012 and panel data models to examine the key driving forces of carbon dioxide emissions in the transport sector at the regional level in China. The estimation results show that the impacts of urbanization on carbon dioxide emissions in the transport sector vary across regions and decline continuously from the western region to the eastern and central regions. Private vehicles are more important than cargo turnover in emission reduction because of its relatively inefficient and excessive growth. The role of energy efficiency improvement in mitigating carbon dioxide emissions in the three regions varies due to significant differences in research and development investment and management efficiency. Hence, in order to effectively achieve emission reduction, local governments should consider all these factors as well as regional heterogeneity in developing appropriate mitigation policies. - Highlights: • The factors of carbon dioxide emissions in China's transport sector were explored. • The impact of urbanization on carbon dioxide emissions varies across regions. • Private vehicles are more critical than cargo turnover in emission reduction. • The role of energy efficiency in the three regions is exactly the opposite.

  20. Sources of variation in δ13C of fossil fuel emissions in Salt Lake City, USA

    International Nuclear Information System (INIS)

    Bush, S.E.; Pataki, D.E.; Ehleringer, J.R.

    2007-01-01

    The isotopic composition of fossil fuels is an important component of many studies of C sources and sinks based on atmospheric measurements of CO 2 . In C budget studies, the isotopic composition of crude petroleum and CH 4 are often used as a proxy for the isotopic composition of CO 2 emissions from combustion. In this study, the C isotope composition (δ 13 C) of exhaust from the major fossil fuel emission sources in Salt Lake City, USA, was characterized with 159 measurements of vehicle exhaust of various types and eight measurements of residential furnace exhaust. These two sources were found to be isotopically distinct, and differed from global-scale estimates based on average values for crude petroleum and CH 4 . Vehicle-specific factors such as engine load and operation time had no effect on δ 13 C of vehicle exhaust. A small difference was found between the mean δ 13 C of vehicle exhaust collected randomly from different vehicles and the mean δ 13 C of gasoline collected from multiple fueling stations representing major gasoline distributors in Salt Lake City and the surrounding area. However, a paired comparison of δ 13 C of exhaust and gasoline for six different vehicles did not show any consistent C isotope fractionation during vehicle combustion. The mean δ 13 C of crude petroleum processed for local distribution differed slightly from refined gasoline collected at multiple fueling stations, but time lags between processing and transportation cannot be ruled out as an uncontrollable contributing factor. Measured isotope ratios were then combined with fuel consumption statistics to predict the annual cycle of δ 13 C of fossil fuel emissions for the Salt Lake City metropolitan area. The results showed that the isotopic composition of CO 2 emissions from fossil fuel combustion varied by almost 3 per mille over the course of the 2002 calendar year. This study illustrates that on a regional scale, the isotopic composition of fossil fuel emissions shows

  1. Atmospheric observations for quantifying emissions of point-source synthetic greenhouse gases (CF4, NF3 and HFC-23)

    Science.gov (United States)

    Arnold, Tim; Manning, Alistair J.; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Fraser, Paul J.; Mitrevski, Blagoj; Steele, L. Paul; Krummel, Paul B.; Mühle, Jens; Weiss, Ray F.

    2016-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacement compounds that are emitted from fugitive and mobile emission sources, these gases are largely emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane factories (HFC-23). In this work we show the potential for atmospheric measurements to understand regional sources of these gases and to highlight emission 'hotspots'. We target our analysis on measurements from two Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites that are particularly sensitive to regional emissions of these gases: Gosan on Jeju Island in the Republic of Korea and Cape Grim on Tasmania in Australia. These sites measure CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over a decade (2005-2015) at high spatial resolution. At present these gases make a small contribution to global radiative forcing, however, given that their impact could rise significantly and that point sources of such gases can be mitigated, atmospheric monitoring could be an important tool for aiding emissions reduction policy.

  2. Status and Needs Research for On-line Monitoring of VOCs Emissions from Stationary Sources

    Science.gov (United States)

    Zhou, Gang; Wang, Qiang; Zhong, Qi; Zhao, Jinbao; Yang, Kai

    2018-01-01

    Based on atmospheric volatile organic compounds (VOCs) pollution control requirements during the twelfth-five year plan and the current status of monitoring and management at home and abroad, instrumental architecture and technical characteristics of continuous emission monitoring systems (CEMS) for VOCs emission from stationary sources are investigated and researched. Technological development needs of VOCs emission on-line monitoring techniques for stationary sources in china are proposed from the system sampling pretreatment technology and analytical measurement techniques.

  3. A 2009 Mobile Source Carbon Dioxide Emissions Inventory for the University of Central Florida.

    Science.gov (United States)

    Clifford, Johanna M; Cooper, C David

    2012-09-01

    A mobile source carbon dioxide (CO2) emissions inventory for the University of Central Florida (UCF) has been completed. Fora large urban university, more than 50% of the CO2 emissions can come from mobile sources, and the vast majority of mobile source emissions come from on-road sources: personal vehicles and campus shuttles carrying students, faculty, staff and administrators to and from the university as well as on university business trips. In addition to emissions from on-road vehicles, emissions from airplane-based business travel are significant, along with emissions from nonroad equipment such as lawnmowers, leaf blowers, and small maintenance vehicles utilized on campus. UCF has recently become one of the largest universities in the nation (with over 58,000 students enrolled in the fall 2011 semester) and emits a substantial amount of CO2 in the Central Florida area. For this inventory, students, faculty, staff and administrators were first surveyed to determine their commuting distances and frequencies. Information was also gathered on vehicle type and age distribution of the personal vehicles of students, faculty, administrators, and staff as well as their bus, car-pool, and alternate transportation usage. The latest US. Environmental Protection Agency (EPA)-approved mobile source emissions model, Motor Vehicle Emissions Simulator (MOVES2010a), was used to calculate the emissions from on-road vehicles, and UCF fleet gasoline consumption records were used to calculate the emissions from nonroad equipment and from on-campus UCF fleet vehicles. The results of this UCF mobile source emissions inventory were compared with those for another large U.S. university. With the growing awareness of global climate change, a number of colleges/universities and other organizations are completing greenhouse gas emission inventories. Assumptions often are made in order to calculate mobile source emissions, but without field data or valid reasoning, the accuracy of those

  4. Historic Emissions from Deforestation and Forest Degradation in Mato Grosso, Brazil: 1. Source Data Uncertainties

    Science.gov (United States)

    Morton, Douglas C.; Sales, Marcio H.; Souza, Carlos M., Jr.; Griscom, Bronson

    2011-01-01

    Historic carbon emissions are an important foundation for proposed efforts to Reduce Emissions from Deforestation and forest Degradation and enhance forest carbon stocks through conservation and sustainable forest management (REDD+). The level of uncertainty in historic carbon emissions estimates is also critical for REDD+, since high uncertainties could limit climate benefits from mitigation actions. Here, we analyzed source data uncertainties based on the range of available deforestation, forest degradation, and forest carbon stock estimates for the Brazilian state of Mato Grosso during 1990-2008. Results: Deforestation estimates showed good agreement for multi-year trends of increasing and decreasing deforestation during the study period. However, annual deforestation rates differed by >20% in more than half of the years between 1997-2008, even for products based on similar input data. Tier 2 estimates of average forest carbon stocks varied between 99-192 Mg C/ha, with greatest differences in northwest Mato Grosso. Carbon stocks in deforested areas increased over the study period, yet this increasing trend in deforested biomass was smaller than the difference among carbon stock datasets for these areas. Conclusions: Patterns of spatial and temporal disagreement among available data products provide a roadmap for future efforts to reduce source data uncertainties for estimates of historic forest carbon emissions. Specifically, regions with large discrepancies in available estimates of both deforestation and forest carbon stocks are priority areas for evaluating and improving existing estimates. Full carbon accounting for REDD+ will also require filling data gaps, including forest degradation and secondary forest, with annual data on all forest transitions.

  5. Global Emissions of Nitrous Oxide: Key Source Sectors, their Future Activities and Technical Opportunities for Emission Reduction

    Science.gov (United States)

    Winiwarter, W.; Höglund-Isaksson, L.; Klimont, Z.; Schöpp, W.; Amann, M.

    2017-12-01

    Nitrous oxide originates primarily from natural biogeochemical processes, but its atmospheric concentrations have been strongly affected by human activities. According to IPCC, it is the third largest contributor to the anthropogenic greenhouse gas emissions (after carbon dioxide and methane). Deep decarbonization scenarios, which are able to constrain global temperature increase within 1.5°C, require strategies to cut methane and nitrous oxide emissions on top of phasing out carbon dioxide emissions. Employing the Greenhouse gas and Air pollution INteractions and Synergies (GAINS) model, we have estimated global emissions of nitrous oxide until 2050. Using explicitly defined emission reduction technologies we demonstrate that, by 2030, about 26% ± 9% of the emissions can be avoided assuming full implementation of currently existing reduction technologies. Nearly a quarter of this mitigation can be achieved at marginal costs lower than 10 Euro/t CO2-eq with the chemical industry sector offering important reductions. Overall, the largest emitter of nitrous oxide, agriculture, also provides the largest emission abatement potentials. Emission reduction may be achieved by precision farming methods (variable rate technology) as well as by agrochemistry (nitrification inhibitors). Regionally, the largest emission reductions are achievable where intensive agriculture and industry are prevalent (production and application of mineral fertilizers): Centrally Planned Asia including China, North and Latin America, and South Asia including India. Further deep cuts in nitrous oxide emissions will require extending reduction efforts beyond strictly technological solutions, i.e., considering behavioral changes, including widespread adoption of "healthy diets" minimizing excess protein consumption.

  6. The characterisation of Melanesian obsidian sources and artefacts using the proton induced gamma-ray emission (PIGME) technique

    International Nuclear Information System (INIS)

    Bird, J.R.; Ambrose, W.R.; Russell, L.H.; Scott, M.D.

    1981-09-01

    Proton induced gamma-ray emission (PIGME) has been used to determine F, Na and Al concentrations in obsidian from known locations in Melanesia and to relate artefacts from this region to such sources. The PIGME technique is a fast, non-destructive, and accurate method for determining these three elements with essentially no special sample preparation. The measuring technique is described and results are listed for sources, chiefly in the Papua New Guinea region. Their classification is discussed in terms of groups which are distinguishable by the PIGME method. Over 700 artefact results are listed; these show the occurrence of an additional group that is not geographically identified

  7. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain

    Science.gov (United States)

    Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández-Patier, R.; Moreno-Grau, S.; Negral, L.; Minguillón, M. C.; Monfort, E.; Gil, J. I.; Inza, A.; Ortega, L. A.; Santamaría, J. M.; Zabalza, J.

    Despite their significant role in source apportionment analysis, studies dedicated to the identification of tracer elements of emission sources of atmospheric particulate matter based on air quality data are relatively scarce. The studies describing tracer elements of specific sources currently available in the literature mostly focus on emissions from traffic or large-scale combustion processes (e.g. power plants), but not on specific industrial processes. Furthermore, marker elements are not usually determined at receptor sites, but during emission. In our study, trace element concentrations in PM 10 and PM 2.5 were determined at 33 monitoring stations in Spain throughout the period 1995-2006. Industrial emissions from different forms of metallurgy (steel, stainless steel, copper, zinc), ceramic and petrochemical industries were evaluated. Results obtained at sites with no significant industrial development allowed us to define usual concentration ranges for a number of trace elements in rural and urban background environments. At industrial and traffic hotspots, average trace metal concentrations were highest, exceeding rural background levels by even one order of magnitude in the cases of Cr, Mn, Cu, Zn, As, Sn, W, V, Ni, Cs and Pb. Steel production emissions were linked to high levels of Cr, Mn, Ni, Zn, Mo, Cd, Se and Sn (and probably Pb). Copper metallurgy areas showed high levels of As, Bi, Ga and Cu. Zinc metallurgy was characterised by high levels of Zn and Cd. Glazed ceramic production areas were linked to high levels of Zn, As, Se, Zr, Cs, Tl, Li, Co and Pb. High levels of Ni and V (in association) were tracers of petrochemical plants and/or fuel-oil combustion. At one site under the influence of heavy vessel traffic these elements could be considered tracers (although not exclusively) of shipping emissions. Levels of Zn-Ba and Cu-Sb were relatively high in urban areas when compared with industrialised regions due to tyre and brake abrasion, respectively.

  8. Comparison of CO2 Emissions Data for 30 Cities from Different Sources

    Science.gov (United States)

    Nakagawa, Y.; Koide, D.; Ito, A.; Saito, M.; Hirata, R.

    2017-12-01

    Many sources suggest that cities account for a large proportion of global anthropogenic greenhouse gas emissions. Therefore, in search for the best ways to reduce total anthropogenic greenhouse gas emissions, a focus on the city emission is crucial. In this study, we collected CO2 emissions data in 30 cities during 1990-2015 and evaluated the degree of variance between data sources. The CO2 emissions data were obtained from academic papers, municipal reports, and high-resolution emissions maps (CIDIACv2016, EDGARv4.2, ODIACv2016, and FFDASv2.0). To extract urban CO2 emissions from the high-resolution emissions maps, urban fraction ranging from 0 to 1 was calculated for each 1×1 degree grid cell using the global land cover data (SYNMAP). Total CO2 emissions from the grid cells in which urban fraction occupies greater than or equal to 0.9 were regarded as urban CO2 emissions. The estimated CO2 emissions varied greatly depending on the information sources, even in the same year. There was a large difference between CO2 emissions collected from academic papers, municipal reports, and those extracted from high-resolution emissions maps. One reason is that they use different city boundaries. That is, the city proper (i.e. the political city boundary) is often defined as the city boundary in academic papers and municipal reports, whereas the urban area is used in the high-resolution emissions maps. Furthermore, there was a large variation in CO2 emissions collected from academic papers and municipal reports. These differences may be due to the difference in the assumptions such as allocation ratio of CO2 emissions to producers and consumers. In general, the consumption-based assignment of emissions gives higher estimates of urban CO2 emission in comparison with production-based assignment. Furthermore, there was also a large variation in CO2 emissions extracted from high-resolution emissions maps. This difference would be attributable to differences in information used

  9. Dimethylsulphide (DMS emissions from the western Pacific Ocean: a potential marine source for stratospheric sulphur?

    Directory of Open Access Journals (Sweden)

    C. A. Marandino

    2013-08-01

    Full Text Available Sea surface and atmospheric measurements of dimethylsulphide (DMS were performed during the TransBrom cruise in the western Pacific Ocean between Japan and Australia in October 2009. Air–sea DMS fluxes were computed between 0 and 30 μmol m−2 d−1, which are in agreement with those computed by the current climatology, and peak emissions of marine DMS into the atmosphere were found during the occurrence of tropical storm systems. Atmospheric variability in DMS, however, did not follow that of the computed fluxes and was more related to atmospheric transport processes. The computed emissions were used as input fields for the Lagrangian dispersion model FLEXPART, which was set up with actual meteorological fields from ERA-Interim data and different chemical lifetimes of DMS. A comparison with aircraft in situ data from the adjacent HIPPO2 campaign revealed an overall good agreement between modelled versus observed DMS profiles over the tropical western Pacific Ocean. Based on observed DMS emissions and meteorological fields along the cruise track, the model projected that up to 30 g S per month in the form of DMS, emitted from an area of 6 × 104 m2, can be transported above 17 km. This surprisingly large DMS entrainment into the stratosphere is disproportionate to the regional extent of the area of emissions and mainly due to the high convective activity in this region as simulated by the transport model. Thus, if DMS can cross the tropical tropopause layer (TTL, we suggest that the considerably larger area of the tropical western Pacific Ocean can be a source of sulphur to the stratosphere, which has not been considered as yet.

  10. Biogenic halocarbons from coastal oceanic upwelling regions as tropospheric halogen source

    Science.gov (United States)

    Krüger, Kirstin; Fuhlbrügge, Steffen; Hepach, Helmke; Fiehn, Alina; Atlas, Elliot; Quack, Birgit

    2016-04-01

    Halogenated very short lived substances (VSLS) are naturally produced in the ocean and emitted to the atmosphere. Recently, oceanic upwelling regions in the tropical East Atlantic were identified as strong sources of brominated halocarbons to the troposphere. During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian Upwelling for the first time. This study presents novel observations of the three VSLS bromoform, dibromomethane and methyl iodide together with high resolution meteorological measurements and Lagrangian transport modelling. Although relatively low oceanic emissions were observed, except for methyl iodide, surface atmospheric abundances were elevated. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting both as strong barriers for convection and trace gas transport in this region. Significant correlations between observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height were found. We used a simple source-loss estimate to identify the contribution of oceanic emissions to observed atmospheric concentrations which revealed that the observed marine VSLS abundances were dominated by horizontal advection below the trade inversion. The observed VSLS variations can be explained by the low emissions and their accumulation under different MABL and trade inversion conditions. Finally, observations from a second Peruvian Upwelling cruise with R/V SONNE during El Nino in October 2015 will be compared to highlight the role of different El Nino Southern Oscillation conditions. This study confirms the importance of coastal oceanic upwelling and trade wind systems on creating effective transport barriers in the lowermost atmosphere controlling the distribution of VSLS abundances above coastal ocean upwelling

  11. THE OFF-CENTERED SEYFERT-LIKE COMPACT EMISSION IN THE NUCLEAR REGION OF NGC 3621

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, R. B.; Steiner, J. E.; Silva, Patricia da, E-mail: robertobm@astro.iag.usp.br [Instituto de Astronomia Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, São Paulo, SP CEP 05508-090 (Brazil)

    2016-02-01

    We analyze an optical data cube of the nuclear region of NGC 3621, taken with the integral field unit of the Gemini Multi-object Spectrograph. We found that the previously detected central line emission in this galaxy actually comes from a blob, located at a projected distance of 2.″14 ± 0.″08 (70.1 ± 2.6 pc) from the stellar nucleus. Only diffuse emission was detected in the rest of the field of view, with a deficit of emission at the position of the stellar nucleus. Diagnostic diagram analysis reveals that the off-centered emitting blob has a Seyfert 2 spectrum. We propose that the line-emitting blob may be a “fossil” emission-line region or a light “echo” from an active galactic nucleus (AGN), which was significantly brighter in the past. Our estimates indicate that the bolometric luminosity of the AGN must have decreased by a factor of ∼13–500 during the past ∼230 yr. A second scenario to explain the morphology of the line-emitting areas in the nuclear region of NGC 3621 involves no decrease of the AGN bolometric luminosity and establishes that the AGN is highly obscured toward the observer but not toward the line-emitting blob. The third scenario proposed here assumes that the off-centered line-emitting blob is a recoiling supermassive black hole, after the coalescence of two black holes. Finally, an additional hypothesis is that the central X-ray source is not an AGN, but an X-ray binary. This idea is consistent with all the scenarios we proposed.

  12. 40 CFR 63.843 - Emission limits for existing sources.

    Science.gov (United States)

    2010-07-01

    ... paste for plants with batch mixers. The POM emission rate shall be determined by sampling using Method 315 in appendix A to this part. (c) Anode bake furnaces. The owner or operator shall not discharge or...

  13. An Entropy Approach to Regional Differences in Carbon Dioxide Emissions: Implications for Ethanol Usage

    Directory of Open Access Journals (Sweden)

    Dong Hee Suh

    2018-01-01

    Full Text Available The growth of the U.S. economy has been accompanied with a significant rise in carbon dioxide (CO2 emissions. As CO2 emissions are dependent on regional climatic conditions and energy-related activities in states, this study examines the extent to which the distribution of CO2 emissions vary across nine climatically consistent regions in the U.S. The results obtained from the entropy approach reveal that the inequalities of CO2 emissions vary across the regions. While the total inequality of CO2 emissions is determined by the between-region and the average within-region inequalities, the between-region inequality begins to dominate the average within-region inequalities around 1980s; the emission inequalities between regions increase, but those within each region decrease. Given that ethanol usage is relevant to energy-related CO2 emissions, this study also evaluates the impact of ethanol usage on the changes in the emission inequalities. The results show that an increase in the ratio of ethanol to fossil fuels is associated closely with the reductions in the inequalities of CO2 emissions.

  14. Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China

    International Nuclear Information System (INIS)

    Zhang Chuanguo; Lin Yan

    2012-01-01

    As urbanization accelerates, urban areas play a leading role in energy consumption and CO 2 emissions in China. The existing research is extensively concerned with the relationships between urbanization, energy consumption and CO 2 emissions in recent years, but little attention has been paid to the regional differences. This paper is an analysis of the impact of urbanization on energy consumption and CO 2 emissions at the national and regional levels using the STIRPAT model and provincial panel data from 1995 to 2010 in China. The results showed that urbanization increases energy consumption and CO 2 emissions in China. The effects of urbanization on energy consumption vary across regions and decline continuously from the western region to the central and eastern regions. The impact of urbanization on CO 2 emissions in the central region is greater than that in the eastern region. The impact of urbanization on energy consumption is greater than the impact on CO 2 emissions in the eastern region. And some evidences support the argument of compact city theory. These results not only contribute to advancing the existing literature, but also merit particular attention from policy makers and urban planners in China. - Highlights: ► We analyze the impact of urbanization on energy use and CO 2 emissions in China. ► Urbanization increases energy consumption and CO 2 emissions in China. ► The effects of urbanization on energy use and CO 2 emissions vary across regions.

  15. Dynamism of household carbon emissions (HCEs) from rural and urban regions of northern and southern China.

    Science.gov (United States)

    Maraseni, Tek Narayan; Qu, Jiansheng; Yue, Bian; Zeng, Jingjing; Maroulis, Jerry

    2016-10-01

    China contributes 23 % of global carbon emissions, of which 26 % originate from the household sector. Due to vast variations in both climatic conditions and the affordability and accessibility of fuels, household carbon emissions (HCEs) differ significantly across China. This study compares HCEs (per person) from urban and rural regions in northern China with their counterparts in southern China. Annual macroeconomic data for the study period 2005 to 2012 were obtained from Chinese government sources, whereas the direct HCEs for different types of fossil fuels were obtained using the IPCC reference approach, and indirect HCEs were calculated by input-output analysis. Results suggest that HCEs from urban areas are higher than those from rural areas. Regardless of the regions, there is a similarity in per person HCEs in urban areas, but the rural areas of northern China had significantly higher HCEs than those from southern China. The reasons for the similarity between urban areas and differences between rural areas and the percentage share of direct and indirect HCEs from different sources are discussed. Similarly, the reasons and solutions to why decarbonising policies are working in urban areas but not in rural areas are discussed.

  16. Strategies for decreasing nitrous oxide emissions from agricultural sources

    Energy Technology Data Exchange (ETDEWEB)

    Oenema, O. [AB-DLO, Wageningen (Netherlands)

    1999-08-01

    Following the Kyoto Conference of 1997, declaring the urgency of implementing strategies for decreasing greenhouse gas emissions, there are several valid arguments to examine the opportunities for reducing nitrous oxide emissions from agriculture. This paper provides a review of the state-of-the-art of emission reduction, discusses two strategies for decreasing emissions and identifies various gaps in current knowledge in this field and the need for relevant scientific research. The two strategies discussed are (1) increasing the nitrogen use efficiency toward the goal of lowering total nitrogen input, and (2) decreasing the release of nitrous oxide per unit of nitrogen from the processes of nitrification and denitrification. Increasing nitrogen use efficiency is thought to be the most effective strategy. To that end, the paper discusses several practical actions and measures based on decisions at tactical and operational management levels. Knowledge gaps identified include (1) incomplete understanding of nitrogen cycling in farming systems, (2) incomplete quantitative understanding of emission controlling factors, (3) information gap between science and policy, and (4) information gap between science and practice. Appropriate research needs are suggested for each of these areas. It is suggested that the highest priority should be given to improving the understanding of emission controlling factors in the field and on the farm. 23 refs., 2 figs.

  17. N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil

    International Nuclear Information System (INIS)

    Signor, D; Cerri, C E P; Conant, R

    2013-01-01

    Among the main greenhouse gases (CO 2 , CH 4 and N 2 O), N 2 O has the highest global warming potential. N 2 O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N 2 O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (São Paulo state) and Goianésia (Goiás state). In Piracicaba, N 2 O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha −1 of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianésia, N 2 O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha −1 . This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N 2 O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies. (letter)

  18. Emission Inventory Development and Application Based On an Atmospheric Emission Source Priority Control Classification Technology Method, a Case Study in the Middle Reaches of Yangtze River Urban Agglomerations, China

    Science.gov (United States)

    Sun, X.; Cheng, S.

    2017-12-01

    This paper presents the first attempt to investigate the emission source control of the Middle Reaches of Yangtze River Urban Agglomerations (MRYRUA), one of the national urban agglomerations in China. An emission inventory of the MRYRUA was the first time to be developed as inputs to the CAMx model based on county-level activity data obtained by full-coverage investigation and source-based spatial surrogates. The emission inventory was proved to be acceptable owing to the atmospheric modeling verification. A classification technology method for atmospheric pollution source priority control was the first time to be introduced and applied in the MRYRUA for the evaluation of the emission sources control on the region-scale and city-scale. MICAPS (Meteorological Information comprehensive Analysis and Processing System) was applied for the regional meteorological condition and sensitivity analysis. The results demonstrated that the emission sources in the Hefei-center Urban Agglomerations contributed biggest on the mean PM2.5 concentrations of the MRYRUA and should be taken the priority to control. The emission sources in the Ma'anshan city, Xiangtan city, Hefei city and Wuhan city were the bigger contributors on the mean PM2.5 concentrations of the MRYRUA among the cities and should be taken the priority to control. In addition, the cities along the Yangtze River and the tributary should be given the special attention for the regional air quality target attainments. This study provide a valuable preference for policy makers to develop effective air pollution control strategies.

  19. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.

    Science.gov (United States)

    Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L

    2015-07-21

    We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions.

  20. X-Ray Emission from the Nuclear Region of Arp 220

    Science.gov (United States)

    Paggi, Alessandro; Fabbiano, Giuseppina; Risaliti, Guido; Wang, Junfeng; Karovska, Margarita; Elvis, Martin; Maksym, W. Peter; McDowell, Jonathan; Gallagher, Jay

    2017-05-01

    We present an imaging and spectral analysis of the nuclear region of the ultraluminous infrared galaxy merger of Arp 220, using deep Chandra-ACIS observations summing up to ˜ 300 {{ks}}. Narrowband imaging with subpixel resolution of the innermost nuclear region reveals two distinct Fe-K emitting sources, coincident with the infrared and radio nuclear clusters. These sources are separated by 1‧ (˜380 pc). The X-ray emission is extended and elongated in the eastern (E) nucleus, like the disk emission observed in millimeter radio images, suggesting a starburst dominance in this region. We estimate an Fe-K equivalent width of ≳ 1 {keV} for both sources and observe 2-10 keV luminosities of ˜ 2× {10}40 {{erg}} {{{s}}}-1 (western, W) and ˜ 3× {10}40 {{erg}} {{{s}}}-1 (E). In the 6-7 keV band the emission from these regions is dominated by the 6.7 keV Fe xxv line, suggesting a contribution from collisionally ionized gas. The thermal energy content of this gas is consistent with the kinetic energy injection in the interstellar medium by SNe II. However, nuclear winds from a hidden active galactic nucleus (AGN) (\\upsilon ˜ 2000 {{km}} {{{s}}}-1) cannot be excluded. The 3σ upper limits on the neutral Fe-Kα flux of the nuclear regions correspond to the intrinsic AGN 2-10 keV luminosities of < 1× {10}42 {{erg}} {{{s}}}-1 (W) and < 0.4× {10}42 {{erg}} {{{s}}}-1 (E). For typical AGN spectral energy distributions the bolometric luminosities are < 3× {10}43 {{erg}} {{{s}}}-1 (W) and < 8× {10}43 {{erg}} {{{s}}}-1 (E), and black hole masses of < 1× {10}5 {M}⊙ (W) and < 5× {10}5 {M}⊙ (E) are evaluated for Eddington limited AGNs with a standard 10% efficiency.

  1. Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    International Nuclear Information System (INIS)

    Rankin, Joanna M.; Mitra, Dipanjan; Archibald, Anne; Hessels, Jason; Leeuwen, Joeri van; Ransom, Scott; Stairs, Ingrid; Straten, Willem van; Weisberg, Joel M.

    2017-01-01

    The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  2. Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, Joanna M.; Mitra, Dipanjan [Physics Department, University of Vermont, Burlington, VT 05405 (United States); Archibald, Anne; Hessels, Jason; Leeuwen, Joeri van [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Ransom, Scott [National Radio Astronomy Observatory, Charlottesville, VA 29201 (United States); Stairs, Ingrid [Physics Department, University of British Columbia, V6T 1Z4, BC (Canada); Straten, Willem van [Institute for Radio Astronomy and Space Research, Auckland University of Technology, Auckland 1142 (New Zealand); Weisberg, Joel M., E-mail: Joanna.Rankin@uvm.edu [Physics and Astronomy Department, Carleton College, Northfield, MN 55057 (United States)

    2017-08-10

    The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  3. The evolution of young HII regions. I. Continuum emission and internal dynamics

    Science.gov (United States)

    Klaassen, P. D.; Johnston, K. G.; Urquhart, J. S.; Mottram, J. C.; Peters, T.; Kuiper, R.; Beuther, H.; van der Tak, F. F. S.; Goddi, C.

    2018-04-01

    Context. High-mass stars form in much richer environments than those associated with isolated low-mass stars, and once they reach a certain mass, produce ionised (HII) regions. The formation of these pockets of ionised gas are unique to the formation of high-mass stars (M > 8 M⊙), and present an excellent opportunity to study the final stages of accretion, which could include accretion through the HII region itself. Aim. This study of the dynamics of the gas on both sides of these ionisation boundaries in very young HII regions aims to quantify the relationship between the HII regions and their immediate environments. Methods: We present high-resolution ( 0.5″) ALMA observations of nine HII regions selected from the red MSX source survey with compact radio emission and bolometric luminosities greater than 104 L⊙. We focus on the initial presentation of the data, including initial results from the radio recombination line H29α, some complementary molecules, and the 256 GHz continuum emission. Results: Of the six (out of nine) regions with H29α detections, two appear to have cometary morphologies with velocity gradients across them, and two appear more spherical with velocity gradients suggestive of infalling ionised gas. The remaining two were either observed at low resolution or had signals that were too weak to draw robust conclusions. We also present a description of the interactions between the ionised and molecular gas (as traced by CS (J = 5 - 4)), often (but not always) finding the HII region had cleared its immediate vicinity of molecules. Conclusions: Of our sample of nine, the observations of the two clusters expected to have the youngest HII regions (from previous radio observations) are suggestive of having infalling motions in the H29α emission, which could be indicative of late stage accretion onto the stars despite the presence of an HII region. Table A.2 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130

  4. Light absorption of biomass burning and vehicle emission-sourced carbonaceous aerosols of the Tibetan Plateau.

    Science.gov (United States)

    Hu, Zhaofu; Kang, Shichang; Li, Chaoliu; Yan, Fangping; Chen, Pengfei; Gao, Shaopeng; Wang, Zhiyong; Zhang, Yulan; Sillanpää, Mika

    2017-06-01

    Carbonaceous aerosols over the Tibetan Plateau originate primarily from biomass burning and vehicle emissions (BB and VEs, respectively). The light absorption characteristics of these carbonaceous aerosols are closely correlated with the burning conditions and represent key factors that influence climate forcing. In this study, the light absorption characteristics of elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM 2.5 (fine particulate matter smaller than 2.5 μm) generated from BB and VEs were investigated over the Tibetan Plateau (TP). The results showed that the organic carbon (OC)/EC ratios from BB- and VE-sourced PM 2.5 were 17.62 ± 10.19 and 1.19 ± 0.36, respectively. These values were higher than the ratios in other regions, which was primarily because of the diminished amount of oxygen over the TP. The mass absorption cross section of EC (MAC EC ) at 632 nm for the BB-sourced PM 2.5 (6.10 ± 1.21 m 2 .g -1 ) was lower than that of the VE-sourced PM 2.5 (8.10 ± 0.98 m 2 .g -1 ), indicating that the EC content of the BB-sourced PM 2.5 was overestimated because of the high OC/EC ratio. The respective absorption per mass (α/ρ) values at 365 nm for the VE- and BB-sourced PM 2.5 were 0.71 ± 0.17 m 2 .g -1 and 0.91 ± 0.18 m 2 .g -1 . The α/ρ value of the VEs was loaded between that of gasoline and diesel emissions, indicating that the VE-sourced PM 2.5 originated from both types of emissions. Because OC and WSOC accounts for most of the carbonaceous aerosols at remote area of the TP, the radiative forcing contributed by the WSOC should be high, and requires further investigation.

  5. Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific

    Science.gov (United States)

    Vay, S. A.; Woo, J.-H.; Anderson, B. E.; Thornhill, K. L.; Blake, D. R.; Westberg, D. J.; Kiley, C. M.; Avery, M. A.; Sachse, G. W.; Streets, D. G.; Tsutsumi, Y.; Nolf, S. R.

    2003-10-01

    We report here airborne measurements of atmospheric CO2 over the western North Pacific during the March-April 2001 Transport and Chemical Evolution over the Pacific (TRACE-P) mission. The CO2 spatial distributions were notably influenced by cyclogenesis-triggered transport of regionally polluted continental air masses. Examination of the CO2 to C2H2/CO ratio indicated rapid outflow of combustion-related emissions in the free troposphere below 8 km. Although the highest CO2 mixing ratios were measured within the Pacific Rim region, enhancements were also observed further east over the open ocean at locations far removed from surface sources. Near the Asian continent, discrete plumes encountered within the planetary boundary layer contained up to 393 ppmv of CO2. Coincident enhancements in the mixing ratios of C2Cl4, C2H2, and C2H4 measured concurrently revealed combustion and industrial sources. To elucidate the source distributions of CO2, an emissions database for Asia was examined in conjunction with the chemistry and 5-day backward trajectories that revealed the WNW/W sector of northeast Asia was a major contributor to these pollution events. Comparisons of NOAA/CMDL and JMA surface data with measurements obtained aloft showed a strong latitudinal gradient that peaked between 35° and 40°N. We estimated a net CO2 flux from the Asian continent of approximately 13.93 Tg C day-1 for late winter/early spring with the majority of the export (79%) occurring in the lower free troposphere (2-8 km). The apportionment of the flux between anthropogenic and biospheric sources was estimated at 6.37 Tg C day-1 and 7.56 Tg C day-1, respectively.

  6. On the long-term impact of emissions from central European cities on regional air quality

    Directory of Open Access Journals (Sweden)

    P. Huszar

    2016-02-01

    Full Text Available For the purpose of qualifying and quantifying the impact of urban emission from Central European cities on the present-day regional air quality, the regional climate model RegCM4.2 was coupled with the chemistry transport model CAMx, including two-way interactions. A series of simulations was carried out for the 2001–2010 period either with all urban emissions included (base case or without considering urban emissions. Further, the sensitivity of ozone production to urban emissions was examined by performing reduction experiments with −20 % emission perturbation of NOx and/or non-methane volatile organic compounds (NMVOC. The modeling system's air quality related outputs were evaluated using AirBase, and EMEP surface measurements showed reasonable reproduction of the monthly variation for ozone (O3, but the annual cycle of nitrogen dioxide (NO2 and sulfur dioxide (SO2 is more biased. In terms of hourly correlations, values achieved for ozone and NO2 are 0.5–0.8 and 0.4–0.6, but SO2 is poorly or not correlated at all with measurements (r around 0.2–0.5. The modeled fine particulates (PM2.5 are usually underestimated, especially in winter, mainly due to underestimation of nitrates and carbonaceous aerosols. European air quality measures were chosen as metrics describing the cities emission impact on regional air pollution. Due to urban emissions, significant ozone titration occurs over cities while over rural areas remote from cities, ozone production is modeled, mainly in terms of number of exceedances and accumulated exceedances over the threshold of 40 ppbv. Urban NOx, SO2 and PM2.5 emissions also significantly contribute to concentrations in the cities themselves (up to 50–70 % for NOx and SO2, and up to 60 % for PM2.5, but the contribution is large over rural areas as well (10–20 %. Although air pollution over cities is largely determined by the local urban emissions, considerable (often a few tens of % fraction of the

  7. China’s inter-regional spillover of carbon emissions and domestic supply chains

    International Nuclear Information System (INIS)

    Meng, Bo; Xue, Jinjun; Feng, Kuishuang; Guan, Dabo; Fu, Xue

    2013-01-01

    In this study, we apply the inter-regional input–output model to explain the relationship between China’s inter-regional spillover of CO 2 emissions and domestic supply chains for 2002 and 2007. Based on this model, we propose alternative indicators such as the trade in CO 2 emissions, CO 2 emissions in trade and the regional trade balances of CO 2 emissions. Our results do not only reveal the nature and significance of inter-regional environmental spillover within China’s domestic regions but also demonstrate how CO 2 emissions are created and distributed across regions via domestic and global production networks. Results show that a region’s CO 2 emissions depend on its intra-regional production technology, energy use efficiency, as well as its position and participation degree in domestic and global supply chains. - Highlights: • An IO model is used to measure China’s inter-regional spillover of CO 2 emissions. • We focus on the relationship between CO 2 emissions and domestic supply chains. • New indexes for identifying the consumer–producer responsibility are proposed. • A region’s emission depends on its position and participation level in supply chains

  8. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Directory of Open Access Journals (Sweden)

    S. C. Anenberg

    2011-07-01

    Full Text Available As a component of fine particulate matter (PM2.5, black carbon (BC is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m−3 (1.8 % and avoids 157 000 (95 % confidence interval, 120 000–194 000 annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %, followed by South Asia (India; 31 %, however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times

  9. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Science.gov (United States)

    Anenberg, S. C.; Talgo, K.; Arunachalam, S.; Dolwick, P.; Jang, C.; West, J. J.

    2011-07-01

    As a component of fine particulate matter (PM2.5), black carbon (BC) is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m-3 (1.8 %) and avoids 157 000 (95 % confidence interval, 120 000-194 000) annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %), followed by South Asia (India; 31 %), however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times more avoided deaths when BC and organic carbon (OC) emissions are halved together, suggesting

  10. Australia's CO2 geological storage potential and matching of emission sources to potential sinks

    International Nuclear Information System (INIS)

    Bradshaw, J.; Bradshaw, B.E.; Wilson, P.; Spencer, L.; Allinson, G.; Nguyen, V.

    2004-01-01

    Within the GEODISC program of the Australian Petroleum Cooperative Research Centre (APCRC), Geoscience Australia (GA) and the University of New South Wales (UNSW) have completed an analysis of the potential for the geological storage of CO 2 . The geological analysis assessed over 100 potential environmentally sustainable sites for CO 2 injection (ESSCIs) by applying a deterministic risk assessment based on the five factors of: storage capacity, injectivity potential, site details, containment and natural resources. Utilising a risked storage capacity suggests that at a regional scale Australia has a CO 2 storage potential in excess of 1600 years of current annual total net emissions. Whilst this estimate does give an idea of the enormous magnitude of the geological storage potential of CO 2 in Australia, it does not account for various factors that are evident in source to sink matching. If preferences due to source to sink matching are incorporated, and an assumption is made that some economic imperative will apply to encourage geological storage of CO 2 , then a more realistic analysis can be derived. In such a case, Australia may have the potential to store a maximum of 25% of our total annual net emissions, or approximately 100-115 Mt CO 2 per year. (author)

  11. Development of a United States-Mexico Emissions Inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study.

    Science.gov (United States)

    Kuhns, Hampden; Knipping, Eladio M; Vukovich, Jeffrey M

    2005-05-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) < 10 microm in aerodynamic diameter, and PM < 2.5 microm in aerodynamic diameter. Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions

  12. Non-methane hydrocarbon characteristics of motor vehicular emissions in the Pearl River Delta region

    Science.gov (United States)

    Tsai, Wai Yan

    2007-12-01

    Air pollution problem in Hong Kong and the Pearl River Delta (PRD) region has raised much concern from the public in recent years. The primary aim of this research is to use field measurement data to characterize non-methane hydrocarbons (NMHCs) in emission from motor vehicles. Fuel vapor compositions for several commonly used vehicular fuels in Hong Kong, Macau, Guangzhou and Zhuhai were analyzed in 2003, and they are believed to be the first one reported for the PRD region. These profiles were used to study the impact of evaporative loss of the fuels on air quality. From the roadside and tunnel samples collected in the four cities mentioned above from 2000 to 2003, results showed that vehicular engine combustion was a main NMHC source, while gasoline evaporative losses also contributed much to the total NMHC emission, besides, LPG leakage was also found to be significant from the tunnel measurement data collected in Hong Kong. Characteristics of vehicular engine exhaust emissions were also studied. Measurements of diesel emission showed a large influence on the emission profile due to the change of diesel compositions. The E/E ratios implied that gasoline-powered vehicles in Hong Kong were equipped with well functioning catalysts, while those in Guangzhou and Zhuhai, especially the motorcycles, were found dirtier in NMHC emission. Although the E/E ratios showed that private cars in Hong Kong had high combustion efficiency, the existence of significant amounts of unburned gasoline in their exhaust stream pointed out that they still had low fuel economy. From the results of a simple model, it was found that the evaporative losses of gasoline and LPG contributed much to the total NMHC pollution from vehicle. The preliminary results from the dynamometer study conducted in Hong Kong showed large variations of exhaust characteristics for private cars and taxis during different driving speeds. The results can be used as scientific basis for regulatory parties in

  13. Anomalou OH emission in galactic star-forming regions - A clue to the megamaser phenomenon?

    International Nuclear Information System (INIS)

    Mirabel, I.F.; Rodriguez, L.F.; Ruiz, A.

    1989-01-01

    The detection of spatially extended, anomalous OH emission in galactic star-forming regions is reported. This OH emission is similar to, although much weaker than, that produced by extragalactic megamasers. This new type of galactic emission may provide clues to elucidate the nature of the extragalactic OH megamaser phenomenon observed in luminous IR galaxies. 10 refs

  14. Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China

    International Nuclear Information System (INIS)

    Qu, Jiansheng; Zeng, Jingjing; Li, Yan; Wang, Qin; Maraseni, Tek; Zhang, Lihua; Zhang, Zhiqiang; Clarke-Sather, Abigail

    2013-01-01

    This study assessed household CO 2 emissions (related to the consumption of necessary and luxury goods and services) of peasants and herdsmen households in arid-alpine regions in Gansu, Qinghai and Ningxia provinces, China. We also explored whether agriculture types, family income and family size have played any role in household CO 2 emissions. In order to address these issues, we: (i) developed assessment indicators for household emissions; (ii) conducted semi-structured questionnaire household surveys; and (iii) employed input-output analysis (IOA). The results showed that, the average household CO 2 emission per capita is 1.43 tons (t) CO 2 ; the proportion of subsistence emissions (related to the consumption of necessary goods and services) accounts for 93.24%, whereas luxury emissions (generated due to consumption of specific goods and services that are consumed only when household income improves) only account for 6.76%t. Moreover, household CO 2 emissions increase with family income and family size, but per capita emissions are inversely related to family size. The highest average household emissions were found in the alpine agricultural and pastoral region (6.18 t CO 2 ), followed by the irrigated agricultural region (6.07 t CO 2 ) and the rain-fed agricultural region (5.34 t CO 2 ). In consideration of insignificant amount of household emissions from these poor and vulnerable groups of the society, this study suggests to follow the principle of fairness while making energy conservation, emission reduction and adaptation policies. - Highlights: ► Per capita emissions decrease as the household size increases. ► The subsistence emissions accounts for 93.24% of the total emissions. ► If heating related emissions are excluded, household emissions are negligible. ► The reduction of emissions below current levels is almost impossible. ► Poor and vulnerable groups should be given special consideration

  15. Molecular line study of massive star-forming regions from the Red MSX Source survey

    Science.gov (United States)

    Yu, Naiping; Wang, Jun-Jie

    2014-05-01

    In this paper, we have selected a sample of massive star-forming regions from the Red MSX Source survey, in order to study star formation activities (mainly outflow and inflow signatures). We have focused on three molecular lines from the Millimeter Astronomy Legacy Team Survey at 90 GHz: HCO+(1-0), H13CO+(1-0) and SiO(2-1). According to previous observations, our sources can be divided into two groups: nine massive young stellar object candidates (radio-quiet) and 10 H II regions (which have spherical or unresolved radio emissions). Outflow activities have been found in 11 sources, while only three show inflow signatures in all. The high outflow detection rate means that outflows are common in massive star-forming regions. The inflow detection rate was relatively low. We suggest that this was because of the beam dilution of the telescope. All three inflow candidates have outflow(s). The outward radiation and thermal pressure from the central massive star(s) do not seem to be strong enough to halt accretion in G345.0034-00.2240. Our simple model of G318.9480-00.1969 shows that it has an infall velocity of about 1.8 km s-1. The spectral energy distribution analysis agrees our sources are massive and intermediate-massive star formation regions.

  16. Deterministic control of the emission from light sources in 1D nanoporous photonic crystals (Conference Presentation)

    Science.gov (United States)

    Galisteo-López, Juan F.

    2017-02-01

    Controlling the emission of a light source demands acting on its local photonic environment via the local density of states (LDOS). Approaches to exert such control on large scale samples, commonly relying on self-assembly methods, usually lack from a precise positioning of the emitter within the material. Alternatively expensive and time consuming techniques can be used to produce samples of small dimensions where a deterministic control on emitter position can be achieved. In this work we present a full solution process approach to fabricate photonic architectures containing nano-emitters which position can be controlled with nanometer precision over squared milimiter regions. By a combination of spin and dip coating we fabricate one-dimensional (1D) nanoporous photonic crystals, which potential in different fields such as photovoltaics or sensing has been previously reported, containing monolayers of luminescent polymeric nanospheres. We demonstrate how, by modifying the position of the emitters within the photonic crystal, their emission properties (photoluminescence intensity and angular distribution) can be deterministically modified. Further, the nano-emitters can be used as a probe to study the LDOS distribution within these systems with a spatial resolution of 25 nm (provided by the probe size) carrying out macroscopic measurements over squared milimiter regions. Routes to enhance light-matter interaction in this kind of systems by combining them with metallic surfaces are finally discussed.

  17. CO2 emissions reduction using energy conservation measures: EPA Region IV's experience

    International Nuclear Information System (INIS)

    Berish, C.; Day, R.; Sibold, K.; Tiller, J.

    1994-01-01

    EPA Region 4 concluded in a recent comparative environmental risk evaluation that global climate change could substantially impact the Southeast. To address this risk, Region 4 developed an action plan to promote cost-effective pollution prevention and reduce greenhouse gas emissions, The regional plan contains programs that aye specific to Region 4 as well as geographic components of the national Climate Change Action Plan. Sources of carbon dioxide emissions were targeted for pollution prevention based on an energy model that allows the user to create energy efficiency scenarios in four sectors: residential, commercial, industrial, and transportation. Activities were selected using the modeled information on sector reduction potentials and resource and cost-effectiveness criteria. Given the high level of uncertainty associated with climate change projections, the programs developed are all cost effective, prevent pollution and/or result in sound adaptation policies. Currently, policy makers at national, regional, and local levels are deciding on what types of energy efficiency programs to implement. The region's action plan is composed of several programs and approaches. The authors have developed implemented, and/or participated in the following: energy scenario model. EARTHWALK (residential energy conservation); energy conservation in affordable homes (new residences); Cool Communities Program (strategic tree planting and light colored surfaces); EPA's Green Lights Program; WAVE (water conservation), the Plant Protection Center; QUEST TO SAVE THE EARTH (outreach tools); energy and water use planning for the 1996 Olympic Games, and planning for sea-level rise. Reviewing the practices of the above programs will be the focus of this paper

  18. Emissions of Volatile Organic Compounds (VOCs) from Animal Husbandry: Chemical Compositions, Separation of Sources and Animal Types

    Science.gov (United States)

    Yuan, B.; Coggon, M.; Koss, A.; Warneke, C.; Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; De Gouw, J. A.

    2016-12-01

    Concentrated animal feeding operations (CAFOs) are important sources of volatile organic compounds (VOCs) in the atmosphere. We used a hydronium ion time-of-flight chemical ionization mass spectrometer (H3O+ ToF-CIMS) to measure VOC emissions from CAFOs in the Northern Front Range of Colorado during an aircraft campaign (SONGNEX) for regional contributions and from a mobile laboratory sampling for chemical characterizations of individual animal feedlots. The main VOCs emitted from CAFOs include carboxylic acids, alcohols, carbonyls, phenolic species, sulfur- and nitrogen-containing species. Alcohols and carboxylic acids dominate VOC concentrations. Sulfur-containing and phenolic species become more important in terms of odor activity values and NO3 reactivity, respectively. The high time-resolution mobile measurements allow the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the increase of ethanol concentrations were primarily associated with feed storage and handling. We apply a multivariate regression analysis using NH3 and ethanol as tracers to attribute the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls and carboxylic acids. Phenolic species and nitrogen-containing species are predominantly associated with animals and their waste. VOC ratios can be potentially used as indicators for the separation of emissions from dairy and beef cattle from the regional aircraft measurements.

  19. Ammonia and Methane Dairy Emission Plumes in the San Joaquin Valley of California from Individual Feedlot to Regional Scales

    Science.gov (United States)

    Miller, David J.; Sun, Kang; Pan, Da; Zondlo, Mark A.; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sachse, Glen; Beyersdorf, Andreas; Ferrare, Richard; hide

    2015-01-01

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013 field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 +/- 0.03 ppmv ppmv-1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20-30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. Our analyses have important implications for constraining NH3 sink and plume variability influences on regional NH3 emission estimates and for improving NH3 emission inventory spatial allocations.

  20. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    International Nuclear Information System (INIS)

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-01-01

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled

  1. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET)

    International Nuclear Information System (INIS)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.

    1994-02-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters, and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user's guide, and a programmer's guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user's guide to the model with emphasis on running the code. The user's guide contains information about the model input and output. The third section is a programmer's guide to the code. It discusses the hardware and software required to run the code. The programmer's guide also discusses program structure and each of the program elements

  2. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    Science.gov (United States)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  3. Extended Gamma-Ray Emission from the G25.0+0.0 Region: A Star-forming Region Powered by the Newly Found OB Association?

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, J. [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Uchiyama, Y. [Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501 (Japan); Funk, S., E-mail: katsuta@hep01.hepl.hiroshima-u.ac.jp [Erlangen Centre for Astroparticle Physics, D-91058 Erlangen (Germany)

    2017-04-20

    We report a study of extended γ -ray emission with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope , which is likely to be the second case of a γ -ray detection from a star-forming region (SFR) in our Galaxy. The LAT source is located in the G25 region, 1.°7 × 2.°1 around ( l , b ) = (25.°0, 0.°0). The γ -ray emission is found to be composed of two extended sources and one pointlike source. The extended sources have similar sizes of about 1.°4 × 0.°6. An ∼0.°4 diameter subregion of one has a photon index of Γ = 1.53 ± 0.15, and is spatially coincident with HESS J1837−069, likely a pulsar wind nebula. The other parts of the extended sources have a photon index of Γ = 2.1 ± 0.2 without significant spectral curvature. Given their spatial and spectral properties, they have no clear associations with sources at other wavelengths. Their γ -ray properties are similar to those of the Cygnus cocoon SFR, the only firmly established γ -ray detection of an SFR in the Galaxy. Indeed, we find bubble-like structures of atomic and molecular gas in G25, which may be created by a putative OB association/cluster. The γ -ray emitting regions appear confined in the bubble-like structure; similar properties are also found in the Cygnus cocoon. In addition, using observations with the XMM-Newton , we find a candidate young massive OB association/cluster G25.18+0.26 in the G25 region. We propose that the extended γ -ray emission in G25 is associated with an SFR driven by G25.18+0.26. Based on this scenario, we discuss possible acceleration processes in the SFR and compare them with the Cygnus cocoon.

  4. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    Science.gov (United States)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  5. The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai

    Science.gov (United States)

    Chang, Yunhua; Zou, Zhong; Deng, Congrui; Huang, Kan; Collett, Jeffrey L.; Lin, Jing; Zhuang, Guoshun

    2016-03-01

    Agricultural activities are a major source contributing to NH3 emissions in Shanghai and most other regions of China; however, there is a long-standing and ongoing controversy regarding the contributions of vehicle-emitted NH3 to the urban atmosphere. From April 2014 to April 2015, we conducted measurements of a wide range of gases (including NH3) and the chemical properties of PM2.5 at hourly resolution at a Shanghai urban supersite. This large data set shows NH3 pollution events, lasting several hours with concentrations 4 times the annual average of 5.3 µg m-3, caused by the burning of crop residues in spring. There are also generally higher NH3 concentrations (mean ± 1 σ) in summer (7.3 ± 4.9 µg m-3; n = 2181) because of intensive emissions from temperature-dependent agricultural sources. However, the NH3 concentration in summer was only an average of 2.4 µg m-3 or 41 % higher than the average NH3 concentration of other seasons. Furthermore, the NH3 concentration in winter (5.0 ± 3.7 µg m-3; n = 2113) was similar to that in spring (5.1 ± 3.8 µg m-3; n = 2198) but slightly higher, on average, than that in autumn (4.5 ± 2.3 µg m-3; n = 1949). Moreover, other meteorological parameters like planetary boundary layer height and relative humidity were not major factors affecting seasonal NH3 concentrations. These findings suggest that there may be some climate-independent NH3 sources present in the Shanghai urban area. Independent of season, the concentrations of both NH3 and CO present a marked bimodal diurnal profile, with maxima in the morning and the evening. A spatial analysis suggests that elevated concentrations of NH3 are often associated with transport from regions west-northwest and east-southeast of the city, areas with dense road systems. The spatial origin of NH3 and the diurnal concentration profile together suggest the importance of vehicle-derived NH3 associated with daily commuting in the urban environment. To further examine vehicular NH3

  6. The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai

    Directory of Open Access Journals (Sweden)

    Y. Chang

    2016-03-01

    Full Text Available Agricultural activities are a major source contributing to NH3 emissions in Shanghai and most other regions of China; however, there is a long-standing and ongoing controversy regarding the contributions of vehicle-emitted NH3 to the urban atmosphere. From April 2014 to April 2015, we conducted measurements of a wide range of gases (including NH3 and the chemical properties of PM2.5 at hourly resolution at a Shanghai urban supersite. This large data set shows NH3 pollution events, lasting several hours with concentrations 4 times the annual average of 5.3 µg m−3, caused by the burning of crop residues in spring. There are also generally higher NH3 concentrations (mean ± 1 σ in summer (7.3 ± 4.9 µg m−3; n = 2181 because of intensive emissions from temperature-dependent agricultural sources. However, the NH3 concentration in summer was only an average of 2.4 µg m−3 or 41 % higher than the average NH3 concentration of other seasons. Furthermore, the NH3 concentration in winter (5.0 ± 3.7 µg m−3; n = 2113 was similar to that in spring (5.1 ± 3.8 µg m−3; n = 2198 but slightly higher, on average, than that in autumn (4.5 ± 2.3 µg m−3; n = 1949. Moreover, other meteorological parameters like planetary boundary layer height and relative humidity were not major factors affecting seasonal NH3 concentrations. These findings suggest that there may be some climate-independent NH3 sources present in the Shanghai urban area. Independent of season, the concentrations of both NH3 and CO present a marked bimodal diurnal profile, with maxima in the morning and the evening. A spatial analysis suggests that elevated concentrations of NH3 are often associated with transport from regions west–northwest and east–southeast of the city, areas with dense road systems. The spatial origin of NH3 and the diurnal concentration profile together suggest the importance of vehicle

  7. Long range transport of CO and ozone from source regions in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, D.; Mahura, A. [Univ. of Alaska, Fairbanks, AK (United States)]|[Institute of Northern Ecological Problems, Moscow (Russian Federation); Novelli, P. [Univ. of Colorado, Boulder, CO (United States); Merrill, J. [Univ. of Rhode Island, Narraganset, RI (United States)

    1996-12-31

    Based on current understanding of the atmosphere, CO and photochemically produced ozone can be transported thousands of kilometers prior to being removed. Emissions from Asia have a possible impact on the CO and ozone concentrations over the U.S. west coast following transport across the Pacific Ocean. If this is correct, then there are implications for ozone control strategies in the downwind region. Evidence includes: (1) Global 3D chemical transport models indicating a monthly mean enhancement of 10-20% on the US west coast for both CO and ozone during winter-spring due to emissions from Asia; and (2) CO and O{sub 3} data from several Pacific sites which demonstrate that Asian pollutants can be transported great distances. The weekly flask data clearly define a CO seasonal cycle. In the present analysis we use a locally weighted smoothing technique to identify individual data outliers from the smoothed seasonal cycle. We hypothesize that these outliers represent periods when continental emissions influenced the atmospheric mixing ratios at these locations. Using isentropic back trajectories we try to identify a possible source region or pathway for each event and present a distribution of the trajectory types for the events. For the events at Midway, Mauna Loa, Guam and Shemya, we are able to identify a source region for elevated CO in 82, 72, 65 and 50% of the events, respectively. At Mauna Loa and Midway a majority of the events occur during spring and are mostly associated with transport from Asia. These events bring the highest CO mixing ratios observed at any time during the year to these sites, with CO enhancements up to 46 ppb. For Mauna Loa, a small number of events during summer are due to transport from North and Central America. In-situ ozone from Mauna Loa also demonstrates an impact from Asian emissions.

  8. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Science.gov (United States)

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  9. Road dust emission sources and assessment of street washing effect

    NARCIS (Netherlands)

    Karanasiou, A.; Amato, F.; Moreno, T.; Lumbreras, J.; Borge, R.; Linares, C.; Boldo, E.; Alastuey, A.; Querol, X.

    2014-01-01

    Although previous studies report on the effect of street washing on ambient particulate matter levels, there is a lack of studies investigating the results of street washing on the emission strength of road dust. A sampling campaign was conducted in Madrid urban area during July 2009 where road dust

  10. 77 FR 73968 - Reconsideration of Certain New Source and Startup/Shutdown Issues: National Emission Standards...

    Science.gov (United States)

    2012-12-12

    ...; FRL-9762-1] RIN 2060-AR62 Reconsideration of Certain New Source and Startup/Shutdown Issues: National... Source and Startup/Shutdown Issues: National Emission Standards for Hazardous Air Pollutants from Coal... November 30, 2012, proposed ``Reconsideration of Certain New Source and Startup/Shutdown Issues: National...

  11. Jet emission in young radio sources: A Fermi large area telescope gamma-ray view

    Energy Technology Data Exchange (ETDEWEB)

    Migliori, G.; Siemiginowska, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Kelly, B. C. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93107 (United States); Stawarz, Ł. [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Celotti, A. [Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea, 265-34136 Trieste (Italy); Begelman, M. C., E-mail: migliori@cfa.harvard.edu [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309-0440 (United States)

    2014-01-10

    We investigate the contribution of the beamed jet component to the high-energy emission in young and compact extragalactic radio sources, focusing for the first time on the γ-ray band. We derive predictions on the γ-ray luminosities associated with the relativistic jet assuming a leptonic radiative model. The high-energy emission is produced via Compton scattering by the relativistic electrons in a spherical region at the considered scales (≲10 kpc). Simulations show a wide range of γ-ray luminosities, with intensities up to ∼10{sup 46}-10{sup 48} erg s{sup –1} depending on the assumed jet parameters. We find a highly linear relation between the simulated X-ray and γ-ray luminosities that can be used to select candidates for γ-ray detection. We compare the simulated luminosity distributions in the radio, X-ray, and γ-ray regimes with observations for the largest sample of X-ray-detected young radio quasars. Our analysis of ∼4-yr Fermi Large Area Telescope (LAT) data does not yield any statistically significant detections. However, the majority of the model-predicted γ-ray fluxes for the sample are near or below the current Fermi-LAT flux threshold and compatible with the derived upper limits. Our study gives constraints on the minimum jet power (L {sub jet,} {sub kin}/L {sub disk} > 0.01) of a potential jet contribution to the X-ray emission in the most compact sources (≲ 1 kpc) and on the particle-to-magnetic field energy density ratio that are in broad agreement with equipartition assumptions.

  12. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics

    Directory of Open Access Journals (Sweden)

    S. Guo

    2013-08-01

    Full Text Available To assess the primary and secondary sources of fine organic aerosols after the aggressive implementation of air pollution controls during the 2008 Beijing Olympic Games, 12 h PM2.5 values were measured at an urban site at Peking University (PKU and an upwind rural site at Yufa during the CAREBEIJING-2008 (Campaigns of Air quality REsearch in BEIJING and surrounding region summer field campaign. The average PM2.5 concentrations were 72.5 ± 43.6 μg m−3 and 64.3 ± 36.2 μg m−3 (average ± standard deviation, below as the same at PKU and Yufa, respectively, showing the lowest concentrations in recent years. Combining the results from a CMB (chemical mass balance model and secondary organic aerosol (SOA tracer-yield model, five primary and four secondary fine organic aerosol sources were compared with the results from previous studies in Beijing. The relative contribution of mobile sources to PM2.5 concentrations was increased in 2008, with diesel engines contributing 16.2 ± 5.9% and 14.5 ± 4.1% and gasoline vehicles contributing 10.3 ± 8.7% and 7.9 ± 6.2% to organic carbon (OC at PKU and Yufa, respectively. Due to the implementation of emission controls, the absolute OC concentrations from primary sources were reduced during the Olympics, and the contributions from secondary formation of OC represented a larger relative source of fine organic aerosols. Compared with the non-controlled period prior to the Olympics, primary vehicle contributions were reduced by 30% at the urban site and 24% at the rural site. The reductions in coal combustion contributions were 57% at PKU and 7% at Yufa. Our results demonstrate that the emission control measures implemented in 2008 significantly alleviated the primary organic particle pollution in and around Beijing. However, additional studies are needed to provide a more comprehensive assessment of the emission control effectiveness on SOA formation.

  13. Danish emission inventories for road transport and other mobile sources. Inventories until year 2004

    International Nuclear Information System (INIS)

    Winther, M.

    2007-01-01

    This report explains the parts of the Danish inventories related to road transport and other mobile sources. Emission results for CO 2 , CH 4 , N 2 O, SO 2 , NO X , NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH are shown from 1985 to 2004. In this period the fuel use and CO 2 emissions for road transport have increased by 48%. The emission decreases for PM (exhaust only), CO, NO X and NMVOC are 35, 58, 34 and 66% respectively, due to the introduction of vehicles complying with gradually stricter emission standards. A N 2 O emission increase of 301% is related to the high emissions from gasoline catalyst cars. For other mobile sources the fuel use and CO 2 emissions have decreased by 15% from 1985 to 2004. The PM, NO x and NMVOC emission declines are 46, 14 and 10%, respectively. For SO 2 the emission drop is 74% from 1985 to 2004, due to gradually lower fuel sulphur contents. For CO the 1985 and 2004 emissions are the same. Uncertainties for the emissions and trends have been estimated. (au)

  14. Danish emission inventories for road transport and other mobile sources. Inventories until year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M. [DMU, Dept. of Policy Analysis (Denmark)

    2007-01-15

    This report explains the parts of the Danish inventories related to road transport and other mobile sources. Emission results for CO{sub 2}, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub X}, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH are shown from 1985 to 2004. In this period the fuel use and CO{sub 2} emissions for road transport have increased by 48%. The emission decreases for PM (exhaust only), CO, NO{sub X} and NMVOC are 35, 58, 34 and 66% respectively, due to the introduction of vehicles complying with gradually stricter emission standards. A N{sub 2}O emission increase of 301% is related to the high emissions from gasoline catalyst cars. For other mobile sources the fuel use and CO{sub 2} emissions have decreased by 15% from 1985 to 2004. The PM, NO{sub x} and NMVOC emission declines are 46, 14 and 10%, respectively. For SO{sub 2} the emission drop is 74% from 1985 to 2004, due to gradually lower fuel sulphur contents. For CO the 1985 and 2004 emissions are the same. Uncertainties for the emissions and trends have been estimated. (au)

  15. Optical emission spectra of a copper plasma produced by a metal vapour vacuum arc plasma source

    International Nuclear Information System (INIS)

    Yotsombat, B.; Poolcharuansin, P.; Vilaithong, T.; Davydov, S.; Brown, I.G.

    2001-01-01

    Optical emission spectroscopy in the range 200-800 nm was applied for investigation of the copper plasma produced by a metal vapour vacuum arc plasma source. The experiments were conducted for the cases when the plasma was guided by straight and Ω-shaped curved solenoids as well as without solenoids, and also for different vacuum conditions. It was found that, besides singly- and doubly-charged ions, a relatively high concentration of excited neutral copper atoms was present in the plasma. The relative fraction of excited atoms was much higher in the region close to the cathode surface than in the plasma column inside the solenoid. The concentration of excited neutral, singly- and doubly-ionized atoms increased proportionally when the arc current was increased to 400 A. Some weak lines were attributed to more highly ionized copper species and impurities in the cathode material. (author)

  16. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China

    Science.gov (United States)

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-03-01

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively.

  17. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China.

    Science.gov (United States)

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-03-07

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively.

  18. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources

    Directory of Open Access Journals (Sweden)

    Neil J. Hime

    2018-06-01

    Full Text Available This article briefly reviews evidence of health effects associated with exposure to particulate matter (PM air pollution from five common outdoor emission sources: traffic, coal-fired power stations, diesel exhaust, domestic wood combustion heaters, and crustal dust. The principal purpose of this review is to compare the evidence of health effects associated with these different sources with a view to answering the question: Is exposure to PM from some emission sources associated with worse health outcomes than exposure to PM from other sources? Answering this question will help inform development of air pollution regulations and environmental policy that maximises health benefits. Understanding the health effects of exposure to components of PM and source-specific PM are active fields of investigation. However, the different methods that have been used in epidemiological studies, along with the differences in populations, emission sources, and ambient air pollution mixtures between studies, make the comparison of results between studies problematic. While there is some evidence that PM from traffic and coal-fired power station emissions may elicit greater health effects compared to PM from other sources, overall the evidence to date does not indicate a clear ‘hierarchy’ of harmfulness for PM from different emission sources. Further investigations of the health effects of source-specific PM with more advanced approaches to exposure modeling, measurement, and statistics, are required before changing the current public health protection approach of minimising exposure to total PM mass.

  19. Climate Impacts of Ozone and Sulfate Air Pollution from Specific Emissions Sectors and Regions

    Science.gov (United States)

    Unger, N.; Koch, D. M.; Shindell, D. T.; Streets, D. G.

    2006-12-01

    The secondary air pollutants ozone (O3) and sulfate aerosol are generated by human activities and affect the Earth's climate system. The global mean radiative forcings of these short-lived species depend on the location of the precursor gas emissions, which has so far prevented their incorporation into climate-motivated policy agreements. O3 and sulfate aerosol are strongly coupled through tropospheric photochemistry and yet air quality control efforts consider each species separately. Previous modeling work to assess climate impacts of O3 has focused on individual precursors, such as nitrogen oxides, even though policy action would target a particular sector. We use the G-PUCCINI atmospheric composition-climate model to isolate the O3 and sulfate direct radiative forcing impacts of 6 specific emissions sectors (industry, transport, power, domestic biofuel, domestic fossil fuel and biomass burning) from 7 geographic regions (North America, Europe, South Asia, East Asia, North Africa and the Middle East, Central and South Africa and South America) for the near future 2030 atmosphere. The goal of the study is to identify specific source sectors and regions that present the most effective opportunities to mitigate global warming. At 2030, the industry and power sectors dominate the sulfate forcing across all regions, with East Asia, South Asia and North Africa and Middle East contributing the largest sulfate forcings (-100 to 120 mWm-2). The transport sector represents an important O3 forcing from all regions ranging from 5 mWm-2 (Europe) to 12 mWm-2 (East Asia). Domestic biofuel O3 forcing is important for the East Asia (13 mWm-2), South Asia (7 mWm-2) and Central and South Africa (10 mWm-2) regions. Biomass burning contributes large O3 forcings for the Central and South Africa (15 mWm-2) and South America (11 mWm-2) regions. In addition, the power sector O3 forcings from East Asia (14 mWm-2) and South Asia (8 mWm-2) are also substantial. Considering the sum of the O

  20. New developments in emissions inventory activity along the northern border region of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, W.R.; Dickson, R.J.; Creelman, L.W. [Radian International LLC, Sacramento, CA (United States)] [and others

    1996-12-31

    The development and evaluation of emissions data for sources located along the Mexico/US border have accelerated over the past few years. This paper examines several new activities in emissions inventory development for the northern border of Mexico. Reviewed in this paper are the following recent developments that will lead to improved inventories for Mexico: development of inventory educational materials; creation of inventory manuals; estimation of emissions for unique sources; emissions-related studies; and identification of key research needs for Mexico inventories. Some of these activities are building a greater capacity in Mexico to construct emissions estimates. These topics are reviewed from the perspective of improving Mexico emissions inventories and emissions estimation capabilities.

  1. Combining emission inventory and isotope ratio analyses for quantitative source apportionment of heavy metals in agricultural soil.

    Science.gov (United States)

    Chen, Lian; Zhou, Shenglu; Wu, Shaohua; Wang, Chunhui; Li, Baojie; Li, Yan; Wang, Junxiao

    2018-08-01

    Two quantitative methods (emission inventory and isotope ratio analysis) were combined to apportion source contributions of heavy metals entering agricultural soils in the Lihe River watershed (Taihu region, east China). Source apportionment based on the emission inventory method indicated that for Cd, Cr, Cu, Pb, and Zn, the mean percentage input from atmospheric deposition was highest (62-85%), followed by irrigation (12-27%) and fertilization (1-14%). Thus, the heavy metals were derived mainly from industrial activities and traffic emissions. For Ni the combined percentage input from irrigation and fertilization was approximately 20% higher than that from atmospheric deposition, indicating that Ni was mainly derived from agricultural activities. Based on isotope ratio analysis, atmospheric deposition accounted for 57-93% of Pb entering soil, with the mean value of 69.3%, which indicates that this was the major source of Pb entering soil in the study area. The mean contributions of irrigation and fertilization to Pb pollution of soil ranged from 0% to 10%, indicating that they played only a marginally important role. Overall, the results obtained using the two methods were similar. This study provides a reliable approach for source apportionment of heavy metals entering agricultural soils in the study area, and clearly have potential application for future studies in other regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Novel techniques for characterization of hydrocarbon emission sources in the Barnett Shale

    Science.gov (United States)

    Nathan, Brian Joseph

    Changes in ambient atmospheric hydrocarbon concentrations can have both short-term and long-term effects on the atmosphere and on human health. Thus, accurate characterization of emissions sources is critically important. The recent boom in shale gas production has led to an increase in hydrocarbon emissions from associated processes, though the exact extent is uncertain. As an original quantification technique, a model airplane equipped with a specially-designed, open-path methane sensor was flown multiple times over a natural gas compressor station in the Barnett Shale in October 2013. A linear optimization was introduced to a standard Gaussian plume model in an effort to determine the most probable emission rate coming from the station. This is shown to be a suitable approach given an ideal source with a single, central plume. Separately, an analysis was performed to characterize the nonmethane hydrocarbons in the Barnett during the same period. Starting with ambient hourly concentration measurements of forty-six hydrocarbon species, Lagrangian air parcel trajectories were implemented in a meteorological model to extend the resolution of these measurements and achieve domain-fillings of the region for the period of interest. A self-organizing map (a type of unsupervised classification) was then utilized to reduce the dimensionality of the total multivariate set of grids into characteristic one-dimensional signatures. By also introducing a self-organizing map classification of the contemporary wind measurements, the spatial hydrocarbon characterizations are analyzed for periods with similar wind conditions. The accuracy of the classification is verified through assessment of observed spatial mixing ratio enhancements of key species, through site-comparisons with a related long-term study, and through a random forest analysis (an ensemble learning method of supervised classification) to determine the most important species for defining key classes. The hydrocarbon

  3. Experimental Development of Low-emittance Field-emission Electron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Lueangaranwong, A. [Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Buzzard, C. [Northern Illinois Univ., DeKalb, IL (United States); Divan, R. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Korampally, V. [Northern Illinois Univ., DeKalb, IL (United States); Piot, P. [Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-10-10

    Field emission electron sources are capable of extreme brightness when excited by static or time-dependent electro- magnetic fields. We are currently developing a cathode test stand operating in DC mode with possibility to trigger the emission using ultra-short (~ 100-fs) laser pulses. This contribution describes the status of an experiment to investigate field-emission using cathodes under development at NIU in collaboration with the Argonne’s Center for Nanoscale Materials.

  4. Waste management outlook for mountain regions: Sources and solutions.

    Science.gov (United States)

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  5. Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE model v1.0

    Directory of Open Access Journals (Sweden)

    C. B. Zapata

    2018-04-01

    Full Text Available The California Regional Multisector Air Quality Emissions (CA-REMARQUE model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU scenario and an 80 % GHG reduction (GHG-Step scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors that are consistent with the future GHG scenarios for the following economic sectors: (i on-road, (ii rail and off-road, (iii marine and aviation, (iv residential and commercial, (v electricity generation, and (vi biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG

  6. Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE) model v1.0

    Science.gov (United States)

    Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.

    2018-04-01

    The California Regional Multisector Air Quality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU) scenario and an 80 % GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs

  7. On - road mobile source pollutant emissions : identifying hotspots and ranking roads.

    Science.gov (United States)

    2010-12-30

    A considerable amount of pollution to the air in the forms of hydrocarbons, carbon : monoxide (CO), nitrogen oxides (NOx), particulate matter (PM) and air toxics comes : from the on-road mobile sources. Estimation of the emissions of these pollutants...

  8. 76 FR 15553 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Science.gov (United States)

    2011-03-21

    ... firms to operate and maintain the emissions control systems. Consistent with the legislative history, we... stores/malls, laundries, apartments, restaurants, and hotels/motels. The institutional boiler source...

  9. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun; Jadhali, Rasha Al; Zhang, Likun; Wu, Ying

    2018-01-01

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation

  10. Municipal Solid Waste Landfill New Source Performance Standards (NSPS) and Emission Guidelines (EG) -- Questions and Answers

    Science.gov (United States)

    This November 1998 document of questions and answers are provided as a guide for those subject to the new source performance standards (NSPS) or emission guidelines (EG), as well as those implementing the NSPS or EG.

  11. Determination of the power of multielement aerosol composition emission from distant industrial sources

    International Nuclear Information System (INIS)

    Popova, S.A.; Kutsenogij, K.P.; Chankina, O.V.

    2008-01-01

    The results from the monitoring of the temporal variability of the multielement composition of atmospheric aerosols are presented. They are used to determine the emission power of a series of elements from distant sources.

  12. 40 CFR Table 1 to Subpart Xxxx of... - Emission Limits for Tire Production Affected Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Emission Limits for Tire Production Affected Sources 1 Table 1 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION.... 63, Subpt. XXXX, Table 1 Table 1 to Subpart XXXX of Part 63—Emission Limits for Tire Production...

  13. 40 CFR Table 3 to Subpart Xxxx of... - Emission Limits for Puncture Sealant Application Affected Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Emission Limits for Puncture Sealant Application Affected Sources 3 Table 3 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL... Manufacturing Pt. 63, Subpt. XXXX, Table 3 Table 3 to Subpart XXXX of Part 63—Emission Limits for Puncture...

  14. 40 CFR Table 2 to Subpart Xxxx of... - Emission Limits for Tire Cord Production Affected Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Emission Limits for Tire Cord Production Affected Sources 2 Table 2 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL... Manufacturing Pt. 63, Subpt. XXXX, Table 2 Table 2 to Subpart XXXX of Part 63—Emission Limits for Tire Cord...

  15. Generating emissions and meteorology to model the impacts of biomass burning emissions on regional air quality in South Africa

    CSIR Research Space (South Africa)

    Carter, WS

    2008-10-01

    Full Text Available inventory, trajectory analysis. 1. Introduction The Kruger National Park (KNP), situated on the border of South Africa and Mozambique was intensively studied for its emission contributions and effects on the atmosphere during both the SAFARI...-1992 and SAFARI-2000 campaigns. It is a region that is characterised by dry season biomass burning with more than 52% of its fires occurring throughout the winter months. As an initial step in this study, pyrogenic emissions from savanna...

  16. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China.

    Science.gov (United States)

    Ou, Jiamin; Zheng, Junyu; Li, Rongrong; Huang, Xiaobo; Zhong, Zhuangmin; Zhong, Liuju; Lin, Hui

    2015-10-15

    The increasing ground-ozone (O3) levels, accompanied by decreasing SO2, NO2, PM10 and PM2.5 concentrations benefited from air pollution control measures implemented in recent years, initiated a serious challenge to control Volatile Organic Compound (VOC) emissions in the Pearl River Delta (PRD) region, China. Speciated VOC emission inventory is fundamental for estimating Ozone Formation Potentials (OFPs) to identify key reactive VOC species and sources in order to formulate efficient O3 control strategies. With the use of the latest bulk VOC emission inventory and local source profiles, this study developed the PRD regional speciated Oxygenated Volatile Organic Compound (OVOC) and VOC emission inventories to identify the key emission-based and OFP-based VOC sources and species. Results showed that: (1) Methyl alcohol, acetone and ethyl acetate were the major constituents in the OVOC emissions from industrial solvents, household solvents, architectural paints and biogenic sources; (2) from the emission-based perspective, aromatics, alkanes, OVOCs and alkenes made up 39.2%, 28.2%, 15.9% and 10.9% of anthropogenic VOCs; (3) from the OFP-based perspective, aromatics and alkenes become predominant with contributions of 59.4% and 25.8% respectively; (4) ethene, m/p-xylene, toluene, 1,2,4-trimethyl benzene and other 24 high OFP-contributing species were the key reactive species that contributed to 52% of anthropogenic emissions and up to 80% of OFPs; and (5) industrial solvents, industrial process, gasoline vehicles and motorcycles were major emission sources of these key reactive species. Policy implications for O3 control strategy were discussed. The OFP cap was proposed to regulate VOC control policies in the PRD region due to its flexibility in reducing the overall OFP of VOC emission sources in practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Thanh-Hung, E-mail: dinh@cc.utsunomiya-u.ac.jp; Suzuki, Yuhei; Arai, Goki; Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp [Department of Electrical and Electronic Engineering, Faculty of Engineering and Center for Optical Research and Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Li, Bowen [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Dunne, Padraig; O' Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Fujioka, Shinsuke [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Hasegawa, Noboru; Kawachi, Tetsuya; Nishikino, Masaharu [Quantum Beam Science Center, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215 (Japan)

    2015-09-21

    We have characterized the spectral structure and the temporal history of the laser-produced high-Z multi-charged ion plasmas for the efficient water window soft x-ray sources. Strong unresolved transition array emission was observed due to 4d–4f and 4f–5g transitions from Au, Pb, and Bi plasmas in the 280–700 eV photon energy region. The temporal behavior of the emission was essentially similar of that of the laser pulse with a slight delay between different transitions. These results provide feedback for accurate modeling of the atomic processes with the radiative hydrodynamic simulations.

  18. Development and evaluation of high-resolution regional emission inventory: A case study for Jiangsu Province, China

    Science.gov (United States)

    Zhao, Y.; Mao, P.; Zhou, Y.

    2017-12-01

    Improved emission inventories are crucial for better understanding atmospheric chemistry with air quality simulation at regional or local scales. Using the bottom-up approach, a high-resolution emission inventory was developed for Jiangsu China. Key parameters for over 6000 industrial sources were investigated, compiled and revised at plant level based on various data sources and on-site survey. Totally 56 NMVOCs samples were collected in 9 chemical plants and analyzed with a gas chromatography-mass spectrometry system. Source profiles of stack emissions from synthetic rubber, acetate fiber, polyether, vinyl acetate, and ethylene production, and those of fugitive emissions from ethylene, butanol and octanol, propylene epoxide, polyethylene and glycol production were obtained. Improvement of this provincial inventory was evaluated through comparisons with other inventories at larger spatial scales, using satellite observation and air quality modeling. Three inventories (national, regional, and provincial by this work) were applied in the Models-3/Community Multi-scale Air Quality (CMAQ) system to evaluate the model performances with different emission inputs. The best agreement between available ground observation and simulation was found when the provincial inventory was applied, indicated by the smallest normalized mean bias (NMB) and normalized mean errors (NME) for all the concerned species SO2, NO2, O3 and PM2.5. The result thus implied the advantage of improved emission inventory at local scale for high resolution air quality modeling. Under the unfavorable meteorology in which horizontal and vertical movement of atmosphere was limited, the simulated SO2 concentrations at downtown Nanjing (the capital city of Jiangsu) using the regional or national inventories were much higher than observation, implying overestimated urban emissions when economy or population densities were applied to downscale or allocate the emissions. With more accurate spatial distribution

  19. A regional high-resolution emission inventory of primary air pollutants in 2012 for Beijing and the surrounding five provinces of North China

    Science.gov (United States)

    Liu, Huanjia; Wu, Bobo; Liu, Shuhan; Shao, Panyang; Liu, Xiangyang; Zhu, Chuanyong; Wang, Yong; Wu, Yiming; Xue, Yifeng; Gao, Jiajia; Hao, Yan; Tian, Hezhong

    2018-05-01

    A high resolution regional emission inventory of typical primary air pollutants (PAPs) for the year 2012 in Beijing and the surrounding five provinces (BSFP) of North China is developed. It is compiled with the combination of bottom-up and top-down methods, based on city-level collected activity data and the latest updated specific emission factors for different sources. The considered sources are classified into 12 major categories and totally 36 subcategories with respect to their multi-dimensional characteristics, such as economic sector, combustion facility or industrial process, installed air pollution control devices, etc. Power plant sector is the dominant contributor of NOX emissions with an average contribution of 34.1%, while VOCs emissions are largely emitted from industrial process sources (33.9%). Whereas, other stationary combustion sources represent major sources of primary PM2.5, PM10 and BC emissions, accounting for 22.7%, 30.0% and 33.9% of the total emissions, respectively. Hebei province contributes over 34% of the regional total CO emissions because of huge volume of iron and steel production. By comparison, Shandong province ranks as the biggest contributor for NOX, PM10, PM2.5, SO2, VOCs and OC. Further, the BSFP regional total emissions are spatially distributed into grid cells with a high resolution of 9 km × 9 km using GIS tools and surrogate indexes, such regional population, gross domestic product (GDP) and the types of arable soils. The highest emission intensities are mainly located in Beijing-Tianjin-Tangshan area, Jinan-Laiwu-Zibo area and several other cities such as Shijiazhuang, Handan, and Zhengzhou. Furthermore, in order to establish a simple method to estimate and forecast PAPs emissions with macroscopic provincial-level statistical parameters in China, multi-parameter regression equations are firstly developed to estimate emissions outside the BSFP region with routine statistics (e.g. population, total final coal consumption

  20. Source apportionment of particulate matter in Chinese megacities: the implication for emission control strategies

    Science.gov (United States)

    Huang, Ru-Jin; Elser, Miriam; Wang, Qiyuan Wang; Bozzetti, Carlo; Wolf, Robert; Wang, Yichen; Ni, Haiyan; Wang, Meng; Ho, Kin-Fai; Han, Yongming; Dällenbach, Kaspar; Canonaco, Francesco; Slowik, Jay; El Haddad, Imad; Baltensperger, Urs; Cao, Junji; Prévôt, André S. H.

    2015-04-01

    The rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. A quantitative understanding of these effects has proven extremely challenging due to spatial and temporal variability in the sources of aerosols and their precursors, the complexity of particle composition, and uncertainties associated with the atmospheric aging of existing particles (Pöschl 2005; Hallquist et al., 2009; Huang et al., 2014). Nowadays the average PM2.5 concentrations in China are approximately one to two orders of magnitude higher than those observed in urban areas in the US and European countries (Cao 2012). This has forced the Chinese government to announce its first national environmental standard for PM2.5 in 2012 and to make highly ambitious plans for emission control. The Chinese aim to reduce the PM2.5 concentrations by up to 25% of the 2012 levels by 2017, backed by 277 billion investments from the central government. To achieve this ambitious aim, a better understanding of the aerosol composition, sources, and atmospheric processing is required. In this study, we present the results from intensive field measurement campaigns carried out in Chinese megacities in 2013/2014. The sources of PM2.5 and the organic aerosol (OA) were investigated by applying the multi-linear engine (ME-2) receptor model (Canonaco et al., 2013) to a comprehensive dataset. Primary sources including vehicle emissions, biomass burning, coal burning, and dust-related emissions were identified and quantified. The contributions from secondary aerosol formation processes to total PM2.5 mass and OA mass were evaluated. Detailed results will be presented and discussed. References Cao, J. J. (2012) J. Earth Environ., 3, 1030

  1. Test Method for High β Particle Emission Rate of 63Ni Source Plate

    OpenAIRE

    ZHANG Li-feng

    2015-01-01

    For the problem of measurement difficulties of β particle emission rate of Ni-63 source plate used for Ni-63 betavoltaic battery, a relative test method of scintillation current method was erected according to the measurement principle of scintillation detector.β particle emission rate of homemade Ni-63 source plate was tested by the method, and the test results were analysed and evaluated, it was initially thought that scintillation current method was a feasible way of testing β particle emi...

  2. 40 CFR 63.5985 - What are my alternatives for meeting the emission limits for tire production affected sources?

    Science.gov (United States)

    2010-07-01

    ... the emission limits for tire production affected sources? 63.5985 Section 63.5985 Protection of... Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Production Affected Sources § 63.5985 What are my alternatives for meeting the emission limits for tire production affected sources? You must use...

  3. Danish emission inventories for road transport and other mobile sources. Inventories until the year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.

    2012-08-15

    This report explains the parts of the Danish emission inventories related to road transport and other mobile sources. Emission results are shown for CO{sub 2}, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub X}, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH. From 1990-2010 the fuel consumption and CO{sub 2} emissions for road transport increased by 30 %, and CH{sub 4} emissions have decreased by 74 %. A N{sub 2}O emission increase of 29 % is related to the relatively high emissions from older gasoline catalyst cars. The 1985-2010 emission decrease for NO{sub X}, NMVOC, CO and particulates (exhaust only: Size is below PM{sub 2.5}) -52, -84, -81, and -65 %, respectively, due to the introduction of vehicles complying with gradually stricter emission standards. For SO{sub 2} the emission drop 99 % (due to reduced sulphur content in the diesel fuel), whereas the NH{sub 3} emissions increased by 2232 % (due to the introduction of catalyst cars). For other mobile sources the calculated emission changes for CO{sub 2} (and fuel use), CH{sub 4} and N{sub 2}O were -2, 5 and -1 %, from 1990 to 2010. The emissions of SO{sub 2}, particulates (all size fractions), NO{sub X}, NMVOC and CO decreased by 88, 65, 17, 28 and 2 % from 1985 to 2010. For NH{sub 3} the emissions increased by 17 % in the same time period. Uncertainties for the emissions and trends were estimated. (Author)

  4. Identification of potential regional sources of atmospheric total gaseous mercury in Windsor, Ontario, Canada using hybrid receptor modeling

    Directory of Open Access Journals (Sweden)

    X. Xu

    2010-08-01

    Full Text Available Windsor (Ontario, Canada experiences trans-boundary air pollution as it is located on the border immediately downwind of industrialized regions of the United States of America. A study was conducted in 2007 to identify the potential regional sources of total gaseous mercury (TGM and investigate the effects of regional sources and other factors on seasonal variability of TGM concentrations in Windsor.

    TGM concentration was measured at the University of Windsor campus using a Tekran® 2537A Hg vapour analyzer. An annual mean of 2.02±1.63 ng/m3 was observed in 2007. The average TGM concentration was high in the summer (2.48±2.68 ng/m3 and winter (2.17±2.01 ng/m3, compared to spring (1.88±0.78 ng/m3 and fall (1.76±0.58 ng/m3. Hybrid receptor modeling potential source contribution function (PSCF was used by incorporating 72-h backward trajectories and measurements of TGM in Windsor. The results of PSCF were analyzed in conjunction with the Hg emissions inventory of North America (by state/province to identify regions affecting Windsor. In addition to annual modeling, seasonal PSCF modeling was also conducted. The potential source region was identified between 24–61° N and 51–143° W. Annual PSCF modeling identified major sources southwest of Windsor, stretching from Ohio to Texas. The emissions inventory also supported the findings, as Hg emissions were high in those regions. Results of seasonal PSCF modeling were analyzed to find the combined effects of regional sources, meteorological conditions, and surface re-emissions, on seasonal variability of Hg concentrations. It was found that the summer and winter highs of atmospheric Hg can be attributed to areas where large numbers of coal fired power plants are located in the USA. Weak atmospheric dispersion due to low winds and high re-emission from surfaces due to higher temperatures also contributed to high concentrations in

  5. Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weijun [Environment Research Institute, Shandong University, Jinan, Shandong 250100 (China); State Key of Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029 (China); Shi, Zongbo [School of Geography, Earth and Environmental Sciences, University of Birmingham (United Kingdom); Yan, Chao; Yang, Lingxiao; Dong, Can; Wang, Wenxing [Environment Research Institute, Shandong University, Jinan, Shandong 250100 (China)

    2013-01-15

    Intensive firecracker/firework displays during Chinese New Year (CNY) release fine particles and gaseous pollutants into the atmosphere, which may lead to serious air pollution. We monitored ambient PM{sub 2.5} and black carbon (BC) concentrations at a regional background site in the Yellow River Delta region during the CNY in 2011. Our monitoring data and MOUDI images showed that there was a haze event during the CNY. Daily average PM{sub 2.5} concentration reached 183 μg m{sup −3} during the CNY, which was six times higher than that before and after the CNY. Similarly, the black carbon (BC) concentrations were elevated during the CNY. In order to confirm whether the firecracker/firework related emission is the main source of the haze particles, we further analyzed the morphology and chemical composition of individual airborne particles collected before, during and after the CNY by using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM/EDS). We found that sulfate and organic-rich particles were dominant in the atmosphere before and after the CNY. In contrast, K-rich sulfates and other metal (e.g., Ba-rich, Al-rich, Mg-rich, and Fe-rich) particles were much more abundant than ammoniated sulfate particles during the CNY. These data suggest that it was the aerosol particles from the firecracker/firework emissions that induced the regional haze episode during the CNY. In individual organic and K-rich particles, we often found more than two types of nano-metal particles. These metal-bearing particles also contained abundant S but not Cl. In contrast, fresh metal-bearing particles from firecrackers generated in the laboratory contained abundant Cl with minor amounts of S. This indicates that the firecracker/firework emissions during the CNY significantly changed the atmospheric transformation pathway of SO{sub 2} to sulfate. - Highlights: ► TEM was used to observe the aged individual particles from firecrackers

  6. Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions

    International Nuclear Information System (INIS)

    Li, Weijun; Shi, Zongbo; Yan, Chao; Yang, Lingxiao; Dong, Can; Wang, Wenxing

    2013-01-01

    Intensive firecracker/firework displays during Chinese New Year (CNY) release fine particles and gaseous pollutants into the atmosphere, which may lead to serious air pollution. We monitored ambient PM 2.5 and black carbon (BC) concentrations at a regional background site in the Yellow River Delta region during the CNY in 2011. Our monitoring data and MOUDI images showed that there was a haze event during the CNY. Daily average PM 2.5 concentration reached 183 μg m −3 during the CNY, which was six times higher than that before and after the CNY. Similarly, the black carbon (BC) concentrations were elevated during the CNY. In order to confirm whether the firecracker/firework related emission is the main source of the haze particles, we further analyzed the morphology and chemical composition of individual airborne particles collected before, during and after the CNY by using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM/EDS). We found that sulfate and organic-rich particles were dominant in the atmosphere before and after the CNY. In contrast, K-rich sulfates and other metal (e.g., Ba-rich, Al-rich, Mg-rich, and Fe-rich) particles were much more abundant than ammoniated sulfate particles during the CNY. These data suggest that it was the aerosol particles from the firecracker/firework emissions that induced the regional haze episode during the CNY. In individual organic and K-rich particles, we often found more than two types of nano-metal particles. These metal-bearing particles also contained abundant S but not Cl. In contrast, fresh metal-bearing particles from firecrackers generated in the laboratory contained abundant Cl with minor amounts of S. This indicates that the firecracker/firework emissions during the CNY significantly changed the atmospheric transformation pathway of SO 2 to sulfate. - Highlights: ► TEM was used to observe the aged individual particles from firecrackers/fireworks during the Chinese New

  7. Quantifying the uncertainties of China's emission inventory for industrial sources: From national to provincial and city scales

    Science.gov (United States)

    Zhao, Yu; Zhou, Yaduan; Qiu, Liping; Zhang, Jie

    2017-09-01

    A comprehensive uncertainty analysis was conducted on emission inventories for industrial sources at national (China), provincial (Jiangsu), and city (Nanjing) scales for 2012. Based on various methods and data sources, Monte-Carlo simulation was applied at sector level for national inventory, and at plant level (whenever possible) for provincial and city inventories. The uncertainties of national inventory were estimated at -17-37% (expressed as 95% confidence intervals, CIs), -21-35%, -19-34%, -29-40%, -22-47%, -21-54%, -33-84%, and -32-92% for SO2, NOX, CO, TSP (total suspended particles), PM10, PM2.5, black carbon (BC), and organic carbon (OC) emissions respectively for the whole country. At provincial and city levels, the uncertainties of corresponding pollutant emissions were estimated at -15-18%, -18-33%, -16-37%, -20-30%, -23-45%, -26-50%, -33-79%, and -33-71% for Jiangsu, and -17-22%, -10-33%, -23-75%, -19-36%, -23-41%, -28-48%, -45-82%, and -34-96% for Nanjing, respectively. Emission factors (or associated parameters) were identified as the biggest contributors to the uncertainties of emissions for most source categories except iron & steel production in the national inventory. Compared to national one, uncertainties of total emissions in the provincial and city-scale inventories were not significantly reduced for most species with an exception of SO2. For power and other industrial boilers, the uncertainties were reduced, and the plant-specific parameters played more important roles to the uncertainties. Much larger PM10 and PM2.5 emissions for Jiangsu were estimated in this provincial inventory than other studies, implying the big discrepancies on data sources of emission factors and activity data between local and national inventories. Although the uncertainty analysis of bottom-up emission inventories at national and local scales partly supported the ;top-down; estimates using observation and/or chemistry transport models, detailed investigations and

  8. Evaluating officially reported polycyclic aromatic hydrocarbon emissions in the Athabasca oil sands region with a multimedia fate model

    Science.gov (United States)

    Parajulee, Abha; Wania, Frank

    2014-01-01

    Emissions of organic substances with potential toxicity to humans and the environment are a major concern surrounding the rapid industrial development in the Athabasca oil sands region (AOSR). Although concentrations of polycyclic aromatic hydrocarbons (PAHs) in some environmental samples have been reported, a comprehensive picture of organic contaminant sources, pathways, and sinks within the AOSR has yet to be elucidated. We sought to use a dynamic multimedia environmental fate model to reconcile the emissions and residue levels reported for three representative PAHs in the AOSR. Data describing emissions to air compiled from two official sources result in simulated concentrations in air, soil, water, and foliage that tend to fall close to or below the minimum measured concentrations of phenanthrene, pyrene, and benzo(a)pyrene in the environment. Accounting for evaporative emissions (e.g., from tailings pond disposal) provides a more realistic representation of PAH distribution in the AOSR. Such indirect emissions to air were found to be a greater contributor of PAHs to the AOSR atmosphere relative to reported direct emissions to air. The indirect pathway transporting uncontrolled releases of PAHs to aquatic systems via the atmosphere may be as significant a contributor of PAHs to aquatic systems as other supply pathways. Emission density estimates for the three PAHs that account for tailings pond disposal are much closer to estimated global averages than estimates based on the available emissions datasets, which fall close to the global minima. Our results highlight the need for improved accounting of PAH emissions from oil sands operations, especially in light of continued expansion of these operations. PMID:24596429

  9. On the nature of emission of the star-gas-dust complex of the W1 radio source

    International Nuclear Information System (INIS)

    Udal'tsov, V.A.; Kovalenko, A.V.

    1982-01-01

    The brightness distribution of the radio source W 1 at 102 MHz has been investigated with the 187x384 m radio telescope in Pushchino. It is shown that W 1 is genetically connected with the stellar association Ceph IV as well as with the extended emission nebula GS 285 which consists of numerous nebulae, including two bright ones, Sharpless (S) 171 and NGC 7822. The radio emission of the nebula S 171 is shown to be thermal, and there is no Supernova remnant in it, in contrast with the other authors' suggestion. By two independent methods, the distance to S 171 has been evaluated to be 840 pc. The emission of NGC 7822 is mainly thermal. The extended nebula GS 285 is a thermal source, not a remnant of a Supernova that had exploded in a dense gas - dust medium, as was believed by other authors. Attention is drawn to the wrong identification by many authors of the radio source in the S 171 region with the nebula NGC 7822. It is shown that when measuring the difference of spectral indices of two sources, the calibration error may be eliminated if their calibration at given frequency is made by means of the same source [ru

  10. Monitoring and evaluation of duct emission and stationary sources of ceramic industries by SR-TXRF

    International Nuclear Information System (INIS)

    Moreira, Silvana; Fonseca, Roney Jose; Vives, Ana Elisa Sirito de

    2009-01-01

    The aim of this study was to monitor and evaluate the emission of metals from ducts and stationary sources in ceramic industries in the region of the ceramic centre of Santa Gertrudes in the state of Sao Paulo. There has been a growth of this industrial sector in recent years. This reflected upon the environment in this region which is responsible for 60% of ceramic tile floor production. From 2005 to 2006, samples of gases emitted by several ceramic companies in that region were collected. Metal concentration was determined through X-ray Fluorescence by Total Reflection with Synchrotron Radiation (SR-TXRF) technique. The analyses were carried out in the National Laboratory of Synchrotron Light (NLSL) and used a polychromatic beam of light to stimulate the samples and a hyper pure Germanic detector for the characteristic X-ray detection. The following elements were detected: Al, S, Cl, K, Ca, Fe, Cr, Mn, Ni, Cu, Zn and Pb. High concentrations of elements such as Chromium, Nickel and Lead were observed in the samples analyzed which presented values of concentrations higher than the ones permitted by legislation. (author)

  11. Monitoring and evaluation of duct emission and stationary sources of ceramic industries by SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Fonseca, Roney Jose, E-mail: silvana@fec.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Vives, Ana Elisa Sirito de, E-mail: aesvives@unimep.b [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo

    2009-07-01

    The aim of this study was to monitor and evaluate the emission of metals from ducts and stationary sources in ceramic industries in the region of the ceramic centre of Santa Gertrudes in the state of Sao Paulo. There has been a growth of this industrial sector in recent years. This reflected upon the environment in this region which is responsible for 60% of ceramic tile floor production. From 2005 to 2006, samples of gases emitted by several ceramic companies in that region were collected. Metal concentration was determined through X-ray Fluorescence by Total Reflection with Synchrotron Radiation (SR-TXRF) technique. The analyses were carried out in the National Laboratory of Synchrotron Light (NLSL) and used a polychromatic beam of light to stimulate the samples and a hyper pure Germanic detector for the characteristic X-ray detection. The following elements were detected: Al, S, Cl, K, Ca, Fe, Cr, Mn, Ni, Cu, Zn and Pb. High concentrations of elements such as Chromium, Nickel and Lead were observed in the samples analyzed which presented values of concentrations higher than the ones permitted by legislation. (author)

  12. Atmospheric observations and inverse modelling for quantifying emissions of point-source synthetic greenhouse gases in East Asia

    Science.gov (United States)

    Arnold, Tim; Manning, Alistair; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Muhle, Jens; Weiss, Ray

    2017-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacements that are emitted from fugitive and mobile emission sources, these gases are mostly emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane (HCFC-22) factories (HFC-23). In this work we show that atmospheric measurements can serve as a basis to calculate emissions of these gases and to highlight emission 'hotspots'. We use measurements from one Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites at Gosan on Jeju Island in the Republic of Korea. This site measures CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over seven years between 2008 and 2015. We show that our 'top-down' emission estimates for NF3 and CF4 are significantly larger than 'bottom-up' estimates in the EDGAR emissions inventory (edgar.jrc.ec.europa.eu). For example we calculate South Korean emissions of CF4 in 2010 to be 0.29±0.04 Gg/yr, which is significantly larger than the Edgar prior emissions of 0.07 Gg/yr. Further, inversions for several separate years indicate that emission hotspots can be found without prior spatial information. At present these gases make a small contribution to global radiative forcing, however, given

  13. Regional Disparities in Emissions of Rural Household Energy Consumption: A Case Study of Northwest China

    Directory of Open Access Journals (Sweden)

    Wenheng Wu

    2017-05-01

    Full Text Available The purpose of this paper is to present the emissions status of multiple rural areas from the perspective of a field survey and make up for the defects of the traditional emission cognition of single type of area. The basic data in the lower reaches of the Weihe River of Northwest China were collected through household questionnaire surveys, and emissions from rural household energy consumption were calculated in the paper. In addition, the grey relational analysis method was used to identify influential factors of emission disparities. The results show that the total emissions of the plain, loess tableland, and Qinling piedmont areas are 1863.20, 1850.43, and 2556.68 kg, respectively. Regional disparities in emissions of rural household energy consumption vary greatly. CO2 emissions are highest in the Qinling piedmont area, followed by the loess tableland area. For other emissions, there is no fixed order of the three areas, which suggests that disparities in emissions are connected with the dominant type of energy consumption. Diversification of energy use might not necessarily produce higher emissions, but the traditional biomass energy pattern does generate more emissions. The regional supply capacity of household energy is the original influence factor of disparities in emissions, and factors that influence these disparities are directly related to differences among farmers, followed by the age structure, educational background, income level, occupation, and so on.

  14. Estimation of greenhouse impacts of continuous regional emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sinisalo, J. [VTT Energy, Espoo (Finland). Energy Systems

    1998-11-01

    In this thesis a method to calculate the greenhouse impact of continuous, time-dependent, non-global greenhouse gas emissions is used to estimate the impact of estimated anthropogenic pre-1990 and future (post 1990) emissions of CO{sub 2}, CH{sub 4} and N{sub 2}O from Finland and the Nordic countries. Estimates for the impact of Finnish CFCs and their substitutes and the significance of Finnish forests as carbon sink are also calculated. The method is also used to compare several different wood and peat energy production schemes with fossil fuel use, in terms of caused greenhouse impact. The uncertainty of the results is examined. The greenhouse impact is measured in this thesis as the global mean direct radiative forcing caused by the emissions. Radiative forcing is the driving force behind the climate change and as such it can be used to assess the ensuing climate change. The method is suitable for greenhouse agents that can be considered to be well mixed in the atmosphere (mainly CO{sub 2}, CH{sub 4}, N{sub 2}O and both CFCs and their substitutes). According to the results Finnish greenhouse impact due to anthropogenic CO{sub 2}, CH{sub 4} and N{sub 2}O emissions has increased eight-fold during this century, and will very likely remain higher than current level throughout the next century. The impact of the Nordic countries has followed the same general pattern as Finland. It is likely that the per capita radiative forcing of the Nordic countries will remain above the global average. The uncertainty of the absolute results is quite high due to uncertain knowledge at several stages of the calculation. When the results are used in comparisons (e.g. between emission scenarios, or emissions of different countries), the accuracy of the results increases considerably. (orig.) 54 refs.

  15. Regional emission metrics for short-lived climate forcers from multiple models

    Directory of Open Access Journals (Sweden)

    B. Aamaas

    2016-06-01

    Full Text Available For short-lived climate forcers (SLCFs, the impact of emissions depends on where and when the emissions take place. Comprehensive new calculations of various emission metrics for SLCFs are presented based on radiative forcing (RF values calculated in four different (chemical-transport or coupled chemistry–climate models. We distinguish between emissions during summer (May–October and winter (November–April for emissions in Europe and East Asia, as well as from the global shipping sector and global emissions. The species included in this study are aerosols and aerosol precursors (BC, OC, SO2, NH3, as well as ozone precursors (NOx, CO, VOCs, which also influence aerosols to a lesser degree. Emission metrics for global climate responses of these emissions, as well as for CH4, have been calculated using global warming potential (GWP and global temperature change potential (GTP, based on dedicated RF simulations by four global models. The emission metrics include indirect cloud effects of aerosols and the semi-direct forcing for BC. In addition to the standard emission metrics for pulse and sustained emissions, we have also calculated a new emission metric designed for an emission profile consisting of a ramping period of 15 years followed by sustained emissions, which is more appropriate for a gradual implementation of mitigation policies.For the aerosols, the emission metric values are larger in magnitude for emissions in Europe than East Asia and for summer than winter. A variation is also observed for the ozone precursors, with largest values for emissions in East Asia and winter for CO and in Europe and summer for VOCs. In general, the variations between the emission metrics derived from different models are larger than the variations between regions and seasons, but the regional and seasonal variations for the best estimate also hold for most of the models individually. Further, the estimated climate impact of an illustrative mitigation

  16. Physical and chemical properties of Red MSX Sources in the southern sky: H II regions

    Science.gov (United States)

    Yu, Naiping; Wang, Jun-Jie; Li, Nan

    2015-01-01

    We have studied the physical and chemical properties of 18 southern Red Midcourse Space Experiment Sources (RMSs), using archival data taken from the Atacama Pathfinder Experiment (APEX) Telescope Large Area Survey of the Galaxy, the Australia Telescope Compact Array, and the Millimeter Astronomy Legacy Team Survey at 90 GHz. Most of our sources have simple cometary/unresolved radio emissions at 4.8 and/or 8.6GHz. The large number of Lyman continuum fluxes (NL) indicates they are probably massive O- or early B-type star formation regions. Archival IRAS infrared data are used to estimate the dust temperature, which is about 30 K of our sources. Then, the H2 column densities and the volume-averaged H2 number densities are estimated using the 870 μm dust emissions. Large-scale infall and ionized accretions may be occurring in G345.4881+00.3148. We also attempt to characterize the chemical properties of these RMSs through molecular line (N2H+ (1-0) and HCO+ (1-0)) observations. Most of the detected N2H+ and HCO+ emissions match well with the dust emission, implying a close link to their chemical evolution in the RMSs. We found that the abundance of N2H+ is one order of magnitude lower than that in other surveys of infrared dark clouds, and a positive correlation between the abundances of N2H+ and HCO+. The fractional abundance of N2H+ with respect to H2 seems to decrease as a function of NL. These observed trends could be interpreted as an indication of enhanced destruction of N2H+, either by CO or through dissociative recombination with electrons produced by central UV photons.

  17. Source attribution using FLEXPART and carbon monoxide emission inventories for the IAGOS In-situ Observation database

    Science.gov (United States)

    Fontaine, Alain; Sauvage, Bastien; Pétetin, Hervé; Auby, Antoine; Boulanger, Damien; Thouret, Valerie

    2016-04-01

    Since 1994, the IAGOS program (In-Service Aircraft for a Global Observing System http://www.iagos.org) and its predecessor MOZAIC has produced in-situ measurements of the atmospheric composition during more than 46000 commercial aircraft flights. In order to help analyzing these observations and further understanding the processes driving their evolution, we developed a modelling tool SOFT-IO quantifying their source/receptor link. We improved the methodology used by Stohl et al. (2003), based on the FLEXPART plume dispersion model, to simulate the contributions of anthropogenic and biomass burning emissions from the ECCAD database (http://eccad.aeris-data.fr) to the measured carbon monoxide mixing ratio along each IAGOS flight. Thanks to automated processes, contributions are simulated for the last 20 days before observation, separating individual contributions from the different source regions. The main goal is to supply add-value products to the IAGOS database showing pollutants geographical origin and emission type. Using this information, it may be possible to link trends in the atmospheric composition to changes in the transport pathways and to the evolution of emissions. This tool could be used for statistical validation as well as for inter-comparisons of emission inventories using large amounts of data, as Lagrangian models are able to bring the global scale emissions down to a smaller scale, where they can be directly compared to the in-situ observations from the IAGOS database.

  18. Optical emission spectroscopy of carbon laser plasma ion source

    Science.gov (United States)

    Balki, Oguzhan; Rahman, Md. Mahmudur; Elsayed-Ali, Hani E.

    2018-04-01

    Carbon laser plasma generated by an Nd:YAG laser (wavelength 1064 nm, pulse width 7 ns, fluence 4-52 J cm-2) is studied by optical emission spectroscopy and ion time-of-flight. Up to C4+ ions are detected with the ion flux strongly dependent on the laser fluence. The increase in ion charge with the laser fluence is accompanied by observation of multicharged ion lines in the optical spectra. The time-integrated electron temperature Te is calculated from the Boltzmann plot using the C II lines at 392.0, 426.7, and 588.9 nm. Te is found to increase from ∼0.83 eV for a laser fluence of 22 J cm-2 to ∼0.90 eV for 40 J cm-2. The electron density ne is obtained from the Stark broadened profiles of the C II line at 392 nm and is found to increase from ∼ 2 . 1 × 1017cm-3 for 4 J cm-2 to ∼ 3 . 5 × 1017cm-3 for 40 J cm-2. Applying an external electric field parallel to the expanding plume shows no effect on the line emission intensities. Deconvolution of ion time-of-flight signal with a shifted Maxwell-Boltzmann distribution for each charge state results in an ion temperature Ti ∼4.7 and ∼6.0 eV for 20 and 36 J cm-2, respectively.

  19. Source region and sector contributions of atmospheric soot particle in a coalfield region of Dhanbad, eastern part of India

    Science.gov (United States)

    Singh, S.; Tiwari, S.; Dumka, U. C.; Kumar, R.; Singh, P. K.

    2017-11-01

    Black carbon (BC) aerosols affect the Earth's climate directly by interacting with the solar radiation and indirectly by modifying the lifetime and optical properties of clouds. However, our understanding of BC aerosols and their impacts on the climate are limited by lack of in situ measurements of BC, especially in the developing world. This study reports measurements of BC from Dhanbad, a coalfields area of eastern India, we analyze BC data at 370 and 880 nm during 2013 to gain insight into the emission sources affecting the study area. Our analysis indicates significantly higher absorption at the lower wavelength (ultraviolet). We estimate that 33% of BC at Dhanbad comes from biomass/biofuel combustion and the remaining 67% from the fossil fuel combustion. Higher concentrations of BC370 nm (> 12 μg m- 3) were observed when the air masses affecting Dhanbad originated far away in countries like Iran, Afghanistan, Pakistan, Oman, United Arab Emirates and passed over the Indo-Gangetic Plains (IGP) prior to arriving at the observation site. The source regions affecting BC880 nm were localized over the IGP but BC880 nm concentrations are 33% lower ( 8 μg m- 3) than BC370 nm. The cluster analysis showed that the largest fraction (35 and 29%) of the air masses arriving at Dhanbad passed through the boundary layer of the central IGP and north-west IGP region during the post-monsoon season. Average values of BC370 nm (16.0 and 20.0 μg m- 3) and BC880 nm (9.5 and 10.0 μg m- 3) in the IGP influenced air masses were significantly higher than those arriving from other source regions. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) model were applied to understand the relative importance of different sources affecting Dhanbad. The variability of observed BC mass concentrations was captured fairly well by WRF-Chem with minor deviations from the measured values. Model results indicate that anthropogenic emissions account for more than 75% of the

  20. Tectonic isolation from regional sediment sourcing of the Paradox Basin

    Science.gov (United States)

    Smith, T. M.; Saylor, J.; Sundell, K. E.; Lapen, T. J.

    2017-12-01

    The Appalachian and Ouachita-Marathon mountain ranges were created by a series of tectonic collisions that occurred through the middle and late Paleozoic along North America's eastern and southern margins, respectively. Previous work employing detrital zircon U-Pb geochronology has demonstrated that fluvial and eolian systems transported Appalachian-derived sediment across the continent to North America's Paleozoic western margin. However, contemporaneous intraplate deformation of the Ancestral Rocky Mountains (ARM) compartmentalized much of the North American western interior and mid-continent. We employ lithofacies characterization, stratigraphic thickness, paleocurrent data, sandstone petrography, and detrital zircon U-Pb geochronology to evaluate source-sink relationships of the Paradox Basin, which is one of the most prominent ARM basins. Evaluation of provenance is conducted through quantitative comparison of detrital zircon U-Pb distributions from basin samples and potential sources via detrital zircon mixture modeling, and is augmented with sandstone petrography. Mixing model results provide a measure of individual source contributions to basin stratigraphy, and are combined with outcrop and subsurface data (e.g., stratigraphic thickness and facies distributions) to create tectonic isolation maps. These maps elucidate drainage networks and the degree to which local versus regional sources influence sediment character within a single basin, or multiple depocenters. Results show that despite the cross-continental ubiquity of Appalachian-derived sediment, fluvial and deltaic systems throughout much of the Paradox Basin do not record their influence. Instead, sediment sourcing from the Uncompahgre Uplift, which has been interpreted to drive tectonic subsidence and formation of the Paradox Basin, completely dominated its sedimentary record. Further, the strong degree of tectonic isolation experienced by the Paradox Basin appears to be an emerging, yet common

  1. Sources of particulate matter components in the Athabasca oil sands region: investigation through a comparison of trace element measurement methodologies

    Science.gov (United States)

    Phillips-Smith, Catherine; Jeong, Cheol-Heon; Healy, Robert M.; Dabek-Zlotorzynska, Ewa; Celo, Valbona; Brook, Jeffrey R.; Evans, Greg

    2017-08-01

    The province of Alberta, Canada, is home to three oil sands regions which, combined, contain the third largest deposit of oil in the world. Of these, the Athabasca oil sands region is the largest. As part of Environment and Climate Change Canada's program in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring program, concentrations of trace elements in PM2. 5 (particulate matter smaller than 2.5 µm in diameter) were measured through two campaigns that involved different methodologies: a long-term filter campaign and a short-term intensive campaign. In the long-term campaign, 24 h filter samples were collected once every 6 days over a 2-year period (December 2010-November 2012) at three air monitoring stations in the regional municipality of Wood Buffalo. For the intensive campaign (August 2013), hourly measurements were made with an online instrument at one air monitoring station; daily filter samples were also collected. The hourly and 24 h filter data were analyzed individually using positive matrix factorization. Seven emission sources of PM2. 5 trace elements were thereby identified: two types of upgrader emissions, soil, haul road dust, biomass burning, and two sources of mixed origin. The upgrader emissions, soil, and haul road dust sources were identified through both the methodologies and both methodologies identified a mixed source, but these exhibited more differences than similarities. The second upgrader emissions and biomass burning sources were only resolved by the hourly and filter methodologies, respectively. The similarity of the receptor modeling results from the two methodologies provided reassurance as to the identity of the sources. Overall, much of the PM2. 5-related trace elements were found to be anthropogenic, or at least to be aerosolized through anthropogenic activities. These emissions may in part explain the previously reported higher levels of trace elements in snow, water, and biota samples collected

  2. PM2.5 emissions and source profiles from open burning of crop residues

    Science.gov (United States)

    Ni, Haiyan; Tian, Jie; Wang, Xiaoliang; Wang, Qiyuan; Han, Yongming; Cao, Junji; Long, Xin; Chen, L.-W. Antony; Chow, Judith C.; Watson, John G.; Huang, Ru-Jin; Dusek, Ulrike

    2017-11-01

    Wheat straw, rice straw, and corn stalks, the major agricultural crop residues in China, were collected from six major crop producing regions, and burned in a laboratory combustion chamber to determine PM2.5 source profiles and speciated emission factors (EFs). Organic carbon (OC) and water-soluble ions (the sum of NH4+, Na+, K+, Mg2+, Ca2+, Cl-, NO3- and SO42-) are major constituents, accounting for 43.1 ± 8.3% and 27.4 ± 14.6% of PM2.5, respectively. Chloride (Cl-) and water-soluble potassium (K+) are the dominant ionic species, with an average abundance of 14.5 ± 8.2% and 6.4 ± 4.4% in PM2.5, respectively. The average K+/Cl- ratio is ∼0.4, lower than 2.8-5.4 for wood combustion. Similarity measures (i.e., Student's t-test, coefficient of divergence, correlations, and residual to uncertainty ratios) show the crop profiles are too similar for the species measured to be resolved from one another by receptor modeling. The largest difference was found between rice straw and corn stalk emissions, with higher OC and lower Cl- and K+ abundances (50%, 8%, and 3% of PM2.5, respectively) for corn stalks; lower OC, and higher Cl- and K+ abundances (38%, 21%, and 10% of PM2.5, respectively) for rice straw. Average EFs were 4.8 ± 3.1 g kg-1 for OC, 1.3 ± 0.8 g kg-1 for Cl- and 0.59 ± 0.56 g kg-1 for K+. Flaming and smoldering combustions resulted in an average modified combustion efficiency (MCE) of 0.92 ± 0.03, and low elemental carbon (EC) EFs (0.24 ± 0.12 g kg-1). OC/EC ratios from individual source profiles ranged from 12.9 ± 4.3 for rice straw to 24.1 ± 13.5 for wheat straw. The average K+/EC ratio was 2.4 ± 1.5, an order of magnitude higher than those from residential wood combustion (0.2-0.76). Elevated emission rates were found for OC (387 Gg yr-1) and Cl- (122 Gg yr-1), accounting for 44% and 14% of 2008 PM2.5 emissions in China.

  3. [Emission factors and PM chemical composition study of biomass burning in the Yangtze River Delta region].

    Science.gov (United States)

    Tang, Xi-Bin; Huang, Cheng; Lou, Sheng-Rong; Qiao, Li-Ping; Wang, Hong-Li; Zhou, Min; Chen, Ming-hua; Chen, Chang-Hong; Wang, Qian; Li, Gui-Ling; Li, Li; Huang, Hai-Ying; Zhang, Gang-Feng

    2014-05-01

    The emission characteristics of five typical crops, including wheat straw, rice straw, oil rape straw, soybean straw and fuel wood, were investigated to explore the gas and particulates emission of typical biomass burning in Yangzi-River-Delta area. The straws were tested both by burning in stove and by burning in the farm with a self-developed measurement system as open burning sources. Both gas and fine particle pollutants were measured in this study as well as the chemical composition of fine particles. The results showed that the average emission factors of CO, NO, and PM2,5 in open farm burning were 28.7 g.kg -1, 1.2 g.kg-1 and 2.65 g kg-1 , respectively. Due to insufficient burning in the low oxygen level environment, the emission factors of stove burning were higher than those of open farm burning, which were 81.9 g kg-1, 2. 1 g.kg -1 and 8.5 gkg -1 , respectively. Oil rape straw had the highest emission factors in all tested straws samples. Carbonaceous matter, including organic carbon(OC) and element carbon(EC) , was the foremost component of PM2, 5from biomass burning. The average mass fractions of OC and EC were (38.92 +/- 13.93)% and (5.66 +/-1.54)% by open farm burning and (26.37 +/- 10. 14)% and (18.97 +/- 10.76)% by stove burning. Water soluble ions such as Cl-and K+ had a large contribution. The average mass fractions of CI- and K+ were (13.27 +/-6. 82)% and (12.41 +/- 3.02)% by open farm burning, and were (16.25 +/- 9.34)% and (13.62 +/- 7.91)% by stove burning. The K +/OC values of particles from wheat straw, rice straw, oil rape straw and soybean straw by open farm burning were 0. 30, 0. 52, 0. 49 and 0. 15, respectively, which can be used to evaluate the influence on the regional air quality in YRD area from biomass burning and provide direct evidence for source apportionment.

  4. Danish emission inventories for road transport and other mobile sources. Inventories until year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.

    2008-09-15

    This report explains the parts of the Danish inventories related to road transport and other mobile sources. Emission results are shown for CO{sub 2}, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub X}, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH. From 1990-2006 the fuel use and CO{sub 2} emissions for road transport have increased by 36 %, and CH{sub 4} emissions have decreased by 51 %. A N{sub 2}O emission increase of 29 % is related to the relatively high emissions from older gasoline catalyst cars. The 1985-2006 emission decreases for PM (exhaust only), CO, NO{sub X} and NMVOC are 30, 69, 28 and 71 % respectively, due to the introduction of vehicles complying with gradually stricter emission standards. For SO{sub 2} the emission drop is 99% (due to reduced sulphur content in the diesel fuel), whereas the NH{sub 3} emissions increase by 3065% (due to the introduction of catalyst cars). For other mobile sources the calculated emission changes for CO{sub 2} (and fuel use), CH{sub 4} and N{sub 2}O are -10, 5 and -11%, from 1990 to 2006. The emissions of SO{sub 2}, particulates (all size fractions), NO{sub X}, NMVOC and CO have decreased by 88, 56, 14, 12 and 9% from 1985 to 2006. For NH{sub 3} the emissions have increased by 8% in the same time period. Uncertainties for the emissions and trends have been estimated. (au)

  5. 3 mm GMVA Observations of Total and Polarized Emission from Blazar and Radio Galaxy Core Regions

    Directory of Open Access Journals (Sweden)

    Carolina Casadio

    2017-10-01

    Full Text Available We present total and linearly polarized 3 mm Global mm-VLBI Array (GMVA; mm-VLBI: Very Long Baseline Interferometry observations at millimetre wavelengths images of a sample of blazars and radio galaxies from the VLBA-BU-BLAZAR 7 mm monitoring program designed to probe the innermost regions of active galactic nuclei (AGN jets and locate the sites of gamma-ray emission observed by the Fermi-LAT. The lower opacity at 3 mm and improved angular resolution—on the order of 50 microarcseconds—allow us to distinguish features in the jet not visible in the 7 mm VLBA data. We also compare two different methods used for the calibration of instrumental polarisation and we analyze the resulting images for some of the sources in the sample.

  6. New directions: Beyond sulphur, vanadium and nickel - About source apportionment of ship emissions in emission control areas

    Science.gov (United States)

    Czech, Hendryk; Schnelle-Kreis, Jürgen; Streibel, Thorsten; Zimmermann, Ralf

    2017-08-01

    During the oil crises of the 70s and the associated increase of the oil price, the usage of marine fuels shifted from middle distillates of the crude oil refinery, such as marine diesel oil (MDO) or marine gas oil (MGO), towards cheaper heavy fuel oils (HFO), or also called residual fuel oil. The latter refers to the vacuum residue of the crude oil refinery blended by lighter refinery products, such as kerosene, to meet a certain maximum viscosity. Those HFOs are rich in sulphur and heavy metals which end up as significant constituents in emitted fine particulate matter (PM2.5) after the combustion. Especially for harbour cities or highly frequented ship traffic routes, HFO-derived PM2.5 has been identified as a globally important perpetrator of increased mortality by cardiopulmonary diseases and lung cancer (e.g. Corbett et al., 2007). However, the emitted hazardous species provide reliable markers to assess the contribution of this emission source to air pollution in source apportionment studies. Such studies are often performed utilising positive matrix factorisation, whose score matrix can be interpreted as temporal contribution of k identified emission sources and factors represent the k corresponding emission profiles. If one of the k factors contains moderate to high amounts of sulphate, vanadium and nickel with a high ratio of the two latter ones, the ship identification was unambiguous (e.g. Viana et al., 2009). Even more sensitive towards emission profiles are receptor models such as chemical mass balance, which require detailed prior knowledge about the assumed emission sources (Jeong et al., 2017).

  7. Reducing greenhouse gas emissions for climate stabilization: framing regional options.

    Science.gov (United States)

    Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.

  8. Reducing greenhouse gas emissions for climate stabilization: framing regional options

    Energy Technology Data Exchange (ETDEWEB)

    Laura Schmitt Olabisi; Peter B. Reich; Kris A. Johnson; Anne R. Kapuscinski; Sangwon Suh; Elizabeth J. Wilson [University of Minnesota, Saint Paul, MN (United States). Ecosystem Science and Sustainability Initiative

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO{sub 2} concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term. 31 refs., 3 figs., 1 tab.

  9. Biosolid stockpiles are a significant point source for greenhouse gas emissions.

    Science.gov (United States)

    Majumder, Ramaprasad; Livesley, Stephen J; Gregory, David; Arndt, Stefan K

    2014-10-01

    The wastewater treatment process generates large amounts of sewage sludge that are dried and then often stored in biosolid stockpiles in treatment plants. Because the biosolids are rich in decomposable organic matter they could be a significant source for greenhouse gas (GHG) emissions, yet there are no direct measurements of GHG from stockpiles. We therefore measured the direct emissions of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) on a monthly basis from three different age classes of biosolid stockpiles at the Western Treatment Plant (WTP), Melbourne, Australia, from December 2009 to November 2011 using manual static chambers. All biosolid stockpiles were a significant point source for CH4 and N2O emissions. The youngest biosolids (nitrate and ammonium concentration. We also modeled CH4 emissions based on a first order decay model and the model based estimated annual CH4 emissions were higher as compared to the direct field based estimated annual CH4 emissions. Our results indicate that labile organic material in stockpiles is decomposed over time and that nitrogen decomposition processes lead to significant N2O emissions. Carbon decomposition favors CO2 over CH4 production probably because of aerobic stockpile conditions or CH4 oxidation in the outer stockpile layers. Although the GHG emission rate decreased with biosolid age, managers of biosolid stockpiles should assess alternate storage or uses for biosolids to avoid nutrient losses and GHG emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. [Inventory and environmental impact of VOCs emission from the typical anthropogenic sources in Sichuan province].

    Science.gov (United States)

    Han, Li; Wang, Xing-Rui; He, Min; Guo, Wei-Guang

    2013-12-01

    Based on Sichuan province environmental statistical survey data and other relevant activity data, volatile organic compounds (VOCs) emissions from typical anthropogenic sources in Sichuan province were calculated for the year of 2011 by applying the emission factor method. Besides, ozone and secondary organic aerosol formation potentials of these typical anthropogenic sources were discussed. The total VOC emission from these sources was about 482 kt in Sichuan province, biomass burning, solvent utilization, industrial processes, storage and distribution of fuel, and fossil fuel combustion contributed 174 kt, 153 kt, 121 kt, 21 kt and 13 kt, respectively; architecture wall painting, furniture coating, wood decoration painting and artificial board were the major emission sectors of the solvent utilization; while for the industrial processes, 19.4% of VOCs emission was from the wine industry. Chengdu was the largest contributor compared to the other cities in Sichuan, whose VOCs emission from these typical anthropogenic sources in 2011 was 112 kt. OFP of these sources was 1,930 kt altogether. Solvent utilization contributed 50.5% of the total SOA formation potentials, biomass burning and industrial processes both contributed about 23% , with storage and distribution of fuel and fossil fuel combustion accounting for 1% and 1.4%, respectively.

  11. Electron backstream to the source plasma region in an ion source

    International Nuclear Information System (INIS)

    Ohara, Y.; Akiba, M.; Arakawa, Y.; Okumura, Y.; Sakuraba, J.

    1980-01-01

    The flux of backstream electrons to the source plasma region increases significantly with the acceleration voltage of an ion beam, so that the back plate in the arc chamber should be broken for quasi-dc operation. The flux of backstream electrons is estimated at the acceleration voltage of 50--100 kV for a proton beam with the aid of ion beam simulation code. The power flux of backstream electrons is up to about 7% of the total beam output at the acceleration voltage of 75 kV. It is pointed out that the conventional ion sources such as the duoPIGatron or the bucket source which use a magnetic field for source plasma production are not suitable for quasi-dc and high-energy ion sources, because the surface heat flux of the back plate is increased by the focusing of backstream electrons and the removal of it is quite difficult. A new ion source which has an electron beam dump in the arc chamber is proposed

  12. Regional income effects and renewable fuels. Increased usage of renewable energy sources in Danish rural areas and its impact on regional incomes

    Energy Technology Data Exchange (ETDEWEB)

    Bentzen, J.; Smith, V. [Aarhus School of Business, Dept. of Economics (Denmark); Dilling-Hansen, M. [Univ. of Aarhus, Dept. of Management (Denmark)

    1996-12-31

    CO{sub 2}-emission is a world wide problem and in the attempt to reduce these emissions, renewable energy sources may be considered serious alternatives to the present usage of fossil fuels. As part of a research programme financed by The Danish Energy Agency, data concerning the different heating technologies based on oil and wood fuels have been collected. Private and social costs are estimated and these economic data are used when analysing regional income effects of increased consumption of fuels (e.g. wood) locally produced. The impacts on income and tax revenues are calculated from multiplier expressions, constructed with rights to the measurement of local effects. (au) 10 refs.

  13. Regional income effects and renewable fuels. Increased usage of renewable energy sources in Danish rural areas and its impact on regional incomes

    International Nuclear Information System (INIS)

    Bentzen, J.; Smith, V.; Dilling-Hansen, M.

    1996-01-01

    CO 2 -emission is a world wide problem and in the attempt to reduce these emissions, renewable energy sources may be considered serious alternatives to the present usage of fossil fuels. As part of a research programme financed by The Danish Energy Agency, data concerning the different heating technologies based on oil and wood fuels have been collected. Private and social costs are estimated and these economic data are used when analysing regional income effects of increased consumption of fuels (e.g. wood) locally produced. The impacts on income and tax revenues are calculated from multiplier expressions, constructed with rights to the measurement of local effects. (au) 10 refs

  14. A Mobile Sensing Approach for Regional Surveillance of Fugitive Methane Emissions in Oil and Gas Production.

    Science.gov (United States)

    Albertson, John D; Harvey, Tierney; Foderaro, Greg; Zhu, Pingping; Zhou, Xiaochi; Ferrari, Silvia; Amin, M Shahrooz; Modrak, Mark; Brantley, Halley; Thoma, Eben D

    2016-03-01

    This paper addresses the need for surveillance of fugitive methane emissions over broad geographical regions. Most existing techniques suffer from being either extensive (but qualitative) or quantitative (but intensive with poor scalability). A total of two novel advancements are made here. First, a recursive Bayesian method is presented for probabilistically characterizing fugitive point-sources from mobile sensor data. This approach is made possible by a new cross-plume integrated dispersion formulation that overcomes much of the need for time-averaging concentration data. The method is tested here against a limited data set of controlled methane release and shown to perform well. We then present an information-theoretic approach to plan the paths of the sensor-equipped vehicle, where the path is chosen so as to maximize expected reduction in integrated target source rate uncertainty in the region, subject to given starting and ending positions and prevailing meteorological conditions. The information-driven sensor path planning algorithm is tested and shown to provide robust results across a wide range of conditions. An overall system concept is presented for optionally piggybacking of these techniques onto normal industry maintenance operations using sensor-equipped work trucks.

  15. Biomass burning emissions of reactive gases estimated from satellite data analysis and ecosystem modeling for the Brazilian Amazon region

    Science.gov (United States)

    Potter, Christopher; Brooks-Genovese, Vanessa; Klooster, Steven; Torregrosa, Alicia

    2002-10-01

    To produce a new daily record of trace gas emissions from biomass burning events for the Brazilian Legal Amazon, we have combined satellite advanced very high resolution radiometer (AVHRR) data on fire counts together for the first time with vegetation greenness imagery as inputs to an ecosystem biomass model at 8 km spatial resolution. This analysis goes beyond previous estimates for reactive gas emissions from Amazon fires, owing to a more detailed geographic distribution estimate of vegetation biomass, coupled with daily fire activity for the region (original 1 km resolution), and inclusion of fire effects in extensive areas of the Legal Amazon (defined as the Brazilian states of Acre, Amapá, Amazonas, Maranhao, Mato Grosso, Pará, Rondônia, Roraima, and Tocantins) covered by open woodland, secondary forests, savanna, and pasture vegetation. Results from our emissions model indicate that annual emissions from Amazon deforestation and biomass burning in the early 1990s total to 102 Tg yr-1 carbon monoxide (CO) and 3.5 Tg yr-1 nitrogen oxides (NOx). Peak daily burning emissions, which occurred in early September 1992, were estimated at slightly more than 3 Tg d-1for CO and 0.1 Tg d-1for NOx flux to the atmosphere. Other burning source fluxes of gases with relatively high emission factors are reported, including methane (CH4), nonmethane hydrocarbons (NMHC), and sulfur dioxide (SO2), in addition to total particulate matter (TPM). We estimate the Brazilian Amazon region to be a source of between one fifth and one third for each of these global emission fluxes to the atmosphere. The regional distribution of burning emissions appears to be highest in the Brazilian states of Maranhao and Tocantins, mainly from burning outside of moist forest areas, and in Pará and Mato Grosso, where we identify important contributions from primary forest cutting and burning. These new daily emission estimates of reactive gases from biomass burning fluxes are designed to be used as

  16. Optimal estimation of regional N2O emissions using a three-dimensional global model

    Science.gov (United States)

    Huang, J.; Golombek, A.; Prinn, R.

    2004-12-01

    In this study, we use the MATCH (Model of Atmospheric Transport and Chemistry) model and Kalman filtering techniques to optimally estimate N2O emissions from seven source regions around the globe. The MATCH model was used with NCEP assimilated winds at T62 resolution (192 longitude by 94 latitude surface grid, and 28 vertical levels) from July 1st 1996 to December 31st 2000. The average concentrations of N2O in the lowest four layers of the model were then compared with the monthly mean observations from six national/global networks (AGAGE, CMDL (HATS), CMDL (CCGG), CSIRO, CSIR and NIES), at 48 surface sites. A 12-month-running-mean smoother was applied to both the model results and the observations, due to the fact that the model was not able to reproduce the very small observed seasonal variations. The Kalman filter was then used to solve for the time-averaged regional emissions of N2O for January 1st 1997 to June 30th 2000. The inversions assume that the model stratospheric destruction rates, which lead to a global N2O lifetime of 130 years, are correct. It also assumes normalized emission spatial distributions from each region based on previous studies. We conclude that the global N2O emission flux is about 16.2 TgN/yr, with {34.9±1.7%} from South America and Africa, {34.6±1.5%} from South Asia, {13.9±1.5%} from China/Japan/South East Asia, {8.0±1.9%} from all oceans, {6.4±1.1%} from North America and North and West Asia, {2.6±0.4%} from Europe, and {0.9±0.7%} from New Zealand and Australia. The errors here include the measurement standard deviation, calibration differences among the six groups, grid volume/measurement site mis-match errors estimated from the model, and a procedure to account approximately for the modeling errors.

  17. Identification of tropospheric emissions sources from satellite observations: Synergistic use of HCHO, NO2, and SO2 trace gas measurements

    Science.gov (United States)

    Marbach, T.; Beirle, S.; Khokhar, F.; Platt, U.

    2005-12-01

    We present case studies for combined HCHO, NO2, and SO2 satellite observations, derived from GOME measurements. Launched on the ERS-2 satellite in April 1995, GOME has already performed continuous operations over 8 years providing global observations of the different trace gases. In this way, satellite observations provide unique opportunities for the identifications of trace gas sources. The satellite HCHO observations provide information concerning the localization of biomass burning (intense source of HCHO). The principal biomass burning areas can be observed in the Amazon basin region and in central Africa Weaker HCHO sources (south east of the United States, northern part of the Amazon basin, and over the African tropical forest), not correlated with biomass burning, could be due to biogenic isoprene emissions. The HCHO data can be compared with NO2 and SO2 results to identify more precisely the tropospheric sources (biomass burning events, human activities, additional sources like volcanic emissions). Biomass burning are important tropospheric sources for both HCHO and NO2. Nevertheless HCHO reflects more precisely the biomass burning as it appears in all biomass burning events. NO2 correlate with HCHO over Africa (grassland fires) but not over Indonesia (forest fires). In south America, an augmentation of the NO2 concentrations can be observed with the fire shift from the forest to grassland vegetation. So there seems to be a dependence between the NO2 emissions during biomass burning and the vegetation type. Other high HCHO, SO2, and NO2 emissions can be correlated with climatic events like the El Nino in 1997, which induced dry conditions in Indonesia causing many forest fires.

  18. Multi-Sensor Constrained Time Varying Emissions Estimation of Black Carbon: Attributing Urban and Fire Sources Globally

    Science.gov (United States)

    Cohen, J. B.

    2015-12-01

    The short lifetime and heterogeneous distribution of Black Carbon (BC) in the atmosphere leads to complex impacts on radiative forcing, climate, and health, and complicates analysis of its atmospheric processing and emissions. Two recent papers have estimated the global and regional emissions of BC using advanced statistical and computational methods. One used a Kalman Filter, including data from AERONET, NOAA, and other ground-based sources, to estimate global emissions of 17.8+/-5.6 Tg BC/year (with the increase attributable to East Asia, South Asia, Southeast Asia, and Eastern Europe - all regions which have had rapid urban, industrial, and economic expansion). The second additionally used remotely sensed measurements from MISR and a variance maximizing technique, uniquely quantifying fire and urban sources in Southeast Asia, as well as their large year-to-year variability over the past 12 years, leading to increases from 10% to 150%. These new emissions products, when run through our state-of-the art modelling system of chemistry, physics, transport, removal, radiation, and climate, match 140 ground stations and satellites better in both an absolute and a temporal sense. New work now further includes trace species measurements from OMI, which are used with the variance maximizing technique to constrain the types of emissions sources. Furthermore, land-use change and fire estimation products from MODIS are also included, which provide other constraints on the temporal and spatial nature of the variations of intermittent sources like fires or new permanent sources like expanded urbanization. This talk will introduce a new, top-down constrained, weekly varying BC emissions dataset, show that it produces a better fit with observations, and draw conclusions about the sources and impacts from urbanization one hand, and fires on another hand. Results specific to the Southeast and East Asia will demonstrate inter- and intra-annual variations, such as the function of

  19. Source contributions and regional transport of primary particulate matter in China.

    Science.gov (United States)

    Hu, Jianlin; Wu, Li; Zheng, Bo; Zhang, Qiang; He, Kebin; Chang, Qing; Li, Xinghua; Yang, Fumo; Ying, Qi; Zhang, Hongliang

    2015-12-01

    A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China. Four months were simulated with emissions grouped to eight regions and six sectors. Predicted elemental carbon (EC), primary organic carbon (POC), and PPM concentrations and source contributions agree with measurements and have significant spatiotemporal variations. Residential is a major contributor to spring/winter EC (50-80%), POC (60%-90%), and PPM (30-70%). For summer/fall, industrial contributes 30-50% for EC/POC and 40-60% for PPM. Transportation is more important for EC (20-30%) than POC/PPM (Guangzhou and Chongqing. Dust contributes to 1/3-1/2 in spring/fall of Beijing, Xi'an and Chongqing. Based on sector-region combination, local residential/transportation and residential/industrial from Heibei are major contributors to spring PPM in Beijing. In summer/fall, local industrial is the largest. In winter, residential/industrial from local and Hebei account for >90% in Beijing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Modeling the explosion-source region: An overview

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1993-01-01

    The explosion-source region is defined as the region surrounding an underground explosion that cannot be described by elastic or anelastic theory. This region extends typically to ranges up to 1 km/(kt) 1/3 but for some purposes, such as yield estimation via hydrodynamic means (CORRTEX and HYDRO PLUS), the maximum range of interest is less by an order of magnitude. For the simulation or analysis of seismic signals, however, what is required is the time resolved motion and stress state at the inelastic boundary. Various analytic approximations have been made for these boundary conditions, but since they rely on near-field empirical data they cannot be expected to reliably extrapolate to different explosion sites. More important, without some knowledge of the initial energy density and the characteristics of the medium immediately surrounding the explosion, these simplified models are unable to distinguish chemical from nuclear explosions, identify cavity decoupling, or account for such phenomena as anomalous dissipation via pore collapse

  1. Input for seismic hazard assessment using Vrancea seismic source region

    International Nuclear Information System (INIS)

    Ivan, Iren-Adelina; Enescu, B.D.; Pantea, A.

    1998-01-01

    We use an extended and combined data base including historical and modern, qualitative and quantitative data, i.e., more than 25 events during the period 1790 - 1990 with epicentral/maximum intensities ranging from X to V degree (MSK scale), the variation interval of isoseismal curves ranging from IX th to III rd degree. The data set was analysed using both the sum phasor techniques of Ridelek and Sacks (1984) for different magnitudes and depth intervals and the Stepp's method. For the assessment of seismic hazard we need a pattern of seismic source regions including an estimation for the maximum expected magnitude and the return period for the studied regions. Another necessary step in seismic hazard assessment is to develop attenuation relationships specific to a seismogenic zone, particularly to sub-crustal earthquakes of Vrancea region. The conceptual frame involves the use of appropriate decay models and consideration of the randomness in the attenuation, taking into account the azimuthal variation of the isoseist shapes. (authors)

  2. Electron dynamics in RF sources with a laser controlled emission

    CERN Document Server

    Khodak, I V; Metrochenko, V V

    2001-01-01

    Photoemission radiofrequency (RF) electron sources are sources of electron beams with extremely high brightness. Beam bunching processes in such devices are well studied in case when laser pulse duration is much lower of rf oscillation period.At the same time photoemission RF guns have some merits when operating in 'long-pulse' mode. In this case the laser pulse duration is much higher of rf oscillation period but much lower of rise time of oscillations in a gun cavity. Beam parameters at the gun output are compared for photoemission and thermoemission cathode applications. The paper presents results of a beam dynamics simulation in such guns with different resonance structures. Questions connected with defining of the current pulse peak value that can be obtained in such guns are discussed.

  3. Broadband transmission grating spectrometer for measuring the emission spectrum of EUV sources

    NARCIS (Netherlands)

    Bayraktar, Muharrem; Bastiaens, Hubertus M.J.; Bruineman, Caspar; Vratzov, Boris; Bijkerk, Frederik

    2016-01-01

    Extreme ultraviolet (EUV) light sources and their optimization for emission within a narrow wavelength band are essential in applications such as photolithography. Most light sources however also emit radiation outside this wavelength band and have a spectrum extending up to deep ultraviolet (DUV)

  4. 76 FR 35806 - Amendments to National Emission Standards for Hazardous Air Pollutants for Area Sources: Plating...

    Science.gov (United States)

    2011-06-20

    ...., Washington, DC. The Public Reading Room is open from 8:30 a.m. to 4:30 p.m. Eastern Standard Time (EST... parties interested in commenting must do so at this time. For further information, please see the... chromium anodizing sources, as those sources are subject to 40 CFR part 63, subpart N, ``Chromium Emissions...

  5. 78 FR 7487 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Science.gov (United States)

    2013-02-01

    ... small coal-fired units (i.e., with a design heat input capacity of less than 10 MMBtu/hr) are subject to... existing area source coal-fired boilers with heat input capacity of 10 MMBtu/hr or greater may need to... most emissions from area source boilers, two pollutants emitted by coal-fired boilers, POM as 7-PAH and...

  6. Innovative Entrepreneurship: a Source of Economic Growth in the Region

    Directory of Open Access Journals (Sweden)

    Elena Leonidovna Andreeva

    2016-09-01

    Full Text Available This article presents the findings of the study on the role of innovative entrepreneurship in the regional economy. The analysis is based on the methodology developed by Hermann Simon, a German scientist who has coined the term ”hidden champions” describing the phenomenon of little-known successful companies that act as innovative growth engines in the German economy. Today, the economies in different countries are developing amid the ”new normal,” in which no expected recovery followed the global crisis of 2008. This makes it necessary to rethink the role of entrepreneurship during a prolonged recession. The authors proposed and tested the hypothesis that, in this environment, the economic growth in the country and the region is increasingly determined not so much by large businesses, but by many small innovative companies. To identify Russian ”hidden champions,” we studied more than 1247 companies listed in the Innovation and Investment Market, a specialized section of the Moscow Exchange, and included in the specialized Register of Business Entities that use nanotechnology. We identified specifically Russian features of innovative entrepreneurship related to national cultural and historical characteristics and the current policy of import substitution. The authors proposed their own method for assessing the innovative entrepreneurship as a source of economic growth in the Russian regions that defines five groups of innovative entrepreneurs (global market leader, one of the global market leaders, Russian market leader, one of the Russian market leaders, not the leader in the Russian market and compares them with large companies in terms of turnover and profit dynamics. Based on such criteria as ”number of ”hidden champions” and ”number of large enterprises per 100 thousand organizations,” we built a model for the ratio of ”hidden champions” to major companies in the Russian regions that identifies, for each criterion

  7. Airborne black carbon concentrations over an urban region in western India-temporal variability, effects of meteorology, and source regions.

    Science.gov (United States)

    Bapna, Mukund; Sunder Raman, Ramya; Ramachandran, S; Rajesh, T A

    2013-03-01

    This study characterizes over 5 years of high time resolution (5 min), airborne black carbon (BC) concentrations (July 2003 to December 2008) measured over Ahmedabad, an urban region in western India. The data were used to obtain different time averages of BC concentrations, and these averages were then used to assess the diurnal, seasonal, and annual variability of BC over the study region. Assessment of diurnal variations revealed a strong association between BC concentrations and vehicular traffic. Peaks in BC concentration were co-incident with the morning (0730 to 0830, LST) and late evening (1930 to 2030, LST) rush hour traffic. Additionally, diurnal variability in BC concentrations during major festivals (Diwali and Dushera during the months of October/November) revealed an increase in BC concentrations due to fireworks displays. Maximum half hourly BC concentrations during the festival days were as high as 79.8 μg m(-3). However, the high concentrations rapidly decayed suggesting that local meteorology during the festive season was favorable for aerosol dispersion. A multiple linear regression (MLR) model with BC as the dependent variable and meteorological parameters as independent variables was fitted. The variability in temperature, humidity, wind speed, and wind direction accounted for about 49% of the variability in measured BC concentrations. Conditional probability function (CPF) analysis was used to identify the geographical location of local source regions contributing to the effective BC measured (at 880 nm) at the receptor site. The east north-east (ENE) direction to the receptor was identified as a major source region. National highway (NH8) and two coal-fired thermal power stations (at Gandhinagar and Sabarmati) were located in the identified direction, suggesting that local traffic and power plant emissions were likely contributors to the measured BC.

  8. [Metallic content of water sources and drinkable water in industrial cities of Murmansk region].

    Science.gov (United States)

    Doushkina, E V; Dudarev, A A; Sladkova, Yu N; Zachinskaya, I Yu; Chupakhin, V S; Goushchin, I V; Talykova, L V; Nikanov, A N

    2015-01-01

    Performed in 2013, sampling of centralized and noncentralized water-supply and analysis of engineering technology materials on household water use in 6 cities of Murmansk region (Nikel, Zapolyarny, Olenegorsk, Montchegorsk, Apatity, Kirovsk), subjected to industrial emissions, enabled to evaluate and compare levels of 15 metals in water sources (lakes and springs) and the cities' drinkable waters. Findings are that some cities lack sanitary protection zones for water sources, most cities require preliminary water processing, water desinfection involves only chlorination. Concentrations of most metals in water samples from all the cities at the points of water intake, water preparation and water supply are within the hygienic norms. But values significantly (2-5 times) exceeding MACs (both in water sources and in drinkable waters of the cities) were seen for aluminium in Kirovsk city and for nickel in Zapolarny and Nikel cities. To decrease effects of aluminium, nickel and their compounds in the three cities' residents (and preserve health of the population and offsprings), the authors necessitate specification and adaptation of measures to purify the drinkable waters from the pollutants. In all the cities studied, significantly increased concentrations of iron and other metals were seen during water transportation from the source to the city supply--that necessitates replacement of depreciated water supply systems by modern ones. Water taken from Petchenga region springs demonstrated relatively low levels of metals, except from strontium and barium.

  9. Integration and Optimization of Alternative Sources of Energy in a Remote Region

    Science.gov (United States)

    Berberi, Pellumb; Inodnorjani, Spiro; Aleti, Riza

    2010-01-01

    In a remote coastal region supply of energy from national grid is insufficient for a sustainable development. Integration and optimization of local alternative renewable energy sources is an optional solution of the problem. In this paper we have studied the energetic potential of local sources of renewable energy (water, solar, wind and biomass). A bottom-up energy system optimization model is proposed in order to support planning policies for promoting the use of renewable energy sources. A software, based on multiple factors and constrains analysis for optimization energy flow is proposed, which provides detailed information for exploitation each source of energy, power and heat generation, GHG emissions and end-use sectors. Economical analysis shows that with existing technologies both stand alone and regional facilities may be feasible. Improving specific legislation will foster investments from Central or Local Governments and also from individuals, private companies or small families. The study is carried on the frame work of a FP6 project "Integrated Renewable Energy System."

  10. Using air quality modeling to study source-receptor relationships between nitrogen oxides emissions and ozone exposures over the United States.

    Science.gov (United States)

    Tong, Daniel Q; Muller, Nicholas Z; Kan, Haidong; Mendelsohn, Robert O

    2009-11-01

    Human exposure to ambient ozone (O(3)) has been linked to a variety of adverse health effects. The ozone level at a location is contributed by local production, regional transport, and background ozone. This study combines detailed emission inventory, air quality modeling, and census data to investigate the source-receptor relationships between nitrogen oxides (NO(x)) emissions and population exposure to ambient O(3) in 48 states over the continental United States. By removing NO(x) emissions from each state one at a time, we calculate the change in O(3) exposures by examining the difference between the base and the sensitivity simulations. Based on the 49 simulations, we construct state-level and census region-level source-receptor matrices describing the relationships among these states/regions. We find that, for 43 receptor states, cumulative NO(x) emissions from upwind states contribute more to O(3) exposures than the state's own emissions. In-state emissions are responsible for less than 15% of O(3) exposures in 90% of U.S. states. A state's NO(x) emissions can influence 2 to 40 downwind states by at least a 0.1 ppbv change in population-averaged O(3) exposure. The results suggest that the U.S. generally needs a regional strategy to effectively reduce O(3) exposures. But the current regional emission control program in the U.S. is a cap-and-trade program that assumes the marginal damage of every ton of NO(x) is equal. In this study, the average O(3) exposures caused by one ton of NO(x) emissions ranges from -2.0 to 2.3 ppm-people-hours depending on the state. The actual damage caused by one ton of NO(x) emissions varies considerably over space.

  11. Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China.

    Science.gov (United States)

    Hong-Li, Wang; Sheng-Ao, Jing; Sheng-Rong, Lou; Qing-Yao, Hu; Li, Li; Shi-Kang, Tao; Cheng, Huang; Li-Ping, Qiao; Chang-Hong, Chen

    2017-12-31

    Volatile Organic Compounds (VOCs) source profiles of on-road vehicles were widely studied as their critical roles in VOCs source apportionment and abatement measures in megacities. Studies of VOCs source profiles from on-road motor vehicles from 2001 to 2016 were summarized in this study, with a focus on the comparisons among different studies and the potential impact of different factors. Generally, non-methane hydrocarbons dominated the source profile of on-road vehicle emissions. Carbonyls, potential important components of vehicle emission, were seldom considered in VOCs emissions of vehicles in the past and should be paid more attention to in further study. VOCs source profiles showed some variations among different studies, and 6 factors were extracted and studied due to their impact to VOCs source profile of on-road vehicles. Vehicle types, being dependent on engine types, and fuel types were two dominant factors impacting VOCs sources profiles of vehicles. In comparison, impacts of ignitions, driving conditions and accumulated mileage were mainly due to their influence on the combustion efficiency. An opening and interactive database of VOCs from vehicle emissions was critically essential in future, and mechanisms of sharing and inputting relative research results should be formed to encourage researchers join the database establishment. Correspondingly, detailed quality assurance and quality control procedures were also very important, which included the information of test vehicles and test methods as detailed as possible. Based on the community above, a better uncertainty analysis could be carried out for the VOCs emissions profiles, which was critically important to understand the VOCs emission characteristics of the vehicle emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Background information on sources of low-level radionuclide emissions to air

    International Nuclear Information System (INIS)

    Corbit, C.D.; Herrington, W.N.; Higby, D.P.; Stout, L.A.; Corley, J.P.

    1983-09-01

    This report provides a general description and reported emissions for eight low-level radioactive source categories, including facilties that are licensed by the Nuclear Regulatory Commission (NRC) and Agreement States, and non-Department of Energy (DOE) federal facilities. The eight categories of low-level radioactive source facilities covered by this report are: research and test reactors, accelerators, the radiopharmaceutical industry, source manufacturers, medical facilities, laboratories, naval shipyards, and low-level commercial waste disposal sites. Under each category five elements are addressed: a general description, a facility and process description, the emission control systems, a site description, and the radionuclides released to air (from routine operations)

  13. Background information on sources of low-level radionuclide emissions to air

    Energy Technology Data Exchange (ETDEWEB)

    Corbit, C.D.; Herrington, W.N.; Higby, D.P.; Stout, L.A.; Corley, J.P.

    1983-09-01

    This report provides a general description and reported emissions for eight low-level radioactive source categories, including facilties that are licensed by the Nuclear Regulatory Commission (NRC) and Agreement States, and non-Department of Energy (DOE) federal facilities. The eight categories of low-level radioactive source facilities covered by this report are: research and test reactors, accelerators, the radiopharmaceutical industry, source manufacturers, medical facilities, laboratories, naval shipyards, and low-level commercial waste disposal sites. Under each category five elements are addressed: a general description, a facility and process description, the emission control systems, a site description, and the radionuclides released to air (from routine operations).

  14. Doppler shift measurement of Balmer-alpha line spectrum emission from a plasma in a negative hydrogen ion source

    International Nuclear Information System (INIS)

    Wada, M.; Doi, K.; Kisaki, M.; Nakano, H.; Tsumori, K.; Nishiura, M.

    2015-01-01

    Balmer-α light emission from the extraction region of the LHD one-third ion source has shown a characteristic Doppler broadening in the wavelength spectrum detected by a high resolution spectrometer. The spectrum resembles Gaussian distribution near the wavelength of the intensity peak, while it has an additional component of a broader foot. The measured broadening near the wavelength of the intensity peak corresponds to 0.6 eV hydrogen atom temperature. The spectrum exhibits a larger expansion in the blue wing which becomes smaller when the line of sight is tilted toward the driver region from the original observation axis parallel to the plasma grid. A surface collision simulation model predicts the possibility of hydrogen reflection at the plasma grid surface to form a broad Balmer-α light emission spectrum

  15. Doppler shift measurement of Balmer-alpha line spectrum emission from a plasma in a negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wada, M., E-mail: mwada@mail.doshisha.ac.jp; Doi, K. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 Japan (Japan); Kisaki, M.; Nakano, H.; Tsumori, K. [National Institute for Fusion Science, Toki, Gifu (Japan); Nishiura, M. [Graduate School of Frontier Sciences, The Universtiy of Tokyo, Chiba 277-8561 (Japan)

    2015-04-08

    Balmer-α light emission from the extraction region of the LHD one-third ion source has shown a characteristic Doppler broadening in the wavelength spectrum detected by a high resolution spectrometer. The spectrum resembles Gaussian distribution near the wavelength of the intensity peak, while it has an additional component of a broader foot. The measured broadening near the wavelength of the intensity peak corresponds to 0.6 eV hydrogen atom temperature. The spectrum exhibits a larger expansion in the blue wing which becomes smaller when the line of sight is tilted toward the driver region from the original observation axis parallel to the plasma grid. A surface collision simulation model predicts the possibility of hydrogen reflection at the plasma grid surface to form a broad Balmer-α light emission spectrum.

  16. Volatile organic compounds from vegetation in southern Yunnan Province, China: Emission rates and some potential regional implications

    Science.gov (United States)

    Geron, Chris; Owen, Sue; Guenther, Alex; Greenberg, Jim; Rasmussen, Rei; Hui Bai, Jian; Li, Qing-Jun; Baker, Brad

    Little information is currently available regarding emissions of biogenic volatile organic compounds (BVOCs) in southern Asia. To address the need for BVOC emission estimates in regional atmospheric chemistry simulations, 95 common plant species were screened for emissions of BVOC in and near the Xishuangbanna Tropical Biological Gardens in southern Yunnan Province, Peoples' Republic of China in February 2003. In situ measurements with leaf cuvettes and branch bag enclosures were used in combination with portable gas chromatography, flame ionization, photoionization, and mass spectral detection to identify and quantify BVOC emissions. Forty-four of the species examined emitted isoprene at rates exceeding 20 μg C g -1 (leaf dry weight) h -1. An emphasis was placed on the genus Ficus, which is important in the region and occupies a wide range of ecological niches. Several species in the footprint of a nearby flux tower were also examined. Several palm species and an abundant fern ( Cyclosorus parasiticus) emitted substantial amounts of isoprene, and probably accounted for observed daytime mean isoprene fluxes from the understory of a Hevea brasiliensis plantation of 1.0 and 0.15 mg C m -2 h -1 during the wet and dry seasons, respectively. These measurements verify that both the forest floor and canopy in this region can be sources of isoprene. Monoterpene emissions exceeded 1.0 μg-C g -1 (leaf dry weight) h -1 from only 4 of 38 species surveyed, including some Ficus species and H. brasiliensis. However most of the trees of the latter species were sparsely foliated due to dry season senescence, and emission factors are approximately an order of magnitude lower than those reported during the wet season. BVOC emission rates and physiology of many species are impacted by reduced moisture availability, especially Mangifera indica. South Asia is a region undergoing rapid landuse change and forest plantation establishment, with large increases in area of high BVOC

  17. China’s regional CH_4 emissions: Characteristics, interregional transfer and mitigation policies

    International Nuclear Information System (INIS)

    Zhang, Bo; Yang, T.R.; Chen, B.; Sun, X.D.

    2016-01-01

    Highlights: • China’s CH_4 emissions have significant contributions to global climate change. • The total CH_4 emissions in 2010 amount to 44.3 Tg, half from energy activities. • Half of the national total direct emissions are embodied in interregional trade. • 2/3 of the embodied emission transfers via domestic trade are energy-related. • A national comprehensive action plan to reduce CH_4 emissions should be designed. - Abstract: Methane (CH_4), the second largest greenhouse gas emitted in China, hasn’t been given enough attention in the country’s policies and actions for addressing climate change. This paper aims to perform a bottom-up estimation and multi-regional input–output analysis for China’s anthropogenic CH_4 emissions from both production-based and consumption-based insights. As the world’s largest CH_4 emitter, China’s total anthropogenic CH_4 emissions in 2010 are estimated at 44.3 Tg and correspond to 1507.9 Mt CO_2-eq by the lower global warming potential factor of 34. Energy activities as the largest contributor hold about half of the national total emissions, mainly from coal mining. Inherent economic driving factors covering consumption, investment and international exports play an important role in determining regional CH_4 emission inventories. Interregional transfers of embodied emissions via domestic trade are equivalent to half of the national total emissions from domestic production, of which two thirds are energy-related embodied emissions. Most central and western regions as net interregional CH_4 exporters such as Shanxi and Inner Mongolia have higher direct emissions, while the eastern coastal regions as net interregional importers such as Guangdong and Jiangsu always have larger embodied emissions. Since China’s CH_4 emissions have significant contributions to global climate change, a national comprehensive action plan to reduce CH_4 emissions should be designed by considering supply-side and demand

  18. ALMA Thermal Observations of a Proposed Plume Source Region on Europa

    Energy Technology Data Exchange (ETDEWEB)

    Trumbo, Samantha K.; Brown, Michael E. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Butler, Bryan J. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States)

    2017-10-01

    We present a daytime thermal image of Europa taken with the Atacama Large Millimeter Array. The imaged region includes the area northwest of Pwyll Crater, which is associated with a nighttime thermal excess seen by the Galileo Photopolarimeter Radiometer and with two potential plume detections. We develop a global thermal model of Europa and simulate both the daytime and nighttime thermal emission to determine if the nighttime thermal anomaly is caused by excess endogenic heat flow, as might be expected from a plume source region. We find that the nighttime and daytime brightness temperatures near Pwyll Crater cannot be matched by including excess heat flow at that location. Rather, we can successfully model both measurements by increasing the local thermal inertia of the surface.

  19. Source apportionment of sulfate and nitrate particulate matter in the Eastern United States and effectiveness of emission control programs.

    Science.gov (United States)

    Zhang, Hongliang; Hu, Jianlin; Kleeman, Michael; Ying, Qi

    2014-08-15

    Reducing population exposure to PM2.5 in the eastern US will require control of secondary sulfate and nitrate. A source-oriented Community Multi-scale Air Quality (CMAQ) model is used to determine contributions of major emission sources to nitrate and sulfate concentrations in the seven eastern US cities (New York City, Pittsburgh, Baltimore, Chicago, Detroit, St. Paul, and Winston-Salem) in January and August of 2000 and 2006. Identified major nitrate sources include on-road gasoline-powered vehicles, diesel engines, natural gas and coal combustion. From 2000 to 2006, January nitrate concentrations decreased by 25-68% for all the seven cities. On average, ~53% of this change was caused by emissions controls while 47% was caused by meteorology variations. August nitrate concentrations decreased by a maximum of 68% in New York City but Detroit experienced increasing August nitrate concentrations by up to 33%. On average, ~33% of the reduction in nitrate is offset by increases associated with meteorological conditions that favor nitrate formation. Coal combustion and natural gas are the dominant sources for sulfate in both seasons. January sulfate decrease from 2000 to 2006 in all cities by 4-58% except New York City, which increases by 13%. On average, ~93% of the reduction in sulfate was attributed to emission controls with 7% associated with changes in meteorology. August sulfate concentrations decrease by 11-44% in all cities. On average, emission controls alone between 2000 and 2006 would have caused 6% more reduction but the effectiveness of the controls was mitigated by meteorology conditions more favorable to sulfate production in 2006 vs. 2000. The results of this study suggest that regional emissions controls between 2000 and 2006 have been effective at reducing population exposure to PM2.5 in the eastern US, but yearly variations in meteorology must be carefully considered when assessing the exact magnitude of the control benefits. Copyright © 2014

  20. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2004-01-01

    ée on Martinique, of Soufriere on St. Vincent and of the Kick’em Jenny underwater volcano near Grenada and provides an overall risk assessment of tsunami generation from volcanic sources in the Caribbean region.

  1. Effect of regional precursor emission controls on long-range ozone transport – Part 1: Short-term changes in ozone air quality

    Directory of Open Access Journals (Sweden)

    J. J. West

    2009-08-01

    Full Text Available Observations and models demonstrate that ozone and its precursors can be transported between continents and across oceans. We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx emissions from each of nine world regions on surface ozone air quality in that region and all other regions. In doing so, we quantify the relative importance of long-range transport between all source-receptor pairs, for direct short-term ozone changes. We find that for population-weighted concentrations during the three-month "ozone-season", the strongest inter-regional influences are from Europe to the Former Soviet Union, East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for source regions in the tropics and Southern Hemisphere, which we attribute mainly to greater sensitivity to changes in NOx in the lower troposphere, and secondarily to increased vertical convection to the free troposphere in tropical regions, allowing pollutants to be transported further. Results show, for example, that NOx reductions in North America are ~20% as effective per unit NOx in reducing ozone in Europe during summer, as NOx reductions from Europe itself. Reducing anthropogenic emissions of non-methane volatile organic compounds (NMVOCs and carbon monoxide (CO by 10% in selected regions, can have as large an impact on long-range ozone transport as NOx reductions, depending on the source region. We find that for many source-receptor pairs, the season of greatest long-range influence does not coincide with the season when ozone is highest in the receptor region. Reducing NOx emissions in most source regions causes a larger decrease in export of ozone from the source region than in ozone production outside of the source region.

  2. An inventory of potential PCDD and PCDF emission sources in the mainland of China

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jun; Xiaoyan, Tang [Peking Univ., Beijing (China); Peng, Hao [Central Univ. for Nationalities, Beijing (China)

    2004-09-15

    Polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofurans (PCDF) are widespread environmental pollutants. A number of countries have developed national inventories of PCDD/F emission, such as USA, EU Nations and Japan. However, due to the lack of PCDD/F data measured in China and the uncertain nature of the documentation available on emission factors, the report on inventories of dioxin emission is absent. With the municipal population growth, economic development and living-standard improvement, China faces many severe environment issues including potential problems related to PCDD/F. The country is aware of potential dioxin sources such as: incineration, iron and steel industry, chemical industry, fires, coal power plant, foundries, PCB in capacitors and transformers, sintering, traffic emission. In 2001, China signed the Stockholm Convention on Persistent Organic Pollutants in Stockholm. Therefore, there is a need for information regarding dioxin emission from these sources for taking actions to reduce and/or eliminate the release of dioxins in China, and reduce human exposure. In this study, we identify those potential PCDD/F emission sources and work out the first inventory on PCDD/F emission into the environment in China.

  3. BLACK Carbon Emissions from Diesel Sources in the Largest Arctic City: Case Study of Murmansk

    Science.gov (United States)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2014-12-01

    Russia has very little data on its black carbon (BC) emissions. Because Russia makes up such a large share of the Arctic, understanding Russian emissions will improve our understanding of overall BC levels, BC in the Arctic and the link between BC and climate change. This paper provides a detailed, bottom-up inventory of BC emissions from diesel sources in Murmansk, Russia, along with uncertainty estimates associated with these emissions. The research team developed a detailed data collection methodology. The methodology involves assessing the vehicle fleet and activity in Murmansk using traffic, parking lot and driver surveys combined with an existing database from a vehicle inspection station and statistical data. The team also assessed the most appropriate emission factors, drawing from both Russian and international inventory methodologies. The researchers also compared fuel consumption using statistical data and bottom-up fuel calculations. They then calculated emissions for on-road transportation, off-road transportation (including mines), diesel generators, fishing and other sources. The article also provides a preliminary assessment of Russia-wide emissions of black carbon from diesel sources.

  4. Consideration of Fugitive Emissions in Major Source Determinations

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  5. Glow discharge lamp: a light source for optical emission spectroscopy

    International Nuclear Information System (INIS)

    Vishwanathan, K.S.; Srinivasan, V.; Nalini, S.; Mahalingam, T.R.

    1990-01-01

    A glow discharge lamp based on a modified version of the Grimm design has been fabricated. Its utility as a radiation source for optical emmission spectrography by standardising a method for the analysis of low alloy steels using a set of certified standards from DMRL, Hyderabad, has been demonstrated. A model has been proposed where the sputtering rates of different metals have been correlated with their heats of sublimation, metallic radii and densities. Sputtering rates of ten different metals obtained from literature have been used to test this model, and the correlation appears to be excellent. (author). 19 re fs., 13 figs., 2 tabs

  6. X-RAY EMISSION FROM YOUNG STARS IN THE MASSIVE STAR-FORMING REGION IRAS 20126+4104

    International Nuclear Information System (INIS)

    Anderson, C. N.; Hofner, P.; Creech-Eakman, M.; Shepherd, D.

    2011-01-01

    We present a 40 ks Chandra observation of the IRAS 20126+4104 core region. In the inner 6'' two X-ray sources were detected, which are coincident with the radio jet source I20S and the variable radio source I20Var. No X-ray emission was detected from the nearby massive protostar I20N. The spectra of both detected sources are hard and highly absorbed, with no emission below 3 keV. For I20S, the measured 0.5-8 keV count rate was 4.3 counts ks -1 . The X-ray spectrum was fitted with an absorbed 1T APEC model with an energy of kT =10 keV and an absorbing column of N H = 1.2 x 10 23 cm -2 . An unabsorbed X-ray luminosity of about 1.4 x 10 32 erg s -1 was estimated. The spectrum shows broad line emission between 6.4 and 6.7 keV, indicative of emission from both neutral and highly ionized iron. The X-ray light curve indicates that I20S is marginally variable; however, no flare emission was observed. The variable radio source I20Var was detected with a count rate of 0.9 counts ks -1 but there was no evidence of X-ray variability. The best-fit spectral model is a 1T APEC model with an absorbing hydrogen column of N H = 1.1 x 10 23 cm -2 and a plasma energy of kT = 6.0 keV. The unabsorbed X-ray luminosity is about 3 x 10 31 erg s -1 .

  7. Source apportionment of traffic emissions of particulate matter using tunnel measurements

    Science.gov (United States)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal; Mao, Hongjun; Prain, Hunter Douglas; Bull, Ian D.

    2013-10-01

    This study aims to quantify exhaust/non-exhaust emissions and the uncertainties associated with them by combining innovative motorway tunnel sampling and source apportionment modelling. Analytical techniques ICP-AES and GC-MS were used to identify the metallic and organic composition of PM10, respectively. Good correlation was observed between Fe, Cu, Mn, Ni, Pb and Sb and change in traffic volume. The concentration of polycyclic aromatic hydrocarbons and other organics varies significantly at the entrance and exit site of the tunnel, with fluoranthene, pyrene, benzo[a]pyrene, chrysene and benzothiazole having the highest incremented concentrations. The application of Principal Component Analysis and Multiple Linear Regression Analysis helped to identify the emission sources for 82% of the total PM10 mass inside the tunnel. Identified sources include resuspension (27%), diesel exhaust emissions (21%), petrol exhaust emissions (12%), brake wear emissions (11%) and road surface wear (11%). This study shows that major health related chemical species of PM10 originate from non-exhaust sources, further signifying the need for legislation to reduce these emissions.

  8. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia

    International Nuclear Information System (INIS)

    Marlier, Miriam E; DeFries, Ruth S; Kim, Patrick S; Koplitz, Shannon N; Jacob, Daniel J; Mickley, Loretta J; Myers, Samuel S

    2015-01-01

    Fires associated with agricultural and plantation development in Indonesia impact ecosystem services and release emissions into the atmosphere that degrade regional air quality and contribute to greenhouse gas concentrations. In this study, we estimate the relative contributions of the oil palm, timber (for wood pulp and paper), and logging industries in Sumatra and Kalimantan to land cover change, fire activity, and regional population exposure to smoke concentrations. Concessions for these three industries cover 21% and 49% of the land area in Sumatra and Kalimantan respectively, with the highest overall area in lowlands on mineral soils instead of more carbon-rich peatlands. In 2012, most remaining forest area was located in logging concessions for both islands, and for all combined concessions, there was higher remaining lowland and peatland forest area in Kalimantan (45% and 46%, respectively) versus Sumatra (20% and 27%, respectively). Emissions from all combined concessions comprised 41% of total fire emissions (within and outside of concession boundaries) in Sumatra and 27% in Kalimantan for the 2006 burning season, which had high fire activity relative to decadal emissions. Most fire emissions were observed in concessions located on peatlands and non-forested lowlands, the latter of which could include concessions that are currently under production, cleared in preparation for production, or abandoned lands. For the 2006 burning season, timber concessions from Sumatra (47% of area and 88% of emissions) and oil palm concessions from Kalimantan (33% of area and 67% of emissions) contributed the most to concession-related fire emissions from each island. Although fire emissions from concessions were higher in Kalimantan, emissions from Sumatra contributed 63% of concession-related smoke concentrations for the population-weighted region because fire sources were located closer to population centers. In order to protect regional public health, our results

  9. SOURCE REGIONS OF THE TYPE II RADIO BURST OBSERVED DURING A CME–CME INTERACTION ON 2013 MAY 22

    International Nuclear Information System (INIS)

    Mäkelä, P.; Reiner, M. J.; Akiyama, S.; Gopalswamy, N.; Krupar, V.

    2016-01-01

    We report on our study of radio source regions during the type II radio burst on 2013 May 22 based on direction-finding analysis of the Wind /WAVES and STEREO /WAVES (SWAVES) radio observations at decameter–hectometric wavelengths. The type II emission showed an enhancement that coincided with the interaction of two coronal mass ejections (CMEs) launched in sequence along closely spaced trajectories. The triangulation of the SWAVES source directions posited the ecliptic projections of the radio sources near the line connecting the Sun and the STEREO-A spacecraft. The WAVES and SWAVES source directions revealed shifts in the latitude of the radio source, indicating that the spatial location of the dominant source of the type II emission varies during the CME–CME interaction. The WAVES source directions close to 1 MHz frequencies matched the location of the leading edge of the primary CME seen in the images of the LASCO/C3 coronagraph. This correspondence of spatial locations at both wavelengths confirms that the CME–CME interaction region is the source of the type II enhancement. Comparison of radio and white-light observations also showed that at lower frequencies scattering significantly affects radio wave propagation.

  10. Source apportionment vs. emission inventories of non-methane hydrocarbons (NMHC in an urban area of the Middle East: local and global perspectives

    Directory of Open Access Journals (Sweden)

    T. Salameh

    2016-03-01

    Full Text Available We applied the positive matrix factorization model to two large data sets collected during two intensive measurement campaigns (summer 2011 and winter 2012 at a sub-urban site in Beirut, Lebanon, in order to identify NMHC (non-methane hydrocarbons sources and quantify their contribution to ambient levels. Six factors were identified in winter and five factors in summer. PMF-resolved source profiles were consistent with source profiles established by near-field measurements. The major sources were traffic-related emissions (combustion and gasoline evaporation in winter and in summer accounting for 51 and 74 wt %, respectively, in agreement with the national emission inventory. The gasoline evaporation related to traffic source had a significant contribution regardless of the season (22 wt % in winter and 30 wt % in summer. The NMHC emissions from road transport are estimated from observations and PMF results, and compared to local and global emission inventories. The PMF analysis finds reasonable differences on emission rates, of 20–39 % higher than the national road transport inventory. However, global inventories (ACCMIP, EDGAR, MACCity underestimate the emissions up to a factor of 10 for the transportation sector. When combining emission inventory to our results, there is strong evidence that control measures in Lebanon should be targeted on mitigating the NMHC emissions from the traffic-related sources. From a global perspective, an assessment of VOC (volatile organic compounds anthropogenic emission inventories for the Middle East region as a whole seems necessary as these emissions could be much higher than expected at least from the road transport sector.

  11. Diffuse gamma-ray emission from self-confined cosmic rays around Galactic sources

    Science.gov (United States)

    D'Angelo, Marta; Morlino, Giovanni; Amato, Elena; Blasi, Pasquale

    2018-02-01

    The propagation of particles accelerated at supernova remnant shocks and escaping the parent remnants is likely to proceed in a strongly non-linear regime, due to the efficient self-generation of Alfvén waves excited through streaming instability near the sources. Depending on the amount of neutral hydrogen present in the regions around the sites of supernova explosions, cosmic rays may accumulate an appreciable grammage in the same regions and get self-confined for non-negligible times, which in turn results in an enhanced rate of production of secondaries. Here we calculate the contribution to the diffuse gamma-ray background due to the overlap along lines of sight of several of these extended haloes as due to pion production induced by self-confined cosmic rays. We find that if the density of neutrals is low, the haloes can account for a substantial fraction of the diffuse emission observed by Fermi-Large Area Telescope (LAT), depending on the orientation of the line of sight with respect to the direction of the Galactic Centre.

  12. Particle and VOC emission factor measurements for anthropogenic sources in West Africa

    Directory of Open Access Journals (Sweden)

    S. Keita

    2018-06-01

    Full Text Available A number of campaigns have been carried out to establish the emission factors of pollutants from fuel combustion in West Africa, as part of work package 2 (Air Pollution and Health of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa FP7 program. Emission sources considered here include wood (hevea and iroko and charcoal burning, charcoal making, open trash burning, and vehicle emissions, including trucks, cars, buses and two-wheeled vehicles. Emission factors of total particulate matter (TPM, elemental carbon (EC, primary organic carbon (OC and volatile organic compounds (VOCs have been established. In addition, emission factor measurements were performed in combustion chambers in order to reproduce field burning conditions for a tropical hardwood (hevea, and obtain particulate emission factors by size (PM0.25, PM1, PM2.5 and PM10. Particle samples were collected on quartz fiber filters and analyzed using gravimetric method for TPM and thermal methods for EC and OC. The emission factors of 58 VOC species were determined using offline sampling on a sorbent tube. Emission factor results for two species of tropical hardwood burning of EC, OC and TPM are 0.98 ± 0.46 g kg−1 of fuel burned (g kg−1, 11.05 ± 4.55 and 41.12 ± 24.62 g kg−1, respectively. For traffic sources, the highest emission factors among particulate species are found for the two-wheeled vehicles with two-stroke engines (2.74 g kg−1 fuel for EC, 65.11 g kg−1 fuel for OC and 496 g kg−1 fuel for TPM. The largest VOC emissions are observed for two-stroke two-wheeled vehicles, which are up to 3 times higher than emissions from light-duty and heavy-duty vehicles. Isoprene and monoterpenes, which are usually associated with biogenic emissions, are present in almost all anthropogenic sources investigated during this work and could be as significant as aromatic emissions in wood burning (1 g kg−1 fuel. EC is

  13. Global organic carbon emissions from primary sources from 1960 to 2009

    Science.gov (United States)

    Huang, Ye; Shen, Huizhong; Chen, Yilin; Zhong, Qirui; Chen, Han; Wang, Rong; Shen, Guofeng; Liu, Junfeng; Li, Bengang; Tao, Shu

    2015-12-01

    In an attempt to reduce uncertainty, global organic carbon (OC) emissions from a total of 70 sources were compiled at 0.1° × 0.1° resolution for 2007 (PKU-OC-2007) and country scale from 1960 to 2009. The compilation took advantage of a new fuel-consumption data product (PKU-Fuel-2007) and a series of newly published emission factors (EFOC) in developing countries. The estimated OC emissions were 32.9 Tg (24.1-50.6 Tg as interquartile range), of which less than one third was anthropogenic in origin. Uncertainty resulted primarily from variations in EFOC. Asia, Africa, and South America had high emissions mainly because of residential biomass fuel burning or wildfires. Per-person OC emission in rural areas was three times that of urban areas because of the relatively high EFOC of residential solid fuels. Temporal trend of anthropogenic OC emissions depended on rural population, and was influenced primarily by residential crop residue and agricultural waste burning. Both the OC/PM2.5 ratio and emission intensity, defined as quantity of OC emissions per unit of fuel consumption for all sources, of anthropogenic OC followed a decreasing trend, indicating continuous improvement in combustion efficiency and control measures.

  14. Nature of the emission band of Dergaon meteorite in the region ...

    Indian Academy of Sciences (India)

    available colour film is used to photograph the spectrum. 3. Results and discussion. Figure 1 demonstrates the general feature of the emission band system in the region. 5700–6700 Å along with the Ar+ lasing line at 5145 Å. The emission band system and its densitometer tracing as shown in figure 2 indicate the diffuse ...

  15. Implications of greenhouse gas emission mitigation scenarios for the main Asian regions

    NARCIS (Netherlands)

    van Ruijven, B.J.|info:eu-repo/dai/nl/304834521; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; van Vliet, J.; Mendoza Beltran, A.; Deetman, S.; den Elzen, M.G.J.

    2012-01-01

    In order to limit global mean temperature increase, long-term greenhouse gas emissions need to be reduced. This paper discusses the implications of greenhouse gas emission reductions for major Asian regions (China, India, Indonesia, South-East Asia, Japan and Korea) based on results from the IMAGE

  16. Using mobile source emission reductions to offset stationary surce rule requirements

    International Nuclear Information System (INIS)

    Nazemi, M.A.; Beruldsen, K.J.

    1993-01-01

    A number of mobile source strategies have been evaluated that could potentially be used as an alternative means of compliance with existing stationary source regulations, at a lower cost. The evaluation was spurred by both public and private sector interest in identifying the lowest cost air pollution reduction strategies, and the realization that mobile sources are the predominate contributor to the air pollution problem in the South Coast Air Quality Basin. Strategies evaluated included removing older vehicles from the in-use population, use of alternative fuels, inspection and maintenance measures, application of remote sensing technology, exceeding AVR requirements, as well as a number of other strategies. Key implementation issues have been identified, so that the viability of each mobile source strategies could be assessed. These issues include: (1) quantification of emissions benefits, (2) determining whether the mobile source strategy would generate emission reductions surplus to existing and planned mobile source regulations, and (3) assessing the potential for enforceability. The results of evaluation indicate that there are a number of promising mobile source emission strategies that could provide quantifiable, surplus, and enforceable emission reductions

  17. Source of the backstreaming ion beams in the foreshock region

    International Nuclear Information System (INIS)

    Tanaka, M.; Goodrich, C.C.; Winske, D.; Papadopoulos, K.

    1983-01-01

    A new source mechanism is proposed for the 'reflected' ion beams observed in the foreshock region of the earth's bow shock. In our model the beams originate in the magnetosheath downstream of the qausi-perpendicular portion of the shock. The quasi-perpendicular shock transition is characterized by two downstream ion populations including high-energy gyrating ions in addition to the directly transmitted anisotropic ions. We show by particle simulations that this highly anisotropic downstream ion distribution (T/sub perpendicular//T/sub parallel/ >>1) can excite electromagnetic ion cyclotron waves which, in turn, pitch angle scatter the gyrating ions in a few ion gyroperiods. As a result, some ions acquire large parallel velocities and move fast enough along the convecting downstream magnetic field to escape back across the bow shock into the upstream region. The distribution of escaping ions calculated by using the pitch-angle-scattered ions, as a source, becomes a beam with a large temperature anisotropy T/sub perpendicular/ approx.3--5 T/sub parallel/ and a mean velocity along the magnetic field of about twice that of the solar wind velocity. A significant result is the presence of the maximum angle theta/sub n/B = theta/sub c/ above which no ions can escape, where theta/sub n/B is the angle between the shock normal and the interplanetary magnetic field. A wide peak of constant escaping ion flux is formed below theta/sub c/ whose number density is 1--2% of that of the solar wind. These results are in general agreement with the ISEE observations of the 'reflected' ions

  18. Emission of nitrous acid from soil and biological soil crusts as a major source of atmospheric HONO on Cyprus

    Science.gov (United States)

    Meusel, Hannah; Tamm, Alexandra; Wu, Dianming; Kuhn, Uwe; Leifke, Anna-Lena; Weber, Bettina; Su, Hang; Lelieveld, Jos; Hoffmann, Thorsten; Pöschl, Ulrich; Cheng, Yafang

    2017-04-01

    Elucidation of the sources and atmospheric chemistry of nitrous acid (HONO) is highly relevant, as HONO is an important precursor of OH radicals. Up to 30% of the OH budget are formed by photolysis of HONO, whereas major fractions of HONO measured in the field derive from yet unidentified sources. Heterogeneous conversion of nitrogen dioxide (NO2) to HONO on a variety of surfaces (soot, humic acid aerosol) is assumed to be a major HONO source (Stemmler et al., 2007, Ammann et al., 1998). In rural regions, however, NO2 concentrations were found to be too low to explain observed HONO concentrations, as e.g., in the case of a recent field study on the Mediterranean island of Cyprus (Meusel et al., 2016). In this study a good correlation between missing sources of HONO and nitrogen oxide (NO) was found indicating a common origin of both reactive nitrogen compounds. Simultaneous emission of HONO and NO from soil was reported earlier (Oswald et al., 2013), and enhanced emission rates were found when soil was covered by biological soil crusts in arid and semi-arid ecosystems (Weber et al., 2015). In the present study we measured HONO and NO emissions of 43 soil and soil crust samples from Cyprus during full wetting and drying cycles under controlled laboratory conditions by means of a dynamic chamber system. The observed range of HONO and NO emissions was in agreement with earlier studies, but unlike the study of Weber et al. (2015), we found highest emission from bare soil, followed by soil covered by light and dark cyanobacteria-dominated biological soil crusts. Emission rates correlated well with the nitrite and nitrate contents of soil and biological soil crust samples, and higher nutrient contents of bare soil samples, as compared to the previous biological soil crust study, explain the higher bare soil emissions. Integrating the emission rates of bare soil and the different types of biological soil crusts, based on their local relative abundance, the calculated

  19. Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source.

    Science.gov (United States)

    Barnes, Ronald A; Maswadi, Saher; Glickman, Randolph; Shadaram, Mehdi

    2014-01-20

    The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.

  20. NACP MCI: CO2 Emissions Inventory, Upper Midwest Region, USA., 2007

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a bottom-up CO2 emissions inventory for the mid-continent region of the United States for the year 2007. The study was undertaken as...

  1. NACP MCI: CO2 Emissions Inventory, Upper Midwest Region, USA., 2007

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a bottom-up CO2 emissions inventory for the mid-continent region of the United States for the year 2007. The study was undertaken as part of...

  2. Measurement of regional cerebral glucose utilization in man by positron emission tomography

    International Nuclear Information System (INIS)

    Baron, J.C.

    1986-05-01

    The various methods available for the study of regional cerebral glucose consumption in man by positron emission tomography are described and their applications, limitations and principal physiopathological results are presented [fr

  3. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products

    Science.gov (United States)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-09-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions