WorldWideScience

Sample records for source design simulations

  1. Design and numerical simulation of the electromagnetic field of linear anode layer ion source

    International Nuclear Information System (INIS)

    Wang Lisheng; Tang Deli; Cheng Changming

    2006-01-01

    The principle of anode layer ion source for etching, pre-cleaning and ion beam assisted deposition was described. The influence of the magnetic field on the performance of anode layer ion source was analyzed. Design of the magnetic loop for the linear anode layer ion source was given. The electromagnetic field distribution of the ion source was simulated by means of ANSYS code and the simulation results were in agreement with experimental ones. The numerical simulation results of the electromagnetic field are useful for improving the anode layer ion source. (authors)

  2. The mechanical design and simulation of a scaled H⁻ Penning ion source.

    Science.gov (United States)

    Rutter, T; Faircloth, D; Turner, D; Lawrie, S

    2016-02-01

    The existing ISIS Penning H(-) source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  3. The mechanical design and simulation of a scaled H- Penning ion source

    Science.gov (United States)

    Rutter, T.; Faircloth, D.; Turner, D.; Lawrie, S.

    2016-02-01

    The existing ISIS Penning H- source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  4. Design and simulation of ion optics for ion sources for production of singly charged ions

    Science.gov (United States)

    Zelenak, A.; Bogomolov, S. L.

    2004-05-01

    During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments.

  5. Design and simulation of ion optics for ion sources for production of singly charged ions

    International Nuclear Information System (INIS)

    Zelenak, A.; Bogomolov, S.L.

    2004-01-01

    During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments

  6. Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-12-01

    Full Text Available A novel multi-source energy harvester based on solar and radioisotope energy sources is designed and simulated in this work. We established the calculation formulas for the short-circuit current and open-circuit voltage, and then studied and analyzed the optimization thickness of the semiconductor, doping concentration, and junction depth with simulation of the transport process of β particles in a semiconductor material using the Monte Carlo simulation program MCNP (version 5, Radiation Safety Information Computational Center, Oak Ridge, TN, USA. In order to improve the efficiency of converting solar light energy into electric power, we adopted PC1D (version 5.9, University of New South Wales, Sydney, Australia to optimize the parameters, and selected the best parameters for converting both the radioisotope energy and solar energy into electricity. The results concluded that the best parameters for the multi-source energy harvester are as follows: Na is 1 × 1019 cm−3, Nd is 3.8 × 1016 cm−3, a PN junction depth of 0.5 μm (using the 147Pm radioisotope source, and so on. Under these parameters, the proposed harvester can achieve a conversion efficiency of 5.05% for the 147Pm radioisotope source (with the activity of 9.25 × 108 Bq and 20.8% for solar light radiation (AM1.5. Such a design and parameters are valuable for some unique micro-power fields, such as applications in space, isolated terrestrial applications, and smart dust in battlefields.

  7. Design of 6 Mev linear accelerator based pulsed thermal neutron source: FLUKA simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T.; Pethe, S.N.; Krishnan, R. [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2012-01-15

    The 6 MeV LINAC based pulsed thermal neutron source has been designed for bulk materials analysis. The design was optimized by varying different parameters of the target and materials for each region using FLUKA code. The optimized design of thermal neutron source gives flux of 3 Multiplication-Sign 10{sup 6}ncm{sup -2}s{sup -1} with more than 80% of thermal neutrons and neutron to gamma ratio was 1 Multiplication-Sign 10{sup 4}ncm{sup -2}mR{sup -1}. The results of prototype experiment and simulation are found to be in good agreement with each other. - Highlights: Black-Right-Pointing-Pointer The optimized 6 eV linear accelerator based thermal neutron source using FLUKA simulation. Black-Right-Pointing-Pointer Beryllium as a photonuclear target and reflector, polyethylene as a filter and shield, graphite as a moderator. Black-Right-Pointing-Pointer Optimized pulsed thermal neutron source gives neutron flux of 3 Multiplication-Sign 10{sup 6} n cm{sup -2} s{sup -1}. Black-Right-Pointing-Pointer Results of the prototype experiment were compared with simulations and are found to be in good agreement. Black-Right-Pointing-Pointer This source can effectively be used for the study of bulk material analysis and activation products.

  8. The mechanical design and simulation of a scaled H{sup −} Penning ion source

    Energy Technology Data Exchange (ETDEWEB)

    Rutter, T., E-mail: theo.rutter@stfc.ac.uk; Faircloth, D.; Turner, D.; Lawrie, S. [Rutherford Appleton Laboratory, Didcot OX110QX (United Kingdom)

    2016-02-15

    The existing ISIS Penning H{sup −} source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  9. Note: The design of thin gap chamber simulation signal source based on field programmable gate array

    International Nuclear Information System (INIS)

    Hu, Kun; Wang, Xu; Li, Feng; Jin, Ge; Lu, Houbing; Liang, Futian

    2015-01-01

    The Thin Gap Chamber (TGC) is an important part of ATLAS detector and LHC accelerator. Targeting the feature of the output signal of TGC detector, we have designed a simulation signal source. The core of the design is based on field programmable gate array, randomly outputting 256-channel simulation signals. The signal is generated by true random number generator. The source of randomness originates from the timing jitter in ring oscillators. The experimental results show that the random number is uniform in histogram, and the whole system has high reliability

  10. On Open- source Multi-robot simulators

    CSIR Research Space (South Africa)

    Namoshe, M

    2008-07-01

    Full Text Available Open source software simulators play a major role in robotics design and research as platforms for developing, testing and improving architectures, concepts and algorithms for cooperative/multi-robot systems. Simulation environment enables control...

  11. Design and simulation of a nanoelectronic DG MOSFET current source using artificial neural networks

    International Nuclear Information System (INIS)

    Djeffal, F.; Dibi, Z.; Hafiane, M.L.; Arar, D.

    2007-01-01

    The double gate (DG) MOSFET has received great attention in recent years owing to the inherent suppression of short channel effects (SCEs), excellent subthreshold slope (S), improved drive current (I ds ) and transconductance (gm), volume inversion for symmetric devices and excellent scalability. Therefore, simulation tools which can be applied to design nanoscale transistors in the future require new theory and modeling techniques that capture the physics of quantum transport accurately and efficiently. In this sense, this work presents the applicability of the artificial neural networks (ANN) for the design and simulation of a nanoelectronic DG MOSFET current source. The latter is based on the 2D numerical Non-Equilibrium Green's Function (NEGF) simulation of the current-voltage characteristics of an undoped symmetric DG MOSFET. Our results are discussed in order to obtain some new and useful information about the ULSI technology

  12. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2017-01-30

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energy advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.

  13. 42: An Open-Source Simulation Tool for Study and Design of Spacecraft Attitude Control Systems

    Science.gov (United States)

    Stoneking, Eric

    2018-01-01

    Simulation is an important tool in the analysis and design of spacecraft attitude control systems. The speaker will discuss the simulation tool, called simply 42, that he has developed over the years to support his own work as an engineer in the Attitude Control Systems Engineering Branch at NASA Goddard Space Flight Center. 42 was intended from the outset to be high-fidelity and powerful, but also fast and easy to use. 42 is publicly available as open source since 2014. The speaker will describe some of 42's models and features, and discuss its applicability to studies ranging from early concept studies through the design cycle, integration, and operations. He will outline 42's architecture and share some thoughts on simulation development as a long-term project.

  14. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources

    Science.gov (United States)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.

    2017-11-01

    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  15. MOSES: A Matlab-based open-source stochastic epidemic simulator.

    Science.gov (United States)

    Varol, Huseyin Atakan

    2016-08-01

    This paper presents an open-source stochastic epidemic simulator. Discrete Time Markov Chain based simulator is implemented in Matlab. The simulator capable of simulating SEQIJR (susceptible, exposed, quarantined, infected, isolated and recovered) model can be reduced to simpler models by setting some of the parameters (transition probabilities) to zero. Similarly, it can be extended to more complicated models by editing the source code. It is designed to be used for testing different control algorithms to contain epidemics. The simulator is also designed to be compatible with a network based epidemic simulator and can be used in the network based scheme for the simulation of a node. Simulations show the capability of reproducing different epidemic model behaviors successfully in a computationally efficient manner.

  16. Monte Carlo simulation using MCNP4B for an optimal shielding design of a 252 Cf source

    International Nuclear Information System (INIS)

    Silva, Ademir X. da; Crispim, Verginia R.

    2001-01-01

    This study aim to investigate an optimum shielding design against neutrons and gamma-rays from a source of 252 Cf, using Monte Carlo simulation. The shielding materials studied were: borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP, version 4B, was used to design shielding for 252 Cf based neutron irradiator systems. By normalizing the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independents of the intensity of actual 252 Cf source. The results shown what the total dose equivalent rates were reduced significantly by the shielding system optimization. (author)

  17. Design and simulation of an optimized e-linac based neutron source for BNCT research

    International Nuclear Information System (INIS)

    Durisi, E.; Alikaniotis, K.; Borla, O.; Bragato, F.; Costa, M.; Giannini, G.; Monti, V.; Visca, L.; Vivaldo, G.; Zanini, A.

    2015-01-01

    The paper is focused on the study of a novel photo-neutron source for BNCT preclinical research based on medical electron Linacs. Previous studies by the authors already demonstrated the possibility to obtain a mixed thermal and epithermal neutron flux of the order of 10"7 cm"−"2 s"−"1. This paper investigates possible Linac’s modifications and a new photo-converter design to rise the neutron flux above 5 10"7 cm"−"2 s"−"1, also reducing the gamma contamination. - Highlights: • Proposal of a mixed thermal and epithermal (named hyperthermal) neutron source based on medical high energy electron Linac. • Photo-neutron production via Giant Dipole Resonance on high Z materials. • MCNP4B-GN simulations to design the photo-converter geometry maximizing the hyperthermal neutron flux and minimizing the fast neutron and gamma contaminations. Hyperthermal neutron field suitable for BNCT preclinical research.

  18. Progress Toward Source-to-Target Simulation

    International Nuclear Information System (INIS)

    Grote, D.P.; Friedman, A.; Craig, G.D.; Sharp, W.M.; Haber, I.

    2000-01-01

    Source-to-target simulation of an accelerator provides a thorough check on the consistency of the design as well as a detailed understanding of the beam behavior. Issues such as envelope mis-match and emittance growth can be examined in a self-consistent manner, including the details of accelerator transitions, long-term transport, and longitudinal compression. The large range in scales, from centimeter-scale transverse beam size and applied field scale-length, to meter-scale beam length, to kilometer-scale accelerator length, poses a significant computational challenge. The ever-increasing computational power that is becoming available through massively parallel computers is making such simulation realizable. This paper discusses the progress toward source-to-target simulation using the WARP particle-in-cell code. Representative examples are shown, including 3-D, along-term transport simulations of Integrated Research Experiment (IRE) scale accelerators

  19. Simulation of integrated beam experiment designs

    International Nuclear Information System (INIS)

    Grote, D.P.; Sharp, W.M.

    2004-01-01

    Simulation of designs of an Integrated Beam Experiment (IBX) class accelerator have been carried out. These simulations are an important tool for validating such designs. Issues such as envelope mismatch and emittance growth can be examined in a self-consistent manner, including the details of injection, accelerator transitions, long-term transport, and longitudinal compression. The simulations are three-dimensional and time-dependent, and begin at the source. They continue up through the end of the acceleration region, at which point the data is passed on to a separate simulation of the drift compression. Results are be presented

  20. Simulation tools for detector and instrument design

    DEFF Research Database (Denmark)

    Kanaki, Kalliopi; Kittelmann, Thomas; Cai, Xiao Xiao

    2018-01-01

    The high performance requirements at the European Spallation Source have been driving the technological advances on the neutron detector front. Now more than ever is it important to optimize the design of detectors and instruments, to fully exploit the ESS source brilliance. Most of the simulation...... a powerful set of tools to tailor the detector and instrument design to the instrument application....

  1. Parallel Beam Dynamics Simulation Tools for Future Light Source Linac Modeling

    International Nuclear Information System (INIS)

    Qiang, Ji; Pogorelov, Ilya v.; Ryne, Robert D.

    2007-01-01

    Large-scale modeling on parallel computers is playing an increasingly important role in the design of future light sources. Such modeling provides a means to accurately and efficiently explore issues such as limits to beam brightness, emittance preservation, the growth of instabilities, etc. Recently the IMPACT codes suite was enhanced to be applicable to future light source design. Simulations with IMPACT-Z were performed using up to one billion simulation particles for the main linac of a future light source to study the microbunching instability. Combined with the time domain code IMPACT-T, it is now possible to perform large-scale start-to-end linac simulations for future light sources, including the injector, main linac, chicanes, and transfer lines. In this paper we provide an overview of the IMPACT code suite, its key capabilities, and recent enhancements pertinent to accelerator modeling for future linac-based light sources

  2. Numerical simulation for optimization of multipole permanent magnets of multicusp ion source

    International Nuclear Information System (INIS)

    Hosseinzadeh, M.; Afarideh, H.

    2014-01-01

    A new ion source will be designed and manufactured for the CYCLONE30 commercial cyclotron with a much advanced performance compared with the previous one. The newly designed ion source has more plasma density, which is designed to deliver an H – beam at 30 keV. In this paper numerical simulation of the magnetic flux density from permanent magnet used for a multicusp ion source, plasma confinement and trapping of fast electrons by the magnetic field has been performed to optimize the number of magnets confining the plasma. A code has been developed to fly electrons in the magnetic field to evaluate the mean life of electrons in plasma in different magnetic conditions to have a better evaluation and comparison of density in different cases. The purpose of this design is to recapture more energetic electrons with permanent magnets. Performance simulations of the optimized ion source show considerable improvement over reported one by IBA

  3. General Purpose Heat Source Simulator

    Science.gov (United States)

    Emrich, Bill

    2008-01-01

    The General Purpose Heat Source (GPHS) simulator project is designed to replicate through the use of electrical heaters, the form, fit, and function of actual GPHS modules which generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of spacecraft subsystems and systems without sacrificing the quantity and quality of the test data gathered. Previous GPHS activities are centered around developing robust heater designs with sizes and weights that closely matched those of actual Pu238 fueled GPHS blocks. These efforts were successful, although their maximum temperature capabilities were limited to around 850 C. New designs are being pursued which also replicate the sizes and weights of actual Pu238 fueled GPHS blocks but will allow operation up to 1100 C.

  4. Positron annihilation lifetime spectroscopy source correction determination: A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Gurmeet S.; Keeble, David J., E-mail: d.j.keeble@dundee.ac.uk

    2016-02-01

    Positron annihilation lifetime spectroscopy (PALS) can provide sensitive detection and identification of vacancy-related point defects in materials. These measurements are normally performed using a positron source supported, and enclosed by, a thin foil. Annihilation events from this source arrangement must be quantified and are normally subtracted from the spectrum before analysis of the material lifetime components proceeds. Here simulated PALS spectra reproducing source correction evaluation experiments have been systematically fitted and analysed using the packages PALSfit and MELT. Simulations were performed assuming a single lifetime material, and for a material with two lifetime components. Source correction terms representing a directly deposited source and various foil supported sources were added. It is shown that in principle these source terms can be extracted from suitably designed experiments, but that fitting a number of independent, nominally identical, spectra is recommended.

  5. Dedicated software for diffractive optics design and simulation

    International Nuclear Information System (INIS)

    Firsov, A; Brzhezinskaya, M; Erko, A; Firsov, A; Svintsov, A

    2013-01-01

    An efficient software package for the structure design and simulation of imaging properties of diffraction optical elements has been developed. It operates with point source and consists of: the ZON software, to calculate the structure of an optical element in transmission and reflection; the KRGF software, to simulate the diffraction properties of an ideal optical element with point source; the DS software, to calculate the diffraction properties by taking into consideration material and shadowing effects. Optional software allows simulation with a real non-point source. Zone plate thickness profile, source shape as well as substrate curvature are considered in this calculation. This is especially important for the diffractive focusing elements and gratings at a total external reflection, given that the lateral size of the structure can be up to 1 m. The program package can be used in combination with the Nanomaker software to prepare data for ion and e-beam surface modifications and corrections.

  6. A neutron source for IGISOL-JYFLTRAP: Design and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Mattera, A.; Pomp, S.; Lantz, M.; Rakopoulos, V.; Solders, A.; Al-Adili, A.; Passoth, E.; Prokofiev, A.V.; Andersson, P.; Hjalmarsson, A. [Uppsala University, BOX 516, Uppsala (Sweden); Bedogni, R.; Esposito, A.; Gentile, A. [INFN-LNF, Frascati (Italy); Bortot, D. [INFN-LNF, Frascati (Italy); Politecnico di Milano, Milano (Italy); Gomez-Ros, J.M. [INFN-LNF, Frascati (Italy); CIEMAT, Madrid (Spain); Introini, M.V.; Pola, A. [Politecnico di Milano, Milano (Italy); Gorelov, D.; Penttilae, H.; Moore, I.D.; Rinta-Antila, S.; Kolhinen, V.S.; Eronen, T. [University of Jyvaeskylae (Finland)

    2017-08-15

    A white neutron source based on the Be(p, nx) reaction for fission studies at the IGISOL-JYFLTRAP facility has been designed and tested. 30MeV protons impinge on a 5mm thick water-cooled beryllium disc. The source was designed to produce at least 10{sup 12} fast neutrons/s on a secondary fission target, in order to reach competitive production rates of fission products far from the valley of stability. The Monte Carlo codes MCNPX and FLUKA were used in the design phase to simulate the neutron energy spectra. Two experiments to characterise the neutron field were performed: the first was carried out at The Svedberg Laboratory in Uppsala (SE), using an Extended-Range Bonner Sphere Spectrometer and a liquid scintillator which used the time-of-flight (TOF) method to determine the energy of the neutrons; the second employed Thin-Film Breakdown Counters for the measurement of the TOF, and activation foils, at the IGISOL facility in Jyvaeskylae (FI). Design considerations and the results of the two characterisation measurements are presented, providing benchmarks for the simulations. (orig.)

  7. The biological shield of a high-intensity spallation source: a monte Carlo design study

    International Nuclear Information System (INIS)

    Koprivnikar, I.; Schachinger, E.

    2004-01-01

    The design of high-intensity spallation sources requires the best possible estimates for the biological shield. The applicability of three-dimensional Monte Carlo simulation in the design of the biological shield of a spallation source will be discussed. In order to achieve reasonable computing times along with acceptable accuracy, biasing techniques are to be employed and it was the main purpose of this work to develop a strategy for an effective Monte Carlo simulation in shielding design. The most prominent MC computer codes, namely MCNPX and FLUKA99, have been applied to the same model spallation source (the European Spallation Source) and on the basis of the derived strategies, the design and characteristics of the target station shield are discussed. It is also the purpose of the paper to demonstrate the application of the developed strategy for the design of beam lines with their shielding using as an example the target-moderator-reflector complex of the ESS as the primary particle source. (author)

  8. GIS-Based Noise Simulation Open Source Software: N-GNOIS

    Science.gov (United States)

    Vijay, Ritesh; Sharma, A.; Kumar, M.; Shende, V.; Chakrabarti, T.; Gupta, Rajesh

    2015-12-01

    Geographical information system (GIS)-based noise simulation software (N-GNOIS) has been developed to simulate the noise scenario due to point and mobile sources considering the impact of geographical features and meteorological parameters. These have been addressed in the software through attenuation modules of atmosphere, vegetation and barrier. N-GNOIS is a user friendly, platform-independent and open geospatial consortia (OGC) compliant software. It has been developed using open source technology (QGIS) and open source language (Python). N-GNOIS has unique features like cumulative impact of point and mobile sources, building structure and honking due to traffic. Honking is the most common phenomenon in developing countries and is frequently observed on any type of roads. N-GNOIS also helps in designing physical barrier and vegetation cover to check the propagation of noise and acts as a decision making tool for planning and management of noise component in environmental impact assessment (EIA) studies.

  9. Design of an Indoor Sonic Boom Simulator at NASA Langley Research Center

    Science.gov (United States)

    Klos, Jacob; Sullivan, Brenda M.; Shepherd, Kevin P.

    2008-01-01

    Construction of a simulator to recreate the soundscape inside residential buildings exposed to sonic booms is scheduled to start during the summer of 2008 at NASA Langley Research Center. The new facility should be complete by the end of the year. The design of the simulator allows independent control of several factors that create the indoor soundscape. Variables that will be isolated include such factors as boom duration, overpressure, rise time, spectral shape, level of rattle, level of squeak, source of rattle and squeak, level of vibration and source of vibration. Test subjects inside the simulator will be asked to judge the simulated soundscape, which will represent realistic indoor boom exposure. Ultimately, this simulator will be used to develop a functional relationship between human response and the sound characteristics creating the indoor soundscape. A conceptual design has been developed by NASA personnel, and is currently being vetted through small-scale risk reduction tests that are being performed in-house. The purpose of this document is to introduce the conceptual design, identify how the indoor response will be simulated, briefly outline some of the risk reduction tests that have been completed to vet the design, and discuss the impact of these tests on the simulator design.

  10. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  11. Numerical simulation of the RF ion source RIG-10

    International Nuclear Information System (INIS)

    Arzt, T.

    1988-01-01

    A two-dimensional model for the numerical simulation of the inductively coupled radio-frequency (RF) ion source RIG-10 is presented. Due to the ambipolar characteristics of a discharge operating with hydrogen gas, the model consists of an equation for the space charge imbalance, Poisson's equation for the self-consistent presheath potential and the ion momentum transport equation. For a relatively broad range of operation and design parameters, the model allows the reproduction and prediction of the RF discharge behaviour in a systematic way and, hence, computes the 2D distribution of the ion current density within the source. By implementing relevant discharge physics, the model can provide an appropriate tool for ion source design with respect to an application in the field of neutral beam injection. (author)

  12. Beam dynamics design of an SP-FEL compact THz source

    International Nuclear Information System (INIS)

    Dai Dongdong; Dai Zhimin

    2010-01-01

    In recent years, people are looking for a new compact THz source with high emission power, one potential choice is to build small accelerator with Smith-Purcell radiation. The main difficulty is how to obtain high quality electron beam. In this paper, the beam dynamics design of a compact THz source is presented. The electron beam is produced by an electron gun and compressed by permanent magnets. The electron gun is similar to the Shanghai EBIT, but permanent magnets are used, instead of the superconducting magnets in Shanghai EBIT. With this design, we can reduce the size and cost of the whole device. Poisson/Pandira was employed to simulate and optimize the magnetic field. Egun was used to simulate the beam trajectories from the electron gun to the collector. Within 2 centimeters around the center of longitudinal magnetic field, the calculation showed that the beam satisfies to our design aim. (authors)

  13. Monte Carlo simulation of a TRIGA source driven core configuration: Preliminary results

    International Nuclear Information System (INIS)

    Burgio, N.; Ciavola, C.; Santagata, A.

    2002-01-01

    The different core configurations with a k eff ranging from 0.93 to 0.98, and their response when driven by a pulsed neutron source were simulated with MCNP4C3 (Los Alamos - Monte Carlo N Particles). Simulation results could be considered both as preliminary check for nuclear data and a conceptual design for 'source jerk' experiments on the frame of TRIGA Accelerator Driven Experiment (TRADE) on the reactor facility of Casaccia research center. (author)

  14. Design and implementation of low-Q diffractometers at spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P.

    1993-01-01

    Low-Q diffractometers at spallation sources that use time of flight methods have been successfully implemented at several facilities, including the Los Alamos Neutron Scattering Center. The proposal to build new, more powerful, advanced spallation sources using advanced moderator concepts will provide luminosity greater than 20 times the brightest spallation source available today. These developments provide opportunity and challenge to expand the capabilities of present instruments with new designs. The authors review the use of time of flight for low-Q measurements and introduce new designs to extend the capabilities of present-day instruments. They introduce Monte Carlo methods to optimize design and simulate the performance of these instruments. The expected performance of the new instruments are compared to present day pulsed source- and reactor-based small-angle neutron scattering instruments. They review some of the new developments that will be needed to use the power of brighter sources effectively

  15. Design of an intense positron source for linear colliders

    International Nuclear Information System (INIS)

    Ida, H.; Yamada, K.; Funahashi, Y.

    1994-01-01

    The Japan Linear Collider (JLC) requires an intense positron source of 8x10 11 particles per rf-pulse. A computer simulation reveals the possibility of such an intense positron source using 'conventional' technology. In order to relax the limitation of the incident electron energy density due to thermal stress in the converter target, the incident beam radius is enlarged within the range so as not to reduce the positron capture efficiency. A pre-damping ring and beam transport system to the pre-damping ring, which have a large transverse acceptance, play important roles for a high capture efficiency. A prototype positron source has been designed and installed at downstream of 1.54 GeV S-band linac in Accelerator Test Facility (ATF) in order to carry out experiments to develop the essential technology for JLC. The simulated results will be tested in experiments with the prototype positron source. (author)

  16. Scalable Open Source Smart Grid Simulator (SGSim)

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Jacobsen, Rune Hylsberg; Stefanni, Francesco

    2017-01-01

    . This paper presents an open source smart grid simulator (SGSim). The simulator is based on open source SystemC Network Simulation Library (SCNSL) and aims to model scalable smart grid applications. SGSim has been tested under different smart grid scenarios that contain hundreds of thousands of households...

  17. Conceptual Design of Simulated Radiation Detector for Nuclear Forensics Exercise Purposes

    International Nuclear Information System (INIS)

    Kim, Jae Kwang; Baek, Ye Ji; Lee, Seung Min

    2016-01-01

    A site associated with an illicit trafficking or security event may contain trace evidence of criminal or malicious acts involving radioactive material. Such a site is called a radiological crime scene. Management of a radiological crime scene requires a process of ensuring an orderly accurate and effective collection and preservation of evidence. In order to effectively address such a security event, first responders and/or on-scene investigators need to exercise detecting, locating and recovering materials at the scene of the incident. During such the exercise, a sealed source can be used. This source is allowed to be a very small amount for exercises as there is the limit on the amount of radioactive material that causes no harm. So it is typically difficult to be found by some radiation detectors that the exercises have little effect on improving the ability of trainees. Therefore, we developed a conceptual design of a simulation radiation detector coupled with simulation sources which are designed to imitate a significant amount radioactive material for the purpose of a nuclear forensics exercise. With the potential of a terrorist attack using radioactive materials, the first responders should regularly perform the nuclear forensics exercise in order to prepare for a recovery operation. In this regard, some devices such as simulated detector, coupled with a virtual source, can replace a real detector and a surrogate source of material in field exercises. BLE technology could be applied to create similar environments to that of an actual radiological attack. The detector coupled with the simulated sources could be very helpful for first responders in testing and improving their ability in the case of a nuclear security event. In addition, this conceptual design could be extended to develop a simulated dosimeter coupled with a beacon signal emitters. The dosimeter is a personal device used for indicating the cumulated exposure of radiation in real time in the

  18. Conceptual Design of Simulated Radiation Detector for Nuclear Forensics Exercise Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwang; Baek, Ye Ji; Lee, Seung Min [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    A site associated with an illicit trafficking or security event may contain trace evidence of criminal or malicious acts involving radioactive material. Such a site is called a radiological crime scene. Management of a radiological crime scene requires a process of ensuring an orderly accurate and effective collection and preservation of evidence. In order to effectively address such a security event, first responders and/or on-scene investigators need to exercise detecting, locating and recovering materials at the scene of the incident. During such the exercise, a sealed source can be used. This source is allowed to be a very small amount for exercises as there is the limit on the amount of radioactive material that causes no harm. So it is typically difficult to be found by some radiation detectors that the exercises have little effect on improving the ability of trainees. Therefore, we developed a conceptual design of a simulation radiation detector coupled with simulation sources which are designed to imitate a significant amount radioactive material for the purpose of a nuclear forensics exercise. With the potential of a terrorist attack using radioactive materials, the first responders should regularly perform the nuclear forensics exercise in order to prepare for a recovery operation. In this regard, some devices such as simulated detector, coupled with a virtual source, can replace a real detector and a surrogate source of material in field exercises. BLE technology could be applied to create similar environments to that of an actual radiological attack. The detector coupled with the simulated sources could be very helpful for first responders in testing and improving their ability in the case of a nuclear security event. In addition, this conceptual design could be extended to develop a simulated dosimeter coupled with a beacon signal emitters. The dosimeter is a personal device used for indicating the cumulated exposure of radiation in real time in the

  19. The Trick Simulation Toolkit: A NASA/Open source Framework for Running Time Based Physics Models

    Science.gov (United States)

    Penn, John M.; Lin, Alexander S.

    2016-01-01

    This paper describes the design and use at of the Trick Simulation Toolkit, a simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes Trick's design goals and how the development environment attempts to achieve those goals. It describes how Trick is used in some of the many training and engineering simulations at NASA. Finally it describes the Trick NASA/Open source project on Github.

  20. The design of nuclear magnetic resonance programmable pulsed source based SOPC

    International Nuclear Information System (INIS)

    Zhang Qingshun; Zhang Yakun; Wang Wenli

    2012-01-01

    The design of pulse source in the equipment of pulsed Nuclear Magnetic Resonance is studied based on SOPC. The strong processing power of Nios Ⅱ embedded processor and the design flexibility of FPGA are fully used. The SOPC system is built. The overall design plan for the pulse source is described. The design of programmable multi-pulse generation logic user-defined components in the FPGA is introduced mainly. Part of the implementation program and the task logic simulation waveforms are presented. The pulse source has better application value because a clear, stable and good quality multi-pulse output waveform can be shown on the oscilloscope finally. The system software and hardware are easy to be modified and upgraded, meeting different application of pulsed NMR pulse sequence in variety of requirements. (authors)

  1. CAGE IIIA Distributed Simulation Design Methodology

    Science.gov (United States)

    2014-05-01

    2 VHF Very High Frequency VLC Video LAN Codec – an Open-source cross-platform multimedia player and framework VM Virtual Machine VOIP Voice Over...Implementing Defence Experimentation (GUIDEx). The key challenges for this methodology are with understanding how to: • design it o define the...operation and to be available in the other nation’s simulations. The challenge for the CAGE campaign of experiments is to continue to build upon this

  2. Designing a Distributed Space Systems Simulation in Accordance with the Simulation Interoperability Standards Organization (SISO)

    Science.gov (United States)

    Cowen, Benjamin

    2011-01-01

    Simulations are essential for engineering design. These virtual realities provide characteristic data to scientists and engineers in order to understand the details and complications of the desired mission. A standard development simulation package known as Trick is used in developing a source code to model a component (federate in HLA terms). The runtime executive is integrated into an HLA based distributed simulation. TrickHLA is used to extend a Trick simulation for a federation execution, develop a source code for communication between federates, as well as foster data input and output. The project incorporates international cooperation along with team collaboration. Interactions among federates occur throughout the simulation, thereby relying on simulation interoperability. Communication through the semester went on between participants to figure out how to create this data exchange. The NASA intern team is designing a Lunar Rover federate and a Lunar Shuttle federate. The Lunar Rover federate supports transportation across the lunar surface and is essential for fostering interactions with other federates on the lunar surface (Lunar Shuttle, Lunar Base Supply Depot and Mobile ISRU Plant) as well as transporting materials to the desired locations. The Lunar Shuttle federate transports materials to and from lunar orbit. Materials that it takes to the supply depot include fuel and cargo necessary to continue moon-base operations. This project analyzes modeling and simulation technologies as well as simulation interoperability. Each team from participating universities will work on and engineer their own federate(s) to participate in the SISO Spring 2011 Workshop SIW Smackdown in Boston, Massachusetts. This paper will focus on the Lunar Rover federate.

  3. Design of a portable directional neutron source finder

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni

    2005-01-01

    An instrument that determines the direction of a remote existing neutron source has been designed. This instrument combines a polyethylene block and four 3 He counter tubes. The advantages of the instrument are portability and good angular resolution. The count from the detector was varied with the neutron incident angle due to the moderator. Using this characteristic, the direction of the neutron source can be measured precisely by revising the axis of the instrument so that the difference between the four detectors measurements is minimized. Consequently, the direction of the central axis of the instrument in which the response difference of the four detectors reaches a minimum indicates the direction of the neutron source. The practical use of the instrument was demonstrated by 252 Cf source irradiation experiment and MCNP simulation

  4. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, A., E-mail: Atefeh.Fathi115@gmail.com [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Feghhi, S.A.H.; Sadati, S.M. [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Ebrahimibasabi, E. [Department of Physics, Shahrood University of Technology, 3619995161, Shahrood (Iran, Islamic Republic of)

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  5. Kinetic plasma simulation of ion beam extraction from an ECR ion source

    International Nuclear Information System (INIS)

    Elliott, S.M.; White, E.K.; Simkin, J.

    2012-01-01

    Designing optimized ECR (electron cyclotron resonance) ion beam sources can be streamlined by the accurate simulation of beam optical properties in order to predict ion extraction behavior. The complexity of these models, however, can make PIC-based simulations time-consuming. In this paper, we first describe a simple kinetic plasma finite element simulation of extraction of a proton beam from a permanent magnet hexapole ECR ion source. Second, we analyze the influence of secondary electrons generated by ion collisions in the residual gas on the space charge of a proton beam of a dual-solenoid ECR ion source. The finite element method (FEM) offers a fast modeling environment, allowing analysis of ion beam behavior under conditions of varying current density, electrode potential, and gas pressure. The new version of SCALA/TOSCA v14 permits the making of simulations in tens of minutes to a few hours on standard computer platforms without the need of particle-in-cell methods. The paper is followed by the slides of the presentation. (authors)

  6. Simulation based design strategy for EMC compliance of components in hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Maass, Uwe; Ndip, Ivan; Hoene, Eckard; Guttowski, Stephan [Fraunhofer-Institut fuer Zuverlaessigkeit und Mikrointegration (IZM), Berlin (Germany); Tschoban, Christian; Lang, Klaus-Dieter [Technische Univ. Berlin (Germany)

    2012-11-01

    The design of components for the power train of hybrid vehicles needs to take into account EMC compliance standards related to hazardous electromagnetic fields. Using a simulation based design strategy allows for virtual EMC tests in parallel to the mechanical / electrical power design and thus reduces (re-)design time and costs. Taking as an example a high-voltage battery for a hybrid vehicle the emitted magnetic fields outside the battery are examined. The simulation stategy is based on 3D EM simulations using a full-wave and an eddy current solver. The simulation models are based on the actual CAD data from the mechanical construction resulting in and a high geometrical aspect ratio. The impact of simulation specific aspects such as boundary conditions and excitation is given. It was found that using field simulations it is possible to identify noise sources and coupling paths as well as aid the construction of the battery. (orig.)

  7. Design of a quasi-isochronous storage ring for THz light source

    International Nuclear Information System (INIS)

    Zhu Jiapeng; Xu Hongliang; Feng Guangyao; Lan Jieqin

    2012-01-01

    A quasi-isochronous storage ring is designed by manipulating lattice parameters to introduce a negative dispersion function to the dispersion section. This quasi-isochronous storage ring is designed for a THz synchrotron radiation source. The simulation of the optics function and beam emittance shows its feasibility, and the tracing result of particles indicates that the designed ring has a good particle dynamic aperture. In addition, a three-dimensional model of the vacuum chamber used for photon radiation in the quasi-isochronous mode is also designed. The eigenmodes of the chamber are simulated, and characteristic parameters such as quality factor, power loss and characteristic impedance are also calculated. The result shows that the vacuum chamber has little effect on the circulating beam. (authors)

  8. Development of a helicon ion source: Simulations and preliminary experiments

    Science.gov (United States)

    Afsharmanesh, M.; Habibi, M.

    2018-03-01

    In the present context, the extraction system of a helicon ion source has been simulated and constructed. Results of the ion source commissioning at up to 20 kV are presented as well as simulations of an ion beam extraction system. Argon current of more than 200 μA at up to 20 kV is extracted and is characterized with a Faraday cup and beam profile monitoring grid. By changing different ion source parameters such as RF power, extraction voltage, and working pressure, an ion beam with current distribution exhibiting a central core has been detected. Jump transition of ion beam current emerges at the RF power near to 700 W, which reveals that the helicon mode excitation has reached this power. Furthermore, measuring the emission line intensity of Ar ii at 434.8 nm is the other way we have used for demonstrating the mode transition from inductively coupled plasma to helicon. Due to asymmetrical longitudinal power absorption of a half-helix helicon antenna, it is used for the ion source development. The modeling of the plasma part of the ion source has been carried out using a code, HELIC. Simulations are carried out by taking into account a Gaussian radial plasma density profile and for plasma densities in range of 1018-1019 m-3. Power absorption spectrum and the excited helicon mode number are obtained. Longitudinal RF power absorption for two different antenna positions is compared. Our results indicate that positioning the antenna near to the plasma electrode is desirable for the ion beam extraction. The simulation of the extraction system was performed with the ion optical code IBSimu, making it the first helicon ion source extraction designed with the code. Ion beam emittance and Twiss parameters of the ellipse emittance are calculated at different iterations and mesh sizes, and the best values of the mesh size and iteration number have been obtained for the calculations. The simulated ion beam extraction system has been evaluated using optimized parameters such

  9. Design of fault simulator

    Energy Technology Data Exchange (ETDEWEB)

    Gabbar, Hossam A. [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology (UOIT), Ontario, L1H 7K4 (Canada)], E-mail: hossam.gabbar@uoit.ca; Sayed, Hanaa E.; Osunleke, Ajiboye S. [Okayama University, Graduate School of Natural Science and Technology, Division of Industrial Innovation Sciences Department of Intelligent Systems Engineering, Okayama 700-8530 (Japan); Masanobu, Hara [AspenTech Japan Co., Ltd., Kojimachi Crystal City 10F, Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan)

    2009-08-15

    Fault simulator is proposed to understand and evaluate all possible fault propagation scenarios, which is an essential part of safety design and operation design and support of chemical/production processes. Process models are constructed and integrated with fault models, which are formulated in qualitative manner using fault semantic networks (FSN). Trend analysis techniques are used to map real time and simulation quantitative data into qualitative fault models for better decision support and tuning of FSN. The design of the proposed fault simulator is described and applied on experimental plant (G-Plant) to diagnose several fault scenarios. The proposed fault simulator will enable industrial plants to specify and validate safety requirements as part of safety system design as well as to support recovery and shutdown operation and disaster management.

  10. Plant model of KIPT neutron source facility simulator

    International Nuclear Information System (INIS)

    Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.; Gohar, Yousry

    2016-01-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system is coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.

  11. Plant model of KIPT neutron source facility simulator

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, Thomas Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Grelle, Austin L. [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system is coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.

  12. Benchmarking shielding simulations for an accelerator-driven spallation neutron source

    Directory of Open Access Journals (Sweden)

    Nataliia Cherkashyna

    2015-08-01

    Full Text Available The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS, currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ, at the Paul Scherrer Institute (PSI, Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolith wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters instruments at ESS.

  13. Design and simulation of betavoltaic battery using large-grain polysilicon

    International Nuclear Information System (INIS)

    Yao, Shulin; Song, Zijun; Wang, Xiang; San, Haisheng; Yu, Yuxi

    2012-01-01

    In this paper, we present the design and simulation of a p–n junction betavoltaic battery based on large-grain polysilicon. By the Monte Carlo simulation, the average penetration depth were obtained, according to which the optimal depletion region width was designed. The carriers transport model of large-grain polysilicon is used to determine the diffusion length of minority carrier. By optimizing the doping concentration, the maximum power conversion efficiency can be achieved to be 0.90% with a 10 mCi/cm 2 Ni-63 source radiation. - Highlights: ► Ni 63 is employed as the pure beta radioisotope source. ► The planar p–n junction betavoltaic battery is based on large-grain polysilicon. ► The carriers transport model of large-grain polysilicon is used to determine the diffusion length of minority carrier. ► The average penetration depth was obtained by using the Monte Carlo Method.

  14. Development of nuclear design criteria for neutron spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Sordo, F.; Abanades, A. [E.T.S. Industriales, Madrid Polytechnic University, UPM, J.Gutierrez Abascal, 2 -28006 Madrid (Spain)

    2008-07-01

    Spallation neutron sources allow obtaining high neutronic flux for many scientific and industrial applications. In recent years, several proposals have been made about its use, notably the European Spallation Source (ESS), the Japanese Spallation Source (JSNS) and the projects of Accelerator-Driven Subcritical reactors (ADS), particularly in the framework of EURATOM programs. Given their interest, it seems necessary to establish adequate design basis for guiding the engineering analysis and construction projects of this kind of installations. In this sense, all works done so far seek to obtain particular solutions to a particular design, but there has not been any general development to set up an engineering methodology in this field. In the integral design of a spallation source, all relevant physical processes that may influence its behaviour must be taken into account. Neutronic aspects (emitted neutrons and their spectrum, generation performance..), thermomechanical (energy deposition, cooling conditions, stress distribution..), radiological (spallation waste activity, activation reactions and residual heat) and material properties alteration due to irradiation (atomic displacements and gas generation) must all be considered. After analysing in a systematic manner the different options available in scientific literature, the main objective of this thesis was established as making a significant contribution to determine the limiting factors of the main aspects of spallation sources, its application range and the criteria for choosing optimal materials. To achieve this goal, a series of general simulations have been completed, covering all the relevant physical processes in the neutronic and thermal-mechanical field. Finally, the obtained criteria have been applied to the particular case of the design of the spallation source of subcritical reactors PDX-ADS and XT-ADS. These two designs, developed under the European R and D Framework Program, represent nowadays

  15. Development of nuclear design criteria for neutron spallation sources

    International Nuclear Information System (INIS)

    Sordo, F.; Abanades, A.

    2008-01-01

    Spallation neutron sources allow obtaining high neutronic flux for many scientific and industrial applications. In recent years, several proposals have been made about its use, notably the European Spallation Source (ESS), the Japanese Spallation Source (JSNS) and the projects of Accelerator-Driven Subcritical reactors (ADS), particularly in the framework of EURATOM programs. Given their interest, it seems necessary to establish adequate design basis for guiding the engineering analysis and construction projects of this kind of installations. In this sense, all works done so far seek to obtain particular solutions to a particular design, but there has not been any general development to set up an engineering methodology in this field. In the integral design of a spallation source, all relevant physical processes that may influence its behaviour must be taken into account. Neutronic aspects (emitted neutrons and their spectrum, generation performance..), thermomechanical (energy deposition, cooling conditions, stress distribution..), radiological (spallation waste activity, activation reactions and residual heat) and material properties alteration due to irradiation (atomic displacements and gas generation) must all be considered. After analysing in a systematic manner the different options available in scientific literature, the main objective of this thesis was established as making a significant contribution to determine the limiting factors of the main aspects of spallation sources, its application range and the criteria for choosing optimal materials. To achieve this goal, a series of general simulations have been completed, covering all the relevant physical processes in the neutronic and thermal-mechanical field. Finally, the obtained criteria have been applied to the particular case of the design of the spallation source of subcritical reactors PDX-ADS and XT-ADS. These two designs, developed under the European R and D Framework Program, represent nowadays

  16. Design education with simulation games

    DEFF Research Database (Denmark)

    Juuti, Tero; Lehtonen, Timo; Hansen, Poul H. Kyvsgård

    2008-01-01

    " This paper is a report on the use of simulation games in design education. Our objective was to find solution to the question: "How to do design education effectively and efficiently for hundreds of people with minimum resources?" In the paper the learning theories are described in short. Our...... data was gathered from exams and the results were analysed. Especially the learning of low grade exam students was impressive when using simulation game. The data from industry is based on observations while using simulation game. The results were that each of the workshop, game, and simulation...... elements can support the effort if configured and synchronized properly. The simulation games are valuable method for design education with skillful design, scoping and facilitation."...

  17. Towards open-source, low-cost haptics for surgery simulation.

    Science.gov (United States)

    Suwelack, Stefan; Sander, Christian; Schill, Julian; Serf, Manuel; Danz, Marcel; Asfour, Tamim; Burger, Wolfgang; Dillmann, Rüdiger; Speidel, Stefanie

    2014-01-01

    In minimally invasive surgery (MIS), virtual reality (VR) training systems have become a promising education tool. However, the adoption of these systems in research and clinical settings is still limited by the high costs of dedicated haptics hardware for MIS. In this paper, we present ongoing research towards an open-source, low-cost haptic interface for MIS simulation. We demonstrate the basic mechanical design of the device, the sensor setup as well as its software integration.

  18. Radioactive source simulation for half-life experiment

    International Nuclear Information System (INIS)

    Wanitsuksombut, Warapon; Decthyothin, Chanti

    1999-01-01

    A simulation of radioactivity decay by using programmable light source with a few minutes half-life is suggested. A photodiode with digital meter label in cps is use instead of radiation detector. Both light source and photodiode are installed in a black box to avoid surrounding room light. The simulation set can also demonstrate Inverse Square Law experiment of radiation penetration. (author)

  19. Monte Carlo simulations for design of the KFUPM PGNAA facility

    CERN Document Server

    Naqvi, A A; Maslehuddin, M; Kidwai, S

    2003-01-01

    Monte Carlo simulations were carried out to design a 2.8 MeV neutron-based prompt gamma ray neutron activation analysis (PGNAA) setup for elemental analysis of cement samples. The elemental analysis was carried out using prompt gamma rays produced through capture of thermal neutrons in sample nuclei. The basic design of the PGNAA setup consists of a cylindrical cement sample enclosed in a cylindrical high-density polyethylene moderator placed between a neutron source and a gamma ray detector. In these simulations the predominant geometrical parameters of the PGNAA setup were optimized, including moderator size, sample size and shielding of the detector. Using the results of the simulations, an experimental PGNAA setup was then fabricated at the 350 kV Accelerator Laboratory of this University. The design calculations were checked experimentally through thermal neutron flux measurements inside the PGNAA moderator. A test prompt gamma ray spectrum of the PGNAA setup was also acquired from a Portland cement samp...

  20. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    Science.gov (United States)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.

  1. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    International Nuclear Information System (INIS)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz

  2. Application of source biasing technique for energy efficient DECODER circuit design: memory array application

    Science.gov (United States)

    Gupta, Neha; Parihar, Priyanka; Neema, Vaibhav

    2018-04-01

    Researchers have proposed many circuit techniques to reduce leakage power dissipation in memory cells. If we want to reduce the overall power in the memory system, we have to work on the input circuitry of memory architecture i.e. row and column decoder. In this research work, low leakage power with a high speed row and column decoder for memory array application is designed and four new techniques are proposed. In this work, the comparison of cluster DECODER, body bias DECODER, source bias DECODER, and source coupling DECODER are designed and analyzed for memory array application. Simulation is performed for the comparative analysis of different DECODER design parameters at 180 nm GPDK technology file using the CADENCE tool. Simulation results show that the proposed source bias DECODER circuit technique decreases the leakage current by 99.92% and static energy by 99.92% at a supply voltage of 1.2 V. The proposed circuit also improves dynamic power dissipation by 5.69%, dynamic PDP/EDP 65.03% and delay 57.25% at 1.2 V supply voltage.

  3. SLC positron source: Simulation and performance

    International Nuclear Information System (INIS)

    Pitthan, R.; Braun, H.; Clendenin, J.E.; Ecklund, S.D.; Helm, R.H.; Kulikov, A.V.; Odian, A.C.; Pei, G.X.; Ross, M.C.; Woodley, M.D.

    1991-06-01

    Performance of the source was found to be in good general agreement with computer simulations with S-band acceleration, and where not, the simulations lead to identification of problems, in particular the underestimated impact of linac misalignments due to the 1989 Loma Prieta Earthquake. 13 refs., 7 figs

  4. Simulating Sources of Superstorm Plasmas

    Science.gov (United States)

    Fok, Mei-Ching

    2008-01-01

    We evaluated the contributions to magnetospheric pressure (ring current) of the solar wind, polar wind, auroral wind, and plasmaspheric wind, with the surprising result that the main phase pressure is dominated by plasmaspheric protons. We used global simulation fields from the LFM single fluid ideal MHD model. We embedded the Comprehensive Ring Current Model within it, driven by the LFM transpolar potential, and supplied with plasmas at its boundary including solar wind protons, polar wind protons, auroral wind O+, and plasmaspheric protons. We included auroral outflows and acceleration driven by the LFM ionospheric boundary condition, including parallel ion acceleration driven by upward currents. Our plasmasphere model runs within the CRCM and is driven by it. Ionospheric sources were treated using our Global Ion Kinetics code based on full equations of motion. This treatment neglects inertial loading and pressure exerted by the ionospheric plasmas, and will be superceded by multifluid simulations that include those effects. However, these simulations provide new insights into the respective role of ionospheric sources in storm-time magnetospheric dynamics.

  5. Single Phase Current-Source Active Rectifier for Traction: Control System Design and Practical Problems

    Directory of Open Access Journals (Sweden)

    Jan Michalik

    2006-01-01

    Full Text Available This research has been motivated by industrial demand for single phase current-source active rectifier dedicated for reconstruction of older types of dc machine locomotives. This paper presents converters control structure design and simulations. The proposed converter control is based on the mathematical model and due to possible interaction with railway signaling and required low switching frequency employs synchronous PWM. The simulation results are verified by experimental tests performed on designed laboratory prototype of power of 7kVA

  6. Inverse compton light source: a compact design proposal

    Energy Technology Data Exchange (ETDEWEB)

    Deitrick, Kirsten Elizabeth [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    levels found at large facilities than ever before. The design process, including the development between subsequent iterations, is presented here in detail, with the simulation results for this groundbreaking X-ray source.

  7. An Open Source-based Approach to the Development of Research Reactor Simulator

    International Nuclear Information System (INIS)

    Joo, Sung Moon; Suh, Yong Suk; Park, Cheol Park

    2016-01-01

    In reactor design, operator training, safety analysis, or research using a reactor, it is essential to simulate time dependent reactor behaviors such as neutron population, fluid flow, and heat transfer. Furthermore, in order to use the simulator to train and educate operators, a mockup of the reactor user interface is required. There are commercial software tools available for reactor simulator development. However, it is costly to use those commercial software tools. Especially for research reactors, it is difficult to justify the high cost as regulations on research reactor simulators are not as strict as those for commercial Nuclear Power Plants(NPPs). An open source-based simulator for a research reactor is configured as a distributed control system based on EPICS framework. To demonstrate the use of the simulation framework proposed in this work, we consider a toy example. This example approximates a 1-second impulse reactivity insertion in a reactor, which represents the instantaneous removal and reinsertion of a control rod. The change in reactivity results in a slightly delayed change in power and corresponding increases in temperatures throughout the system. We proposed an approach for developing research reactor simulator using open source software tools, and showed preliminary results. The results demonstrate that the approach presented in this work can provide economical and viable way of developing research reactor simulators

  8. Conceptual design of a permanent ring magnet based helicon plasma source module intended to be used in a large size fusion grade ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Arun; Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@iter-india.org; Chakraborty, A.

    2016-02-15

    A conceptual design of a permanent magnet based single driver helicon plasma source module along with its design approach is described in this paper. The module unit is intended to be used in a large size ion source. The conceptual design of the helicon source module has been carried out using a computer code, HELIC. The magnetic field topology for the ring magnet is simulated with another code, BFieldM and the magnetic field values obtained from the calculation are further used as input in HELIC calculation for the conceptual design. The module is conceptualized based on a cylindrical glass vessel to produce plasma of diameter ∼50 mm, height ∼50 mm. The inner diameter of the permanent ring magnets is also of the same dimension with thickness ∼10 mm each, placed slightly above the backplate to maintain the required magnetic field. The simulated results show that for hydrogen gas, expected plasma density can be achieved as high as ∼10{sup 12}–10{sup 13} cm{sup −3} in the proposed helicon source configuration using 1 kW 13.56 MHz RF generator. An experimental setup to characterize a Helicon source module unit, consisting of a cylindrical glass (plasma) chamber along with the vacuum system, RF power supplies, probes and data acquisition system is being installed.

  9. Beam dynamics simulations of the injector for a compact THz source

    Science.gov (United States)

    Li, Ji; Pei, Yuan-Ji; Shang, Lei; Feng, Guang-Yao; Hu, Tong-Ning; Chen, Qu-Shan; Li, Cheng-Long

    2014-08-01

    Terahertz radiation has broad application prospects due to its ability to penetrate deep into many organic materials without the damage caused by ionizing radiations. A free electron laser (FEL)-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Beam dynamics simulations have been done with ASTRA code to verify the design and to optimize parameters. Simulations of the operating mode at 6 MeV have also been executed.

  10. Design of an Yb-169 source optimized for gold nanoparticle-aided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso, Francisco J.; Manohar, Nivedh [Nuclear/Radiological Engineering and Medical Physics Programs, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Krishnan, Sunil [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Cho, Sang Hyun, E-mail: scho@mdanderson.org [Department of Radiation Physics and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-10-15

    Purpose: To find an optimum design of a new high-dose rate ytterbium (Yb)-169 brachytherapy source that would maximize the dose enhancement during gold nanoparticle-aided radiation therapy (GNRT), while meeting practical constraints for manufacturing a clinically relevant brachytherapy source. Methods: Four different Yb-169 source designs were considered in this investigation. The first three source models had a single encapsulation made of one of the following materials: aluminum, titanium, and stainless steel. The last source model adopted a dual encapsulation design with an inner aluminum capsule surrounding the Yb-core and an outer titanium capsule. Monte Carlo (MC) simulations using the Monte Carlo N-Particle code version 5 (MCNP5) were conducted initially to investigate the spectral changes caused by these four source designs and the associated variations in macroscopic dose enhancement across the tumor loaded with gold nanoparticles (GNPs) at 0.7% by weight. Subsequent MC simulations were performed using the EGSnrc and NOREC codes to determine the secondary electron spectra and microscopic dose enhancement as a result of irradiating the GNP-loaded tumor with the MCNP-calculated source spectra. Results: Effects of the source filter design were apparent in the current MC results. The intensity-weighted average energy of the Yb-169 source varied from 108.9 to 122.9 keV, as the source encapsulation material changed from aluminum to stainless steel. Accordingly, the macroscopic dose enhancement calculated at 1 cm away from the source changed from 51.0% to 45.3%. The sources encapsulated by titanium and aluminum/titanium combination showed similar levels of dose enhancement, 49.3% at 1 cm, and average energies of 113.0 and 112.3 keV, respectively. While the secondary electron spectra due to the investigated source designs appeared to look similar in general, some differences were noted especially in the low energy region (<50 keV) of the spectra suggesting the

  11. An Open-Source Tool Set Enabling Analog-Digital-Software Co-Design

    Directory of Open Access Journals (Sweden)

    Michelle Collins

    2016-02-01

    Full Text Available This paper presents an analog-digital hardware-software co-design environment for simulating and programming reconfigurable systems. The tool simulates, designs, as well as enables experimental measurements after compiling to configurable systems in the same integrated design tool framework. High level software in Scilab/Xcos (open-source programs similar to MATLAB/Simulink that converts the high-level block description by the user to blif format (sci2blif, which acts as an input to the modified VPR tool, including the code v p r 2 s w c s , encoding the specific platform through specific architecture files, resulting in a targetable switch list on the resulting configurable analog–digital system. The resulting tool uses an analog and mixed-signal library of components, enabling users and future researchers access to the basic analog operations/computations that are possible.

  12. Computer aided extractor design for the RIG 10 high intensity ion source

    International Nuclear Information System (INIS)

    Tanzer, F.; Haeuser, J.; Eppel, D.

    1980-01-01

    The paper discusses recent progress of the rf-ion source RIG 10, and describes a computer code for the simulation of the ion trajectories. The RIG 10 is designed for current densities of some 300 mA/cm 2 , and will be used for the production of neutral. (orig.)

  13. Research on point source simulating the γ-ray detection efficiencies of stander source

    International Nuclear Information System (INIS)

    Tian Zining; Jia Mingyan; Shen Maoquan; Yang Xiaoyan; Cheng Zhiwei

    2010-01-01

    For φ 75 mm x 25 mm sample, the full energy peak efficiencies on different heights of sample radius were obtained using the point sources, and the function parameters about the full energy peak efficiencies of point sources based on radius was fixed. The 59.54 keV γ-ray, 661.66 keV γ-ray, 1173.2 keV γ-ray, 1332.5 keV γ-ray detection efficiencies on different height of samples were obtained, based on the full energy peak efficiencies of point sources and its height, and the function parameters about the full energy peak efficiencies of surface sources based on sample height was fixed. The detection efficiency of (75 mm x 25 mm calibration source can be obtained by integrality, the detection efficiencies simulated by point sources are consistent with the results of stander source in 10%. Therefore, the calibration method of stander source can be substituted by the point source simulation method, and it tis feasible when there is no stander source.) (authors)

  14. Design of a helicon plasma source for ion–ion plasma production

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, N., E-mail: narayan.sharma@cppipr.res.in; Chakraborty, M.; Neog, N.K.; Bandyopadhyay, M.

    2017-04-15

    Highlights: • Development of a helicon plasma system to carry out ion–ion plasma studies in electronegative gases such as Hydrogen, Oxygen and Chlorine. • Determination of initial parameters of helicon plasma source for ion–ion plasma by using dispersion relation of bounded helicon waves. • Design and development of solenoid with magnetic field strength production capability of ∼ 600 G along the axis of the chamber. • Optimization of the chamber parameters using Helic codes and estimation of optimum attainable density. • Estimation of RF power requirements for various gases. - Abstract: A helicon plasma system is being designed and developed at CPP-IPR. The design parameters of the system are deduced from the dispersion relation of bounded helicon waves and the required magnetic fields are simulated by using Poisson Superfish code. The Helic code is used to simulate the power deposition profile for various conditions and to investigate the optimum values of chamber parameters for effective coupling of radio frequency (RF) power to plasma. The helicon source system is aimed at carrying out ion–ion plasma studies in electronegative gases such as Hydrogen, Oxygen and Chlorine. The system mainly consists of a source chamber in which helicon plasma will be produced by injecting RF power at a frequency of 13.56 MHz through a right helical antenna in presence of a DC magnetic field followed by an expansion chamber in which it is expected to produce negative ions along with the positive ions. Installation of the various parts of the system is in progress. The details of the design and development of the system is presented in this article.

  15. Simulating Irregular Source Geometries for Ionian Plumes

    Science.gov (United States)

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-05-01

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  16. Simulating Irregular Source Geometries for Ionian Plumes

    International Nuclear Information System (INIS)

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-01-01

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  17. Design and Task Analysis for a Game-Based Shiphandling Simulator Using an Open Source Game Engine (DELTA3D)

    Science.gov (United States)

    2011-09-01

    Rodrigues, F. L. D. (2010).Sistema de realidade virtual para simulador visual de passadiço ( Virtual reality system for visual bridge simulator...products/shipsimulatorextremes Souza, I. (2007). Simulador de Realidade Virtual para o Treinamento de Biópsia por Agulha de Nódulos da Glândula de...Games, Shiphandling Simulator, Training, Virtual Environments, Simulation, Open Source, Brazilian Navy 16. PRICE CODE 17. SECURITY CLASSIFICATION OF

  18. Review of Sealed Source Designs and Manufacturing Techniques Affecting Disused Source Management

    International Nuclear Information System (INIS)

    2012-10-01

    This publication presents an investigation on the influence of the design and technical features of sealed radioactive sources (SRSs) on predisposal and disposal activities when the sources become disused. The publication also addresses whether design modifications could contribute to safer and/or more efficient management of disused sources without compromising the benefits provided by the use of the sealed sources. This technical publication aims to collect information on the most typical design features and manufacturing techniques of sealed radioactive sources and examines how they affect the safe management of disused sealed radioactive sources (DSRS). The publication also aims to assist source designers and manufacturers by discussing design features that are important from the waste management point of view. It has been identified that most SRS manufacturers use similar geometries and materials for their designs and apply improved and reliable manufacturing techniques e.g. double- encapsulation. These designs and manufacturing techniques have been proven over time to reduce contamination levels in fabrication and handling, and improve source integrity and longevity. The current source designs and materials ensure as well as possible that SRSs will maintain their integrity in use and when they become disused. No significant improvement options to current designs have been identified. However, some design considerations were identified as important to facilitate source retrieval, to increase the possibility of re-use and to ensure minimal contamination risk and radioactive waste generation at recycling. It was also concluded that legible identifying markings on a source are critical for DSRS management. The publication emphasizes the need for a common understanding of the radioactive source's recommended working life (RWL) for manufacturers and regulators. The conditions of use (COU) are important for the determination of RWL. A formal system for specification

  19. Beam dynamics simulations of the injector for a compact THz source

    International Nuclear Information System (INIS)

    Li Ji; Pei Yuanji; Shang Lei; Li Chenglong; Feng Guangyao; Hu Tongning; Chen Qushan

    2014-01-01

    Terahertz radiation has broad application prospects due to its ability to penetrate deep into many organic materials without the damage caused by ionizing radiations. A free electron laser (FEL)-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Beam dynamics simulations have been done with ASTRA code to verify the design and to optimize parameters. Simulations of the operating mode at 6 MeV have also been executed. (authors)

  20. Numerical Simulation of Ion Transport in a Nano-Electrospray Ion Source at Atmospheric Pressure

    Science.gov (United States)

    Wang, Wei; Bajic, Steve; John, Benzi; Emerson, David R.

    2018-03-01

    Understanding ion transport properties from the ion source to the mass spectrometer (MS) is essential for optimizing device performance. Numerical simulation helps in understanding of ion transport properties and, furthermore, facilitates instrument design. In contrast to previously reported numerical studies, ion transport simulations in a continuous injection mode whilst considering realistic space-charge effects have been carried out. The flow field was solved using Reynolds-averaged Navier-Stokes (RANS) equations, and a particle-in-cell (PIC) method was applied to solve a time-dependent electric field with local charge density. A series of ion transport simulations were carried out at different cone gas flow rates, ion source currents, and capillary voltages. A force evaluation analysis reveals that the electric force, the drag force, and the Brownian force are the three dominant forces acting on the ions. Both the experimental and simulation results indicate that cone gas flow rates of ≤250 slph (standard liter per hour) are important for high ion transmission efficiency, as higher cone gas flow rates reduce the ion signal significantly. The simulation results also show that the ion transmission efficiency reduces exponentially with an increased ion source current. Additionally, the ion loss due to space-charge effects has been found to be predominant at a higher ion source current, a lower capillary voltage, and a stronger cone gas counterflow. The interaction of the ion driving force, ion opposing force, and ion dispersion is discussed to illustrate ion transport mechanism in the ion source at atmospheric pressure. [Figure not available: see fulltext.

  1. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.

    1986-01-01

    A new conceptual design of a fusion reactor blanket simulation facility was developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBR), because experiments conducted in it have resulted in the discovery of deficiencies in neutronics prediction methods. With this design, discrepancies between calculation and experimental data can be fully attributed to calculation methods because design deficiencies that could affect results are insignificant. Inelastic scattering cross sections are identified as a major source of these discrepancies. The conceptual design of this FBBR analog, the fusion reactor blanket facility (FRBF), is presented. Essential features are a cylindrical geometry and a distributed, cosine-shaped line source of 14-MeV neutrons. This source can be created by sweeping a deuteron beam over an elongated titanium-tritide target. To demonstrate that the design of the FRBF will not contribute significant deviations in experimental results, neutronics analyses were performed: results of comparisons of 2-dimensional to 1-dimensional predictions are reported for two blanket compositions. Expected deviations from 1-D predictions which are due to source anisotropy and blanket asymmetry are minimal. Thus, design of the FRBF allows simple and straightforward interpretation of the experimental results, without a need for coarse 3-D calculations

  2. SLC polarized beam source electron optics design

    International Nuclear Information System (INIS)

    Eppley, K.R.; Lavine, T.L.; Early, R.A.; Herrmannsfeldt, W.B.; Miller, R.H.; Schultz, D.C.; Spencer, C.M.; Yeremian, A.D.

    1991-05-01

    This paper describes the design of the beam-line from the polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10 -11 -Torr-range pressure for adequate quantum efficiency and longevity. The photocathode is illuminated by 3-nsec-long laser pulses. The quality of the optics for the 160-kV beam is crucial since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line consists of a differential pumping region isolated by a pair of valves. Focusing is provided by a pair of Helmholtz coils and by several iron-encased solenoidal lenses. Our optics design is based on beam transport simulations using 2 1/2-D particle-in-cell codes to model the gun and to solve the fully-relativistic time-dependent equations of motion in three dimensions for electrons in the presence of azimuthally symmetric electromagnetic fields. 6 refs., 6 figs

  3. Design automation, languages, and simulations

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    As the complexity of electronic systems continues to increase, the micro-electronic industry depends upon automation and simulations to adapt quickly to market changes and new technologies. Compiled from chapters contributed to CRC's best-selling VLSI Handbook, this volume covers a broad range of topics relevant to design automation, languages, and simulations. These include a collaborative framework that coordinates distributed design activities through the Internet, an overview of the Verilog hardware description language and its use in a design environment, hardware/software co-design, syst

  4. Design of a graphite-moderated {sup 241}Am-Li neutron field to simulate reactor spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, N., E-mail: tsujimura.norio@jaea.go.j [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33, Tokai-mura, Ibaraki-ken, 319-1194 (Japan); Yoshida, T. [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33, Tokai-mura, Ibaraki-ken, 319-1194 (Japan)

    2010-12-15

    A neutron calibration field using {sup 241}Am-Li sources and a moderator was designed to simulate the neutron fields found outside a reactor. The moderating assembly selected for the design calculation consists of a cube of graphite blocks with dimensions of 50 cm by 50 cm by 50 cm, in which the {sup 241}Am-Li sources are placed. Monte Carlo calculations revealed the optimal depth of the source to be 15 cm. This moderated neutron source can be used to provide a test field that has a large number of intermediate energy neutrons with a small portion of MeV component.

  5. Xyce parallel electronic simulator design.

    Energy Technology Data Exchange (ETDEWEB)

    Thornquist, Heidi K.; Rankin, Eric Lamont; Mei, Ting; Schiek, Richard Louis; Keiter, Eric Richard; Russo, Thomas V.

    2010-09-01

    This document is the Xyce Circuit Simulator developer guide. Xyce has been designed from the 'ground up' to be a SPICE-compatible, distributed memory parallel circuit simulator. While it is in many respects a research code, Xyce is intended to be a production simulator. As such, having software quality engineering (SQE) procedures in place to insure a high level of code quality and robustness are essential. Version control, issue tracking customer support, C++ style guildlines and the Xyce release process are all described. The Xyce Parallel Electronic Simulator has been under development at Sandia since 1999. Historically, Xyce has mostly been funded by ASC, the original focus of Xyce development has primarily been related to circuits for nuclear weapons. However, this has not been the only focus and it is expected that the project will diversify. Like many ASC projects, Xyce is a group development effort, which involves a number of researchers, engineers, scientists, mathmaticians and computer scientists. In addition to diversity of background, it is to be expected on long term projects for there to be a certain amount of staff turnover, as people move on to different projects. As a result, it is very important that the project maintain high software quality standards. The point of this document is to formally document a number of the software quality practices followed by the Xyce team in one place. Also, it is hoped that this document will be a good source of information for new developers.

  6. Regensim – Matlab toolbox for renewable energy sources modelling and simulation

    Directory of Open Access Journals (Sweden)

    Cristian Dragoş Dumitru

    2011-12-01

    Full Text Available This paper deals with the implementation and development of a Matlab Simulink library named RegenSim designed for modeling, simulations and analysis of real hybrid solarwind-hydro systems connected to local grids. Blocks like wind generators, hydro generators, solar photovoltaic modules and accumulators are implemented. The main objective is the study of the hybrid power system behavior, which allows employing renewable and variable in time energy sources while providing a continuous supply.

  7. Fast Bayesian optimal experimental design for seismic source inversion

    KAUST Repository

    Long, Quan

    2015-07-01

    We develop a fast method for optimally designing experiments in the context of statistical seismic source inversion. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by elastodynamic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the "true" parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem. © 2015 Elsevier B.V.

  8. Fast Bayesian Optimal Experimental Design for Seismic Source Inversion

    KAUST Repository

    Long, Quan

    2016-01-06

    We develop a fast method for optimally designing experiments [1] in the context of statistical seismic source inversion [2]. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by the elastic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the true parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem.

  9. Fast Bayesian Optimal Experimental Design for Seismic Source Inversion

    KAUST Repository

    Long, Quan; Motamed, Mohammad; Tempone, Raul

    2016-01-01

    We develop a fast method for optimally designing experiments [1] in the context of statistical seismic source inversion [2]. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by the elastic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the true parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem.

  10. Monte Carlo simulation for the design of industrial gamma-ray transmission tomography

    International Nuclear Information System (INIS)

    Kim, Jongbum; Jung, Sunghee; Moon, Jinho; Kwon, Taekyong; Cho, Gyuseong

    2011-01-01

    The Monte Carlo simulation and experiment were carried out for a large-scale industrial gamma ray tomographic scanning geometry. The geometry of the tomographic system has a moving source with 16 stationary detectors. This geometry is advantageous for the diagnosis of a large-scale industrial plant. The simulation data was carried out for the phantom with 32 views, 16 detectors, and a different energy bin. The simulation data was processed to be used for image reconstruction. Image reconstruction was performed by a Diagonally-Scaled Gradient-Ascent algorithm for simulation data. Experiments were conducted in a 78 cm diameter column filled with polypropylene grains. Sixteen 0.5-inch-thick and 1 inch long NaI(Tl) cylindrical detectors, and 20 mCi of 137 Cs radioactive source were used. The experimental results were compared to the simulation data. The experimental results were similar to Monte Carlo simulation results. This result showed that the Monte Carlo simulation is useful for predicting the result of the industrial gamma tomographic scan method And it can also give a solution for designing the industrial gamma tomography system and preparing the field experiment. (author)

  11. Direct design of achromatic lens for Lambertian sources in collimating illumination

    Science.gov (United States)

    Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Wang, Hongshu

    2017-10-01

    Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for the removing of the chromatic dispersion. What we present here is an achromatic lens design to enhance the efficiency and uniform illumination of white light-emitting diode (LED) with diffractive optical element (DOE). We employ the chromatic aberration value (deg) to measure the degree of chromatic dispersion in illumination systems. Monte Carlo ray tracing simulation results indicate that the chromatic dispersion of the modified achromatic collimator significantly decreases from 0.5 to 0.1 with LED chip size of 1.0mm×1.0mm and simulation efficiency of 90.73%, compared with the traditional collimator. Moreover, with different corrected wavelengths we compared different chromatic aberration values that followed with the changing pupil percent. The achromatic collimator provided an effective way to achieve white LED with low chromatic dispersion at high efficiency and uniform illumination.

  12. A virtual source method for Monte Carlo simulation of Gamma Knife Model C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hoon; Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of); Chung, Hyun Tai [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-05-15

    The Monte Carlo simulation method has been used for dosimetry of radiation treatment. Monte Carlo simulation is the method that determines paths and dosimetry of particles using random number. Recently, owing to the ability of fast processing of the computers, it is possible to treat a patient more precisely. However, it is necessary to increase the simulation time to improve the efficiency of accuracy uncertainty. When generating the particles from the cobalt source in a simulation, there are many particles cut off. So it takes time to simulate more accurately. For the efficiency, we generated the virtual source that has the phase space distribution which acquired a single gamma knife channel. We performed the simulation using the virtual sources on the 201 channel and compared the measurement with the simulation using virtual sources and real sources. A virtual source file was generated to reduce the simulation time of a Gamma Knife Model C. Simulations with a virtual source executed about 50 times faster than the original source code and there was no statistically significant difference in simulated results.

  13. A virtual source method for Monte Carlo simulation of Gamma Knife Model C

    International Nuclear Information System (INIS)

    Kim, Tae Hoon; Kim, Yong Kyun; Chung, Hyun Tai

    2016-01-01

    The Monte Carlo simulation method has been used for dosimetry of radiation treatment. Monte Carlo simulation is the method that determines paths and dosimetry of particles using random number. Recently, owing to the ability of fast processing of the computers, it is possible to treat a patient more precisely. However, it is necessary to increase the simulation time to improve the efficiency of accuracy uncertainty. When generating the particles from the cobalt source in a simulation, there are many particles cut off. So it takes time to simulate more accurately. For the efficiency, we generated the virtual source that has the phase space distribution which acquired a single gamma knife channel. We performed the simulation using the virtual sources on the 201 channel and compared the measurement with the simulation using virtual sources and real sources. A virtual source file was generated to reduce the simulation time of a Gamma Knife Model C. Simulations with a virtual source executed about 50 times faster than the original source code and there was no statistically significant difference in simulated results

  14. Source-circuit design overview

    Science.gov (United States)

    Ross, R. G., Jr.

    1983-01-01

    The source circuit is the fundamental electrical building block of a large central-station array; it consists of a series-parallel network of solar cells that develops full system voltage. The array field is generally made up of a large number of parallel source circuits. Source-circuit electrical configuration is driven by a number of design considerations, which must be considered simultaneously. Array fault tolerance and hot spot heating endurance are examined in detail.

  15. Simulating variable source problems via post processing of individual particle tallies

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    2000-01-01

    Monte Carlo is an extremely powerful method of simulating complex, three dimensional environments without excessive problem simplification. However, it is often time consuming to simulate models in which the source can be highly varied. Similarly difficult are optimization studies involving sources in which many input parameters are variable, such as particle energy, angle, and spatial distribution. Such studies are often approached using brute force methods or intelligent guesswork. One field in which these problems are often encountered is accelerator-driven Boron Neutron Capture Therapy (BNCT) for the treatment of cancers. Solving the reverse problem of determining the best neutron source for optimal BNCT treatment can be accomplished by separating the time-consuming particle-tracking process of a full Monte Carlo simulation from the calculation of the source weighting factors which is typically performed at the beginning of a Monte Carlo simulation. By post-processing these weighting factors on a recorded file of individual particle tally information, the effect of changing source variables can be realized in a matter of seconds, instead of requiring hours or days for additional complete simulations. By intelligent source biasing, any number of different source distributions can be calculated quickly from a single Monte Carlo simulation. The source description can be treated as variable and the effect of changing multiple interdependent source variables on the problem's solution can be determined. Though the focus of this study is on BNCT applications, this procedure may be applicable to any problem that involves a variable source

  16. MEASUREMENT AND SIMULATION OF SOURCE-GENERATED HALOS IN THE UNIVERSITY OF MARYLAND ELECTRON RING (UMER)

    International Nuclear Information System (INIS)

    Haber, I.; Haber, I.; Bernal, S.; Kishek, R.A.; O'Shea, P.G.; Papadopoulos, C.; Reiser, M.; Feldman, R.B.; Stratakis, D.; Walter, M.; Vay, J.-L.; Friedman, A.; Grote, D.P.

    2007-01-01

    One of the areas of fundamental beam physics that have served as the rationale for recent research on UMER is the study of the generation and evolution of beam halos. Recent experiments and simulations have identified imperfections in the source geometry, particularly in the region near the emitter edge, as a significant potential source of halo particles. The edge-generated halo particles, both in the experiments and the simulations are found to pass through the center of the beam a short distance downstream of the anode plane. Understanding the detailed evolution of these particle orbits is therefore important to designing any aperture to remove the beam halo

  17. A high-compression electron gun for C6+ production: concept, simulations and mechanical design

    Science.gov (United States)

    Mertzig, Robert; Breitenfeldt, M.; Mathot, S.; Pitters, J.; Shornikov, A.; Wenander, F.

    2017-07-01

    In this paper we report on simulations and the mechanical design of a high-compression electron gun for an Electron Beam Ion Source (EBIS) dedicated for production of high intensity and high repetition rate pulses of bare carbon ions for injection into linac-based hadron therapy facilities. The gun is presently under construction at CERN to be retrofitted into the TwinEBIS test bench for experimental studies. We describe the design constraints, show results of numeric simulations and report on the mechanical design featuring several novel ideas. The reported design makes use of combined-function units with reduced number of mechanical joints that were carefully controlled and tuned during the manufacturing phase. The simulations addressed a wide range of topics including the influence of thermal effects, focusing optics, symmetry-breaking misalignments and injection into a full 5 T field.

  18. Source-to-target simulation of simultaneous longitudinal and transverse focusing of heavy ion beams

    Directory of Open Access Journals (Sweden)

    D. R. Welch

    2008-06-01

    Full Text Available Longitudinal bunching factors in excess of 70 of a 300-keV, 27-mA K^{+} ion beam have been demonstrated in the neutralized drift compression experiment [P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005PRLTAO0031-900710.1103/PhysRevLett.95.234801] in rough agreement with particle-in-cell source-to-target simulations. A key aspect of these experiments is that a preformed plasma provides charge neutralization of the ion beam in the last one meter drift region where the beam perveance becomes large. The simulations utilize the measured ion source temperature, diode voltage, and induction-bunching-module voltage waveforms in order to determine the initial beam longitudinal phase space which is critical to accurate modeling of the longitudinal compression. To enable simultaneous longitudinal and transverse compression, numerical simulations were used in the design of the solenoidal focusing system that compensated for the impact of the applied velocity tilt on the transverse phase space of the beam. Complete source-to-target simulations, that include detailed modeling of the diode, magnetic transport, induction bunching module, and plasma neutralized transport, were critical to understanding the interplay between the various accelerator components in the experiment. Here, we compare simulation results with the experiment and discuss the contributions to longitudinal and transverse emittance that limit the final compression.

  19. Designing display primaries with currently available light sources for UHDTV wide-gamut system colorimetry.

    Science.gov (United States)

    Masaoka, Kenichiro; Nishida, Yukihiro; Sugawara, Masayuki

    2014-08-11

    The wide-gamut system colorimetry has been standardized for ultra-high definition television (UHDTV). The chromaticities of the primaries are designed to lie on the spectral locus to cover major standard system colorimetries and real object colors. Although monochromatic light sources are required for a display to perfectly fulfill the system colorimetry, highly saturated emission colors using recent quantum dot technology may effectively achieve the wide gamut. This paper presents simulation results on the chromaticities of highly saturated non-monochromatic light sources and gamut coverage of real object colors to be considered in designing wide-gamut displays with color filters for the UHDTV.

  20. Design of a nickel-hydrogen battery simulator for the NASA EOS testbed

    Science.gov (United States)

    Gur, Zvi; Mang, Xuesi; Patil, Ashok R.; Sable, Dan M.; Cho, Bo H.; Lee, Fred C.

    1992-01-01

    The hardware and software design of a nickel-hydrogen (Ni-H2) battery simulator (BS) with application to the NASA Earth Observation System (EOS) satellite is presented. The battery simulator is developed as a part of a complete testbed for the EOS satellite power system. The battery simulator involves both hardware and software components. The hardware component includes the capability of sourcing and sinking current at a constant programmable voltage. The software component includes the capability of monitoring the battery's ampere-hours (Ah) and programming the battery voltage according to an empirical model of the nickel-hydrogen battery stored in a computer.

  1. Design parameters and source terms: Volume 3, Source terms

    International Nuclear Information System (INIS)

    1987-10-01

    The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report by Stearns Catalytic Corporation (SCC), entitled ''Design Parameters and Source Terms for a Two-Phase Repository in Salt,'' 1985, to the level of the Site Characterization Plan - Conceptual Design Report. The previous unpublished SCC Study identifies the data needs for the Environmental Assessment effort for seven possible Salt Repository sites. 11 refs., 9 tabs

  2. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  3. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry

    Directory of Open Access Journals (Sweden)

    Böttrich Marcel

    2015-09-01

    Full Text Available Transabdominal fetal pulse oximetry is a method to monitor the oxygen supply of the unborn child non-invasively. Due to the measurement setup, the received signal of the detector is composed of photons coding purely maternal and photons coding mixed fetal-maternal information. To analyze the wellbeing of the fetus, the fetal signal is extracted from the mixed component. In this paper we assess source-detector configurations, such that the mixed fetal-maternal components of the acquired signals are maximized. Monte-Carlo method is used to simulate light propagation and photon distribution in tissue. We use a plane layer and a spherical layer geometry to model the abdomen of a pregnant woman. From the simulations we extracted the fluence at the detector side for several source-detector distances and analyzed the ratio of the mixed fluence component to total fluence. Our simulations showed that the power of the mixed component depends on the source-detector distance as expected. Further we were able to visualize hot spot areas in the spherical layer model where the mixed fluence ratio reaches the highest level. The results are of high importance for sensor design considering signal composition and quality for non-invasive fetal pulse oximetry.

  4. Design and realization of simulators

    International Nuclear Information System (INIS)

    Mathey, C.

    1984-01-01

    The two main categories of simulators are training simulators of which aim is the education of the nuclear power plant operators, and the study simulators. The French park of simulators is reviewed, as also their field of utilization. One deals with the simulator design: general description, calculation tools, middleware, and programming, mathematical models and numerical methods. Then, the instructor post of the EDF's simulators are more particularly described. The realization of a simulator includes two main stages: the development of the material and, the development of the software [fr

  5. Design of tool monitor simulator

    International Nuclear Information System (INIS)

    Yao Yonggang; Deng Changming; Zhang Jia; Meng Dan; Zhang Lu; Wang Zhi'ai; Shen Yang

    2011-01-01

    It is based on tool monitor in Qinshan Nuclear Power Plant for the object of study, and manufacture a tool monitor simulator. The device is designed to automatically emulate-monitor the contamination level of objects for training students. Once if the tool monitor reports the contamination, the students can handle properly. The brief introduction of main function and system design of the simulator are presented in the paper. (authors)

  6. CMOS circuit design, layout and simulation

    CERN Document Server

    Baker, R Jacob

    2010-01-01

    The Third Edition of CMOS Circuit Design, Layout, and Simulation continues to cover the practical design of both analog and digital integrated circuits, offering a vital, contemporary view of a wide range of analog/digital circuit blocks including: phase-locked-loops, delta-sigma sensing circuits, voltage/current references, op-amps, the design of data converters, and much more. Regardless of one's integrated circuit (IC) design skill level, this book allows readers to experience both the theory behind, and the hands-on implementation of, complementary metal oxide semiconductor (CMOS) IC design via detailed derivations, discussions, and hundreds of design, layout, and simulation examples.

  7. Simulation and Spacecraft Design: Engineering Mars Landings.

    Science.gov (United States)

    Conway, Erik M

    2015-10-01

    A key issue in history of technology that has received little attention is the use of simulation in engineering design. This article explores the use of both mechanical and numerical simulation in the design of the Mars atmospheric entry phases of the Viking and Mars Pathfinder missions to argue that engineers used both kinds of simulation to develop knowledge of their designs' likely behavior in the poorly known environment of Mars. Each kind of simulation could be used as a warrant of the other's fidelity, in an iterative process of knowledge construction.

  8. Open Source AV solution supporting In Situ Simulation

    DEFF Research Database (Denmark)

    Krogh, Kristian; Pociunas, Gintas; Dahl, Mads Ronald

    the software to meet our expectations for a portable AV system for VAD. The system would make use of “off the shelf” hardware components which are widely available and easily replaced or expanded. The developed AV software and coding is contracted to be available as Copyleft Open Source to ensure low cost...... a stable AV software that has be developed and implemented for an in situ simulation initiative. This version (1.3) is the first on released as Open Source (Copyleft) software (see QR tag). We have found that it is possible to deliver multi-camera video assisted debriefing in a mobile, in situ simulation...... environment using an AV system constructed from “off the shelf” components and Open Source software....

  9. Analysis and simulation of a small-angle neutron scattering instrument on a 1 MW long pulse spallation source

    International Nuclear Information System (INIS)

    Olah, G.A.; Hjelm, R.P.; Lujan, M. Jr.

    1996-01-01

    We studied the design and performance of a small-angle neutron scattering (SANS) instrument for a proposed 1 MW, 60 Hz long pulsed spallation source at the Los Alamos Neutron Science Center (LANSCE). An analysis of the effects of source characteristics and chopper performance combined with instrument simulations using the LANSCE Monte Carlo instrument simulations package shows that the T 0 chopper should be no more than 5 m from the source with the frame overlap and frame definition choppers at 5.6 and greater than 7 m, respectively. The study showed that an optimal pulse structure has an exponential decaying tail with τ ∼ 750 μs. The Monte Carlo simulations were used to optimize the LPSS SANS, showing that an optimal length is 18 m. The simulations show that an instrument with variable length is best to match the needs of a given measurement. The performance of the optimized LPSS instrument was found to be comparable with present world standard instruments

  10. Detector simulation needs for detector designers

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers

  11. A generic open-source software framework supporting scenario simulations in bioterrorist crises.

    Science.gov (United States)

    Falenski, Alexander; Filter, Matthias; Thöns, Christian; Weiser, Armin A; Wigger, Jan-Frederik; Davis, Matthew; Douglas, Judith V; Edlund, Stefan; Hu, Kun; Kaufman, James H; Appel, Bernd; Käsbohrer, Annemarie

    2013-09-01

    Since the 2001 anthrax attack in the United States, awareness of threats originating from bioterrorism has grown. This led internationally to increased research efforts to improve knowledge of and approaches to protecting human and animal populations against the threat from such attacks. A collaborative effort in this context is the extension of the open-source Spatiotemporal Epidemiological Modeler (STEM) simulation and modeling software for agro- or bioterrorist crisis scenarios. STEM, originally designed to enable community-driven public health disease models and simulations, was extended with new features that enable integration of proprietary data as well as visualization of agent spread along supply and production chains. STEM now provides a fully developed open-source software infrastructure supporting critical modeling tasks such as ad hoc model generation, parameter estimation, simulation of scenario evolution, estimation of effects of mitigation or management measures, and documentation. This open-source software resource can be used free of charge. Additionally, STEM provides critical features like built-in worldwide data on administrative boundaries, transportation networks, or environmental conditions (eg, rainfall, temperature, elevation, vegetation). Users can easily combine their own confidential data with built-in public data to create customized models of desired resolution. STEM also supports collaborative and joint efforts in crisis situations by extended import and export functionalities. In this article we demonstrate specifically those new software features implemented to accomplish STEM application in agro- or bioterrorist crisis scenarios.

  12. Conceptual source design and dosimetric feasibility study for intravascular treatment: a proposal for intensity modulated brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Yong; Han, Eun Young; Palta, Jatinder R. [College of Medicine, Florida Univ., Florida (United States); Ha, Sung W. [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2003-06-01

    To propose a conceptual design of a novel source for intensity modulated brachytherapy. The source design incorporates both radioactive and shielding materials (stainless steel or tungsten), to provide an asymmetric dose intensity in the azimuthal direction. The intensity modulated intravascular brachytherapy was performed by combining a series of dwell positions and times, distributed along the azimuthal coordinates. Two simple designs for the beta-emitting sources, with similar physical dimensions to a {sub 90}Sr/Y Novoste Beat-Cath source, were considered in the dosimetric feasibility study. In the first design, the radioactive and materials each occupy half of the cylinder and in the second, the radioactive material occupies only a quarter of the cylinder. The radial and azimuthal dose distributions around each source were calculated using the MCNP Monte Carlo code. The preliminary hypothetical simulation and optimization results demonstrated the 87% difference between the maximum and minimum doses to the lumen wall, due to off-centering of the radiation source, could be reduced to less than 7% by optimizing the azimuthal dwell positions and times of the partially shielded intravascular brachytherapy sources. The novel brachytherapy source design, and conceptual source delivery system, proposed in this study show promising dosimetric characteristics for the realization of intensity modulated brachytherapy in intravascular treatment. Further development of this concept will center on building a delivery system that can precisely control the angular motion of a radiation source in a small-diameter catheter.

  13. Conceptual source design and dosimetric feasibility study for intravascular treatment: a proposal for intensity modulated brachytherapy

    International Nuclear Information System (INIS)

    Kim, Si Yong; Han, Eun Young; Palta, Jatinder R.; Ha, Sung W.

    2003-01-01

    To propose a conceptual design of a novel source for intensity modulated brachytherapy. The source design incorporates both radioactive and shielding materials (stainless steel or tungsten), to provide an asymmetric dose intensity in the azimuthal direction. The intensity modulated intravascular brachytherapy was performed by combining a series of dwell positions and times, distributed along the azimuthal coordinates. Two simple designs for the beta-emitting sources, with similar physical dimensions to a 90 Sr/Y Novoste Beat-Cath source, were considered in the dosimetric feasibility study. In the first design, the radioactive and materials each occupy half of the cylinder and in the second, the radioactive material occupies only a quarter of the cylinder. The radial and azimuthal dose distributions around each source were calculated using the MCNP Monte Carlo code. The preliminary hypothetical simulation and optimization results demonstrated the 87% difference between the maximum and minimum doses to the lumen wall, due to off-centering of the radiation source, could be reduced to less than 7% by optimizing the azimuthal dwell positions and times of the partially shielded intravascular brachytherapy sources. The novel brachytherapy source design, and conceptual source delivery system, proposed in this study show promising dosimetric characteristics for the realization of intensity modulated brachytherapy in intravascular treatment. Further development of this concept will center on building a delivery system that can precisely control the angular motion of a radiation source in a small-diameter catheter

  14. Application of discrete event simulation to MRS design

    International Nuclear Information System (INIS)

    Bali, M.; Standley, W.

    1993-01-01

    The application of discrete event simulation to the Monitored, Retrievable Storage (MRS) material handling operations supported the MRS conceptual design effort and established a set of tools for use during MRS detail design and license application. The effort to develop a design analysis tool to support the MRS project started in 1991. The MRS simulation has so far identified potential savings and suggested methods of improving operations to enhance throughput. Immediately, simulation aided the MRS conceptual design effort through the investigation of alternative cask handling operations and the sizing and sharing of expensive equipment. The simulation also helped analyze the operability of the current design of MRS under various waste acceptance scenarios. Throughout the simulation effort, the model development and experimentation resulted in early identification and resolution of several design and operational issues

  15. Design Considerations of a Virtual Laboratory for Advanced X-ray Sources

    Science.gov (United States)

    Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.

    2004-11-01

    The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.

  16. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  17. Design and simulations for RFPI system test jig

    International Nuclear Information System (INIS)

    Keshwani, Rajesh; Khole, Shailesh; Sujo, C.I.; Shukla, Hitesh; Afaash, M.; Bharade, Sandeep; Joshi, Gopal

    2015-01-01

    RFPI system for condition monitoring and protection of RF systems of LEHIPA has been designed. The intention of this system is to protect and monitor different high power RF components. The system consists of variety of analog and digital cards to process, acquire and monitor signals from RF sensors, photo multiplier tubes (PMT), field emission probes, photo sensors, etc. The system can also accept and process digital inputs or contacts and analog input signals from other subsystems, indicating their status. It comprises of analog signal processing electronics, condition monitoring, data acquisition and fault reporting features. Since RFPI system should process and take action within prescribed time limit, the testing of system is critical issue. In order to carry out stand-alone field testing of such elaborate electronic system, variety of carefully designed electronic test circuit with suitable rangeability is required. These include fast current sources, fast amplifiers, fast rectifiers, etc. This paper elaborates on specifications, design approach, circuit design and simulations for various circuits used in test jig

  18. Post-processing of Monte Carlo simulations for rapid BNCT source optimization studies

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    2000-01-01

    A great advantage of some neutron sources, such as accelerator-produced sources, is that they can be tuned to produce different spectra. Unfortunately, optimization studies are often time-consuming and difficult, as they require a lengthy Monte Carlo simulation for each source. When multiple characteristics, such as energy, angle, and spatial distribution of a neutron beam are allowed to vary, an overwhelming number of simulations may be required. Many optimization studies, therefore, suffer from a small number of datapoints, restrictive treatment conditions, or poor statistics. By scoring pertinent information from every particle tally in a Monte Carlo simulation, then applying appropriate source variable weight factors in a post-processing algorithm, a single simulation can be used to model any number of multiple sources. Through this method, the response to a new source can be modeled in minutes or seconds, rather than hours or days, allowing for the analysis of truly variable source conditions of much greater resolution than is normally possible when a new simulation must be run for each datapoint in a study. This method has been benchmarked and used to recreate optimization studies in a small fraction of the time spent in the original studies

  19. Using simulation for intervention design in radiating environment: first evaluation of NARVEOS

    Energy Technology Data Exchange (ETDEWEB)

    Thevenon, Jean-Bernard; Lopez, Loic [Euriware, 1 place des Freres Montgolfier, 78044 Guyancourt Cedex (France); Chabal, Caroline; Idasiak, Jean-Marc [CEA-DEN, Dismantling and Operations Support Department, CEA Valrho, BP 17171, 30207 Bagnols-sur-Ceze (France); Chodorge, Laurent [CEA-LIST, Virtual Reality Cognitic and Interface Service, CEA-FAR, Bat 38, 92265 Fontenay-aux-Roses (France); Desbats, Philippe [CEA-LIST, Intelligent Systems and Technologies Department, CEA-Saclay, Bat 476, 91191 Gif-sur-Yvette (France)

    2009-06-15

    Interventions design in radiating environment must bring answers to technical and economical constraint on one hand and, on the other hand, to radiation protection principles and rules. Simulation is a key point for a good understanding of the scene and for testing hypothesis. The paper presents how a simulation tool (called NARVEOS), based on Virtual Reality technology and on fast coupling between geometries descriptions and a solver, can provide significant support to engineers in charge of scenario design. Besides feasibility study scenario design for one-shot project such as dismantling operations, such a tool is well adapted also for dose projection reduction on regular operations such as maintenance and outage. The technologies used to interactively and simultaneously compute the dose estimate within a CAD model are presented. By using CAD model and available radiological data (source term description), the software allows simulating the evolution of the different features of the digital mock-up (virtual human workers, robots, sources, biological protections, etc.) and evaluating the accessibility issues using interactivity with the end-user. Thanks to this software, users can virtually test the operation feasibility, optimise the costs and estimate the dose rate according to ALARA principle. This tool offers new perspectives for studies, costs and deadlines management of decommissioning projects, as well as for communication between project teams, providers and safety authority about integrated dose optimisation. The first results of NARVEOS will be reported through several applications carried out within on-going decommissioning projects in several nuclear sites. Some evaluation tests are also presented and discussed. (authors)

  20. Simulation Study of an Extended Density DC Glow Toroidal Plasma Source

    International Nuclear Information System (INIS)

    Granda-Gutierrez, E. E.; Piedad-Beneitez, A. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia A, R.; Barocio, S. R.

    2006-01-01

    Conventional wisdom assigns the DC glow discharge regime to plasma currents below ∼500 mA values, beyond which the discharge falls into the anomalous glow and the turbulent arc regimes. However, we have found evidence that, during toroidal discharges, this barrier can be ostensibly extended up to 800 mA. Thus, a computer simulation has been applied to the evolution of the main electrical characteristics of such a glow discharge plasma in a toroidal vessel in order to design and construct a respective voltage/current controlled source. This should be able to generate a DC plasma in the glow regime with which currents in the range 10-3-100 A can be experimented and 109-1010 cm-3 plasma densities can be achieved to PIII optimization purposes. The plasma is modelled as a voltage-controlled current source able to be turned on whenever the breakdown voltage is reached across the gap between the anode and the vessel wall. The simulation outcome fits well our experimental measurements showing that the plasma current obeys power laws that are dependent on the power current and other control variables such as the gas pressure

  1. Fast modal simulation of paraxial optical systems: the MIST open source toolbox

    International Nuclear Information System (INIS)

    Vajente, Gabriele

    2013-01-01

    This paper presents a new approach to the simulation of optical laser systems in the paraxial approximation, with particular applications to interferometric gravitational wave detectors. The method presented here is based on a standard decomposition of the laser field in terms of Hermite–Gauss transverse modes. The innovative feature consists of a symbolic manipulation of the equations describing the field propagation. This approach allows a huge reduction in the computational time, especially when a large number of higher order modes is needed to properly simulate the system. The new algorithm has been implemented in an open source toolbox, called the MIST, based on the MATLAB® environment. The MIST has been developed and is being used in the framework of the design of advanced gravitational wave detectors. Examples from this field of application will be discussed to illustrate the capabilities and performance of the simulation tool. (paper)

  2. Simulation of Electrical Grid with Omnet++ Open Source Discrete Event System Simulator

    Directory of Open Access Journals (Sweden)

    Sőrés Milán

    2016-12-01

    Full Text Available The simulation of electrical networks is very important before development and servicing of electrical networks and grids can occur. There are software that can simulate the behaviour of electrical grids under different operating conditions, but these simulation environments cannot be used in a single cloud-based project, because they are not GNU-licensed software products. In this paper, an integrated framework was proposed that models and simulates communication networks. The design and operation of the simulation environment are investigated and a model of electrical components is proposed. After simulation, the simulation results were compared to manual computed results.

  3. Sources and Transportation of Bulk, Low-Cost Lunar Simulant Materials

    Science.gov (United States)

    Rickman, D. L.

    2013-01-01

    Marshall Space Flight Center (MSFC) has built the Lunar Surface Testbed using 200 tons of volcanic cinder and ash from the same source used for the simulant series JSC-1. This Technical Memorandum examines the alternatives examined for transportation and source. The cost of low-cost lunar simulant is driven by the cost of transportation, which is controlled by distance and, to a lesser extent, quantity. Metabasalts in the eastern United States were evaluated due to their proximity to MSFC. Volcanic cinder deposits in New Mexico, Colorado, and Arizona were recognized as preferred sources. In addition to having fewer green, secondary minerals, they contain vesicular glass, both of which are desirable. Transportation costs were more than 90% of the total procurement costs for the simulant material.

  4. Design and use of an engineering simulator for power plant and training simulator updates

    International Nuclear Information System (INIS)

    Sharawy, P.S.; Kennard, J.R.; Chou, Q.B.

    1990-01-01

    The advancement in real-time simulators has been facilitated by the availability of increasingly powerful computing devices at reduced costs for use in conjunction with high-fidelity simulation software. Ontario Hydro's commitment to the safe and reliable operation of its nuclear power plants was one of the factors which influenced its decision to build a plant-replica operator training simulator for each of its nuclear generating stations. This investment soon proved to have advantages beyond those originally envisaged. It become apparent that because the software developed for these simulators met rigorous acceptance criteria, it could be used on an engineering simulator to effectively investigate problems occurring at the stations. It could also serve as a design aid for station modifications. Encouraged by the success of early experimentation in the use of its training simulators for concept validation and verification, Ontario Hydro is developing a low-cost central facility - the Instrumentation and Control Engineering Simulator (ICES) - for use in its design work. This facility incorporates the software of its training simulators and includes a user-friendly generic interface which enables designers to configure and operate it. Inclusion of the engineering simulator in all phases of the design process, from the original concept to implementation and verification, will make it possible to shorten the design period significantly while achieving a high level of quality. It will also facilitate the rapid retrofit of simulators to reflect station modifications. This paper will recount Ontario Hydro's experience in the use of simulators for design work and will specifically discuss the design features and system performance of its engineering simulator

  5. Post-processing of Monte Carlo simulations for rapid BNCT source optimization studies

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    2000-01-01

    A great advantage of some neutron sources, such as accelerator-produced sources, is that they can be tuned to produce different spectra. Unfortunately, optimization studies are often time-consuming and difficult, as they require a lengthy Monte Carlo simulation for each source. When multiple characteristics, such as energy, angle, and spatial distribution of a neutron beam are allowed to vary, an overwhelming number of simulations may be required. Many optimization studies, therefore, suffer from a small number of data points, restrictive treatment conditions, or poor statistics. By scoring pertinent information from every particle tally in a Monte Carlo simulation, then applying appropriate source variable weight factors in a post-processing algorithm; a single simulation can be used to model any number of multiple sources. Through this method, the response to a new source can be modeled in minutes or seconds, rather than hours or days, allowing for the analysis of truly variable source conditions of much greater resolution than is normally possible when a new simulation must be run for each data point in a study. This method has been benchmarked and used to recreate optimization studies in a small fraction of the time spent in the original studies. (author)

  6. Design-Based Comparison of Spine Surgery Simulators: Optimizing Educational Features of Surgical Simulators.

    Science.gov (United States)

    Ryu, Won Hyung A; Mostafa, Ahmed E; Dharampal, Navjit; Sharlin, Ehud; Kopp, Gail; Jacobs, W Bradley; Hurlbert, R John; Chan, Sonny; Sutherland, Garnette R

    2017-10-01

    Simulation-based education has made its entry into surgical residency training, particularly as an adjunct to hands-on clinical experience. However, one of the ongoing challenges to wide adoption is the capacity of simulators to incorporate educational features required for effective learning. The aim of this study was to identify strengths and limitations of spine simulators to characterize design elements that are essential in enhancing resident education. We performed a mixed qualitative and quantitative cohort study with a focused survey and interviews of stakeholders in spine surgery pertaining to their experiences on 3 spine simulators. Ten participants were recruited spanning all levels of training and expertise until qualitative analysis reached saturation of themes. Participants were asked to perform lumbar pedicle screw insertion on 3 simulators. Afterward, a 10-item survey was administrated and a focused interview was conducted to explore topics pertaining to the design features of the simulators. Overall impressions of the simulators were positive with regards to their educational benefit, but our qualitative analysis revealed differing strengths and limitations. Main design strengths of the computer-based simulators were incorporation of procedural guidance and provision of performance feedback. The synthetic model excelled in achieving more realistic haptic feedback and incorporating use of actual surgical tools. Stakeholders from trainees to experts acknowledge the growing role of simulation-based education in spine surgery. However, different simulation modalities have varying design elements that augment learning in distinct ways. Characterization of these design characteristics will allow for standardization of simulation curricula in spinal surgery, optimizing educational benefit. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Stabilization effect of fission source in coupled Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Borge; Dufek, Jan [Div. of Nuclear Reactor Technology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm (Sweden)

    2017-08-15

    A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  8. Stabilization effect of fission source in coupled Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Börge Olsen

    2017-08-01

    Full Text Available A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  9. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    Science.gov (United States)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  10. Design and Optimization of Large Accelerator Systems through High-Fidelity Electromagnetic Simulations

    International Nuclear Information System (INIS)

    Ng, Cho; Akcelik, Volkan; Candel, Arno; Chen, Sheng; Ge, Lixin; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Prudencio, Ernesto; Schussman, Greg; Uplenchwar1, Ravi; Xiao1, Liling; Ko1, Kwok; Austin, T.; Cary, J.R.; Ovtchinnikov, S.; Smith, D.N.; Werner, G.R.; Bellantoni, L.; TechX Corp.; Fermilab

    2008-01-01

    SciDAC1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' (AST) project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC CETs/Institutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider (ILC) and the Large Hadron Collider (LHC) in High Energy Physics (HEP), the JLab 12-GeV Upgrade in Nuclear Physics (NP), as well as the Spallation Neutron Source (SNS) and the Linac Coherent Light Source (LCLS) in Basic Energy Sciences (BES)

  11. Design and optimization of large accelerator systems through high-fidelity electromagnetic simulations

    International Nuclear Information System (INIS)

    Ng, C; Akcelik, V; Candel, A; Chen, S; Ge, L; Kabel, A; Lee, Lie-Quan; Li, Z; Prudencio, E; Schussman, G; Uplenchwar, R; Xiao, L; Ko, K; Austin, T; Cary, J R; Ovtchinnikov, S; Smith, D N; Werner, G R; Bellantoni, L

    2008-01-01

    SciDAC-1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC Centers and Insitutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider and the Large Hadron Collider in high energy physics, the JLab 12-GeV Upgrade in nuclear physics, and the Spallation Neutron Source and the Linac Coherent Light Source in basic energy sciences

  12. Beam dynamics simulation in the X-ray Compton source

    International Nuclear Information System (INIS)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center

  13. Beam dynamics simulation in the X-ray Compton source

    CERN Document Server

    Gladkikh, P; Telegin, Yu P; Shcherbakov, A; Zelinsky, A

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  14. Physical models and primary design of reactor based slow positron source at CMRR

    Science.gov (United States)

    Wang, Guanbo; Li, Rundong; Qian, Dazhi; Yang, Xin

    2018-07-01

    Slow positron facilities are widely used in material science. A high intensity slow positron source is now at the design stage based on the China Mianyang Research Reactor (CMRR). This paper describes the physical models and our primary design. We use different computer programs or mathematical formula to simulate different physical process, and validate them by proper experiments. Considering the feasibility, we propose a primary design, containing a cadmium shield, a honeycomb arranged W tubes assembly, electrical lenses, and a solenoid. It is planned to be vertically inserted in the Si-doping channel. And the beam intensity is expected to be 5 ×109

  15. Neutronic Design Calculations on Moderators for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Murphy, D.B.

    1999-01-01

    The Spallation Neutron Source (SNS) to be built at the Oak Ridge National Laboratory will provide an intense source of neutrons for a large variety of experiments. It consists of a high-energy (1-GeV) and high-power (∼1-MW) proton accelerator, an accumulator ring, together with a target station and an experimental area. In the target itself, the proton beam will produce neutrons via the spallation process and these will be converted to low-energy ( 2 O moderators. Extensive engineering design work has been conducted on the moderator vessels. For our studies we have produced realistic neutronic representations of these moderators. We report on neutronic studies conducted on these representations of the moderators using Monte Carlo simulation techniques

  16. The Sources and Methods of Engineering Design Requirement

    DEFF Research Database (Denmark)

    Li, Xuemeng; Zhang, Zhinan; Ahmed-Kristensen, Saeema

    2014-01-01

    to be defined in a new context. This paper focuses on understanding the design requirement sources at the requirement elicitation phase. It aims at proposing an improved design requirement source classification considering emerging markets and presenting current methods for eliciting requirement for each source...

  17. Simulation of a Positron Source for CEBAF

    International Nuclear Information System (INIS)

    S. Golge; A. Freyberger; C. Hyde-Wright

    2007-01-01

    A positron source for the 6 GeV (or the proposed 12 GeV upgrade) recirculating linacs at Jefferson Lab is presented. The proposed 100nA CW positron source has several unique characteristics; high incident beam power (100kW), 10 MeV incident electron beam energy, CW incident beam and CW production. Positron production with 10 MeV electrons has several advantages; the energy is below neutron threshold so the production target will not become activated during use and the absolute energy spread is bounded by the low incident energy. These advantages are offset by the large angular distribution of the outgoing positrons. Results of simulations of the positron production, capture, acceleration and injection into the recirculating linac are presented. Energy flow and thermal management of the production target present a challenge and are included in the simulations

  18. Start-to-end simulation of the injector for a compact THz source

    OpenAIRE

    Li, J.; Pei, Y. J.; Shang, L.; Feng, G.; Hu, T.; Chen, Q.; Li, C.

    2013-01-01

    Terahertz radiation has broad application prospect due to its ability to penetrate deep into many organic materials without damage caused by ionizing radiations. A FEL-based THz source is the best choice to produce high-power radiation. In this paper, a 14 MeV injector is introduced for generating high-quality beam for FEL, which is composed of an EC-ITC RF gun, compensating coils and a travelling-wave structure. Start-to-end simulation has been done with ASTRA code to verify the design and t...

  19. Design and simulation of a sub-terahertz folded-waveguide extended interaction oscillator

    Science.gov (United States)

    Liu, Wenxin; Zhang, Zhaochuan; Zhao, Chao; Guo, Xin; Liao, Suying

    2017-06-01

    In this paper, an interesting type of a two-section folded wave-guide (TSFW) slow wave structure (SWS) for the development of sub-Terahertz (sub-THz) extended interaction oscillator (EIO) is proposed. In this sub-THz device, the prebunching electron beam is produced by the TSFW SWS, which results in the enhancement of the output power. To verify this concept, the TSFW for sub-THz EIO is developed, which includes the design, simulation, and some fabrications. A small size of electron optics system (EOS), the TSFW SWS for beam-wave interactions, and the output structure are studied with simulations. Through the codes Egun and Superfish, the EOS is designed and optimized. With a help of CST studio and 3D particle-in-cell (PIC) simulation CHIPIC, the characteristics of beam-wave interaction generated by the TSFW are studied. The results of PIC simulation show that the output power is remarkably enhanced by a factor of 3, which exceeds 200 W at the frequency of 108 GHz. Based on the optimum parameters, the TSFW is manufactured with a high speed numerical mill, and the test transmission characteristic |S21| is 13 dB. At last, the output structure with a pill-box window is optimized, fabricated, integrated, and tested, and the result shows that the voltage standing-wave ratio of the window is about 2.2 at an operating frequency of 108 GHz. This design and simulation can provide an effective method to develop high power THz sources.

  20. Beam dynamics simulation in the X-ray Compton source

    Energy Technology Data Exchange (ETDEWEB)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A

    2002-05-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  1. Design of specimen for weld residual stress simulation

    International Nuclear Information System (INIS)

    Kim, Jin Weon; Park, Jong Sun; Lee, Kyung Soo

    2008-01-01

    The objective of this study is to design a laboratory specimen for simulating residual stress of circumferential butt welding of pipe. Specimen type and method for residual stress generation were proposed based on the review of prior studies and parametric finite element simulation. To prove the proposed specimen type and loading method, the residual stress was generated using the designed specimen by applying proposed method and was measured. The measured residual stress using X-ray diffraction reasonably agreed with the results of finite element simulation considered in the specimen design. Comparison of residual strains measured at several locations of specimen and given by finite element simulation also showed good agreement. Therefore, it is indicated that the designed specimen can reasonably simulate the residual stress of circumferential butt welding of pipe

  2. Development of design of a radioisotope switchable neutron source and new portable detector of smuggling

    International Nuclear Information System (INIS)

    Meskhi, L.; Kurdadze, L.

    2010-01-01

    Development of simple and cheap radioisotope switchable neutron source for application in the portable device of detecting of smuggling is presented. Detailed calculations (Monte-Carlo modeling) for the purpose of optimization of a design of the source and the detector module are carried out. The sufficient an yield of neutrons, about 2 o 105 n/s provides the source with the sizes of approx 25 x 25 x 60 mm 3. Results of simulation of scanning smuggling areas (polyethylene 10 x 10 x 5 cm 3) behind the thick steel wall (1.2 cm) gave the relation of signal/ background 7-8

  3. Simulation-assisted technology assessment of an industrial X-ray source concept up to 1 MV

    International Nuclear Information System (INIS)

    Schultheis, Lothar

    2009-01-01

    A novel concept for a new generation of industrial X-ray sources up to 1MV is presented. A ceramic DC acceleration tube is directly connected to the high-voltage cascade within an SF6 pressure tank. Monte-Carlo simulations for specific applications reveal the relevant performance figures which are compared with measurements of a prototype. Design parameters and their mutual dependencies as well as technological performance limits can be investigated enabling efficient design optimizations. Thus, development projects can be advanced faster and much more focused. (orig.)

  4. The numerical simulation of heat transfer during a hybrid laser-MIG welding using equivalent heat source approach

    Science.gov (United States)

    Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic

    2014-03-01

    The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.

  5. Simulation and beam line experiments for the superconducting ECR ion source VENUS

    International Nuclear Information System (INIS)

    Todd, Damon S.; Leitner, Daniela; Grote, David P.; Lyneis, ClaudeM.

    2007-01-01

    The particle-in-cell code Warp has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving Warp the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disc. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS

  6. Design parameters and source terms: Volume 2, Source terms: Revision 0

    International Nuclear Information System (INIS)

    1987-10-01

    The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report by Stearns Catalytic Corporation (SCC), entitled ''Design Parameters and Source Terms for a Two-Phase Repository Salt,'' 1985, to the level of the Site Characterization Plan - Conceptual Design Report. The previous unpublished SCC Study identifies the data needs for the Environmental Assessment effort for seven possible Salt Repository sites. 2 tabs

  7. Monte Carlo Simulations Validation Study: Vascular Brachytherapy Beta Sources

    International Nuclear Information System (INIS)

    Orion, I.; Koren, K.

    2004-01-01

    During the last decade many versions of angioplasty irradiation treatments have been proposed. The purpose of this unique brachytherapy is to administer a sufficient radiation dose into the vein walls in order to prevent restonosis, a clinical sequel to balloon angioplasty. The most suitable sources for this vascular brachytherapy are the β - emitters such as Re-188, P-32, and Sr-90/Y-90, with a maximum energy range of up to 2.1 MeV [1,2,3]. The radioactive catheters configurations offered for these treatments can be a simple wire [4], a fluid filled balloon or a coated stent. Each source is differently positioned inside the blood vessel, and the emitted electrons ranges therefore vary. Many types of sources and configurations were studied either experimentally or with the use of the Monte Carlo calculation technique, while most of the Monte Carlo simulations were carried out using EGS4 [5] or MCNP [6]. In this study we compared the beta-source absorbed-dose versus radial-distance of two treatment configurations using MCNP and EGS4 simulations. This comparison was aimed to discover the differences between the MCNP and the EGS4 simulation code systems in intermediate energies electron transport

  8. An optical design and simulation of LED low-beam headlamps

    International Nuclear Information System (INIS)

    Zhu Xiangbing; Chen Qiaoyun; Ni Jian

    2011-01-01

    The low-beam headlamp is an important component for the automobile safety. With the improvement of optical efficiency and heat dissipation' technology of white LEDs, it becomes feasible to design low-beam headlamps with LEDs. The principle of B-spline surfaces is used to construct the free-form surface reflector meeting the requirement. First, the initial B-spline surface reflector is established on the basis of the light source structure, emitting features and capability of light distribution. Optical simulation is carried out according to the principle of ray tracing. And then the simulation results will be compared with the standard of photometric characteristics. The segmented surfaces fine-tuning method and the method of trial and error are used to trim the part that failed to meet requirements gradually. The vector groups of surfaces are obtained. Finally,the desired free-form surface reflector meeting the ECE regulations is got. The experimental results can meet the standard of photometric characteristics. The impact of the technique showed in this paper in the field of LED illumination design seems to be a very promising topic.

  9. Improvements of the magnetic field design for SPIDER and MITICA negative ion beam sources

    International Nuclear Information System (INIS)

    Chitarin, G.; Agostinetti, P.; Aprile, D.; Marconato, N.; Veltri, P.

    2015-01-01

    The design of the magnetic field configuration in the SPIDER and MITICA negative ion beam sources has evolved considerably during the past four years. This evolution was driven by three factors: 1) the experimental results of the large RF-driven ion sources at IPP, which have provided valuable indications on the optimal magnetic configurations for reliable RF plasma source operation and for large negative ion current extraction, 2) the comprehensive beam optics and heat load simulations, which showed that the magnetic field configuration in the accelerator is crucial for keeping the heat load due to electrons on the accelerator grids within tolerable limits, without compromising the optics of the negative ion beam in the foreseen operating scenarios, 3) the progress of the detailed mechanical design of the accelerator, which stimulated the evaluation of different solutions for the correction of beamlet deflections of various origin and for beamlet aiming. On this basis, new requirements and solution concepts for the magnetic field configuration in the SPIDER and MITICA beam sources have been progressively introduced and updated until the design converged. The paper presents how these concepts have been integrated into a final design solution based on a horizontal “long-range” field (few mT) in combination with a “local” vertical field of some tens of mT on the acceleration grids

  10. Simulation of a dense plasma focus x-ray source

    International Nuclear Information System (INIS)

    Stark, R.A.

    1994-01-01

    The authors are performing simulations of the magnetohydrodynamics of a Dense Plasma Focus (DPF) x-ray source located at Science Research Laboratory (SRL), Alameda, CA, in order to optimize its performance. The SRL DPF, which was developed as a compact source for x-ray lithography, operates at 20 Hz, giving x-ray power (9--14 Angstroms) of 500 W using neon gas. The simulations are performed with the two dimensional MHD code MACH2, developed by Mission Research Corporation, with a steady state corona model as the equation of state. The results of studies of the sensitivity of x-ray output to charging voltage and current, and to initial gas density will be presented. These studies should indicate ways to optimize x-ray production efficiency. Simulations of various inner electrode configurations will also be presented

  11. Using interactive model simulations in co-design : An experiment in urban design

    NARCIS (Netherlands)

    Steen, M.G.D.; Arendsen, J.; Cremers, A.H.M.; Vries, A. de; Jong, J.M.G. de; Koning, N.M. de

    2013-01-01

    This paper presents an experiment in which people performed a co-design task in urban design, using a multi-user touch table application with or without interactive model simulations. We hypothesised that using the interactive model simulations would improve communication and co-operation between

  12. LibCPIXE: A PIXE simulation open-source library for multilayered samples

    International Nuclear Information System (INIS)

    Pascual-Izarra, C.; Barradas, N.P.; Reis, M.A.

    2006-01-01

    Most particle induced X-ray emission (PIXE) data analysis codes are not focused on handling multilayered samples. We have developed an open-source library called 'LibCPIXE', for PIXE data analysis. It is written in standard C and implements functions for simulating X-ray yields of PIXE spectra taken from arbitrary samples, including multilayered targets. The library is designed to be fast, portable, modular and scalable, as well as to facilitate its incorporation into any existing program. In order to demonstrate the capabilities of the library, a program called CPIXE was developed and used to analyze various real samples involving both bulk and layered samples. Just as the library, the CPIXE source code is freely available under the General Public License. We demonstrate that it runs both under GNU/Linux systems as well as under MS Windows. There is in principle no limitation to port it to other platforms

  13. Studies of an inductively coupled negative hydrogen ion radio frequency source through simulations and experiments

    International Nuclear Information System (INIS)

    Bandyopadhyay, M.

    2004-01-01

    In the frame work of a development project for ITER neutral beam injection system a radio frequency (RF) driven negative hydrogen (H-/D-) ion source, (BATMAN ion source) is developed which is designed to produce several 10s of ampere of H-/D- beam current. This PhD work has been carried out to understand and optimize BATMAN ion source. The study has been done with the help of computer simulations, modeling and experiments. The complete three dimensional Monte-Carlo computer simulation codes have been developed under the scope of this PhD work. A comprehensive description about the volume production and the surface production of H- ions is presented in the thesis along with the study results obtained from the simulations, modeling and the experiments. One of the simulations is based on the volume production of H- ions, where it calculates the density profile of the vibrationally excited H2 molecules, the density profile of H- ions and the transport probability of those H- ions along the source axis towards the grid. The other simulation studies the transport of those H- ions which are produced on the surface of the plasma grid. It is expected that if there is a plasma flow in the source, the transport of plasma components (molecules and ions) would be influenced. Experimentally it is observed that there is a convective plasma flow exists in the ion source. A transverse magnetic filter field which is present near the grid inside the ion source reduces the flow velocity. Negative ions and electrons have the same sign of charge; therefore the electrons are co-extracted with the negative ions through the grid system, which is not desirable. It is observed that a magnetic field near the grid, magnetized the electrons and therefore reduce the co-extracted electron current. It is also observed experimentally that if the plasma grid is biased positively with respect to the source body, the electron density near the plasma grid is reduced and therefore the co

  14. Design principles for simulation games for learning clinical reasoning: A design-based research approach.

    Science.gov (United States)

    Koivisto, J-M; Haavisto, E; Niemi, H; Haho, P; Nylund, S; Multisilta, J

    2018-01-01

    Nurses sometimes lack the competence needed for recognising deterioration in patient conditions and this is often due to poor clinical reasoning. There is a need to develop new possibilities for learning this crucial competence area. In addition, educators need to be future oriented; they need to be able to design and adopt new pedagogical innovations. The purpose of the study is to describe the development process and to generate principles for the design of nursing simulation games. A design-based research methodology is applied in this study. Iterative cycles of analysis, design, development, testing and refinement were conducted via collaboration among researchers, educators, students, and game designers. The study facilitated the generation of reusable design principles for simulation games to guide future designers when designing and developing simulation games for learning clinical reasoning. This study makes a major contribution to research on simulation game development in the field of nursing education. The results of this study provide important insights into the significance of involving nurse educators in the design and development process of educational simulation games for the purpose of nursing education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Simulation of 10 A electron-beam formation and collection for a high current electron-beam ion source

    Science.gov (United States)

    Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.

    1998-02-01

    Presented is a report on the development of an electron-beam ion source (EBIS) for the relativistic heavy ion collider at Brookhaven National Laboratory (BNL) which requires operating with a 10 A electron beam. This is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be tested. It will be reported in a separate paper at this conference. The design of the 10 A electron gun, drift tubes, and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented.

  16. Preliminary design and off-design performance analysis of an Organic Rankine Cycle for geothermal sources

    International Nuclear Information System (INIS)

    Hu, Dongshuai; Li, Saili; Zheng, Ya; Wang, Jiangfeng; Dai, Yiping

    2015-01-01

    Highlights: • A method for preliminary design and performance prediction is established. • Preliminary data of radial inflow turbine and plate heat exchanger are obtained. • Off-design performance curves of critical components are researched. • Performance maps in sliding pressure operation are illustrated. - Abstract: Geothermal fluid of 90 °C and 10 kg/s can be exploited together with oil in Huabei Oilfield of China. Organic Rankine Cycle is regarded as a reasonable method to utilize these geothermal sources. This study conducts a detailed design and off-design performance analysis based on the preliminary design of turbines and heat exchangers. The radial inflow turbine and plate heat exchanger are selected in this paper. Sliding pressure operation is applied in the simulation and three parameters are considered: geothermal fluid mass flow rate, geothermal fluid temperature and condensing pressure. The results indicate that in all considered conditions the designed radial inflow turbine has smooth off-design performance and no choke or supersonic flow are found at the nozzle and rotor exit. The lager geothermal fluid mass flow rate, the higher geothermal fluid temperature and the lower condensing pressure contribute to the increase of cycle efficiency and net power. Performance maps are illustrated to make system meet different load requirements especially when the geothermal fluid temperature and condensing pressure deviate from the design condition. This model can be used to provide basic data for future detailed design, and predict off-design performance in the initial design phase

  17. Simulations of effusion from ISOL target/ion source systems

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.

    2004-01-01

    Monte Carlo simulations of the low- and high-conductivity Target/Ion Source systems used at Oak Ridge National Laboratory for effusion measurements are performed. Comparisons with the corresponding experimental data for the different geometries are presented and discussed. Independent checks of the simulation using data for simple geometries and using the conductance approach well known in vacuum technology are performed. A simulation-based comparison between the low- and high-conductivity systems is also presented

  18. OPEN SOURCE APPROACH TO URBAN GROWTH SIMULATION

    Directory of Open Access Journals (Sweden)

    A. Petrasova

    2016-06-01

    Full Text Available Spatial patterns of land use change due to urbanization and its impact on the landscape are the subject of ongoing research. Urban growth scenario simulation is a powerful tool for exploring these impacts and empowering planners to make informed decisions. We present FUTURES (FUTure Urban – Regional Environment Simulation – a patch-based, stochastic, multi-level land change modeling framework as a case showing how what was once a closed and inaccessible model benefited from integration with open source GIS.We will describe our motivation for releasing this project as open source and the advantages of integrating it with GRASS GIS, a free, libre and open source GIS and research platform for the geospatial domain. GRASS GIS provides efficient libraries for FUTURES model development as well as standard GIS tools and graphical user interface for model users. Releasing FUTURES as a GRASS GIS add-on simplifies the distribution of FUTURES across all main operating systems and ensures the maintainability of our project in the future. We will describe FUTURES integration into GRASS GIS and demonstrate its usage on a case study in Asheville, North Carolina. The developed dataset and tutorial for this case study enable researchers to experiment with the model, explore its potential or even modify the model for their applications.

  19. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    1997-01-01

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  20. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  1. NUMERICAL MODEL APPLICATION IN ROWING SIMULATOR DESIGN

    Directory of Open Access Journals (Sweden)

    Petr Chmátal

    2016-04-01

    Full Text Available The aim of the research was to carry out a hydraulic design of rowing/sculling and paddling simulator. Nowadays there are two main approaches in the simulator design. The first one includes a static water with no artificial movement and counts on specially cut oars to provide the same resistance in the water. The second approach, on the other hand uses pumps or similar devices to force the water to circulate but both of the designs share many problems. Such problems are affecting already built facilities and can be summarized as unrealistic feeling, unwanted turbulent flow and bad velocity profile. Therefore, the goal was to design a new rowing simulator that would provide nature-like conditions for the racers and provide an unmatched experience. In order to accomplish this challenge, it was decided to use in-depth numerical modeling to solve the hydraulic problems. The general measures for the design were taken in accordance with space availability of the simulator ́s housing. The entire research was coordinated with other stages of the construction using BIM. The detailed geometry was designed using a numerical model in Ansys Fluent and parametric auto-optimization tools which led to minimum negative hydraulic phenomena and decreased investment and operational costs due to the decreased hydraulic losses in the system.

  2. Design parameters and source terms: Volume 1, Design parameters: Revision 0

    International Nuclear Information System (INIS)

    1987-10-01

    The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report by Stearns Catalytic Corporation (SCC), entitled ''Design Parameters and Source Terms for a Two-Phase Repository in Salt,'' 1985, to the level of the Site Characterization Plan - Conceptual Design Report. The previous unpublished SCC Study identifies the data needs for the Environmental Assessment effort for seven possible Salt Repository sites

  3. Design of compact nuclear power marine engineering simulator

    International Nuclear Information System (INIS)

    Gao Jinghui; Xing Hongchuan; Zhang Ronghua; Yang Yanhua; Xu Jijun

    2004-01-01

    The essentiality of compact nuclear power marine engineering simulator (NPMES) is discussed. The technology of nuclear power plant engineering simulator (NPPES) for NPMES development is introduced, and the function design, general design and model design are given in details. A compact NPMES based on the nuclear power marine of 'Mutsu' is developed. The design can help the development of NPMES, which will improve operation safety and management efficiency of marine. (authors)

  4. Technology computer aided design simulation for VLSI MOSFET

    CERN Document Server

    Sarkar, Chandan Kumar

    2013-01-01

    Responding to recent developments and a growing VLSI circuit manufacturing market, Technology Computer Aided Design: Simulation for VLSI MOSFET examines advanced MOSFET processes and devices through TCAD numerical simulations. The book provides a balanced summary of TCAD and MOSFET basic concepts, equations, physics, and new technologies related to TCAD and MOSFET. A firm grasp of these concepts allows for the design of better models, thus streamlining the design process, saving time and money. This book places emphasis on the importance of modeling and simulations of VLSI MOS transistors and

  5. On architectural acoustic design using computer simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process. The emphasis is put on the first three out of five phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference to the design of Bagsværd Church by Jørn Utzon. The paper...... discusses the advantages and disadvantages of the programme in each phase compared to the works of architects not using acoustic simulation programmes. The conclusion of the paper is that the application of acoustic simulation programs is most beneficial in the last of three phases but an application...

  6. Design parameters and source terms: Volume 2, Source terms: Revision 0

    International Nuclear Information System (INIS)

    1987-09-01

    The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report to the level of the Site Characterization Plan---Conceptual Design Report SCP-CDR. The previous study identifies the data needs for the Environmental Assessment effort for seven possible salt repository sites. Volume 2 contains tables of source terms

  7. Multimedia Terminal System-on-Chip Design and Simulation

    Directory of Open Access Journals (Sweden)

    Barbieri Ivano

    2005-01-01

    Full Text Available This paper proposes a design approach based on integrated architectural and system-on-chip (SoC simulations. The main idea is to have an efficient framework for the design and the evaluation of multimedia terminals, allowing a fast system simulation with a definable degree of accuracy. The design approach includes the simulation of very long instruction word (VLIW digital signal processors (DSPs, the utilization of a device multiplexing the media streams, and the emulation of the real-time media acquisition. This methodology allows the evaluation of both the multimedia algorithm implementations and the hardware platform, giving feedback on the complete SoC including the interaction between modules and conflicts in accessing either the bus or shared resources. An instruction set architecture (ISA simulator and an SoC simulation environment compose the integrated framework. In order to validate this approach, the evaluation of an audio-video multiprocessor terminal is presented, and the complete simulation test results are reported.

  8. Simulant Basis for the Standard High Solids Vessel Design

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Reid A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suffield, Sarah R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Daniel, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gauglitz, Phillip A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-30

    The Waste Treatment and Immobilization Plant (WTP) is working to develop a Standard High Solids Vessel Design (SHSVD) process vessel. To support testing of this new design, WTP engineering staff requested that a Newtonian simulant and a non-Newtonian simulant be developed that would represent the Most Adverse Design Conditions (in development) with respect to mixing performance as specified by WTP. The majority of the simulant requirements are specified in 24590-PTF-RPT-PE-16-001, Rev. 0. The first step in this process is to develop the basis for these simulants. This document describes the basis for the properties of these two simulant types. The simulant recipes that meet this basis will be provided in a subsequent document.

  9. GPU-accelerated CFD Simulations for Turbomachinery Design Optimization

    NARCIS (Netherlands)

    Aissa, M.H.

    2017-01-01

    Design optimization relies heavily on time-consuming simulations, especially when using gradient-free optimization methods. These methods require a large number of simulations in order to get a remarkable improvement over reference designs, which are nowadays based on the accumulated engineering

  10. Cross-Layer Design of Source Rate Control and Congestion Control for Wireless Video Streaming

    Directory of Open Access Journals (Sweden)

    Peng Zhu

    2007-01-01

    Full Text Available Cross-layer design has been used in streaming video over the wireless channels to optimize the overall system performance. In this paper, we extend our previous work on joint design of source rate control and congestion control for video streaming over the wired channel, and propose a cross-layer design approach for wireless video streaming. First, we extend the QoS-aware congestion control mechanism (TFRCC proposed in our previous work to the wireless scenario, and provide a detailed discussion about how to enhance the overall performance in terms of rate smoothness and responsiveness of the transport protocol. Then, we extend our previous joint design work to the wireless scenario, and a thorough performance evaluation is conducted to investigate its performance. Simulation results show that by cross-layer design of source rate control at application layer and congestion control at transport layer, and by taking advantage of the MAC layer information, our approach can avoid the throughput degradation caused by wireless link error, and better support the QoS requirements of the application. Thus, the playback quality is significantly improved, while good performance of the transport protocol is still preserved.

  11. Designing Crop Simulation Web Service with Service Oriented Architecture Principle

    Science.gov (United States)

    Chinnachodteeranun, R.; Hung, N. D.; Honda, K.

    2015-12-01

    Crop simulation models are efficient tools for simulating crop growth processes and yield. Running crop models requires data from various sources as well as time-consuming data processing, such as data quality checking and data formatting, before those data can be inputted to the model. It makes the use of crop modeling limited only to crop modelers. We aim to make running crop models convenient for various users so that the utilization of crop models will be expanded, which will directly improve agricultural applications. As the first step, we had developed a prototype that runs DSSAT on Web called as Tomorrow's Rice (v. 1). It predicts rice yields based on a planting date, rice's variety and soil characteristics using DSSAT crop model. A user only needs to select a planting location on the Web GUI then the system queried historical weather data from available sources and expected yield is returned. Currently, we are working on weather data connection via Sensor Observation Service (SOS) interface defined by Open Geospatial Consortium (OGC). Weather data can be automatically connected to a weather generator for generating weather scenarios for running the crop model. In order to expand these services further, we are designing a web service framework consisting of layers of web services to support compositions and executions for running crop simulations. This framework allows a third party application to call and cascade each service as it needs for data preparation and running DSSAT model using a dynamic web service mechanism. The framework has a module to manage data format conversion, which means users do not need to spend their time curating the data inputs. Dynamic linking of data sources and services are implemented using the Service Component Architecture (SCA). This agriculture web service platform demonstrates interoperability of weather data using SOS interface, convenient connections between weather data sources and weather generator, and connecting

  12. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    International Nuclear Information System (INIS)

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel's inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design

  13. Open Source Power Plant Simulator Development Under Matlab Environment

    International Nuclear Information System (INIS)

    Ratemi, W.M.; Fadilah, S.M.; Abonoor, N

    2008-01-01

    In this paper an open source programming approach is targeted for the development of power plant simulator under Matlab environment. With this approach many individuals can contribute to the development of the simulator by developing different orders of complexities of the power plant components. Such modules can be modeled based on physical principles, or using neural networks or other methods. All of these modules are categorized in Matlab library, of which the user can select and build up his simulator. Many international companies developed its own authoring tool for the development of its simulators, and hence it became its own property available for high costs. Matlab is a general software developed by mathworks that can be used with its toolkits as the authoring tool for the development of components by different individuals, and through the appropriate coordination, different plant simulators, nuclear, traditional , or even research reactors can be computerly assembled. In this paper, power plant components such as a pressurizer, a reactor, a steam generator, a turbine, a condenser, a feedwater heater, a valve, a pump are modeled based on physical principles. Also a prototype modeling of a reactor ( a scram case) based on neural networks is developed. These modules are inserted in two different Matlab libraries one called physical and the other is called neural. Furthermore, during the simulation one can pause and shuffle the modules selected from the two libraries and then proceed the simulation. Also, under the Matlab environment a PID controller is developed for multi-loop plant which can be integrated for the control of the appropriate developed simulator. This paper is an attempt to base the open source approach for the development of power plant simulators or even research reactor simulators. It then requires the coordination among interested individuals or institutions to set it to professionalism. (author)

  14. Some preliminary design considerations for the ANS [Advanced Neutron Source] reactor cold source

    International Nuclear Information System (INIS)

    Henderson, D.L.

    1988-01-01

    Two areas concerned with the design of the Advanced Neutron Source (ANS) cold source have been investigated by simple one-dimensional calculations. The gain factors computed for a possible liquid nitrogen-15 cold source moderator are considerably below those computed for the much colder liquid deuterium moderator, as is reasonable considering the difference in moderator temperature. Nevertheless, nitrogen-15 does represent a viable option should safety related issues prohibit the use of deuterium as a moderating material. The slab geometry calculations have indicated that reflection of neutrons may be the dominant moderating mechanism and should be a consideration in the design of the cold source. 9 refs., 2 figs

  15. Simulation of 10 A electron-beam formation and collection for a high current electron-beam ion source

    International Nuclear Information System (INIS)

    Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.

    1998-01-01

    Presented is a report on the development of an electron-beam ion source (EBIS) for the relativistic heavy ion collider at Brookhaven National Laboratory (BNL) which requires operating with a 10 A electron beam. This is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be tested. It will be reported in a separate paper at this conference. The design of the 10 A electron gun, drift tubes, and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented. copyright 1998 American Institute of Physics

  16. X-ray optics simulation and beamline design for the APS upgrade

    Science.gov (United States)

    Shi, Xianbo; Reininger, Ruben; Harder, Ross; Haeffner, Dean

    2017-08-01

    The upgrade of the Advanced Photon Source (APS) to a Multi-Bend Achromat (MBA) will increase the brightness of the APS by between two and three orders of magnitude. The APS upgrade (APS-U) project includes a list of feature beamlines that will take full advantage of the new machine. Many of the existing beamlines will be also upgraded to profit from this significant machine enhancement. Optics simulations are essential in the design and optimization of these new and existing beamlines. In this contribution, the simulation tools used and developed at APS, ranging from analytical to numerical methods, are summarized. Three general optical layouts are compared in terms of their coherence control and focusing capabilities. The concept of zoom optics, where two sets of focusing elements (e.g., CRLs and KB mirrors) are used to provide variable beam sizes at a fixed focal plane, is optimized analytically. The effects of figure errors on the vertical spot size and on the local coherence along the vertical direction of the optimized design are investigated.

  17. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose

  18. Incorporating information from source simulations into searches for gravitational-wave bursts

    International Nuclear Information System (INIS)

    Brady, Patrick R; Ray-Majumder, Saikat

    2004-01-01

    The detection of gravitational waves from astrophysical sources of gravitational waves is a realistic goal for the current generation of interferometric gravitational-wave detectors. Short duration bursts of gravitational waves from core-collapse supernovae or mergers of binary black holes may bring a wealth of astronomical and astrophysical information. The weakness of the waves and the rarity of the events urges the development of optimal methods to detect the waves. The waves from these sources are not generally known well enough to use matched filtering however; this drives the need to develop new ways to exploit source simulation information in both detection and information extraction. We present an algorithmic approach to using catalogues of gravitational-wave signals developed through numerical simulation, or otherwise, to enhance our ability to detect these waves. As more detailed simulations become available, it is straightforward to incorporate the new information into the search method. This approach may also be useful when trying to extract information from a gravitational-wave observation by allowing direct comparison between the observation and simulations

  19. Vacuum simulation and characterization for the Linac4 H- source

    Science.gov (United States)

    Pasquino, C.; Chiggiato, P.; Michet, A.; Hansen, J.; Lettry, J.

    2013-02-01

    At CERN, the 160 MeV H- Linac4 will soon replace the 50 MeV proton Linac2. In the H- source two major sources of gas are identified. The first is the pulsed injection at about 0.1 mbar in the plasma chamber. The second is the constant H2 injection up to 10-5 mbar in the LEBT for beam space charge compensation. In addition, the outgassing of materials exposed to vacuum can play an important role in contamination control and global gas balance. To evaluate the time dependent partial pressure profiles in the H- ion source and the RFQ, electrical network - vacuum analogy and test particle Monte Carlo simulation have been used. The simulation outcome indicates that the pressure requirements are in the reach of the proposed vacuum pumping system. Preliminary results show good agreement between the experimental and the simulated pressure profiles; a calibration campaign is in progress to fully benchmark the implemented calculations. Systematic outgassing rate measurements are on-going for critical components in the ion source and RFQ. Amongst them those for the Cu-coated SmCo magnet located in the vacuum system of the biased electron dump electrode, show results lower to stainless steel at room temperature.

  20. Novel Methods for Electromagnetic Simulation and Design

    Science.gov (United States)

    2016-08-03

    modeling software that can handle complicated, electrically large objects in a manner that is sufficiently fast to allow design by simulation. 15. SUBJECT...electrically large objects in a manner that is sufficiently fast to allow design by simulation. We also developed new methods for scattering from cavities in a...basis for high fidelity modeling software that can handle complicated, electrically large objects in a manner that is sufficiently fast to allow

  1. Development of an application simulating radioactive sources; Conception d'une application de simulation de sources radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Riffault, V.; Locoge, N. [Ecole des Mines de Douai, Dept. Chimie et Environnement, 59 - Douai (France); Leblanc, E.; Vermeulen, M. [Ecole des Mines de Douai, 59 (France)

    2011-05-15

    This paper presents an application simulating radioactive gamma sources developed in the 'Ecole des Mines' of Douai (France). It generates raw counting data as an XML file which can then be statistically exploited to illustrate the various concepts of radioactivity (exponential decay law, isotropy of the radiation, attenuation of radiation in matter). The application, with a spread sheet for data analysis and lab procedures, has been released under free license. (authors)

  2. Design of biped hip simulator using SolidWorks

    Science.gov (United States)

    Zainudin, M. R.; Yahya, A.; Fazli, M. I. M.; Syahrom, A.; Harun, F. K. C.; Nazarudin, M. S.

    2017-10-01

    The increasing number of people who underwent both hip implant surgery based on World Health Organization (WHO) has received massive attention from researchers lately to develop various types of hip simulators in order to test the hip implant. Various number of hip simulator have been developed with different functions and capabilities. This paper presents the design development of biped hip simulator using SolidWorks software by taking into consideration some improvement and modifications. The finite element method is used to test the design whether it is safe to be used or not. The biped hip simulator has been successfully designed and ready to be fabricated as the endurance testing shown a positive results. The von Mises stress induced in the material is an alloy steel which is 2,975,862.3 N/m2 lower than the yield strength. Thus, the design is safe to be used as it obey the safety criterion.

  3. A new method to estimate heat source parameters in gas metal arc welding simulation process

    International Nuclear Information System (INIS)

    Jia, Xiaolei; Xu, Jie; Liu, Zhaoheng; Huang, Shaojie; Fan, Yu; Sun, Zhi

    2014-01-01

    Highlights: •A new method for accurate simulation of heat source parameters was presented. •The partial least-squares regression analysis was recommended in the method. •The welding experiment results verified accuracy of the proposed method. -- Abstract: Heat source parameters were usually recommended by experience in welding simulation process, which induced error in simulation results (e.g. temperature distribution and residual stress). In this paper, a new method was developed to accurately estimate heat source parameters in welding simulation. In order to reduce the simulation complexity, a sensitivity analysis of heat source parameters was carried out. The relationships between heat source parameters and welding pool characteristics (fusion width (W), penetration depth (D) and peak temperature (T p )) were obtained with both the multiple regression analysis (MRA) and the partial least-squares regression analysis (PLSRA). Different regression models were employed in each regression method. Comparisons of both methods were performed. A welding experiment was carried out to verify the method. The results showed that both the MRA and the PLSRA were feasible and accurate for prediction of heat source parameters in welding simulation. However, the PLSRA was recommended for its advantages of requiring less simulation data

  4. Pulsed neutron source cold moderators --- concepts, design and engineering

    International Nuclear Information System (INIS)

    Bauer, Guenter S.

    1997-01-01

    Moderator design for pulsed neutron sources is becoming more and more an interface area between source designers and instrument designers. Although there exists a high degree of flexibility, there are also physical and technical limitations. This paper aims at pointing out these limitations and examining ways to extend the current state of moderator technology in order to make the next generation neutron sources even more versatile and flexible tools for science in accordance with the users' requirements. (auth)

  5. Simulations of negative hydrogen ion sources

    Science.gov (United States)

    Demerdjiev, A.; Goutev, N.; Tonev, D.

    2018-05-01

    The development and the optimisation of negative hydrogen/deuterium ion sources goes hand in hand with modelling. In this paper a brief introduction on the physics and types of different sources, and on the Kinetic and Fluid theories for plasma description is made. Examples of some recent models are considered whereas the main emphasis is on the model behind the concept and design of a matrix source of negative hydrogen ions. At the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences a new cyclotron center is under construction which opens new opportunities for research. One of them is the development of plasma sources for additional proton beam acceleration. We have applied the modelling technique implemented in the aforementioned model of the matrix source to a microwave plasma source exemplifying a plasma filled array of cavities made of a dielectric material with high permittivity. Preliminary results for the distribution of the plasma parameters and the φ component of the electric field in the plasma are obtained.

  6. INTELLIGENT DESIGN: ON THE EMULATION OF COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Schneider, Michael D.; Holm, Oskar; Knox, Lloyd

    2011-01-01

    Simulation design is the choice of locations in parameter space at which simulations are to be run and is the first step in building an emulator capable of quickly providing estimates of simulation results for arbitrary locations in the parameter space. We introduce an alteration to the 'OALHS' design used by Heitmann et al. that reduces the number of simulation runs required to achieve a fixed accuracy in our case study by a factor of two. We also compare interpolation procedures for emulators and find that interpolation via Gaussian process models and via the much-easier-to-implement polynomial interpolation have comparable accuracy. A very simple emulation-building procedure consisting of a design sampled from the parameter prior distribution, combined with interpolation via polynomials also performs well. Although our primary motivation is efficient emulators of nonlinear cosmological N-body simulations, in an appendix we describe an emulator for the cosmic microwave background temperature power spectrum publicly available as a computer code.

  7. SHIPBUILDING PRODUCTION PROCESS DESIGN METHODOLOGY USING COMPUTER SIMULATION

    OpenAIRE

    Marko Hadjina; Nikša Fafandjel; Tin Matulja

    2015-01-01

    In this research a shipbuilding production process design methodology, using computer simulation, is suggested. It is expected from suggested methodology to give better and more efficient tool for complex shipbuilding production processes design procedure. Within the first part of this research existing practice for production process design in shipbuilding was discussed, its shortcomings and problem were emphasized. In continuing, discrete event simulation modelling method, as basis of sugge...

  8. A design of calibration single star simulator with adjustable magnitude and optical spectrum output system

    Science.gov (United States)

    Hu, Guansheng; Zhang, Tao; Zhang, Xuan; Shi, Gentai; Bai, Haojie

    2018-03-01

    In order to achieve multi-color temperature and multi-magnitude output, magnitude and temperature can real-time adjust, a new type of calibration single star simulator was designed with adjustable magnitude and optical spectrum output in this article. xenon lamp and halogen tungsten lamp were used as light source. The control of spectrum band and temperature of star was realized with different multi-beam narrow band spectrum with light of varying intensity. When light source with different spectral characteristics and color temperature go into the magnitude regulator, the light energy attenuation were under control by adjusting the light luminosity. This method can completely satisfy the requirements of calibration single star simulator with adjustable magnitude and optical spectrum output in order to achieve the adjustable purpose of magnitude and spectrum.

  9. Design Techniques and Reservoir Simulation

    Directory of Open Access Journals (Sweden)

    Ahad Fereidooni

    2012-11-01

    Full Text Available Enhanced oil recovery using nitrogen injection is a commonly applied method for pressure maintenance in conventional reservoirs. Numerical simulations can be practiced for the prediction of a reservoir performance in the course of injection process; however, a detailed simulation might take up enormous computer processing time. In such cases, a simple statistical model may be a good approach to the preliminary prediction of the process without any application of numerical simulation. In the current work, seven rock/fluid reservoir properties are considered as screening parameters and those parameters having the most considerable effect on the process are determined using the combination of experimental design techniques and reservoir simulations. Therefore, the statistical significance of the main effects and interactions of screening parameters are analyzed utilizing statistical inference approaches. Finally, the influential parameters are employed to create a simple statistical model which allows the preliminary prediction of nitrogen injection in terms of a recovery factor without resorting to numerical simulations.

  10. Thermal-hydraulic design concept of the solid-target system of spallation neutron source

    International Nuclear Information System (INIS)

    Tanaka, F.; Hibiki, T.; Saito, Y.; Takeda, T.; Mishima, K.

    2001-01-01

    In relation to thermal-hydraulic design of the N-Arena solid-target system of the JHF project, heat transfer experiments were performed to obtain experimental data systematically on heat transfer coefficient and CHF for vertical upward and horizontal flows in a thin rectangular channel simulating a coolant channel of the proposed spallation neutron source. Thermal-hydraulic correlations which can be used for design calculations were proposed based on the obtained data. Finally tentative results of feasibility study on maximum beam power which could be attained with a solid target were presented. The result indicated that the condition for the onset of nucleate boiling is the most significant limiting factor to the maximum beam power. (author)

  11. Numerical Simulation of Dispersion from Urban Greenhouse Gas Sources

    Science.gov (United States)

    Nottrott, Anders; Tan, Sze; He, Yonggang; Winkler, Renato

    2017-04-01

    Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model scalar emissions from various components of the natural gas distribution system, to study the impact of urban meteorology on mobile greenhouse gas measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in vertical dispersion of plumes, due to building wake effects. The OpenFOAM flow fields were combined with an inverse, stochastic dispersion model to quantify and visualize the sensitivity of point sensors to upwind sources in various built environments. The Boussinesq approximation was applied to investigate the effects of canopy layer temperature gradients and convection on sensor footprints.

  12. PHARAO laser source flight model: Design and performances

    Energy Technology Data Exchange (ETDEWEB)

    Lévèque, T., E-mail: thomas.leveque@cnes.fr; Faure, B.; Esnault, F. X.; Delaroche, C.; Massonnet, D.; Grosjean, O.; Buffe, F.; Torresi, P. [Centre National d’Etudes Spatiales, 18 avenue Edouard Belin, 31400 Toulouse (France); Bomer, T.; Pichon, A.; Béraud, P.; Lelay, J. P.; Thomin, S. [Sodern, 20 Avenue Descartes, 94451 Limeil-Brévannes (France); Laurent, Ph. [LNE-SYRTE, CNRS, UPMC, Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris (France)

    2015-03-15

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.

  13. Preliminary design of GDT-based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Du Hongfei; Chen Dehong; Wang Hui; Wang Fuqiong; Jiang Jieqiong; Wu Yican; Chen Yiping

    2012-01-01

    To meet the need of D-T fusion neutron source for fusion material testing, design goals were presented in this paper according to the international requirements of neutron source for fusion material testing. A preliminary design scheme of GDT-based 14 MeV neutron source was proposed, and a physics model of the neutron source was built based on progress of GDT experiments. Two preliminary design schemes (i. e. FDS-GDT1, FDS-GDT2) were designed; among which FDS-GDT2 can be used for fusion material testing with neutron first wall loading of 2 MW/m 2 . (authors)

  14. Hygrothermal Simulation: A Tool for Building Envelope Design Analysis

    Science.gov (United States)

    Samuel V. Glass; Anton TenWolde; Samuel L. Zelinka

    2013-01-01

    Is it possible to gauge the risk of moisture problems while designing the building envelope? This article provides a brief introduction to computer-based hygrothermal (heat and moisture) simulation, shows how simulation can be useful as a design tool, and points out a number of im-portant considerations regarding model inputs and limita-tions. Hygrothermal simulation...

  15. X-33 Telemetry Best Source Selection, Processing, Display, and Simulation Model Comparison

    Science.gov (United States)

    Burkes, Darryl A.

    1998-01-01

    The X-33 program requires the use of multiple telemetry ground stations to cover the launch, ascent, transition, descent, and approach phases for the flights from Edwards AFB to landings at Dugway Proving Grounds, UT and Malmstrom AFB, MT. This paper will discuss the X-33 telemetry requirements and design, including information on fixed and mobile telemetry systems, best source selection, and support for Range Safety Officers. A best source selection system will be utilized to automatically determine the best source based on the frame synchronization status of the incoming telemetry streams. These systems will be used to select the best source at the landing sites and at NASA Dryden Flight Research Center to determine the overall best source between the launch site, intermediate sites, and landing site sources. The best source at the landing sites will be decommutated to display critical flight safety parameters for the Range Safety Officers. The overall best source will be sent to the Lockheed Martin's Operational Control Center at Edwards AFB for performance monitoring by X-33 program personnel and for monitoring of critical flight safety parameters by the primary Range Safety Officer. The real-time telemetry data (received signal strength, etc.) from each of the primary ground stations will also be compared during each nu'ssion with simulation data generated using the Dynamic Ground Station Analysis software program. An overall assessment of the accuracy of the model will occur after each mission. Acknowledgment: The work described in this paper was NASA supported through cooperative agreement NCC8-115 with Lockheed Martin Skunk Works.

  16. Simulation study on ion extraction from ECR ion sources

    International Nuclear Information System (INIS)

    Fu, S.; Kitagawa, A.; Yamada, S.

    1993-07-01

    In order to study beam optics of NIRS-ECR ion source used in HIMAC, EGUN code has been modified to make it capable of modeling ion extraction from a plasma. Two versions of the modified code are worked out with two different methods in which 1-D and 2-D sheath theories are used respectively. Convergence problem of the strong nonlinear self-consistent equations is investigated. Simulations on NIRS-ECR ion source and HYPER-ECR ion source (in INS, Univ. of Tokyo) are presented in this paper, exhibiting an agreement with the experimental results. Some preliminary suggestions on the upgrading the extraction systems of these sources are also proposed. (author)

  17. Simulation study on ion extraction from ECR ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, S.; Kitagawa, A.; Yamada, S.

    1993-07-01

    In order to study beam optics of NIRS-ECR ion source used in HIMAC, EGUN code has been modified to make it capable of modeling ion extraction from a plasma. Two versions of the modified code are worked out with two different methods in which 1-D and 2-D sheath theories are used respectively. Convergence problem of the strong nonlinear self-consistent equations is investigated. Simulations on NIRS-ECR ion source and HYPER-ECR ion source (in INS, Univ. of Tokyo) are presented in this paper, exhibiting an agreement with the experimental results. Some preliminary suggestions on the upgrading the extraction systems of these sources are also proposed. (author).

  18. Design-based research in designing the model for educating simulation facilitators.

    Science.gov (United States)

    Koivisto, Jaana-Maija; Hannula, Leena; Bøje, Rikke Buus; Prescott, Stephen; Bland, Andrew; Rekola, Leena; Haho, Päivi

    2018-03-01

    The purpose of this article is to introduce the concept of design-based research, its appropriateness in creating education-based models, and to describe the process of developing such a model. The model was designed as part of the Nurse Educator Simulation based learning project, funded by the EU's Lifelong Learning program (2013-1-DK1-LEO05-07053). The project partners were VIA University College, Denmark, the University of Huddersfield, UK and Metropolia University of Applied Sciences, Finland. As an outcome of the development process, "the NESTLED model for educating simulation facilitators" (NESTLED model) was generated. This article also illustrates five design principles that could be applied to other pedagogies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Software for natural gas pipeline design and simulation (gaspisim ...

    African Journals Online (AJOL)

    Software for natural gas pipeline design and simulation (gaspisim) ... This paper focuses on the development of software for optimum design and simulation of natural gas pipeline. General ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  20. Conceptual design for simulator of irradiation test reactors

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Ohto, Tsutomu; Magome, Hirokatsu; Izumo, Hironobu; Hori, Naohiko

    2012-03-01

    A simulator of irradiation test reactors has been developed since JFY 2010 for understanding reactor behavior and for upskilling in order to utilize a nuclear human resource development (HRD) and to promote partnership with developing countries which have a plan to introduce nuclear power plant. The simulator is designed based on the JMTR, one of the irradiation test reactors, and it simulates operation, irradiation tests and various kinds of accidents caused by the reactor and irradiation facility. The development of the simulator is sponsored by the Japanese government as one of the specialized projects of advanced research infrastructure in order to promote basic as well as applied researches. The training using the simulator will be started for the nuclear HRD from JFY 2012. This report summarizes the result of the conceptual design of the simulator in JFY 2010. (author)

  1. Participatory simulation in hospital work system design

    DEFF Research Database (Denmark)

    Andersen, Simone Nyholm

    When ergonomic considerations are integrated into the design of work systems, both overall system performance and employee well-being improve. A central part of integrating ergonomics in work system design is to benefit from emplo y-ees’ knowledge of existing work systems. Participatory simulation...... (PS) is a method to access employee knowledge; namely employees are involved in the simulation and design of their own future work systems through the exploration of models representing work system designs. However, only a few studies have investigated PS and the elements of the method. Yet...... understanding the elements is essential when analyzing and planning PS in research and practice. This PhD study investigates PS and the method elements in the context of the Danish hospital sector, where PS is applied in the renewal and design of public hospitals and the work systems within the hospitals...

  2. IB: A Monte Carlo simulation tool for neutron scattering instrument design under PVM and MPI

    International Nuclear Information System (INIS)

    Zhao Jinkui

    2011-01-01

    Design of modern neutron scattering instruments relies heavily on Monte Carlo simulation tools for optimization. IB is one such tool written in C++ and implemented under Parallel Virtual Machine and the Message Passing Interface. The program was initially written for the design and optimization of the EQ-SANS instrument at the Spallation Neutron Source. One of its features is the ability to group simple instrument components into more complex ones at the user input level, e.g. grouping neutron mirrors into neutron guides and curved benders. The simulation engine manages the grouped components such that neutrons entering a group are properly operated upon by all components, multiple times if needed, before exiting the group. Thus, only a few basic optical modules are needed at the programming level. For simulations that require higher computer speeds, the program can be compiled and run in parallel modes using either the PVM or the MPI architectures.

  3. Modeling and Simulation for Mission Operations Work System Design

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; Seah, Chin; Trimble, Jay P.; Sims, Michael H.

    2003-01-01

    Work System analysis and design is complex and non-deterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business process design tool that simulates work practices, including social systems of work. We describe our modeling and simulation method for mission operations work systems design, based on a research case study in which we used Brahms to design mission operations for a proposed discovery mission to the Moon. We then describe the results of an actual method application project-the Brahms Mars Exploration Rover. Space mission operations are similar to operations of traditional organizations; we show that the application of Brahms for space mission operations design is relevant and transferable to other types of business processes in organizations.

  4. Learning Reverse Engineering and Simulation with Design Visualization

    Science.gov (United States)

    Hemsworth, Paul J.

    2018-01-01

    The Design Visualization (DV) group supports work at the Kennedy Space Center by utilizing metrology data with Computer-Aided Design (CAD) models and simulations to provide accurate visual representations that aid in decision-making. The capability to measure and simulate objects in real time helps to predict and avoid potential problems before they become expensive in addition to facilitating the planning of operations. I had the opportunity to work on existing and new models and simulations in support of DV and NASA’s Exploration Ground Systems (EGS).

  5. A simulation study on the operating performance of a solar-air source heat pump water heater

    International Nuclear Information System (INIS)

    Xu Guoying; Zhang Xiaosong; Deng Shiming

    2006-01-01

    A simulation study on the operating performance of a new type of solar-air source heat pump water heater (SAS-HPWH) has been presented. The SAS-HPWH used a specially designed flat-plate heat collector/evaporator with spiral-finned tubes to obtain energy from both solar irradiation and ambient air for hot water heating. Using the meteorological data in Nanjing, China, the simulation results based on 150 L water heating capacity showed that such a SAS-HPWH can heat water up to 55 deg. C efficiently under various weather conditions all year around. In this simulation study, the influences of solar radiation, ambient temperature and compressor capacity on the performance of the SAS-HPWH were analyzed. In order to improve the overall operating performance, the use of a variable-capacity compressor has been proposed

  6. Measurement and simulation of the time-dependent behavior of the UMER source

    International Nuclear Information System (INIS)

    Haber, I.; Feldman, D.; Fiorito, R.; Friedman, A.; Grote, D.P.; Kishek, R.A.; Quinn, B.; Reiser, M.; Rodgers, J.; O'Shea, P.G.; Stratakis, D.; Tian, K.; Vay, J.-L.; Walter, M.

    2007-01-01

    Control of the time-dependent characteristics of the beam pulse, beginning when it is born from the source, is important for obtaining adequate beam intensity on a target. Recent experimental measurements combined with the new mesh-refinement capability in WARP have improved the understanding of time-dependent beam characteristics beginning at the source, as well as the predictive ability of the simulation codes. The University of Maryland Electron Ring (UMER), because of its ease of operation and flexible diagnostics has proved particularly useful for benchmarking WARP by comparing simulation to measurement. One source of significant agreement has been in the ability of three-dimensional WARP simulations to predict the onset of virtual cathode oscillations in the vicinity of the cathode grid in the UMER gun, and the subsequent measurement of the predicted oscillations

  7. Topographic filtering simulation model for sediment source apportionment

    Science.gov (United States)

    Cho, Se Jong; Wilcock, Peter; Hobbs, Benjamin

    2018-05-01

    We propose a Topographic Filtering simulation model (Topofilter) that can be used to identify those locations that are likely to contribute most of the sediment load delivered from a watershed. The reduced complexity model links spatially distributed estimates of annual soil erosion, high-resolution topography, and observed sediment loading to determine the distribution of sediment delivery ratio across a watershed. The model uses two simple two-parameter topographic transfer functions based on the distance and change in elevation from upland sources to the nearest stream channel and then down the stream network. The approach does not attempt to find a single best-calibrated solution of sediment delivery, but uses a model conditioning approach to develop a large number of possible solutions. For each model run, locations that contribute to 90% of the sediment loading are identified and those locations that appear in this set in most of the 10,000 model runs are identified as the sources that are most likely to contribute to most of the sediment delivered to the watershed outlet. Because the underlying model is quite simple and strongly anchored by reliable information on soil erosion, topography, and sediment load, we believe that the ensemble of simulation outputs provides a useful basis for identifying the dominant sediment sources in the watershed.

  8. Optimization of source pencil deployment based on plant growth simulation algorithm

    International Nuclear Information System (INIS)

    Yang Lei; Liu Yibao; Liu Yujuan

    2009-01-01

    A plant growth simulation algorithm was proposed for optimizing source pencil deployment for a 60 Co irradiator. A method used to evaluate the calculation results was presented with the objective function defined by relative standard deviation of the exposure rate at the reference points, and the method to transform two kinds of control variables, i.e., position coordinates x j and y j of source pencils in the source plaque, into proper integer variables was also analyzed and solved. The results show that the plant growth simulation algorithm, which possesses both random and directional search mechanism, has good global search ability and can be used conveniently. The results are affected a little by initial conditions, and improve the uniformity in the irradiation fields. It creates a dependable field for the optimization of source bars arrangement at irradiation facility. (authors)

  9. Design and Control of Parallel Three Phase Voltage Source Inverters in Low Voltage AC Microgrid

    Directory of Open Access Journals (Sweden)

    El Hassane Margoum

    2017-01-01

    Full Text Available Design and hierarchical control of three phase parallel Voltage Source Inverters are developed in this paper. The control scheme is based on synchronous reference frame and consists of primary and secondary control levels. The primary control consists of the droop control and the virtual output impedance loops. This control level is designed to share the active and reactive power correctly between the connected VSIs in order to avoid the undesired circulating current and overload of the connected VSIs. The secondary control is designed to clear the magnitude and the frequency deviations caused by the primary control. The control structure is validated through dynamics simulations.The obtained results demonstrate the effectiveness of the control structure.

  10. A Dynamical Training and Design Simulator for Active Catheters

    Directory of Open Access Journals (Sweden)

    Georges Dumont

    2008-11-01

    Full Text Available This work addresses the design of an active multi-link micro-catheter actuated by Shape Memory Alloy (SMA micro actuators. This may be a response to one medical major demand on such devices, which will be useful for surgical explorations and interventions. In this paper, we focus on a training and design simulator dedicated to such catheters. This simulator is based on an original simulation platform (OpenMASK. The catheter is a robotic system, which is evaluated by a dynamical simulation addressing a navigation task in its environment. The design of the prototype and its mechanical model are presented. We develop an interaction model for contact. This model uses a real medical database for which distance cartography is proposed. Then we focus on an autonomous control model based on a multi-agent approach and including the behaviour description of the SMA actuators. Results of mechanical simulations including interaction with the ducts are presented. Furthermore, the interest of such a simulator is presented by applying virtual prototyping techniques for the design optimization. This optimization process is achieved by using genetic algorithms at different stages with respect to the specified task.

  11. A Dynamical Training and Design Simulator for Active Catheters

    Directory of Open Access Journals (Sweden)

    Georges Dumont

    2004-12-01

    Full Text Available This work addresses the design of an active multi-link micro-catheter actuated by Shape Memory Alloy (SMA micro actuators. This may be a response to one medical major demand on such devices, which will be useful for surgical explorations and interventions. In this paper, we focus on a training and design simulator dedicated to such catheters. This simulator is based on an original simulation platform (OpenMASK. The catheter is a robotic system, which is evaluated by a dynamical simulation addressing a navigation task in its environment. The design of the prototype and its mechanical model are presented. We develop an interaction model for contact. This model uses a real medical database for which distance cartography is proposed. Then we focus on an autonomous control model based on a multi-agent approach and including the behaviour description of the SMA actuators. Results of mechanical simulations including interaction with the ducts are presented. Furthermore, the interest of such a simulator is presented by applying virtual prototyping techniques for the design optimization. This optimization process is achieved by using genetic algorithms at different stages with respect to the specified task.

  12. Simulation and design of an electron beam ion source charge breeder for the californium rare isotope breeder upgrade

    Directory of Open Access Journals (Sweden)

    Clayton Dickerson

    2013-02-01

    Full Text Available An electron beam ion source (EBIS will be constructed and used to charge breed ions from the californium rare isotope breeder upgrade (CARIBU for postacceleration into the Argonne tandem linear accelerator system (ATLAS. Simulations of the EBIS charge breeder performance and the related ion transport systems are reported. Propagation of the electron beam through the EBIS was verified, and the anticipated incident power density within the electron collector was identified. The full normalized acceptance of the charge breeder with a 2 A electron beam, 0.024π  mm mrad for nominal operating parameters, was determined by simulating ion injection into the EBIS. The optics of the ion transport lines were carefully optimized to achieve well-matched ion injection, to minimize emittance growth of the injected and extracted ion beams, and to enable adequate testing of the charge bred ions prior to installation in ATLAS.

  13. Analysis, Design and Implementation of an Embedded Realtime Sound Source Localization System Based on Beamforming Theory

    Directory of Open Access Journals (Sweden)

    Arko Djajadi

    2009-12-01

    Full Text Available This project is intended to analyze, design and implement a realtime sound source localization system by using a mobile robot as the media. The implementated system uses 2 microphones as the sensors, Arduino Duemilanove microcontroller system with ATMega328p as the microprocessor, two permanent magnet DC motors as the actuators for the mobile robot and a servo motor as the actuator to rotate the webcam directing to the location of the sound source, and a laptop/PC as the simulation and display media. In order to achieve the objective of finding the position of a specific sound source, beamforming theory is applied to the system. Once the location of the sound source is detected and determined, the choice is either the mobile robot will adjust its position according to the direction of the sound source or only webcam will rotate in the direction of the incoming sound simulating the use of this system in a video conference. The integrated system has been tested and the results show the system could localize in realtime a sound source placed randomly on a half circle area (0 - 1800 with a radius of 0.3m - 3m, assuming the system is the center point of the circle. Due to low ADC and processor speed, achievable best angular resolution is still limited to 25o.

  14. Open Source AV solution supporting In Situ Simulation and Clinical education

    DEFF Research Database (Denmark)

    Simonsen, Eivind Ortind; Pociunas, Gintas; Dahl, Mads Ronald

    2015-01-01

    In situ simulation is simulation done in the actual clinical environment exceeding the simulation immersion compared to that of the embedded simulation centers and facilitating an increased realistic learning experience. Doing this without compromising (all) the educational principals used....... • Rapid or instant playback capability. • Lightweight and compact design. • Non-cabled AV recording. • Simple, reliable set up and operation. Summary of work Commercial products did not meet our requirements why a programmer was hired to design and program the software to meet our expectations...

  15. WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations.

    Science.gov (United States)

    Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald

    2016-08-01

    This article describes the WavePropaGator ( WPG ) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimization and improvement of X-ray optics to meet their experimental requirements. The package uses the Synchrotron Radiation Workshop ( SRW ) C/C++ library and its Python binding for numerical wavefront propagation simulations. The framework runs reliably under Linux, Microsoft Windows 7 and Apple Mac OS X and is distributed under an open-source license. The available tools allow for varying source parameters and optics layouts and visualizing the results interactively. The wavefront history structure can be used for tracking changes in every particular wavefront during propagation. The batch propagation mode enables processing of multiple wavefronts in workflow mode. The paper presents a general description of the package and gives some recent application examples, including modeling of full X-ray FEL beamlines and start-to-end simulation of experiments.

  16. On Architectural Acoustics Design using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...... room acoustic simulation programs it is now possible to subjectively analyze and evaluate acoustic properties prior to the actual construction of a facility. With the right tools applied, the acoustic design can become an integrated part of the architectural design process. The aim of the present paper...... this information is discussed. The conclusion of the paper is that the application of acoustical simulation programs is most beneficial in the last of three phases but that an application of the program to the two first phases would be preferable and possible with an improvement of the interface of the program....

  17. Ion source design for industrial applications

    Science.gov (United States)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The more frequently used design techniques for the components of broad-beam electron bombardment ion sources are discussed. The approach used emphasizes refractory metal cathodes and permanent-magnet multipole discharge chambers. Design procedures and sample calculations are given for the discharge chamber, ion optics, the cathodes, and the magnetic circuit. Hardware designs are included for the isolator, cathode supports, anode supports, pole-piece assembly, and ion-optics supports. A comparison is made between two-grid and three-grid optics. The designs presented are representative of current technology and are adaptable to a wide range of configurations.

  18. SIMULATION OF THE SYSTEMS WITH RENEWABLE ENERGY SOURCES USING HOMER SOFTWARE

    Directory of Open Access Journals (Sweden)

    FIRINCĂ S.D.

    2015-12-01

    Full Text Available This paper simulates by using the Homer software, distributed energy systems with capacity below 1 MW. Among the renewable energy sources are used wind and solar energy. For photovoltaic panels, we are considering two situations: fixed panels, oriented at 45 ° and panels with tracking system with two axis. Simulation results contain information regarding operation hours of the system throughout the year, energy produced from the renewable energy sources, energy consumption for the load, and excess of electrical energy. The Homer software also allows an economic analysis of these systems.

  19. Simulation for (sustainable) building design: Czech experiences

    NARCIS (Netherlands)

    Bartak, M.; Drkal, F.; Hensen, J.L.M.; Lain, M.; Schwarzer, J.; Sourek, B.

    2001-01-01

    This paper attempts to outline the current state-of-the-art in the Czech Republic regarding the use of integrated building performance simulation as a design tool. Integrated performance simulation for reducing the environmental impact of buildings is illustrated by means of three recent HVAC

  20. Design and Analysis of Solar Smartflower Simulation by Solidwork Program

    Science.gov (United States)

    Mulyana, Tatang; Sebayang, Darwin; Fajrina, Fildzah; Raihan; Faizal, M.

    2018-03-01

    The potential of solar energy that is so large in Indonesia can be a driving force for the use of renewable energy as a solution for energy needs. Government with the community can utilize and optimize this technology to increase the electrification ratio up to 100% in all corners of Indonesia. Because of its modular and practical nature, making this technology easy to apply. One of the latest imported products that have started to be offered and sold in Indonesia but not yet widely used for solar power generation is the kind of smartflower. Before using the product, it is of course very important and immediately to undertake an in-depth study of the utilization, use, maintenance, repair, component supply and fabrication. The best way to know the above is through a review of the design and simulation. To meet this need, this paper presents a solar-smartflower design and then simulated using the facilities available in the solidwork program. Solid simulation express is a tool that serves to create power simulation of a design part modelling. With the simulation is very helpful at all to reduce errors in making design. Accurate or not a design created is also influenced by several other factors such as material objects, the silent part of the part, and the load given. The simulation is static simulation and body battery drop test, and based on the results of this simulation is known that the design results have been very satisfactory.

  1. An artificial generation of a few specific wave conditions: New simulator design and experimental performance

    International Nuclear Information System (INIS)

    Ramadan, A.; Mohamed, M.H.; Marzok, S.Y.; Montasser, O.A.; El Feky, A.; El Baz, A.R.

    2014-01-01

    In recent years, an amplified global awareness has led to a reawakening of interest in renewable energy technology. In an effort to reduce the worldwide dependence on fossil fuels, cleaner power generation methods are being sought in the field of solar, biomass, wind and wave energy. The importance of wave energy is increased in particular in some countries like UK, Portugal, Spain and Japan. A considerable progress has already been achieved in this field but the available technical designs are not adequate to develop reliable wave energy converters. Wave energy is the most available energy associated in water seas and oceans. Simultaneously, the wave energy has consisted of two types of energies: potential and kinetic energy. Therefore, many attempts have been applied to capture these energies. In the present work, a wave generator device has been designed and manufactured to simulate and generate the heaving motion of sea waves with different specification. A PC based electro-pneumatic control system was designed and implemented to individually control wave height, these heights are 3, 8, 16, 18 and 20 cm and different frequencies to generate these regular and irregular waves. - Highlights: • Wave energy is one of the most promising sources of renewable energy. • Most researchers built huge flume to simulate waves with large size and high budget. • A new simulator design for the direct and indirect wave energy is introduced. • The regular and irregular wave can be obtained for the new wave simulator. • This design is compact, flexible in terms amplitude, frequencies and high accuracy

  2. The role of simulation in designing for universal access

    DEFF Research Database (Denmark)

    Keates, Simeon; Looms, Peter

    2014-01-01

    the difficulty of finding and recruiting suitable participants. Simulation aids offer a potentially cost-effective replacement or complement to participatory design. This paper examines a number of the issues associated with the use of simulation aids when designing for Universal Access. It concludes...

  3. ModGrasp: An open-source rapid-prototyping framework for designing low-cost sensorised modular hands

    OpenAIRE

    Sanfilippo, Filippo; Zhang, Houxiang; Pettersen, Kristin Ytterstad; Salvietti, G.; Prattichizzo, Domenico

    2014-01-01

    This paper introduces ModGrasp, an open-source virtual and physical rapid-prototyping framework that allows for the design, simulation and control of low-cost sensorised modular hands. By combining the rapid-prototyping approach with the modular concept, different manipulator configurations can be modelled. A real-time one-to-one correspondence between virtual and physical prototypes is established. Different control algorithms can be implemented for the models. By using a low-cost sensing ap...

  4. Two-dimensional integrated Z-pinch ICF design simulations

    International Nuclear Information System (INIS)

    Lash, J.S.

    1999-01-01

    The dynamic hohlraum ICF concept for a Z-pinch driver utilizes the imploding wire array collision with a target to produce a radiation history suitable for driving an embedded inertial confinement fusion (ICF) capsule. This target may consist of various shaped layers of low-density foams or solid-density materials. The use of detailed radiation magneto-hydrodynamic (RMHD) modeling is required for understanding and designing these complex systems. Critical to producing credible simulations and designs is inclusion of the Rayleigh-Taylor unstable wire-array dynamics; the bubble and spike structure of the collapsing sheath may yield regions of low-opacity enhancing radiation loss as well as introduce non-uniformities in the capsule's radiation drive. Recent improvements in LASNEX have allowed significant progress to be made in the modeling of unstable z-pinch implosions. Combining this with the proven ICF capsule design capabilities of LASNEX, the authors now have the modeling tools to produce credible, fully-integrated ICF dynamic hohlraum simulations. They present detailed two-dimensional RMHD simulations of recent ICF dynamic hohlraum experiments on the Sandia Z-machine as well as design simulations for the next-generation Z-pinch facility and future high-yield facility

  5. Two-dimensional integrated Z-pinch ICF design simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lash, J.S.

    1999-07-01

    The dynamic hohlraum ICF concept for a Z-pinch driver utilizes the imploding wire array collision with a target to produce a radiation history suitable for driving an embedded inertial confinement fusion (ICF) capsule. This target may consist of various shaped layers of low-density foams or solid-density materials. The use of detailed radiation magneto-hydrodynamic (RMHD) modeling is required for understanding and designing these complex systems. Critical to producing credible simulations and designs is inclusion of the Rayleigh-Taylor unstable wire-array dynamics; the bubble and spike structure of the collapsing sheath may yield regions of low-opacity enhancing radiation loss as well as introduce non-uniformities in the capsule's radiation drive. Recent improvements in LASNEX have allowed significant progress to be made in the modeling of unstable z-pinch implosions. Combining this with the proven ICF capsule design capabilities of LASNEX, the authors now have the modeling tools to produce credible, fully-integrated ICF dynamic hohlraum simulations. They present detailed two-dimensional RMHD simulations of recent ICF dynamic hohlraum experiments on the Sandia Z-machine as well as design simulations for the next-generation Z-pinch facility and future high-yield facility.

  6. WDM Systems and Networks Modeling, Simulation, Design and Engineering

    CERN Document Server

    Ellinas, Georgios; Roudas, Ioannis

    2012-01-01

    WDM Systems and Networks: Modeling, Simulation, Design and Engineering provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building system...

  7. Development of an application simulating radioactive sources

    International Nuclear Information System (INIS)

    Riffault, V.; Locoge, N.; Leblanc, E.; Vermeulen, M.

    2011-01-01

    This paper presents an application simulating radioactive gamma sources developed in the 'Ecole des Mines' of Douai (France). It generates raw counting data as an XML file which can then be statistically exploited to illustrate the various concepts of radioactivity (exponential decay law, isotropy of the radiation, attenuation of radiation in matter). The application, with a spread sheet for data analysis and lab procedures, has been released under free license. (authors)

  8. Source characterization of underground explosions from hydrodynamic-to-elastic coupling simulations

    Science.gov (United States)

    Chiang, A.; Pitarka, A.; Ford, S. R.; Ezzedine, S. M.; Vorobiev, O.

    2017-12-01

    A major improvement in ground motion simulation capabilities for underground explosion monitoring during the first phase of the Source Physics Experiment (SPE) is the development of a wave propagation solver that can propagate explosion generated non-linear near field ground motions to the far-field. The calculation is done using a hybrid modeling approach with a one-way hydrodynamic-to-elastic coupling in three dimensions where near-field motions are computed using GEODYN-L, a Lagrangian hydrodynamics code, and then passed to WPP, an elastic finite-difference code for seismic waveform modeling. The advancement in ground motion simulation capabilities gives us the opportunity to assess moment tensor inversion of a realistic volumetric source with near-field effects in a controlled setting, where we can evaluate the recovered source properties as a function of modeling parameters (i.e. velocity model) and can provide insights into previous source studies on SPE Phase I chemical shots and other historical nuclear explosions. For example the moment tensor inversion of far-field SPE seismic data demonstrated while vertical motions are well-modeled using existing velocity models large misfits still persist in predicting tangential shear wave motions from explosions. One possible explanation we can explore is errors and uncertainties from the underlying Earth model. Here we investigate the recovered moment tensor solution, particularly on the non-volumetric component, by inverting far-field ground motions simulated from physics-based explosion source models in fractured material, where the physics-based source models are based on the modeling of SPE-4P, SPE-5 and SPE-6 near-field data. The hybrid modeling approach provides new prospects in modeling explosion source and understanding the uncertainties associated with it.

  9. Design of a novel high efficiency antenna for helicon plasma sources

    Science.gov (United States)

    Fazelpour, S.; Chakhmachi, A.; Iraji, D.

    2018-06-01

    A new configuration for an antenna, which increases the absorption power and plasma density, is proposed for helicon plasma sources. The influence of the electromagnetic wave pattern symmetry on the plasma density and absorption power in a helicon plasma source with a common antenna (Nagoya) is analysed by using the standard COMSOL Multiphysics 5.3 software. In contrast to the theoretical model prediction, the electromagnetic wave does not represent a symmetric pattern for the common Nagoya antenna. In this work, a new configuration for an antenna is proposed which refines the asymmetries of the wave pattern in helicon plasma sources. The plasma parameters such as plasma density and absorption rate for a common Nagoya antenna and our proposed antenna under the same conditions are studied using simulations. In addition, the plasma density of seven operational helicon plasma source devices, having a common Nagoya antenna, is compared with the simulation results of our proposed antenna and the common Nagoya antenna. The simulation results show that the density of the plasma, which is produced by using our proposed antenna, is approximately twice in comparison to the plasma density produced by using the common Nagoya antenna. In fact, the simulation results indicate that the electric and magnetic fields symmetry of the helicon wave plays a vital role in increasing wave-particle coupling. As a result, wave-particle energy exchange and the plasma density of helicon plasma sources will be increased.

  10. Design of a digital beam attenuation system for computed tomography: Part I. System design and simulation framework

    International Nuclear Information System (INIS)

    Szczykutowicz, Timothy P.; Mistretta, Charles A.

    2013-01-01

    Purpose: The purpose of this work is to introduce a new device that allows for patient-specific imaging-dose modulation in conventional and cone-beam CT. The device is called a digital beam attenuator (DBA). The DBA modulates an x-ray beam by varying the attenuation of a set of attenuating wedge filters across the fan angle. The ability to modulate the imaging dose across the fan beam represents another stride in the direction of personalized medicine. With the DBA, imaging dose can be tailored for a given patient anatomy, or even tailored to provide signal-to-noise ratio enhancement within a region of interest. This modulation enables decreases in: dose, scatter, detector dynamic range requirements, and noise nonuniformities. In addition to introducing the DBA, the simulation framework used to study the DBA under different configurations is presented. Finally, a detailed study on the choice of the material used to build the DBA is presented. Methods: To change the attenuator thickness, the authors propose to use an overlapping wedge design. In this design, for each wedge pair, one wedge is held stationary and another wedge is moved over the stationary wedge. The composite thickness of the two wedges changes as a function of the amount of overlap between the wedges. To validate the DBA concept and study design changes, a simulation environment was constructed. The environment allows for changes to system geometry, different source spectra, DBA wedge design modifications, and supports both voxelized and analytic phantom models. A study of all the elements from atomic number 1 to 92 were evaluated for use as DBA filter material. The amount of dynamic range and tube loading for each element were calculated for various DBA designs. Tube loading was calculated by comparing the attenuation of the DBA at its minimum attenuation position to a filtered non-DBA acquisition. Results: The design and parametrization of DBA implemented FFMCT has been introduced. A simulation

  11. Design of a bounded wave EMP (Electromagnetic Pulse) simulator

    Science.gov (United States)

    Sevat, P. A. A.

    1989-06-01

    Electromagnetic Pulse (EMP) simulators are used to simulate the EMP generated by a nuclear weapon and to harden equipment against the effects of EMP. At present, DREO has a 1 m EMP simulator for testing computer terminal size equipment. To develop the R and D capability for testing larger objects, such as a helicopter, a much bigger threat level facility is required. This report concerns the design of a bounded wave EMP simulator suitable for testing large size equipment. Different types of simulators are described and their pros and cons are discussed. A bounded wave parallel plate type simulator is chosen for it's efficiency and the least environmental impact. Detailed designs are given for 6 m and 10 m parallel plate type wire grid simulators. Electromagnetic fields inside and outside the simulators are computed. Preliminary specifications for a pulse generator required for the simulator are also given. Finally, the electromagnetic fields radiated from the simulator are computed and discussed.

  12. Slab cooling system design using computer simulation

    NARCIS (Netherlands)

    Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M.

    2007-01-01

    For a new technical library building in Prague computer simulations were carried out to help design of slab cooling system and optimize capacity of chillers. In the paper is presented concept of new technical library HVAC system, the model of the building, results of the energy simulations for

  13. Modeling and simulation for RF system design

    CERN Document Server

    Frevert, Ronny; Jancke, Roland; Knöchel, Uwe; Schwarz, Peter; Kakerow, Ralf; Darianian, Mohsen

    2005-01-01

    Focusing on RF specific modeling and simulation methods, and system and circuit level descriptions, this work contains application-oriented training material. Accompanied by a CD- ROM, it combines the presentation of a mixed-signal design flow, an introduction into VHDL-AMS and Verilog-A, and the application of commercially available simulators.

  14. Elektrisk Design og Styring. Simulation Platform to Model, Optimize and Design Wind Turbines

    DEFF Research Database (Denmark)

    Iov, Florin; Hansen, A. D.; Soerensen, P.

    This report is a general overview of the results obtained in the project ?Electrical Design and Control. Simulation Platform to Model, Optimize and Design Wind Turbines?. The report is structured in six chapters. First, the background of this project and the main goals as well as the structure...... of the simulation platform is given. The main topologies for wind turbines, which have been taken into account during the project, are briefly presented. Then, the considered simulation tools namely: HAWC, DIgSILENT, Saber and Matlab/Simulink have been used in this simulation platform are described. The focus here...... is on the modelling and simulation time scale aspects. The abilities of these tools are complementary and they can together cover all the modelling aspects of the wind turbines e.g. mechanical loads, power quality, switching, control and grid faults. New models and new control algorithms for wind turbine systems have...

  15. Tsunami simulation using submarine displacement calculated from simulation of ground motion due to seismic source model

    Science.gov (United States)

    Akiyama, S.; Kawaji, K.; Fujihara, S.

    2013-12-01

    Since fault fracturing due to an earthquake can simultaneously cause ground motion and tsunami, it is appropriate to evaluate the ground motion and the tsunami by single fault model. However, several source models are used independently in the ground motion simulation or the tsunami simulation, because of difficulty in evaluating both phenomena simultaneously. Many source models for the 2011 off the Pacific coast of Tohoku Earthquake are proposed from the inversion analyses of seismic observations or from those of tsunami observations. Most of these models show the similar features, which large amount of slip is located at the shallower part of fault area near the Japan Trench. This indicates that the ground motion and the tsunami can be evaluated by the single source model. Therefore, we examine the possibility of the tsunami prediction, using the fault model estimated from seismic observation records. In this study, we try to carry out the tsunami simulation using the displacement field of oceanic crustal movements, which is calculated from the ground motion simulation of the 2011 off the Pacific coast of Tohoku Earthquake. We use two fault models by Yoshida et al. (2011), which are based on both the teleseismic body wave and on the strong ground motion records. Although there is the common feature in those fault models, the amount of slip near the Japan trench is lager in the fault model from the strong ground motion records than in that from the teleseismic body wave. First, the large-scale ground motion simulations applying those fault models used by the voxel type finite element method are performed for the whole eastern Japan. The synthetic waveforms computed from the simulations are generally consistent with the observation records of K-NET (Kinoshita (1998)) and KiK-net stations (Aoi et al. (2000)), deployed by the National Research Institute for Earth Science and Disaster Prevention (NIED). Next, the tsunami simulations are performed by the finite

  16. Multiphysics simulation by design for electrical machines, power electronics and drives

    CERN Document Server

    Rosu, Marius; Lin, Dingsheng; Ionel, Dan M; Popescu, Mircea; Blaabjerg, Frede; Rallabandi, Vandana; Staton, David

    2018-01-01

    This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept--a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design--providing deta...

  17. SU-G-IeP4-04: DD-Neutron Source Collimation for Neutron Stimulated Emission Computed Tomography: A Monte Carlo Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Fong, G; Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, North Carolina (United States)

    2016-06-15

    Purpose: To optimize collimation and shielding for a deuterium-deuterium (DD) neutron generator for an inexpensive and compact clinical neutron imaging system. The envisioned application is cancer diagnosis through Neutron Stimulated Emission Computed Tomography (NSECT). Methods: Collimator designs were tested with an isotropic 2.5 MeV neutron source through GEANT4 simulations. The collimator is a 52×52×52 cm{sup 3} polyethylene block coupled with a 1 cm lead sheet in sequence. Composite opening was modeled into the collimator to permit passage of neutrons. The opening varied in shape (cylindrical vs. tapered), size (1–5 cm source-side and target-side openings) and aperture placements (13–39 cm from source-side). Spatial and energy distribution of neutrons and gammas were tracked from each collimator design. Parameters analyzed were primary beam width (FWHM), divergence, and efficiency (percent transmission) for different configurations of the collimator. Select resultant outputs were then used for simulated NSECT imaging of a virtual breast phantom containing a 2.5 cm diameter tumor to assess the effect of the collimator on spatial resolution, noise, and scan time. Finally, composite shielding enclosure made of polyethylene and lead was designed and evaluated to block 99.99% of neutron and gamma radiation generated in the system. Results: Analysis of primary beam indicated the beam-width is linear to the aperture size. Increasing source-side opening allowed at least 20% more neutron throughput for all designs relative to the cylindrical openings. Maximum throughput for all designs was 364% relative to cylindrical openings. Conclusion: The work indicates potential for collimating and shielding a DD neutron generator for use in a clinical NSECT system. The proposed collimator designs produced a well-defined collimated neutron beam that can be used to image samples of interest with millimeter resolution. Balance in output efficiency, noise reduction, and scan

  18. SU-G-IeP4-04: DD-Neutron Source Collimation for Neutron Stimulated Emission Computed Tomography: A Monte Carlo Simulation Study

    International Nuclear Information System (INIS)

    Fong, G; Kapadia, A

    2016-01-01

    Purpose: To optimize collimation and shielding for a deuterium-deuterium (DD) neutron generator for an inexpensive and compact clinical neutron imaging system. The envisioned application is cancer diagnosis through Neutron Stimulated Emission Computed Tomography (NSECT). Methods: Collimator designs were tested with an isotropic 2.5 MeV neutron source through GEANT4 simulations. The collimator is a 52×52×52 cm"3 polyethylene block coupled with a 1 cm lead sheet in sequence. Composite opening was modeled into the collimator to permit passage of neutrons. The opening varied in shape (cylindrical vs. tapered), size (1–5 cm source-side and target-side openings) and aperture placements (13–39 cm from source-side). Spatial and energy distribution of neutrons and gammas were tracked from each collimator design. Parameters analyzed were primary beam width (FWHM), divergence, and efficiency (percent transmission) for different configurations of the collimator. Select resultant outputs were then used for simulated NSECT imaging of a virtual breast phantom containing a 2.5 cm diameter tumor to assess the effect of the collimator on spatial resolution, noise, and scan time. Finally, composite shielding enclosure made of polyethylene and lead was designed and evaluated to block 99.99% of neutron and gamma radiation generated in the system. Results: Analysis of primary beam indicated the beam-width is linear to the aperture size. Increasing source-side opening allowed at least 20% more neutron throughput for all designs relative to the cylindrical openings. Maximum throughput for all designs was 364% relative to cylindrical openings. Conclusion: The work indicates potential for collimating and shielding a DD neutron generator for use in a clinical NSECT system. The proposed collimator designs produced a well-defined collimated neutron beam that can be used to image samples of interest with millimeter resolution. Balance in output efficiency, noise reduction, and scan time

  19. A simulation study of the global orbit feedback system for Pohang light source

    International Nuclear Information System (INIS)

    Kim, Kukhee; Shim, Kyuyeol; Cho, Moohyun; Namkung, Won; Ko, In Soo; Choi, Jinhyuk

    2000-01-01

    This paper describes the simulation of the global orbit feedback system using the singular value decomposition (SVD) method, the error minimization method, and the neural network method. Instead of facing unacceptable correction result raised occasionally in the SVD method, we choose the error minimization method for the global orbit feedback. This method provides minimum orbit errors while avoiding unacceptable corrections, and keeps the orbit within the dynamic aperture of the storage ring. We simulate the Pohang Light Source (PLS) storage ring using the Methodical Accelerator Design (MAD) code that generates the orbit distortions for the error minimization method and the learning data set for neural network method. In order to compare the effectiveness of the neural network method with others, a neural network is trained by the learning algorithm using the learning data set. The global response matrix with a minimum error and the trained neural network are used to the global orbit feedback system. The simulation shows that a selection of beam position monitors (BPMs) is very sensitive in the reduction of rms orbit distortions, and the random choice gives better results than any other cases. (author)

  20. Design and simulation of a planar micro-optic free-space receiver

    Science.gov (United States)

    Nadler, Brett R.; Hallas, Justin M.; Karp, Jason H.; Ford, Joseph E.

    2017-11-01

    We propose a compact directional optical receiver for free-space communications, where a microlens array and micro-optic structures selectively couple light from a narrow incidence angle into a thin slab waveguide and then to an edge-mounted detector. A small lateral translation of the lenslet array controls the coupled input angle, enabling the receiver to select the transmitter source direction. We present the optical design and simulation of a 10mm x 10mm aperture receiver using a 30μm thick silicon waveguide able to couple up to 2.5Gbps modulated input to a 10mm x 30μm wide detector.

  1. Design of a 'two-ion-source' charge breeder with a dual frequency ECR ion source

    International Nuclear Information System (INIS)

    Naik, D.; Naik, V.; Chakrabarti, A.; Dechoudhury, S.; Nayak, S.K.; Pandey, H.K.; Nakagawa, T.

    2005-01-01

    A charge breeder, 'two-ion-source' has been designed which consists of a surface ionisation source followed by an ECR ion source working in two-frequency mode. In this system low charge state ion beam (1+)of radioactive atoms are obtained from the first ion source close to the target chamber and landed into the ECR where those are captured and become high charged state after undergoing a multi ionisation process. This beam dynamics design has been done to optimise the maximum possible transfer of 1 + beam from the first ion source into the ECR, its full capture within the ECR zone and design of an efficient dual frequency ECR. The results shows that 1 + beam of 100 nA and 1μA (A=100) are successfully transmitted and it's beam size at the centre of ECR zone are 12 mm and 21 mm respectively, which are very less than 65 mm width ECR zone of dual frequency ECR heating at 14 GHz and 10 GHz. (author)

  2. Design and construction of a basic principle simulator: an experiment

    International Nuclear Information System (INIS)

    Fernandez, O.; Galdoz, E.; Flury, C.; Fontanini, H.; Maciel, F.; Rovere, L.; Carpio, R.

    1992-01-01

    This paper describes activities developed over design and building of a Basic Principle Simulator for nuclear power plants. This simulator has been developed in Process Control Division of Bariloche Atomic Center, Argentina. This project was sponsored jointly by CNEA and Atomic Energy International Organization, through the United Nations Program for Development. The paper specially emphasizes aspects like: architecture design methodology of real time simulators; graphic environment and interfaces design for users and instructor interaction, and for display information; test and validation of the used models; and human resources formation. Finally describes the actual implementation of the simulator to be used in Embalse Nuclear Power Plant. (author)

  3. Improving the Aircraft Design Process Using Web-based Modeling and Simulation

    Science.gov (United States)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.

    2003-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  4. Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    Science.gov (United States)

    Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.

    2018-03-01

    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

  5. Conceptual design of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Sim, Cheul Muu; Park, K. N.; Choi, Y. H.

    2002-07-01

    The purpose of the cold source is to increase the available neutron flux delivered to instruments at wavelength 4 ∼ 12 A. The major engineering targets of this CNS facility is established for a reach out of very high gain factors in consideration with the cold neutron flux, moderator, circulation loop, heat load, a simplicity of the maintenance of the facility, safety in the operation of the facility against the hydrogen explosion and a layout of a minimum physical interference with the present facilities. The cold source project has been divided into 5 phases: (1) pre-conceptual (2) conceptual design (3) Testing (4) detailed design and procurement (5) installation and operation. Although there is sometime overlap between the phases, in general, they are sequential. The pre-conceptual design and concept design of KCNS has been performed on elaborations of PNPI Russia and review by Technicatome, Air Liquid, CILAS France. In the design of cold neutron source, the characteristics of cold moderators have been studied to obtain the maximum gain of cold neutron, and the analysis for radiation heat, design of hydrogen system, vacuum system and helium system have been performed. The possibility for materialization of the concept in the proposed conceptual design has been reviewed in view of securing safety and installing at HANARO. Above all, the thermosiphon system to remove heat by circulation of sub-cooled two phase hydrogen has been selected so that the whole device could be installed in the reactor pool with the reduced volume. In order to secure safety, hydrogen safety has been considered on protection to prevent from hydrogen-oxygen reaction at explosion of hydrogen-oxygen e in the containment. A lay out of the installation, a maintenance and quality assurance program and a localization are included in this report. Requirements of user, regulatory, safety, operation, maintenance should be considered to be revised for detailed design, testing, installation

  6. An Open Source Rapid Computer Aided Control System Design Toolchain Using Scilab, Scicos and RTAI Linux

    Science.gov (United States)

    Bouchpan-Lerust-Juéry, L.

    2007-08-01

    Current and next generation on-board computer systems tend to implement real-time embedded control applications (e.g. Attitude and Orbit Control Subsystem (AOCS), Packet Utililization Standard (PUS), spacecraft autonomy . . . ) which must meet high standards of Reliability and Predictability as well as Safety. All these requirements require a considerable amount of effort and cost for Space Sofware Industry. This paper, in a first part, presents a free Open Source integrated solution to develop RTAI applications from analysis, design, simulation and direct implementation using code generation based on Open Source and in its second part summarises this suggested approach, its results and the conclusion for further work.

  7. Linac design for the European spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Klein, H. [Universitaet Postfach, Frankfurt am Main (Germany)

    1995-10-01

    A study group has started to develop a conceptual design for a European Spallation Source (ESS). This pulsed 5 MW source presently consists of a 1.334 GeV linac and two compressor rings. In the following mainly the high intensity linac part will be discussed, which has some features of interest for accelerators for transmutation of radioactive waste too.

  8. Design and Simulation of MEMS Devices using Interval Analysis

    International Nuclear Information System (INIS)

    Shanmugavalli, M; Uma, G; Vasuki, B; Umapathy, M

    2006-01-01

    Modeling and simulation of MEMS devices are used to optimize the design, to improve the performance of the device, to reduce time to market, to minimize development time and cost by avoiding unnecessary design cycles and foundry runs. The major design objectives in any device design, is to meet the required functional parameters and the reliability of the device. The functional parameters depend on the geometry of the structure, material properties and process parameters. All model parameters act as input to optimize the functional parameters. The major difficulty the designer faces is the dimensions and properties used in the simulation of the MEMS devices can not be exactly followed during fabrication. In order to overcome this problem, the designer must test the device in simulation for bound of parameters involved in it. The paper demonstrates the use of interval methods to assess the electromechanical behaviour of micro electromechanical systems (MEMS) under the presence of manufacturing and process uncertainties. Interval method guides the design of pullin voltage analysis of fixed-fixed beam to achieve a robust and reliable design in a most efficient way. The methods are implemented numerically using Coventorware and analytically using Intlab

  9. SimVascular 2.0: an Integrated Open Source Pipeline for Image-Based Cardiovascular Modeling and Simulation

    Science.gov (United States)

    Lan, Hongzhi; Merkow, Jameson; Updegrove, Adam; Schiavazzi, Daniele; Wilson, Nathan; Shadden, Shawn; Marsden, Alison

    2015-11-01

    SimVascular (www.simvascular.org) is currently the only fully open source software package that provides a complete pipeline from medical image based modeling to patient specific blood flow simulation and analysis. It was initially released in 2007 and has contributed to numerous advances in fundamental hemodynamics research, surgical planning, and medical device design. However, early versions had several major barriers preventing wider adoption by new users, large-scale application in clinical and research studies, and educational access. In the past years, SimVascular 2.0 has made significant progress by integrating open source alternatives for the expensive commercial libraries previously required for anatomic modeling, mesh generation and the linear solver. In addition, it simplified the across-platform compilation process, improved the graphical user interface and launched a comprehensive documentation website. Many enhancements and new features have been incorporated for the whole pipeline, such as 3-D segmentation, Boolean operation for discrete triangulated surfaces, and multi-scale coupling for closed loop boundary conditions. In this presentation we will briefly overview the modeling/simulation pipeline and advances of the new SimVascular 2.0.

  10. Modeling, simulation, and design of SAW grating filters

    Science.gov (United States)

    Schwelb, Otto; Adler, E. L.; Slaboszewicz, J. K.

    1990-05-01

    A systematic procedure for modeling, simulating, and designing SAW (surface acoustic wave) grating filters, taking losses into account, is described. Grating structures and IDTs (interdigital transducers) coupling to SAWs are defined by cascadable transmission-matrix building blocks. Driving point and transfer characteristics (immittances) of complex architectures consisting of gratings, transducers, and coupling networks are obtained by chain-multiplying building-block matrices. This modular approach to resonator filter analysis and design combines the elements of lossy filter synthesis with the transmission-matrix description of SAW components. A multipole filter design procedure based on a lumped-element-model approximation of one-pole two-port resonator building blocks is given and the range of validity of this model examined. The software for simulating the performance of SAW grating devices based on this matrix approach is described, and its performance, when linked to the design procedure to form a CAD/CAA (computer-aided design and analysis) multiple-filter design package, is illustrated with a resonator filter design example.

  11. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    International Nuclear Information System (INIS)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C.

    2013-01-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD 2 ) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD 2 source will be presented. To achieve these gains, a large volume (35 litres) of LD 2 is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD 2 . The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD 2 at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that installation of the LD 2 cold

  12. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C. [NIST Center for Neutron Research, Gaithersburg (United States)

    2013-07-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD{sub 2}) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD{sub 2} source will be presented. To achieve these gains, a large volume (35 litres) of LD{sub 2} is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD{sub 2}. The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD{sub 2} at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that

  13. A Simulation Approach for Performance Validation during Embedded Systems Design

    Science.gov (United States)

    Wang, Zhonglei; Haberl, Wolfgang; Herkersdorf, Andreas; Wechs, Martin

    Due to the time-to-market pressure, it is highly desirable to design hardware and software of embedded systems in parallel. However, hardware and software are developed mostly using very different methods, so that performance evaluation and validation of the whole system is not an easy task. In this paper, we propose a simulation approach to bridge the gap between model-driven software development and simulation based hardware design, by merging hardware and software models into a SystemC based simulation environment. An automated procedure has been established to generate software simulation models from formal models, while the hardware design is originally modeled in SystemC. As the simulation models are annotated with timing information, performance issues are tackled in the same pass as system functionality, rather than in a dedicated approach.

  14. Design of a linear neutron source

    International Nuclear Information System (INIS)

    Buzarbaruah, N.; Dutta, N.J.; Bhardwaz, J.K.; Mohanty, S.R.

    2015-01-01

    Highlights: • This paper reports the design of a linear neutron source based on inertial electrostatic confinement fusion scheme. • The voltage and current that is to be applied to the grid is computed theoretically. • Neutron production rate is theoretically estimated and found to be of the order of 10 7 –10 8 neutrons/s. • Electric potential distribution and ion trajectories are studied using SIMION code. • Optimized condition for the inner grid transparency has been found out. - Abstract: In this paper, we present the design of a linear neutron source based on the concept of inertial electrostatic confinement fusion. The source mainly comprises of a concentric coaxial cylindrical grid assembly housed inside a double walled cylindrical vacuum chamber, a gas injection system, a high voltage feedthrough and a high voltage negative polarity power supply. The inner grid will be kept at a high negative potential with respect to the outer grid that will be grounded. The effect of grid transparency on electric potential distribution and ion trajectories has been studied using SIMION. A diffuse deuterium plasma will be initially created by making filament discharge and subsequently, on application of high negative voltage to the inner grid, deuterons will be accelerated towards the axis of the device. These deuterons will oscillate in the negative potential and consequently fuse in between the grids to produce neutrons. This source is expected to produce 10 7 –10 8 neutrons/s. The proposed linear neutron source will be operated both in the continuous and pulse modes and it will be utilized for a few near term applications namely fusion reactor material studies and explosive detection

  15. Conceptual Design and Simulation of a Miniature Plasma Focus

    International Nuclear Information System (INIS)

    Jafari, H.; Habibi, M.; Amrollahi, R.

    2012-01-01

    Design and construction of a miniature plasma focus device with 3.6 J of energy bank is reported. In design the device, some of very important parameters of designing such as plasma energy density and derive parameter was used. Regarding to the electrical and geometrical parameters of the device, a simulation is carried out by MATLAB software. Simulation results showed that the formation of the pinch have occurred at the moment of the peak discharge current.

  16. Design and simulation of advanced charge recovery piezoactuator drivers

    International Nuclear Information System (INIS)

    Biancuzzi, G; Lemke, T; Woias, P; Goldschmidtboeing, F; Ruthmann, O; Schrag, H J; Vodermayer, B; Schmid, T

    2010-01-01

    The German Artificial Sphincter System project aims at the development of an implantable sphincter prosthesis driven by a piezoelectrically actuated micropump. The system has been designed to be fully implantable, i.e. the power supply is provided by a rechargeable lithium polymer battery. In order to provide sufficient battery duration and to limit battery dimensions, special effort has to be made to minimize power consumption of the whole system and, in particular, of the piezoactuator driver circuitry. Inductive charge recovery can be used to recover part of the charge stored within the actuator. We are going to present a simplified inductor-based circuit capable of voltage inversion across the actuator without the need of an additional negative voltage source. The dimension of the inductors required for such a concept is nevertheless significant. We therefore present a novel alternative concept, called direct switching, where the equivalent capacitance of the actuator is charged directly by a step-up converter and discharged by a step-down converter. We achieved superior performance compared to a simple inductor-based driver with the advantage of using small-size chip inductors. As a term of comparison, the performance of the aforementioned drivers is compared to a conventional driver that does not implement any charge recovery technique. With our design we have been able to achieve more than 50% reduction in power consumption compared to the simplest conventional driver. The new direct switching driver performs 15% better than an inductor-based driver. A novel, whole-system SPICE simulation is presented, where both the driving circuit and the piezoactuator are modeled making use of advanced nonlinear models. Such a simulation is a precious tool to design and optimize piezoactuator drivers

  17. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  18. Improved design of proton source and low energy beam transport line for European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  19. An Open-Source Arduino-based Controller for Mechanical Rain Simulators

    Science.gov (United States)

    Cantilina, K. K.

    2017-12-01

    Many commercial rain simulators currently used in hydrology rely on inflexible and outdated controller designs. These analog controllers typically only allow a handful of discrete parameter options, and do not support internal timing functions or continuously-changing parameters. A desire for finer control of rain simulation events necessitated the design and construction of a microcontroller-based controller, using widely available off-the-shelf components. A menu driven interface allows users to fine-tune simulation parameters without the need for training or experience with microcontrollers, and the accessibility of the Arduino IDE allows users with a minimum of programming and hardware experience to modify the controller program to suit the needs of individual experiments.

  20. The advanced neutron source--designing to meet the needs of the user community

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1989-01-01

    The Advanced Neutron Source (ANS) is to be a multi-purpose neutron research center, constructed around a high-flux reactor now being designed at the Oak Ridge National Laboratory (ORNL). Its primary purpose is to place the United States in the forefront of neutron scattering in the twenty-first century. Other research programs include nuclear and fundamental physics, isotopes production, materials irradiation, and analytical chemistry. The Advanced Neutron Source will be a unique and invaluable research tool because of the unprecedented neutron flux available from the high intensity research reactor. But that reactor would be ineffective without world-class research facilities that allow the fullest utilization of the available neutrons. And, in turn, those research facilities will not produce new and exciting science without a broad population of users coming from all parts of the nation, and the world, placed in a simulating environment in which experiments can be effectively conducted, and in which scientific exchange is encouraged. This paper discusses the measures being taken to ensure that the design of the ANS focuses not only on the reactor, but on providing the experiment and user support facilities needed to allow its effective use. 5 refs., 4 figs

  1. Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing and Dose Evaluation

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Rasouli

    2012-09-01

    Full Text Available Introduction BNCT is an effective method to destroy brain tumoral cells while sparing the healthy tissues. The recommended flux for epithermal neutrons is 109 n/cm2s, which has the most effectiveness on deep-seated tumors. In this paper, it is indicated that using D-T neutron source and optimizing of Beam Shaping Assembly (BSA leads to treating brain tumors in a reasonable time where all IAEA recommended criteria are met. Materials and Methods The proposed BSA based on a D-T neutron generator consists of a neutron multiplier system, moderators, reflector, and collimator. The simulated Snyder head phantom is used to evaluate dose profiles in tissues due to the irradiation of designed beam. Monte Carlo Code, MCNP-4C, was used in order to perform these calculations.   Results The neutron beam associated with the designed and optimized BSA has an adequate epithermal flux at the beam port and neutron and gamma contaminations are removed as much as possible. Moreover, it was showed that increasing J/Φ, as a measure of beam directionality, leads to improvement of beam performance and survival of healthy tissues surrounding the tumor. Conclusion According to the simulation results, the proposed system based on D-T neutron source, which is suitable for in-hospital installations, satisfies all in-air parameters. Moreover, depth-dose curves investigate proper performance of designed beam in tissues. The results are comparable with the performances of other facilities.

  2. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans.

    Science.gov (United States)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-07

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients' CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  3. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans

    Science.gov (United States)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-01

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  4. Electromagnetic ''particle-in-cell'' plasma simulation

    International Nuclear Information System (INIS)

    Langdon, A.B.

    1985-01-01

    ''PIC'' simulation tracks particles through electromagnetic fields calculated self-consistently from the charge and current densities of the particles themselves, external sources, and boundaries. Already used extensively in plasma physics, such simulations have become useful in the design of accelerators and their r.f. sources. 5 refs

  5. Integrated Design Validation: Combining Simulation and Formal Verification for Digital Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Lun Li

    2006-04-01

    Full Text Available The correct design of complex hardware continues to challenge engineers. Bugs in a design that are not uncovered in early design stages can be extremely expensive. Simulation is a predominantly used tool to validate a design in industry. Formal verification overcomes the weakness of exhaustive simulation by applying mathematical methodologies to validate a design. The work described here focuses upon a technique that integrates the best characteristics of both simulation and formal verification methods to provide an effective design validation tool, referred as Integrated Design Validation (IDV. The novelty in this approach consists of three components, circuit complexity analysis, partitioning based on design hierarchy, and coverage analysis. The circuit complexity analyzer and partitioning decompose a large design into sub-components and feed sub-components to different verification and/or simulation tools based upon known existing strengths of modern verification and simulation tools. The coverage analysis unit computes the coverage of design validation and improves the coverage by further partitioning. Various simulation and verification tools comprising IDV are evaluated and an example is used to illustrate the overall validation process. The overall process successfully validates the example to a high coverage rate within a short time. The experimental result shows that our approach is a very promising design validation method.

  6. Design of penicillin fermentation process simulation system

    Science.gov (United States)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  7. Introduction to RF power amplifier design and simulation

    CERN Document Server

    Eroglu, Abdullah

    2015-01-01

    Introduction to RF Power Amplifier Design and Simulation fills a gap in the existing literature by providing step-by-step guidance for the design of radio frequency (RF) power amplifiers, from analytical formulation to simulation, implementation, and measurement. Featuring numerous illustrations and examples of real-world engineering applications, this book:Gives an overview of intermodulation and elaborates on the difference between linear and nonlinear amplifiersDescribes the high-frequency model and transient characteristics of metal-oxide-semiconductor field-effect transistorsDetails activ

  8. Intuitive thinking of design and redesign on innovative aircraft cabin simulator

    NARCIS (Netherlands)

    Tan, C.F.; Chen, W.; Rauterberg, G.W.M.

    2009-01-01

    In this paper, the intuition approach in the design and redesign of the environmental friendly innovative aircraft cabin simulator is presented. The simulator is a testbed that was designed and built for research on aircraft passenger comfort improvement of long haul air travel. The simulation

  9. Multiphysics Modelling and Simulation for Systems Design Conference

    CERN Document Server

    Abbes, Mohamed; Choley, Jean-Yves; Boukharouba, Taoufik; Elnady, Tamer; Kanaev, Andrei; Amar, Mounir; Chaari, Fakher

    2015-01-01

    This book reports on the state of the art in the field of multiphysics systems. It consists of accurately reviewed contributions to the MMSSD’2014 conference, which was held from December 17 to 19, 2004 in Hammamet, Tunisia. The different chapters, covering new theories, methods and a number of case studies, provide readers with an up-to-date picture of multiphysics modeling and simulation. They highlight the role played by high-performance computing and newly available software in promoting the study of multiphysics coupling effects, and show how these technologies can be practically implemented to bring about significant improvements in the field of design, control and monitoring of machines.  In addition to providing a detailed description of the methods and their applications, the book also identifies new research issues, challenges and opportunities, thus providing researchers and practitioners with both technical information to support their daily work and a new source of inspiration for their future...

  10. Design and Analysis of Windmill Simulation and Pole by Solidwork Program

    Science.gov (United States)

    Mulyana, Tatang; Sebayang, Darwin; R, Akmal Muamar. D.; A, Jauharah H. D.; Yahya Shomit, M.

    2018-03-01

    The Indonesian state of archipelago has great wind energy potential. For micro-scale power generation, the energy obtained from the windmill can be connected directly to the electrical load and can be used without problems. However, for macro-scale power generation, problems will arise such as the design of vane shapes, there should be a simulation and an accurate experiment to produce blades with a special shape that can capture wind energy. In addition, daily and yearly wind and wind rate calculations are also required to ensure the best latitude and longitude positions for building windmills. This paper presents a solution to solve the problem of how to produce a windmill which in the builder is very practical and very mobile can be moved its location. Before a windmill prototype is built it should have obtained the best windmill design result. Therefore, the simulation of the designed windmill is of crucial importance. Solid simulation express is a tool that serves to generate simulation of a design. Some factors that can affect a design result include the power part and the rest part of the part, material selection, the load is given, the security of the design power made, and changes in shape due to treat the load given to the design made. In this paper, static and thermal simulations of windmills have been designed. Based on the simulation result on the designed windmill, it shows that the design has been made very satisfactory so that it can be done prototyping fabrication process.

  11. Note: Ion source design for ion trap systems

    Science.gov (United States)

    Noriega, J. R.; Quevedo, M.; Gnade, B.; Vasselli, J.

    2013-06-01

    A small plasma (glow discharge) based ion source and circuit are described in this work. The ion source works by producing a high voltage pulsed discharge between two electrodes in a pressure range of 50-100 mTorr. A third mesh electrode is used for ion extraction. The electrodes are small stainless steel screws mounted in a MACOR ionization chamber in a linear arrangement. The electrode arrangement is driven by a circuit, design for low power operation. This design is a proof of concept intended for applications on small cylindrical ion traps.

  12. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    equilibrium and associated property models are used. Simulations are performed to investigate the sensitivity of the process variables to change in the design variables including process inputs and disturbances in the property model parameters. Results of the sensitivity analysis on the steady state...... performance of the process to the L/G ratio to the absorber, CO2 lean solvent loadings, and striper pressure are presented in this paper. Based on the sensitivity analysis process optimization problems have been defined and solved and, a preliminary control structure selection has been made.......Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  13. Tabulated square-shaped source model for linear accelerator electron beam simulation.

    Science.gov (United States)

    Khaledi, Navid; Aghamiri, Mahmood Reza; Aslian, Hossein; Ameri, Ahmad

    2017-01-01

    Using this source model, the Monte Carlo (MC) computation becomes much faster for electron beams. The aim of this study was to present a source model that makes linear accelerator (LINAC) electron beam geometry simulation less complex. In this study, a tabulated square-shaped source with transversal and axial distribution biasing and semi-Gaussian spectrum was investigated. A low energy photon spectrum was added to the semi-Gaussian beam to correct the bremsstrahlung X-ray contamination. After running the MC code multiple times and optimizing all spectrums for four electron energies in three different medical LINACs (Elekta, Siemens, and Varian), the characteristics of a beam passing through a 10 cm × 10 cm applicator were obtained. The percentage depth dose and dose profiles at two different depths were measured and simulated. The maximum difference between simulated and measured percentage of depth doses and dose profiles was 1.8% and 4%, respectively. The low energy electron and photon spectrum and the Gaussian spectrum peak energy and associated full width at half of maximum and transversal distribution weightings were obtained for each electron beam. The proposed method yielded a maximum computation time 702 times faster than a complete head simulation. Our study demonstrates that there was an excellent agreement between the results of our proposed model and measured data; furthermore, an optimum calculation speed was achieved because there was no need to define geometry and materials in the LINAC head.

  14. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  15. Akuna: An Open Source User Environment for Managing Subsurface Simulation Workflows

    Science.gov (United States)

    Freedman, V. L.; Agarwal, D.; Bensema, K.; Finsterle, S.; Gable, C. W.; Keating, E. H.; Krishnan, H.; Lansing, C.; Moeglein, W.; Pau, G. S. H.; Porter, E.; Scheibe, T. D.

    2014-12-01

    The U.S. Department of Energy (DOE) is investing in development of a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. ASCEM is an open source and modular computing framework that incorporates new advances and tools for predicting contaminant fate and transport in natural and engineered systems. The ASCEM toolset includes both a Platform with Integrated Toolsets (called Akuna) and a High-Performance Computing multi-process simulator (called Amanzi). The focus of this presentation is on Akuna, an open-source user environment that manages subsurface simulation workflows and associated data and metadata. In this presentation, key elements of Akuna are demonstrated, which includes toolsets for model setup, database management, sensitivity analysis, parameter estimation, uncertainty quantification, and visualization of both model setup and simulation results. A key component of the workflow is in the automated job launching and monitoring capabilities, which allow a user to submit and monitor simulation runs on high-performance, parallel computers. Visualization of large outputs can also be performed without moving data back to local resources. These capabilities make high-performance computing accessible to the users who might not be familiar with batch queue systems and usage protocols on different supercomputers and clusters.

  16. Electromechanical motion systems design and simulation

    CERN Document Server

    Moritz, Frederick G

    2013-01-01

    An introductory reference covering the devices, simulations and limitations in the control of servo systems Linking theoretical material with real-world applications, this book provides a valuable introduction to motion system design. The book begins with an overview of classic theory, its advantages and limitations, before showing how classic limitations can be overcome with complete system simulation. The ability to efficiently vary system parameters (such as inertia, friction, dead-band, damping), and quickly determine their effect on performance, stability, efficiency, is also described. T

  17. Proactive building simulations for early design support

    DEFF Research Database (Denmark)

    Østergård, Torben

    important design parameters that require the most attention when seeking to improve building performance. Fast metamodels facilitate immediate feedback on design changes and reduce time-consumption related to performance assessment. Ultimately, the work described in this thesis and on buildingdesign...... that relies on thousands of simulations representing the multidimensional design space. Interactive visualizations enable decision-makers to explore, in real-time, the vast design space and identify favorable solutions which satisfy the needs of different stakeholders. Sensitivity analysis helps reveal...

  18. Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data.

    Science.gov (United States)

    Owen, Julia P; Wipf, David P; Attias, Hagai T; Sekihara, Kensuke; Nagarajan, Srikantan S

    2012-03-01

    In this paper, we present an extensive performance evaluation of a novel source localization algorithm, Champagne. It is derived in an empirical Bayesian framework that yields sparse solutions to the inverse problem. It is robust to correlated sources and learns the statistics of non-stimulus-evoked activity to suppress the effect of noise and interfering brain activity. We tested Champagne on both simulated and real M/EEG data. The source locations used for the simulated data were chosen to test the performance on challenging source configurations. In simulations, we found that Champagne outperforms the benchmark algorithms in terms of both the accuracy of the source localizations and the correct estimation of source time courses. We also demonstrate that Champagne is more robust to correlated brain activity present in real MEG data and is able to resolve many distinct and functionally relevant brain areas with real MEG and EEG data. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Design And Simulation Of A PV System With Battery Storage Using Bidirectional DC-DC Converter Using Matlab Simulink

    Directory of Open Access Journals (Sweden)

    Mirza Mursalin Iqbal

    2017-07-01

    Full Text Available PV Photovoltaic systems are one of the most renowned renewable green and clean sources of energy where power is generated from sunlight converting into electricity by the use of PV solar cells. Unlike fossil fuels solar energy has great environmental advantages as they have no harmful emissions during power generation. In this paper a PV system with battery storage using bidirectional DC-DC converter has been designed and simulated on MATLAB Simulink. The simulation outcomes verify the PV systems performance under standard testing conditions.

  20. Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR

    Directory of Open Access Journals (Sweden)

    F. Rohrer

    2005-01-01

    Full Text Available HONO formation has been proposed as an important OH radical source in simulation chambers for more than two decades. Besides the heterogeneous HONO formation by the dark reaction of NO2 and adsorbed water, a photolytic source has been proposed to explain the elevated reactivity in simulation chamber experiments. However, the mechanism of the photolytic process is not well understood so far. As expected, production of HONO and NOx was also observed inside the new atmospheric simulation chamber SAPHIR under solar irradiation. This photolytic HONO and NOx formation was studied with a sensitive HONO instrument under reproducible controlled conditions at atmospheric concentrations of other trace gases. It is shown that the photolytic HONO source in the SAPHIR chamber is not caused by NO2 reactions and that it is the only direct NOy source under illuminated conditions. In addition, the photolysis of nitrate which was recently postulated for the observed photolytic HONO formation on snow, ground, and glass surfaces, can be excluded in the chamber. A photolytic HONO source at the surface of the chamber is proposed which is strongly dependent on humidity, on light intensity, and on temperature. An empirical function describes these dependencies and reproduces the observed HONO formation rates to within 10%. It is shown that the photolysis of HONO represents the dominant radical source in the SAPHIR chamber for typical tropospheric O3/H2O concentrations. For these conditions, the HONO concentrations inside SAPHIR are similar to recent observations in ambient air.

  1. Cold source vessel development for the advanced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.; Lucas, A.T. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory (ORNL), will be a user-oriented neutron research facility that will produce the most intense flux of neutrons in the world. Among its many scientific applications, the productions of cold neutrons is a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410 mm diameter sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design are being performed with multi-dimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This paper presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that will be used to verify the final design.

  2. Simulation-aided design and fabrication of nanoprobes for scanning probe microscopy

    International Nuclear Information System (INIS)

    Liu, Bernard Haochih; Chang, Day-Bin

    2011-01-01

    We proposed and demonstrated a flexible and effective method to design and fabricate scanning probes for atomic force microscopy applications. Computer simulations were adopted to evaluate design specifications and desired performance of atomic force microscope (AFM) probes; the fabrication processes were guided by feedback from simulation results. Through design-simulation-fabrication iterations, tipless cantilevers and tapping mode probes were successfully made with errors as low as 2% in designed resonant frequencies. For tapping mode probes, the probe tip apex achieved a 10 nm radius of curvature without additional sharpening steps; tilt-compensated probes were also fabricated for better scanning performance. This method provides AFM users improved probe quality and practical guidelines for customized probes, which can support the development of novel scanning probe microscopy (SPM) applications. -- Research highlights: → We developed a design-simulation-fabrication strategy for customized AFM/SPM probes and demonstrated the results of tipless cantilever, sharpened probe tip, and tilt-compensated probe. → This simulation-aided method improved the geometry control and performance prediction of AFM probes; the error in resonant frequency was reduced to ∼2%. → Integration of simulation in design and fabrication of AFM probes expedites development of new probes and consequently promotes novel SPM applications.

  3. A Ten-Step Design Method for Simulation Games in Logistics Management

    NARCIS (Netherlands)

    Fumarola, M.; Van Staalduinen, J.P.; Verbraeck, A.

    2011-01-01

    Simulation games have often been found useful as a method of inquiry to gain insight in complex system behavior and as aids for design, engineering simulation and visualization, and education. Designing simulation games are the result of creative thinking and planning, but often not the result of a

  4. ExRET-Opt: An automated exergy/exergoeconomic simulation framework for building energy retrofit analysis and design optimisation

    International Nuclear Information System (INIS)

    García Kerdan, Iván; Raslan, Rokia; Ruyssevelt, Paul; Morillón Gálvez, David

    2017-01-01

    Highlights: • Development of a building retrofit-oriented exergoeconomic-based optimisation tool. • A new exergoeconomic cost-benefit indicator is developed for design comparison. • Thermodynamic and thermal comfort variables used as constraints and/or objectives. • Irreversibilities and exergetic cost for end-use processes are substantially reduced. • Robust methodology that should be pursued in everyday building retrofit practice. - Abstract: Energy simulation tools have a major role in the assessment of building energy retrofit (BER) measures. Exergoeconomic analysis and optimisation is a common practice in sectors such as the power generation and chemical processes, aiding engineers to obtain more energy-efficient and cost-effective energy systems designs. ExRET-Opt, a retrofit-oriented modular-based dynamic simulation framework has been developed by embedding a comprehensive exergy/exergoeconomic calculation method into a typical open-source building energy simulation tool (EnergyPlus). The aim of this paper is to show the decomposition of ExRET-Opt by presenting modules, submodules and subroutines used for the framework’s development as well as verify the outputs with existing research data. In addition, the possibility to perform multi-objective optimisation analysis based on genetic-algorithms combined with multi-criteria decision making methods was included within the simulation framework. This addition could potentiate BER design teams to perform quick exergy/exergoeconomic optimisation, in order to find opportunities for thermodynamic improvements along the building’s active and passive energy systems. The enhanced simulation framework is tested using a primary school building as a case study. Results demonstrate that the proposed simulation framework provide users with thermodynamic efficient and cost-effective designs, even under tight thermodynamic and economic constraints, suggesting its use in everyday BER practice.

  5. 40 CFR 63.821 - Designation of affected sources.

    Science.gov (United States)

    2010-07-01

    ...) National Emission Standards for the Printing and Publishing Industry § 63.821 Designation of affected... flexographic printing affected source. (7) Other presses are part of the printing and publishing industry...-flexographic presses are part of the printing and publishing industry source category, but are not part of the...

  6. Preliminary design and optimization of a G-band extended interaction oscillator based on a pseudospark-sourced electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Y., E-mail: yong.yin@strath.ac.uk, E-mail: yinyong@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); He, W.; Zhang, L.; Yin, H.; Cross, A. W. [Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2015-07-15

    The design and simulation of a G-band extended interaction oscillator (EIO) driven by a pseudospark-sourced electron beam is presented. The characteristic of the EIO and the pseudospark-based electron beam were studied to enhance the performance of the newly proposed device. The beam-wave interaction of the EIO can be optimized by choosing a suitable pseudospark discharging voltage and by widening the operating voltage region of the EIO circuit. Simulation results show that a peak power of over 240 W can be achieved at G-band using a pseudospark discharge voltage of 41 kV.

  7. Electrode design and performance of the ORNL positive ion sources

    International Nuclear Information System (INIS)

    Whealton, J.H.; Gardner, W.L.; Haselton, H.H.

    1981-08-01

    The neutral beam development group at ORNL has designed, constructed, and shipped four 50-kV, 100-A sources to PPL to be used for neutral beam heating of the confined plasma on the PDX tokamak. These sources have higher current capability than scaled-down sources, and they are required to run for 0.5 s as opposed to the 0.3-s requirement for PLT and ISX-B sources. Due to an innovative electrode design, these higher power sources met these requirements and achieved a higher transmission efficiency - 76% of the total input power on target vs 60% for the original ISX-B and modified PLT sources or 40% for the original PLT sources. Using the same electrode design with a tetrode accelerating structure and a new, indirectly heated cathode, repeatable long pulse, high energy conditions of 70 kV, 7 A, 8 s, and 90 kV, 9 A, 5 s were achieved. Grid deformation calculations and Monte Carlo beam line gas deposition algorithms will be discussed. A direct-magnetic-electron-blocking, direct-recovery device is described, and theoretical considerations of it are discussed

  8. Recent H- diagnostics, plasma simulations, and 2X scaled Penning ion source developments at the Rutherford Appleton Laboratory

    Science.gov (United States)

    Lawrie, S. R.; Faircloth, D. C.; Smith, J. D.; Sarmento, T. M.; Whitehead, M. O.; Wood, T.; Perkins, M.; Macgregor, J.; Abel, R.

    2018-05-01

    A vessel for extraction and source plasma analyses is being used for Penning H- ion source development at the Rutherford Appleton Laboratory. A new set of optical elements including an einzel lens has been installed, which transports over 80 mA of H- beam successfully. Simultaneously, a 2X scaled Penning source has been developed to reduce cathode power density. The 2X source is now delivering a 65 mA H- ion beam at 10% duty factor, meeting its design criteria. The long-term viability of the einzel lens and 2X source is now being evaluated, so new diagnostic devices have been installed. A pair of electrostatic deflector plates is used to correct beam misalignment and perform fast chopping, with a voltage rise time of 24 ns. A suite of four quartz crystal microbalances has shown that the cesium flux in the vacuum vessel is only increased by a factor of two, despite the absence of a dedicated cold trap. Finally, an infrared camera has demonstrated good agreement with thermal simulations but has indicated unexpected heating due to beam loss on the downstream electrode. These types of diagnostics are suitable for monitoring all operational ion sources. In addition to experimental campaigns and new diagnostic tools, the high-performance VSim and COMSOL software packages are being used for plasma simulations of two novel ion thrusters for space propulsion applications. In parallel, a VSim framework has been established to include arbitrary temperature and cesium fields to allow the modeling of surface physics in H- ion sources.

  9. Advanced design of positive-ion sources for neutral-beam applications

    International Nuclear Information System (INIS)

    Marguerat, E.F.; Haselton, H.H.; Menon, M.M.; Schechter, D.E.; Stirling, W.L.; Tsai, C.C.

    1982-01-01

    The APIS ion source is being developed to meet a goal of producing ion beams of less than or equal to 200 keV, 100 A, with 10-30-s pulse lengths. In a continuing effort to advance the state of the art and to produce long pulse ion beams, APIS ion sources with grid dimensions of 10 x 25 cm, 13 x 43 cm, and 16 x 48 cm are being developed. In the past year, the 10- x 25-cm ion source has been operated to produce ion beams in excess of 100 keV for many seconds pulse length. An advanced design concept is being pursued with the primary objectives to improve radiation protection, reduce fabrication costs, and simplify maintenance. The source magnetic sheild will be designed as a vacuum enclosure to house all source components. The electrical insulation requirements of energy recovery are also considered. Because of the frequent maintenance requirements, the electron emitter assembly will be designed with a remote handling capability. A new accelerator design which incorporates the necessary neutron shielding and associated steering gimbal system is also described

  10. Experimental Design for Sensitivity Analysis of Simulation Models

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2001-01-01

    This introductory tutorial gives a survey on the use of statistical designs for what if-or sensitivity analysis in simulation.This analysis uses regression analysis to approximate the input/output transformation that is implied by the simulation model; the resulting regression model is also known as

  11. A novel design method for ground source heat pump

    Directory of Open Access Journals (Sweden)

    Dong Xing-Jie

    2014-01-01

    Full Text Available This paper proposes a novel design method for ground source heat pump. The ground source heat pump operation is controllable by using several parameters, such as the total meters of buried pipe, the space between wells, the thermal properties of soil, thermal resistance of the well, the initial temperature of soil, and annual dynamic load. By studying the effect of well number and well space, we conclude that with the increase of the well number, the inlet and outlet water temperatures decrease in summer and increase in winter, which enhance the efficiency of ground source heat pump. The well space slightly affects the water temperatures, but it affects the soil temperature to some extent. Also the ground source heat pump operations matching with cooling tower are investigated to achieve the thermal balance. This method greatly facilitates ground source heat pump design.

  12. Optimum source/drain overlap design for 16 nm high-k/metal gate MOSFETs

    International Nuclear Information System (INIS)

    Jang, Junyong; Lim, Towoo; Kim, Youngmin

    2009-01-01

    We explore a source/drain (S/D) design for a 16 nm MOSFET utilizing a replacement process for a high-k gate dielectric and metal gate electrode integration. Using TCAD simulation, a trade-off study between series resistance and overlap capacitance is carried out for a high-k dielectric surrounding gate structure, which results from the replacement process. An optimum S/D overlap to gate for the high-k surrounding gate structure is found to be different from the conventional gate structure, i.e. 0∼1 nm underlap is preferred for the surround high-k gate structure while 1∼2 nm overlap for the conventional gate one

  13. LEGO - A Class Library for Accelerator Design and Simulation

    International Nuclear Information System (INIS)

    Cai, Yunhai

    1998-01-01

    An object-oriented class library of accelerator design and simulation is designed and implemented in a simple and modular fashion. All physics of single-particle dynamics is implemented based on the Hamiltonian in the local frame of the component. Symplectic integrators are used to approximate the integration of the Hamiltonian. A differential algebra class is introduced to extract a Taylor map up to arbitrary order. Analysis of optics is done in the same way both for the linear and non-linear cases. Recently, Monte Carlo simulation of synchrotron radiation has been added into the library. The code is used to design and simulate the lattices of the PEP-II and SPEAR3. And it is also used for the commissioning of the PEP-II. Some examples of how to use the library will be given

  14. Simulation methods to estimate design power: an overview for applied research.

    Science.gov (United States)

    Arnold, Benjamin F; Hogan, Daniel R; Colford, John M; Hubbard, Alan E

    2011-06-20

    Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research.

  15. Acoustic Analysis and Design of the E-STA MSA Simulator

    Science.gov (United States)

    Bittinger, Samantha A.

    2016-01-01

    The Orion European Service Module Structural Test Article (E-STA) Acoustic Test was completed in May 2016 to verify that the European Service Module (ESM) can withstand qualification acoustic environments. The test article required an aft closeout to simulate the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA) cavity, however, the flight MSA design was too cost-prohibitive to build. NASA Glenn Research Center (GRC) had 6 months to design an MSA Simulator that could recreate the qualification prediction MSA cavity sound pressure level to within a reasonable tolerance. This paper summarizes the design and analysis process to arrive at a design for the MSA Simulator, and then compares its performance to the final prediction models created prior to test.

  16. Design and validation of an accelerator for an ultracold electron source

    Directory of Open Access Journals (Sweden)

    G. Taban

    2008-05-01

    Full Text Available We describe here a specially designed accelerator structure and a pulsed power supply that are essential parts of a high brightness cold atoms-based electron source. The accelerator structure allows a magneto-optical atom trap to be operated inside of it, and also transmits subnanosecond electric field pulses. The power supply produces high voltage pulses up to 30 kV, with a rise time of up to 30 ns. The resulting electric field inside the structure is characterized with an electro-optic measurement and with an ion time-of-flight experiment. Simulations predict that 100 fC electron bunches, generated from trapped atoms inside the structure, reach an emittance of 0.04 mm mrad and a bunch length of 80 ps.

  17. Modeling of gas flow in the simulation of H- ion source

    International Nuclear Information System (INIS)

    Ogasawara, M.; Okuda, Y.; Shirai, M.; Mitsuhashi, S.; Hatayama, A.

    1996-01-01

    Actual gas supply into the ion source is modeled. Filling pressure is related to gas flow rate and conductance of the H - extraction system. The rate equation for the H 2 molecule with gas inflow and outflow rates related with the filling pressure are employed in the numerical simulation of a negative hydrogen ion source. With the results of numerical simulation, the H number conservation relation and pressure balance equation are shown to be inaccurate especially for higher electron temperature. Actually for 5 eV of electron temperature, lost H 2 density amounts to 79% and the pressure becomes 5 times the original pressure of 5 mTorr. Even for a low pressure of 3 mTorr, the lost fraction is 67% for 5 eV of the electron temperature. This inaccuracy is large in high power and even for low pressure operation of the ion source. copyright 1996 American Institute of Physics

  18. HFIR cold neutron source moderator vessel design analysis

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-04-01

    A cold neutron source capsule made of aluminum alloy is to be installed and located at the tip of one of the neutron beam tubes of the High Flux Isotope Reactor. Cold hydrogen liquid of temperature approximately 20 degree Kelvin and 15 bars pressure is designed to flow through the aluminum capsule that serves to chill and to moderate the incoming neutrons produced from the reactor core. The cold and low energy neutrons thus produced will be used as cold neutron sources for the diffraction experiments. The structural design calculation for the aluminum capsule is reported in this paper

  19. Drug design: Insights from atomistic simulations

    International Nuclear Information System (INIS)

    Collu, F.; Spiga, E.; Kumar, A.; Hajjar, E.; Vargiu, A.V.; Ceccarelli, M.; Ruggerone, P.

    2009-01-01

    Computer simulations have become a widely used and powerful tool to study the behaviour of many-particle and many-interaction systems and processes such as nucleic acid dynamics, drug-DNA interactions, enzymatic processes, membrane, antibiotics. The increased reliability of computational techniques has made possible to plane a bottom-up approach in drug design, i.e. designing molecules with improved properties starting from the knowledge of the molecular mechanisms. However, the in silico techniques have to face the fact that the number of degrees of freedom involved in biological systems is very large while the time scale of several biological processes is not accessible to standard simulations. Algorithms and methods have been developed and are still under construction to bridge these gaps. Here we review the activities of our group focussed on the time-scale bottleneck and, in particular, on the use of the meta dynamics scheme that allows the investigation of rare events in reasonable computer time without reducing the accuracy of the calculation. In particular, we have devoted particular attention to the characterization at microscopic level of translocation of antibiotics through membrane pores, aiming at the identification of structural and dynamical features helpful for a rational drug design.

  20. Advanced Simulation and Computing Co-Design Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ang, James A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoang, Thuc T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelly, Suzanne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McPherson, Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Rob [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This ASC Co-design Strategy lays out the full continuum and components of the co-design process, based on what we have experienced thus far and what we wish to do more in the future to meet the program’s mission of providing high performance computing (HPC) and simulation capabilities for NNSA to carry out its stockpile stewardship responsibility.

  1. OpenMC In Situ Source Convergence Detection

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Garrett Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of California, Davis, CA (United States); Dutta, Soumya [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); The Ohio State Univ., Columbus, OH (United States); Woodring, Jonathan Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-07

    We designed and implemented an in situ version of particle source convergence for the OpenMC particle transport simulator. OpenMC is a Monte Carlo based-particle simulator for neutron criticality calculations. For the transport simulation to be accurate, source particles must converge on a spatial distribution. Typically, convergence is obtained by iterating the simulation by a user-settable, fixed number of steps, and it is assumed that convergence is achieved. We instead implement a method to detect convergence, using the stochastic oscillator for identifying convergence of source particles based on their accumulated Shannon Entropy. Using our in situ convergence detection, we are able to detect and begin tallying results for the full simulation once the proper source distribution has been confirmed. Our method ensures that the simulation is not started too early, by a user setting too optimistic parameters, or too late, by setting too conservative a parameter.

  2. Robotic Design Choice Overview using Co-simulation and Design Space Exploration

    DEFF Research Database (Denmark)

    Christiansen, Martin Peter; Larsen, Peter Gorm; Nyholm Jørgensen, Rasmus

    2015-01-01

    . Simulations are used to evaluate the robot model output response in relation to operational demands. An example of a load carrying challenge in relation to the feeding robot is presented and a design space is defined with candidate solutions in both the mechanical and software domains. Simulation results......Rapid robotic system development has created a demand for multi-disciplinary methods and tools to explore and compare design alternatives. In this paper, we present a collaborative modelling technique that combines discrete-event models of controller software with continuous-time models of physical...... robot components. The proposed co-modelling method utilises Vienna Development Method (VDM) and Matlab for discrete-event modelling and 20-sim for continuous-time modelling. The model-based development of a mobile robot mink feeding system is used to illustrate the collaborative modelling method...

  3. Design parameters and source terms: Volume 3, Source terms: Revision 0

    International Nuclear Information System (INIS)

    1987-09-01

    The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report to the level of the Site Characterization Plan /endash/ Conceptual Design Report, SCP-CDR. The previous unpublished SCC Study identifies the data needs for the Environmental Assessment effort for seven possible salt repository sites

  4. Mechanical design of NASA Ames Research Center vertical motion simulator

    Science.gov (United States)

    Engelbert, D. F.; Bakke, A. P.; Chargin, M. K.; Vallotton, W. C.

    1976-01-01

    NASA has designed and is constructing a new flight simulator with large vertical travel. Several aspects of the mechanical design of this Vertical Motion Simulator (VMS) are discussed, including the multiple rack and pinion vertical drive, a pneumatic equilibration system, and the friction-damped rigid link catenaries used as cable supports.

  5. Modeling and Design of High-Efficiency Single-Photon Sources

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Per Kær; Mørk, Jesper

    2013-01-01

    be electrically driven. Several design strategies addressing these requirements have been proposed. In the cavity-based source, light emission is controlled using resonant cavity quantum electrodynamics effects, whereas in the waveguide-based source, broadband electric field screening effects are employed......Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable, and the source should...

  6. An overview of the design and analysis of simulation experiments for sensitivity analysis

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2005-01-01

    Sensitivity analysis may serve validation, optimization, and risk analysis of simulation models. This review surveys 'classic' and 'modern' designs for experiments with simulation models. Classic designs were developed for real, non-simulated systems in agriculture, engineering, etc. These designs

  7. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    Science.gov (United States)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  8. Python bindings for the open source electromagnetic simulator Meep

    OpenAIRE

    Lambert, Emmanuel; Fiers, Martin; Nizamov, Shavkat; Tassaert, Martijn; Johnson, Steven G; Bienstman, Peter; Bogaerts, Wim

    2011-01-01

    Meep is a broadly used open source package for finite-difference time-domain electromagnetic simulations. Python bindings for Meep make it easier to use for researchers and open promising opportunities for integration with other packages in the Python ecosystem. As this project shows, implementing Python-Meep offers benefits for specific disciplines and for the wider research community.

  9. 2D accelerator design for SITEX negative ion source

    International Nuclear Information System (INIS)

    Whealton, J.H.; Raridon, R.J.; McGaffey, R.W.; McCollough, D.H.; Stirling, W.L.; Dagenhart, W.K.

    1983-01-01

    Solving the Poisson-Vlasov equations where the magnetic field, B, is assumed constant, we optimize the optical system of a SITEX negative ion source in infinite slot geometry. Algorithms designed to solve the above equations were modified to include the curved emitter boundary data appropriate to a negative ion source. Other configurations relevant to negative ion sources are examined

  10. Simulation-based optimization for product and process design

    NARCIS (Netherlands)

    Driessen, L.

    2006-01-01

    The design of products and processes has gradually shifted from a purely physical process towards a process that heavily relies on computer simulations (virtual prototyping). To optimize this virtual design process in terms of speed and final product quality, statistical methods and mathematical

  11. TRACY: A tool for accelerator design and analysis

    International Nuclear Information System (INIS)

    Nishimura, Hiroshi.

    1988-06-01

    A simulation code TRACY has been developed for accelerator design and analysis. The code can be used for lattice design work simulation of magnet misalignments, closed orbit calculations and corrections, undulator calculations and particle tracking. TRACY has been used extensively for single particle simulations for the Advanced Light Source (ALS), a 1-2 GeV Synchrotron Radiation Source now under construction at Lawrence Berkeley Laboratory. 9 refs., 2 figs

  12. An Overview of the Design and Analysis of Simulation Experiments for Sensitivity Analysis

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2004-01-01

    Sensitivity analysis may serve validation, optimization, and risk analysis of simulation models.This review surveys classic and modern designs for experiments with simulation models.Classic designs were developed for real, non-simulated systems in agriculture, engineering, etc.These designs assume a

  13. Moderator design studies for a new neutron reference source based on the D–T fusion reaction

    International Nuclear Information System (INIS)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-01-01

    The radioactive isotope Californium-252 ( 252 Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D 2 O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252 Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D–T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252 Cf. To be viable, the 14 MeV D–T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2–5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered. - Highlights: • D–T generator neutron calibration field replacement for D 2 O-moderated 252 Cf. • Determination of representative nuclear power plant workplace neutron spectrum. • Simulations to assess moderating materials to soften 14

  14. Conceptual design of a high-intensity positron source for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Hulett, L.D.; Eberle, C.C.

    1994-12-01

    The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world's best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world's best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using 64 Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet

  15. Phase 1 Validation Testing and Simulation for the WEC-Sim Open Source Code

    Science.gov (United States)

    Ruehl, K.; Michelen, C.; Gunawan, B.; Bosma, B.; Simmons, A.; Lomonaco, P.

    2015-12-01

    WEC-Sim is an open source code to model wave energy converters performance in operational waves, developed by Sandia and NREL and funded by the US DOE. The code is a time-domain modeling tool developed in MATLAB/SIMULINK using the multibody dynamics solver SimMechanics, and solves the WEC's governing equations of motion using the Cummins time-domain impulse response formulation in 6 degrees of freedom. The WEC-Sim code has undergone verification through code-to-code comparisons; however validation of the code has been limited to publicly available experimental data sets. While these data sets provide preliminary code validation, the experimental tests were not explicitly designed for code validation, and as a result are limited in their ability to validate the full functionality of the WEC-Sim code. Therefore, dedicated physical model tests for WEC-Sim validation have been performed. This presentation provides an overview of the WEC-Sim validation experimental wave tank tests performed at the Oregon State University's Directional Wave Basin at Hinsdale Wave Research Laboratory. Phase 1 of experimental testing was focused on device characterization and completed in Fall 2015. Phase 2 is focused on WEC performance and scheduled for Winter 2015/2016. These experimental tests were designed explicitly to validate the performance of WEC-Sim code, and its new feature additions. Upon completion, the WEC-Sim validation data set will be made publicly available to the wave energy community. For the physical model test, a controllable model of a floating wave energy converter has been designed and constructed. The instrumentation includes state-of-the-art devices to measure pressure fields, motions in 6 DOF, multi-axial load cells, torque transducers, position transducers, and encoders. The model also incorporates a fully programmable Power-Take-Off system which can be used to generate or absorb wave energy. Numerical simulations of the experiments using WEC-Sim will be

  16. Spallation neutron source moderator design

    International Nuclear Information System (INIS)

    Charlton, L.A.; Barnes, J.M.; Gabriel, T.A.; Johnson, J.O.

    1998-01-01

    This paper describes various aspects of the spallation neutron source (SNS) moderator design. Included are the effects of varying the moderator location, interaction effects between moderators, and the impact on neutron output when various reflector materials are used. Also included is a study of the neutron output from composite moderators, where it is found that a combination of liquid H 2 O and liquid H 2 can produce a spectrum very similar to liquid methane (L-CH 4 ). (orig.)

  17. Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations.

    Science.gov (United States)

    Pidaparti, Ramana M; Cartin, Charles; Su, Guoguang

    2017-04-25

    In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications.

  18. Theoretical designs of 19.6 nm Ne-like Ge XRL source

    International Nuclear Information System (INIS)

    Zhang Guoping; Zhang Tanxin; Zheng Wudi

    2004-01-01

    19.6 nm Ne-like Ge X-ray laser (XRL) can be used as a source to diagnose Rayleigh-Taylor instability in laser induced plasma. In this paper, systemic optimum designs and theoretical analysis to Ne-like Ge XRL driven by pre-main short pulses were conducted by a series of codes, which had been tested by experiments. Simulation results show that, adopting driven conditions of 2%-3% pre-pulse, 6-8 ns pre-main pulse interval and 40 TW/cm 2 power intensity, a gain area of 19.6 nm laser line beyond 60 μm and gain duration of 90 ps can be obtained. Furthermore, with 16 mm plane target, the gain gets to 11.8/cm, and if 6 mrad/cm curved target is adopted, it reaches to 13.3/cm, and small signal gain-length product of single target is about 21.3, which means that saturated gain can be realized by a single target. With double targets opposite coupling, gain-length product can reach 38.4, deep saturation can be gotten, and XRL source required by demonstration of application is out of question

  19. Conceptual design of 30 MeV magnet system used for BNCT epithermal neutron source

    International Nuclear Information System (INIS)

    Slamet Santosa; Taufik

    2015-01-01

    Conceptual design of 30 MeV Magnet System Used for BNCT Epithermal Neutron Source has been done based on methods of empirical model of basic equation, experiences of 13 MeV cyclotron magnet design and personal communications. In the field of health, cyclotron can be used as an epithermal neutron source for Boron Neutron Capture Therapy (BNCT). The development of cyclotron producing epithermal neutrons for BNCT has been performed at Kyoto University, of which it produces a proton beam current of 1.1 mA with energy of 30 MeV. With some experiences on 13 MeV cyclotron magnet design, to support BNCT research and development we performed the design studies of 30 MeV cyclotron magnet system, which is one of the main components of the cyclotron for deflecting proton beam into circular trajectory and serves as beam focusing. Results of this study are expected to define the parameters of particular cyclotron magnet. The scope of this study includes the study of the parameters component of the 30 MeV cyclotron and magnet initial parameters. The empirical method of basic equation model is then corroborated by a simulation using Superfish software. Based on the results, a 30 MeV cyclotron magnet for BNCT neutron source enables to be realized with the parameters of B 0 = 1.06 T, frequency RF = 64.733938 ≈ 65 MHz, the external radius of 0.73 m, the radius of the polar = 0.85 m, BH = 1.95 T and a gap hill of 4 cm. Because proton beam current that be needed for BNCT application is very large, then in the calculation it is chosen a great focusing axial νz = 0.630361 which can generate B V = 0.44 T. (author)

  20. WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations1

    OpenAIRE

    Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald

    2016-01-01

    This article describes the WavePropaGator (WPG) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimiz...

  1. The Spallation Neutron Source (SNS) conceptual design shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Odano, N.; Lillie, R.A.

    1998-03-01

    The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented

  2. Simulation study on ion extraction from electron cyclotron resonance ion sources

    Science.gov (United States)

    Fu, S.; Kitagawa, A.; Yamada, S.

    1994-04-01

    In order to study beam optics of NIRS-ECR ion source used in the HIMAC project, the EGUN code has been modified to make it capable of modeling ion extraction from a plasma. Two versions of the modified code are worked out with two different methods in which 1D and 2D sheath theories are used, respectively. Convergence problem of the strong nonlinear self-consistent equations is investigated. Simulations on NIRS-ECR ion source and HYPER-ECR ion source are presented in this paper, exhibiting an agreement with the experiment results.

  3. An Assessment of Some Design Constraints on Heat Production of a 3D Conceptual EGS Model Using an Open-Source Geothermal Reservoir Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Yidong Xia; Mitch Plummer; Robert Podgorney; Ahmad Ghassemi

    2016-02-01

    Performance of heat production process over a 30-year period is assessed in a conceptual EGS model with a geothermal gradient of 65K per km depth in the reservoir. Water is circulated through a pair of parallel wells connected by a set of single large wing fractures. The results indicate that the desirable output electric power rate and lifespan could be obtained under suitable material properties and system parameters. A sensitivity analysis on some design constraints and operation parameters indicates that 1) the fracture horizontal spacing has profound effect on the long-term performance of heat production, 2) the downward deviation angle for the parallel doublet wells may help overcome the difficulty of vertical drilling to reach a favorable production temperature, and 3) the thermal energy production rate and lifespan has close dependence on water mass flow rate. The results also indicate that the heat production can be improved when the horizontal fracture spacing, well deviation angle, and production flow rate are under reasonable conditions. To conduct the reservoir modeling and simulations, an open-source, finite element based, fully implicit, fully coupled hydrothermal code, namely FALCON, has been developed and used in this work. Compared with most other existing codes that are either closed-source or commercially available in this area, this new open-source code has demonstrated a code development strategy that aims to provide an unparalleled easiness for user-customization and multi-physics coupling. Test results have shown that the FALCON code is able to complete the long-term tests efficiently and accurately, thanks to the state-of-the-art nonlinear and linear solver algorithms implemented in the code.

  4. Using IMPRINT to Guide Experimental Design with Simulated Task Environments

    Science.gov (United States)

    2015-06-18

    USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN OF SIMULATED TASK ENVIRONMENTS THESIS Gregory...ENG-MS-15-J-052 USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN WITH SIMULATED TASK ENVIRONMENTS THESIS Presented to the Faculty Department...Civilian, USAF June 2015 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-J-052 USING IMPRINT

  5. Thin-film designs by simulated annealing

    Science.gov (United States)

    Boudet, T.; Chaton, P.; Herault, L.; Gonon, G.; Jouanet, L.; Keller, P.

    1996-11-01

    With the increasing power of computers, new methods in synthesis of optical multilayer systems have appeared. Among these, the simulated-annealing algorithm has proved its efficiency in several fields of physics. We propose to show its performances in the field of optical multilayer systems through different filter designs.

  6. Reactor Core Design and Analysis for a Micronuclear Power Source

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2018-03-01

    Full Text Available Underwater vehicle is designed to ensure the security of country sea boundary, providing harsh requirements for its power system design. Conventional power sources, such as battery and Stirling engine, are featured with low power and short lifetime. Micronuclear reactor power source featured with higher power density and longer lifetime would strongly meet the demands of unmanned underwater vehicle power system. In this paper, a 2.4 MWt lithium heat pipe cooled reactor core is designed for micronuclear power source, which can be applied for underwater vehicles. The core features with small volume, high power density, long lifetime, and low noise level. Uranium nitride fuel with 70% enrichment and lithium heat pipes are adopted in the core. The reactivity is controlled by six control drums with B4C neutron absorber. Monte Carlo code MCNP is used for calculating the power distribution, characteristics of reactivity feedback, and core criticality safety. A code MCORE coupling MCNP and ORIGEN is used to analyze the burnup characteristics of the designed core. The results show that the core life is 14 years, and the core parameters satisfy the safety requirements. This work provides reference to the design and application of the micronuclear power source.

  7. Simulant Basis for the Standard High Solids Vessel Design

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Reid A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suffield, Sarah R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Daniel, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gauglitz, Phillip A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-01

    This document provides the requirements for a test simulant suitable for demonstrating the mixing requirements for the Single High Solids Vessel Design (SHSVD). This simulant has not been evaluated for other purposes such as gas retention and release or erosion. The objective of this work is to provide an underpinning for the simulant properties based on actual waste characterization.

  8. Monte Carlo simulation of scatter in non-uniform symmetrical attenuating media for point and distributed sources

    International Nuclear Information System (INIS)

    Henry, L.J.; Rosenthal, M.S.

    1992-01-01

    We report results of scatter simulations for both point and distributed sources of 99m Tc in symmetrical non-uniform attenuating media. The simulations utilized Monte Carlo techniques and were tested against experimental phantoms. Both point and ring sources were used inside a 10.5 cm radius acrylic phantom. Attenuating media consisted of combinations of water, ground beef (to simulate muscle mass), air and bone meal (to simulate bone mass). We estimated/measured energy spectra, detector efficiencies and peak height ratios for all cases. In all cases, the simulated spectra agree with the experimentally measured spectra within 2 SD. Detector efficiencies and peak height ratios also are in agreement. The Monte Carlo code is able to properly model the non-uniform attenuating media used in this project. With verification of the simulations, it is possible to perform initial evaluation studies of scatter correction algorithms by evaluating the mechanisms of action of the correction algorithm on the simulated spectra where the magnitude and sources of scatter are known. (author)

  9. Instructional psychology and the design of training simulators

    International Nuclear Information System (INIS)

    Stammers, R.B.

    1985-01-01

    In this paper the role of instructional psychology in simulator design and use is discussed. It is suggested that research and development work has tended to focus upon the face validity of simulators rather than their instructional utility. Dimensions of simulation are reviewed as are the variety of uses to which a simulator may be put. The nature of instructional psychology is briefly described under the following headings: task analysis, the acquisition of knowledge and skill and theories of instruction. Attention is also given to the potential role of computer-based training and the topic of retention of training is introduced. (author)

  10. Mindfully implementing simulation tools for supporting pragmatic design inquiries

    NARCIS (Netherlands)

    Hartmann, Timo; olde Scholtenhuis, Léon Luc; Zerjav, Vedran; Champlin, Carissa J

    2015-01-01

    Based upon a conceptualization of the engineering design process as pragmatic inquiry, this paper introduces a framework for supporting designers and design managers with a better understanding of the trade-offs required for a successful implementation of simulation tools. This framework contributes

  11. Design of subjects training on reactor simulator and feasibility study - toward the empirical evaluation of interface design concept

    International Nuclear Information System (INIS)

    Yamaguchi, Y.; Furukawa, H.; Tanabe, F.

    1998-01-01

    On-going JAERI's project for empirical evaluation of the ecological interface design concept was first described. The empirical evaluation is planned to be proceeded through three consecutive steps; designing and actual implementation of the interface on reactor simulator, verification of the interface created, and the validation by the simulator experiment. For conducting the project, three different experimental resources are prerequisite, that are, data analysis method for identifying the operator's strategies, experimental facility including reactor simulator, and experimental subjects or subjects training method. Among the three experimental resources, subjects training method was recently designed and a simulator experiment was earned out in order to examine the feasibility of the designed training method. From the experiment and analysis of the experimental records, we could conclude that it is feasible that the experimental subjects having an appropriate technical basis can gain the sufficient competence for evaluation work of the interface design concept by using the training method designed. (author)

  12. Validation of the intrinsic spatial efficiency method for non cylindrical homogeneous sources using MC simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Ramírez, Pablo, E-mail: rapeitor@ug.uchile.cl; Ruiz, Andrés [Departamento de Física, Facultad de Ciencias, Universidad de Chile (Chile)

    2016-07-07

    The Monte Carlo simulation of the gamma spectroscopy systems is a common practice in these days. The most popular softwares to do this are MCNP and Geant4 codes. The intrinsic spatial efficiency method is a general and absolute method to determine the absolute efficiency of a spectroscopy system for any extended sources, but this was only demonstrated experimentally for cylindrical sources. Due to the difficulty that the preparation of sources with any shape represents, the simplest way to do this is by the simulation of the spectroscopy system and the source. In this work we present the validation of the intrinsic spatial efficiency method for sources with different geometries and for photons with an energy of 661.65 keV. In the simulation the matrix effects (the auto-attenuation effect) are not considered, therefore these results are only preliminaries. The MC simulation is carried out using the FLUKA code and the absolute efficiency of the detector is determined using two methods: the statistical count of Full Energy Peak (FEP) area (traditional method) and the intrinsic spatial efficiency method. The obtained results show total agreement between the absolute efficiencies determined by the traditional method and the intrinsic spatial efficiency method. The relative bias is lesser than 1% in all cases.

  13. Cold neutron source conceptual designing for Tehran Research Reactor

    International Nuclear Information System (INIS)

    Khajvand, N.; Mirvakili, S.M.; Faghihi, F.

    2016-01-01

    Highlights: • Cold neutron source conceptual designing for Tehran research reactor is carried out. • Type and geometry of moderator and dimensions of cold neutron source are analyzed. • Liquid hydrogen with more ortho-concentration can be better option as moderator. - Abstract: A cold neutron source (CNS) conceptual designing for the Tehran Research Reactor (TRR) were carried out using MCNPX code. In this study, a horizontal beam tube of the core which has appropriate the highest thermal flux is selected and parametric analysis to choose the type and geometry of the moderator, and the required CNS dimensions for maximizing the cold neutron production was performed. In this design the moderator cell has a spherical annulus structure, and the cold neutron flux and its brightness are calculated together with the nuclear heat load of the CNS for a variety of materials including liquid hydrogen, liquid deuterium, and solid methane. Based on our study, liquid hydrogen with more ortho-concentration than para and solid methane are the best options.

  14. Simulation Experiments in Practice: Statistical Design and Regression Analysis

    OpenAIRE

    Kleijnen, J.P.C.

    2007-01-01

    In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. The goal of this article is to change these traditional, naïve methods of design and analysis, because statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic DOE and regression analysis assume a single simulation response that is normally and independen...

  15. A Survey of Open-Source UAV Flight Controllers and Flight Simulators

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Skriver, Martin; Terkildsen, Kristian Husum

    2018-01-01

    The current disruptive innovation in civilian drone (UAV) applications has led to an increased need for research and development in UAV technology. The key challenges currently being addressed are related to UAV platform properties such as functionality, reliability, fault tolerance, and endurance......-source drone platform elements that can be used for research and development. The survey covers open-source hardware, software, and simulation drone platforms and compares their main features....

  16. The Advanced Neutron Source design: A status report

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Nuetron Source (ANS) facility is being designed as a user laboratory for all types of neutron-based research, centered around a nuclear fission reactor (D 2 O cooled, moderated, and reflected), operating at approximately 300 MW th . Safety, and especially passive safety features, have been emphasized throughout the design process

  17. Efficient Bayesian experimental design for contaminant source identification

    Science.gov (United States)

    Zhang, Jiangjiang; Zeng, Lingzao; Chen, Cheng; Chen, Dingjiang; Wu, Laosheng

    2015-01-01

    In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameters identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from concentration measurements in identifying unknown parameters. In this approach, the sampling locations that give the maximum expected relative entropy are selected as the optimal design. After the sampling locations are determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport equation. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. It is shown that the methods can be used to assist in both single sampling location and monitoring network design for contaminant source identifications in groundwater.

  18. Discrete-event simulation for the design and evaluation of physical protection systems

    International Nuclear Information System (INIS)

    Jordan, S.E.; Snell, M.K.; Madsen, M.M.; Smith, J.S.; Peters, B.A.

    1998-01-01

    This paper explores the use of discrete-event simulation for the design and control of physical protection systems for fixed-site facilities housing items of significant value. It begins by discussing several modeling and simulation activities currently performed in designing and analyzing these protection systems and then discusses capabilities that design/analysis tools should have. The remainder of the article then discusses in detail how some of these new capabilities have been implemented in software to achieve a prototype design and analysis tool. The simulation software technology provides a communications mechanism between a running simulation and one or more external programs. In the prototype security analysis tool, these capabilities are used to facilitate human-in-the-loop interaction and to support a real-time connection to a virtual reality (VR) model of the facility being analyzed. This simulation tool can be used for both training (in real-time mode) and facility analysis and design (in fast mode)

  19. Automated simulation and study of spatial-structural design processes

    NARCIS (Netherlands)

    Davila Delgado, J.M.; Hofmeyer, H.; Stouffs, R.; Sariyildiz, S.

    2013-01-01

    A so-called "Design Process Investigation toolbox" (DPI toolbox), has been developed. It is a set of computational tools that simulate spatial-structural design processes. Its objectives are to study spatial-structural design processes and to support the involved actors. Two case-studies are

  20. Off-design performance analysis of Kalina cycle for low temperature geothermal source

    International Nuclear Information System (INIS)

    Li, Hang; Hu, Dongshuai; Wang, Mingkun; Dai, Yiping

    2016-01-01

    Highlights: • The off-design performance analysis of Kalina cycle is conducted. • The off-design models are established. • The genetic algorithm is used in the design phase. • The sliding pressure control strategy is applied. - Abstract: Low temperature geothermal sources with brilliant prospects have attracted more and more people’s attention. Kalina cycle system using ammonia water as working fluid could exploit geothermal energy effectively. In this paper, the quantitative analysis of off-design performance of Kalina cycle for the low temperature geothermal source is conducted. The off-design models including turbine, pump and heat exchangers are established preliminarily. Genetic algorithm is used to maximize the net power output and determine the thermodynamic parameters in the design phase. The sliding pressure control strategy applied widely in existing Rankine cycle power plants is adopted to response to the variations of geothermal source mass flow rate ratio (70–120%), geothermal source temperature (116–128 °C) and heat sink temperature (0–35 °C). In the off-design research scopes, the guidance for pump rotational speed adjustment is listed to provide some reference for off-design operation of geothermal power plants. The required adjustment rate of pump rotational speed is more sensitive to per unit geothermal source temperature than per unit heat sink temperature. Influence of the heat sink variation is greater than that of the geothermal source variation on the ranges of net power output and thermal efficiency.

  1. 3D relativistic MHD numerical simulations of X-shaped radio sources

    Science.gov (United States)

    Rossi, P.; Bodo, G.; Capetti, A.; Massaglia, S.

    2017-10-01

    Context. A significant fraction of extended radio sources presents a peculiar X-shaped radio morphology: in addition to the classical double lobed structure, radio emission is also observed along a second axis of symmetry in the form of diffuse wings or tails. In a previous investigation we showed the existence of a connection between the radio morphology and the properties of the host galaxies. Motivated by this connection we performed two-dimensional numerical simulations showing that X-shaped radio sources may naturally form as a jet propagates along the major axis a highly elliptical density distribution, because of the fast expansion of the cocoon along the minor axis of the distribution. Aims: We intend to extend our analysis by performing three-dimensional numerical simulations and investigating the role of different parameters in determining the formation of the X-shaped morphology. Methods: The problem is addressed by numerical means, carrying out three-dimensional relativistic magnetohydrodynamic simulations of bidirectional jets propagating in a triaxial density distribution. Results: We show that only jets with power ≲ 1044 erg s-1 can give origin to an X-shaped morphology and that a misalignment of 30° between the jet axis and the major axis of the density distribution is still favourable to the formation of this kind of morphology. In addition we compute synthetic radio emission maps and polarization maps. Conclusions: In our scenario for the formation of X-shaped radio sources only low power FRII can give origin to such kind of morphology. Our synthetic emission maps show that the different observed morphologies of X-shaped sources can be the result of similar structures viewed under different perspectives.

  2. Software for simulation of a computed tomography imaging spectrometer using optical design software

    Science.gov (United States)

    Spuhler, Peter T.; Willer, Mark R.; Volin, Curtis E.; Descour, Michael R.; Dereniak, Eustace L.

    2000-11-01

    Our Imaging Spectrometer Simulation Software known under the name Eikon should improve and speed up the design of a Computed Tomography Imaging Spectrometer (CTIS). Eikon uses existing raytracing software to simulate a virtual instrument. Eikon enables designers to virtually run through the design, calibration and data acquisition, saving significant cost and time when designing an instrument. We anticipate that Eikon simulations will improve future designs of CTIS by allowing engineers to explore more instrument options.

  3. Design parameters and source terms: Volume 1, Design parameters: Revision 0

    International Nuclear Information System (INIS)

    1987-09-01

    The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report to the level of the Site Characterization Plan - Conceptual Design Report, SCP-CDR. The previous unpublished SCC Study identified the data needs for the Environmental Assessment effort for seven possible salt repository sites

  4. {sup 103}Pd strings: Monte Carlo assessment of a new approach to brachytherapy source design

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, Mark J., E-mail: mark.j.rivard@gmail.com [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Reed, Joshua L.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2014-01-15

    exhibited peaks and valleys that corresponded to positions adjacent to {sup 103}Pd wells and Au markers, respectively. Dose distributions of both source types had minimal anisotropy in comparison to conventional {sup 103}Pd seeds. Contributions by 2.7 keV photons comprised ≤0.1% of the dose from all photons at positions farther than 0.13 mm from the polymer source surface. Differences between absorbed dose to water and prostate became more substantial as distance from the sources increased, with prostate dose being about 13% lower for r = 5 cm. Using a cylindrical coordinate system, dose superposition of small length sources to replicate the dose distribution for a long length source proved to be a robust technique; a 2.0% tolerance compared with the reference dose distribution did not exceed 0.1 cm{sup 3} for any of the examined source combinations. Conclusions: By design, the CivaString and CivaThin sources have novel dosimetric characteristics in comparison to Ti-encapsulated{sup 103}Pd seeds. The dosimetric characterization has determined the reasons for these differences through analysis using Monte Carlo-based radiation transport simulations.

  5. Simulation of Coulomb interaction effects in electron sources

    International Nuclear Information System (INIS)

    Rouse, John; Zhu Xieqing; Liu Haoning; Munro, Eric

    2011-01-01

    Over many years, we have developed electron source simulation software that has been used widely in the electron optics community to aid the development of rotationally symmetric electron and ion guns. The simulation includes the modelling of cathode emission and the effects of volumetric space charge. In the present paper we describe the existing software and explain how we have extended this software to include the effects of discrete Coulomb interactions between the electrons as they travel from the cathode surface to the exit of the gun. In the paper, we will describe the numerical models we have employed, the techniques we have used to maximize the speed of the Coulomb force computation and present several illustrative examples of cases analyzed using the new software, including thermal field emitters, LaB 6 guns and flat dispenser-type cathodes.

  6. Open-source intelligence and privacy by design

    NARCIS (Netherlands)

    Koops, B.J.; Hoepman, J.H.; Leenes, R.

    2013-01-01

    As demonstrated by other papers on this issue, open-source intelligence (OSINT) by state authorities poses challenges for privacy protection and intellectual-property enforcement. A possible strategy to address these challenges is to adapt the design of OSINT tools to embed normative requirements,

  7. Advanced Neutron Sources: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW th , heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS

  8. A virtual source model for Monte Carlo simulation of helical tomotherapy.

    Science.gov (United States)

    Yuan, Jiankui; Rong, Yi; Chen, Quan

    2015-01-08

    The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase-space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS-generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of < 1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of < 2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM-based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose-volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent

  9. Customized sequential designs for random simulation experiments: Kriging metamodeling and bootstrapping

    NARCIS (Netherlands)

    Beers, van W.C.M.; Kleijnen, J.P.C.

    2005-01-01

    This paper proposes a novel method to select an experimental design for interpolation in random simulation, especially discrete event simulation. (Though the paper focuses on Kriging, this design approach may also apply to other types of metamodels such as linear regression models.) Assuming that

  10. Large-eddy simulation of convective boundary layer generated by highly heated source with open source code, OpenFOAM

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Eguchi, Yuzuru; Sano, Tadashi; Shirai, Koji; Ishihara, Shuji

    2011-01-01

    Spatial- and temporal-characteristics of turbulence structures in the close vicinity of a heat source, which is a horizontal upward-facing round plate heated at high temperature, are examined by using well resolved large-eddy simulations. The verification is carried out through the comparison with experiments: the predicted statistics, including the PDF distribution of temperature fluctuations, agree well with measurements, indicating that the present simulations have a capability to appropriately reproduce turbulence structures near the heat source. The reproduced three-dimensional thermal- and fluid-fields in the close vicinity of the heat source reveals developing processes of coherence structures along the surface: the stationary- and streaky-flow patterns appear near the edge, and such patterns randomly shift to cell-like patterns with incursion into the center region, resulting in thermal-plume meandering. Both the patterns have very thin structures, but the depth of streaky structure is considerably small compared with that of cell-like patterns; this discrepancy causes the layered structures. The structure is the source of peculiar turbulence characteristics, the prediction of which is quite difficult with RANS-type turbulence models. The understanding such structures obtained in present study must be helpful to improve the turbulence model used in nuclear engineering. (author)

  11. General-purpose heat source development. Phase II: conceptual designs

    International Nuclear Information System (INIS)

    Snow, E.C.; Zocher, R.W.; Grinberg, I.M.; Hulbert, L.E.

    1978-11-01

    Basic geometric module shapes and fuel arrays were studied to determine how well they could be expected to meet the General Purpose Heat Source (GPHS) design requirements. Seven conceptual designs were selected, detailed drawings produced, and these seven concepts analyzed. Three of these design concepts were selected as GPHS Trial Designs to be reanalyzed in more detail and tested. The geometric studies leading to the selection of the seven conceptual designs, the analyses of these designs, and the selection of the three trial designs are discussed

  12. Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System

    Science.gov (United States)

    Agarwal, Ruchi; Singh, Sanjeev

    2017-12-01

    The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.

  13. Clinical simulation as a boundary object in design of health IT-systems

    DEFF Research Database (Denmark)

    Rasmussen, Stine Loft; Jensen, Sanne; Lyng, Karen Marie

    2013-01-01

    simulation provides the opportunity to evaluate the design and the usage of clinical IT-systems without endangering the patients and interrupting clinical work. In this paper we present how clinical simulation additionally holds the potential to function as a boundary object in the design process. The case...... points out that clinical simulation provides an opportunity for discussions and mutual learning among the various stakeholders involved in design of standardized electronic clinical documentation templates. The paper presents and discusses the use of clinical simulation in the translation, transfer...... and transformation of knowledge between various stakeholders in a large healthcare organization...

  14. Design, development and use of the spectrometer for investigating coherent THz radiation produced by micro-bunching instabilities at Diamond Light Source

    Science.gov (United States)

    Finn, Aiveen; Karataev, Pavel; Rehm, Guenther

    2016-07-01

    Schottky barrier diodes (SBDs) are known for their low noise, ultra-fast response and excellent sensitivity. They are often implemented as detectors in the millimetre wavelength regime. Micro-bunch instabilities (MBI) have been detected at many light sources around the world including the Diamond Light Source, UK. These MBI can result in bursts of coherent synchrotron radiation (CSR) with millimetre wavelengths. More research needs to be carried out with regards to the dynamics of MBI in order to confirm the simulations and to eventually harness the power of the CSR bursts. A single shot spectrometer has been designed and is under operation at the Diamond Light Source (DLS). It is composed of eight SBDs ranging from 33-1000 GHz. Unlike previous measurements carried out, each of the SBDs has been individually characterised thus making the results obtained comparable to simulations. In this paper, we present the assessment of each SBD in the spectrometer and the first results of the spectrometer's use in the beam.

  15. Design, development and use of the spectrometer for investigating coherent THz radiation produced by micro-bunching instabilities at Diamond Light Source

    International Nuclear Information System (INIS)

    Finn, Aiveen; Karataev, Pavel; Rehm, Guenther

    2016-01-01

    Schottky barrier diodes (SBDs) are known for their low noise, ultra-fast response and excellent sensitivity. They are often implemented as detectors in the millimetre wavelength regime. Micro-bunch instabilities (MBI) have been detected at many light sources around the world including the Diamond Light Source, UK. These MBI can result in bursts of coherent synchrotron radiation (CSR) with millimetre wavelengths. More research needs to be carried out with regards to the dynamics of MBI in order to confirm the simulations and to eventually harness the power of the CSR bursts. A single shot spectrometer has been designed and is under operation at the Diamond Light Source (DLS). It is composed of eight SBDs ranging from 33-1000 GHz. Unlike previous measurements carried out, each of the SBDs has been individually characterised thus making the results obtained comparable to simulations. In this paper, we present the assessment of each SBD in the spectrometer and the first results of the spectrometer's use in the beam. (paper)

  16. The advanced neutron source design - A status report

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Neutron Source (ANS) facility is being designed as a user laboratory for all types of neutron-based research, centered around a nuclear fission reactor (D 2 O cooled, moderated, and reflected), operating at approximately 300 MWth. Safety, and especially passive safety features, have been emphasized throughout the design process. The design also provides experimental facilities for neutron scattering and nuclear and fundamental physics research, transuranic and other isotope production, radiation effects research, and materials analysis. (author)

  17. Safety regulation for the design approval of special form radioactive sources

    International Nuclear Information System (INIS)

    Cho, Woon-Kap

    2009-01-01

    Several kinds of special form radioactive sources for industrial, medical applications are being produced in Korea. Special form radioactive sources should meet strict safety requirements specified in the domestic safety regulations and the design of the sources should be certified by the regulatory authority, the Ministry of Education, Science and Technology (MEST). Several safety tests such as impact, percussion, heating, and leak tests are performed on the sources according to the domestic regulations and the international safety standards such as ANSI N542-1977 and ISO 2919-1999(E). As a regulatory expert body, Korea Institute of Nuclear Safety (KINS) assesses various types of application documents, such as safety analysis report, quality assurance program, and other documents evidencing fulfillment of requirements for design approval of the special form radioactive sources, submitted by a legal person who intends to produce special form radioactive sources and then reports the assessment result to MEST. A design approval certificate is issued to the applicant by MEST on the basis of a technical evaluation report presented by KINS.

  18. Monte Carlo Simulation of stepping source in afterloading intracavitary brachytherapy for GZP6 unit

    International Nuclear Information System (INIS)

    Toossi, M.T.B.; Abdollahi, M.; Ghorbani, M.

    2010-01-01

    Full text: Stepping source in brachytherapy systems is used to treat a target lesion longer than the effective treatment length of the source. Dose calculation accuracy plays a vital role in the outcome of brachytherapy treatment. In this study, the stepping source (channel 6) of GZP6 brachytherapy unit was simulated by Monte Carlo simulation and matrix shift method. The stepping source of GZP6 was simulated by Monte Carlo MCNPX code. The Mesh tally (type I) was employed for absorbed dose calculation in a cylindrical water phantom. 5 x 108 photon histories were scored and a 0.2% statistical uncertainty was obtained by Monte Carlo calculations. Dose distributions were obtained by our matrix shift method for esophageal cancer tumor lengths of 8 and 10 cm. Isodose curves produced by simulation and TPS were superimposed to estimate the differences. Results Comparison of Monte Carlo and TPS dose distributions show that in longitudinal direction (source movement direction) Monte Carlo and TPS dose distributions are comparable. [n transverse direction, the dose differences of 7 and 5% were observed for esophageal tumor lengths of 8 and 10 cm respectively. Conclusions Although, the results show that the maximum difference between Monte Carlo and TPS calculations is about 7%, but considering that the certified activity is given with ± I 0%, uncertainty, then an error of the order of 20% for Monte Carlo calculation would be reasonable. It can be suggested that accuracy of the dose distribution produced by TPS is acceptable for clinical applications. (author)

  19. The Process of Participatory Ergonomics Simulation in Hospital Work System Design

    DEFF Research Database (Denmark)

    Andersen, Simone Nyholm

    2016-01-01

    Participatory ergonomics simulation (PES) is a method to involve workers in simulation and design of their own future work system. Understanding of the process of PES is crucial in order to plan and facilitate the process towards creating an ergonomics work system design supporting both human well...

  20. Simulation-based disassembly systems design

    Science.gov (United States)

    Ohlendorf, Martin; Herrmann, Christoph; Hesselbach, Juergen

    2004-02-01

    Recycling of Waste of Electrical and Electronic Equipment (WEEE) is a matter of actual concern, driven by economic, ecological and legislative reasons. Here, disassembly as the first step of the treatment process plays a key role. To achieve sustainable progress in WEEE disassembly, the key is not to limit analysis and planning to merely disassembly processes in a narrow sense, but to consider entire disassembly plants including additional aspects such as internal logistics, storage, sorting etc. as well. In this regard, the paper presents ways of designing, dimensioning, structuring and modeling different disassembly systems. Goal is to achieve efficient and economic disassembly systems that allow recycling processes complying with legal requirements. Moreover, advantages of applying simulation software tools that are widespread and successfully utilized in conventional industry sectors are addressed. They support systematic disassembly planning by means of simulation experiments including consecutive efficiency evaluation. Consequently, anticipatory recycling planning considering various scenarios is enabled and decisions about which types of disassembly systems evidence appropriateness for specific circumstances such as product spectrum, throughput, disassembly depth etc. is supported. Furthermore, integration of simulation based disassembly planning in a holistic concept with configuration of interfaces and data utilization including cost aspects is described.

  1. A system for designing and simulating particle physics experiments

    International Nuclear Information System (INIS)

    Zelazny, R.; Strzalkowski, P.

    1987-01-01

    In view of the rapid development of experimental facilities and their costs, the systematic design and preparation of particle physics experiments have become crucial. A software system is proposed as an aid for the experimental designer, mainly for experimental geometry analysis and experimental simulation. The following model is adopted: the description of an experiment is formulated in a language (here called XL) and put by its processor in a data base. The language is based on the entity-relationship-attribute approach. The information contained in the data base can be reported and analysed by an analyser (called XA) and modifications can be made at any time. In particular, the Monte Carlo methods can be used in experiment simulation for both physical phenomena in experimental set-up and detection analysis. The general idea of the system is based on the design concept of ISDOS project information systems. The characteristics of the simulation module are similar to those of the CERN Geant system, but some extensions are proposed. The system could be treated as a component of greater, integrated software environment for the design of particle physics experiments, their monitoring and data processing. (orig.)

  2. Nuclear power plant C and I design verification by simulation

    International Nuclear Information System (INIS)

    Storm, Joachim; Yu, Kim; Lee, D.Y

    2003-01-01

    An important part of the Advanced Boiling Water Reactor (ABWR) in the Taiwan NPP Lungmen Units no.1 and no.2 is the Full Scope Simulator (FSS). The simulator was to be built according to design data and therefore, apart from the training aspect, a major part of the development is to apply a simulation based test bed for the verification, validation and improvement of plant design in the control and instrumentation (C and I) areas of unit control room equipment, operator Man Machine Interface (MMI), process computer functions and plant procedures. Furthermore the Full Scope Simulator will be used after that to allow proper training of the plant operators two years before Unit no.1 fuel load. The article describes scope, methods and results of the advanced verification and validation process and highlights the advantages of test bed simulation for real power plant design and implementation. Subsequent application of advanced simulation software tools like instrumentation and control translators, graphical model builders, process models, graphical on-line test tools and screen based or projected soft panels, allowed a team to fulfil the task of C and I verification in time before the implementation of the Distributed Control and Information System (DCIS) started. An additional area of activity was the Human Factors Engineering (HFE) for the operator MMI. Due to the fact that the ABWR design incorporates a display-based operation with most of the plant components, a dedicated verification and validation process is required by NUREG-0711. In order to support this activity an engineering test system had been installed for all the necessary HFE investigations. All detected improvements had been properly documented and used to update the plant design documentation by a defined process. The Full Scope Simulator (FSS) with hard panels and stimulated digital control and information system are in the final acceptance test process with the end customer, Taiwan Power Company

  3. Neutron reflector design with Californium 252 neutron for Boron neutron chapter therapy facility using MCNP5 simulation method

    International Nuclear Information System (INIS)

    Muhammad Fakhrurreza; Kusminanto; Y Sardjono

    2014-01-01

    In this research has made a reflector design to provide beams of Neutron for BNCT with Californium-252 radioactive source. This collimator is useful to obtain optimum epithermal neutron flux with the smallest impurity radiation (thermal neutron, fast neutron, and gamma). The design process is done using Monte Carlo N-Particle simulation version 5 (MCNP5) code to calculate the neutron flux tally form. The chosen reflector design is the reflectors which use material such as BeO ceramic with 13 cm thick. Moderator use sulfur material with the slope angle of the cone is 30°. From the calculation result, it is obtained that Reflector with 1 gram Californium-252 source can produce a neutron output thermal which has thermal neutron specification 2.23189 x 10 9 n/s.cm 2 , epithermal neutron 3.51548 x 10 9 n/s.cm 2 , and fast neutron 4.82241 x 10 9 n/s.cm 2 From the result, it needs additional collimator because the BNCT requirement. (author)

  4. Design and Analysis of simulation experiments : Tutorial

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2017-01-01

    This tutorial reviews the design and analysis of simulation experiments. These experiments may have various goals: validation, prediction, sensitivity analysis, optimization (possibly robust), and risk or uncertainty analysis. These goals may be realized through metamodels. Two types of metamodels

  5. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    International Nuclear Information System (INIS)

    Delferriere, O.; De Menezes, D.

    2004-01-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D + extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D + ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H + beam emittance will be compared with experimental measurements

  6. Simulation in the Service of Design - Asking the Right Questions

    Energy Technology Data Exchange (ETDEWEB)

    Donn, Michael; Selkowitz, Stephen; Bordass, Bill

    2009-03-01

    This paper proposes an approach to the creation of design tools that address the real information needs of designers in the early stages of design of nonresidential buildings. Traditional simplified design tools are typically too limited to be of much use, even in conceptual design. The proposal is to provide access to the power of detailed simulation tools, at a stage in design when little is known about the final building, but at a stage also when the freedom to explore options is greatest. The proposed approach to tool design has been derived from consultation with design analysis teams as part of the COMFEN tool development. The paper explores how tools like COMFEN have been shaped by this consultation and how requests from these teams for real-world relevance might shape such tools in the future, drawing into the simulation process the lessons from Post Occupancy Evaluation (POE) of buildings.

  7. Study, simulation and design of a 3D clinostat

    Science.gov (United States)

    Pavone, Valentina; Guarnieri, Vincenzo; Lobascio, Cesare; Soma, Aurelio; Bosso, Nicola; Lamantea, Matteo Maria

    High cost and limited number of physically executable experiments in space have introduced the need for ground simulation systems that enable preparing experiments to be carried out on board, identifying phenomena associated with the altered gravity conditions, and taking advantage of these conditions, as in Biotechnology. Among systems developed to simulate microgravity, especially for life sciences experiments, different types of clinostats were realized. This work deals with mechanical design of a three-dimensional clinostat and simulation of the dynamic behavior of the system by varying the operating parameters. The design and simulation phase was preceded by a careful analysis of the state of art and by the review of the most recent results, in particular from the major investigators of Life Sciences in Space. The mechanical design is quite innovative by adoption of a structure entirely in aluminum, which allows robustness while reducing the overall weight. The transmission system of motion has been optimized by means of brushless DC micro motors, light and compact, which helped to reduce weight, dimensions, power consumption and increase the reliability and durability of the system. The study of the dynamic behavior using SIMPACK, a multibody simulation software, led to results in line with those found in the most important and recent scientific publications. This model was also appropriately configured to represent any desired operating condition, and for eventual system scalability. It would be interesting to generate simulated hypogravity - e.g.: 0.38-g (Mars) or 0.17-g (Moon). This would allow to investigate how terrestrial life forms can grow in other planetary habitats, or to determine the gravity threshold response of different organisms. At the moment, such a system can only be achieved by centrifuges in real microgravity. We are confident that simulation and associated tests with our 3D clinostat can help adjusting the parameters allowing variable g

  8. Design of robust microlinacs for wide replacement of radioisotope sources

    Science.gov (United States)

    Smirnov, A. V.; Agustsson, R. A.; Boucher, S.; Harrison, M.; Junge, K.; Savin, E.; Smirnov, A. Yu

    2017-12-01

    To improve public security and prevent the diversion of radioactive material for Radiation Dispersion Devices, development of an inexpensive, portable, easy-to-manufacture linac system is very important. The bremsstrahlung X-rays produced by relativistic electron beam on a high-Z converter can mimic X-rays radiated from various radioactive sources. Here we consider development of two designs: one matching a Ir-192 source used in radiography with ∼1-1.3 MeV electrons, and another one Cs137 source using 3.5-4 MeV electrons that can be considered for borehole logging. Both designs use standing wave, high group velocity, cm- wave, accelerating structure. The logging tool conceptual design is based on KlyLac concept combining a klystron and linac operating in self-oscillating mode and sharing the same vacuum envelop, and electron beam.

  9. Simulation system architecture design for generic communications link

    Science.gov (United States)

    Tsang, Chit-Sang; Ratliff, Jim

    1986-01-01

    This paper addresses a computer simulation system architecture design for generic digital communications systems. It addresses the issues of an overall system architecture in order to achieve a user-friendly, efficient, and yet easily implementable simulation system. The system block diagram and its individual functional components are described in detail. Software implementation is discussed with the VAX/VMS operating system used as a target environment.

  10. Toward Designing a Quantum Key Distribution Network Simulation Model

    OpenAIRE

    Miralem Mehic; Peppino Fazio; Miroslav Voznak; Erik Chromy

    2016-01-01

    As research in quantum key distribution network technologies grows larger and more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. In this paper, we described the design of simplified simulation environment of the quantum key distribution network with multiple links and nodes. In such simulation environment, we analyzed several ...

  11. The role of designer expertise in source selection during product metaphor generation

    NARCIS (Netherlands)

    Cila, N.; Hekkert, P.P.M.; Visch, V.T.

    2012-01-01

    Metaphors have a communicative role in design that entails a transfer of meaning from an entity (i.e. source) to the designed product (i.e. target). In this paper, we investigate the effect of the expertise of designer on the accessibility of the sources that they employ in metaphors. In the study

  12. Solar parabolic dish Stirling engine system design, simulation, and thermal analysis

    International Nuclear Information System (INIS)

    Hafez, A.Z.; Soliman, Ahmed; El-Metwally, K.A.; Ismail, I.M.

    2016-01-01

    Highlights: • Modeling and simulation for different parabolic dish Stirling engine designs using Matlab®. • The effect of solar dish design features and factors had been taken. • Estimation of output power from the solar dish using Matlab®. • The present analysis provides a theoretical guidance for designing and operating solar parabolic dish system. - Abstract: Modeling and simulation for different parabolic dish Stirling engine designs have been carried out using Matlab®. The effect of solar dish design features and factors such as material of the reflector concentrators, the shape of the reflector concentrators and the receiver, solar radiation at the concentrator, diameter of the parabolic dish concentrator, sizing the aperture area of concentrator, focal Length of the parabolic dish, the focal point diameter, sizing the aperture area of receiver, geometric concentration ratio, and rim angle have been studied. The study provides a theoretical guidance for designing and operating solar parabolic dish Stirling engines system. At Zewail city of Science and Technology, Egypt, for a 10 kW Stirling engine; The maximum solar dish Stirling engine output power estimation is 9707 W at 12:00 PM where the maximum beam solar radiation applied in solar dish concentrator is 990 W/m"2 at 12:00 PM. The performance of engine can be improved by increasing the precision of the engine parts and the heat source efficiency. The engine performance could be further increased if a better receiver working fluid is used. We can conclude that where the best time for heating the fluid and fasting the processing, the time required to heat the receiver to reach the minimum temperature for operating the Solar-powered Stirling engine for different heat transfer fluids; this will lead to more economic solar dish systems. Power output of the solar dish system is one of the most important targets in the design that show effectiveness of the system, and this has achieved when we take

  13. Simulated annealing algorithm for reactor in-core design optimizations

    International Nuclear Information System (INIS)

    Zhong Wenfa; Zhou Quan; Zhong Zhaopeng

    2001-01-01

    A nuclear reactor must be optimized for in core fuel management to make full use of the fuel, to reduce the operation cost and to flatten the power distribution reasonably. The author presents a simulated annealing algorithm. The optimized objective function and the punishment function were provided for optimizing the reactor physics design. The punishment function was used to practice the simulated annealing algorithm. The practical design of the NHR-200 was calculated. The results show that the K eff can be increased by 2.5% and the power distribution can be flattened

  14. Easy simulation and design of on-chip inductors in standard CMOS processes

    DEFF Research Database (Denmark)

    Christensen, Kåre Tais; Jørgensen, Allan

    1998-01-01

    This paper presents an approach to CMOS inductor modelling, that allow easy simulation in SPICE-like simulators. A number of test results are presented concerning optimal center hole, inductor area, wire spacing and self-inductance. Finally a comprehensive design guide is provided on how to design...... close-to-optimal inductors without the use of electromagnetic simulators...

  15. Ideas in Practice (3): A Simulated Laboratory Experience in Digital Design.

    Science.gov (United States)

    Cleaver, Thomas G.

    1988-01-01

    Gives an example of the use of a simplified logic simulator in a logic design course. Discusses some problems in logic design classes, commercially available software, and software problems. Describes computer-aided engineering (CAE) software. Lists 14 experiments in the simulated laboratory and presents students' evaluation of the course. (YP)

  16. Simulation models and designs for advanced Fischer-Tropsch technology

    Energy Technology Data Exchange (ETDEWEB)

    Choi, G.N.; Kramer, S.J.; Tam, S.S. [Bechtel Corp., San Francisco, CA (United States)

    1995-12-31

    Process designs and economics were developed for three grass-roots indirect Fischer-Tropsch coal liquefaction facilities. A baseline and an alternate upgrading design were developed for a mine-mouth plant located in southern Illinois using Illinois No. 6 coal, and one for a mine-mouth plane located in Wyoming using Power River Basin coal. The alternate design used close-coupled ZSM-5 reactors to upgrade the vapor stream leaving the Fischer-Tropsch reactor. ASPEN process simulation models were developed for all three designs. These results have been reported previously. In this study, the ASPEN process simulation model was enhanced to improve the vapor/liquid equilibrium calculations for the products leaving the slurry bed Fischer-Tropsch reactors. This significantly improved the predictions for the alternate ZSM-5 upgrading design. Another model was developed for the Wyoming coal case using ZSM-5 upgrading of the Fischer-Tropsch reactor vapors. To date, this is the best indirect coal liquefaction case. Sensitivity studies showed that additional cost reductions are possible.

  17. Heavy ion fusion sources

    International Nuclear Information System (INIS)

    Grote, D.P.; Kwan, J.; Westenskow, G.

    2003-01-01

    In Heavy-Fusion and in other applications, there is a need for high brightness sources with both high current and low emittance. The traditional design with a single monolithic source, while very successful, has significant constraints on it when going to higher currents. With the Child-Langmuir current-density limit, geometric aberration limits, and voltage breakdown limits, the area of the source becomes a high power of the current, A ∼ I 8/3 . We are examining a multi-beamlet source, avoiding the constraints by having many beamlets each with low current and small area. The beamlets are created and initially accelerated separately and then merged to form a single beam. This design offers a number of potential advantages over a monolithic source, such as a smaller transverse footprint, more control over the shaping and aiming of the beam, and more flexibility in the choice of ion sources. A potential drawback, however, is the emittance that results from the merging of the beamlets. We have designed injectors using simulation that have acceptably low emittance and are beginning to examine them experimentally

  18. Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model

    OpenAIRE

    Zoulinakis, Georgios; Ferrer-Blasco, Teresa

    2017-01-01

    Purpose. To design an intraocular telescopic system (ITS) for magnifying retinal image and to simulate its optical and visual performance after implantation in a human eye model. Methods. Design and simulation were carried out with a ray-tracing and optical design software. Two different ITS were designed, and their visual performance was simulated using the Liou-Brennan eye model. The difference between the ITS was their lenses’ placement in the eye model and their powers. Ray tracing in bot...

  19. Toward Designing a Quantum Key Distribution Network Simulation Model

    Directory of Open Access Journals (Sweden)

    Miralem Mehic

    2016-01-01

    Full Text Available As research in quantum key distribution network technologies grows larger and more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. In this paper, we described the design of simplified simulation environment of the quantum key distribution network with multiple links and nodes. In such simulation environment, we analyzed several routing protocols in terms of the number of sent routing packets, goodput and Packet Delivery Ratio of data traffic flow using NS-3 simulator.

  20. Translational illusion of acoustic sources by transformation acoustics.

    Science.gov (United States)

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  1. Simulations for designing and interpreting intervention trials in infectious diseases.

    Science.gov (United States)

    Halloran, M Elizabeth; Auranen, Kari; Baird, Sarah; Basta, Nicole E; Bellan, Steven E; Brookmeyer, Ron; Cooper, Ben S; DeGruttola, Victor; Hughes, James P; Lessler, Justin; Lofgren, Eric T; Longini, Ira M; Onnela, Jukka-Pekka; Özler, Berk; Seage, George R; Smith, Thomas A; Vespignani, Alessandro; Vynnycky, Emilia; Lipsitch, Marc

    2017-12-29

    Interventions in infectious diseases can have both direct effects on individuals who receive the intervention as well as indirect effects in the population. In addition, intervention combinations can have complex interactions at the population level, which are often difficult to adequately assess with standard study designs and analytical methods. Herein, we urge the adoption of a new paradigm for the design and interpretation of intervention trials in infectious diseases, particularly with regard to emerging infectious diseases, one that more accurately reflects the dynamics of the transmission process. In an increasingly complex world, simulations can explicitly represent transmission dynamics, which are critical for proper trial design and interpretation. Certain ethical aspects of a trial can also be quantified using simulations. Further, after a trial has been conducted, simulations can be used to explore the possible explanations for the observed effects. Much is to be gained through a multidisciplinary approach that builds collaborations among experts in infectious disease dynamics, epidemiology, statistical science, economics, simulation methods, and the conduct of clinical trials.

  2. The design of the cold neutron source of the OPAL reactor

    International Nuclear Information System (INIS)

    Rechiman, L.M.; Bonetto, Fabian J.; Buscaglia, Gustavo C.

    2007-01-01

    The present work describes the conceptual design process of the first cold neutron source developed by INVAP for the nuclear research reactor OPAL. The analysis begins from the requirements given by the client and continues with the chosen solutions. Furthermore, we studied how impact in the design the fully illuminated constraint with the finite remote source model. (author) [es

  3. Research and Application of Virtual Simulation Technology in the Aerospace Bearing Design and Manufacture

    Directory of Open Access Journals (Sweden)

    Jiangshan Liu

    2018-01-01

    Full Text Available Bearings are widely used in aerospace and other fields, its performance directly affects the production efficiency and safety. Nowadays, virtual simulation technology has become an indispensable part of intelligent manufacturing field. As a virtual simulation technology, FEA has been widely used in bearing design. China needs to import many aerospace bearings every year in aerospace area, Chinese national defense and other high precision technology is limited because the blockade of advanced bearing technology. We can use dynamics modeling and virtual simulation technology to achieve the predictive design, and strive to achieve foreign level. In this paper, the author proposed a method of bearing design based on virtual simulation technology. The factors of bearing which affect the dynamic characteristics are considered, the process of design bearing based on virtual simulation is also considered. According to the different design parameters, the simulation results are used to verify the rationality, these can reduce the cost and improve the reliability. The virtual simulation technology is applied to design the 7016C angular contact ball bearing which used in aerospace area, and supported decision-making in structure design and data analyze. Finally, The feasibility of this method is verified by experiments..

  4. On the Verification of a WiMax Design Using Symbolic Simulation

    Directory of Open Access Journals (Sweden)

    Gabriela Nicolescu

    2013-07-01

    Full Text Available In top-down multi-level design methodologies, design descriptions at higher levels of abstraction are incrementally refined to the final realizations. Simulation based techniques have traditionally been used to verify that such model refinements do not change the design functionality. Unfortunately, with computer simulations it is not possible to completely check that a design transformation is correct in a reasonable amount of time, as the number of test patterns required to do so increase exponentially with the number of system state variables. In this paper, we propose a methodology for the verification of conformance of models generated at higher levels of abstraction in the design process to the design specifications. We model the system behavior using sequence of recurrence equations. We then use symbolic simulation together with equivalence checking and property checking techniques for design verification. Using our proposed method, we have verified the equivalence of three WiMax system models at different levels of design abstraction, and the correctness of various system properties on those models. Our symbolic modeling and verification experiments show that the proposed verification methodology provides performance advantage over its numerical counterpart.

  5. Response of a BGO detector to photon and neutron sources simulations and measurements

    CERN Document Server

    Vincke, H H; Fabjan, Christian Wolfgang; Otto, T

    2002-01-01

    In this paper Monte Carlo simulations (FLUKA) and measurements of the response of a BGO detector are reported. %For the measurements different radioactive sources were used to irradiate the BGO crystal. For the measurements three low-energy photon emitters $\\left({}^{60}\\rm{Co},\\right.$ ${}^{54}\\rm{Mn},$ $\\left. {}^{137}\\rm{Cs}\\right)$ were used to irradiate the BGO from various distances and angles. The neutron response was measured with an Am--Be neutron source. Simulations of the experimental irradiations were carried out. Our study can also be considered as a benchmark for FLUKA in terms of its reliability to predict the detector response of a BGO scintillator.

  6. National synchrotron light source basic design and project status

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1981-01-01

    A summary description and the basic design parameters of the National Synchrotron Light Source, a facility for the generation of intense synchrotron radiation in the vuv and x-ray range is presented, the parameters of the sources are given, the presently planned facility beam lines are tabulated and the status of the project is indicated

  7. Designing Scenarios for Controller-in-the-Loop Air Traffic Simulations

    Science.gov (United States)

    Kupfer, Michael; Mercer, Joey; Cabrall, Chris; Homola, Jeff; Callantine, Todd

    2013-01-01

    Within the Human Factors Division at NASA Ames Research Center the Airspace Operations Laboratory (AOL) is developing advanced automation concepts that help to transform the National Airspace System into NextGen, the Next Generation Air Transportation System. High-fidelity human-in-the-loop (HITL) simulations are used as a means to investigate and develop roles, responsibilities, support tools, and requirements for human operators and automation. This paper describes the traffic scenario design process and strategies as used by AOL researchers. Details are presented on building scenarios for specific simulation objectives using various design strategies. A focus is set on creating scenarios based on recorded real world traffic for terminal-area simulations.

  8. Simulating Social Networks of Online Communities: Simulation as a Method for Sociability Design

    Science.gov (United States)

    Ang, Chee Siang; Zaphiris, Panayiotis

    We propose the use of social simulations to study and support the design of online communities. In this paper, we developed an Agent-Based Model (ABM) to simulate and study the formation of social networks in a Massively Multiplayer Online Role Playing Game (MMORPG) guild community. We first analyzed the activities and the social network (who-interacts-with-whom) of an existing guild community to identify its interaction patterns and characteristics. Then, based on the empirical results, we derived and formalized the interaction rules, which were implemented in our simulation. Using the simulation, we reproduced the observed social network of the guild community as a means of validation. The simulation was then used to examine how various parameters of the community (e.g. the level of activity, the number of neighbors of each agent, etc) could potentially influence the characteristic of the social networks.

  9. Applying Open Source Game Engine for Building Visual Simulation Training System of Fire Fighting

    Science.gov (United States)

    Yuan, Diping; Jin, Xuesheng; Zhang, Jin; Han, Dong

    There's a growing need for fire departments to adopt a safe and fair method of training to ensure that the firefighting commander is in a position to manage a fire incident. Visual simulation training systems, with their ability to replicate and interact with virtual fire scenarios through the use of computer graphics or VR, become an effective and efficient method for fire ground education. This paper describes the system architecture and functions of a visual simulated training system of fire fighting on oil storage, which adopting Delat3D, a open source game and simulation engine, to provide realistic 3D views. It presents that using open source technology provides not only the commercial-level 3D effects but also a great reduction of cost.

  10. Using simulation to validate and optimize the design of a hybrid solar-GCHP system

    Energy Technology Data Exchange (ETDEWEB)

    Kummert, M.; Bernier, M. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique; Roy, M. [Martin Roy and Associates, Deux-Montagnes, PQ (Canada)

    2006-07-01

    A redevelopment project that involves the sustainable construction of 3 buildings with 187 affordable and environmentally sound housing units in a Montreal community was discussed. The HVAC system was part of the integrated design process that focused on reducing greenhouse gas emissions, potable water use, the production of waste water and the production of solid waste through retrofitting, reuse and waste diversion. Design options were limited by pre-existing equipment and funding opportunities. The design was also influenced by the building's management structure whereby financial benefits from the energy savings go to a non-profit, community-run utility company that will re-invest in new phases of the project. The project involved the installation of a hybrid solar geothermal heat pump system. The design was different from the usual approach because the solar thermal system was sized to provide domestic hot water but not to compensate the annual imbalance in the ground loads. It was noted that the average temperature in the ground will decrease with time, due to the imbalance. This presentation provided the results of detailed TRNSYS simulations that validated and optimized the design of the hybrid ground-coupled heating plant including solar thermal collectors in the 3 multi-unit buildings. The TRNSYS simulation used building loads that were calculated in an earlier stage of the design process with DOE-2. A global heat exchange coefficient for radiators and floor heating was estimated in order to use realistic temperature levels. An analysis of the long-term system performance of this unique design showed that on a yearly basis, 33 per cent of the total heating load can come from renewable energy sources. 18 refs., 2 tabs., 13 figs.

  11. A study of human behavior simulation in architectural design for healthcare facilities.

    Science.gov (United States)

    Schaumann, Davide; Pilosof, Nirit Putievsky; Date, Kartikeya; Kalay, Yehuda E

    2016-01-01

    Current tools and methods in architectural design do not allow predicting and evaluating how people will use designed environments before their actual realization. To investigate how computational simulation can help in evaluating design proposals as far as their use by people is concerned. Simulation of a medicine distribution procedure in a general hospital facility, while accounting for serendipitous social interactions made possible by the presence of different users in the same space, at the same time. The simulation shows how use patterns are influenced by the social and physical context in which actors are situated, and demonstrates the significance of the proposed method of evaluating hospital designs before construction. The system allows simulating use patterns with different degrees of complexity, and enables architects to ask new types of questions related to the interactions between people and physical settings.

  12. Optimization of a neutron detector design using adjoint transport simulation

    International Nuclear Information System (INIS)

    Yi, C.; Manalo, K.; Huang, M.; Chin, M.; Edgar, C.; Applegate, S.; Sjoden, G.

    2012-01-01

    A synthetic aperture approach has been developed and investigated for Special Nuclear Materials (SNM) detection in vehicles passing a checkpoint at highway speeds. SNM is postulated to be stored in a moving vehicle and detector assemblies are placed on the road-side or in chambers embedded below the road surface. Neutron and gamma spectral awareness is important for the detector assembly design besides high efficiencies, so that different SNMs can be detected and identified with various possible shielding settings. The detector assembly design is composed of a CsI gamma-ray detector block and five neutron detector blocks, with peak efficiencies targeting different energy ranges determined by adjoint simulations. In this study, formulations are derived using adjoint transport simulations to estimate detector efficiencies. The formulations is applied to investigate several neutron detector designs for Block IV, which has its peak efficiency in the thermal range, and Block V, designed to maximize the total neutron counts over the entire energy spectrum. Other Blocks detect different neutron energies. All five neutron detector blocks and the gamma-ray block are assembled in both MCNP and deterministic simulation models, with detector responses calculated to validate the fully assembled design using a 30-group library. The simulation results show that the 30-group library, collapsed from an 80-group library using an adjoint-weighting approach with the YGROUP code, significantly reduced the computational cost while maintaining accuracy. (authors)

  13. Design and characterization of a cough simulator.

    Science.gov (United States)

    Zhang, Bo; Zhu, Chao; Ji, Zhiming; Lin, Chao-Hsin

    2017-02-23

    Expiratory droplets from human coughing have always been considered as potential carriers of pathogens, responsible for respiratory infectious disease transmission. To study the transmission of disease by human coughing, a transient repeatable cough simulator has been designed and built. Cough droplets are generated by different mechanisms, such as the breaking of mucus, condensation and high-speed atomization from different depths of the respiratory tract. These mechanisms in coughing produce droplets of different sizes, represented by a bimodal distribution of 'fine' and 'coarse' droplets. A cough simulator is hence designed to generate transient sprays with such bimodal characteristics. It consists of a pressurized gas tank, a nebulizer and an ejector, connected in series, which are controlled by computerized solenoid valves. The bimodal droplet size distribution is characterized for the coarse droplets and fine droplets, by fibrous collection and laser diffraction, respectively. The measured size distributions of coarse and fine droplets are reasonably represented by the Rosin-Rammler and log-normal distributions in probability density function, which leads to a bimodal distribution. To assess the hydrodynamic consequences of coughing including droplet vaporization and polydispersion, a Lagrangian model of droplet trajectories is established, with its ambient flow field predetermined from a computational fluid dynamics simulation.

  14. General-purpose heat source development. Phase I: design requirements

    International Nuclear Information System (INIS)

    Snow, E.C.; Zocher, R.W.

    1978-09-01

    Studies have been performed to determine the necessary design requirements for a 238 PuO 2 General-Purpose Heat Source (GPHS). Systems and missions applications, as well as accident conditions, were considered. The results of these studies, along with the recommended GPHS design requirements, are given in this report

  15. A computational fluid dynamics simulation framework for ventricular catheter design optimization.

    Science.gov (United States)

    Weisenberg, Sofy H; TerMaath, Stephanie C; Barbier, Charlotte N; Hill, Judith C; Killeffer, James A

    2017-11-10

    OBJECTIVE Cerebrospinal fluid (CSF) shunts are the primary treatment for patients suffering from hydrocephalus. While proven effective in symptom relief, these shunt systems are plagued by high failure rates and often require repeated revision surgeries to replace malfunctioning components. One of the leading causes of CSF shunt failure is obstruction of the ventricular catheter by aggregations of cells, proteins, blood clots, or fronds of choroid plexus that occlude the catheter's small inlet holes or even the full internal catheter lumen. Such obstructions can disrupt CSF diversion out of the ventricular system or impede it entirely. Previous studies have suggested that altering the catheter's fluid dynamics may help to reduce the likelihood of complete ventricular catheter failure caused by obstruction. However, systematic correlation between a ventricular catheter's design parameters and its performance, specifically its likelihood to become occluded, still remains unknown. Therefore, an automated, open-source computational fluid dynamics (CFD) simulation framework was developed for use in the medical community to determine optimized ventricular catheter designs and to rapidly explore parameter influence for a given flow objective. METHODS The computational framework was developed by coupling a 3D CFD solver and an iterative optimization algorithm and was implemented in a high-performance computing environment. The capabilities of the framework were demonstrated by computing an optimized ventricular catheter design that provides uniform flow rates through the catheter's inlet holes, a common design objective in the literature. The baseline computational model was validated using 3D nuclear imaging to provide flow velocities at the inlet holes and through the catheter. RESULTS The optimized catheter design achieved through use of the automated simulation framework improved significantly on previous attempts to reach a uniform inlet flow rate distribution using

  16. Functional requirements for design of the Space Ultrareliable Modular Computer (SUMC) system simulator

    Science.gov (United States)

    Curran, R. T.; Hornfeck, W. A.

    1972-01-01

    The functional requirements for the design of an interpretive simulator for the space ultrareliable modular computer (SUMC) are presented. A review of applicable existing computer simulations is included along with constraints on the SUMC simulator functional design. Input requirements, output requirements, and language requirements for the simulator are discussed in terms of a SUMC configuration which may vary according to the application.

  17. A Stigmergy Approach for Open Source Software Developer Community Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Beaver, Justin M [ORNL; Potok, Thomas E [ORNL; Pullum, Laura L [ORNL; Treadwell, Jim N [ORNL

    2009-01-01

    The stigmergy collaboration approach provides a hypothesized explanation about how online groups work together. In this research, we presented a stigmergy approach for building an agent based open source software (OSS) developer community collaboration simulation. We used group of actors who collaborate on OSS projects as our frame of reference and investigated how the choices actors make in contribution their work on the projects determinate the global status of the whole OSS projects. In our simulation, the forum posts and project codes served as the digital pheromone and the modified Pierre-Paul Grasse pheromone model is used for computing developer agent behaviors selection probability.

  18. Design and application of star map simulation system for star sensors

    Science.gov (United States)

    Wu, Feng; Shen, Weimin; Zhu, Xifang; Chen, Yuheng; Xu, Qinquan

    2013-12-01

    Modern star sensors are powerful to measure attitude automatically which assure a perfect performance of spacecrafts. They achieve very accurate attitudes by applying algorithms to process star maps obtained by the star camera mounted on them. Therefore, star maps play an important role in designing star cameras and developing procession algorithms. Furthermore, star maps supply significant supports to exam the performance of star sensors completely before their launch. However, it is not always convenient to supply abundant star maps by taking pictures of the sky. Thus, star map simulation with the aid of computer attracts a lot of interests by virtue of its low price and good convenience. A method to simulate star maps by programming and extending the function of the optical design program ZEMAX is proposed. The star map simulation system is established. Firstly, based on analyzing the working procedures of star sensors to measure attitudes and the basic method to design optical system by ZEMAX, the principle of simulating star sensor imaging is given out in detail. The theory about adding false stars and noises, and outputting maps is discussed and the corresponding approaches are proposed. Then, by external programming, the star map simulation program is designed and produced. Its user interference and operation are introduced. Applications of star map simulation method in evaluating optical system, star image extraction algorithm and star identification algorithm, and calibrating system errors are presented completely. It was proved that the proposed simulation method provides magnificent supports to the study on star sensors, and improves the performance of star sensors efficiently.

  19. High-Alpha Research Vehicle (HARV) longitudinal controller: Design, analyses, and simulation resultss

    Science.gov (United States)

    Ostroff, Aaron J.; Hoffler, Keith D.; Proffitt, Melissa S.; Brown, Philip W.; Phillips, Michael R.; Rivers, Robert A.; Messina, Michael D.; Carzoo, Susan W.; Bacon, Barton J.; Foster, John F.

    1994-01-01

    This paper describes the design, analysis, and nonlinear simulation results (batch and piloted) for a longitudinal controller which is scheduled to be flight-tested on the High-Alpha Research Vehicle (HARV). The HARV is an F-18 airplane modified for and equipped with multi-axis thrust vectoring. The paper includes a description of the facilities, a detailed review of the feedback controller design, linear analysis results of the feedback controller, a description of the feed-forward controller design, nonlinear batch simulation results, and piloted simulation results. Batch simulation results include maximum pitch stick agility responses, angle of attack alpha captures, and alpha regulation for full lateral stick rolls at several alpha's. Piloted simulation results include task descriptions for several types of maneuvers, task guidelines, the corresponding Cooper-Harper ratings from three test pilots, and some pilot comments. The ratings show that desirable criteria are achieved for almost all of the piloted simulation tasks.

  20. Simulation of the Compact Ignition Tokamak (CIT) conceptual design

    International Nuclear Information System (INIS)

    Carlson, K.E.; Wareing, T.L.

    1988-01-01

    Calculations have been made using the Advanced Thermal Hydraulic Energy Network Analysis (ATHENA) code that simulate the cool down of the cryostat and the performance of the condensing heat exchanger. The purpose of this simulation was to confirm the estimated 30 minute cool down time and to size a condensing heat exchanger for the CIT liquid nitrogen cooling system. This report includes a brief description of the ATHENA code, descriptions of proposed CIT cryostat and condenser designs, and the associated ATHENA models representing these design. This is followed by the ATHENA calculated results and conclusions concerning the results. 6 refs., 17 figs

  1. A framework for using simulation methodology in ergonomics interventions in design projects

    DEFF Research Database (Denmark)

    Broberg, Ole; Duarte, Francisco; Andersen, Simone Nyholm

    2014-01-01

    The aim of this paper is to outline a framework of simulation methodology in design processes from an ergonomics perspective......The aim of this paper is to outline a framework of simulation methodology in design processes from an ergonomics perspective...

  2. Miniature field deployable terahertz source

    Science.gov (United States)

    Mayes, Mark G.

    2006-05-01

    Developments in terahertz sources include compacted electron beam systems, optical mixing techniques, and multiplication of microwave frequencies. Although significant advances in THz science have been achieved, efforts continue to obtain source technologies that are more mobile and suitable for field deployment. Strategies in source development have approached generation from either end of the THz spectrum, from up-conversion of high-frequency microwave to down-conversion of optical frequencies. In this paper, we present the design of a THz source which employs an up-conversion method in an assembly that integrates power supply, electronics, and radiative component into a man-portable unit for situations in which a lab system is not feasible. This unit will ultimately evolve into a ruggedized package suitable for use in extreme conditions, e.g. temporary security check points or emergency response teams, in conditions where THz diagnostics are needed with minimal planning or logistical support. In order to meet design goals of reduced size and complexity, the inner workings of the unit ideally would be condensed into a monolithic active element, with ancillary systems, e.g. user interface and power, coupled to the element. To attain these goals, the fundamental component of our design is a THz source and lens array that may be fabricated with either printed circuit board or wafer substrate. To reduce the volume occupied by the source array, the design employs a metamaterial composed of a periodic lattice of resonant elements. Each resonant element is an LC oscillator, or tank circuit, with inductance, capacitance, and center frequency determined by dimensioning and material parameters. The source array and supporting electronics are designed so that the radiative elements are driven in-phase to yield THz radiation with a high degree of partial coherence. Simulation indicates that the spectral width of operation may be controlled by detuning of critical dimensions

  3. Ion mixing and numerical simulation of different ions produced in the ECR ion source

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    This paper is to continue theoretical investigations and numerical simulations in the physics of ECR ion sources within the CERN program on heavy ion acceleration. The gas (ion) mixing effect in ECR sources is considered here. It is shown that the addition of light ions to the ECR plasma has three different mechanisms to improve highly charged ion production: the increase of confinement time and charge state of highly ions as the result of ion cooling; the concentration of highly charged ions in the central region of the source with high energy and density of electrons; the increase of electron production rate and density of plasma. The numerical simulations of lead ion production in the mixture with different light ions and different heavy and intermediate ions in the mixture with oxygen, are carried out to predict the principal ECR source possibilities for LHC applications. 18 refs., 23 refs

  4. The design, development and operation of a compact nuclear power plant simulator

    International Nuclear Information System (INIS)

    Lynch, M.F.

    1987-01-01

    This paper discusses the philosophy and technological considerations necessary for constructing and utilizing a plant specific compact nuclear power plant simulator, how it compares to full scope replica simulators, engineering simulators, part task simulators and basic principles training simulators. Included in this discussion are the design process, scope of simulation, the manufacturing process, test programs and experiences with operator training. Items addressed include the applicability and use of a compact simulator, how well it reproduces the actual reference plant, how well the transferral of knowledge is accomplished and what financial considerations need to be evaluated. This paper tries to provide the details on just how this type of machine was designed and developed by Westinghouse for the Swiss Utility, Nordostschweizerische Kraftwerke (NOK) AG

  5. Gate design in injection molding of microfluidic components using process simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2015-01-01

    to moulding process window, polymer flow, and part quality. This finally led to an optimization of the design and the realization as actual steel mold. Additionally, the simulation results were critically discussed and possible improvements and limitations of the gained results and the deployed software......Process simulations are an effective design and optimization tool in conventional as well as micro injection molding (μIM). They can be applied to optimize and assist the design of the micro part, the mold, the micro cavity and the μIM process. Available simulation software is however developed...... for macroscopic plastic parts. By using the correct implementation and careful modelling though, it can also be applied to micro parts. In the present work, process simulations were applied to a microfluidic distributor and a microfluidic mixer of which features were in the 100 μm dimensional range. The meshing...

  6. Design and co-simulation of depth estimation using simulink HDL coder and modelsim

    International Nuclear Information System (INIS)

    Memon, F.; Memon, A.H.; Talpur, S.N.

    2016-01-01

    In this paper a novel VHDL design procedure of depth estimation algorithm using HDL (Hardware Description Language) Coder is presented. A framework is developed that takes depth estimation algorithm described in MATLAB as input and generates VHDL code, which dramatically decreases the time required to implement an application on FPGAs (Field Programmable Gate Arrays). In the first phase, design is carried out in MATLAB. Using HDL Coder, MATLAB floating- point design is converted to an efficient fixed-point design and generated VHDL Code and test-bench from fixed point MATLAB code. Further, the generated VHDL code of design is verified with co-simulation using Mentor Graphic ModelSim 10.3d software. Simulation results are presented which indicate that VHDL simulations match with the MATLAB simulations and confirm the efficiency of presented methodology. (author)

  7. Logic hybrid simulation-optimization algorithm for distillation design

    OpenAIRE

    Caballero Suárez, José Antonio

    2014-01-01

    In this paper, we propose a novel algorithm for the rigorous design of distillation columns that integrates a process simulator in a generalized disjunctive programming formulation. The optimal distillation column, or column sequence, is obtained by selecting, for each column section, among a set of column sections with different number of theoretical trays. The selection of thermodynamic models, properties estimation etc., are all in the simulation environment. All the numerical issues relat...

  8. Note: Development of ESS Bilbao's proton ion source: Ion Source Hydrogen Positive

    International Nuclear Information System (INIS)

    Miracoli, R.; Feuchtwanger, J.; Arredondo, I.; Belver, D.; Gonzalez, P. J.; Corres, J.; Djekic, S.; Echevarria, P.; Eguiraun, M.; Garmendia, N.; Muguira, L.

    2014-01-01

    The Ion Source Hydrogen positive is a 2.7 GHz off-resonance microwave discharge ion source. It uses four coils to generate an axial magnetic field in the plasma chamber around 0.1 T that exceeds the ECR resonance field. A new magnetic system was designed as a combination of the four coils and soft iron in order to increase the reliability of the source. The description of the simulations of the magnetic field and the comparison with the magnetic measurements are presented. Moreover, results of the initial commissioning of the source for extraction voltage until 50 kV will be reported

  9. Software for simulation and design of neutron scattering instrumentation

    DEFF Research Database (Denmark)

    Bertelsen, Mads

    designed using the software. The Union components uses a new approach to simulation of samples in McStas. The properties of a sample are split into geometrical and material, simplifying user input, and allowing the construction of complicated geometries such as sample environments. Multiple scattering...... from conventional choices. Simulation of neutron scattering instrumentation is used when designing instrumentation, but also to understand instrumental effects on the measured scattering data. The Monte Carlo ray-tracing package McStas is among the most popular, capable of simulating the path of each...... neutron through the instrument using an easy to learn language. The subject of the defended thesis is contributions to the McStas language in the form of the software package guide_bot and the Union components.The guide_bot package simplifies the process of optimizing neutron guides by writing the Mc...

  10. Planar location of the simulative acoustic source based on fiber optic sensor array

    Science.gov (United States)

    Liang, Yi-Jun; Liu, Jun-feng; Zhang, Qiao-ping; Mu, Lin-lin

    2010-06-01

    A fiber optic sensor array which is structured by four Sagnac fiber optic sensors is proposed to detect and locate a simulative source of acoustic emission (AE). The sensing loops of Sagnac interferometer (SI) are regarded as point sensors as their small size. Based on the derived output light intensity expression of SI, the optimum work condition of the Sagnac fiber optic sensor is discussed through the simulation of MATLAB. Four sensors are respectively placed on a steel plate to structure the sensor array and the location algorithms are expatiated. When an impact is generated by an artificial AE source at any position of the plate, the AE signal will be detected by four sensors at different times. With the help of a single chip microcomputer (SCM) which can calculate the position of the AE source and display it on LED, we have implemented an intelligent detection and location.

  11. Method of software development for tasks of automatic control systems for simulation and designing on the base of the technological systems design data

    International Nuclear Information System (INIS)

    Ajzatulin, A.I.

    2007-01-01

    One studies the factors affecting the designing of the full-scale simulation facilities, the design data base simulation and the application of digital computerized process control systems. Paper describes problems dealing with the errors in the process system design data and the algorithm simulation methodological problems. On the basis of the records of the efforts to design the full-scale simulation facilities of the Tienvan NPP and of the Kudankulam NPP one brings to the notice a procedure to elaborate new tools to simulate and to elaborate algorithms for the computerized process control systems based on the process system design data. Paper lists the basic components of the program system under elaboration to ensure simulation and designing and describes their functions. The introduction result is briefly described [ru

  12. Advanced Neutron Source: The designer's perspective

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1990-01-01

    The Advanced Neutron Source (ANS) is a research facility based on a 350 MW beam reactor, to be brought into service at the Oak Ridge National Laboratory at the end of the century. The primary objective is to provide high-flux neutron beams and guides, with cold, thermal, hot, and ultra-cold neutrons, for research in many fields of science. Secondary objectives include isotopes production, materials irradiation and activation analysis. The design of the ANS is strongly influenced by the historical development of research and power reactor concepts, and of the regulatory infrastructure of the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). Current trends in reactor safety also impact the climate for the design of such a reactor

  13. Numerical Simulation of the Francis Turbine and CAD used to Optimized the Runner Design (2nd).

    Science.gov (United States)

    Sutikno, Priyono

    2010-06-01

    Hydro Power is the most important renewable energy source on earth. The water is free of charge and with the generation of electric energy in a Hydroelectric Power station the production of green house gases (mainly CO2) is negligible. Hydro Power Generation Stations are long term installations and can be used for 50 years and more, care must be taken to guarantee a smooth and safe operation over the years. Maintenance is necessary and critical parts of the machines have to be replaced if necessary. Within modern engineering the numerical flow simulation plays an important role in order to optimize the hydraulic turbine in conjunction with connected components of the plant. Especially for rehabilitation and upgrading existing Power Plants important point of concern are to predict the power output of turbine, to achieve maximum hydraulic efficiency, to avoid or to minimize cavitations, to avoid or to minimized vibrations in whole range operation. Flow simulation can help to solve operational problems and to optimize the turbo machinery for hydro electric generating stations or their component through, intuitive optimization, mathematical optimization, parametric design, the reduction of cavitations through design, prediction of draft tube vortex, trouble shooting by using the simulation. The classic design through graphic-analytical method is cumbersome and can't give in evidence the positive or negative aspects of the designing options. So it was obvious to have imposed as necessity the classical design methods to an adequate design method using the CAD software. There are many option chose during design calculus in a specific step of designing may be verified in ensemble and detail form a point of view. The final graphic post processing would be realized only for the optimal solution, through a 3 D representation of the runner as a whole for the final approval geometric shape. In this article it was investigated the redesign of the hydraulic turbine's runner

  14. The Process of Participatory Ergonomics Simulation in Hospital Work System Design

    OpenAIRE

    Andersen, Simone Nyholm

    2016-01-01

    Participatory ergonomics simulation (PES) is a method to involve workers in simulation and design of their own future work system. Understanding of the process of PES is crucial in order to plan and facilitate the process towards creating an ergonomics work system design supporting both human well-being and overall system performance. With outset in two cases of PES in hospital work system design, this study investigates the elements of the PES process and their interrelations. The aim is to ...

  15. Building simulations supporting decision making in early design – A review

    DEFF Research Database (Denmark)

    Østergård, Torben; Jensen, Rasmus Lund; Maagaard, Steffen

    2016-01-01

    The building design community is challenged by continuously increasing energy demands, which are often combined with ambitious goals for indoor environment, for environmental impact, and for building costs. To aid decision-making, building simulation is widely used in the late design stages...... framework that facilitates proactive, intelligent, and experience based building simulation which aid decision making in early design. To find software candidates accommodating this framework, we compare existing software with regard to intended usage, interoperability, complexity, objectives, and ability...

  16. Modeling and simulation for process and safeguards system design

    International Nuclear Information System (INIS)

    Gutmacher, R.G.; Kern, E.A.; Duncan, D.R.; Benecke, M.W.

    1983-01-01

    A computer modeling and simulation approach that meets the needs of both the process and safeguards system designers is described. The results have been useful to Westinghouse Hanford Company process designers in optimizing the process scenario and operating scheme of the Secure Automated Fabrication line. The combined process/measurements model will serve as the basis for design of the safeguards system. Integration of the process design and the safeguards system design should result in a smoothly operating process that is easier to safeguard

  17. Modeling and simulation of RF photoinjectors for coherent light sources

    Science.gov (United States)

    Chen, Y.; Krasilnikov, M.; Stephan, F.; Gjonaj, E.; Weiland, T.; Dohlus, M.

    2018-05-01

    We propose a three-dimensional fully electromagnetic numerical approach for the simulation of RF photoinjectors for coherent light sources. The basic idea consists in incorporating a self-consistent photoemission model within a particle tracking code. The generation of electron beams in the injector is determined by the quantum efficiency (QE) of the cathode, the intensity profile of the driving laser as well as by the accelerating field and magnetic focusing conditions in the gun. The total charge emitted during an emission cycle can be limited by the space charge field at the cathode. Furthermore, the time and space dependent electromagnetic field at the cathode may induce a transient modulation of the QE due to surface barrier reduction of the emitting layer. In our modeling approach, all these effects are taken into account. The beam particles are generated dynamically according to the local QE of the cathode and the time dependent laser intensity profile. For the beam dynamics, a tracking code based on the Lienard-Wiechert retarded field formalism is employed. This code provides the single particle trajectories as well as the transient space charge field distribution at the cathode. As an application, the PITZ injector is considered. Extensive electron bunch emission simulations are carried out for different operation conditions of the injector, in the source limited as well as in the space charge limited emission regime. In both cases, fairly good agreement between measurements and simulations is obtained.

  18. Optimization of Excitation in FDTD Method and Corresponding Source Modeling

    Directory of Open Access Journals (Sweden)

    B. Dimitrijevic

    2015-04-01

    Full Text Available Source and excitation modeling in FDTD formulation has a significant impact on the method performance and the required simulation time. Since the abrupt source introduction yields intensive numerical variations in whole computational domain, a generally accepted solution is to slowly introduce the source, using appropriate shaping functions in time. The main goal of the optimization presented in this paper is to find balance between two opposite demands: minimal required computation time and acceptable degradation of simulation performance. Reducing the time necessary for source activation and deactivation is an important issue, especially in design of microwave structures, when the simulation is intensively repeated in the process of device parameter optimization. Here proposed optimized source models are realized and tested within an own developed FDTD simulation environment.

  19. Design, manufacture, and calibration of infrared radiometric blackbody sources

    International Nuclear Information System (INIS)

    Byrd, D.A.; Michaud, F.D.; Bender, S.C.

    1996-04-01

    A Radiometric Calibration Station (RCS) is being assembled at the Los Alamos National Laboratories (LANL) which will allow for calibration of sensors with detector arrays having spectral capability from about 0.4-15 μm. The configuration of the LANL RCS. Two blackbody sources have been designed to cover the spectral range from about 3-15 μm, operating at temperatures ranging from about 180-350 K within a vacuum environment. The sources are designed to present a uniform spectral radiance over a large area to the sensor unit under test. The thermal uniformity requirement of the blackbody cavities has been one of the key factors of the design, requiring less than 50 mK variation over the entire blackbody surface to attain effective emissivity values of about 0.999. Once the two units are built and verified to the level of about 100 mK at LANL, they will be sent to the National Institute of Standards and Technology (NIST), where at least a factor of two improvement will be calibrated into the blackbody control system. The physical size of these assemblies will require modifications of the existing NIST Low Background Infrared (LBIR) Facility. LANL has constructed a bolt-on addition to the LBIR facility that will allow calibration of our large aperture sources. Methodology for attaining the two blackbody sources at calibrated levels of performance equivalent to present state of the art will be explained in the following

  20. Applying Statistical Design to Control the Risk of Over-Design with Stochastic Simulation

    Directory of Open Access Journals (Sweden)

    Yi Wu

    2010-02-01

    Full Text Available By comparing a hard real-time system and a soft real-time system, this article elicits the risk of over-design in soft real-time system designing. To deal with this risk, a novel concept of statistical design is proposed. The statistical design is the process accurately accounting for and mitigating the effects of variation in part geometry and other environmental conditions, while at the same time optimizing a target performance factor. However, statistical design can be a very difficult and complex task when using clas-sical mathematical methods. Thus, a simulation methodology to optimize the design is proposed in order to bridge the gap between real-time analysis and optimization for robust and reliable system design.

  1. Consideration of a ultracold neutron source in two-dimensional cylindrical geometry by taking simulated boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.ir [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Nuclear Energy Research Center, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Firoozabadi, M. M.; Mohammadi, H. [Department of Physics, University of Birjand, Birjand 97175 (Iran, Islamic Republic of)

    2014-01-15

    A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D{sub 2}O and solid D{sub 2} (sD{sub 2}). The D{sub 2}O was investigated as the neutron moderator, and sD{sub 2} as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (ρ − z) geometry was considered for 330 neutron energy groups in the sD{sub 2}. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD{sub 2} volume) equal to 6.79 × 10{sup 6} cm{sup −2}s{sup −1} and 2.20 ×10{sup 5} cm{sup −3}s{sup −1}, respectively.

  2. High flux isotope reactor cold source preconceptual design study report

    International Nuclear Information System (INIS)

    Selby, D.L.; Bucholz, J.A.; Burnette, S.E.

    1995-12-01

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH 2 moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project

  3. Simulations of Liners and Test Objects for a New Atlas Advanced Radiography Source

    International Nuclear Information System (INIS)

    Morgan, D. V.; Iversen, S.; Hilko, R. A.

    2002-01-01

    The Advanced Radiographic Source (ARS) will improve the data significantly due to its smaller source width. Because of the enhanced ARS output, larger source-to-object distances are a reality. The harder ARS source will allow radiography of thick high-Z targets. The five different spectral simulations resulted in similar imaging detector weighted transmission. This work used a limited set of test objects and imaging detectors. Other test objects and imaging detectors could possibly change the MVp-sensitivity result. The effect of material motion blur must be considered for the ARS due to the expected smaller X-ray source size. This study supports the original 1.5-MVp value

  4. Final design of the beam source for the MITICA injector

    Energy Technology Data Exchange (ETDEWEB)

    Marcuzzi, D., E-mail: diego.marcuzzi@igi.cnr.it; Agostinetti, P.; Dalla Palma, M.; De Muri, M.; Chitarin, G.; Gambetta, G.; Marconato, N.; Pasqualotto, R.; Pavei, M.; Pilan, N.; Rizzolo, A.; Serianni, G.; Toigo, V.; Trevisan, L.; Visentin, M.; Zaccaria, P.; Zaupa, M. [Consorzio RFX, Corso Stati Uniti, 4, I-35127 Padova (Italy); Boilson, D.; Graceffa, J.; Hemsworth, R. S. [ITER Organization, Route de Vinon-sur-Verdon, 13067 St Paul Lez Durance (France); and others

    2016-02-15

    The megavolt ITER injector and concept advancement experiment is the prototype and the test bed of the ITER heating and current drive neutral beam injectors, currently in the final design phase, in view of the installation in Padova Research on Injector Megavolt Accelerated facility in Padova, Italy. The beam source is the key component of the system, as its goal is the generation of the 1 MeV accelerated beam of deuterium or hydrogen negative ions. This paper presents the highlights of the latest developments for the finalization of the MITICA beam source design, together with a description of the most recent analyses and R&D activities carried out in support of the design.

  5. Simulation of ultrasonic surface waves with multi-Gaussian and point source beam models

    International Nuclear Information System (INIS)

    Zhao, Xinyu; Schmerr, Lester W. Jr.; Li, Xiongbing; Sedov, Alexander

    2014-01-01

    In the past decade, multi-Gaussian beam models have been developed to solve many complicated bulk wave propagation problems. However, to date those models have not been extended to simulate the generation of Rayleigh waves. Here we will combine Gaussian beams with an explicit high frequency expression for the Rayleigh wave Green function to produce a three-dimensional multi-Gaussian beam model for the fields radiated from an angle beam transducer mounted on a solid wedge. Simulation results obtained with this model are compared to those of a point source model. It is shown that the multi-Gaussian surface wave beam model agrees well with the point source model while being computationally much more efficient

  6. Simulation of a high energy neutron irradiation facility at beamline 11 of the China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Tairan, Liang [School of Physics and Electronic Information Inner Mongolia University for the Nationalities, Tongliao 028043 (China); Zhiduo, Li [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Wen, Yin, E-mail: wenyin@aphy.iphy.ac.cn [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Fei, Shen [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Quanzhi, Yu [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Tianjiao, Liang [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China)

    2017-07-11

    The China Spallation Neutron Source (CSNS) will accommodate 20 neutron beamlines at its first target station. These beamlines serve different purposes, and beamline 11 is designed to analyze the degraded models and damage mechanisms, such as Single Event Effects in electronic components and devices for aerospace electronic systems. This paper gives a preliminary discussion on the scheme of a high energy neutron irradiation experiment at the beamline 11 shutter based on the Monte Carlo simulation method. The neutron source term is generated by calculating the neutrons scattering into beamline 11 with a model that includes the target-moderator-reflector area. Then, the neutron spectrum at the sample position is obtained. The intensity of neutrons with energy of hundreds of MeV is approximately 1E8 neutron/cm{sup 2}/s, which is useful for experiments. The displacement production rate and gas productions are calculated for common materials such as tungsten, tantalum and SS316. The results indicate that the experiment can provide irradiation dose rate ranges from 1E-5 to 1E-4 dpa per operating year. The residual radioactivity is also calculated for regular maintenance work. These results give the basic reference for the experimental design.

  7. Simulation-based optimal Bayesian experimental design for nonlinear systems

    KAUST Repository

    Huan, Xun

    2013-01-01

    The optimal selection of experimental conditions is essential to maximizing the value of data for inference and prediction, particularly in situations where experiments are time-consuming and expensive to conduct. We propose a general mathematical framework and an algorithmic approach for optimal experimental design with nonlinear simulation-based models; in particular, we focus on finding sets of experiments that provide the most information about targeted sets of parameters.Our framework employs a Bayesian statistical setting, which provides a foundation for inference from noisy, indirect, and incomplete data, and a natural mechanism for incorporating heterogeneous sources of information. An objective function is constructed from information theoretic measures, reflecting expected information gain from proposed combinations of experiments. Polynomial chaos approximations and a two-stage Monte Carlo sampling method are used to evaluate the expected information gain. Stochastic approximation algorithms are then used to make optimization feasible in computationally intensive and high-dimensional settings. These algorithms are demonstrated on model problems and on nonlinear parameter inference problems arising in detailed combustion kinetics. © 2012 Elsevier Inc.

  8. Design of current source for multi-frequency simultaneous electrical impedance tomography

    Science.gov (United States)

    Han, Bing; Xu, Yanbin; Dong, Feng

    2017-09-01

    Multi-frequency electrical impedance tomography has been evolving from the frequency-sweep approach to the multi-frequency simultaneous measurement technique which can reduce measuring time and will be increasingly attractive for time-varying biological applications. The accuracy and stability of the current source are the key factors determining the quality of the image reconstruction. This article presents a field programmable gate array-based current source for a multi-frequency simultaneous electrical impedance tomography system. A novel current source circuit was realized by combining the classic current mirror based on the feedback amplifier AD844 with a differential topology. The optimal phase offsets of harmonic sinusoids were obtained through the crest factor analysis. The output characteristics of this current source were evaluated by simulation and actual measurement. The results include the following: (1) the output impedance was compared with one of the Howland pump circuit in simulation, showing comparable performance at low frequencies. However, the proposed current source makes lower demands for resistor tolerance but performs even better at high frequencies. (2) The output impedance in actual measurement below 200 kHz is above 1.3 MΩ and can reach 250 KΩ up to 1 MHz. (3) An experiment based on a biological RC model has been implemented. The mean error for the demodulated impedance amplitude and phase are 0.192% and 0.139°, respectively. Therefore, the proposed current source is wideband, biocompatible, and high precision, which demonstrates great potential to work as a sub-system in the multi-frequency electrical impedance tomography system.

  9. Design and Simulation to Composite PI Controller on the Stratospheric Airship

    Directory of Open Access Journals (Sweden)

    Kangwen Sun

    2014-05-01

    Full Text Available In view of the stratospheric airship application requirements on energy storage and management system, based on the topology of DC/DC converter main circuit, the composite PI controller is designed to realize respective control with the Boost mode and Buck mode. Furthermore, limit stop integration method is proposed to achieve a buck-boost complex DC/DC converter boost with effective switching buck. Then, with the MATLAB Control System Toolbox design model, the composite PI controller design and a simulation is accomplished. According to the simulation model, the structure and parameters of the controller to the system can be easily adjusted. Finally, by using the average large-signal switching mathematical model to create sub-circuit in place of the actual circuit model, the whole circuit model of the DC/DC converter is constructed with MATLAB, and then, from the analysis of simulation results, it’s proved that the method can shorten the simulation time and obtain better convergence of the target.

  10. Simulation of Photon energy Spectra Using MISC, SOURCES, MCNP and GADRAS

    International Nuclear Information System (INIS)

    Tucker, Lucas P.; Shores, Erik F.; Myers, Steven C.; Felsher, Paul D.; Garner, Scott E.; Solomon, Clell J. Jr.

    2012-01-01

    The detector response functions included in the Gamma Detector Response and Analysis Software (GADRAS) are a valuable resource for simulating radioactive source emission spectra. Application of these response functions to the results of three-dimensional transport calculations is a useful modeling capability. Using a 26.2 kg shell of depleted uranium (DU) as a simple test problem, this work illustrates a method for manipulating current tally results from MCNP into the GAM file format necessary for a practical link to GADRAS detector response functions. MISC (MCNP Intrinsic Source Constructor) and SOURCES 4C were used to develop photon and neutron source terms for subsequent MCNP transport, and the resultant spectrum is shown to be in good agreement with that from GADRAS. A 1 kg DU sphere was also modeled with the method described here and showed similarly encouraging results.

  11. Simulation of Photon energy Spectra Using MISC, SOURCES, MCNP and GADRAS

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Lucas P. [Los Alamos National Laboratory; Shores, Erik F. [Los Alamos National Laboratory; Myers, Steven C. [Los Alamos National Laboratory; Felsher, Paul D. [Los Alamos National Laboratory; Garner, Scott E. [Los Alamos National Laboratory; Solomon, Clell J. Jr. [Los Alamos National Laboratory

    2012-08-14

    The detector response functions included in the Gamma Detector Response and Analysis Software (GADRAS) are a valuable resource for simulating radioactive source emission spectra. Application of these response functions to the results of three-dimensional transport calculations is a useful modeling capability. Using a 26.2 kg shell of depleted uranium (DU) as a simple test problem, this work illustrates a method for manipulating current tally results from MCNP into the GAM file format necessary for a practical link to GADRAS detector response functions. MISC (MCNP Intrinsic Source Constructor) and SOURCES 4C were used to develop photon and neutron source terms for subsequent MCNP transport, and the resultant spectrum is shown to be in good agreement with that from GADRAS. A 1 kg DU sphere was also modeled with the method described here and showed similarly encouraging results.

  12. Open Source Tools for Numerical Simulation of Urban Greenhouse Gas Emissions

    Science.gov (United States)

    Nottrott, A.; Tan, S. M.; He, Y.

    2016-12-01

    There is a global movement toward urbanization. Approximately 7% of the global population lives in just 28 megacities, occupying less than 0.1% of the total land area used by human activity worldwide. These cities contribute a significant fraction of the global budget of anthropogenic primary pollutants and greenhouse gasses. The 27 largest cities consume 9.9%, 9.3%, 6.7% and 3.0% of global gasoline, electricity, energy and water use, respectively. This impact motivates novel approaches to quantify and mitigate the growing contribution of megacity emissions to global climate change. Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model methane (CH4) emissions from various components of the natural gas distribution system, to investigate the impact of urban meteorology on mobile CH4 measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in

  13. Design and qualification testing of a strontium-90 fluoride heat source

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-12-01

    The Strontium Heat Source Development Program began at the Pacific Northwest Laboratory (PNL) in 1972 and is scheduled to be completed by the end of FY-1981. The program is currently funded by the US Department of Energy (DOE) By-Product Utilization Program. The primary objective of the program has been to develop the data and technology required to permit the licensing of power systems for terrestrial applications that utilize 90 SrF 2 -fueled radioisotope heat sources. A secondary objective of the program has been to design and qualification-test a general purpose 90 SrF 2 -fueled heat source. The effort expended in the design and testing of the heat source is described. Detailed information is included on: heat source design, licensing requirements, and qualification test requirements; the qualification test procedures; and the fabrication and testing of capsules of various materials. The results obtained in the qualification tests show that the outer capsule design proposed for the 90 SrF 2 heat source is capable of meeting current licensing requirements when Hastelloy S is used as the outer capsule material. The data also indicate that an outer capsule of Hastelloy C-4 would probably also meet licensing requirements, although Hastelloy S is the preferred material. Therefore, based on the results of this study, the general purpose 90 SrF 2 heat source will consist of a standard WESF Hastelloy C-276 inner capsule filled with 90 SrF 2 and a Hastelloy S outer capsule having a 2.375-in. inner diameter and 0.500-in. wall thickness. The end closures for this study, the general purpose 90 SrF 2 heat a Hastelloy S outer capsule having a 2.375-in. inner diameter and 0.500-in. wall thickness. The end closures for the outer capsule will utilize an interlocking joint design requiring a 0.1-in. penetration closure weld

  14. Characterization of electron temperature by simulating a multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Yeong Heum [Sungkyunkwan University, WCU Department of Energy Science, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Ghergherehchi, Mitra; Kim, Sang Bum; Jun, Woo Jung [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Lee, Jong Chul; Mohamed Gad, Khaled Mohamed [Sungkyunkwan University, WCU Department of Energy Science, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Namgoong, Ho [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Chai, Jong Seo, E-mail: jschai@skku.edu [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of)

    2016-12-01

    Multicusp ion sources are used in cyclotrons and linear accelerators to produce high beam currents. The structure of a multicusp ion source consists of permanent magnets, filaments, and an anode body. The configuration of the array of permanent magnets, discharge voltage of the plasma, extraction bias voltage, and structure of the multicusp ion source body decide the quality of the beam. The electrons are emitted from the filament by thermionic emission. The emission current can be calculated from thermal information pertaining to the filament, and from the applied voltage and current. The electron trajectories were calculated using CST Particle Studio to optimize the plasma. The array configuration of the permanent magnets decides the magnetic field inside the ion source. The extraction bias voltage and the structure of the multicusp ion source body decide the electric field. Optimization of the electromagnetic field was performed with these factors. CST Particle Studio was used to calculate the electron temperature with a varying permanent magnet array. Four types of permanent magnet array were simulated to optimize the electron temperature. It was found that a 2-layer full line cusp field (with inverse field) produced the best electron temperature control behavior.

  15. Design criteria for an uninterruptable power source (UPS)

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, S.S.N. [Nnamdi Azikiwe Univ. Awka (Nigeria). Dept. of Science Technology; Okeke, C.A. [Nnamdi Azikiwe Univ. Awka (Nigeria). Dept. of Science Technology; Mortune, B.U. [Nnamdi Azikiwe Univ. Awka (Nigeria). Dept. of Science Technology; Okeke, C.C. [Univ. of Nigeria, Nsukka (Nigeria). Dept. of Computer Science

    1997-05-01

    This paper on uninterruptible power source (UPS) is a result of an R and D project; it describes the components of a UPS system and reviews the design requirements necessary for its construction with low cost and ease of maintenance. (orig.)

  16. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    Science.gov (United States)

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  17. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    Energy Technology Data Exchange (ETDEWEB)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.; Luo, S. N.

    2018-04-24

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  18. Accelerator shield design of KIPT neutron source facility

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.

    2013-01-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total

  19. Python Open source Waveform ExtractoR (POWER): an open source, Python package to monitor and post-process numerical relativity simulations

    Science.gov (United States)

    Johnson, Daniel; Huerta, E. A.; Haas, Roland

    2018-01-01

    Numerical simulations of Einstein’s field equations provide unique insights into the physics of compact objects moving at relativistic speeds, and which are driven by strong gravitational interactions. Numerical relativity has played a key role to firmly establish gravitational wave astrophysics as a new field of research, and it is now paving the way to establish whether gravitational wave radiation emitted from compact binary mergers is accompanied by electromagnetic and astro-particle counterparts. As numerical relativity continues to blend in with routine gravitational wave data analyses to validate the discovery of gravitational wave events, it is essential to develop open source tools to streamline these studies. Motivated by our own experience as users and developers of the open source, community software, the Einstein Toolkit, we present an open source, Python package that is ideally suited to monitor and post-process the data products of numerical relativity simulations, and compute the gravitational wave strain at future null infinity in high performance environments. We showcase the application of this new package to post-process a large numerical relativity catalog and extract higher-order waveform modes from numerical relativity simulations of eccentric binary black hole mergers and neutron star mergers. This new software fills a critical void in the arsenal of tools provided by the Einstein Toolkit consortium to the numerical relativity community.

  20. Thermal design study of a liquid hydrogen-cooled cold-neutron source

    International Nuclear Information System (INIS)

    Quach, D.; Aldredge, R.C.; Liu, H.B.; Richards, W.J.

    2007-01-01

    The use of both liquid hydrogen as a moderator and polycrystalline beryllium as a filter to enhance cold neutron flux at the UC Davis McClellan Nuclear Radiation Center has been studied. Although, more work is needed before an actual cold neutron source can be designed and built, the purpose of this preliminary study is to investigate the effects of liquid hydrogen and the thickness of a beryllium filter on the cold neutron flux generated. Liquid hydrogen is kept at 20 K, while the temperature of beryllium is assumed to be 77 K in this study. Results from Monte Carlo simulations show that adding a liquid hydrogen vessel around the beam tube can increase cold neutron flux by more than an order of magnitude. As the thickness of the liquid hydrogen layer increases up to about half an inch, the flux of cold neutrons also increases. Increasing the layer thickness to more than half an inch gives no significant enhancement of cold neutron flux. Although, the simulations show that the cold neutron flux is almost independent of the thickness of beryllium at 77 K, the fraction of cold neutrons does drop along the beam tube. This may be due to the fact that the beam tube is not shielded for neutrons coming directly from the reactor core. Further design studies are necessary for to achieve complete filtering of undesired neutrons. A simple comparison analysis based on heat transfer due to neutron scattering and gamma-ray heating shows that the beryllium filter has a larger rate of change of temperature and its temperature is higher. As a result heat will be transferred from beryllium to liquid hydrogen, so that keeping liquid hydrogen at the desired temperature will be the most important step in the cooling process

  1. Conceptual Design of Simulation Models in an Early Development Phase of Lunar Spacecraft Simulator Using SMP2 Standard

    Science.gov (United States)

    Lee, Hoon Hee; Koo, Cheol Hea; Moon, Sung Tae; Han, Sang Hyuck; Ju, Gwang Hyeok

    2013-08-01

    The conceptual study for Korean lunar orbiter/lander prototype has been performed in Korea Aerospace Research Institute (KARI). Across diverse space programs around European countries, a variety of simulation application has been developed using SMP2 (Simulation Modelling Platform) standard related to portability and reuse of simulation models by various model users. KARI has not only first-hand experience of a development of SMP compatible simulation environment but also an ongoing study to apply the SMP2 development process of simulation model to a simulator development project for lunar missions. KARI has tried to extend the coverage of the development domain based on SMP2 standard across the whole simulation model life-cycle from software design to its validation through a lunar exploration project. Figure. 1 shows a snapshot from a visualization tool for the simulation of lunar lander motion. In reality, a demonstrator prototype on the right-hand side of image was made and tested in 2012. In an early phase of simulator development prior to a kick-off start in the near future, targeted hardware to be modelled has been investigated and indentified at the end of 2012. The architectural breakdown of the lunar simulator at system level was performed and the architecture with a hierarchical tree of models from the system to parts at lower level has been established. Finally, SMP Documents such as Catalogue, Assembly, Schedule and so on were converted using a XML(eXtensible Mark-up Language) converter. To obtain benefits of the suggested approaches and design mechanisms in SMP2 standard as far as possible, the object-oriented and component-based design concepts were strictly chosen throughout a whole model development process.

  2. Simulation, design and thermal analysis of a solar Stirling engine using MATLAB

    International Nuclear Information System (INIS)

    Shazly, J.H.; Hafez, A.Z.; El Shenawy, E.T.; Eteiba, M.B.

    2014-01-01

    Highlights: • Modeling and simulation for a prototype of the solar-powered Stirling engine. • The solar-powered Stirling engine working at the low temperature range. • Estimating output power from the solar Stirling engine using Matlab program. • Solar radiation simulation program presents a solar radiation data using MATLAB. - Abstract: This paper presents the modeling and simulation for a prototype of the solar-powered Stirling engine working at the low temperature range. A mathematical model for the thermal analysis of the solar-powered low temperature Stirling engine with heat transfer is developed using Matlab program. The model takes into consideration the effect of the absorber temperature on the thermal analysis like as radiation and convection heat transfer between the absorber and the working fluid as well as radiation and convection heat transfer between the lower temperature plate and the working fluid. Hence, the present analysis provides a theoretical guidance for designing and operating of the solar-powered low temperature Stirling engine system, as well as estimating output power from the solar Stirling engine using Matlab program. This study attempts to demonstrate the potential of the low temperature Stirling engine as an option for the prime movers for Photovoltaic tracking systems. The heat source temperature is 40–60 °C as the temperature available from the sun directly

  3. Enhanced avatar design using cognitive map-based simulation.

    Science.gov (United States)

    Lee, Kun Chang; Moon, Byung Suk

    2007-12-01

    With the advent of the Internet era and the maturation of electronic commerce, strategic avatar design has become an important way of keeping up with market changes and customer tastes. In this study, we propose a new approach to an adaptive avatar design that uses cognitive map (CM) as a what-if simulation vehicle. The main virtue of the new design is its ability to change specific avatar design features with objective consideration of the subsequent effects upon other design features, thereby enhancing user satisfaction. Statistical analyses of focus group interview results with a group of experts majoring in avatars and CM showed that our proposed approach could be used to effectively analyze avatar design in an adaptive and practical manner when the market situation is changing.

  4. Simulation of neutron multiplicity measurements using Geant4. Open source software for nuclear arms control

    Energy Technology Data Exchange (ETDEWEB)

    Kuett, Moritz

    2016-07-07

    Nuclear arms control, including nuclear safeguards and verification technologies for nuclear disarmament typically use software as part of many different technological applications. This thesis proposes to use three open source criteria for such software, allowing users and developers to have free access to a program, have access to the full source code and be able to publish modifications for the program. This proposition is presented and analyzed in detail, together with the description of the development of ''Open Neutron Multiplicity Simulation'', an open source software tool to simulate neutron multiplicity measurements. The description includes physical background of the method, details of the developed program and a comprehensive set of validation calculations.

  5. R I 800. A new cobalt-60 sealed source design

    International Nuclear Information System (INIS)

    Freijo, Jose L.; Gomez, Gonzalo

    2006-01-01

    The consolidation of the international market of Co-60 sources and the perspective of its growth has encouraged the development of new types of sealed sources. The model R I 800 is designed for activities up to 65 kCi and allows a large spectrum of capsules with different specific activities. During three years Dioxitek developed the process of fabrication and qualifications to comply the design requirements and succeeded in the product approval. Today, the initial lot at an industrial scale of R I 800 sources is under fabrication and a first partial shipment of 100 kCi to the United Kingdom was successfully carried out at the end of October 2005. The whole lot is for export. Due to the versatility of the R I 800 sealed sources it was possible to use as raw material 1 MCi of Co-60 imported from Russia, irradiated in Leningrad nuclear power plant. (author) [es

  6. Detail design of the beam source for the SPIDER experiment

    International Nuclear Information System (INIS)

    Marcuzzi, D.; Agostinetti, P.; Dalla Palma, M.; Degli Agostini, F.; Pavei, M.; Rizzolo, A.; Tollin, M.; Trevisan, L.

    2010-01-01

    The ITER Neutral Beam Test Facility (PRIMA-Padova Research on Injector Megavolt Accelerated) is planned to be built at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: a full size plasma source with low voltage extraction called SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and a full size neutral beam injector at full beam power called MITICA (Megavolt ITER Injector Concept Advancement). SPIDER is the first experimental device to be built and operated, aiming at testing the extraction of a negative ion beam (made of H - and in a later stage D - ions) from an ITER size ion source. The main requirements of this experiment are a H - /D - current of approximately 70 A/50 A and an energy of 100 keV. This paper presents an overview of the SPIDER beam source design, with a particular focus on the main design choices, aiming at reaching the best compromise between physics, optics, thermo-mechanical, cooling, assembly and electrical requirements.

  7. A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study.

    Science.gov (United States)

    Ahmed, Rami; Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott

    2016-03-16

    OBJECTIVE : The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential. A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. CONCLUSIONS : A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent.

  8. Numerical simulation of electromagnetic fields and impedance of CERN LINAC4 H(-) source taking into account the effect of the plasma.

    Science.gov (United States)

    Grudiev, A; Lettry, J; Mattei, S; Paoluzzi, M; Scrivens, R

    2014-02-01

    Numerical simulation of the CERN LINAC4 H(-) source 2 MHz RF system has been performed taking into account a realistic geometry from 3D Computer Aided Design model using commercial FEM high frequency simulation code. The effect of the plasma has been added to the model by the approximation of a homogenous electrically conducting medium. Electric and magnetic fields, RF power losses, and impedance of the circuit have been calculated for different values of the plasma conductivity. Three different regimes have been found depending on the plasma conductivity: (1) Zero or low plasma conductivity results in RF electric field induced by the RF antenna being mainly capacitive and has axial direction; (2) Intermediate conductivity results in the expulsion of capacitive electric field from plasma and the RF power coupling, which is increasing linearly with the plasma conductivity, is mainly dominated by the inductive azimuthal electric field; (3) High conductivity results in the shielding of both the electric and magnetic fields from plasma due to the skin effect, which reduces RF power coupling to plasma. From these simulations and measurements of the RF power coupling on the CERN source, a value of the plasma conductivity has been derived. It agrees well with an analytical estimate calculated from the measured plasma parameters. In addition, the simulated and measured impedances with and without plasma show very good agreement as well demonstrating validity of the plasma model used in the RF simulations.

  9. An Open-Source Toolbox for PEM Fuel Cell Simulation

    Directory of Open Access Journals (Sweden)

    Jean-Paul Kone

    2018-05-01

    Full Text Available In this paper, an open-source toolbox that can be used to accurately predict the distribution of the major physical quantities that are transported within a proton exchange membrane (PEM fuel cell is presented. The toolbox has been developed using the Open Source Field Operation and Manipulation (OpenFOAM platform, which is an open-source computational fluid dynamics (CFD code. The base case results for the distribution of velocity, pressure, chemical species, Nernst potential, current density, and temperature are as expected. The plotted polarization curve was compared to the results from a numerical model and experimental data taken from the literature. The conducted simulations have generated a significant amount of data and information about the transport processes that are involved in the operation of a PEM fuel cell. The key role played by the concentration constant in shaping the cell polarization curve has been explored. The development of the present toolbox is in line with the objectives outlined in the International Energy Agency (IEA, Paris, France Advanced Fuel Cell Annex 37 that is devoted to developing open-source computational tools to facilitate fuel cell technologies. The work therefore serves as a basis for devising additional features that are not always feasible with a commercial code.

  10. Using Explorative Simulation to Drive User-Centered Design and IT-Development in Healthcare

    DEFF Research Database (Denmark)

    Edwards, Kasper; Thommesen, Jacob; Broberg, Ole

    2012-01-01

    We describe a method involving user-system simulation to drive rapid development and evaluation of layout, organization or information technology in healthcare. The method has been developed, tested and refined in three sub-projects in the Capital Region of Denmark. The overall goal of the project...... was to validate such a development method in a two-year project (2010-11). Explorative simulation is primarily based on approaches in design and usability engineering and simulation-based training in healthcare, and involves end-users and designers or engineers in a collaborative exploration of design solution...... can gain insight into the healthcare work practice and design applications accordingly - Theories and new ideas can be readily transformed to into the simulated world where they are explored and quickly rejected or used further - A very cost-effective approach to innovation....

  11. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source.

    Science.gov (United States)

    Lefmann, Kim; Klenø, Kaspar H; Birk, Jonas Okkels; Hansen, Britt R; Holm, Sonja L; Knudsen, Erik; Lieutenant, Klaus; von Moos, Lars; Sales, Morten; Willendrup, Peter K; Andersen, Ken H

    2013-05-01

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  12. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, Kim; Kleno, Kaspar H.; Holm, Sonja L.; Sales, Morten [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Danish Workpackage for the ESS Design Update Phase, Universitetsparken 5, 2100 Copenhagen O (Denmark); Birk, Jonas Okkels [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Danish Workpackage for the ESS Design Update Phase, Universitetsparken 5, 2100 Copenhagen O (Denmark); Laboratory for Quantum Magnetism, Ecole Polytecnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Hansen, Britt R.; Knudsen, Erik; Willendrup, Peter K. [Institute of Physics, Technical University of Denmark, 2800 Lyngby (Denmark); Danish Workpackage for the ESS Design Update Phase, 2800 Lyngby (Denmark); Lieutenant, Klaus [Institute for Energy Technology, Instituttveien 18, 2007 Kjeller (Norway); Helmholtz Center for Energy and Materials, Hahn-Meitner Platz, 14109 Berlin (Germany); German Work Package for the ESS Design Update, Hahn-Meitner Platz, 14109 Berlin (Germany); Moos, Lars von [Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde (Denmark); Danish Workpackage for the ESS Design Update Phase, 2800 Lyngby (Denmark); Institute for Energy Conversion, Technical University of Denmark, 4000 Roskilde (Denmark); Andersen, Ken H. [European Spallation Source ESS AB, 22100 Lund (Sweden)

    2013-05-15

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  13. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source

    International Nuclear Information System (INIS)

    Lefmann, Kim; Klenø, Kaspar H.; Holm, Sonja L.; Sales, Morten; Birk, Jonas Okkels; Hansen, Britt R.; Knudsen, Erik; Willendrup, Peter K.; Lieutenant, Klaus; Moos, Lars von; Andersen, Ken H.

    2013-01-01

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3–5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  14. A Simulation of Rainwater Harvesting Design and Demand-Side Controls for Large Hospitals

    Directory of Open Access Journals (Sweden)

    Lawrence V. Fulton

    2018-05-01

    Full Text Available Inpatient health buildings in the United States are the most intensive users of water among large commercial buildings. Large facilities (greater than 1 million square feet consume an average of 90 million gallons per building per year. The distribution and treatment of water imposes a significant electrical power demand, which may be the single largest energy requirement for various states. Supply and demand-side solutions are needed, particularly in arid and semi-arid regions where water is scarce. This study uses continuous simulations based on 71 years of historical data to estimate how rainwater harvesting systems and demand-side interventions (e.g., low-flow devices, xeriscaping would offset the demand for externally-provided water sources in a semi-arid region. Simulations from time series models are used to generate alternative rainfall models to account for potential non-stationarity and volatility. Results demonstrate that hospital external water consumption might be reduced by approximately 25% using conservative assumptions and depending on the design of experiment parameters associated with rainfall capture area, building size, holding tank specifications, and conservation efforts.

  15. Design evolution and verification of the general-purpose heat source

    International Nuclear Information System (INIS)

    Schock, A.

    The General-Purpose Heat Source (GPHS) is a radioisotope heat source for use in space power systems. It employs a modular design, to make it adaptable to a wide range of energy conversion systems and power levels. Each 250 W module is completely autonomous, with its own passive safety provisions to prevent fuel release under all abort modes, including atmospheric reentry and earth impact. Prior development tests had demonstrated good impact survival as long as the iridium fuel capsules retained their ductility. This requires high impact temperatures, typically above 900 0 C and reasonably fine grain size, which in turn requires avoidance of excessive operating temperatures and reentry temperatures. These three requirements - on operating, reentry, and impact temperatures - are in mutual conflict, since thermal design changes to improve any one of these temperatures tend to worsen one or both of the others. This conflict creates a difficult design problem, which for a time threatened the success of the program. The present paper describes how this problem was overcome by successive design revisions, supplemented by thermal analyses and confirmatory vibration and impact tests; and how this may be achieved while raising the specific power of the GPHS to 83 W/lb, a 50% improvement over previously flown radioisotope heat sources

  16. Third order mode laser diode: design of a twin photon source

    International Nuclear Information System (INIS)

    Ducci, S.; Berger, V.; Rossi, A. de; Ortiz, V.; Calligaro, M.; Vinter, B.; Nagle, J.; Berger, V.

    2004-01-01

    We demonstrate the lasing action on a third order waveguide mode in a laser diode. The AlGaAs heterostructure has been designed to achieve a parametric emission of photons pairs through modal phase matching. This device is very compact and does not generate coupling loss between the laser source and the non-linear waveguide. It is the first step on the way to design a twin photon micro-source. (A.C.)

  17. Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design

    Science.gov (United States)

    Pritchett, Amy R.

    2002-01-01

    While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plugin' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).

  18. Real-time simulator for designing electron dual scattering foil systems.

    Science.gov (United States)

    Carver, Robert L; Hogstrom, Kenneth R; Price, Michael J; LeBlanc, Justin D; Pitcher, Garrett M

    2014-11-08

    The purpose of this work was to develop a user friendly, accurate, real-time com- puter simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator allows for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator also is a powerful educational tool. The simulator consists of an analytical algorithm for calculating electron fluence and X-ray dose and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with the reduced Gaussian formalism for scattering powers. The simulator also estimates central-axis and off-axis X-ray dose arising from the dual foil system. Once the geometry of the accelerator is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scat- tering foil material and Gaussian shape (thickness and sigma), and beam energy. The off-axis electron relative fluence or total dose profile and central-axis X-ray dose contamination are computed and displayed in real time. The simulator was validated by comparison of off-axis electron relative fluence and X-ray percent dose profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV, using present foils on an Elekta radiotherapy accelerator, the simulator was able to reproduce MC profiles to within 2% out to 20 cm from the central axis. The central-axis X-ray percent dose predictions matched measured data to within 0.5%. The calculation time was approximately 100 ms using a single Intel 2.93 GHz processor, which allows for real-time variation of foil geometrical parameters using slider bars. This work demonstrates how the user-friendly GUI and real-time nature of the simulator make it an effective educational tool for gaining a better understanding of the effects that various system

  19. Simulations of a spectral gamma-ray logging tool response to a surface source distribution on the borehole wall

    International Nuclear Information System (INIS)

    Wilson, R.D.; Conaway, J.G.

    1991-01-01

    We have developed Monte Carlo and discrete ordinates simulation models for the large-detector spectral gamma-ray (SGR) logging tool in use at the Nevada Test Site. Application of the simulation models produced spectra for source layers on the borehole wall, either from potassium-bearing mudcakes or from plate-out of radon daughter products. Simulations show that the shape and magnitude of gamma-ray spectra from sources distributed on the borehole wall depend on radial position with in the air-filled borehole as well as on hole diameter. No such dependence is observed for sources uniformly distributed in the formation. In addition, sources on the borehole wall produce anisotropic angular fluxes at the higher scattered energies and at the source energy. These differences in borehole effects and in angular flux are important to the process of correcting SGR logs for the presence of potassium mudcakes; they also suggest a technique for distinguishing between spectral contributions from formation sources and sources on the borehole wall. These results imply the existence of a standoff effect not present for spectra measured in air-filled boreholes from formation sources. 5 refs., 11 figs

  20. Simulation of gas turbines operating in off-design condition

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Arnaldo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: walter@fem.unicamp.br

    2000-07-01

    In many countries thermal power plants based on gas turbines have been the main option for new investment into the electric system due to their relatively high efficiency and low capital cost. Cogeneration systems based on gas turbines have also been an important option for the electric industry. Feasibility studies of power plants based on gas turbine should consider the effect of atmospheric conditions and part-load operation on the machine performance. Doing this, an off-design procedure is required. A G T off-design simulation procedure is described in this paper. Ruston R M was used to validate the simulation procedure that, general sense, presents deviations lower than 2.5% in comparison to manufacturer's data. (author)

  1. The design of narrative as an immersive simulation

    OpenAIRE

    gomes, renata

    2005-01-01

    This paper proposes a concept of narrative as the design of an immersive simulation to be experienced by the interactor in a video game. We face this new narrative status as the reconfiguration of a creative process that was initiated in an attempt to generate, in the digital format, a certain concept of narrative inherited from the canonic cinema, but that, faced with the simulative nature of the video game format, was forced to take a different shape. To explain this concept, we draw a brie...

  2. The synthesis method for design of electron flow sources

    Science.gov (United States)

    Alexahin, Yu I.; Molodozhenzev, A. Yu

    1997-01-01

    The synthesis method to design a relativistic magnetically - focused beam source is described in this paper. It allows to find a shape of electrodes necessary to produce laminar space charge flows. Electron guns with shielded cathodes designed with this method were analyzed using the EGUN code. The obtained results have shown the coincidence of the synthesis and analysis calculations [1]. This method of electron gun calculation may be applied for immersed electron flows - of interest for the EBIS electron gun design.

  3. The conceptual design and simulation of 30m RIT

    Science.gov (United States)

    Liu, Zhong; Yichun, Dai; Jin, Zhenyu; Jun, Xu; Lin, Jing

    2008-07-01

    As one of the preliminary research projects of Chinese ELT, 30m RIT--Ring Interferometric Telescope are being simulated and tentatively designed by Yunnan Astronomical Observatory, CAS. The simulations of 30m RIT are mainly included as follows: PSF transform and the image quality at limited photons mode, active control mode of the primary ring mirror, the phasing mode of 30m segmented ring mirror, the turbulent atmosphere and adaptive optics etc. This paper also introduces some tentative design results of 30m RIT, such as the optical design, the conceptual design of the enclosure. The astronomical experiments at seeing limited case and diffraction limited case are introduced in this paper too. A ring aperture mask was put on the entrance pupil of a one meter telescope, real astronomical objects were observed by this "ring telescope" and reconstructed by high resolution imaging techniques such as speckle masking, iterative shift and add methods. The diffraction imaging ability and the full u-v coverage property of a ring aperture were proved by these astronomical experiments.

  4. Design and simulation of the nuSTORM pion beamline

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A., E-mail: aoliu@fnal.gov; Neuffer, D.; Bross, A.

    2015-11-21

    The nuSTORM (neutrinos from STORed Muons) proposal presents a detailed design for a neutrino facility based on a muon storage ring, with muon decay in the production straight section of the ring providing well defined neutrino beams. The facility includes a primary high-energy proton beam line, a target station with pion production and collection, and a pion beamline for pion transportation and injection into a muon decay ring. The nuSTORM design uses “stochastic injection”, in which pions are directed by a chicane, referred to as the Orbit Combination Section (OCS), into the production straight section of the storage ring. Pions that decay within that straight section provide muons within the circulating acceptance of the ring. The design enables injection without kickers or a separate pion decay transport line. The beam line that the pions traverse before being extracted from the decay ring is referred to as the pion beamline. This paper describes the design and simulation of the pion beamline, and includes full beam dynamics simulations of the system.

  5. A calculation method for RF couplers design based on numerical simulation by microwave studio

    International Nuclear Information System (INIS)

    Wang Rong; Pei Yuanji; Jin Kai

    2006-01-01

    A numerical simulation method for coupler design is proposed. It is based on the matching procedure for the 2π/3 structure given by Dr. R.L. Kyhl. Microwave Studio EigenMode Solver is used for such numerical simulation. the simulation for a coupler has been finished with this method and the simulation data are compared with experimental measurements. The results show that this numerical simulation method is feasible for coupler design. (authors)

  6. New tools for the simulation and design of calorimeters

    International Nuclear Information System (INIS)

    Womersley, W.J.

    1989-01-01

    Two new approaches to the simulation and design of large hermetic calorimeters are presented. Firstly, the Shower Library scheme used in the fast generation of showers in the Monte Carlo of the calorimeter for the D-Zero experiment at the Fermilab Tevatron is described. Secondly, a tool for the design future calorimeters is described, which can be integrated with a computer aided design system to give engineering designers an immediate idea of the relative physics capabilities of different geometries. 9 refs., 6 figs., 1 tab

  7. ESD full chip simulation: HBM and CDM requirements and simulation approach

    Directory of Open Access Journals (Sweden)

    E. Franell

    2008-05-01

    Full Text Available Verification of ESD safety on full chip level is a major challenge for IC design. Especially phenomena with their origin in the overall product setup are posing a hurdle on the way to ESD safe products. For stress according to the Charged Device Model (CDM, a stumbling stone for a simulation based analysis is the complex current distribution among a huge number of internal nodes leading to hardly predictable voltage drops inside the circuits.

    This paper describes an methodology for Human Body Model (HBM simulations with an improved ESD-failure coverage and a novel methodology to replace capacitive nodes within a resistive network by current sources for CDM simulation. This enables a highly efficient DC simulation clearly marking CDM relevant design weaknesses allowing for application of this software both during product development and for product verification.

  8. Design of a non-linear power take-off simulator for model testing of rotating wave energy devices

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M.F.P.; Henriques, J.C.C.; Lopes, Miguel C.; Gato, L.M.C. [IDMEC - Instituto de Engenharia Mecanica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa (Portugal); Dente Antonio [CIE3 - Center for Innovation in Electrical and Energy Engineering, Lisboa (Portugal)

    2009-07-01

    Eddy current brakes provide a versatile way of simulating the power take-off system (PTO) in the model testing of wave energy converters at small scale. These are based on the principle that a conductive material moving perpendicularly to a magnetic field generates a braking force proportional to its velocity. This was applied in the design of the PTO simulator of a bottom-hinged flap wave energy converter model, at 1/16 scale. The efforts put into the accurate dynamic simulation of the device led to the development of a controllable PTO simulator, which can be applied to other small scale rotating wave energy device models. A special power source was built to provide the required controllable current intensity to feed the magnetic field generating coils. Different non-linear damping PTO characteristic curves can be simulated by basing the current control on real-time velocity measurement. The calibration of the system was done by connecting the device to a constant rotating speed motor and measuring the resistent torque produced by the PTO with a torquemeter for different values of current intensity through the coils.

  9. Simulation and Study of Multilevel Inverter System Fed By Photovoltaic Source

    Directory of Open Access Journals (Sweden)

    Ali Abdulrazzak Jasim

    2018-01-01

    Full Text Available This paper proposes a simulation of Photovoltaic energy used to supply an induction motor with acomparison of two types of inverters.In general, the greater number of motorswhich"are used incommercial and industrial applicationsare"induction motors. To use PV source to run the induction motor, an interface circuits are used which are a dc-dc"converter and an inverter, the PV cell has nonlinear behavior,"adc-dc converter is used along with Maximum Power Point Tracker controllerto improve theefficiency by boosting the output voltage of the PV module and to match the load demand."The dc output voltage of PV modulethen"converted to AC, two types of inverter are presented, A conventional Voltage Source Inverter system and multilevel inverter system which employselective harmonic eliminationmethod fed three phase induction motor, these two types of inverters are simulated using Matlab/Simulink and their results are presented. The FFT spectrum is presented of the output currents to analyze the harmonics reduction, which shows that the"multilevel inverter is better than VSI system"according to harmonics reduction and increment in output voltage and power.

  10. User Interface Design to Bring Simulation Data into the Classroom

    International Nuclear Information System (INIS)

    Tebbe, P.A.

    1999-01-01

    The training and simulation staff at the AmerenUE Callaway nuclear plant has been given the task of implementing the plant full-scope simulator in a classroom setting. As part of this project, members of the Nuclear Engineering Program at the University of Missouri, Columbia are working with plant personnel to create desktop software for use in training on fundamental plant principles. Data are created with the same modeling software used to power the simulator and are made available with the existing dynamic database structure. Visualization is provided through a specially designed user interface, created with the G programming language of LabVIEW. It is hoped that by focusing on a specific topic and designing the interface with educational objectives in mind, this software will help provide operators with an improved understanding of fundamental principles

  11. Effects of Thinking Style on Design Strategies: Using Bridge Construction Simulation Programs

    Science.gov (United States)

    Sun, Chuen-Tsai; Wang, Dai-Yi; Chang, Yu-Yeh

    2013-01-01

    Computer simulation users can freely control operational factors and simulation results, repeat processes, make changes, and learn from simulation environment feedback. The focus of this paper is on simulation-based design tools and their effects on student learning processes in a group of 101 Taiwanese senior high school students. Participants…

  12. Multisource inverse-geometry CT. Part II. X-ray source design and prototype

    Energy Technology Data Exchange (ETDEWEB)

    Neculaes, V. Bogdan, E-mail: neculaes@ge.com; Caiafa, Antonio; Cao, Yang; De Man, Bruno; Edic, Peter M.; Frutschy, Kristopher; Gunturi, Satish; Inzinna, Lou; Reynolds, Joseph; Vermilyea, Mark; Wagner, David; Zhang, Xi; Zou, Yun [GE Global Research, Niskayuna, New York 12309 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Lounsberry, Brian [Healthcare Science Technology, GE Healthcare, West Milwaukee, Wisconsin 53219 (United States)

    2016-08-15

    Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode block per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent

  13. RS-485 Bus Design of a Missile Simulation Training System

    Directory of Open Access Journals (Sweden)

    Liu Fang

    2013-07-01

    Full Text Available In a missile simulation training system with one-master and multi-slaves distributed system structure, a universal controller is necessary due to the system composed with several controllers. In this research, the designed controllers communicate with each other and upper control computer through RS-485 field bus. RS-485 bus including interface circuits, transmission protocol, Cyclic Redundancy Check (CRC method and upper control test software is designed and proposed. The universal controller adopting the designed RS-485 interface circuits is connected through twisted-pair and makes the simulation system, then the controller is tested in line. The results show that the RS-485 bus communicates effectively using the protocol and CRC method, data transmission rates reaches 115.2 kbps, and has a good stability.

  14. Optimal design of a composite space shield based on numerical simulations

    International Nuclear Information System (INIS)

    Son, Byung Jin; Yoo, Jeong Hoon; Lee, Min Hyung

    2015-01-01

    In this study, optimal design of a stuffed Whipple shield is proposed by using numerical simulations and new penetration criterion. The target model was selected based on the shield model used in the Columbus module of the international space station. Because experimental results can be obtained only in the low velocity region below 7 km/s, it is required to derive the Ballistic limit curve (BLC) in the high velocity region above 7 km/s by numerical simulation. AUTODYN-2D, the commercial hydro-code package, was used to simulate the nonlinear transient analysis for the hypervelocity impact. The Smoothed particle hydrodynamics (SPH) method was applied to projectile and bumper modeling to represent the debris cloud generated after the impact. Numerical simulation model and selected material properties were validated through a quantitative comparison between numerical and experimental results. A new criterion to determine whether the penetration occurs or not is proposed from kinetic energy analysis by numerical simulation in the velocity region over 7 km/s. The parameter optimization process was performed to improve the protection ability at a specific condition through the Design of experiment (DOE) method and the Response surface methodology (RSM). The performance of the proposed optimal design was numerically verified.

  15. Design and implementation progress of multi-purpose simulator for nuclear research reactor using LabVIEW

    International Nuclear Information System (INIS)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim; Ashoub, Nagieb

    2015-01-01

    This paper illustrates the neutronic and thermal hydraulic models that were implemented in the nuclear research reactor simulator based on LabVIEW. It also describes the system and transient analysis of the simulator that takes into consideration the temperature effects and poisoning. This simulator is designed to be a multi-purpose in which the operator could understand the effects of the input parameters on the reactor. A designer can study different solutions for virtual reactor accident scenarios. The main features of the simulator are the flexibility to design and maintain the interface and the ability to redesign and remodel the reactor core engine. The developed reactor simulator permits to acquire hands-on the experience of the physics and technology of nuclear reactors including reactivity control, thermodynamics, technology design and safety system design. This simulator can be easily customizable and upgradable and new opportunities for collaboration between academic groups could be conducted.

  16. Design and implementation progress of multi-purpose simulator for nuclear research reactor using LabVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Center

    2015-11-15

    This paper illustrates the neutronic and thermal hydraulic models that were implemented in the nuclear research reactor simulator based on LabVIEW. It also describes the system and transient analysis of the simulator that takes into consideration the temperature effects and poisoning. This simulator is designed to be a multi-purpose in which the operator could understand the effects of the input parameters on the reactor. A designer can study different solutions for virtual reactor accident scenarios. The main features of the simulator are the flexibility to design and maintain the interface and the ability to redesign and remodel the reactor core engine. The developed reactor simulator permits to acquire hands-on the experience of the physics and technology of nuclear reactors including reactivity control, thermodynamics, technology design and safety system design. This simulator can be easily customizable and upgradable and new opportunities for collaboration between academic groups could be conducted.

  17. Open Source Radiation Hardened by Design Technology

    Science.gov (United States)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  18. Beam dynamics simulation of the Spallation Neutron Source linear accelerator

    International Nuclear Information System (INIS)

    Takeda, H.; Billen, J.H.; Bhatia, T.S.

    1998-01-01

    The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H - pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 βλ structure to a CCDTL operated at 805 MHz with a 12 βλ structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large (±500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac

  19. PORFLOW Simulations Supporting Saltstone Disposal Unit Design Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hang, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Taylor, G. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-10

    SRNL was requested by SRR to perform PORFLOW simulations to support potential cost-saving design modifications to future Saltstone Disposal Units in Z-Area (SRR-CWDA-2015-00120). The design sensitivity cases are defined in a modeling input specification document SRR-CWDA-2015-00133 Rev. 1. A high-level description of PORFLOW modeling and interpretation of results are provided in SRR-CWDA-2015-00169. The present report focuses on underlying technical issues and details of PORFLOW modeling not addressed by the input specification and results interpretation documents. Design checking of PORFLOW modeling is documented in SRNL-L3200-2015-00146.

  20. Advanced Neutron Source radiological design criteria

    International Nuclear Information System (INIS)

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design

  1. An open source platform for multi-scale spatially distributed simulations of microbial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Segre, Daniel [Boston Univ., MA (United States)

    2014-08-14

    The goal of this project was to develop a tool for facilitating simulation, validation and discovery of multiscale dynamical processes in microbial ecosystems. This led to the development of an open-source software platform for Computation Of Microbial Ecosystems in Time and Space (COMETS). COMETS performs spatially distributed time-dependent flux balance based simulations of microbial metabolism. Our plan involved building the software platform itself, calibrating and testing it through comparison with experimental data, and integrating simulations and experiments to address important open questions on the evolution and dynamics of cross-feeding interactions between microbial species.

  2. Design of small ECR ion source for neutron generator

    International Nuclear Information System (INIS)

    Zhou Changgeng; Lou Benchao; Zu Xiulan; Yang Haisu; Xiong Riheng

    2003-01-01

    The principles, structures and characteristics of small ECR (Electron Cyclotron Resonance) ion source used in the neutron generator are introduced. The processes of the design and key technique and innovations are described. (authors)

  3. Multi-Disciplinary Design Support using Hardware-in-the-Loop Simulation

    NARCIS (Netherlands)

    Visser, P.M.; Groothuis, M.A.; Broenink, Johannes F.

    2004-01-01

    This paper describes a method using Hardware-in-the-Loop Simulation as a means for multidisciplinary design support. The method presented here, aims at supporting the design of heterogeneous embedded control systems. The method considers the implementation process as a stepwise refinement from

  4. Numerical simulation of seismic wave propagation from land-excited large volume air-gun source

    Science.gov (United States)

    Cao, W.; Zhang, W.

    2017-12-01

    The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of

  5. Update on design simulations for NIF ignition targets, and the roll-up of all specifications into an error budget

    International Nuclear Information System (INIS)

    Haan, S.W.; Herrmann, M.C.; Salmonson, J.D.; Amendt, P.A.; Callahan, D.A.; Dittrich, T.R.; Edwards, M.J.; Jones, O.S.; Marinak, M.M.; Munro, D.H.; Pollaine, S.M.; Spears, B.K.; Suter, L.J.

    2007-01-01

    Targets intended to produce ignition on NIF are being simulated and the simulations are used to set specifications for target fabrication and other program elements. Recent design work has focused on designs that assume only 1.0 MJ of laser energy instead of the previous 1.6 MJ. To perform with less laser energy, the hohlraum has been redesigned to be more efficient than previously, and the capsules are slightly smaller. Three hohlraum designs are being examined: gas fill, SiO 2 foam fill, and SiO 2 lined. All have a cocktail wall, and shields mounted between the capsule and the laser entrance holes. Two capsule designs are being considered. One has a graded doped Be(Cu) ablator, and the other graded doped CH(Ge). Both can perform acceptably with recently demonstrated ice layer quality, and with recently demonstrated outer surface roughness. Complete tables of specifications are being prepared for both targets, to be completed this fiscal year. All the specifications are being rolled together into an error budget indicating adequate margin for ignition with the new designs. The dominant source of error is hohlraum asymmetry at intermediate modes 4-8, indicating the importance of experimental techniques to measure and control this asymmetry. (authors)

  6. A global hydrological simulation to specify the sources of water used by humans

    Science.gov (United States)

    Hanasaki, Naota; Yoshikawa, Sayaka; Pokhrel, Yadu; Kanae, Shinjiro

    2018-01-01

    Humans abstract water from various sources to sustain their livelihood and society. Some global hydrological models (GHMs) include explicit schemes of human water abstraction, but the representation and performance of these schemes remain limited. We substantially enhanced the water abstraction schemes of the H08 GHM. This enabled us to estimate water abstraction from six major water sources, namely, river flow regulated by global reservoirs (i.e., reservoirs regulating the flow of the world's major rivers), aqueduct water transfer, local reservoirs, seawater desalination, renewable groundwater, and nonrenewable groundwater. In its standard setup, the model covers the whole globe at a spatial resolution of 0.5° × 0.5°, and the calculation interval is 1 day. All the interactions were simulated in a single computer program, and all water fluxes and storage were strictly traceable at any place and time during the simulation period. A global hydrological simulation was conducted to validate the performance of the model for the period of 1979-2013 (land use was fixed for the year 2000). The simulated water fluxes for water abstraction were validated against those reported in earlier publications and showed a reasonable agreement at the global and country level. The simulated monthly river discharge and terrestrial water storage (TWS) for six of the world's most significantly human-affected river basins were compared with gauge observations and the data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. It is found that the simulation including the newly added schemes outperformed the simulation without human activities. The simulated results indicated that, in 2000, of the 3628±75 km3 yr-1 global freshwater requirement, 2839±50 km3 yr-1 was taken from surface water and 789±30 km3 yr-1 from groundwater. Streamflow, aqueduct water transfer, local reservoirs, and seawater desalination accounted for 1786±23, 199±10, 106±5, and 1.8

  7. Software Design for Interactive Graphic Radiation Treatment Simulation Systems*

    Science.gov (United States)

    Kalet, Ira J.; Sweeney, Christine; Jacky, Jonathan

    1990-01-01

    We examine issues in the design of interactive computer graphic simulation programs for radiation treatment planning (RTP), as well as expert system programs that automate parts of the RTP process, in light of ten years of experience at designing, building and using such programs. An experiment in object-oriented design using standard Pascal shows that while some advantage is gained from the design, it is still difficult to achieve modularity and to integrate expert system components. A new design based on the Common LISP Object System (CLOS) is described. This series of designs for RTP software shows that this application benefits in specific ways from object-oriented design methods and appropriate languages and tools.

  8. 5 MW pulsed spallation neutron source, Preconceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  9. 5 MW pulsed spallation neutron source, Preconceptual design study

    International Nuclear Information System (INIS)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in ∼ 1 μsec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs

  10. Digital design and fabrication of simulation model for measuring orthodontic force.

    Science.gov (United States)

    Liu, Yun-Feng; Zhang, Peng-Yuan; Zhang, Qiao-Fang; Zhang, Jian-Xing; Chen, Jie

    2014-01-01

    Three dimensional (3D) forces are the key factors for determining movement of teeth during orthodontic treatment. Designing precise forces and torques on tooth before treatment can result accurate tooth movements, but it is too difficult to realize. In orthodontic biomechanical systems, the periodontal tissues, including bones, teeth, and periodontal ligaments (PDL), are affected by braces, and measuring the forces applied on the teeth by braces should be based on a simulated model composed of these three types of tissues. This study explores the design and fabrication of a simulated oral model for 3D orthodontic force measurements. Based on medical image processing, tissue reconstruction, 3D printing, and PDL simulation and testing, a model for measuring force was designed and fabricated, which can potentially be used for force prediction, design of treatment plans, and precise clinical operation. The experiment illustrated that bi-component silicones with 2:8 ratios had similar mechanical properties to PDL, and with a positioning guide, the teeth were assembled in the mandible sockets accurately, and so a customized oral model for 3D orthodontic force measurement was created.

  11. Design of simulation-based medical education and advantages and disadvantages of in situ simulation versus off-site simulation.

    Science.gov (United States)

    Sørensen, Jette Led; Østergaard, Doris; LeBlanc, Vicki; Ottesen, Bent; Konge, Lars; Dieckmann, Peter; Van der Vleuten, Cees

    2017-01-21

    Simulation-based medical education (SBME) has traditionally been conducted as off-site simulation in simulation centres. Some hospital departments also provide off-site simulation using in-house training room(s) set up for simulation away from the clinical setting, and these activities are called in-house training. In-house training facilities can be part of hospital departments and resemble to some extent simulation centres but often have less technical equipment. In situ simulation, introduced over the past decade, mainly comprises of team-based activities and occurs in patient care units with healthcare professionals in their own working environment. Thus, this intentional blend of simulation and real working environments means that in situ simulation brings simulation to the real working environment and provides training where people work. In situ simulation can be either announced or unannounced, the latter also known as a drill. This article presents and discusses the design of SBME and the advantage and disadvantage of the different simulation settings, such as training in simulation-centres, in-house simulations in hospital departments, announced or unannounced in situ simulations. Non-randomised studies argue that in situ simulation is more effective for educational purposes than other types of simulation settings. Conversely, the few comparison studies that exist, either randomised or retrospective, show that choice of setting does not seem to influence individual or team learning. However, hospital department-based simulations, such as in-house simulation and in situ simulation, lead to a gain in organisational learning. To our knowledge no studies have compared announced and unannounced in situ simulation. The literature suggests some improved organisational learning from unannounced in situ simulation; however, unannounced in situ simulation was also found to be challenging to plan and conduct, and more stressful among participants. The importance of

  12. Building interactive simulations in a Web page design program.

    Science.gov (United States)

    Kootsey, J Mailen; Siriphongs, Daniel; McAuley, Grant

    2004-01-01

    A new Web software architecture, NumberLinX (NLX), has been integrated into a commercial Web design program to produce a drag-and-drop environment for building interactive simulations. NLX is a library of reusable objects written in Java, including input, output, calculation, and control objects. The NLX objects were added to the palette of available objects in the Web design program to be selected and dropped on a page. Inserting an object in a Web page is accomplished by adding a template block of HTML code to the page file. HTML parameters in the block must be set to user-supplied values, so the HTML code is generated dynamically, based on user entries in a popup form. Implementing the object inspector for each object permits the user to edit object attributes in a form window. Except for model definition, the combination of the NLX architecture and the Web design program permits construction of interactive simulation pages without writing or inspecting code.

  13. Design and simulation of an accelerating and focusing system

    Directory of Open Access Journals (Sweden)

    A Sadeghipanah

    2011-06-01

    Full Text Available Electrostatic focusing lenses have a vast field of applications in electrostatic accelerators and particularly in electron guns. In this paper, we first express a parametric mathematical analysis of an electrostatic accelerator and focusing system for an electron beam. Next, we At design a system of electron emission slit, accelerating electrodes and focusing lens for an electron beam emitted from a cathode with 4 mm radius and 2 mA current, in a distance less than 10 cm and up to the energy of 30 keV with the beam divergence less than 5°. This is achieved by solving the yielded equations in mathematical analysis using MATLAB. At the end, we simulate the behavior of above electron beam in the designed accelerating and focusing system using CST EM Studio. The results of simulation are in high agreement with required specifications of the electron beam, showing the accuracy of the used method in analysis and design of the accelerating and focusing system.

  14. A program PULSYN01 for wide-band simulation of source radiation from a finite earthquake source/fault

    International Nuclear Information System (INIS)

    Gusev, A.A.

    2001-12-01

    The purpose of the program PULSYN01 is to apply a realistic wideband source-side input for calculation of earthquake ground motion. The source is represented as a grid of point subsources, and their seismic moment rate time functions are generated considering each of them as realizations (sample functions) of a non-stationary random process. The model is intended for use at receiver-to fault distances from far field to as small as 10-20% of the fault width. Combined with an adequate Green's function synthesizer, PULSUNT01 can be used for assessment of possible ground motion and seismic hazard in many ways, including scenario event simulation, parametric studies, and eventually stochastic hazard calculations

  15. Selection, specification, design and use of various nuclear power plant training simulators

    International Nuclear Information System (INIS)

    Bruno, R.; Neboyan, V.

    1997-01-01

    Several IAEA guidance publications on safety culture and NPP personnel training consider the role of training and particularly the role of simulators training to enhance the safety of NPP operations. Initially, the focus has been on full-scope simulators for the training of main control room operators. Presently, a wide range of different types of simulators are used at training center. Several guidance publications concerning development and use of full-scope simulators are currently available. Experience shows that other types of simulators are also effective training tools that allow simulator training for a broader range of target groups and training objectives. Based on this need, the IAEA undertook a project to prepare a report on selection, specification, design and use of various training simulators, which provides guidance to training centers and suppliers for proper selection, specification, design, and use of various form of simulators. In addition, it provides examples of their use in several Member States. This paper presents a summary of the IAEATECDOC publication on the subject. (author)

  16. SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations

    Science.gov (United States)

    Baes, M.; Camps, P.

    2015-09-01

    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.

  17. Design of Accelerator Online Simulator Server Using Structured Data

    International Nuclear Information System (INIS)

    Shen, Guobao

    2012-01-01

    Model based control plays an important role for a modern accelerator during beam commissioning, beam study, and even daily operation. With a realistic model, beam behaviour can be predicted and therefore effectively controlled. The approach used by most current high level application environments is to use a built-in simulation engine and feed a realistic model into that simulation engine. Instead of this traditional monolithic structure, a new approach using a client-server architecture is under development. An on-line simulator server is accessed via network accessible structured data. With this approach, a user can easily access multiple simulation codes. This paper describes the design, implementation, and current status of PVData, which defines the structured data, and PVAccess, which provides network access to the structured data.

  18. Simulink and CATIA for Modelling, Simulation and Design

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents a proposed IT-Tools concept for modelling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on-going research projects...

  19. HTGR nuclear heat source component design and experience

    International Nuclear Information System (INIS)

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included

  20. Design of a PWR emergency core cooling simulator loop

    International Nuclear Information System (INIS)

    Melo, C.A. de.

    1982-12-01

    The preliminary design of a PWR Emergency Core Cooling Simulator Loop for investigations of the phenomena involved in a postulated Loss-of-Coolant Accident, during the Reflooding Phase, is presented. The functions of each component of the loop, the design methods and calculations, the specification of the instrumentation, the system operation sequence, the materials list and a cost assessment are included. (Author) [pt