WorldWideScience

Sample records for source ans safety

  1. Interface for safety and security of radioactive sources

    International Nuclear Information System (INIS)

    Seggane, Richard

    2016-04-01

    In facilities and activities involving use of radiation sources, safety and security measures have in common the aim of protecting human life and health and the environment. In addition, safety and security measures must be designed and implemented in an integrated manner, so that security measures do not compromise safety and safety measures do not compromise security measures. This work reviewed issues related to establishing a clear interface between safety and security of radiation sources. The Government, the Regulatory Authority and licensee/registrants and other relevant stakeholders should work together and contribute to ensure that safety and security of sources is ensured and well interfaced. A Radiotherapy facility has been used as a case study. (au)

  2. Safety and security of radioactive sources in Taiwan

    International Nuclear Information System (INIS)

    Tsay Yeousong; Guan Channan; Cheng Yungfu

    2008-01-01

    In Taiwan, the safety and security of radioactive sources is a high priority issue. Ionizing Radiation Protection Act (IRPA) and correlating regulations had been in place for effective control of the safety and security of radioactive sources since 2003. For increased control of sealed radioactive sources, Atomic Energy Council (AEC) established in March 2004 an online reporting system through the Internet, assisting source owners in reporting their sources every month. To conform to the Code of Conduct on the Safety and Security of Radioactive Sources and the Categorization of radioactive sources, published by the International Atomic Energy Agency (IAEA), AEC has taken the following actions: 1. Established an inventory of Categories 1 and 2 radioactive sources, and implemented the Import/Export Provisions of the Code. 2. Required that each licensee shall control access to Categories 1 and 2 radioactive sources, and AEC will conduct project inspection on Categories 1 and 2 radioactive sources. 3. Using a new radiation warning symbol by ISO for Categories 1 and 2 radioactive sources. The reinforcement of orphaned source control was implemented as early as 1995. All steel mills have installed radiation detectors to scan incoming metal scrap to prevent accidental smelting of radioactive sources. The results of this effort will be discussed in the paper. The above measures are examples for demonstrating AEC's commitment to reinforced control of radioactive sources. AEC will continue to protect public safety and security, ensuring that Taiwan's regulatory system in radiation protection conforms to international standards. (author)

  3. Safety of radiation sources and security of radioactive materials. Proceedings of an international conference

    International Nuclear Information System (INIS)

    1999-01-01

    This International Conference, hosted by the Government of France and co-sponsored by the European Commission, the International Criminal Police Organization (Interpol) and the World Customs Organization (WCO), was the first one devoted to the safety of radiation sources and the security of radioactive materials and - for the first time - brought together radiation safety experts, regulators, and customs and police officers, who need to closely co-operate for solving the problem of illicit trafficking. The technical sessions reviewed the state of the art of twelve major topics, divided into two groups: the safety of radiation sources and the security of radioactive materials. The safety part comprised regulatory control, safety assessment techniques, engineering and managerial measures, lessons from experience, international cooperation through reporting systems and databases, verification of safety through inspection and the use of performance indicators for a regulatory programme. The security part comprised measures to prevent breaches in the security of radioactive materials, detection and identification techniques for illicit trafficking, response to detected cases and seized radioactive materials, strengthening awareness, training and exchange of information. The Conference was a success in fostering information exchange through the reviews of the state of the art and the frank and open discussions. It raised awareness of the need for Member States to ensure effective systems of control and for preventing, detecting and responding to illicit trafficking in radioactive materials. The Conference finished by recommending investigating whether international undertakings concerned with an effective operation of national systems for ensuring the safety of radiation sources and security of radioactive materials

  4. Strengthening of safety and security of radioactive sources: new regulatory challenges

    Energy Technology Data Exchange (ETDEWEB)

    El Messaoudi, M.; Essadki M Lferde, H.; Moutia, Z. [Faculte des Sciences, Dept. de Physique, Rabat (Morocco)

    2006-07-01

    The answer to these new regulatory challenges was given by implementation of divers measures aimed at strengthening of safety and security of radioactive sources and to prevent the malevolent use of radioactive sources. The international basic safety standards for protection against ionizing radiation and for the safety of radiation sources (B.S.S.) require the establishment and implementation of security measures of radioactive sources to ensure that protection and safety requirements are met. The IAEA has engaged in an extensive effort to establish and/or strengthen national radiation protection and radiological safety infrastructure, including legislation and regulation, a regulatory authority empowered to authorize and inspect regulated activities, an adequate number of trained personnel and technical services that are beyond the capabilities required of the authorized legal persons. The Moroccan authority makes steady efforts to strengthen national radiation safety infrastructure by participating in IAEA model project for upgrading radiation protection infrastructure, to implement the revised version of code of conduct on the safety and security of radioactive sources. Indeed, Morocco expressed its adhesion with the technical assistance project of the IAEA in 2001, carrying on the reinforcement of the national infrastructure of regulation and control of the radioactive materials. The control over radioactive sources is an essential element for maintaining high level of security and safety of radioactive sources. The IAEA T.E.C.-D.O.C.-1388 serves as reference document to implement the control culture. The security problems with which the world is confronted showed that the uses of radioactive sources should subject reinforcements of safety, of control and of security of the radioactive sources. For this purpose, the IAEA launched an action plan for the safety and security of radioactive sources. The IAEA guide Security of radioactive sources will help the

  5. Strengthening of safety and security of radioactive sources: new regulatory challenges

    International Nuclear Information System (INIS)

    El Messaoudi, M.; Essadki M Lferde, H.; Moutia, Z.

    2006-01-01

    The answer to these new regulatory challenges was given by implementation of divers measures aimed at strengthening of safety and security of radioactive sources and to prevent the malevolent use of radioactive sources. The international basic safety standards for protection against ionizing radiation and for the safety of radiation sources (B.S.S.) require the establishment and implementation of security measures of radioactive sources to ensure that protection and safety requirements are met. The IAEA has engaged in an extensive effort to establish and/or strengthen national radiation protection and radiological safety infrastructure, including legislation and regulation, a regulatory authority empowered to authorize and inspect regulated activities, an adequate number of trained personnel and technical services that are beyond the capabilities required of the authorized legal persons. The Moroccan authority makes steady efforts to strengthen national radiation safety infrastructure by participating in IAEA model project for upgrading radiation protection infrastructure, to implement the revised version of code of conduct on the safety and security of radioactive sources. Indeed, Morocco expressed its adhesion with the technical assistance project of the IAEA in 2001, carrying on the reinforcement of the national infrastructure of regulation and control of the radioactive materials. The control over radioactive sources is an essential element for maintaining high level of security and safety of radioactive sources. The IAEA T.E.C.-D.O.C.-1388 serves as reference document to implement the control culture. The security problems with which the world is confronted showed that the uses of radioactive sources should subject reinforcements of safety, of control and of security of the radioactive sources. For this purpose, the IAEA launched an action plan for the safety and security of radioactive sources. The IAEA guide Security of radioactive sources will help the

  6. Regulatory control of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The basic requirements for the protection of persons against exposure to ionizing radiation and for the safety of radiation sources were established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards), jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/ NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO) (the Sponsoring Organizations). The application of the Basic Safety Standards is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities for radiation protection and safety. Requirements relating to the legal and governmental infrastructure for the safety of nuclear facilities and sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material are established in the Safety Requirements on Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, Safety Standards Series No. GS-R-1. This Safety Guide, which is jointly sponsored by the FAO, the IAEA, the International Labour Office, the PAHO and the WHO, gives detailed guidance on the key elements for the organization and operation of a national regulatory infrastructure for radiation safety, with particular reference to the functions of the national regulatory body that are necessary to ensure the implementation of the Basic Safety Standards. The Safety Guide is based technically on material first published in IAEA-TECDOC-10671, which was jointly sponsored by the FAO, the IAEA, the OECD/NEA, the PAHO and the WHO. The requirements established in GS-R-1 have been taken into account. The Safety Guide is oriented towards national

  7. Radiological safety of decayed source removal facility (DSRF) - an overview

    International Nuclear Information System (INIS)

    Rajput, Raksha; George, Jain Reji; Pathak, B.K.

    2018-01-01

    Industrial radiography is one of the major applications of radioisotope in engineering industry for Non-Destructive Testing (NDT). The equipment used for this purpose is called Industrial Radiography Exposure Device (IGRED) or radiography (RG) camera. In India, more than 1800 IGREDs including imported cameras are being used in NDT industry. These cameras are of different types and have various capacities to house different radioisotopes. Generally, 192 Ir sources are being used for NDT work. The sources are being supplied by BRIT to the users. After the useful period of the utilization of gamma intensity, the decayed source is returned to BRIT in RG camera. The decayed source is removed from the camera in the Decayed Source Removal Facility (DSRF). This facility serves the purpose of a miniature hot-cell with the capability of storing the decayed sources which are removed from the cameras. The empty camera is inspected for its mechanical functions and sent to BRIT's hot-cell for loading the new source. DSRF is situated at BRIT Vashi Complex. This paper deals with the radiological safety in the operation of DSRF for removing decayed sources from industrial radiography cameras

  8. An elevator for cobalt-60 source

    International Nuclear Information System (INIS)

    Tang Zaimin; Liang Donghu

    1990-07-01

    The elevator used for cobalt-60 source is a key device in the irradiation industry. It plays an important role in the safety and control of irradiation operation as well as the utilization rate of radiation source. From 1983 to 1986, Beijing Institute of Nuclear Engineering undertook designing of various size irradiation projects for different uses. Since then a kind of cobalt-60 source elevator suited for the irradiator of wet-source-storage has been chosen. It is reliable in the operation and complete in the function. An automatic control circuit brings the systems of cobalt-60 source elevator into an interlock system which ensures the irradiation operation safety. Besides introducing the structural features and performance of this elevator, the conditions of safety interlocking in raising or lowering the cobalt-60 source is also discussed. The discussion is from the safety viewpoint of operating an irradiator and irradiation technology

  9. Report of the Advanced Neutron Source (ANS) safety workshop, Knoxville, Tennessee, October 25--26, 1988

    International Nuclear Information System (INIS)

    Buchanan, J.R.; Dumont, J.N.; Kendrick, C.M.; Row, T.H.; Thompson, P.B.; West, C.D.; Marchaterre, J.F.; Muhlheim, M.D.; McBee, M.R.

    1988-12-01

    On October 25--26, 1988, about 60 people took part in an Advanced Neutron Source (ANS) Safety Workshop, organized in cooperation with the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) and held in Knoxville, Tennessee. After a plenary session at which ANS Project staff presented status reports on the ANS design, research and development (R and D), and safety analysis efforts, the workshop broke into three working groups, each covering a different topic: Environmental and Waste Management, Applicable Regulatory Safety Criteria and Goals, and Reactor Concepts. Each group was asked to review the Project's approach to safety-related issues and to provide guidance on future reactor safety needs or directions for the Project. With the help of able chairmen, assisted by reporters and secretarial support, the working groups were extremely successful. Draft reports from each group were prepared before the workshop closed, and the major findings of each group were presented for review and discussion by the entire workshop attendance. This report contains the final version of the group reports, incorporating the results of the overall review by all the workshop participants

  10. Safety of radiation sources in Slovenia

    International Nuclear Information System (INIS)

    Belicic-Kolsek, A.; Sutej, T.

    2001-01-01

    The Republic of Slovenia, a central European country which has been independent since 1991, has about 2 million inhabitants and an area of 20,256 km 2 . The Constitutional Law on Enforcement of the Basic Constitutional Charter on the Autonomy and Independence of the Republic of Slovenia, adopted on 23 June 1991 (Off. Gaz. of the R of Slovenia No. 1/91), provided that all the laws adopted by the Socialist Federal Republic (SFR) of Yugoslavia should remain in force in the Republic of Slovenia pending the adoption of appropriate legislation by the Slovene Parliament. Under the Slovene Constitution, all international treaties ratified by Slovenia constitute an integral part of Slovenia's legislation and can be applied directly. In Slovenia, all regular types of ionizing radiation source are being used for peaceful purposes and are covered by a system for their safe use and control. All radiation sources and radioactive materials are registered and under regulatory control. Inspections are carried out periodically by the Health Inspectorate of the Republic of Slovenia (HIRS) and, in the case of nuclear installations, the Slovene Nuclear Safety Administration (SNSA). Technical checks on radiation sources are carried out periodically by technical support organizations: the Jozef Stefan Institute and the Institute for Occupational Safety (IOS). (author)

  11. Radiation Safety and Orphan Sources

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2006-01-01

    The wide spread use of radioactive and particularly of nuclear materials which started in the last century very quickly also demonstrated negative sides. The external exposure and radiotoxicity of these materials could be easily used in a malevolent act. Due to the fact that these materials could not be detected without special equipment designed for that purpose, severe control over their use in all phases of a life cycle is required. An orphan source is a radioactive source which is not under regulatory control, either because it has never been under regulatory or because it has been abandoned, lost, misplaced, stolen or transferred without proper authorization. In the last ten years a few international conferences were dedicated to the improvement of the safety and security of radioactive sources. Three main tasks are focused, the maintenance of data bases related to events with orphan sources and the publications of such events, the preparation of recommendations and guidelines to national regulatory bodies in order to prevent and detect the events related to orphan sources as well as to develop the response strategies to radiological or nuclear emergency, appraisals of the national strategies of radioactive sources control. Concerning Slovenia, strengthening control over orphan sources in Slovenia started after the adoption of new legislation in 2002. It was carried out through several tasks with the aim to prevent orphan sources, as well as to identify the sources which could be potentially orphan sources. The comprehensive methodology was developed by the Slovenian nuclear safety administration (S.N.S.A.) based on international guidelines as well as on the study of national lesson learned cases. The methodology was developed and used in close cooperation with all parties involved, namely other regulatory authorities, police, customs, agency for radioactive waste management (A.R.A.O.), technical support organisations (T.S.O.), users of source, authorised

  12. Radiation Safety and Orphan Sources

    Energy Technology Data Exchange (ETDEWEB)

    Janzekovic, H.; Krizman, M. [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    2006-07-01

    The wide spread use of radioactive and particularly of nuclear materials which started in the last century very quickly also demonstrated negative sides. The external exposure and radiotoxicity of these materials could be easily used in a malevolent act. Due to the fact that these materials could not be detected without special equipment designed for that purpose, severe control over their use in all phases of a life cycle is required. An orphan source is a radioactive source which is not under regulatory control, either because it has never been under regulatory or because it has been abandoned, lost, misplaced, stolen or transferred without proper authorization. In the last ten years a few international conferences were dedicated to the improvement of the safety and security of radioactive sources. Three main tasks are focused, the maintenance of data bases related to events with orphan sources and the publications of such events, the preparation of recommendations and guidelines to national regulatory bodies in order to prevent and detect the events related to orphan sources as well as to develop the response strategies to radiological or nuclear emergency, appraisals of the national strategies of radioactive sources control. Concerning Slovenia, strengthening control over orphan sources in Slovenia started after the adoption of new legislation in 2002. It was carried out through several tasks with the aim to prevent orphan sources, as well as to identify the sources which could be potentially orphan sources. The comprehensive methodology was developed by the Slovenian nuclear safety administration (S.N.S.A.) based on international guidelines as well as on the study of national lesson learned cases. The methodology was developed and used in close cooperation with all parties involved, namely other regulatory authorities, police, customs, agency for radioactive waste management (A.R.A.O.), technical support organisations (T.S.O.), users of source, authorised

  13. The advanced neutron source safety approach and plans

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1989-01-01

    The Advanced Neutron Source (ANS) is a user facility for all areas of neutron research proposed for construction at the Oak Ridge National Laboratory. The neutron source is planned to be a 350-MW research reactor. The reactor, currently in conceptual design, will belong to the United States Department of Energy (USDOE). The safety approach and planned elements of the safety program for the ANS are described. The safety approach is to incorporate USDOE requirements [which, by reference, include appropriate requirements from the United States Nuclear Regulatory Commission (USNRC) and other national and state regulatory agencies] into the design, and to utilize probabilistic risk assessment (PRA) techniques during design to achieve extremely low probability of severe core damage. The PRA has already begun and will continue throughout the design and construction of the reactor. Computer analyses will be conducted for a complete spectrum of accidental events, from anticipated events to very infrequent occurrences. 8 refs., 2 tabs

  14. The Advanced Neutron Source safety approach and plans

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1990-01-01

    The Advanced Neutron Source (ANS) is a user facility proposed for construction at the Oak Ridge National Laboratory for all areas of neutron research. The neutron source is planned to be a 350-MW research reactor. The reactor, currently in conceptual design, will belong to the United States Department of Energy (USDOE). The safety approach and planned elements of the safety program for the ANS are described. The safety approach is to incorporate USDOE requirements (which, by reference, include appropriate requirements from the United States Nuclear Regulatory Commission (USNRC) and other national and state regulatory agencies) into the design, and to utilize probabilistic risk assessment (PRA) techniques during design to achieve extremely low probability of severe core damage. The PRA has already begun and will continue throughout the design and construction of the reactor. Computer analyses will be conducted for a complete spectrum of accidental events, from anticipated events to very infrequent occurrences

  15. Radiation sources safety and radioactive materials security regulation in Ukraine

    International Nuclear Information System (INIS)

    Smyshliaiev, A.; Holubiev, V.; Makarovska, O.

    2001-01-01

    Radiation sources are widely used in Ukraine. There are about 2500 users in industry, science, education and about 2800 in medicine. About 80,000 sealed radiation sources with total kerma-equivalent of 450 Gy*M 2 /sec are used in Ukraine. The exact information about the radiation sources and their users will be provided in 2001 after the expected completion of the State inventory of radiation sources in Ukraine. In order to ensure radiation source safety in Ukraine, a State System for regulation of activities dealing with radiation sources has been established. The system includes the following elements: establishment of norms, rules and standards of radiation safety; authorization activity, i.e. issuance of permits (including those in the form of licences) for activities dealing with radiation sources; supervisory activity, i.e. control over observance of norms, rules and standards of radiation safety and fulfilment of conditions of licences for activities dealing with radiation sources, and also enforcement. Comprehensive nuclear legislation was developed and implemented from 1991 to 2000. Radiation source safety is regulated by three main nuclear laws in Ukraine: On the use of nuclear energy and radiation safety (passed on 8 February 1995); On Human Protection from Impact of Ionizing Radiation (passed on 14 January 1998); On permissive activity in the area of nuclear energy utilization (passed on 11 January 2000). The regulatory authorities in Ukraine are the Ministry for Ecology and Natural Resources (Nuclear Regulatory Department) and the Ministry of Health (State sanitary-epidemiology supervision). According to the legislation, activities dealing with radiation sources are forbidden without an officially issued permit in Ukraine. Permitted activities with radiation sources are envisaged: licensing of production, storage and maintenance of radiation sources; licensing of the use of radiation sources; obligatory certification of radiation sources and transport

  16. Safety and security of radioactive sources - international provisions

    International Nuclear Information System (INIS)

    Czarwinski, R.; Weiss, W.

    2005-01-01

    For more than 50 years radioactive sources are used beneficially world-wide in medicine, industry, research and teaching. In the early 50ies mainly Ra-226 sources were used especially for medical applications. In the mean time a great number of radionuclides with more or less risk to individuals, society and environment are used. The number of these sources is increasing. The available experience with the application of sealed sources in industry, medicine, research and teaching shows that despite the widespread use of such sources a high level of safety can be achieved. One precondition is that the regulatory control of a radioactive source has to be carried out consistently during the life cycle of the sources - 'from cradle to grave'. Particular attention has to be given to the so-called orphan sources which are not subject to regulatory control, either because they have never been under control, or because they have been lost, misplaced, abandoned, stolen or transferred without proper authorisation. The concern about orphan sources arising from poor safety and security standards of radioactive material around the world resulted in intensive global actions especially in the light of the security situation after the 11 th September 2001. The improvement of regulatory control is one of the key elements in preventing people, goods and environment from being exposed exceptionally by the misuse of radioactive sources. Important steps toward the improvement of the safety and security of high radioactive sources are the IAEA Code of Conduct on the Safety and Security of Radioactive Sources and the European Directive on the Control of High Activity Sealed Radioactive Sources and Orphan Sources. (orig.)

  17. Radiation protection and safety of radiation sources international basic safety standards

    CERN Document Server

    International Atomic Energy Agency. Vienna

    2014-01-01

    The Board of Governors of the IAEA first approved Basic Safety Standards in June 1962; they were published by the IAEA as IAEA Safety Series No. 9. A revised edition was issued in 1967. A third revision was published by the IAEA as the 1982 Edition of IAEA Safety Series No. 9 ; this edition was jointly sponsored by the IAEA, ILO, OECD/NEA and the WHO. The next edition was International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, published by the IAEA as IAEA Safety Series No. 115 in February 1996, and jointly sponsored by the FAO, IAEA, ILO, OECD/NEA, PAHO and the WHO.

  18. Probabilist methods applied to electric source problems in nuclear safety

    International Nuclear Information System (INIS)

    Carnino, A.; Llory, M.

    1979-01-01

    Nuclear Safety has frequently been asked to quantify safety margins and evaluate the hazard. In order to do so, the probabilist methods have proved to be the most promising. Without completely replacing determinist safety, they are now commonly used at the reliability or availability stages of systems as well as for determining the likely accidental sequences. In this paper an application linked to the problem of electric sources is described, whilst at the same time indicating the methods used. This is the calculation of the probable loss of all the electric sources of a pressurized water nuclear power station, the evaluation of the reliability of diesels by event trees of failures and the determination of accidental sequences which could be brought about by the 'total electric source loss' initiator and affect the installation or the environment [fr

  19. Safety and security of radioactive sources in industrial radiography in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Mollah, A. S.; Nazrul, M. Abdullah [Industrial Inspection Service Limited, Dhaka (Bangladesh)

    2013-07-01

    Malicious use of radioactive sources can involve dispersal of that material through an explosive device. There has been recognition of the threat posed by the potential malicious misuse of NDT radioactive source by terrorists. The dispersal of radioactive material using conventional explosives, referred to as a 'dirty bomb', could create considerable panic, disruption and area access denial in an urban environment. However, as it is still a relatively new topic among regulators, users, and transport and storage operators worldwide, international assistance and cooperation in developing the necessary regulatory and security infrastructure is required. The most important action in reducing the risk of radiological terrorism is to increase the security of radioactive sources. This paper presents safety and security considerations for the transport and site storage of the industrial radiography sources as per national regulations entitled 'Nuclear Safety and Radiation Control Rules-1997'.The main emphasis was put on the stages of some safety and security actions in order to prevent theft, sabotage or other malicious acts during the transport of the packages. As a conclusion it must be mentioned that both safety and security considerations are very important aspects that must be taking in account for the transport and site storage of radioactive sources used in the practice of industrial radiography. (authors)

  20. Safety and security of radioactive sources in industrial radiography in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A. S.; Nazrul, M. Abdullah

    2013-01-01

    Malicious use of radioactive sources can involve dispersal of that material through an explosive device. There has been recognition of the threat posed by the potential malicious misuse of NDT radioactive source by terrorists. The dispersal of radioactive material using conventional explosives, referred to as a 'dirty bomb', could create considerable panic, disruption and area access denial in an urban environment. However, as it is still a relatively new topic among regulators, users, and transport and storage operators worldwide, international assistance and cooperation in developing the necessary regulatory and security infrastructure is required. The most important action in reducing the risk of radiological terrorism is to increase the security of radioactive sources. This paper presents safety and security considerations for the transport and site storage of the industrial radiography sources as per national regulations entitled 'Nuclear Safety and Radiation Control Rules-1997'.The main emphasis was put on the stages of some safety and security actions in order to prevent theft, sabotage or other malicious acts during the transport of the packages. As a conclusion it must be mentioned that both safety and security considerations are very important aspects that must be taking in account for the transport and site storage of radioactive sources used in the practice of industrial radiography. (authors)

  1. USA perspectives. Safety and security of radioactive sources

    International Nuclear Information System (INIS)

    Dicus, G.J.

    1999-01-01

    In contrast to the 103 licensed nuclear power plants in the United States, there are about 157,000 licenses that authorize the use of radioactive materials subject to US Atomic Energy Act. as amended. Each year the NRC receives about 200 reports of lost, stolen or abandoned radioactive sources and devices. The NRC has established a programme to review and analyze reports and other information on losses, thefts, abandonments, and discoveries of radioactive sources that helped to identify and characterize the problem with safety and security of radioactive sources in devices used under the general license programme. In summary, a large number of radioactive sources in use in the USA have a very good safety record. When used properly by trained personnel with effective regulatory oversight, the many uses of radioactive sources are safe and provide a net benefit to society. If problems occur such as overexposures or contamination of property, it is essential that hey are promptly reported to the regulatory authority. If necessary appropriate emergency response measures can be taken, and the problems analysed. In that way, effective risk-informed regulatory measures can be activated to assure the continued safety and security of radioactive sources

  2. Review of Safety and Security of Radioactive Sources in Africa

    International Nuclear Information System (INIS)

    Kiti, Shadrack Anthony; Choi, Kwang Sik

    2011-01-01

    Radioactive materials are used worldwide for peaceful applications in medicine, industry, agriculture, environmental science, education and research and military applications. Most of these radioactive sources used are imported therefore trans-boundary movement is a significant factor in consideration of safety and security measures during movement of these sources. It is estimated that 20 million packages of radioactive materials are transported annually worldwide and this number of shipments is expected to increase due to the renaissance of nuclear power generation. The African continent has shown considerable leadership in its advocacy for the safety and security of radioactive sources. The First Africa Workshop on the Establishment of a Legal Framework governing Radiation Protection, the Safety of Radiation Sources and the Safe Management of Radioactive Waste held in Ethiopia in 2001 called upon the IAEA to form a forum for African countries to consider the Code of Conduct on the Safety and Security of Radioactive Sources and give it a legally binding effect so that the peaceful use of nuclear technology is not compromised. Despite these laudable efforts, Africa still faces considerable challenges in the implementation of safety and security of radioactive sources because of weak regulatory control and lack of infrastructure to properly control, manage and secure radiation sources 1 . The purpose of this paper was therefore, to analyze, review, address and share knowledge and experience with regard to safety and security measures of radioactive materials in Africa. This project will benefit IAEA's African member states in creating nuclear safety and security networking in the region

  3. Overview of physical safety of radiation sources in Brazil

    International Nuclear Information System (INIS)

    Lima, A.R.; Silva, F.C.A. da

    2017-01-01

    The threat of 'radiological terrorism' has been recognized worldwide after the event of September 11, 2001. Radioactive sources can be used for the development of DDR ('dirty bomb') devices. Studies show that the use of a DDR could cause health damage, psychosocial and economic and environmental damage. Brazil follows this worldwide concern, since it has a large medical-industrial park that uses radioactive sources. This paper presents an overview of the physical safety of radioactive sources in Brazil, based on the inventory of radiative facilities, regulatory aspects and international recommendations. For the preparation of the study, the database of radioactive sources of the regulatory body, the current normative status and the international recommendations were used. In Brazil there are approximately 2,500 radiative installations, with about 400 radioactive sources Category 1 and 2, which are the biggest concern in terms of physical safety. The Brazilian licensing standard addresses only some aspects of physical protection, not providing a clear orientation for the elaboration and implementation of physical protection systems, in accordance with international recommendations. For Brazil to be included in the world scenario of physical safety of radioactive sources, it is urgent to elaborate specific legislation with well-defined regulatory criteria. The lack of more detailed requirements makes it difficult to make a more careful regulatory assessment of the physical protection conditions of the facilities, either through the evaluation of plans and other physical protection documents or through regulatory inspections

  4. Safety regulation for the design approval of special form radioactive sources

    International Nuclear Information System (INIS)

    Cho, Woon-Kap

    2009-01-01

    Several kinds of special form radioactive sources for industrial, medical applications are being produced in Korea. Special form radioactive sources should meet strict safety requirements specified in the domestic safety regulations and the design of the sources should be certified by the regulatory authority, the Ministry of Education, Science and Technology (MEST). Several safety tests such as impact, percussion, heating, and leak tests are performed on the sources according to the domestic regulations and the international safety standards such as ANSI N542-1977 and ISO 2919-1999(E). As a regulatory expert body, Korea Institute of Nuclear Safety (KINS) assesses various types of application documents, such as safety analysis report, quality assurance program, and other documents evidencing fulfillment of requirements for design approval of the special form radioactive sources, submitted by a legal person who intends to produce special form radioactive sources and then reports the assessment result to MEST. A design approval certificate is issued to the applicant by MEST on the basis of a technical evaluation report presented by KINS.

  5. The advanced neutron source facility: Safety philosophy and studies

    International Nuclear Information System (INIS)

    Greene, S.R.; Harrington, R.M.

    1988-01-01

    The Advanced Neutron Source (ANS) is currently the only new civilian nuclear reactor facility proposed for construction in the United States. Even though the thermal power of this research-oriented reactor is a relatively low 300 MW, the design will undoubtedly receive intense scrutiny before construction is allowed to proceed. Safety studies are already under way to ensure that the maximum degree of safety in incorporated into the design and that the design is acceptable to the Department of Energy (DOE) and can meet the Nuclear Regulatory Commission regulations. This document discusses these safety studies

  6. Enhancing the Safety and Security of Radioactive Sources

    International Nuclear Information System (INIS)

    Hickey, J.

    2004-01-01

    The NRC initiatives to improve safety and security of sources began before 091101 and include both international and domestic activities. They supported the development and implementation of the IAEA Code of Conduct, which provides categorization of sources of concern, based on risk, improvement of regulatory programs of all member countries and improvement of safety and security of sources. International activities include the IAEA International Conference on Security of Sources (Vienna, Austria, March, 2003), the trilateral cooperation with Canada and Mexico, the assistance to individual countries to improve security and the proposed rule on export and import of radioactive material. The domestic initiatives are to issue the security orders and advisories to licensees, issue the panoramic irradiator orders (June 2003), issue the manufacturer orders (January 2004), complete the interim national source inventory, develop the national source tracking system, maintain the orphan source registration and retrieval program and upgrade the emergency preparedness

  7. The safety of radiation sources and radioactive materials in China

    International Nuclear Information System (INIS)

    Liu, H.

    2001-01-01

    The report describes the present infrastructure for the safety of radiation sources in China, where applications of radiation sources have become more and more widespread in the past years. In particular, it refers to the main functions of the National Nuclear Safety Administration of the State Environmental Protection Administration (SEPA), which is acting as the regulatory body for nuclear and radiation safety at nuclear installations, the Ministry of Public Health which issues licences for the use of radiation sources, and the Ministry of Public Security, which deals with the security of radiation sources. The report also refers to the main requirements of the existing regulatory system for radiation safety, i.e. the basic dose limits for radiation workers and the public, the licensing system for nuclear installations and for radioisotope-based and other irradiation devices, and the environmental impact assessment system. Information on the nationwide survey of radiation sources carried out by SEPA in 1991 is provided, and on some accidents that occurred in China due to loss of control of radiation sources and errors in the operation of irradiation facilities. (author)

  8. Developing and implementing safety culture in the uses of radiation sources

    International Nuclear Information System (INIS)

    Rojkind, R.H.

    1998-01-01

    This paper presents an approach to develop and implement safety culture in the uses of radiation sources in medicine, industry, agriculture, research and teaching, and makes reference to the experience gained by the industries where that culture has been developed and improved, i.e. the nuclear industry. Suggestions to assist progress toward safety culture are here described for regulators, organisations using those sources, and professional associations. Even though emphasis is given to small organisations or teams of workers, this approach may be also useful to greater organisations like industrial irradiation companies or governmental research laboratories. In each case, parties being the principal focus of the learning process toward a progressive safety culture should be identified. (author)

  9. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards. Tabs

  10. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards

  11. Sources of Safety Data and Statistical Strategies for Design and Analysis: Clinical Trials.

    Science.gov (United States)

    Zink, Richard C; Marchenko, Olga; Sanchez-Kam, Matilde; Ma, Haijun; Jiang, Qi

    2018-03-01

    There has been an increased emphasis on the proactive and comprehensive evaluation of safety endpoints to ensure patient well-being throughout the medical product life cycle. In fact, depending on the severity of the underlying disease, it is important to plan for a comprehensive safety evaluation at the start of any development program. Statisticians should be intimately involved in this process and contribute their expertise to study design, safety data collection, analysis, reporting (including data visualization), and interpretation. In this manuscript, we review the challenges associated with the analysis of safety endpoints and describe the safety data that are available to influence the design and analysis of premarket clinical trials. We share our recommendations for the statistical and graphical methodologies necessary to appropriately analyze, report, and interpret safety outcomes, and we discuss the advantages and disadvantages of safety data obtained from clinical trials compared to other sources. Clinical trials are an important source of safety data that contribute to the totality of safety information available to generate evidence for regulators, sponsors, payers, physicians, and patients. This work is a result of the efforts of the American Statistical Association Biopharmaceutical Section Safety Working Group.

  12. Safety Framework for Nuclear Power Source Applications in Outer Space

    International Nuclear Information System (INIS)

    2009-01-01

    Nuclear power sources (NPS) for use in outer space have been developed and used in space applications where unique mission requirements and constraints on electrical power and thermal management precluded the use of non-nuclear power sources. Such missions have included interplanetary missions to the outer limits of the Solar System, for which solar panels were not suitable as a source of electrical power because of the long duration of these missions at great distances from the Sun. According to current knowledge and capabilities, space NPS are the only viable energy option to power some space missions and significantly enhance others. Several ongoing and foreseeable missions would not be possible without the use of space NPS. Past, present and foreseeable space NPS applications include radioisotope power systems (for example, radioisotope thermoelectric generators and radioisotope heater units) and nuclear reactor systems for power and propulsion. The presence of radioactive materials or nuclear fuels in space NPS and their consequent potential for harm to people and the environment in Earth's biosphere due to an accident require that safety should always be an inherent part of the design and application of space NPS. NPS applications in outer space have unique safety considerations compared with terrestrial applications. Unlike many terrestrial nuclear applications, space applications tend to be used infrequently and their requirements can vary significantly depending upon the specific mission. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. For some applications, space NPS must operate autonomously at great distances from Earth in harsh environments. Potential accident conditions resulting from launch failures and inadvertent re-entry could expose NPS to extreme physical conditions. These and other unique safety considerations for the use of

  13. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.; Oldfather, D.; Lindner, A.

    1993-05-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 GeV synchrotron light source facility consisting of a 120 keV electron gun, 50 MeV linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  14. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  15. ITER safety task NID-5a: ITER tritium environmental source terms - safety analysis basis

    International Nuclear Information System (INIS)

    Natalizio, A.; Kalyanam, K.M.

    1994-09-01

    The Canadian Fusion Fuels Technology Project's (CFFTP) is part of the contribution to ITER task NID-5a, Initial Tritium Source Term. This safety analysis basis constitutes the first part of the work for establishing tritium source terms and is intended to solicit comments and obtain agreement. The analysis objective is to provide an early estimate of tritium environmental source terms for the events to be analyzed. Events that would result in the loss of tritium are: a Loss of Coolant Accident (LOCA), a vacuum vessel boundary breach. a torus exhaust line failure, a fuelling machine process boundary failure, a fuel processing system process boundary failure, a water detritiation system process boundary failure and an isotope separation system process boundary failure. 9 figs

  16. Research on neutron source multiplication method in nuclear critical safety

    International Nuclear Information System (INIS)

    Zhu Qingfu; Shi Yongqian; Hu Dingsheng

    2005-01-01

    The paper concerns in the neutron source multiplication method research in nuclear critical safety. Based on the neutron diffusion equation with external neutron source the effective sub-critical multiplication factor k s is deduced, and k s is different to the effective neutron multiplication factor k eff in the case of sub-critical system with external neutron source. The verification experiment on the sub-critical system indicates that the parameter measured with neutron source multiplication method is k s , and k s is related to the external neutron source position in sub-critical system and external neutron source spectrum. The relation between k s and k eff and the effect of them on nuclear critical safety is discussed. (author)

  17. Regulatory Oversight of Radioactive Sources through the Integrated Management of Safety and Security

    International Nuclear Information System (INIS)

    Horvath, K.

    2016-01-01

    The Hungarian Atomic Energy Authority (HAEA) has full regulatory competence; its mission is to oversee the safety and security of all the peaceful applications of atomic energy. All the radioactive sources having activity above the exemption level is registered and licensed both from safety and security points of view. The Hungarian central register of radioactive sources contains about 7,000 radioactive sources and 450 license holders. In order to use its limited resources the HAEA has decided to introduce an integrated regulatory oversight programme. Accordingly, during the licensing process and inspection activities the HAEA intends to assess both safety and security aspects at the same time. The article describes the Hungarian the various applications of radioactive materials, and summarizes the preparation activities of the HAEA. (author)

  18. Categorization of Radioactive Sources. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    . The IAEA takes seriously the enduring challenge for users and regulators everywhere: that of ensuring a high level of safety in the use of nuclear materials and radiation sources around the world. Their continuing utilization for the benefit of humankind must be managed in a safe manner, and the IAEA safety standards are designed to facilitate the achievement of that goal.

  19. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  20. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  1. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  2. Diagnosis and prognosis of the source term by the French Safety Institut during an emergency on a PWR

    International Nuclear Information System (INIS)

    Chauliac, C.; Janot, L.; Jouzier, A.; Rague, B.

    1992-01-01

    The French approach for the diagnosis and the prognosis of the source term during an accident on a PWR is presented and the tools which have been developed to implement this approach at the Institute for Nuclear Protection and Safety (IPSN) are described. (author). 2 refs, 3 figs

  3. Safety of Pseudomonas chlororaphis as a gene source for genetically modified crops.

    Science.gov (United States)

    Anderson, Jennifer A; Staley, Jamie; Challender, Mary; Heuton, Jamie

    2018-02-01

    Genetically modified crops undergo extensive evaluation to characterize their food, feed and environmental safety prior to commercial introduction, using a well-established, science-based assessment framework. One component of the safety assessment includes an evaluation of each introduced trait, including its source organism, for potential adverse pathogenic, toxic and allergenic effects. Several Pseudomonas species have a history of safe use in agriculture and certain species represent a source of genes with insecticidal properties. The ipd072Aa gene from P. chlororaphis encodes the IPD072Aa protein, which confers protection against certain coleopteran pests when expressed in maize plants. P. chlororaphis is ubiquitous in the environment, lacks known toxic or allergenic properties, and has a history of safe use in agriculture and in food and feed crops. This information supports, in part, the safety assessment of potential traits, such as IPD072Aa, that are derived from this source organism.

  4. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.L.; Oldfather, D.E.; Lindner, A.F.

    1993-08-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  5. Duke Surgery Patient Safety: an open-source application for anonymous reporting of adverse and near-miss surgical events.

    Science.gov (United States)

    Pietrobon, Ricardo; Lima, Raquel; Shah, Anand; Jacobs, Danny O; Harker, Matthew; McCready, Mariana; Martins, Henrique; Richardson, William

    2007-05-01

    Studies have shown that 4% of hospitalized patients suffer from an adverse event caused by the medical treatment administered. Some institutions have created systems to encourage medical workers to report these adverse events. However, these systems often prove to be inadequate and/or ineffective for reviewing the data collected and improving the outcomes in patient safety. To describe the Web-application Duke Surgery Patient Safety, designed for the anonymous reporting of adverse and near-miss events as well as scheduled reporting to surgeons and hospital administration. SOFTWARE ARCHITECTURE: DSPS was developed primarily using Java language running on a Tomcat server and with MySQL database as its backend. Formal and field usability tests were used to aid in development of DSPS. Extensive experience with DSPS at our institution indicate that DSPS is easy to learn and use, has good speed, provides needed functionality, and is well received by both adverse-event reporters and administrators. This is the first description of an open-source application for reporting patient safety, which allows the distribution of the application to other institutions in addition for its ability to adapt to the needs of different departments. DSPS provides a mechanism for anonymous reporting of adverse events and helps to administer Patient Safety initiatives. The modifiable framework of DSPS allows adherence to evolving national data standards. The open-source design of DSPS permits surgical departments with existing reporting mechanisms to integrate them with DSPS. The DSPS application is distributed under the GNU General Public License.

  6. Analysis on Dangerous Source of Large Safety Accident in Storage Tank Area

    Science.gov (United States)

    Wang, Tong; Li, Ying; Xie, Tiansheng; Liu, Yu; Zhu, Xueyuan

    2018-01-01

    The difference between a large safety accident and a general accident is that the consequences of a large safety accident are particularly serious. To study the tank area which factors directly or indirectly lead to the occurrence of large-sized safety accidents. According to the three kinds of hazard source theory and the consequence cause analysis of the super safety accident, this paper analyzes the dangerous source of the super safety accident in the tank area from four aspects, such as energy source, large-sized safety accident reason, management missing, environmental impact Based on the analysis of three kinds of hazard sources and environmental analysis to derive the main risk factors and the AHP evaluation model is established, and after rigorous and scientific calculation, the weights of the related factors in four kinds of risk factors and each type of risk factors are obtained. The result of analytic hierarchy process shows that management reasons is the most important one, and then the environmental factors and the direct cause and Energy source. It should be noted that although the direct cause is relatively low overall importance, the direct cause of Failure of emergency measures and Failure of prevention and control facilities in greater weight.

  7. The safety and the security of radioactive sources

    International Nuclear Information System (INIS)

    Bhatt, B.C.; Ghosh, P.K.; Nandakumar, A.N.

    2003-01-01

    A Task Group was appointed by Chairman, AERB to review the current practice and recommend procedures for ensuring the Safety and the Security of Radioactive Sources in India. The Task Group identified the issues involved and concluded that the current regulatory procedure relating to licensing was adequate in view of the stress placed on pre-licensing requirements and the undertakings obtained from the licensee and ensuring that appropriate radiation monitors and trained personnel are available at the licensee's institution. Each licensee is required to submit periodic reports confiriming the safety and the security of the sources in the possession of the institution. It is important to conduct regulatory inspection of the institutions frequently. In order to optimise the regulatory effort involved, the report recommends frequencies of inspections commensurate with the potential hazard associated with the source. For this purpose the sources are brought under three categories which are largely based on the categorization recommended by the International Atomic Energy Agency (IAEA), Vienna with deviations introduced on the basis of rationalized hazard potential associated with the sources. The importance of technical coordination between AERB and BARC is emphasised. (author)

  8. Analysis of safety information for nuclear power plants and development of source term estimation program

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Choi, Seong Soo; Park, Jin Hee

    1999-12-01

    Current CARE(Computerized Advisory System for Radiological Emergency) in KINS(Korea Institute of Nuclear Safety) has no STES(Source Term Estimation System) which links between SIDS(Safety Information Display System) and FADAS(Following Accident Dose Assessment System). So in this study, STES is under development. STES system is the system that estimates the source term based on the safety information provided by SIDS. Estimated source term is given to FADAS as an input for estimation of environmental effect of radiation. Through this first year project STES for the Kori 3,4 and Younggwang 1,2 has been developed. Since there is no CARE for Wolsong(PHWR) plants yet, CARE for Wolsong is under construction. The safety parameters are selected and the safety information display screens and the alarm logic for plant status change are developed for Wolsong Unit 2 based on the design documents for CANDU plants

  9. Mechanistic facility safety and source term analysis

    International Nuclear Information System (INIS)

    PLYS, M.G.

    1999-01-01

    A PC-based computer program was created for facility safety and source term analysis at Hanford The program has been successfully applied to mechanistic prediction of source terms from chemical reactions in underground storage tanks, hydrogen combustion in double contained receiver tanks, and proccss evaluation including the potential for runaway reactions in spent nuclear fuel processing. Model features include user-defined facility room, flow path geometry, and heat conductors, user-defined non-ideal vapor and aerosol species, pressure- and density-driven gas flows, aerosol transport and deposition, and structure to accommodate facility-specific source terms. Example applications are presented here

  10. Code of conduct on the safety and security of radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    The objectives of the Code of Conduct are, through the development, harmonization and implementation of national policies, laws and regulations, and through the fostering of international co-operation, to: (i) achieve and maintain a high level of safety and security of radioactive sources; (ii) prevent unauthorized access or damage to, and loss, theft or unauthorized transfer of, radioactive sources, so as to reduce the likelihood of accidental harmful exposure to such sources or the malicious use of such sources to cause harm to individuals, society or the environment; and (iii) mitigate or minimize the radiological consequences of any accident or malicious act involving a radioactive source. These objectives should be achieved through the establishment of an adequate system of regulatory control of radioactive sources, applicable from the stage of initial production to their final disposal, and a system for the restoration of such control if it has been lost. This Code relies on existing international standards relating to nuclear, radiation, radioactive waste and transport safety and to the control of radioactive sources. It is intended to complement existing international standards in these areas. The Code of Conduct serves as guidance in general issues, legislation and regulations, regulatory bodies as well as import and export of radioactive sources. A list of radioactive sources covered by the code is provided which includes activities corresponding to thresholds of categories.

  11. Code of conduct on the safety and security of radioactive sources

    International Nuclear Information System (INIS)

    2004-01-01

    The objectives of the Code of Conduct are, through the development, harmonization and implementation of national policies, laws and regulations, and through the fostering of international co-operation, to: (i) achieve and maintain a high level of safety and security of radioactive sources; (ii) prevent unauthorized access or damage to, and loss, theft or unauthorized transfer of, radioactive sources, so as to reduce the likelihood of accidental harmful exposure to such sources or the malicious use of such sources to cause harm to individuals, society or the environment; and (iii) mitigate or minimize the radiological consequences of any accident or malicious act involving a radioactive source. These objectives should be achieved through the establishment of an adequate system of regulatory control of radioactive sources, applicable from the stage of initial production to their final disposal, and a system for the restoration of such control if it has been lost. This Code relies on existing international standards relating to nuclear, radiation, radioactive waste and transport safety and to the control of radioactive sources. It is intended to complement existing international standards in these areas. The Code of Conduct serves as guidance in general issues, legislation and regulations, regulatory bodies as well as import and export of radioactive sources. A list of radioactive sources covered by the code is provided which includes activities corresponding to thresholds of categories

  12. Safety of radioactive sources in Portugal

    International Nuclear Information System (INIS)

    Ferro de Carvalho, A.

    2001-01-01

    The safety of radioactive sealed sources is assured in Portugal through a control system with a main goal of prevention of lost of control and inappropriate waste. The legal tools of the regulatory system are: authorization to use, keep, transfer or transport; a deposit of money as a guarantee; civil liability insurance; periodical information. The competent authority shall keep a national inventory of sealed sources. About 50% of the new sources authorized in 1999 were to be used in medical brachytherapy and industrial radiography. The radionuclide Ir-192 contributed with 99.6 % to the total amount of activity. The control system implemented in the country appears to be effective for activities over some GBq but quite ineffective for lower activities. It is supposed that the law will be revised in the near future to increase the effectiveness of the sealed source control system. (author)

  13. Safety of radiation sources and security of radioactive materials. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The International Atomic Energy Agency (IAEA) in co-operation with the European Commission (EC), International Criminal Police Organization (INTERPOL) and the World Customs Organization (WCO) organized an International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials, in Dijon, France, from 14 to 18 September 1998. The Government of France hosted this Conference through the Commissariat a l`energie atomique, Direction des applications militaires (CEA/DAM). This TECDOC contains the contributed papers dealing with the topics of this Conference which were accepted by the Conference Programme Committee for presentation. The papers written in one of the two working languages of the Conference, English or French are presented here each by a separate abstract. Ten technical sessions covered the following subjects: the regulatory control of radiation sources, including systems for notification, authorization and inspection; safety assessment techniques applied to radiation sources and design and technological measures including defense in depth and good engineering practice; managerial measures, including safety culture, human factors, quality assurance, qualified experts, training and education; learning from operational experience; international co-operation, including reporting systems and databases; verification of compliance, monitoring of compliance and assessment of the effectiveness of national programmes for the safety of sources; measures to prevent breaches in the security of radioactive materials, experience with criminal acts involving radioactive materials; detection and identification technologies for illicitly trafficked radioactive materials; response to detected cases and seized radioactive materials, strengthening of the awareness, training and exchange of information. The IAEA plans to issue the proceedings of this Conference containing the invited presentations, rapporteurs and Chairpersons overviews and summaries

  14. Safety of radiation sources and security of radioactive materials. Contributed papers

    International Nuclear Information System (INIS)

    1998-09-01

    The International Atomic Energy Agency (IAEA) in co-operation with the European Commission (EC), International Criminal Police Organization (INTERPOL) and the World Customs Organization (WCO) organized an International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials, in Dijon, France, from 14 to 18 September 1998. The Government of France hosted this Conference through the Commissariat a l'energie atomique, Direction des applications militaires (CEA/DAM). This TECDOC contains the contributed papers dealing with the topics of this Conference which were accepted by the Conference Programme Committee for presentation. The papers written in one of the two working languages of the Conference, English or French are presented here each by a separate abstract. Ten technical sessions covered the following subjects: the regulatory control of radiation sources, including systems for notification, authorization and inspection; safety assessment techniques applied to radiation sources and design and technological measures including defense in depth and good engineering practice; managerial measures, including safety culture, human factors, quality assurance, qualified experts, training and education; learning from operational experience; international co-operation, including reporting systems and databases; verification of compliance, monitoring of compliance and assessment of the effectiveness of national programmes for the safety of sources; measures to prevent breaches in the security of radioactive materials, experience with criminal acts involving radioactive materials; detection and identification technologies for illicitly trafficked radioactive materials; response to detected cases and seized radioactive materials, strengthening of the awareness, training and exchange of information. The IAEA plans to issue the proceedings of this Conference containing the invited presentations, rapporteurs and Chairpersons overviews and summaries

  15. Opening remarks at the International Conference on the Safety and Security of Radioactive Sources, Bordeaux, France, 27 June 2005

    International Nuclear Information System (INIS)

    Taniguchi, T.

    2005-01-01

    The vast majority of radioactive sources are controlled properly. However, radiological accidents have occurred in all regions of the world - which indicates that there is not always sufficient control of sources throughout their life cycle. Even advanced countries with developed regulatory systems lose track of sources each year resulting in orphan sources with the potential to cause incidents or accidents. Actually, an increasing number of cases of uncontrolled movement of sources are reported the Agency's Illicit Trafficking Database (ITDB). The International Conference on Security of Radioactive Sources, held in Vienna, Austria, in 2003, addressed these concerns and called for international initiatives, including the updating of the IAEA Action Plan for the Safety and Security of Radioactive Sources. As a direct result of the updated Action Plan the Code of Conduct on the Safety and Security of Radioactive Sources was revised and approved by the Board of Governors in 2003, its supporting Guidance on the Import and Export of Radioactive Sources was developed and approved in 2004 and the Safety Guide on Categorization of Radioactive Sources was completed recently. All three documents were developed under the auspices of the IAEA to achieve international consensus and they play a central role in this Conference. It is worth noting that more than 70 countries have already expressed their intention to follow the guidance given in the Code of Conduct on the Safety and Security of Radioactive Sources - and I would like to encourage more countries to do so. The Agency has been promoting for some time now the idea of a Global Nuclear Safety Regime. At the heart of this regime is a strong and effective national safety infrastructure where - as an overriding priority - safety issues are given the attention warranted by their significance. The need for sustainable regulatory infrastructure for the safety and security of radioactive sources was discussed at the

  16. Radiation safety and inventory of sealed radiation sources in Pakistan

    International Nuclear Information System (INIS)

    Ali, M.; Mannan, A.

    2001-01-01

    Sealed radiation sources (SRS) of various types and activities are widely used in industry, medicine, agriculture, research and teaching in Pakistan. The proper maintenance of records of SRS is mandatory for users/licensees. Since 1956, more than 2000 radiation sources of different isotopes having activities of Bq to TBq have been imported. Of these, several hundred sources have been disposed of and some have been exported/returned to the suppliers. To ensure the safety and security of the sources and to control and regulate the safe use of radiation sources in various disciplines, the Directorate of Nuclear Safety and Radiation Protection (DNSRP), the implementing arm of the regulatory authority in the country, has introduced a system for notifying, registering and licensing the use of all types of SRS. In order to update the inventory of SRS used throughout the country, the DNSRP has developed a database. (author)

  17. Phase 2 safety analysis report: National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Stefan, P.

    1989-06-01

    The Phase II program was established in order to provide additional space for experiments, and also staging and equipment storage areas. It also provides additional office space and new types of advanced instrumentation for users. This document will deal with the new safety issues resulting from this extensive expansion program, and should be used as a supplement to BNL Report No. 51584 ''National Synchrotron Light Source Safety Analysis Report,'' July 1982 (hereafter referred to as the Phase I SAR). The initial NSLS facility is described in the Phase I SAR. It comprises two electron storage rings, an injection system common to both, experimental beam lines and equipment, and office and support areas, all of which are housed in a 74,000 sq. ft. building. The X-ray Ring provides for 28 primary beam ports and the VUV Ring, 16. Each port is capable of division into 2 or 3 separate beam lines. All ports receive their synchrotron light from conventional bending magnet sources, the magnets being part of the storage ring lattice. 4 refs

  18. Sources of Safety Data and Statistical Strategies for Design and Analysis: Postmarket Surveillance.

    Science.gov (United States)

    Izem, Rima; Sanchez-Kam, Matilde; Ma, Haijun; Zink, Richard; Zhao, Yueqin

    2018-03-01

    Safety data are continuously evaluated throughout the life cycle of a medical product to accurately assess and characterize the risks associated with the product. The knowledge about a medical product's safety profile continually evolves as safety data accumulate. This paper discusses data sources and analysis considerations for safety signal detection after a medical product is approved for marketing. This manuscript is the second in a series of papers from the American Statistical Association Biopharmaceutical Section Safety Working Group. We share our recommendations for the statistical and graphical methodologies necessary to appropriately analyze, report, and interpret safety outcomes, and we discuss the advantages and disadvantages of safety data obtained from passive postmarketing surveillance systems compared to other sources. Signal detection has traditionally relied on spontaneous reporting databases that have been available worldwide for decades. However, current regulatory guidelines and ease of reporting have increased the size of these databases exponentially over the last few years. With such large databases, data-mining tools using disproportionality analysis and helpful graphics are often used to detect potential signals. Although the data sources have many limitations, analyses of these data have been successful at identifying safety signals postmarketing. Experience analyzing these dynamic data is useful in understanding the potential and limitations of analyses with new data sources such as social media, claims, or electronic medical records data.

  19. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    Science.gov (United States)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately

  20. Regulatory Control of Radiation Sources. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  1. Code of conduct on the safety and security of radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The objective of this Code is to achieve and maintain a high level of safety and security of radioactive sources through the development, harmonization and enforcement of national policies, laws and regulations, and through tile fostering of international co-operation. In particular, this Code addresses the establishment of an adequate system of regulatory control from the production of radioactive sources to their final disposal, and a system for the restoration of such control if it has been lost.

  2. Code of conduct on the safety and security of radioactive sources

    International Nuclear Information System (INIS)

    2001-03-01

    The objective of this Code is to achieve and maintain a high level of safety and security of radioactive sources through the development, harmonization and enforcement of national policies, laws and regulations, and through tile fostering of international co-operation. In particular, this Code addresses the establishment of an adequate system of regulatory control from the production of radioactive sources to their final disposal, and a system for the restoration of such control if it has been lost

  3. Safety assessment plans for authorization and inspection of radiation sources

    International Nuclear Information System (INIS)

    2002-05-01

    The objective of this TECDOC is to enhance the efficacy, quality and efficiency of the whole regulatory process. It provides advice on good practice administrative procedures for the regulatory process for preparation of applications, granting of authorizations, inspection, and enforcement. It also provides information on the development and use of standard safety assessment plans for authorization and inspection. The plans are intended to be used in conjunction with more detailed advice related to specific practices. In this sense, this TECDOC provides advice on a systematic approach to evaluations of protection and safety while other IAEA Safety Guides assist the user to distinguish between the acceptable and the unacceptable. This TECDOC covers administrative advice to facilitate the regulatory process governing authorization and inspection. It also covers the use of standard assessment and inspection plans and provides simplified plans for the more common, well established uses of radiation sources in medicine and industry, i.e. sources for irradiation facilities, industrial radiography, well logging, industrial gauging, unsealed sources in industry, X ray diagnosis, nuclear medicine, teletherapy and brachytherapy

  4. Safety assessment plans for authorization and inspection of radiation sources

    International Nuclear Information System (INIS)

    1999-09-01

    The objective of this TECDOC is to enhance the efficacy, quality and efficiency of the whole regulatory process. It provides advice on good practice administrative procedures for the regulatory process for preparation of applications, granting of authorizations, inspection, and enforcement. It also provides information on the development and use of standard safety assessment plans for authorization and inspection. The plans are intended to be used in conjunction with more detailed advice related to specific practices. In this sense, this TECDOC provides advice on a systematic approach to evaluations of protection and safety while other IAEA Safety Guides assist the user to distinguish between the acceptable and the unacceptable. This TECDOC covers administrative advice to facilitate the regulatory process governing authorization and inspection. It also covers the use of standard assessment and inspection plans and provides simplified plans for the more common, well established uses of radiation sources in medicine and industry, i.e. sources for irradiation facilities, industrial radiography, well logging, industrial gauging, unsealed sources in industry, X ray diagnosis, nuclear medicine, teletherapy and brachytherapy

  5. Radiation safety aspects in the use of radiation sources in industrial and heath-care applications

    International Nuclear Information System (INIS)

    Venkat Raj, V.

    2001-01-01

    The principle underlying the philosophy of radiation protection and safety is to ensure that there exists an appropriate standard of protection and safety for humans, without unduly limiting the benefits of the practices giving rise to exposure or incurring disproportionate costs in interventions. To realise these objectives, the International Commission on Radiation Protection (ICRP-60) and IAEA's Safety Series (IAEA Safety Series 120, 1996) have enunciated the following criteria for the application and use of radiation: (1) justification of practices; (2) optimisation of protection; (3) dose limitation and (4) safety of sources. Though these criteria are the basic tenets of radiation protection, the radiation hazard potentials of individual applications vary and the methods to achieve the above mentioned objectives principles are different. This paper gives a brief overview of the various applications of radiation and radioactive sources in India, their radiation hazard perspective and the radiation safety measures provided to achieve the basic radiation protection philosophy. (author)

  6. Romanian experience on safety and security of radiation sources

    International Nuclear Information System (INIS)

    Botgros, Madalina; Coroianu, Anton; Negreanu, Mircea

    2008-01-01

    Romania has established the first administrative structure for controlling the deployment of the nuclear activities in 1961 and the first Romanian nuclear law was published in 1974. In the present, it is in force the Law no. 111, published in 1996 and republished in 2003. Moreover, there are available facilities and services to the persons authorized to manage radioactive sources. The regulation for safety and security of radioactive sources was amended two times in order to implement the international recommendations for setting up the national system for accounting and control of radiation sources and to coordinate the recovery activities. As part of national control programme, the national inventory of sources and devices is updated permanently, when issuing a new authorization, when modifying an existing one, or when renewing an authorization system and records in the database. The government responsibility for the orphan sources is stated in the law on radioactive waste management and decommissioning fund. There is a protocol between CNCAN, Ministry of Internal and Ministry of Health and Family regarding the co-operation in the case of finding orphan sources. When a radiation source is spent, it becomes radioactive waste that has to be disposed off properly. Depending on the case, the holder of a spent source has the possibility either to return the radioactive source to its manufacturer for regeneration or to transfer it to the Radioactive Waste Treatment Facility. (author)

  7. Regulatory aspects of radiation sources safety in Albania

    International Nuclear Information System (INIS)

    Dollani, K.; Kushe, R.

    1998-01-01

    In this paper are presented the regulatory aspects of the radiation sources safety in Albania, based in the new Radiological Protection Act and Regulations. The radiation protection infrastructures and procedures are described as well as their functioning for the implementation of relevant activities such as licensing and regular inspection, personal dose monitoring, emergency preparedness which are developed in the frame of the IAEA Technical Co-operation Programme. The issue of the security of radiation sources is dealt in close relation with the preparation and use of the inventory of all radiation sources in the country. A special attention is paid to the identification and location of lost sources for their finding and secure storage. (author)

  8. Code of conduct on the safety and security of radioactive sources

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The objective of the code of conduct is to achieve and maintain a high level of safety and security of radioactive sources through the development, harmonization and enforcement of national policies, laws and regulations, and through the fostering of international co-operation. In particular, this code addresses the establishment of an adequate system of regulatory control from the production of radioactive sources to their final disposal, and a system for the restoration of such control if it has been lost. (N.C.)

  9. Safety assessment of the disposal of sealed radiation sources in boreholes

    International Nuclear Information System (INIS)

    Oliveira, Rosana Lagua de; Vicente, Roberto; Hiromoto, Goro

    2009-01-01

    The Radioactive Waste Management Laboratory (RNML) at the Nuclear Energy Research Institute (NERI) in Sao Paulo, Brazil, is developing the concept of a repository for disused sealed radiation sources in a deep borehole. Several thousands disused sealed radiation sources are stored at NERI awaiting the decision on final disposal and tens of thousands are still under the possession of the licensees. A significant fraction of these sources are long-lived and will require final disposal in a geological repository. The purpose of this paper is to identify and discuss suitable safety assessment strategies for the repository concept and to illustrate a rational approach for a long-term safety assessment methodology. (author)

  10. Safety Test Program Summary SNAP 19 Pioneer Heat Source Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1971-07-01

    Sixteen heat source assemblies have been tested in support of the SNAP 19 Pioneer Safety Test Program. Seven were subjected to simulated reentry heating in various plasma arc facilities followed by impact on earth or granite. Six assemblies were tested under abort accident conditions of overpressure, shrapnel impact, and solid and liquid propellant fires. Three capsules were hot impacted under Transit capsule impact conditions to verify comparability of test results between the two similar capsule designs, thus utilizing both Pioneer and Transit Safety Test results to support the Safety Analysis Report for Pioneer. The tests have shown the fuel is contained under all nominal accident environments with the exception of minor capsule cracks under severe impact and solid fire environments. No catastrophic capsule failures occurred in this test which would release large quantities of fuel. In no test was fuel visible to the eye following impact or fire. Breached capsules were defined as those which exhibit thoria contamination on its surface following a test, or one which exhibited visible cracks in the post test metallographic analyses.

  11. Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities

    International Nuclear Information System (INIS)

    2003-08-01

    Sealed radioactive sources are used in medicine, industry and research for a wide range of purposes. They can contain different radionuclides in greatly varying amounts. At the end of their useful lives, they are termed 'disused sources' but their activity levels can still be quite high. They are, for all practical purposes, another type of radioactive waste that needs to be disposed of safely. Disused sealed radioactive sources can represent a significant hazard to people if not managed properly. Many countries have no special facilities for the management or disposal of radioactive waste, as they have no nuclear power programmes requiring such facilities. Even in countries with developed nuclear programmes, disused sealed sources present problems as they often fall outside the common categories of radioactive waste for which disposal options have been identified. As a result, many disused sealed sources are kept in storage. Depending on the nature of the storage arrangements, this situation may represent a high potential risk to workers and to the public. The IAEA has received numerous requests for assistance from Member States faced with the problem of safely managing disused sealed sources. The requests have related to both technical and safety aspects. Particularly urgent requests have involved emergency situations arising from unsafe storage conditions and lost sources. There is therefore an important requirement for the development of safe and cost-effective final disposal solutions. Consequently, a number of activities have been initiated by the IAEA to assist Member States in the management of disused sealed sources. The objective of this report is to address safety issues relevant to the disposal of disused sealed sources, and other limited amounts of radioactive waste, in borehole facilities. It is the first in a series of reports aiming to provide an indication of the present issues related to the use of borehole disposal facilities to safely disposal

  12. Technical Guidance from the International Safety Framework for Nuclear Power Source Applications in Outer Space for Design and Development Phases

    Science.gov (United States)

    Summerer, Leopold

    2014-08-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space [1] has been adopted, following a multi-year process that involved all major space faring nations in the frame of the International Atomic Energy Agency and the UN Committee on the Peaceful Uses of Outer Space. The safety framework reflects an international consensus on best practices. After the older 1992 Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second document at UN level dedicated entirely to space nuclear power sources.This paper analyses aspects of the safety framework relevant for the design and development phases of space nuclear power sources. While early publications have started analysing the legal aspects of the safety framework, its technical guidance has not yet been subject to scholarly articles. The present paper therefore focuses on the technical guidance provided in the safety framework, in an attempt to assist engineers and practitioners to benefit from these.

  13. An improved electron impact ion source power supply

    International Nuclear Information System (INIS)

    Beaver, E.M.

    1974-01-01

    An electron impact ion source power supply has been developed that offers improved ion beam stability. The electrical adjustments of ion source parameters are more flexible, and safety features are incorporated to protect the electron emitting filament from accidental destruction. (author)

  14. Regulatory control and safety of radiation and radioactive sources in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2001-01-01

    The application of ionizing radiation and radioactive sources in different fields such as, medicine, industry, agriculture, research and teaching is constantly increasing in Bangladesh. Any system enacted to control exposure to ionizing radiation has as primary objective the protection of health of people against the deleterious effects of radiation. Establishing the appropriate level of radiological protection and safety of radiation sources used in practice or intervention attains this objective. The regulatory program governing the safe use of radioactive and radiation sources in Bangladesh is based on the legislation enacted as Nuclear Safety and Radiation Control (NSRC) Act-93 and NSRC Rules-97 and its implementation by the competent authority. The radiation control infrastructures and procedure are described as well as their functioning for the implementation of relevant activities such as licensing, regular inspection, personal dose monitoring, emergency preparedness, etc. The issue of security of radiation source is dealt in close relation with the preparation and use of the inventory of all radiation sources in the country

  15. Safety and Security of Radioactive Sources: Initiatives of the Forum of Nuclear Regulatory Bodies in Africa (FNRBA)

    International Nuclear Information System (INIS)

    Severa, R.

    2010-01-01

    Safety and Security of Radioactive Sources: Initiatives of the Forum of Nuclear Regulatory Bodies in Africa(FNRBA) is a regional organization comprising of nuclear regulatory bodies it’s goals are to promote the establishment of regulatory infrastructure in all countries of the Region to adopt joint action plan for implementation of self-assessment and work with Member States to upgrade their regulatory infrastructures, develop and promote a framework for capacity building in areas of radiation and nuclear safety and security, to create an opportunity for mutual support and coordination of regional initiatives by leveraging the development and utilization of regional and international resources and expertise and to serve as reference body on matters relating to nuclear and radiation safety and security in the Region. Radioactive active sources continue to play an increasingly important role in socio-economic activities on the African continent. There is also an ever increasing need to ensure that radioactive sources are utilized in a safe and secure manner

  16. The technological safety in facilities that manage radioactive sources

    International Nuclear Information System (INIS)

    Lizcano, D.

    2014-10-01

    The sealed radioactive sources are used inside a wide range of applications in the medicine, industry and investigation around the world. These sources can contain a great radionuclides variety, exhibiting a wide spectrum of activities and radiological half lives. This way, we can find pattern sources of radionuclides as Americium-241, Plutonium-238, Plutonium-239, Thorium-228 and Thorium-230, etc., with some activity of kBq in research laboratories, Iridium-192 and Cesium-137 sources used in brachytherapy with GBq activities, until sources with P Bq activities in industrial irradiators of Cobalt-60 and Cesium-137. This document approach the physical safety that entities like the IAEA recommends for the facilities that contain sealed sources, especially the measures that are taking in the Instituto Nacional de Investigaciones Nucleares (ININ) and others government facilities. (Author)

  17. Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)

    International Nuclear Information System (INIS)

    1995-01-01

    This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation

  18. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Chinese Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  19. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3 (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  20. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  1. Using level-I PRA for enhanced safety of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    Ramsey, C.T.; Linn, M.A.

    1995-01-01

    The phase-1, level-I probabilistic risk assessment (PRA) of the Advanced Neutron Source (ANS) reactor has been completed as part of the conceptual design phase of this proposed research facility. Since project inception, PRA and reliability concepts have been an integral part of the design evolutions contributing to many of the safety features in the current design. The level-I PRA has been used to evaluate the internal events core damage frequency against project goals and to identify systems important to safety and availability, and it will continue to guide and provide support to accident analysis, both severe and nonsevere. The results also reflect the risk value of defense-in-depth safety features in reducing the likelihood of core damage

  2. Methodology for safety and security of radioactive sources and materials. The Israeli approach

    International Nuclear Information System (INIS)

    Keren, M.

    1998-01-01

    About 10 Radioactive incidents occurred in Israel during 1996-1997. Some of them were theft or lost of Radioactive equipment or sources, some happened because misuse of Radioactive equipment and some of other reasons. Part of them could be eliminated if a better methodological attitude to the subject existed. A new methodology for notification, registration and licensing is described. Hopefully this methodology will increase defense in depth and the Safety and Security of Radioactive sources and materials. Information on the inventory of Radioactive sources and materials is essential. Where they are situated, what is the supply rate or all history from berth to grave. Persons involved are important: Who are the Radiation Safety Officers (RSO), what is their training and updating programs. As much as possible information on the site and places where those Radioactive sources and materials are used. Procedures for security of sources and materials is part of site information, beside safety precautions. Users are obliged to inform on any changes and to ask for confirmation to those changes. The same is when high activity sources are moved across the country. (author)

  3. Common basis of establishing safety standards and other safety decision-making levels for different sources of health risk

    International Nuclear Information System (INIS)

    Demin, V.F.

    2002-01-01

    Current approaches in establishing safety standards and other decision-making levels for different sources of health risk are critically analysed. To have a common basis for this decision-making a specific risk index R is recommended. In the common sense R is quantitatively defined as LLE caused by the annual exposure to the risk source considered: R = annual exposure, damage (LLE) from the exposure unit. This common definition is also rewritten in specific forms for a set of different risk sources (ionising radiation, chemical pollutants, etc): for different risk sources the exposure can be measured with different quantities (the probability of death, the exposure dose, etc.). R is relative LLE: LLE in years referred to 1 year under the risk. The dimension of this value is [year/year]. In the statistical sense R is conditionally the share of the year, which is lost due to exposure to a risk source during this year. In this sense R can be called as the relative damage. Really lifetime years are lost after the exposure. R can be in some conditional sense considered as a dimensionless quantity. General safety standards R n for the public and occupational workers have been suggested in terms of this index: R n = 0.0007 and 0.01 accordingly. Secondary safety standards are derived for a number of risk sources (ionising radiation, environmental chemical pollutants, etc). Values of R n are chosen in such a way that to have the secondary radiation BSS being equivalent to the current one's. Other general and derived levels for safety decision-making are also proposed including the de-minimus levels. Their possible dependence on the national or regional health-demographic data (HDD) is considered. Such issues as the ways of the integration and averaging of risk indices considered through the national or regional HDD for different risk sources and the use of non-threshold linear exposure - response relationships for ionising radiation and chemical pollutants are analysed

  4. Control of the safety and security of radiation sources in Argentina

    International Nuclear Information System (INIS)

    Oliveira, A.A.

    2001-01-01

    The report refers to the main elements of the regulatory infrastructure in Argentina, noting as relevant the promulgation in 1997 of the Act 24.804, which established the Nuclear Regulatory Authority (ARN) as an independent agency empowered to establish standards and enforce their application with regard to the possession and use of radiation sources. Important elements of such regulatory infrastructure are described in the report, and in particular those explaining the existing licensing system, the basic radiological safety and security requirements, the enforcement programme, and the key actions considered for the appropriate control of radioactive sources. In this respect, the report emphasizes the importance of the management of disused and orphan sources, and the role of education and training. (author)

  5. International conference on the safety and security of radioactive sources: Towards a global system for the continuous control of sources throughout their life cycle. Contributed papers

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of the conference is to promote a wide exchange of information on key issues relating to the safety and security of radioactive sources, including: drawing up an inventory; finding a solution without delay to situations resulting from past activities; preparing for the future by defining a global cooperative approach to the continuous control of radioactive sources during their life cycle. It is expected that the conference will foster a better understanding of the risks posed by these sources from the point of view of radiation safety and the threat associated with some of them in the event of malevolent use, and will help in finding ways of reducing the likelihood of the occurrence of a radiological incident or accident, or of a malevolent act. It is also expected to identify the preparedness and response measures that are necessary and to facilitate a common understanding on the feasibility of creating a sustainable global system for ensuring the safety and security of radioactive sources

  6. International conference on the safety and security of radioactive sources: Towards a global system for the continuous control of sources throughout their life cycle. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The objective of the conference is to promote a wide exchange of information on key issues relating to the safety and security of radioactive sources, including: drawing up an inventory; finding a solution without delay to situations resulting from past activities; preparing for the future by defining a global cooperative approach to the continuous control of radioactive sources during their life cycle. It is expected that the conference will foster a better understanding of the risks posed by these sources from the point of view of radiation safety and the threat associated with some of them in the event of malevolent use, and will help in finding ways of reducing the likelihood of the occurrence of a radiological incident or accident, or of a malevolent act. It is also expected to identify the preparedness and response measures that are necessary and to facilitate a common understanding on the feasibility of creating a sustainable global system for ensuring the safety and security of radioactive sources.

  7. Spallation Neutron Source Accelerator Facility Target Safety and Non-safety Control Systems

    International Nuclear Information System (INIS)

    Battle, Ronald E.; DeVan, B.; Munro, John K. Jr.

    2006-01-01

    The Spallation Neutron Source (SNS) is a proton accelerator facility that generates neutrons for scientific researchers by spallation of neutrons from a mercury target. The SNS became operational on April 28, 2006, with first beam on target at approximately 200 W. The SNS accelerator, target, and conventional facilities controls are integrated by standardized hardware and software throughout the facility and were designed and fabricated to SNS conventions to ensure compatibility of systems with Experimental Physics Integrated Control System (EPICS). ControlLogix Programmable Logic Controllers (PLCs) interface to instruments and actuators, and EPICS performs the high-level integration of the PLCs such that all operator control can be accomplished from the Central Control room using EPICS graphical screens that pass process variables to and from the PLCs. Three active safety systems were designed to industry standards ISA S84.01 and IEEE 603 to meet the desired reliability for these safety systems. The safety systems protect facility workers and the environment from mercury vapor, mercury radiation, and proton beam radiation. The facility operators operated many of the systems prior to beam on target and developed the operating procedures. The safety and non-safety control systems were tested extensively prior to beam on target. This testing was crucial to identify wiring and software errors and failed components, the result of which was few problems during operation with beam on target. The SNS has continued beam on target since April to increase beam power, check out the scientific instruments, and continue testing the operation of facility subsystems

  8. National Synchrotron Light Source safety-analysis report

    International Nuclear Information System (INIS)

    Batchelor, K.

    1982-07-01

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given

  9. Towards an International Approach to Nuclear Safety

    International Nuclear Information System (INIS)

    Tomihiro Taniguchi

    2006-01-01

    This document presents in a series of transparencies the different activities of the IAEA: Introduction of International Atomic Energy Agency, Changing world, Changing Technology, Changing Global Security, Developing Innovative Nuclear Energy Systems, Global Nuclear Safety Regime, IAEA Safety Standards: Hierarchy - Global Reference for Striving for Excellence, IAEA Safety Reviews and Services: Integrated Safety Approach, Global Knowledge Network - Asian Nuclear Safety Network, Safety Issues and Challenges, Synergy between Safety and Security, Recent Developments: Safety and Security of Radioactive Sources, Convention on Physical Protection of Nuclear Material (CPPNM), Incident and Emergency Preparedness and Response, Holistic Approach for Safety and Security, Sustainable Development. (J.S.)

  10. ITER Safety Task NID-5A, Subtask 1-1: Source terms and energies - initial tritium source terms. Final report

    International Nuclear Information System (INIS)

    Fong, C.; Kalyanam, K.M.; Tanaka, M.R.; Sood, S.; Natalizio, A.; Delisle, M.

    1995-02-01

    The overall objective of the Early Safety and Environmental Characterization Study (ESECS) is to assess the environmental impact of tritium using appropriate assumptions on a hypothetical site for ITER, having the r eference s ite characteristics as proposed by the JCT. The objective of this work under the above subtask 1-1, NID-5a, is to determine environmental source terms (i.e., process source term x containment release fraction) for the fuel cycle and cooling systems. The work is based on inventories and process source terms (i.e., inventory x mobilization fraction), provided by others (under Task NID 3b). The results of this work form the basis for the determination, by others, of the off-site dose (i.e., environmental source term x dose/release ratio). For the determination of the environmental source terms, the TMAP4 code has been utilized (ref 1). This code is approved by ITER for safety assessment. Volume 3 is a compilation of appendices giving detailed results of the study

  11. ITER Safety Task NID-5A, Subtask 1-1: Source terms and energies - initial tritium source terms. Final report

    International Nuclear Information System (INIS)

    Fong, C.; Kalyanam, K.M.; Tanaka, M.R.; Sood, S.; Natalizio, A.; Delisle, M.

    1995-02-01

    The overall objective of the Early Safety and Environmental Characterization Study (ESECS) is to assess the environmental impact of tritium using appropriate assumptions on a hypothetical site for ITER, having the r eference s ite characteristics as proposed by the JCT. The objective of this work under the above subtask 1-1, NID-5a, is to determine environmental source terms (i.e., process source term x containment release fraction) for the fuel cycle and cooling systems. The work is based on inventories and process source terms (i.e., inventory x mobilization fraction), provided by others (under Task NID 3b). The results of this work form the basis for the determination, by others, of the off-site dose (i.e., environmental source term x dose/release ratio). For the determination of the environmental source terms, the TMAP4 code has been utilized (ref 1). This code is approved by ITER for safety assessment. 6 refs

  12. Safety-analysis report for packaging (SARP) general-purpose heat-source module 750-Watt shipping container

    International Nuclear Information System (INIS)

    Whitney, M.A.; Burgan, C.E.; Blauvelt, R.K.; Zocher, R.W.; Bronisz, S.E.

    1981-01-01

    The SARP includes discussions of structural integrity, thermal resistance, radiation shielding and radiological safety, nuclear criticality safety, and quality control. Extensive tests and evaluations were performed to show that the container will function effectively with respect to all required standards and when subjected to normal transportation conditions and the sequence of four hypothetical accident conditions (free drop, puncture, thermal, and water immersion). In addition, a steady state temperature profile and radiation profile were measured using two heat sources that very closely resemble the GPHS. This gave an excellent representation of the GPHS temperature and radiation profile. A nuclear criticality safety analysis determined that all safety requirements are met

  13. Safety of radiation sources and other radioactive materials in Jordan

    International Nuclear Information System (INIS)

    Majali, M.M.

    2001-01-01

    Since joining the IAEA Model Project for upgrading radiation protection infrastructure in countries of West Asia, Jordan has amended its radiation safety legislation. The Regulatory Authority is improving its inventory system for radiation sources and other radioactive materials and also its notification, registration, licensing, inspection and enforcement systems. It has established national provisions for the management of orphan sources after they have been found. The system for the control of the radiation sources and other radioactive materials entering the country has been improved by the Regulatory Authority. (author)

  14. Strengthening the safety and security of radioactive sources worldwide: a perspective on Philippine contributions

    International Nuclear Information System (INIS)

    Murray, Allan

    2009-01-01

    Radioactive sources have been used for many decades in a wide variety of applications in all countries. The safety of radioactive sources and the associated radiation protection have been implemented by national and international programs during this time with cooperation through the IAEA intended to achieve application of minimum standards and harmonization of approach. The security of radioactive sources is however relatively new consideration. A perspective on the Philippine contributions to the safety and security of radioactive sources will be provided with reference to the following: What is radioactive source security and why it is important?; International cooperation, including the IAEA Code of Conduct; Regulation for radioactive source security; Implementation of radioactive source security measures for licenses, operators and others; Impact of regulatory and operational matters such as professional development and training, emergency preparedness and response, and radiation protection. (author)

  15. Safety issues in the handling of radiation sources in category IV gamma radiation facilities

    International Nuclear Information System (INIS)

    Kohli, A.K.

    2002-01-01

    There is potential for incidents/accidents related to handling of radiation sources. This is increasing due to the fact that more number of plants that too with much larger levels of activity are now coming up. Such facilities produce very high levels of exposure rates during irradiation. A person accidentally present in the irradiation cell can receive a lethal dose within a very short time. Apart from safety requirements during operation and maintenance of these facilities, safety during loading and unloading of sources is important. Category IV type irradiators are the most common. Doubly encapsulated Co-60 slugs are employed to form the source pencils. These irradiators employ a water pool for safely storing the source pencils when irradiation of the products is not going on or when human access is needed into the irradiation cell for some maintenance or source loading/unloading operations. Safety during loading/unloading operations of source pencils is important. In design itself care needs to be taken such that all such operations are convenient and any incident will not lead to a situation where it becomes difficult to come out. Different situations, which can arise during handling of radiation sources and suggested designs to obviate such tight situations, are discussed. (Author)

  16. Regulatory Control of Radiation Sources. Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  17. The international standard for protection from ionizing radiation and safety of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, T [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1995-06-01

    This document is a review in hebrew of the new 1994 international standard of the IAEA. The new standard title is `Basic safety standards for radiation protection and for the safety of radiation sources`, which were published in the ICRP Pub. 9.

  18. The IAEA's sub programme on the safety of radiation sources and the security of radioactive materials

    International Nuclear Information System (INIS)

    Ortiz, P.; Oresegun, M.; Bilbao, A.; Webb, G.A.M.; Cunninghan, R.

    1998-01-01

    In compliance with its mandate to establish standards of safety and to provide for their application with respect to radiation sources, the International Atomic Energy Agency has developed a subprogramme aimed at providing Member States guidance and assistance on achieving regulatory control and the safe use of the sources. The guidance addresses the establishment of a Regulatory Programme, with focus on a system for notification and authorization (registration and licensing) and inspection of radiation sources, including check lists for review of safety. It also includes methods for assessing its effectiveness of the Regulatory Programme and is complemented with tools for the management of data by the Regulatory Authority and Services to assist Member States in assessment and implementation of the programme. In addition, technical guidance for the safety of radiation sources includes both prospective and retrospective safety assessment. Retrospective methods have been used resulting in the publication and dissemination of information and lessons from accidents, both individual accident reports and lessons from collection of accident for the practices with major sources (industrial radiography, irradiators and radiotherapy). Prospective methods will include guidance on the application of the principles of radiation protection to potential exposure, as well as methods to apply the principles, such as identification and evaluation of scenarios. Practice specific reports will address the major radiation sources. A research programme will be dedicated to apply Probabilistic Safety Assessment (PSA) to radiation sources. (author)

  19. ITER Safety Task NID-5A, Subtask 1-1: Source terms and energies - initial tritium source terms. Final report

    International Nuclear Information System (INIS)

    Fong, C.; Kalyanam, K.M.; Tanaka, M.R.; Sood, S.; Natalizio, A.; Delisle, M.

    1995-02-01

    The overall objective of the Early Safety and Environmental Characterization Study (ESECS) is to assess the environmental impact of tritium using appropriate assumptions on a hypothetical site for ITER, having the r eference s ite characteristics as proposed by the JCT. The objective of this work under the above subtask 1-1, NID-5a, is to determine environmental source terms (i.e., process source term x containment release fraction) for the fuel cycle and cooling systems. The work is based on inventories and process source terms (i.e., inventory x mobilization fraction), provided by others (under Task NID 3b). The results of this work form the basis for the determination, by others, of the off-site dose (i.e., environmental source term x dose/release ratio). For the determination of the environmental source terms, the TMAP4 code has been utilized (ref 1). This code is approved by ITER for safety assessment. Volume 2 is a compilation of appendices giving detailed results of the study. 5 figs

  20. Some preliminary design considerations for the ANS [Advanced Neutron Source] reactor cold source

    International Nuclear Information System (INIS)

    Henderson, D.L.

    1988-01-01

    Two areas concerned with the design of the Advanced Neutron Source (ANS) cold source have been investigated by simple one-dimensional calculations. The gain factors computed for a possible liquid nitrogen-15 cold source moderator are considerably below those computed for the much colder liquid deuterium moderator, as is reasonable considering the difference in moderator temperature. Nevertheless, nitrogen-15 does represent a viable option should safety related issues prohibit the use of deuterium as a moderating material. The slab geometry calculations have indicated that reflection of neutrons may be the dominant moderating mechanism and should be a consideration in the design of the cold source. 9 refs., 2 figs

  1. Safety considerations of disposal of disused sealed sources in Puspokszilagy Repository, Hungary

    International Nuclear Information System (INIS)

    2003-01-01

    The report presents the management of radioactive waste in Hungary Puspokszilagy Repository (RWTDF) including waste acceptance criteria, safety assessments, Action Plan for the safety improvement and present projects. The Puspokszilagy Repository is a typical near-surface repository, sink into the ground 6 m depth. The facility is a shallow land disposal type, appropriated for disposal of short and medium lived LILW, acceptable for temporary storage of long lived LILW. It consists of vaults containing cells for solidified drummed waste, wells for spent sealed sources, work building for treatment and interim storage and office building for environmental measurements. Two safety assessments have been performed in 2000 and 2002. The new safety assessment confirms the main statements of SA 2000, according to which several waste types can cause serious problems in the distant future: Until the finish of passive control the safety of the environment is guaranteed. After that time it is possible to arise events leading to exceeding of dose restricts (more then 10 mSv/yr but less then 100 mSv/yr), because of disposal of long lived radionuclides (mainly C-14,Tc-99, Ra-226, Th-232, U-234) and significant activities of Cs-137 sources.There are uncertainties in radionuclide amounts and distributions, as well as in the physical and chemical characteristics of the wastes that determine radionuclide mobility and toxicity. The recommendations to improve the safety include: Long lived SSRS in the 'B' and 'D' wells should be removed before the closure of repository. Large Cs-137 sources and long lived sources in the 'A' vaults should be recovered (if its feasible); All vaults should be backfilled to provide chemical conditioning; The waste packaged in plastic bags should be repackaged and compacted into drums or containers; The inventory should be revise. Waste acceptance requirements in the future are: The disposal of long lived radionuclides is no permitted. The long lived waste

  2. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  3. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2002-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  4. an automatic safety control for immersion water heater

    African Journals Online (AJOL)

    NIJOTECH

    An important source of concern with this appliance is the frequent possibility of outbreak of fire due to ... The safety condition is achieved by incorporating a device, which automatically .... The relay-driving network is indicated in the circuit of ...

  5. Some problems of neutron source multiplication method for site measurement technology in nuclear critical safety

    International Nuclear Information System (INIS)

    Shi Yongqian; Zhu Qingfu; Hu Dingsheng; He Tao; Yao Shigui; Lin Shenghuo

    2004-01-01

    The paper gives experiment theory and experiment method of neutron source multiplication method for site measurement technology in the nuclear critical safety. The measured parameter by source multiplication method actually is a sub-critical with source neutron effective multiplication factor k s , but not the neutron effective multiplication factor k eff . The experiment research has been done on the uranium solution nuclear critical safety experiment assembly. The k s of different sub-criticality is measured by neutron source multiplication experiment method, and k eff of different sub-criticality, the reactivity coefficient of unit solution level, is first measured by period method, and then multiplied by difference of critical solution level and sub-critical solution level and obtained the reactivity of sub-critical solution level. The k eff finally can be extracted from reactivity formula. The effect on the nuclear critical safety and different between k eff and k s are discussed

  6. Safety Analysis Report for Primary Capsule of Ir-192 Radiation Source

    International Nuclear Information System (INIS)

    Lee, J. C.; Bang, K. S.; Choi, W. S.; Seo, K. S.; Son, K. J.; Park, W. J.

    2008-12-01

    All of the source capsules to transport a special form radioactive material should be designed and fabricated in accordance with the design criteria prescribed in IAEA standards and domestic regulations. The objective of this project is to prove the safety of a primary capsule for Ir-192 radiation source which produced in the HANARO. The safety tests of primary capsules were carried out for the impact, percussion and heat conditions. And leakage tests were carried out before and after the each tests. The capsule showed slight scratches and their deformations were not found after each tests. It also met the allowable limits of leakage rate after each test. Therefore, it has been verified that the capsule was designed and fabricated to meet all requirements for the special form radioactive materials

  7. New source terms: what do they tell us about engineered safety feature performance

    International Nuclear Information System (INIS)

    Bernero, R.M.

    1985-01-01

    The accident behavior models which are the basis of engineered safety feature design are generally simple, non-mechanistic and concentrated on volatile radioiodine. Now data from source term studies show that models should be more mechanistic and look at other species than volatile iodine. A complete reevaluation of engineered safety features is needed

  8. Inspection of radiation sources and regulatory enforcement (supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2010-08-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depends on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for carrying out regulatory inspections, and taking necessary enforcement actions. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the processes for carrying out regulatory inspections and taking enforcement actions. It includes information on the development and use of procedures and standard review plans (i.e. checklists) for inspection. Specific procedures for inspection of radiation practices and sources are provided in the Appendices

  9. Inspection of radiation sources and regulatory enforcement (supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2007-04-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depends on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for carrying out regulatory inspections, and taking necessary enforcement actions. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the processes for carrying out regulatory inspections and taking enforcement actions. It includes information on the development and use of procedures and standard review plans (i.e. checklists) for inspection. Specific procedures for inspection of radiation practices and sources are provided in the Appendices

  10. Big data in food safety: An overview.

    Science.gov (United States)

    Marvin, Hans J P; Janssen, Esmée M; Bouzembrak, Yamine; Hendriksen, Peter J M; Staats, Martijn

    2017-07-24

    Technology is now being developed that is able to handle vast amounts of structured and unstructured data from diverse sources and origins. These technologies are often referred to as big data, and open new areas of research and applications that will have an increasing impact in all sectors of our society. In this paper we assessed to which extent big data is being applied in the food safety domain and identified several promising trends. In several parts of the world, governments stimulate the publication on internet of all data generated in public funded research projects. This policy opens new opportunities for stakeholders dealing with food safety to address issues which were not possible before. Application of mobile phones as detection devices for food safety and the use of social media as early warning of food safety problems are a few examples of the new developments that are possible due to big data.

  11. The safety of radiation sources and the security of radioactive materials: The situation in Italy

    International Nuclear Information System (INIS)

    Mezzanotte, R.; Sgrilli, E.

    2001-01-01

    An outline of the relevant Italian legislation is provided in the report in order to give an overview of the country's situation concerning the safety of radiation sources and the security of radioactive materials. The main rules making up the Italian system are itemized in the report, as regards statutes and legislative acts. Legislative Decree no. 241, 2001, will transpose into Italian legislation the directive 96/29 Euratom, which lays down European Basic Safety Standards in accordance with the recommendations of ICRP Publication 60. The report also refers to the Italian regulatory system and how it is structured and operated. (author)

  12. Fission product source terms and engineered safety features

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1984-01-01

    The author states that new, technically defensible, methodologies to establish realistic source term values for nuclear reactor accidents will soon be available. Although these methodologies will undoubtedly find widespread use in the development of accident response procedures, the author states that it is less clear that the industry is preparing to employ the newer results to develop a more rational approach to strategies for the mitigation of fission product releases. Questions concerning the performance of existing engineered safety systems are reviewed

  13. Regional cooperation to reduce the safety and security risks of Orphan radioactive sources

    International Nuclear Information System (INIS)

    Howard, Geoffrey; Hacker, Celia; Murray, Allan; Romallosa, Kristine; Caseria, Estrella; Africa del Castillo, Lorena

    2008-01-01

    ANSTO's Regional Security of Radioactive Sources (RSRS) Project, in cooperation with the Philippine Nuclear Research Institute (PNRI), has initiated a program to reduce the safety and security risks of orphan radioactive sources in the Philippines. Collaborative work commenced in February 2006 during the Regional Orphan Source Search and Methods Workshop, co-hosted by ANSTO and the US National Nuclear Security Administration. Further professional development activities have occurred following requests by PNRI to ANSTO to support improvements in PNRI's capability and training programs to use a range of radiation survey equipment and on the planning and methods for conducting orphan source searches. The activities, methods and outcomes of the PNRI-ANSTO cooperative program are described, including: i.) Delivering a training workshop which incorporates use of source search and nuclide identification equipment and search methodology; and train-the-trainer techniques for effective development and delivery of custom designed training in the Philippines; ii.) Support and peer review of course work on Orphan Source Search Equipment and Methodology developed by PNRI Fellows; iii.) Supporting the delivery of the inaugural National Training Workshop on Orphan Source Search hosted by PNRI in the Philippines; iv.) Partnering in searching for orphan sources in Luzon, Philippines, in May 2007. The methods employed during these international cooperation activities are establishing a new model of regional engagement that emphasises sustainability of outcomes for safety and security of radioactive sources. (author)

  14. Exploiting heterogeneous publicly available data sources for drug safety surveillance: computational framework and case studies.

    Science.gov (United States)

    Koutkias, Vassilis G; Lillo-Le Louët, Agnès; Jaulent, Marie-Christine

    2017-02-01

    Driven by the need of pharmacovigilance centres and companies to routinely collect and review all available data about adverse drug reactions (ADRs) and adverse events of interest, we introduce and validate a computational framework exploiting dominant as well as emerging publicly available data sources for drug safety surveillance. Our approach relies on appropriate query formulation for data acquisition and subsequent filtering, transformation and joint visualization of the obtained data. We acquired data from the FDA Adverse Event Reporting System (FAERS), PubMed and Twitter. In order to assess the validity and the robustness of the approach, we elaborated on two important case studies, namely, clozapine-induced cardiomyopathy/myocarditis versus haloperidol-induced cardiomyopathy/myocarditis, and apixaban-induced cerebral hemorrhage. The analysis of the obtained data provided interesting insights (identification of potential patient and health-care professional experiences regarding ADRs in Twitter, information/arguments against an ADR existence across all sources), while illustrating the benefits (complementing data from multiple sources to strengthen/confirm evidence) and the underlying challenges (selecting search terms, data presentation) of exploiting heterogeneous information sources, thereby advocating the need for the proposed framework. This work contributes in establishing a continuous learning system for drug safety surveillance by exploiting heterogeneous publicly available data sources via appropriate support tools.

  15. Revised IAEA Code of Conduct on the Safety and Security of Radioactive Sources

    International Nuclear Information System (INIS)

    Wheatley, J. S.

    2004-01-01

    The revised Code of Conduct on the Safety and Security of Radioactive Sources is aimed primarily at Governments, with the objective of achieving and maintaining a high level of safety and security of radioactive sources through the development, harmonization and enforcement of national policies, laws and regulations; and through the fostering of international co-operation. It focuses on sealed radioactive sources and provides guidance on legislation, regulations and the regulatory body, and import/export controls. Nuclear materials (except for sources containing 239Pu), as defined in the Convention on the Physical Protection of Nuclear Materials, are not covered by the revised Code, nor are radioactive sources within military or defence programmes. An earlier version of the Code was published by IAEA in 2001. At that time, agreement was not reached on a number of issues, notably those relating to the creation of comprehensive national registries for radioactive sources, obligations of States exporting radioactive sources, and the possibility of unilateral declarations of support. The need to further consider these and other issues was highlighted by the events of 11th September 2001. Since then, the IAEA's Secretariat has been working closely with Member States and relevant International Organizations to achieve consensus. The text of the revised Code was finalized at a meeting of technical and legal experts in August 2003, and it was submitted to IAEA's Board of Governors for approval in September 2003, with a recommendation that the IAEA General Conference adopt it and encourage its wide implementation. The IAEA General Conference, in September 2003, endorsed the revised Code and urged States to work towards following the guidance contained within it. This paper summarizes the history behind the revised Code, its content and the outcome of the discussions within the IAEA Board of Governors and General Conference. (Author) 8 refs

  16. The French Experience Regarding Peer Reviews to Improve the Safety and Security of Radioactive Sources

    International Nuclear Information System (INIS)

    Lachaume, J.-L.; Bélot, G.

    2015-01-01

    France has a 50 year history of control over radioactive sources. Convinced that peer reviews may be helpful to improve any regulatory system, France decided to experience a ‘full scope’ Integrated Regulatory Review Service mission in 2006 and its follow-up mission in 2009, including a review of the implementation of the Code of Conduct. The reviews, interviews and observations performed during these missions enabled the experts to have a thorough knowledge of the French system and to highlight its strengths and ways for improvements. Following these reviews, France decided to rely on its good practices, extend them as much as possible and to define, implement and address an action plan to improve its regulatory control over radioactive sources, while maintaining the prime responsibility on the operators. While good practices in the tracking of sources were maintained and slight evolutions were conducted in the safety regulations, licensing process, and inspection and enforcement actions, the major outcome of these reviews will obviously consist of the entrustment of the French Nuclear Safety Authority with the role of the regulatory authority for the security of radioactive sources and the implementation of dedicated provisions. (author)

  17. Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview

    Science.gov (United States)

    Doshi, Bharat; Reddy, D. Chenna

    2017-04-01

    Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion

  18. A proposal for an international convention on radiation safety

    International Nuclear Information System (INIS)

    Ahmed, J.U.

    1998-01-01

    One century has passed since harmful effects of radiation on living tissues were recognized. Organized efforts to reduce radiation hazards began in early 1920s. Major efforts by the ICRP since 1928, aided by ICRU, greatly helped in formulating principles, policies and guidance for radiation protection. The WHO formally recognized ICRP in 1956 and began implementing ICRP recommendations and guidance throughout the world. The IAEA, after it took office in 1957, began to establish or adopt standards of safety based on ICRP recommendations and provide for application of these standards in the field of atomic energy. Later on, other pertinent international organizations joined IAEA in establishing the Basic Safety Standards on radiation safety. The IAEA has issued, until now, nearly couple of hundred safety related documents on radiation safety and waste management. However, in spite of all such international efforts for three quarter of a century, there has been no effective universal control in radiation safety. Problems exist at the user, national, international and manufacturers and suppliers levels. Other problems are management of spent sources and smuggling of sources across international borders. Although, radiation and radionuclides are used by all countries of the world, regulatory and technical control measures in many countries are either lacking or inadequate. The recommendations and technical guidance provided by the international organizations are only advisory and carry no mandatory force to oblige countries to apply them. Member States approve IAEA safety standards and guides at the technical meetings and General Conference, but many of them do not apply these. An International Convention is, therefore, essential to establish international instrument to ensure universal application of radiation safety. (author)

  19. Activities of ARCAL XX for the development of guidelines for the safety of radiation sources

    International Nuclear Information System (INIS)

    Velasques de Oliveira, S.M.; Betancourt, L.A.

    2001-01-01

    This report presents the contribution of the ARCAL XX project 'Guidelines for the Control of Radiation Sources' for the development and harmonization of the safety of radiation sources in Latin America. The project began in 1997 with the participation of nine countries. The methodology adopted has enabled all experts from the nine countries involved in the project to participate in discussions on the development of guidelines based on regional experience. Three common documents for all practices and six safety guides for the main practices have been revised for publication. For the next two years, the project co-ordinators are proposing regional and national workshops for the application of the safety guides approved by the ARCAL programme. (author)

  20. Sources of Safety Data and Statistical Strategies for Design and Analysis: Transforming Data Into Evidence.

    Science.gov (United States)

    Ma, Haijun; Russek-Cohen, Estelle; Izem, Rima; Marchenko, Olga V; Jiang, Qi

    2018-03-01

    Safety evaluation is a key aspect of medical product development. It is a continual and iterative process requiring thorough thinking, and dedicated time and resources. In this article, we discuss how safety data are transformed into evidence to establish and refine the safety profile of a medical product, and how the focus of safety evaluation, data sources, and statistical methods change throughout a medical product's life cycle. Some challenges and statistical strategies for medical product safety evaluation are discussed. Examples of safety issues identified in different periods, that is, premarketing and postmarketing, are discussed to illustrate how different sources are used in the safety signal identification and the iterative process of safety assessment. The examples highlighted range from commonly used pediatric vaccine given to healthy children to medical products primarily used to treat a medical condition in adults. These case studies illustrate that different products may require different approaches, and once a signal is discovered, it could impact future safety assessments. Many challenges still remain in this area despite advances in methodologies, infrastructure, public awareness, international harmonization, and regulatory enforcement. Innovations in safety assessment methodologies are pressing in order to make the medical product development process more efficient and effective, and the assessment of medical product marketing approval more streamlined and structured. Health care payers, providers, and patients may have different perspectives when weighing in on clinical, financial and personal needs when therapies are being evaluated.

  1. Safety and security of radiation sources and radioactive materials: A case of Zambia - least developed country

    International Nuclear Information System (INIS)

    Banda, S.C.

    1998-01-01

    In Zambia, which is current (1998) classified as a Least Developed Country has applications of nuclear science and technology that cover the medical, industrial, education and research. However, the application is mainly in medical and industry. Through the responsibility of radiation source is within the mandate of the Radiation Protection Board. The aspects involving security fall on different stake holders some that have no technical knowledge on what radiation is about. The stake holders in this category include customs clearing and forwarding agents, state security/defence agencies and the operators. Such a situation demands a national system that should be instituted to meet the safety and security requirements but takes into account the involvement of the diverse stake holders. In addition such system should avoid unnecessary exposure, ensure safety of radioactive materials and sources, detect illicit trade and maintain integrity of such materials or sources. This paper will provide the status on issue in Zambia and the challenges that exist to ensure further development in application of Nuclear Science and Technology (S and T) in the country takes into account the safety and security requirements that avoid deliberate and accidental loss of radiation sources and radioactive materials. The Government has a responsibility to ensure that effective system is established and operated to protect radiation sources and radioactive materials from theft, sabotage and ensure safety. (author)

  2. ELECTROMAGNETIC SAFETY OF ELECTRIC TRANSPORT SYSTEMS: MAIN SOURCES AND PARAMETERS OF MAGNETIC FIELDS

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-03-01

    Full Text Available Magnetic fields produced by electric drive vehicles may break electromagnetic safety. For electromagnetic safety and electromagnetic compatibility knowledge about characteristics and sources of magnetic fields in the electric transport is necessary. The article deals with analysis of available data about magnetic fields in electric cars and comparison with results of our measurements carried out in the other types of electrified transport systems.

  3. Radiation safety - an IAEA perspective

    International Nuclear Information System (INIS)

    Persson, L.

    1993-01-01

    The activities of the IAEA relating to radiation safety cover: The preparation of International Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - it is expected that the new Basic Safety Standards will be adopted by the sponsoring organizations in 1994. The radiological consequences of the Chernobyl accident: the thyroid cancer controversy - the hypothesis that must be tested is whether the reported increased incidence of thyroid cancer due to exposure to radioactive iodine released in the Chernobyl accident, and there are several questions that must be answered before a firm conclusion can be reached. Emergency Response Services (ERS): In March 1993, at the request of Viet Nam, which invoked the Energency Assistance Convention, a medical team organized by the IAEA went to Hanoi and assisted in arranging for an overexposed person to be transferred from Viet Nam to Paris for specialized medical treatment. In April 1993, the ERS was used to inform Member States of the consequences of an explosion at the Tomsk 7 fuel reprocessing plant in Siberia, Russia, which caused a radiation leak. Reassessing the long range transport of radioactive material through the environment: Data from the Chernobyl accident have been used for model validation in the Atmospheric Transport Model Evaluation Study (ATMES). A follow-up programme, the European Tracer Experiment (ETEX) with experimental studies of long range atmospheric movements over Europe has been established in order to increase knowledge and prediction capability. As part of the programme, a non-toxic atmospheric tracer will be released under suitable conditions in 1994. The Radiation Protection Advisory Teams Service (RAPAT): In many of the developing countries visited, the lack of an adequate infrastructure for radiation protection is the main obstacle to improved radiation protection. Strengthening radiation and nuclear safety infrastructures in successor states of the USSR: The

  4. Safety of radiation sources and security of radioactive materials. A Romanian approach

    International Nuclear Information System (INIS)

    Ghilea, S.; Coroianu, A.I.; Rodna, A.L.

    2001-01-01

    After a brief explanation on the scope of applications of nuclear energy and practices with ionizing radiation in Romania, the report explains the current national infrastructure for radiation safety making reference in particular to the National Commission for Nuclear Activities Control as the regulatory authority for the safety of radiation sources. The report also describes the existing legal framework, provides information on the list of normative acts in force, and on the system of authorization, inspection and enforcement, which operates effectively. (author)

  5. Notification and authorization for the use of radiation sources (Supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2011-10-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depend on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for notification and authorization for control over radiation sources, including a system for review and assessment of applications for authorization. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the process for dealing with applications for authorization and accepting notifications to regulatory bodies. Examples of guidelines that may be used by persons required to notify or apply for authorization and of the regulatory body's review and assessment procedures are provided in the Appendices. The TECDOC is oriented towards national regulatory infrastructures concerned with protection and safety for radiation sources used in medicine, industry, agriculture, research and education. The IAEA

  6. Notification and authorization for the use of radiation sources (supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2007-04-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depend on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for notification and authorization for control over radiation sources, including a system for review and assessment of applications for authorization. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the process for dealing with applications for authorization and accepting notifications to regulatory bodies. Examples of guidelines that may be used by persons required to notify or apply for authorization and of the regulatory body's review and assessment procedures are provided in the Appendices. The TECDOC is oriented towards national regulatory infrastructures concerned with protection and safety for radiation sources used in medicine, industry, agriculture, research and education

  7. Notification and authorization for the use of radiation sources (supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2010-10-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depend on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for notification and authorization for control over radiation sources, including a system for review and assessment of applications for authorization. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the process for dealing with applications for authorization and accepting notifications to regulatory bodies. Examples of guidelines that may be used by persons required to notify or apply for authorization and of the regulatory body's review and assessment procedures are provided in the Appendices. The TECDOC is oriented towards national regulatory infrastructures concerned with protection and safety for radiation sources used in medicine, industry, agriculture, research and education

  8. Environmental assessment of general-purpose heat source safety verification testing

    International Nuclear Information System (INIS)

    1995-02-01

    This Environmental Assessment (EA) was prepared to identify and evaluate potential environmental, safety, and health impacts associated with the Proposed Action to test General-Purpose Heat Source (GPHS) Radioisotope Thermoelectric Generator (RTG) assemblies at the Sandia National Laboratories (SNL) 10,000-Foot Sled Track Facility, Albuquerque, New Mexico. RTGs are used to provide a reliable source of electrical power on board some spacecraft when solar power is inadequate during long duration space missions. These units are designed to convert heat from the natural decay of radioisotope fuel into electrical power. Impact test data are required to support DOE's mission to provide radioisotope power systems to NASA and other user agencies. The proposed tests will expand the available safety database regarding RTG performance under postulated accident conditions. Direct observations and measurements of GPHS/RTG performance upon impact with hard, unyielding surfaces are required to verify model predictions and to ensure the continual evolution of the RTG designs that perform safely under varied accident environments. The Proposed Action is to conduct impact testing of RTG sections containing GPHS modules with simulated fuel. End-On and Side-On impact test series are planned

  9. SAFETY

    CERN Multimedia

    Niels Dupont

    2013-01-01

    CERN Safety rules and Radiation Protection at CMS The CERN Safety rules are defined by the Occupational Health & Safety and Environmental Protection Unit (HSE Unit), CERN’s institutional authority and central Safety organ attached to the Director General. In particular the Radiation Protection group (DGS-RP1) ensures that personnel on the CERN sites and the public are protected from potentially harmful effects of ionising radiation linked to CERN activities. The RP Group fulfils its mandate in collaboration with the CERN departments owning or operating sources of ionising radiation and having the responsibility for Radiation Safety of these sources. The specific responsibilities concerning "Radiation Safety" and "Radiation Protection" are delegated as follows: Radiation Safety is the responsibility of every CERN Department owning radiation sources or using radiation sources put at its disposition. These Departments are in charge of implementing the requi...

  10. Safety assessment of borehole disposal of unwanted radioactive sealed sources in Egypt using Goldsim

    International Nuclear Information System (INIS)

    Cochran, John Russell; Mattie, Patrick D.

    2004-01-01

    A radioactive sealed source is any radioactive material that is encased in a capsule designed to prevent leakage or escape of the radioactive material. Radioactive sealed sources are used for a wide variety of applications at hospitals, in manufacturing and research. Typical uses are in portable gauges to measure soil compaction and moisture or to determine physical properties of rocks units in boreholes (well logging). Hospitals and clinics use radioactive sealed sources for teletherapy and brachytherapy. Oil exploration and medicine are the largest users. Accidental mismanagement of radioactive sealed sources each year results in a large number of people receiving very high or even fatal does of ionizing radiation. Deliberate mismanagement is a growing international concern. Sealed sources must be managed and disposed effectively in order to protect human health and the environment. Effective national safety and management infrastructures are prerequisites for efficient and safe transportation, treatment, storage, and disposal. The Integrated Management Program for Radioactive Sealed Sources in Egypt (IMPRSS) is a cooperative development agreement between the Egyptian Atomic Energy Authority (EAEA), Egyptian Ministry of Health (MOH), Sandia National Laboratories (SNL), the University of New Mexico (UNM), and Agriculture Cooperative Development International (ACDI/VOCA). The EAEA, teaming with SNL, is conducting a Preliminary Safety Assessment (PSA) of an intermediate-depth borehole disposal in thick arid alluvium in Egypt based on experience with the U.S. Greater Confinement Disposal (GCD). Goldsim has been selected for the preliminary disposal system assessment for the Egyptian GCD Study. The results of the PSA will then be used to decide if Egypt desires to implement such a disposal system

  11. The use of open source electronic health records within the federal safety net.

    Science.gov (United States)

    Goldwater, Jason C; Kwon, Nancy J; Nathanson, Ashley; Muckle, Alison E; Brown, Alexa; Cornejo, Kerri

    2014-01-01

    To conduct a federally funded study that examines the acquisition, implementation and operation of open source electronic health records (EHR) within safety net medical settings, such as federally qualified health centers (FQHC). The study was conducted by the National Opinion Research Center (NORC) at the University of Chicago from April to September 2010. The NORC team undertook a comprehensive environmental scan, including a literature review, a dozen key informant interviews using a semistructured protocol, and a series of site visits to West Virginia, California and Arizona FQHC that were currently using an open source EHR. Five of the six sites that were chosen as part of the study found a number of advantages in the use of their open source EHR system, such as utilizing a large community of users and developers to modify their EHR to fit the needs of their provider and patient communities, and lower acquisition and implementation costs as compared to a commercial system. Despite these advantages, many of the informants and site visit participants felt that widespread dissemination and use of open source was restrained due to a negative connotation regarding this type of software. In addition, a number of participants stated that there is a necessary level of technical acumen needed within the FQHC to make an open source EHR effective. An open source EHR provides advantages for FQHC that have limited resources to acquire and implement an EHR, but additional study is needed to evaluate its overall effectiveness.

  12. Radiation Safety in Industrial Radiography. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  13. X-ray source safety shutter

    International Nuclear Information System (INIS)

    Robinet, M.

    1977-01-01

    An apparatus is provided for controlling the activation of a high energy radiation source having a shutter. The apparatus includes magnets and magnetically responsive switches appropriately placed and interconnected so that only with the shutter and other parts of the source in proper position can safe emission of radiation out an open shutter occur

  14. The role of the Gosatomnadzor of Russia in national regulating of safety of radiation sources and security of radioactive materials

    International Nuclear Information System (INIS)

    Mikhailov, M.V.; Sitnikov, S.A.

    2001-01-01

    As at the end of 1999, the Gosatomnadzor of Russia supervised 6551 radiation sources, including 1285 unsealed sources with individual activity from a minimal level to 1x10 12 Bq and a total activity of 585x10 12 Bq, and also 5266 sealed sources with individual activity from 30 to 1x10 17 Bq and the total activity of more than 11x10 17 Bq. A national infrastructure has been created in the Russian Federation in order to regulate the safety of nuclear energy use. The infrastructure includes the legal system and the regulatory authorities based on and acting according to it. The regulation of radiation safety, including assurance of radiation source safety and radioactive material security (management of disused sources, planning, preparedness and response to abnormal events and emergencies, recovery of control over orphan sources, informing users and others who might be affected by lost source, and education and training in the safety of radiation sources and the security of radioactive materials), is realized within this infrastructure. The legal system includes federal laws ('On the Use of Nuclear Energy' and 'On Public Radiation Safety'), a number of decrees and resolutions of the President and the Government of the Russian Federation, federal standards and rules for nuclear energy use, and also departmental and industrial manuals and rules, State standards, construction standards and rules and other documents. The safety regulation tasks have been defined by these laws, according to which regulatory authorities are entrusted with the development, approval and putting into force of standards and rules in the nuclear energy use, with issuing licenses for carrying out nuclear activities, with safety supervision assurance, with review and inspection implementation, with control over development and realization of protective measures for workers, population and environment in emergencies at nuclear and radiation hazardous facilities. Russian national regulatory

  15. Safety quality classification test of the sealed neutron sources used in start-up neutron source rods for Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yao Chunbing; Guo Gang; Chao Jinglan; Duan Liming

    1992-01-01

    According to the regulations listed in the GB4075, the safety quality classification tests have been carried out for the neutron sources. The test items include temperature, external pressure, impact, vibration and puncture, Two dummy sealed sources are used for each test item. The testing equipment used have been examined and verified to be qualified by the measuring department which is admitted by the National standard Bureau. The leak rate of each tested sample is measured by UL-100 Helium Leak Detector (its minimum detectable leak rate is 1 x 10 -10 Pa·m 3 ·s -1 ). The samples with leak rate less than 1.33 x 10 -8 Pa·m 3 ·s -1 are considered up to the standard. The test results show the safety quality classification class of the neutron sources have reached the class of GB/E66545 which exceeds the preset class

  16. Radiation safety of sealed sources and equipment containing them

    International Nuclear Information System (INIS)

    1993-01-01

    The guide gives information and requirements concerning the technical construction, installation, use and licensing of devices containing sealed radioactive sources in order to ensure the operational safety. The requirements are in accordance with the international standards ISO 1677, ISO 2919, ISO 7205 and Nordic Recommendations on radiation protection for radionuclide gauges in permanent installation. The guide explains also the practical measures that must be taken into account when a radiation device is repaired, maintained or removed from the use. (8 refs.)

  17. Public opinion confronted by the safety problems associated with different energy source

    Energy Technology Data Exchange (ETDEWEB)

    Otway, H J; Thomas, K

    1978-09-01

    Model study of public opinion 'for' and 'against' the various energy sources - oil, coal, solar and nuclear power. Attitudes are examined from four aspects: psychology - economic advantages, sociopolitical problems, environmental problems and safety. The investigation focuses on nuclear energy. (13 refs.) (In French)

  18. Radiation safety

    International Nuclear Information System (INIS)

    1996-04-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. The health effects of radiation - both natural and artificial - are relatively well understood and can be effectively minimized through careful safety measures and practices. The IAEA, together with other international and expert organizations, is helping to promote and institute Basic Safety Standards on an international basis to ensure that radiation sources and radioactive materials are managed for both maximum safety and human benefit

  19. Environmental and Source Monitoring for Purposes of Radiation Protection. Safety Guide (Spanish ed.)

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of this Safety Guide is to provide international guidance, coherent with contemporary radiation protection principles and IAEA safety requirements, on the strategy of monitoring in relation to: (a) control of radionuclide discharges under practice conditions, and (b) intervention, such as in cases of nuclear or radiological emergencies or past contamination of areas with long lived radionuclides. Three categories of monitoring are discussed: monitoring at the source of the discharge (source monitoring), monitoring in the environment (environmental monitoring) and monitoring of individual exposure in emergencies (individual monitoring). The Safety Guide also provides general guidance on assessment of the doses to critical groups of the population due to the presence of radioactive materials or radiation fields in the environment both from routine operation of nuclear and other related facilities (practice) and from nuclear or radiological emergencies and past contamination of areas with long lived radionuclides (intervention). The dose assessments are based on the results of source monitoring, environmental monitoring, individual monitoring or their combinations. This Safety Guide is primarily intended for use by national regulatory bodies and other agencies involved in national systems of radiation monitoring, as well as by operators of nuclear installations and other facilities where natural or human made radionuclides are treated and monitored. Contents: 1. Introduction; 2. Meeting regulatory requirements for monitoring in practices and interventions; 3. Responsibilities for monitoring; 4. Generic aspects of monitoring programmes; 5. Programmes for monitoring in practices and interventions; 6. Technical conditions for monitoring procedures; 7. Considerations in dose assessment; 8. Interpretation of monitoring results; 9. Quality assurance; 10. Recording of results; 11. Education and training; Glossary.

  20. Knowledge Representation in Patient Safety Reporting: An Ontological Approach

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2016-10-01

    Full Text Available Purpose: The current development of patient safety reporting systems is criticized for loss of information and low data quality due to the lack of a uniformed domain knowledge base and text processing functionality. To improve patient safety reporting, the present paper suggests an ontological representation of patient safety knowledge. Design/methodology/approach: We propose a framework for constructing an ontological knowledge base of patient safety. The present paper describes our design, implementation, and evaluation of the ontology at its initial stage. Findings: We describe the design and initial outcomes of the ontology implementation. The evaluation results demonstrate the clinical validity of the ontology by a self-developed survey measurement. Research limitations: The proposed ontology was developed and evaluated using a small number of information sources. Presently, US data are used, but they are not essential for the ultimate structure of the ontology. Practical implications: The goal of improving patient safety can be aided through investigating patient safety reports and providing actionable knowledge to clinical practitioners. As such, constructing a domain specific ontology for patient safety reports serves as a cornerstone in information collection and text mining methods. Originality/value: The use of ontologies provides abstracted representation of semantic information and enables a wealth of applications in a reporting system. Therefore, constructing such a knowledge base is recognized as a high priority in health care.

  1. Advanced Neutron Source (ANS) Project progress report

    International Nuclear Information System (INIS)

    McBee, M.R.; Chance, C.M.

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I ampersand C research and development; facility concepts; design; and safety

  2. Code of Conduct on the Safety and Security of Radioactive Sources and the Supplementary Guidance on the Import and Export of Radioactive Sources

    International Nuclear Information System (INIS)

    2005-01-01

    In operative paragraph 4 of its resolution GC(47)/RES/7.B, the General Conference, having welcomed the approval by the Board of Governors of the revised IAEA Code of Conduct on the Safety and Security of Radioactive Sources (GC(47)/9), and while recognizing that the Code is not a legally binding instrument, urged each State to write to the Director General that it fully supports and endorses the IAEA's efforts to enhance the safety and security of radioactive sources and is working toward following the guidance contained in the IAEA Code of Conduct. In operative paragraph 5, the Director General was requested to compile, maintain and publish a list of States that have made such a political commitment. The General Conference, in operative paragraph 6, recognized that this procedure 'is an exceptional one, having no legal force and only intended for information, and therefore does not constitute a precedent applicable to other Codes of Conduct of the Agency or of other bodies belonging to the United Nations system'. In operative paragraph 7 of resolution GC(48)/RES/10.D, the General Conference welcomed the fact that more than 60 States had made political commitments with respect to the Code in line with resolution GC(47)/RES/7.B and encouraged other States to do so. In operative paragraph 8 of resolution GC(48)/RES/10.D, the General Conference further welcomed the approval by the Board of Governors of the Supplementary Guidance on the Import and Export of Radioactive Sources (GC(48)/13), endorsed this Guidance while recognizing that it is not legally binding, noted that more than 30 countries had made clear their intention to work towards effective import and export controls by 31 December 2005, and encouraged States to act in accordance with the Guidance on a harmonized basis and to notify the Director General of their intention to do so as supplementary information to the Code of Conduct, recalling operative paragraph 6 of resolution GC(47)/RES/7.B. 4. The

  3. Evaluation of safety, an unavoidable requirement in the applications of ionizing radiations

    International Nuclear Information System (INIS)

    Jova Sed, Luis Andres

    2013-01-01

    The safety assessments should be conducted as a means to evaluate compliance with safety requirements (and thus the application of fundamental safety principles) for all facilities and activities in order to determine the measures to be taken to ensure safety. It is an essential tool in decision making. For long time we have linked the safety assessment to nuclear facilities and not to all practices involving the use of ionizing radiation in daily life. However, the main purpose of the safety assessment is to determine if it has reached an appropriate level of safety for an installation or activity and if it has fulfilled the objectives of safety and basic safety criteria set by the designer, operating organization and the regulatory body under the protection and safety requirements set out in the International Basic safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. This paper presents some criteria and personal experiences with the new international recommendations on this subject and its practical application in the region and demonstrates the importance of this requirement. Reflects the need to train personnel of the operator and the regulatory body in the proportional application of this requirement in practice with ionizing radiation

  4. General-purpose heat source safety verification test series: SVT-11 through SVT-13

    International Nuclear Information System (INIS)

    George, T.G.; Pavone, D.

    1986-05-01

    The General-Purpose Heat Source (GPHS) is a modular component of the radioisotope thermoelectric generator that will provide power for the Galileo and Ulysses (formerly ISPM) space missions. The GPHS provides power by transmitting the heat of 238 Pu α-decay to an array of thermoelectric elements. Because the possibility of an orbital abort always exists, the heat source was designed and constructed to minimize plutonia release in any accident environment. The Safety Verification Test (SVT) series was formulated to evaluate the effectiveness of GPHS plutonia containment after atmospheric reentry and Earth impact. The first two reports (covering SVT-1 through SVT-10) described the results of flat, side-on, and angular module impacts against steel targets at 54 m/s. This report describes flat-on module impacts against concrete and granite targets, at velocities equivalent to or higher than previous SVTs

  5. Revenue sources for financing transportation safety activities in Virginia : phase two, state sources.

    Science.gov (United States)

    1980-01-01

    Senate Bill 85, an action of the 1978 General Assembly, amended the Code of Virginia to provide, in part, that the Division of Highway Safety be succeeded by the newly created Department of Transportation Safety effective July 1, 1978. In its Declara...

  6. Engineering systems reliability, safety, and maintenance an integrated approach

    CERN Document Server

    Dhillon, B S

    2017-01-01

    Today, engineering systems are an important element of the world economy and each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of engineering systems around the globe. Many of these systems are highly sophisticated and contain millions of parts. For example, a Boeing jumbo 747 is made up of approximately 4.5 million parts including fasteners. Needless to say, reliability, safety, and maintenance of systems such as this have become more important than ever before.  Global competition and other factors are forcing manufacturers to produce highly reliable, safe, and maintainable engineering products. Therefore, there is a definite need for the reliability, safety, and maintenance professionals to work closely during design and other phases. Engineering Systems Reliability, Safety, and Maintenance: An Integrated Approach eliminates the need to consult many different and diverse sources in the hunt for the information required to design better engineering syste...

  7. An Overview of INEL Fusion Safety R&D Facilities

    Science.gov (United States)

    McCarthy, K. A.; Smolik, G. R.; Anderl, R. A.; Carmack, W. J.; Longhurst, G. R.

    1997-06-01

    The Fusion Safety Program at the Idaho National Engineering Laboratory has the lead for fusion safety work in the United States. Over the years, we have developed several experimental facilities to provide data for fusion reactor safety analyses. We now have four major experimental facilities that provide data for use in safety assessments. The Steam-Reactivity Measurement System measures hydrogen generation rates and tritium mobilization rates in high-temperature (up to 1200°C) fusion relevant materials exposed to steam. The Volatilization of Activation Product Oxides Reactor Facility provides information on mobilization and transport and chemical reactivity of fusion relevant materials at high temperature (up to 1200°C) in an oxidizing environment (air or steam). The Fusion Aerosol Source Test Facility is a scaled-up version of VAPOR. The ion-implanta-tion/thermal-desorption system is dedicated to research into processes and phenomena associated with the interaction of hydrogen isotopes with fusion materials. In this paper we describe the capabilities of these facilities.

  8. Total safety management: An approach to improving safety culture

    International Nuclear Information System (INIS)

    Blush, S.M.

    1993-01-01

    A little over 4 yr ago, Admiral James D. Watkins became Secretary of Energy. President Bush, who had appointed him, informed Watkins that his principal task would be to clean up the nuclear weapons complex and put the US Department of Energy (DOE) back in the business of producing tritium for the nation's nuclear deterrent. Watkins recognized that in order to achieve these objectives, he would have to substantially improve the DOE's safety culture. Safety culture is a relatively new term. The International Atomic Energy Agency (IAEA) used it in a 1986 report on the root causes of the Chernobyl nuclear accident. In 1990, the IAEA's International Nuclear Safety Advisory Group issued a document focusing directly on safety culture. It provides guidelines to the international nuclear community for measuring the effectiveness of safety culture in nuclear organizations. Safety culture has two principal aspects: an organizational framework conducive to safety and the necessary organizational and individual attitudes that promote safety. These obviously go hand in hand. An organization must create the right framework to foster the right attitudes, but individuals must have the right attitudes to create the organizational framework that will support a good safety culture. The difficulty in developing such a synergistic relationship suggests that achieving and sustaining a strong safety culture is not easy, particularly in an organization whose safety culture is in serious disrepair

  9. Model Regulations for the Use of Radiation Sources and for the Management of the Associated Radioactive Waste. Supplement to IAEA Safety Standards Series No. GS-G-1.5

    International Nuclear Information System (INIS)

    2015-01-01

    IAEA Safety Standards Series No. GSR Part 1, Governmental, Legal and Regulatory Framework for Safety, requires that governments establish laws and statutes to make provisions for an effective governmental, legal and regulatory framework for safety. The framework for safety includes the establishment of a regulatory body. The regulatory body has the authority and responsibility for promulgating regulations, and for preparing their implementation. This publication provides advice on an appropriate set of regulations covering all aspects of the use of radiation sources and the safe management of the associated radioactive waste. The regulations provide the framework for the regulatory requirements and conditions to be incorporated into individual authorizations for the use of radiation sources in industry, medical facilities, research and education and agriculture. The regulations also establish criteria to be used for assessing compliance. This publication allows States to appraise the adequacy of their existing regulations and regulatory guides, and can be used as a reference for those States developing regulations for the first time. The regulations set out in this publication will need to be adapted to take account of local conditions, technical resources and the scale of facilities and activities in the State. The set of regulations in this publication is based on the requirements established in the IAEA safety standards series, in particular in IAEA Safety Standards Series No. GSR Part 3 (Interim), Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, in IAEA Safety Standards Series No. GSR Part 5, Predisposal Management of Radioactive Waste, and in IAEA Safety Standards Series No. SSR-5, Disposal of Radioactive Waste. They are also derived from the Code of Conduct of the Safety and Security of Radiation Sources and the Guidance on the Import and Export of Radioactive Sources. This publication allows States to appraise the

  10. Model Regulations for the Use of Radiation Sources and for the Management of the Associated Radioactive Waste. Supplement to IAEA Safety Standards Series No. GS-G-1.5

    International Nuclear Information System (INIS)

    2013-12-01

    IAEA Safety Standards Series No. GSR Part 1, Governmental, Legal and Regulatory Framework for Safety, requires that governments establish laws and statutes to make provisions for an effective governmental, legal and regulatory framework for safety. The framework for safety includes the establishment of a regulatory body. The regulatory body has the authority and responsibility for promulgating regulations, and for preparing their implementation. This publication provides advice on an appropriate set of regulations covering all aspects of the use of radiation sources and the safe management of the associated radioactive waste. The regulations provide the framework for the regulatory requirements and conditions to be incorporated into individual authorizations for the use of radiation sources in industry, medical facilities, research and education and agriculture. The regulations also establish criteria to be used for assessing compliance. This publication allows States to appraise the adequacy of their existing regulations and regulatory guides, and can be used as a reference for those States developing regulations for the first time. The regulations set out in this publication will need to be adapted to take account of local conditions, technical resources and the scale of facilities and activities in the State. The set of regulations in this publication is based on the requirements established in the IAEA safety standards series, in particular in IAEA Safety Standards Series No. GSR Part 3 (Interim), Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, in IAEA Safety Standards Series No. GSR Part 5, Predisposal Management of Radioactive Waste, and in IAEA Safety Standards Series No. SSR-5, Disposal of Radioactive Waste. They are also derived from the Code of Conduct of the Safety and Security of Radiation Sources and the Guidance on the Import and Export of Radioactive Sources. This publication allows States to appraise the

  11. Building competence in radiation protection and the safe use of radiation sources. Safety guide (Spanish ed.)

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide makes recommendations concerning the building of competence in protection and safety within a national radiation protection infrastructure and provides guidance for setting up the structure for a national strategy. It relates to the training and assessment of qualification of new personnel and the retraining of existing personnel in order to develop and maintain appropriate levels of competence. It provides the necessary guidance to meet the requirements laid down in Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Responsibilities for building competence in protection and safety; 3. Education, training and work experience; 4. A national strategy for building competence in protection and safety.

  12. Building competence in radiation protection and the safe use of radiation sources. Safety guide (Arabic ed.)

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Guide makes recommendations concerning the building of competence in protection and safety within a national radiation protection infrastructure and provides guidance for setting up the structure for a national strategy. It relates to the training and assessment of qualification of new personnel and the retraining of existing personnel in order to develop and maintain appropriate levels of competence. It provides the necessary guidance to meet the requirements laid down in Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Responsibilities for building competence in protection and safety; 3. Education, training and work experience; 4. A national strategy for building competence in protection and safety.

  13. Industrial meters with sealed sources: an overview of the situation in Argentina

    International Nuclear Information System (INIS)

    Cateriano, Miguel A.; Truppa, Walter A.

    2003-01-01

    During 2002 the Argentine Nuclear Regulatory Authority decided that it should audit all the owners of licenses to operate industrial meters to verify the sources declared by the users and to evaluate the radiological safety of the installations within the regulatory framework as well as the safety of the sources. This audit has taken place at a national level and included all users that own industrial meters. Almost 380 facilities were inspected in 60 days. An ad-hoc committee was created to achieve this goal; it was made up of 5 groups of three inspectors each who were distributed along different areas of the country where the facilities operate. The knowledge of the situation is an important tool that allows a better planning of the source control policy in order to prevent radiological emergency situations in which radioactive sources might be involved. In this paper the satisfactory results of the audits are presented. No orphan sources were detected. The anomalies found and all the actions taken to early correct these anomalies are described. Additionally, an updated description of the situation concerning all the users of industrial meters is presented. Their distribution per province, an inventory of sources and equipment as well as the number of licenses and individual authorizations are also shown in this paper. (author)

  14. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  15. Radiation Safety in Industrial Radiography. Specific Safety Guide (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in … shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  16. Radiation Safety in Industrial Radiography. Specific Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  17. Main Activities to Improve the Control of Radioactive Sources and Maintain an Effective Regulatory Nuclear Systems in Brazil

    International Nuclear Information System (INIS)

    Marechal, M.H.

    2016-01-01

    Since 2006, the Directorate of Nuclear Safety and Security, DRS, of National Nuclear Energy Commission, CNEN, has gone through many improvements. In 2006 CNEN signed the commitment to the recommendations of the Code of Conduct on The Safety and Security of Radioactive Sources and the Guidance on The Import and Export of Radioactive Sources. The DRS is responsible for the licensing and control of nuclear facilities, fuel cycle, waste management and the control of radioactive sources and authorizations of medical and industrial installations. In 2009 the department responsible for the control of radioactive sources and authorizations of medical and industrial installations implemented an “Electronic Management System” in which this System integrates the transport department and waste management department. The Electronic Management System is linked to the register of radioactive sources and facilities and there is an access on line to the Customs, making the control of import and export of radioactive sources robust, efficient and fast. During the period from 2006 until 2015 the most relevant regulations related to the control of radioactive sources and authorizations of medical and industrial installations were reviewed and some were elaborated and issued. These documents were in line with the Categorization of Radioactive Sources and the International Basic Safety Standards, issued in the IAEA Safety Standard Series as General Safety Requirements Part 3 (GSR Part 3). The paper describes all the steps that were adopted in order to implement these systems and the improvements on our Nuclear Regulatory Systems. (author)

  18. Data survey about radiation protection and safety of radiation sources in research laboratories

    International Nuclear Information System (INIS)

    Paura, Clayton L.; Dantas, Ana Leticia A.; Dantas, Bernardo M.

    2005-01-01

    In Brazil, different types of research using unsealed sources are developed with a variety of radioisotopes. In such activities, professionals and students involved are potentially exposed to internal contamination by 14 C, 45 Ca, 51 Cr, 3 H, 125 I, 32 P, 33 P, 35 S, 90 Sr and 99m Tc. The general objective of this work is to evaluate radiological risks associated to these practices in order to supply information for planning actions aimed to improve radiation protection conditions in research laboratories. The criteria for risk evaluation and the safety aspects adopted in this work were based on CNEN Regulation 6.02 and in IAEA and NRPB publications. The survey of data was carried out during visits to laboratories in public Universities located in the city of Rio de Janeiro where unsealed radioactive sources are used in biochemistry, biophysics and genetic studies. According to the criteria adopted in this work, some practices developed in the laboratories require evaluation of risk of internal contamination depending on the conditions of source manipulation. It was verified the need for training of users of radioactive materials in this type of laboratory. This can be facilitated by the use of basic guides for the classification of areas, radiation protection, safety and source security in research laboratories. It was also observed the need for optimization of such practices in order to minimize the contact with sources. It is recommended to implement more effective source and access controls as a way to reduce risks of individual radiation exposure and loss of radioactive materials (author)

  19. Strengthening Safety Culture as an Overriding Priority, in Achieving Global Nuclear Security Approach

    International Nuclear Information System (INIS)

    Kolundzija, V.

    2006-01-01

    In the IAEA glossary safety culture is defined as the assembly of characteristics and attitudes in organizations and individuals, which establishes that, as an overriding priority, protection and safety issues receive the attention warranted by their significance. It has been observed that a safety culture, as a part of both security and safety, possesses a few obstacles that should be noticed: safety culture cannot be directly regulated; variation in national cultures means that what constitutes as a good approach to enhancing safety culture in one country may not be the best approach in another. Three stages have been identified in developing and strengthening safety culture: 1 A technical issue (rules and regulations)/ first stage 2 Good safety performance (primarily in terms of safety targets or goals)/ second stage 3 A continuing process of improvement to which everyone can contribute/ third stage There are several key issues in safety culture, such as: a commitment, use of procedures, a conservative decision making (STAR) a reporting culture. Organizations and individuals should have attention on these. Overall common goals are to achieve and maintain a high level of safety and security of radioactive sources as well as facilities. Measures that are concerned on safeguards restrict access to the radioactive sources, conditioning and/or recycling of sources, and systems for detection the passage of the radioactive sources at strategic points, have gained main support. The main partners in implementation these measures are: IAEA, USA, Russian Federation, G8- Global Partnership, and European Union The member states of the IAEA have at their disposal internationally agreed standards. Current differences in applying standards in the IAEA member states are mainly related to state preparedness to cope with demands. Developing and less developed countries with small and medium nuclear programmes have difficulties to accept rules and regulations, to establish

  20. Insights provided by Probabilistic Safety Assessment Relating to the Loss of Electrical Sources

    International Nuclear Information System (INIS)

    Lanore, Jeanne-Marie

    2015-01-01

    The loss of electrical sources is generally an important contributor to the risk related to nuclear plants. In particular the external hazards initiating events lead generally to a loss of electrical sources. This importance was underscored by the Fukushima accident. A strength of PSA is to provide insights not only into the causes of the event but also into the potential consequences (core damage prevention, large release prevention, and mitigation) with the corresponding risk impact. PSA could provide a measure of Defence-in-Depth in case of loss of a safety function. The task intends to illustrate the PSA capabilities with outstanding practical examples. The task will rely on a survey of existing PSAs. It will provide a complementary view for ROBELSYS task. The content and status of the task are summarized in 2 slides

  1. Regional Integrated Tenets to Reinforce the Safety and Security of Radioactive Sources (ClearZone)

    International Nuclear Information System (INIS)

    Salzer, P.

    2003-01-01

    The EURATOM Research and Training Programme on Nuclear Energy includes 2 main fields - fusion energy research and management of radioactive waste, radiation protection and other activities of nuclear technology and safety.Seven instruments (mechanisms) for projects management are used - 'Network of Excellence' (NOE); 'Integrated Project' (IP); 'Specific Targeted Research Project' or 'Specific Targeted Training Project' (STREP); 'Co-ordination Action' (CA); Actions to Promote and Develop Human Resources and Mobility Specific Support Actions; Integrated Infrastructure Initiatives. Two consecutive sub-projects are proposed: 'small' - countries of the Visegrad four + Austrian participant -within the 6th FP 'Specific Supported Actions' and 'large' - participation of more countries in the region - more oriented to practical implementation of the 'small' project findings - intention to use the 6th Framework Programme resources to co-financing the implementation activities. The main objectives are: to create effective lines of defense (prevention -detection - categorization - transport - storage) against malicious use of radioactive sources; to achieve and maintain a high level of safety and security of radioactive sources; to arise the radioactive sources management safety and security culture at the Central European region. Consortium of 11 organisations from Czech Republic, Slovak Republic, Austria, Hungary and Poland is established for the Project implementation. The Project task are grouped in the following areas: legislation, infrastructure, practices; metallurgical industry, cross border control; instrumentation and metrology; information system

  2. Case studies in the application of probabilistic safety assessment techniques to radiation sources. Final report of a coordinated research project 2001-2003

    International Nuclear Information System (INIS)

    2006-04-01

    Radiation sources are used worldwide in many industrial and medical applications. In general, the safety record associated with their use has been very good. However, accidents involving these sources have occasionally resulted in unplanned exposures to individuals. When assessed prospectively, this type of exposure is termed a 'potential exposure'. The International Commission on Radiological Protection (ICRP) has recommended the assessment of potential exposures that may result from radiation sources and has suggested that probabilistic safety assessment (PSA) techniques may be used in this process. Also, Paragraph 2.13 of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) requires that the authorization process for radiation sources include an assessment of all exposures, including potential exposures, which may result from the use of a radiation source. In light of the ICRP's work described above, and the possibility that PSA techniques could be used in exposure assessments that are required by the BSS, the IAEA initiated a coordinated research project (CRP) to study the benefits and limitations of the application of PSA techniques to radiation sources. The results of this CRP are presented in this publication. It should be noted that these results are based solely on the work performed, and the conclusions drawn, by the research teams involved in this CRP. It is intended that international organizations involved in radiation protection will review the information in this report and will take account of it during the development of guidance and requirements related to the assessment of potential exposures from radiation sources. Also, it is anticipated that the risk insights obtained through the studies will be considered by medical practitioners, facility staff and management, equipment designers, and regulators in their safety management and risk evaluation activities. A draft

  3. The safe management of sources of radiation: Principles and strategies. INSAG-11. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    1999-01-01

    The IAEA activities relating to nuclear safety are based upon a number of premises. First and foremost, each Member State bears full responsibility for the safety of its nuclear facilities. States can be advised, but cannot be relieved of this responsibility. Secondly, much can be gained by exchanging experience; lessons learned can prevent accidents. Finally, the image of nuclear safety is international; a serious accident anywhere affects the public view of nuclear power everywhere. With the intention of strengthening its contribution to ensuring safety of nuclear power plants, the IAEA established the International Safety Advisory Group (INSAG), whose duties include serving as a forum for the exchange of information on nuclear safety issues of international significance and formulating commonly shared safety principles. The present report deals with the general principles governing the safety of all sources of radiation and with application of these principles. It intends to show that, at the conceptual level, the distinction traditionally made between nuclear safety and radiation protection is hardly justifiable. It is intended primarily for those non-specialists who need to take decisions about safe management of sources of radiation and who wish to gain a better understanding of the approach followed in managing the safety of these sources

  4. Safety lock for radiography exposure device

    International Nuclear Information System (INIS)

    Gaines, T.M.

    1982-01-01

    A safety lock for securing a radiation source in a radiography exposure device is disclosed. The safety lock prevents the inadvertent extension of the radiation source from the exposure device. The exposure devices are used extensively in industry for nondestructive testing of metal materials for defect. Unnecessary exposure of the radiographer or operator occurs not infrequently due to operator's error in believing that the radiation source is secured in the exposure device when, in fact, it is not. The present invention solves this problem of unnecessary exposure by releasingly trapping the radiation source in the shield of the radiography exposure device each time the source is retracted therein so that it is not inadvertently extended therefrom without the operator resetting the safety lock, thereby releasing the radiation source. Further, the safety lock includes an indicator which indicates when the source is trapped in the exposure device and also when it is untrapped. The safety lock is so designed that it does not prevent the return of the source to the trapped, shielded position in the exposure device. Further the safety lock includes a key means for locking the radiation source in the trapped position. The key means cannot be actuated until said radiation source is in said trapped position to further insure the safety lock cannot be inadvertently locked with the source untrapped and thus still extendable from the exposure device

  5. The IAEA code of conduct on the safety of radiation sources and the security of radioactive materials. A step forwards or backwards?

    International Nuclear Information System (INIS)

    Boustany, K.

    2001-01-01

    About the finalization of the Code of Conduct on the Safety and Security of radioactive Sources, it appeared that two distinct but interrelated subject areas have been identified: the prevention of accidents involving radiation sources and the prevention of theft or any other unauthorized use of radioactive materials. What analysis reveals is rather that there are gaps in both the content of the Code and the processes relating to it. Nevertheless, new standards have been introduced as a result of this exercise and have thus, as an enactment of what constitutes appropriate behaviour in the field of the safety and security of radioactive sources, emerged into the arena of international relations. (N.C.)

  6. JRR-3 cold neutron source facility H2-O2 explosion safety proof testing

    International Nuclear Information System (INIS)

    Hibi, T.; Fuse, H.; Takahashi, H.; Akutsu, C.; Kumai, T.; Kawabata, Y.

    1990-01-01

    A cold Neutron Source (CNS) will be installed in Japan Research Reactor-3 (JRR-3) in Japan Atomic Energy Research Institute (JAERI) during its remodeling project. This CNS holds liquid hydrogen at a temperature of about 20 K as a cold neutron source moderator in the heavy water area of the reactor to moderate thermal neutrons from the reactor to cold neutrons of about 5 meV energy. In the hydrogen circuit of the CNS safety measures are taken to prevent oxygen/hydrogen reaction (H 2 -O 2 explosion). It is also designed in such manner that, should an H 2 -O 2 explosion take place, the soundness of all the components can be maintained so as not to harm the reactor safety. A test hydrogen circuit identical to that of the CNS (real components designed by TECHNICATOME of France) was manufactured to conduct the H 2 -O 2 explosion test. In this test, the detonation that is the severest phenomenon of the oxygen/hydrogen reaction took place in the test hydrogen circuit to measure the exerted pressure on the components and their strain, deformation, leakage, cracking, etc. Based on the results of this measurement, the structural strength of the test hydrogen circuit was analyzed. The results of this test show that the hydrogen circuit components have sufficient structural strength to withstand an oxygen/hydrogen reaction

  7. Report on the legislation in the field of nuclear safety and regulatory control of radiation sources and radioactive materials in Yugoslavia

    International Nuclear Information System (INIS)

    Kolundzija, V.

    2001-01-01

    The national regulatory infrastructure in Yugoslavia is described in the report, including the legal framework governing the safety of radiation sources and the security of radioactive materials. The organization and competencies of the Yugoslav Nuclear Safety Administration are explained, in particular regarding the national system of notification, registration, licensing, inspection and enforcement of radiation sources and radioactive materials, where the Federal Ministry of Economy and the Federal Ministry of Labour, Health and Social Policy are sharing competencies. Finally, the report refers to the national provisions on the management of disused sources; on planning, preparedness and response to abnormal events and emergencies; on the recovery of control over orphan sources; and on the education and training in the safety of radiation sources and the security of radioactive materials. (author)

  8. Overview of waste isoltaion safety assessment program and description of source term characterization task at PNL

    International Nuclear Information System (INIS)

    Bradley, D.

    1977-01-01

    A project is being conducted to develop and illustrate the methods and obtain the data necessary to assess the safety of long-term disposal of high-level radioactive waste in geologic formations. The methods and data will initially focus on generic geologic isolation systems but will ultimately be applied to the long-term safety assessment of specific candidate sites that are selected in the NWTS Program. The activities of waste isolation safety assessment (WISAP) are divided into six tasks: (1) Safety Assessment Concepts and Methods, (2) Disruptive Event Analysis, (3) Source Characterization, (4) Transport Modeling, (5) Transport Data and (6) Societal Acceptance

  9. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2015-01-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed. - Highlights: • The hazards associated to the use of radioactive sources must be taken into account. • Security issues are of paramount importance in the use of radioactive sources. • Radiation sources can be used to perpetrate terrorist acts (RDDs, INDs, REDs). • DSRS and orphan sources trigger radiological protection, safety and security concerns. • Regulatory control, from cradle to grave, of radioactive sources is mandatory.

  10. New ICRP recommendations and radiation safety of an NPP

    International Nuclear Information System (INIS)

    Janzekovic, H.

    2007-01-01

    In March 2007 the fundamental radiation protection recommendations used world-widely in nuclear facilities were approved by the ICRP. Implementation of radiation safety standards in an NPP is a challenging issue related to all NPP phases from planning a site and its design to its decommissioning also because if neglected it could be very difficult if not impossible to implement improvement of radiation safety later during operation or decommissioning without a substantial cost. The standards are changing with a period of 15 years which is small regarding a prolonged lifetime of many NPPs and also foreseen lifetime of new NPPs, i.e. 60 years. The new recommendations are actually an upgrading of the ICRP 60. Among other changes new sets of wR and wT are given, as well as an update of around 50 different values related to doses. Two new concepts are also tackled i.e. terrorist attacks and protection of the environment. The influence of the new recommendations on the radiation safety of NPPs can be analysed by a selection of four renewed or new concepts: types of exposure situation, dose constraints, source-related approach and safety and security. Their implementation could lead to upgrading the radiation safety of future or existing NPPs as well as of decommissioning processes. Some of the concepts were already extensively and successfully used by designers of modifications or of new NPPs, as well as by operators. (author)

  11. Converting the GSR part3 into a national regulations for the protection and safety of radiation sources

    International Nuclear Information System (INIS)

    Hatim, Abdulrahman

    2016-04-01

    The achievement and maintenance of a high level of Radiation Protection and Safety of Radiation Sources depends on a sound legal and governmental infrastructure, including a regulatory body with well-defined responsibilities and functions. The project aimed at converting the IAEA GRS Part 3 into National regulations in Sudan for the protection against the harmful effects of ionizing radiation and safety of radiation sources. The regulations developed covered general requirements for radiation protection, verification of safety, planned exposure situations, emergency exposure situations and existing exposure situation. The Government of Sudan is expected to empower the Sudanese Nuclear Radiological Regulatory Authority (SNRAA) and other relevant authorities to undertake the conversion of IAEA GSR Part 3 into national regulations to be used to regulate all facilities and activities in Sudan. (au)

  12. Open-Source RTOS Space Qualification: An RTEMS Case Study

    Science.gov (United States)

    Zemerick, Scott

    2017-01-01

    NASA space-qualification of reusable off-the-shelf real-time operating systems (RTOSs) remains elusive due to several factors notably (1) The diverse nature of RTOSs utilized across NASA, (2) No single NASA space-qualification criteria, lack of verification and validation (V&V) analysis, or test beds, and (3) different RTOS heritages, specifically open-source RTOSs and closed vendor-provided RTOSs. As a leader in simulation test beds, the NASA IV&V Program is poised to help jump-start and lead the space-qualification effort of the open source Real-Time Executive for Multiprocessor Systems (RTEMS) RTOS. RTEMS, as a case-study, can be utilized as an example of how to qualify all RTOSs, particularly the reusable non-commercial (open-source) ones that are gaining usage and popularity across NASA. Qualification will improve the overall safety and mission assurance of RTOSs for NASA-agency wide usage. NASA's involvement in space-qualification of an open-source RTOS such as RTEMS will drive the RTOS industry toward a more qualified and mature open-source RTOS product.

  13. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    International Nuclear Information System (INIS)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I ampersand C Research and Development; Design; and Safety

  14. A study on the assessment of safety culture impacts on risk of nuclear power plants using common uncertainty source model

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Bang, Young Suk; Chung, Chang Hyun; Jeong, Ji Hwan

    2004-01-01

    Since International Safety Advisory Group (INSAG) introduced term 'safety culture', it has been widely recognized that safety culture has an important role in safety of nuclear power plants. Research on the safety culture can be divided in the following two parts. 1) Assessment of safety culture (by interview, questionnaire, etc.) 2) Assessment of link between safety culture and safety of nuclear power plants. There is a substantial body of literature that addresses the first part, but there is much less work that addresses the second part. To address the second part, most work focused on the development of model incorporating safety culture into Probabilistic Safety Assessment (PSA). One of the most advanced methodology in the area of incorporating safety culture quantitatively into PSA is System Dynamics (SD) model developed by Kwak et al. It can show interactions among various factors which affect employees' productivity and job quality. Also various situations in nuclear power plant can be simulated and time-dependent risk can be recalculated with this model. But this model does not consider minimal cut set (MCS) dependency and uncertainty of risk. Another well-known methodology is Work Process Analysis Model (WPAM) developed by Davoudian. It considers MCS dependency by modifying conditional probability values using SLI methodology. But we found that the modified conditional probability values in WPAM are somewhat artificial and have no sound basis. WPAM tend to overestimate conditional probability of hardware failure, because it uses SLI methodology which is normally used in Human Reliability Analysis (HRA). WPAM also does not consider uncertainty of risk. In this study, we proposed methodology to incorporate safety culture into PSA quantitatively that can deal with MCS dependency and uncertainty of risk by applying the Common Uncertainty Source (CUS) model developed by Zhang. CUS is uncertainty source that is common to basic events, and this can be physical

  15. Assessment and promotion of safety culture in medical practices using sources of ionizing radiation. The Cuban experience

    International Nuclear Information System (INIS)

    Ferro Fernandez, Ruben; Guillen Campos, Alba; Arnau Fernandez, Alma

    2008-01-01

    Full text: The lessons learned from several radiological accidents in medical and industrial practices using sources of ionization radiation show that a fragile safety culture in the organizations and the human error were the most important contributors to such events. The high contribution of human factors to safety of radiotherapy treatment process have been also revealed by the results of a recent study on Probabilistic Safety Assessment to this process conducted in the framework of the Extra budgetary Programme on Nuclear and Radiological Safety in Iberian-America. Nevertheless non considerable efforts are appreciated around the world to investigate and develop methods and techniques to assess and promote a strong safety culture in those practices as it has been happening in other sectors like nuclear power, chemical, commercial aviation and oil industry. The Cuban Nuclear Regulatory Authority has in course a National Program for Promoting and Assessment of Safety Culture in organizations using sources of ionizing radiation. As part of this program, during the 2007 year, a pilot study with this purpose was carried out Two Radiotherapy and Nuclear Medicine Units were selected for this pilot study, where managers and specialists were interviewed, a safety culture survey was executed and a final report was prepared with several recommendations to be taking account by Regulator for designing its regulatory strategy on safety culture for medical practices and by users to increase their safety culture level. This paper describes the methodology used to organize, prepare, execute and report the results, findings and recommendations of this kind of review, the benefits and main difficulties encountered during this effort and the perspective and suggestions that, in opinion of the authors of this paper, are important to take into account in the field of radiological safety culture in the near future. (author)

  16. Overview of physical safety of radiation sources in Brazil; Panorama da segurança física de fontes radioativoas no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, A.R.; Silva, F.C.A. da, E-mail: alexandre.lima@cnen.gov.br [Comissão Nacional de Energia Nuclear (DRS/CNEN), Rio de Janeiro, RJ (Brazil). Escritorio de Segurança Física; Filho, J.S.M.; Tavares, R.L.A. [Instituto de Radioproteção e Dosimetria (IRD/CNEN -RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The threat of 'radiological terrorism' has been recognized worldwide after the event of September 11, 2001. Radioactive sources can be used for the development of DDR ('dirty bomb') devices. Studies show that the use of a DDR could cause health damage, psychosocial and economic and environmental damage. Brazil follows this worldwide concern, since it has a large medical-industrial park that uses radioactive sources. This paper presents an overview of the physical safety of radioactive sources in Brazil, based on the inventory of radiative facilities, regulatory aspects and international recommendations. For the preparation of the study, the database of radioactive sources of the regulatory body, the current normative status and the international recommendations were used. In Brazil there are approximately 2,500 radiative installations, with about 400 radioactive sources Category 1 and 2, which are the biggest concern in terms of physical safety. The Brazilian licensing standard addresses only some aspects of physical protection, not providing a clear orientation for the elaboration and implementation of physical protection systems, in accordance with international recommendations. For Brazil to be included in the world scenario of physical safety of radioactive sources, it is urgent to elaborate specific legislation with well-defined regulatory criteria. The lack of more detailed requirements makes it difficult to make a more careful regulatory assessment of the physical protection conditions of the facilities, either through the evaluation of plans and other physical protection documents or through regulatory inspections.

  17. Safety indicators: an efficient tool for a better safety

    International Nuclear Information System (INIS)

    Aufort, P.; Lars, R.

    1993-01-01

    Safety indicators based on the examination of the Operating Technical Specifications have been defined with the aim of following the in-operation safety level of French nuclear power plants. These safety indicators are operation feedback tools which permit the a posteriori justification and the adjustment of actual procedures. They would allow detection of an abnormal unavailability occurrence rate or a situation revealing a potential safety problem. So, data acquisition, processing, analysis and display software allowing trend analysis of these indicators has been developed so far as: a reflexion tool for the power plant operators about the safety instructions and the adjustment of preventive maintenance, and a help for decision making at a national level for the examination and the improvement of Operating Technical Specifications. This paper presents the objectives of these safety indicators, the processing tool associated, the preliminary results obtained and more elaborate processing of these indicators. These safety indicators may be very useful in framing probabilistic safety assessments. (author)

  18. The safe management of sources of radiation: Principles and strategies. INSAG-11. A report by the International Nuclear Safety Advisory Group (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    The IAEA activities relating to nuclear safety are based upon a number of premises. First and foremost, each Member State bears full responsibility for the safety of its nuclear facilities. States can be advised, but cannot be relieved of this responsibility. Secondly, much can be gained by exchanging experience; lessons learned can prevent accidents. Finally, the image of nuclear safety is international; a serious accident anywhere affects the public view of nuclear power everywhere. With the intention of strengthening its contribution to ensuring safety of nuclear power plants, the IAEA established the International Safety Advisory Group (INSAG), whose duties include serving as a forum for the exchange of information on nuclear safety issues of international significance and formulating commonly shared safety principles. The present report deals with the general principles governing the safety of all sources of radiation and with application of these principles. It intends to show that, at the conceptual level, the distinction traditionally made between nuclear safety and radiation protection is hardly justifiable. It is intended primarily for those non-specialists who need to take decisions about safe management of sources of radiation and who wish to gain a better understanding of the approach followed in managing the safety of these sources

  19. Validation Study for an Atmospheric Dispersion Model, Using Effective Source Heights Determined from Wind Tunnel Experiments in Nuclear Safety Analysis

    Directory of Open Access Journals (Sweden)

    Masamichi Oura

    2018-03-01

    Full Text Available For more than fifty years, atmospheric dispersion predictions based on the joint use of a Gaussian plume model and wind tunnel experiments have been applied in both Japan and the U.K. for the evaluation of public radiation exposure in nuclear safety analysis. The effective source height used in the Gaussian model is determined from ground-level concentration data obtained by a wind tunnel experiment using a scaled terrain and site model. In the present paper, the concentrations calculated by this method are compared with data observed over complex terrain in the field, under a number of meteorological conditions. Good agreement was confirmed in near-neutral and unstable stabilities. However, it was found to be necessary to reduce the effective source height by 50% in order to achieve a conservative estimation of the field observations in a stable atmosphere.

  20. Organization and implementation of a national regulatory infrastructure governing protection against ionizing radiation and the safety of radiation sources. Interim report for comment

    International Nuclear Information System (INIS)

    1999-02-01

    A number of IAEA Member States are undertaking to strengthen their radiation protection and safety infrastructures in order to facilitate the adoption of the requirements established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Standards). In this connection, the IAEA has developed a technical co-operation programme (Model Project on Upgrading Radiation Protection Infrastructure) to improve radiation protection and safety infrastructures in 51 Member States, taking into account national profiles and needs of the individual participating, countries. The present report deals with the elements of a regulatory infrastructure for radiation protection and safety and intends to facilitate the, implementation of the Basic Safety Standards in practice. It takes into account the proposals in an earlier report, IAEA-TECDOC-663, but it has been expanded to include enabling legislation and modified to be more attuned to infrastructure issues related to implementation of the Standards. The orientation is toward infrastructures concerned with protection and safety for radiation sources used in medicine, agriculture, research, industry and education rather than infrastructures for protection and safety for complex nuclear facilities. It also discusses options for enhancing the effectiveness and efficiency of the infrastructure in accordance with the size and scope of radiation practices and available regulatory resources within a country

  1. Sealed radioactive sources toolkit

    International Nuclear Information System (INIS)

    Mac Kenzie, C.

    2005-09-01

    The IAEA has developed a Sealed Radioactive Sources Toolkit to provide information to key groups about the safety and security of sealed radioactive sources. The key groups addressed are officials in government agencies, medical users, industrial users and the scrap metal industry. The general public may also benefit from an understanding of the fundamentals of radiation safety

  2. Sealed source and device design safety testing. Volume 4: Technical report on the findings of Task 4, Investigation of sealed source for paper mill digester

    International Nuclear Information System (INIS)

    Benac, D.J.; Iddings, F.A.

    1995-10-01

    This report covers the Task 4 activities for the Sealed Source and Device Safety testing program. SwRI was contracted to investigate a suspected leaking radioactive source that was installed in a gauge that was on a paper mill digester. The actual source that was leaking was not available, therefore, SwRI examined another source. SwRI concluded that the encapsulated source examined by SwRI was not leaking. However, the presence of Cs-137 on the interior and exterior of the outer encapsulation and hending tube suggests that contamination probably occurred when the source was first manufactured, then installed in the handling tube

  3. Public education in safe use of artificial UV radiation sources by the consumer safety institute in the Netherlands

    International Nuclear Information System (INIS)

    Bruggers, J.H.A.

    1987-01-01

    The Consumer Safety Institute in the Netherlands is a national institute which operates entirely in the field of home safety. Its main aim exists in reducing the possibility and severity of accidents happening in and around the home, at school and recreational areas. To attain this aim the institute is active in research, handling consumer complaints, education, and advising. To inform and educate consumers about product safety, special leaflets and brochures are published. One of these brochures deals with safety and safe use of artificial UV radiation sources, e.g. UV lamps, UV couches etc. This brochure about suntanning equipment and safety was published recently

  4. Obtaining laser safety at a synchrotron radiation user facility: The Advanced Light Source

    International Nuclear Information System (INIS)

    Barat, K.

    1996-01-01

    The Advanced Light Source (ALS) is a US national facility for scientific research and development located at the Lawrence Berkeley National Laboratory in California. The ALS delivers the world's brightest synchrotron radiation in the far ultraviolet and soft X-ray regions of the spectrum. As a user facility it is available to researchers from industry, academia, and laboratories from around the world. Subsequently, a wide range of safety concerns become involved. This article relates not only to synchrotron facilities but to any user facility. A growing number of US centers are attracting organizations and individuals to use the equipment on site, for a fee. This includes synchrotron radiation and/or free electron facilities, specialty research centers, and laser job shops. Personnel coming to such a facility bring with them a broad spectrum of safety cultures. Upon entering, the guests must accommodate to the host facility safety procedures. This article describes a successful method to deal with that responsibility

  5. Collaboration and Commitment to Sealed Source Safety, Security, and Disposition - 13627

    International Nuclear Information System (INIS)

    Jennison, Meaghan; Martin, David W.

    2013-01-01

    EnergySolutions, the Division of Radiation Control at the Utah Department of Environmental Quality (UDEQ), the Conference of Radiation Control Program Directors (CRCPD), and the Department of Energy's Global Threat Reduction Initiative (GTRI) are collaborating on a truly innovative effort to expand opportunities for cost-effective sealed source disposal. These entities have developed a first-of-its-kind initiative to dispose of certain sealed sources at the EnergySolutions disposal facility near Clive, Utah, which normally cannot accept sealed sources of any type. This creative and collaborative effort to improve radiation health, safety, and security exemplifies the spirit and commitment represented by the Richard S. Hodes, M.D. Honor Lecture Award, which is presented annually at the Waste Management Symposia by the Southeast Compact Commission to encourage environmental professionals and political leaders to develop innovative approaches to waste management in the United States. The participants in the collaborative initiative are honored to receive special recognition for their efforts thus far. They also recognize that the hard work remains to be done. (authors)

  6. Approach and organisation of radiation sources safety and security of installations

    International Nuclear Information System (INIS)

    Al-Hilali, S.

    1998-01-01

    Development of application of techniques using radiation sources was fact in all public domains. Although all these techniques were meant for so called peaceful uses they should respect safety regulations in order to ensure safety of personnel, public and the environment. Security system for installations adopted by CNESTEN is based on establishing administrative and technical protection of the installation against external or internal aggression on one hand and protection of the environment by confining radioactivity, on the other hand. Application of Methode Organisee et Systematique d'analyse de risque (MOSAR) at the installations of CNESTEN showed weak points in order to define barriers for prevention and means necessary for management and dealing with accidental situations. At the first stage this attitude was limited to qualitative considerations adopting macroscopic analysis of each installation. Experience obtained from operation of these installation, which have started operation hardly a few months ago, would establish a real database indispensable for complete risk analysis including quantification of possible risks

  7. Advice on drug safety in pregnancy: are there differences between commonly used sources of information?

    Science.gov (United States)

    Frost Widnes, Sofia K; Schjøtt, Jan

    2008-01-01

    Safety regarding use in pregnancy is not established for many drugs. Inconsistencies between sources providing drug information can give rise to confusion with possible therapeutic consequences. Therefore, it is important to measure clinically important differences between drug information sources. The objective of this study was to compare two easily accessible Norwegian sources providing advice on drug safety in pregnancy - the product monographs in the Felleskatalog (FK), published by the pharmaceutical companies, and the five regional Drug Information Centres (DICs) in Norway - in addition to assessing the frequency of questions regarding drug safety in pregnancy made to the DICs according to the Anatomical Therapeutic Chemical (ATC) classification system. Advice on drug use in pregnancy provided by the DICs in 2003 and 2005 were compared with advice in the product monographs for the respective drugs in the FK. Comparison of advice was based on categorization to one of four categories: can be used, benefit-risk assessment, should not be used, or no available information. A total of 443 drug advice were categorized. Seven out of ten of drugs frequently enquired about, according to the ATC system, were drugs acting on the nervous system (group N). For 208 (47%) of the drugs, advice differed between the DICs and FK. Advice from the FK was significantly (p drugs that were newly introduced and those that had been on the market for a longer time, advice regarding use of drugs in the first trimester and advice regarding use of drugs in the second or third trimester, or between advice provided during 2003 and during 2005. The results of this study show considerable differences between two Norwegian sources providing advice on the use of drugs in pregnancy. Based on the knowledge that healthcare providers choose sources of information in a random manner, our results may be of clinical importance. We believe that the problem with heterogeneous drug information on this

  8. Source-book of International Activities Related to the Development of Safety Cases for Deep Geological Repositories

    International Nuclear Information System (INIS)

    2017-01-01

    All national radioactive waste management authorities recognise today that a robust safety case is essential in developing disposal facilities for radioactive waste. To improve the robustness of the safety case for the development of a deep geological repository, a wide variety of activities have been carried out by national programs and international organisations over the past years. The Nuclear Energy Agency, since first introducing the modern concept of the 'safety case', has continued to monitor major developments in safety case activities at the international level. This Source-book summarises the activities being undertaken by the Nuclear Energy Agency, the European Commission and the International Atomic Energy Agency concerning the safety case for the operational and post-closure phases of geological repositories for radioactive waste that ranges from low-level to high-level waste and for spent fuel. In doing so, it highlights important differences in focus among the three organisations

  9. The FORO Project on Safety Culture in Organizations, Facilities and Activities With Sources of Ionizing Radiation

    International Nuclear Information System (INIS)

    Bomben, A. M.; Ferro Fernández, R.; Arciniega Torres, J.; Ordoñez Gutiérrez, E.; Blanes Tabernero, A.; Cruz Suárez, R.; Da Silva Silveira, C.; Perera Meas, J.; Ramírez Quijada, R.; Videla Valdebenito, R.

    2016-01-01

    The aim of this paper is to present the Ibero-American Forum of Nuclear and Radiological Regulatory Authorities’ (FORO) Project on Safety Culture in organizations, facilities and activities with sources of ionizing radiation developed by experts from the Regulatory Authorities of Argentina, Brazil, Chile, Cuba, Spain, Mexico, Peru and Uruguay, under the scientific coordination of the International Atomic Energy Agency (IAEA). Taking into account that Safety Culture problems have been widely recognised as one of the major contributors to many radiological events, several international and regional initiatives are being carried out to foster and develop a strong Safety Culture. One of these initiatives is the two-year project sponsored by the FORO with the purpose to prepare a document to allow its member states understanding, promoting and achieving a higher level of Safety Culture.

  10. Food Safety and Chemical Contaminants: An Overview a

    Directory of Open Access Journals (Sweden)

    A. Ali

    2004-06-01

    Full Text Available Food safety is a major consumer’s concern worldwide. Although several incidences of food poisoning have placed microbial contamination on the forefront during recent years, health risks due to chemical contamination still remain high. The most often cited chemical contaminants are derived from a variety of sources such as pesticides, environmental chemicals (PCBs. dioxin, heavy metals including lead, mercury, chemical contaminants as a result of food processing (acrylamide, nitrosamines etc., naturally occurring toxicants (glycoalkaloids, mycotoxins, antinutritives etc, chemicals migrating from packaging materials, veterinary drugs and other chemical residues. In addition to the presence of unintentional contaminants, the quality and safety of foods could also be compromised by the addition of certain food additives, phytonutrients, exposure to irradiation and other substances. Food processors and the regulatory and enforcement agencies are facing an ever-increasing challenge to meet the consumer’s demands for safe foods that do not pose health risks or alter their lifestyle. As the food trade expands throughout the world, food safety has become a shared concern among both the developed and developing countries. Although food control systems do exist in the countries of Gulf region, in most of the cases they are not in line with national and international needs and are not able to cope with the new challenges of the modern era. The most appropriate methods to ensure the safety of food supplies are the strengthening of regular surveillance systems, developing methods for the systematic application of risk analysis, risk assessment and risk management strategies, and timely communication of information to develop and enforce the appropriate food safety laws globally as well as the development of international and national cooperation. This paper reviews issues, challenges and solutions to achieve food safety with respect to chemical

  11. Perceived organizational support for safety and employee safety voice: the mediating role of coworker support for safety.

    Science.gov (United States)

    Tucker, Sean; Chmiel, Nik; Turner, Nick; Hershcovis, M Sandy; Stride, Chris B

    2008-10-01

    In the present study, we modeled 2 sources of safety support (perceived organizational support for safety and perceived coworker support for safety) as predictors of employee safety voice, that is, speaking out in an attempt to change unsafe working conditions. Drawing on social exchange and social impact theories, we hypothesized and tested a mediated model predicting employee safety voice using a cross-sectional survey of urban bus drivers (n = 213) in the United Kingdom. Hierarchical regression analysis showed that perceived coworker support for safety fully mediated the relationship between perceived organizational support for safety and employee safety voice. This study adds to the employee voice literature by evaluating the important role that coworkers can play in encouraging others to speak out about safety issues. Implications for research and practice related to change-oriented safety communication are discussed.

  12. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  13. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  14. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  15. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  16. Technology, safety, and costs of decommissioning a reference large irradiator and reference sealed sources

    Energy Technology Data Exchange (ETDEWEB)

    Haffner, D.R.; Villelgas, A.J. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report contains the results of a study sponsored by the US Nuclear Regulatory Commission (NRC) to examine the decommissioning of large radioactive irradiators and their respective facilities, and a broad spectrum of sealed radioactive sources and their respective devices. Conceptual decommissioning activities are identified, and the technology, safety, and costs (in early 1993 dollars) associated with decommissioning the reference large irradiator and sealed source facilities are evaluated. The study provides bases and background data for possible future NRC rulemaking regarding decommissioning, for evaluation of the reasonableness of planned decommissioning actions, and for determining if adequate funds are reserved by the licensees for decommissioning of their large irradiator or sealed source facilities. Another purpose of this study is to provide background and information to assist licensees in planning and carrying out the decommissioning of their sealed radioactive sources and respective facilities.

  17. Technology, safety, and costs of decommissioning a reference large irradiator and reference sealed sources

    International Nuclear Information System (INIS)

    Haffner, D.R.; Villelgas, A.J.

    1996-01-01

    This report contains the results of a study sponsored by the US Nuclear Regulatory Commission (NRC) to examine the decommissioning of large radioactive irradiators and their respective facilities, and a broad spectrum of sealed radioactive sources and their respective devices. Conceptual decommissioning activities are identified, and the technology, safety, and costs (in early 1993 dollars) associated with decommissioning the reference large irradiator and sealed source facilities are evaluated. The study provides bases and background data for possible future NRC rulemaking regarding decommissioning, for evaluation of the reasonableness of planned decommissioning actions, and for determining if adequate funds are reserved by the licensees for decommissioning of their large irradiator or sealed source facilities. Another purpose of this study is to provide background and information to assist licensees in planning and carrying out the decommissioning of their sealed radioactive sources and respective facilities

  18. An analysis of electronic health record-related patient safety concerns

    Science.gov (United States)

    Meeks, Derek W; Smith, Michael W; Taylor, Lesley; Sittig, Dean F; Scott, Jean M; Singh, Hardeep

    2014-01-01

    Objective A recent Institute of Medicine report called for attention to safety issues related to electronic health records (EHRs). We analyzed EHR-related safety concerns reported within a large, integrated healthcare system. Methods The Informatics Patient Safety Office of the Veterans Health Administration (VA) maintains a non-punitive, voluntary reporting system to collect and investigate EHR-related safety concerns (ie, adverse events, potential events, and near misses). We analyzed completed investigations using an eight-dimension sociotechnical conceptual model that accounted for both technical and non-technical dimensions of safety. Using the framework analysis approach to qualitative data, we identified emergent and recurring safety concerns common to multiple reports. Results We extracted 100 consecutive, unique, closed investigations between August 2009 and May 2013 from 344 reported incidents. Seventy-four involved unsafe technology and 25 involved unsafe use of technology. A majority (70%) involved two or more model dimensions. Most often, non-technical dimensions such as workflow, policies, and personnel interacted in a complex fashion with technical dimensions such as software/hardware, content, and user interface to produce safety concerns. Most (94%) safety concerns related to either unmet data-display needs in the EHR (ie, displayed information available to the end user failed to reduce uncertainty or led to increased potential for patient harm), software upgrades or modifications, data transmission between components of the EHR, or ‘hidden dependencies’ within the EHR. Discussion EHR-related safety concerns involving both unsafe technology and unsafe use of technology persist long after ‘go-live’ and despite the sophisticated EHR infrastructure represented in our data source. Currently, few healthcare institutions have reporting and analysis capabilities similar to the VA. Conclusions Because EHR-related safety concerns have complex

  19. Categorization of radioactive sources. Revision of IAEA-TECDOC-1191, Categorization of radiation sources

    International Nuclear Information System (INIS)

    2003-07-01

    Radioactive sources are used throughout the world for a wide variety of peaceful purposes in industry, medicine, agriculture, research and education; and they are also used in military applications. The International Basic Safety Standards provide an internationally harmonized basis for ensuring the safe and secure use of sources of ionizing radiation. Because of the wide variety of uses and activities of radiation sources, a categorization system is necessary so that the controls that are applied to the sources are commensurate with the radiological risks. In September 1998, following an assessment of the major findings of the first International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials, held in Dijon, France, from 14 to 18 September 1998 (the Dijon Conference), the IAEA's General Conference (in resolution GC(42)/RES/12), inter alia, encouraged all governments 'to take steps to ensure the existence within their territories of effective national systems of control for ensuring the safety of radiation sources and the security of radioactive materials' and requested the Secretariat 'to prepare for the consideration of the Board of Governors a report on: (i) how national systems for ensuring the safety of radiation sources and the security of radioactive materials can be operated at a high level of effectiveness; and, (ii) whether international undertakings concerned with the effective operation of such systems and attracting broad adherence could be formulated'. In February 1999, the Secretariat submitted to the IAEA Board of Governors a report prepared in response to the request made of it by the General Conference. The Board took up the report at its March 1999 session and, inter alia, requested the Secretariat to prepare an action plan that took into account the conclusions and recommendations in the report, and the Board's discussion of the report. In August 1999, the Secretariat circulated a proposed Action Plan for

  20. Structural and Shielding Safety of a Transport Package for Radioisotope Sealed Source Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kiseog; Cho, Ilje; Kim, Donghak [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    As some kinds of radioisotope (RI) sealed source are produced by HANARO research reactor, a demand of RI transport package is increasing gradually. Foreign countries, which produce the various RIs, have the intrinsic model of the RI transport package. It is necessary to develop a RI and its transport package simultaneously. It is difficult to design a shielding part for this transport package because the passage for this source assembly should be provided from the center of shielding part to the outside of the package. In order to endure the accident conditions such as a 9 m drop and puncture, this transport package consists of the guide tubes, a gamma shield and a shock absorber. This paper describe that a shielding and structural safety of RI sealed source transport package are evaluated under the accident conditions.

  1. Structural and Shielding Safety of a Transport Package for Radioisotope Sealed Source Assembly

    International Nuclear Information System (INIS)

    Seo, Kiseog; Cho, Ilje; Kim, Donghak

    2006-01-01

    As some kinds of radioisotope (RI) sealed source are produced by HANARO research reactor, a demand of RI transport package is increasing gradually. Foreign countries, which produce the various RIs, have the intrinsic model of the RI transport package. It is necessary to develop a RI and its transport package simultaneously. It is difficult to design a shielding part for this transport package because the passage for this source assembly should be provided from the center of shielding part to the outside of the package. In order to endure the accident conditions such as a 9 m drop and puncture, this transport package consists of the guide tubes, a gamma shield and a shock absorber. This paper describe that a shielding and structural safety of RI sealed source transport package are evaluated under the accident conditions

  2. Disposal of disused sealed sources and approach for safety assessment of near surface disposal facilities (national practice of Ukraine)

    International Nuclear Information System (INIS)

    Alekseeva, Z.; Letuchy, A.; Tkachenko, N.V.

    2003-01-01

    The main sources of wastes are 13 units of nuclear power plants under operation at 4 NPP sites (operational wastes and spent sealed sources), uranium-mining industry, area of Chernobyl exclusion zone contaminated as a result of ChNPP accident, and over 8000 small users of sources of ionising radiation in different fields of scientific, medical and industrial applications. The management of spent sources is carried out basing on the technology from the early sixties. In accordance with this scheme accepted sources are disposed of either in the near surface concrete vaults or in borehole facilities of typical design. Radioisotope devices and gamma units are placed into near surface vaults and sealed sources in capsules into borehole repositories respectively. Isotope content of radwaste in the repositories is multifarious including Co-60, Cs-137, Sr-90, Ir-192, Tl-204, Po-210, Ra-226, Pu-239, Am-241, H-3, Cf-252. A new programme for waste management has been adopted. It envisions the modifying of the 'Radon' facilities for long-term storage safety assessment and relocation of respective types of waste in 'Vector' repositories.Vector Complex will be built in the site which is located within the exclusion zone 10Km SW of the Chernobyl NPP. In Vector Complex two types of disposal facilities are designed to be in operation: 1) Near surface repositories for short lived LLRW and ILRW disposal in reinforced concrete containers. Repositories will be provided with multi layer waterproofing barriers - concrete slab on layer composed of mixture of sand and clay. Every layer of radwaste is supposed to be filled with 1cm clay layer following disposal; 2) Repositories for disposal of bulky radioactive waste without cans into concrete vaults. Approaches to safety assessment are discussed. Safety criteria for waste disposal in near surface repositories are established in Radiation Protection Standards (NRBU-97) and Addendum 'Radiation protection against sources of potential exposure

  3. Radiation Safety in Industrial Radiography. Specific Safety Guide (French Edition); Surete radiologique en radiographie industrielle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in Horizontal-Ellipsis shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  4. Safety of radioactive waste management. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2000-01-01

    The principal objective of the Conference was to enable members of the scientific community and representatives of facilities which produce radioactive waste, of bodies responsible for radioactive waste management, of nuclear regulatory bodies and of public interest groups, among others, to engage in an open dialogue. The open dialogue which took place may, by providing policy and decision makers with a basis for political action, prove to be an important step in the search for the international consensus so essential in the area of radioactive waste management. The relevant policies and activities of the IAEA, the European Commission, the OECD Nuclear Energy Agency and the World Health Organization were presented. The evolution, under the aegis of the IAEA, of a de facto international radiation and nuclear safety regime was noted. In the area of radioactive waste safety, this regime consists of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, the body of international waste safety standards established by the IAEA and other international organizations, and the IAEA's mechanisms for providing for the application of those standards. The topics covered by the Conference were: Current international co-operative efforts; Recommendations from the International Commission on Radiological Protection; Recommendations from the International Nuclear Safety Advisory Group; Conclusions and recommendations of the International Symposium on the Restoration of Environments with Radioactive Residues; Siting of radioactive waste management facilities; Participation of interested parties; Legislative and general radiation safety aspects; Removal of material from regulatory control (exclusion, exemption and clearance); Predisposal management (dilution, recycling, transmutation, etc.); Near surface disposal; Residues from the mining and processing of radioactive ores; Long term institutional control; Geological disposal

  5. Explosion overpressure test series: General-Purpose Heat Source development: Safety Verification Test program

    International Nuclear Information System (INIS)

    Cull, T.A.; George, T.G.; Pavone, D.

    1986-09-01

    The General-Purpose Heat Source (GPHS) is a modular, radioisotope heat source that will be used in radioisotope thermoelectric generators (RTGs) to supply electric power for space missions. The first two uses will be the NASA Galileo and the ESA Ulysses missions. The RTG for these missions will contain 18 GPHS modules, each of which contains four 238 PuO 2 -fueled clads and generates 250 W/sub (t)/. A series of Safety Verification Tests (SVTs) was conducted to assess the ability of the GPHS modules to contain the plutonia in accident environments. Because a launch pad or postlaunch explosion of the Space Transportation System vehicle (space shuttle) is a conceivable accident, the SVT plan included a series of tests that simulated the overpressure exposure the RTG and GPHS modules could experience in such an event. Results of these tests, in which we used depleted UO 2 as a fuel simulant, suggest that exposure to overpressures as high as 15.2 MPa (2200 psi), without subsequent impact, does not result in a release of fuel

  6. Description of data-sources used in SafetyCube, Deliverable 3.1 of the H2020 project SafetyCube (Safety CaUsation, Benefits and Efficiency).

    NARCIS (Netherlands)

    Hagström, L. Thomson, R. Hermitte, T. Weijermars, W. Bos, N. Talbot, R. Thomas, P. Dupont, E. Martensen, H. Bauer, R. Hours, M. Høye, E. Jänsch, M. Murkovic, A. Niewöhner, W. Papadimitriou, E. Pérez, C. Phan, V. Usami, D. & Vázquez-de-Prada, J.

    2017-01-01

    Safety CaUsation, Benefits and Efficiency (SafetyCube) is a European Commission supported Horizon 2020 project with the objective of developing an innovative road safety Decision Support System (DSS) that will enable policy-makers and stakeholders to select and implement the most appropriate

  7. Waste collection in developing countries - Tackling occupational safety and health hazards at their source

    Energy Technology Data Exchange (ETDEWEB)

    Bleck, Daniela, E-mail: bleck.daniela@baua.bund.de [Federal Institute for Occupational Safety and Health, Germany (BAuA), Friedrich Henkel Weg 1-25, 44149 Dortmund (Germany); Wettberg, Wieland, E-mail: wettberg.wieland@baua.bund.de [Federal Institute for Occupational Safety and Health, Germany (BAuA), Friedrich Henkel Weg 1-25, 44149 Dortmund (Germany)

    2012-11-15

    Waste management procedures in developing countries are associated with occupational safety and health risks. Gastro-intestinal infections, respiratory and skin diseases as well as muscular-skeletal problems and cutting injuries are commonly found among waste workers around the globe. In order to find efficient, sustainable solutions to reduce occupational risks of waste workers, a methodological risk assessment has to be performed and counteractive measures have to be developed according to an internationally acknowledged hierarchy. From a case study in Addis Ababa, Ethiopia suggestions for the transferral of collected household waste into roadside containers are given. With construction of ramps to dump collected household waste straight into roadside containers and an adaptation of pushcarts and collection procedures, the risk is tackled at the source.

  8. The German radiation protection infrastructure with emphasis on the safety of radiation sources and radioactive material

    International Nuclear Information System (INIS)

    Czarwinski, R.; Weimer, G.

    2001-01-01

    Through federalism, Germany has a complicated but well functioning regulatory infrastructure for the safety and security of radiation sources based on a clear legal system. The main features of this infrastructure include the legal framework, the authorization and control systems and the responsibilities of different regulatory authorities, which this paper will describe. In connection with the legal framework, the provisions to control the import/export of radiation sources are briefly discussed and some information is given about the registries of sources. Protection and response measures related to unusual events concerning radiation sources, including orphan sources, will be cited. Also, the education and training of different target groups and punitive actions are touched upon in the paper. Conclusions will be drawn for future national and international actions. (author)

  9. Safety improvement of start-up neutron source handling work by preparing new transport containers

    International Nuclear Information System (INIS)

    Shimazaki, Yosuke; Sawahata, Hiroaki; Yanagida, Yoshinori; Shinohara, Masanori; Kawamoto, Taiki; Takada, Shoji

    2016-01-01

    The conventional transport containers that have been used in HTTR start-up neutron source replacement work are not specialized type for HTTR start-up neutron source. As the risks associated with the safe handling of neutron source holders due to the above fact, the following three risks have been confirmed: (1) exposure risk due to leakage of neutron source or gamma rays, (2) risk of erroneous fall of neutron source holders, and (3) accident due to incorrect handling of transport containers. This paper reports the risks confirmed in the handling of neutron source holders associated with transport containers and the risk reduction measures, as well as the fabrication of new transport containers. By employing the size-reduction and simple structure, new transport containers have been completed at the same level of costs compared with the continuous use of the conventional transport containers, while satisfying the criteria of Type A transport materials and serving as risk preventive measures. Thus, new transport containers aimed at the risk prevention measures for the handling work of neutron source holders have been completed, and the safety of operation has been improved. (A.O.)

  10. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition); Seguridad radiologica en la radiografia industrial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  11. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5x10 19 m -2 ·sec -1 . Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities

  12. NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security. Issue no. 4, June 2007

    International Nuclear Information System (INIS)

    2007-04-01

    This newsletter contains information on the Centre for Advanced Safety Assessment Tools (CASAT), the new strategy for the recovery of radioactive sources, the Technical Support Organization Conference and a message form the Director of the Division of Nuclear Installation Safety. To improve the efficiency of safety assessment methods, ensure transparency in their validation and application and establish an excellent knowledge base and training programmes, the IAEA's Centre for Advanced Safety Assessment Tools (CASAT) has therefore been formed. The Centre addresses the need for continuous technical support mechanisms for safety assessment methods. It provides support to Member States to enhance their safety assessment capabilities for present and future generations of nuclear systems, with a special focus on countries with a developing nuclear technology and nuclear safety infrastructure. It serves as a consolidated repository of relevant safety analysis knowledge, provides for focused training including advanced analytical simulations, and supports collaboration on safety assessment projects among Member States. The resources provided through CASAT include codes, models, databases, verification and validation information, analytical procedures and guides. The main purpose of the recently established Radioactive Source Technical Coordination Group (RSTCG) is to facilitate the technical coordination of activities of the IAEA related to the control and management of radioactive sources through the development of common approaches in technical matters and to advise the management of the relevant Divisions. It is the task of the RSTCG to provide the programme managers of the participating divisions/sections with a common opinion/advice on technical issues related to the control and management of radioactive sources. The RSTCG members obtain, inter alia from programme managers, information on all relevant project proposals, and share relevant materials in due time to

  13. Safety sans Frontières: An International Safety Culture Model.

    Science.gov (United States)

    Reader, Tom W; Noort, Mark C; Shorrock, Steven; Kirwan, Barry

    2015-05-01

    The management of safety culture in international and culturally diverse organizations is a concern for many high-risk industries. Yet, research has primarily developed models of safety culture within Western countries, and there is a need to extend investigations of safety culture to global environments. We examined (i) whether safety culture can be reliably measured within a single industry operating across different cultural environments, and (ii) if there is an association between safety culture and national culture. The psychometric properties of a safety culture model developed for the air traffic management (ATM) industry were examined in 17 European countries from four culturally distinct regions of Europe (North, East, South, West). Participants were ATM operational staff (n = 5,176) and management staff (n = 1,230). Through employing multigroup confirmatory factor analysis, good psychometric properties of the model were established. This demonstrates, for the first time, that when safety culture models are tailored to a specific industry, they can operate consistently across national boundaries and occupational groups. Additionally, safety culture scores at both regional and national levels were associated with country-level data on Hofstede's five national culture dimensions (collectivism, power distance, uncertainty avoidance, masculinity, and long-term orientation). MANOVAs indicated safety culture to be most positive in Northern Europe, less so in Western and Eastern Europe, and least positive in Southern Europe. This indicates that national cultural traits may influence the development of organizational safety culture, with significant implications for safety culture theory and practice. © 2015 Society for Risk Analysis.

  14. Survey and evaluation of inherent safety characteristics and passive safety systems for use in probabilistic safety analyses

    International Nuclear Information System (INIS)

    Wetzel, N.; Scharfe, A.

    1998-01-01

    The present report examines the possibilities and limits of a probabilistic safety analysis to evaluate passive safety systems and inherent safety characteristics. The inherent safety characteristics are based on physical principles, that together with the safety system lead to no damage. A probabilistic evaluation of the inherent safety characteristic is not made. An inventory of passive safety systems of accomplished nuclear power plant types in the Federal Republic of Germany was drawn up. The evaluation of the passive safety system in the analysis of the accomplished nuclear power plant types was examined. The analysis showed that the passive manner of working was always assumed to be successful. A probabilistic evaluation was not performed. The unavailability of the passive safety system was determined by the failure of active components which are necessary in order to activate the passive safety system. To evaluate the passive safety features in new concepts of nuclear power plants the AP600 from Westinghouse, the SBWR from General Electric and the SWR 600 from Siemens, were selected. Under these three reactor concepts, the SWR 600 is specially attractive because the safety features need no energy sources and instrumentation in this concept. First approaches for the assessment of the reliability of passively operating systems are summarized. Generally it can be established that the core melt frequency for the passive concepts AP600 and SBWR is advantageous in comparison to the probabilistic objectives from the European Pressurized Water Reactor (EPR). Under the passive concepts is the SWR 600 particularly interesting. In this concept the passive systems need no energy sources and instrumentation, and has active operational systems and active safety equipment. Siemens argues that with this concept the frequency of a core melt will be two orders of magnitude lower than for the conventional reactors. (orig.) [de

  15. Order n.02-059 /P-RM of 05 juin 2002 setting up radioprotection et safety of ionizing radiation sources

    International Nuclear Information System (INIS)

    2002-01-01

    This order establishes the legal framework of radioprotection and safety of ionizing radiation sources in Mali. The scope as well as the definition of some main terms are given. The basis principles of radioprotection against ionizing radiation sources are defined. Instructions in uses of ionizing radiations, penal provisions are outlined

  16. Safety of radiation sources and the security of radioactive materials in Saudi Arabia

    International Nuclear Information System (INIS)

    Alarfaj, A.M.

    1998-01-01

    The present status of the safety of radiation sources and the security of radioactive materials in Saudi Arabia is reviewed in details. Hazards and potential threat, material control and responsible parties, in addition to management and the technical requirements, are the main topics that are discussed. Some interest is given to the responsibilities of the regulatory authority, with special emphasis on the role of King Abdulaziz city for Science and Technology as a national competent authority. (author)

  17. Defining safety culture and the nexus between safety goals and safety culture. 1. An Investigation Study on Practical Points of Safety Management

    International Nuclear Information System (INIS)

    Hasegawa, Naoko; Takano, Kenichi; Hirose, Ayako

    2001-01-01

    In a report after the Chernobyl accident, the International Atomic Energy Agency indicated the definition and the importance of safety culture and the ideal organizational state where safety culture pervades. However, the report did not mention practical approaches to enhance safety culture. In Japan, although there had been investigations that clarified the consciousness of employees and the organizational climate in the nuclear power and railway industries, organizational factors that clarified the level of organization safety and practical methods that spread safety culture in an organization had not been studied. The Central Research Institute of the Electric Power Industry conducted surveys of organizational culture for the construction, chemical, and manufacturing industries. The aim of our study was to clarify the organizational factors that influence safety in an organization expressed in employee safety consciousness, commitment to safety activities, rate of accidents, etc. If these areas were clarified, the level of organization safety might be evaluated, and practical ways could be suggested to enhance the safety culture. Consequently, a series of investigations was conducted to clarify relationships among organizational climate, employee consciousness, safety management and activities, and rate of accidents. The questionnaire surveys were conducted in 1998-1999. The subjects were (a) managers of the safety management sections in the head offices of the construction, chemical, and manufacturing industries; (b) responsible persons in factories of the chemical and manufacturing industries; and (c) general workers in factories of the chemical and manufacturing industries. The number of collected data was (a) managers in the head office: 48 from the construction industry and 58 from the chemical and manufacturing industries, (b) responsible persons in factories: 567, and (c) general workers: from 29 factories. Items in the questionnaires were selected from

  18. New Radiation Safety Standards of the Russian Federation

    International Nuclear Information System (INIS)

    Kutkov, V.A.

    2001-01-01

    Full text: The new Radiation Safety Standards of the Russian Federation are a first step in an implementation of the 1990 Recommendations of the ICRP into the existing national system of providing a radiation safety of the public. In new System the radiation source is examined as a source of harm and danger for the public. So the System shall include not only the measures for limitation of actual exposures, but also an assessment of efficiency of radiation protection in the practical activity, based on the analysis of a distribution of doses received and on the assessment of actions initiated to restrict the probability of potential exposures. The occupational and public exposure doses are only the indices of the quality of management of the source. In this System a radiation monitoring is a feedback for assessing the stability of the source and how it is controllable. It is a tool for predicting the levels of potential exposure and the relevant danger associated with the source. It is important to underline that the System of Providing a Radiation Safety is an interrelated system. None of its parts may be individually used. In particular, the mere conformity with dose limits is not yet a sufficient evidence of the successful operation of the safety system, because the normal exposure doses reflect only a source-related harm. The problems of implementation of this System of radiation protection and safety into the contemporary practice in the Russia is discussed. (author)

  19. The safe use of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    As a means of promoting safety in the use of radiation sources, as well as encouraging consistency in regulatory control, the IAEA has from time to time organized training courses with the co-operation of Member State governments and organizations, to inform individuals from developing countries with appropriate responsibilities on the provisions for the safe use and regulation of radiation sources. Three such courses on the safe use of radiation sources have been held in both the USA, with the co-operation of the United States Government, and in Dublin, Ireland, with the co-operation of the Irish Government. The Training Course on the Safe Use and Regulation of Radiation Sources has been successfully given to over 77 participants from over 30 countries during the last years. The course is aimed at providing a basis of radiation protection knowledge in all aspects of the uses of radiation and of radiation sources that are used today. It is the intention of this course to provide a systematic enhancement of radioisotope safety in countries with developing radiological programmes through a core group of national authorities. The IAEA's training programmes provide an excellent opportunity for direct contact with lecturers that have extensive experience in resolving issues faced by developing countries and in providing guidance documents useful in addressing their problems. This document uses this collective experience and provides valuable technical information regarding the safety aspects of the uses not only of sealed and unsealed sources of radiation, but also for those machines that produce ionizing radiation. The first of these training courses, 'Safety and Regulation of Unsealed Sources' was held in Dublin, Ireland, June through July 1989 with the co-operation of the Nuclear Energy Board and Trinity College. This was an interregional training course, the participants came from all over the world. The second and third interregional courses, 'Safety and Regulation

  20. The safe use of radiation sources

    International Nuclear Information System (INIS)

    1995-01-01

    As a means of promoting safety in the use of radiation sources, as well as encouraging consistency in regulatory control, the IAEA has from time to time organized training courses with the co-operation of Member State governments and organizations, to inform individuals from developing countries with appropriate responsibilities on the provisions for the safe use and regulation of radiation sources. Three such courses on the safe use of radiation sources have been held in both the USA, with the co-operation of the United States Government, and in Dublin, Ireland, with the co-operation of the Irish Government. The Training Course on the Safe Use and Regulation of Radiation Sources has been successfully given to over 77 participants from over 30 countries during the last years. The course is aimed at providing a basis of radiation protection knowledge in all aspects of the uses of radiation and of radiation sources that are used today. It is the intention of this course to provide a systematic enhancement of radioisotope safety in countries with developing radiological programmes through a core group of national authorities. The IAEA's training programmes provide an excellent opportunity for direct contact with lecturers that have extensive experience in resolving issues faced by developing countries and in providing guidance documents useful in addressing their problems. This document uses this collective experience and provides valuable technical information regarding the safety aspects of the uses not only of sealed and unsealed sources of radiation, but also for those machines that produce ionizing radiation. The first of these training courses, 'Safety and Regulation of Unsealed Sources' was held in Dublin, Ireland, June through July 1989 with the co-operation of the Nuclear Energy Board and Trinity College. This was an interregional training course, the participants came from all over the world. The second and third interregional courses, 'Safety and Regulation

  1. Advanced Neutron Source (ANS) Project

    International Nuclear Information System (INIS)

    Campbell, J.H.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts

  2. An integrative model of organizational safety behavior.

    Science.gov (United States)

    Cui, Lin; Fan, Di; Fu, Gui; Zhu, Cherrie Jiuhua

    2013-06-01

    This study develops an integrative model of safety management based on social cognitive theory and the total safety culture triadic framework. The purpose of the model is to reveal the causal linkages between a hazardous environment, safety climate, and individual safety behaviors. Based on primary survey data from 209 front-line workers in one of the largest state-owned coal mining corporations in China, the model is tested using structural equation modeling techniques. An employee's perception of a hazardous environment is found to have a statistically significant impact on employee safety behaviors through a psychological process mediated by the perception of management commitment to safety and individual beliefs about safety. The integrative model developed here leads to a comprehensive solution that takes into consideration the environmental, organizational and employees' psychological and behavioral aspects of safety management. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  3. Radiation safety and gynaecological brachytherapy

    International Nuclear Information System (INIS)

    Crawford, L.

    1985-01-01

    In 1983, the Radiation Control Section of the South Australian Health Commission conducted an investigation into radiation safety practices in gynaecological brachytherapy. Part of the investigation included a study of the transportation of radioactive sources between hospitals. Several deficiences in radiation safety were found in the way these sources were being transported. New transport regulations came into force in South Australia in July 1984 and since then there have been many changes in the transportation procedure

  4. Radiation safety supervisory system in Latvia and its role in prevention of unauthorised practices with radiation sources

    International Nuclear Information System (INIS)

    Eglajs, A.; Salmins, A.

    2001-01-01

    This report provides an overview of the practical and legal aspects of the use of radiation sources. The existing regulatory infrastructure is briefly analysed and proposed systems are described. The proposed interactions between the regulatory body and the advisory board are presented and some details about joint activities of different institutions concerning radiation safety are given. An implementation example of the supervisory system in combating illicit trafficking is analysed and the essential components in the prevention of illicit trafficking are assessed. Some findings of investigations are quoted regarding improvements in protection and prevention on the national and the international level. (author)

  5. Conditioning of Radium-226 sources in Cuba

    International Nuclear Information System (INIS)

    Benitez Navarro, Juan Carlos; Salgado Mojena, Mercedes; Gonzalez Rodriguez, Niurka; Castillo Gomez, Rafael; Berdellans Escobar, Ania; Otero Cabrera, Lazaro

    2011-01-01

    Abstract The production and use of Ra-226 sealed sources was internationally recommended to be halted for health and safety reasons. Consequently, all Ra-226 sources in Cuba were collected, characterized and conditioned. The paper describes the safety and operational aspects related to the Ra-226 conditioning. For this, a Special Permission was granted by the Regulatory Body, as required. A radiological assessment, a safety report as well as an emergency plan were prepared and approved before the operations. The work was accomplished with due reliability following an established comprehensive Quality Management System. As a result of these operations, 188.5 GBq of Ra-226, contained in different types of radiation sources (brachytherapy needles and tubes, standard sources for calibration, etc.) were encapsulated and conditioned. The capsules with the sources were conditioned in a retrievable form within fi ve waste packages intended for long term storage.(author)

  6. Design an optimum safety policy for personnel safety management - A system dynamic approach

    International Nuclear Information System (INIS)

    Balaji, P.

    2014-01-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making

  7. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, P. [The Glocal University, Mirzapur Pole, Delhi- Yamuntori Highway, Saharanpur 2470001 (India)

    2014-10-06

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  8. Design an optimum safety policy for personnel safety management - A system dynamic approach

    Science.gov (United States)

    Balaji, P.

    2014-10-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  9. Waste collection in developing countries – Tackling occupational safety and health hazards at their source

    International Nuclear Information System (INIS)

    Bleck, Daniela; Wettberg, Wieland

    2012-01-01

    Waste management procedures in developing countries are associated with occupational safety and health risks. Gastro-intestinal infections, respiratory and skin diseases as well as muscular-skeletal problems and cutting injuries are commonly found among waste workers around the globe. In order to find efficient, sustainable solutions to reduce occupational risks of waste workers, a methodological risk assessment has to be performed and counteractive measures have to be developed according to an internationally acknowledged hierarchy. From a case study in Addis Ababa, Ethiopia suggestions for the transferral of collected household waste into roadside containers are given. With construction of ramps to dump collected household waste straight into roadside containers and an adaptation of pushcarts and collection procedures, the risk is tackled at the source.

  10. Guidance on the import and export of radioactive sources

    International Nuclear Information System (INIS)

    2005-03-01

    The IAEA Code of Conduct on the Safety and Security of Radioactive Sources, published in January 2004 with the symbol IAEA/CODEOC/2004, provides guidance on how States can safely and securely manage radioactive sources that may pose a significant risk. The concept of such an international undertaking on the safety and security of radioactive sources was highlighted in the major findings of the International Conference on the Safety of Radiation Sources and Security of Radioactive Materials held in Dijon, France, in September 1998. Following that conference, the IAEA Board of Governors requested the Director General to initiate exploratory discussions relating to an international undertaking in the areas of the safety and security of radiation sources. This request was reflected in an Action Plan on the Safety of Radiation Sources and Security of Radioactive Materials, with the Secretariat organizing a series of open-ended meetings of technical and legal experts nominated by Member States to further explore the concept of such an undertaking. Noting comments made in the Board of Governors, the experts agreed that any international undertaking should, for the present, be in the form of a 'code of conduct'. The text of a Code of Conduct on the Safety and Security of Radioactive Sources was accordingly developed. Steps to strengthen the provisions of the Code were subsequently initiated following the International Conference of National Regulatory Authorities with Competence in the Safety of Radiation Sources and the Security of Radioactive Material held in Buenos Aires in December 2000. Moreover, growing international concern about the security of radioactive sources after the events of 11 September 2001 led to a number of issues being considered further by technical and legal experts. Furthermore, the International Conference on Security of Radioactive Sources held in Vienna in March 2003 made recommendations regarding additional actions that might be needed. In June

  11. Reactivity studies on the advanced neutron source

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Redmond, E.L. II; Fletcher, C.D.

    1990-01-01

    An Advanced Neutron Source (ANS) with a peak thermal neutron flux of about 8.5 x 10 19 m -2 s -1 is being designed for condensed matter physics, materials science, isotope production, and fundamental physics research. The ANS is a new reactor-based research facility being planned by Oak Ridge National Laboratory (ORNL) to meet the need for an intense steady-state source of neutrons. The design effort is currently in the conceptual phase. A reference reactor design has been selected in order to examine the safety, performance, and costs associated with this one design. The ANS Project has an established, documented safety philosophy, and safety-related design criteria are currently being established. The purpose of this paper is to present analyses of safety aspects of the reference reactor design that are related to core reactivity events. These analyses include control rod worth, shutdown rod worth, heavy water voiding, neutron beam tube flooding, light water ingress, and single fuel element criticality. Understanding these safety aspects will allow us to make design modifications that improve the reactor safety and achieve the safety related design criteria. 8 refs., 3 tabs

  12. Using resources for scientific-driven pharmacovigilance: from many product safety documents to one product safety master file.

    Science.gov (United States)

    Furlan, Giovanni

    2012-08-01

    Current regulations require a description of the overall safety profile or the specific risks of a drug in multiple documents such as the Periodic and Development Safety Update Reports, Risk Management Plans (RMPs) and Signal Detection Reports. In a resource-constrained world, the need for preparing multiple documents reporting the same information results in shifting the focus from a thorough scientific and medical evaluation of the available data to maintaining compliance with regulatory timelines. Since the aim of drug safety is to understand and characterize product issues to take adequate risk minimization measures rather than to comply with bureaucratic requirements, there is the need to avoid redundancy. In order to identify core drug safety activities that need to be undertaken to protect patient safety and reduce the number of documents reporting the results of these activities, the author has reviewed the main topics included in the drug safety guidelines and templates. The topics and sources that need to be taken into account in the main regulatory documents have been found to greatly overlap and, in the future, as a result of the new Periodic Safety Update Report structure and requirements, in the author's opinion this overlap is likely to further increase. Many of the identified inter-document differences seemed to be substantially formal. The Development Safety Update Report, for example, requires separate presentation of the safety issues emerging from different sources followed by an overall evaluation of each safety issue. The RMP, instead, requires a detailed description of the safety issues without separate presentation of the evidence derived from each source. To some extent, however, the individual documents require an in-depth analysis of different aspects; the RMP, for example, requires an epidemiological description of the indication for which the drug is used and its risks. At the time of writing this article, this is not specifically

  13. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1979-12-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed hear are of a continuing nature. Results and conclusions described may change as the work continues

  14. Large-scale road safety programmes in low- and middle-income countries: an opportunity to generate evidence.

    Science.gov (United States)

    Hyder, Adnan A; Allen, Katharine A; Peters, David H; Chandran, Aruna; Bishai, David

    2013-01-01

    The growing burden of road traffic injuries, which kill over 1.2 million people yearly, falls mostly on low- and middle-income countries (LMICs). Despite this, evidence generation on the effectiveness of road safety interventions in LMIC settings remains scarce. This paper explores a scientific approach for evaluating road safety programmes in LMICs and introduces such a road safety multi-country initiative, the Road Safety in 10 Countries Project (RS-10). By building on existing evaluation frameworks, we develop a scientific approach for evaluating large-scale road safety programmes in LMIC settings. This also draws on '13 lessons' of large-scale programme evaluation: defining the evaluation scope; selecting study sites; maintaining objectivity; developing an impact model; utilising multiple data sources; using multiple analytic techniques; maximising external validity; ensuring an appropriate time frame; the importance of flexibility and a stepwise approach; continuous monitoring; providing feedback to implementers, policy-makers; promoting the uptake of evaluation results; and understanding evaluation costs. The use of relatively new approaches for evaluation of real-world programmes allows for the production of relevant knowledge. The RS-10 project affords an important opportunity to scientifically test these approaches for a real-world, large-scale road safety evaluation and generate new knowledge for the field of road safety.

  15. Radiation safety

    International Nuclear Information System (INIS)

    Jain, Priyanka

    2014-01-01

    The use of radiation sources is a privilege; in order to retain the privilege, all persons who use sources of radiation must follow policies and procedures for their safe and legal use. The purpose of this poster is to describe the policies and procedures of the Radiation Protection Program. Specific conditions of radiation safety require the establishment of peer committees to evaluate proposals for the use of radionuclides, the appointment of a radiation safety officer, and the implementation of a radiation safety program. In addition, the University and Medical Centre administrations have determined that the use of radiation producing machines and non-ionizing radiation sources shall be included in the radiation safety program. These Radiation Safety policies are intended to ensure that such use is in accordance with applicable State and Federal regulations and accepted standards as directed towards the protection of health and the minimization of hazard to life or property. It is the policy that all activities involving ionizing radiation or radiation emitting devices be conducted so as to keep hazards from radiation to a minimum. Persons involved in these activities are expected to comply fully with the Canadian Nuclear Safety Act and all it. The risk of prosecution by the Department of Health and Community Services exists if compliance with all applicable legislation is not fulfilled. (author)

  16. Sealed Radioactive Sources. Information, Resources, and Advice for Key Groups about Preventing the Loss of Control over Sealed Radioactive Sources

    International Nuclear Information System (INIS)

    2013-10-01

    Among its many activities to improve the safety and security of sealed sources, the IAEA has been investigating the root causes of major accidents and incidents since the 1980's and publishes findings so that others can learn from them. There are growing concerns today about the possibility that an improperly stored source could be stolen and used for malicious purposes. To improve both safety and security, information needs to be in the hands of those whose actions and decisions can prevent a source from being lost or stolen in the first place. The IAEA developed this booklet to help improve communication with key groups about hazards that may result from the loss of control over sealed radioactive sources and measures that should be implemented to prevent such loss of control. Many people may benefit from the information contained in this booklet, particularly those working with sources and those likely to be involved if control over a source is lost; especially: officials in government agencies, first responders, medical users, industrial users and the metal recycling industry. The general public may also benefit from an understanding of the fundamentals of radiation safety. This booklet is comprised of several stand-alone chapters intended to communicate with these key groups. Various accidents that are described and information that is provided are relevant to more than one key group and therefore, some information is repeated throughout the booklet. This booklet seeks to raise awareness of the importance of the safety and security of sealed radioactive sources. However, it is not intended to be a comprehensive 'how to' guide for implementing safety and security measures for sealed radioactive sources. For more information on these measures, readers are encouraged to consult the key IAEA safety and security-related publications identified in this booklet

  17. Source term derivation and radiological safety analysis for the TRICO II research reactor in Kinshasa

    International Nuclear Information System (INIS)

    Muswema, J.L.; Ekoko, G.B.; Lukanda, V.M.; Lobo, J.K.-K.; Darko, E.O.; Boafo, E.K.

    2015-01-01

    Highlights: • Atmospheric dispersion modeling for two credible accidents of the TRIGA Mark II research reactor in Kinshasa (TRICO II) was performed. • Radiological safety analysis after the postulated initiating events (PIE) was also carried out. • The Karlsruhe KORIGEN and the HotSpot Health Physics codes were used to achieve the objectives of this study. • All the values of effective dose obtained following the accident scenarios were below the regulatory limits for reactor staff members and the public, respectively. - Abstract: The source term from the 1 MW TRIGA Mark II research reactor core of the Democratic Republic of the Congo was derived in this study. An atmospheric dispersion modeling followed by radiation dose calculation were performed based on two possible postulated accident scenarios. This derivation was made from an inventory of peak radioisotope activities released in the core by using the Karlsruhe version of isotope generation code KORIGEN. The atmospheric dispersion modeling was performed with HotSpot code, and its application yielded to radiation dose profile around the site using meteorological parameters specific to the area under study. The two accident scenarios were picked from possible accident analyses for TRIGA and TRIGA-fueled reactors, involving the case of destruction of the fuel element with highest activity release and a plane crash on the reactor building as the worst case scenario. Deterministic effects of these scenarios are used to update the Safety Analysis Report (SAR) of the reactor, and for its current version, these scenarios are not yet incorporated. Site-specific meteorological conditions were collected from two meteorological stations: one installed within the Atomic Energy Commission and another at the National Meteorological Agency (METTELSAT), which is not far from the site. Results show that in both accident scenarios, radiation doses remain within the limits, far below the recommended maximum effective

  18. Source term derivation and radiological safety analysis for the TRICO II research reactor in Kinshasa

    Energy Technology Data Exchange (ETDEWEB)

    Muswema, J.L., E-mail: jeremie.muswem@unikin.ac.cd [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Ekoko, G.B. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Lukanda, V.M. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Democratic Republic of the Congo' s General Atomic Energy Commission, P.O. Box AE1 (Congo, The Democratic Republic of the); Lobo, J.K.-K. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Darko, E.O. [Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Boafo, E.K. [University of Ontario Institute of Technology, 2000 Simcoe St. North, Oshawa, ONL1 H7K4 (Canada)

    2015-01-15

    Highlights: • Atmospheric dispersion modeling for two credible accidents of the TRIGA Mark II research reactor in Kinshasa (TRICO II) was performed. • Radiological safety analysis after the postulated initiating events (PIE) was also carried out. • The Karlsruhe KORIGEN and the HotSpot Health Physics codes were used to achieve the objectives of this study. • All the values of effective dose obtained following the accident scenarios were below the regulatory limits for reactor staff members and the public, respectively. - Abstract: The source term from the 1 MW TRIGA Mark II research reactor core of the Democratic Republic of the Congo was derived in this study. An atmospheric dispersion modeling followed by radiation dose calculation were performed based on two possible postulated accident scenarios. This derivation was made from an inventory of peak radioisotope activities released in the core by using the Karlsruhe version of isotope generation code KORIGEN. The atmospheric dispersion modeling was performed with HotSpot code, and its application yielded to radiation dose profile around the site using meteorological parameters specific to the area under study. The two accident scenarios were picked from possible accident analyses for TRIGA and TRIGA-fueled reactors, involving the case of destruction of the fuel element with highest activity release and a plane crash on the reactor building as the worst case scenario. Deterministic effects of these scenarios are used to update the Safety Analysis Report (SAR) of the reactor, and for its current version, these scenarios are not yet incorporated. Site-specific meteorological conditions were collected from two meteorological stations: one installed within the Atomic Energy Commission and another at the National Meteorological Agency (METTELSAT), which is not far from the site. Results show that in both accident scenarios, radiation doses remain within the limits, far below the recommended maximum effective

  19. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    International Nuclear Information System (INIS)

    Rao, Suman

    2007-01-01

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly

  20. The technological safety in facilities that manage radioactive sources; La seguridad tecnologica en instalaciones que manejan fuentes radiactivas

    Energy Technology Data Exchange (ETDEWEB)

    Lizcano, D., E-mail: david.lizcano@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The sealed radioactive sources are used inside a wide range of applications in the medicine, industry and investigation around the world. These sources can contain a great radionuclides variety, exhibiting a wide spectrum of activities and radiological half lives. This way, we can find pattern sources of radionuclides as Americium-241, Plutonium-238, Plutonium-239, Thorium-228 and Thorium-230, etc., with some activity of kBq in research laboratories, Iridium-192 and Cesium-137 sources used in brachytherapy with GBq activities, until sources with P Bq activities in industrial irradiators of Cobalt-60 and Cesium-137. This document approach the physical safety that entities like the IAEA recommends for the facilities that contain sealed sources, especially the measures that are taking in the Instituto Nacional de Investigaciones Nucleares (ININ) and others government facilities. (Author)

  1. Nuclear safety: an international approach: the convention on nuclear safety

    International Nuclear Information System (INIS)

    Rosen, M.

    1994-01-01

    This paper is a general presentation of the IAEA Convention on Nuclear Safety which has already be signed by 50 countries and which is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The paper gives a review of its development and some key provisions for a better understanding of how this agreement will operate in practice. The Convention consists of an introductory preamble and four chapters consisting of 35 articles dealing with: the principal objectives, definitions and scope of application; the various obligations (general provisions, legislation, responsibility and regulation, general safety considerations taking into account: the financial and human resources, the human factors, the quality assurance, the assessment and verification of safety, the radiation protection and the emergency preparedness; the safety of installations: sitting, design and construction, operation); the periodic meetings of the contracting parties to review national reports on the measures taken to implement each of the obligations, and the final clauses and other judicial provisions common to international agreements. (J.S.). 1 append

  2. Radiation Safety of Gamma, Electron and X Ray Irradiation Facilities. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    The objective of this Safety Guide is to provide recommendations on how to meet the requirements of the BSS with regard to irradiation facilities. This Safety Guide provides specific, practical recommendations on the safe design and operation of gamma, electron and X ray irradiators for use by operating organizations and the designers of these facilities, and by regulatory bodies. SCOPE. The facilities considered in this publication include five types of irradiator, whether operated on a commercial basis or for research and development purposes. This publication is concerned with radiation safety issues and not with the uses of irradiators, nor does it cover the irradiation of product or its quality management. The five types of irradiator are: - Panoramic dry source storage irradiators; - Underwater irradiators, in which both the source and the product being irradiated are under water; - Panoramic wet source storage irradiators; - Electron beam irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process; - X ray irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process. Consideration of non-radiation-related risks and of the benefits resulting from the operation of irradiators is outside the scope of this Safety Guide. The practices of radiotherapy and radiography are also outside the scope of this Safety Guide. Category I gamma irradiators (i.e. 'self-shielded' irradiators) are outside the scope of this Safety Guide

  3. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    Science.gov (United States)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  4. A primer of drug safety surveillance: an industry perspective. Part II: Product labeling and product knowledge.

    Science.gov (United States)

    Allan, M C

    1992-01-01

    To place the fundamentals of clinical drug safety surveillance in a conceptual framework that will facilitate understanding and application of adverse drug event data to protect the health of the public and support a market for pharmaceutical manufacturers' products. Part II of this series discusses specific issues regarding product labeling, such as developing the labeling, changing the labeling, and the legal as well as commercial ramifications of the contents of the labeling. An adverse event report scenario is further analyzed and suggestions are offered for maintaining the product labeling as an accurate reflection of the drug safety surveillance data. This article also emphasizes the necessity of product knowledge in adverse event database management. Both scientific and proprietary knowledge are required. Acquiring product knowledge is a part of the day-to-day activities of drug safety surveillance. A knowledge of the history of the product may forestall adverse publicity, as shown in the illustration. This review uses primary sources from the federal laws (regulations), commentaries, and summaries. Very complex topics are briefly summarized in the text. Secondary sources, ranging from newspaper articles to judicial summaries, illustrate the interpretation of adverse drug events and opportunities for drug safety surveillance intervention. The reference materials used were articles theoretically or practically applicable in the day-to-day practice of drug safety surveillance. The role of clinical drug safety surveillance in product monitoring and drug development is described. The process of drug safety surveillance is defined by the Food and Drug Administration regulations, product labeling, product knowledge, and database management. Database management is subdivided into the functions of receipt, retention, retrieval, and review of adverse event reports. Emphasis is placed on the dynamic interaction of the components of the process. Suggestions are offered

  5. Transport of radioactive sources-an environmental problem

    International Nuclear Information System (INIS)

    Merckaert, G.

    1996-01-01

    Full text: The transport of dangerous goods is submitted to various regulations. These can be international, national or regional and they can differ from country to country. The basis for the regulations for dangerous goods can be found in the recommendations on the transport of dangerous goods, issued by the United Nations committee of experts on the transport of dangerous goods (orange book). For radioactive material the regulations for the safe transport of radioactive material, issued by the International Atomic Energy Agency (IAEA), are applied. The UN recommendations provide for 9 classes of dangerous goods. With regard to class 7, specifically related to the transport of radioactive material special recommendation relating to class 70, the IAEA regulations are referred to. These IAEA regulations for their part provide for 13 schedules, varying between weakly and highly radioactive. The radioactive sources which are used for non-destructive testing or for medical purposes are mostly sealed sources, i.e. the radioactive material is contained in a metallic shell. According to the nature of the isotope and their activity, the sources are transported either in industrial packagings, type A or type B packagings. According to the mode of transport, either air, sea, rail or road, various specific rules are applied, which however, are fortunately nearly completely harmonized. Special attention is paid to radiation protection, heat removal and the testing and fabrication of packagings. As a general rule, the safety of transport is based on the safety of the packagings, i.e. their ability to maintain, even in accident conditions, their capacity of tightness, shielding against radiation and removing the heat generated by the transported material

  6. Fundamental safety principles. Safety fundamentals

    International Nuclear Information System (INIS)

    2007-01-01

    This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste

  7. Fundamental safety principles. Safety fundamentals

    International Nuclear Information System (INIS)

    2006-01-01

    This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste

  8. Challenges in promoting radiation safety culture

    International Nuclear Information System (INIS)

    Mod Ali, Noriah

    2008-01-01

    Safety has quickly become an industry performance measure, and the emphasis on its reliability has always been part of a strategic commitment. This paper presents an approach taken by Malaysian Nuclear Agency (Nuclear Malaysia) and authority to develop and implement safety culture for industries that uses radioactive material and radiation sources. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. Proper safety audit will help to identify the non-compliance of safety culture as well as the deviation of management, individual and policy level commitment; review of radiation protection program and activities should be preceded. (author)

  9. Developing an integrated dam safety program

    International Nuclear Information System (INIS)

    Nielsen, N. M.; Lampa, J.

    1996-01-01

    An effort has been made to demonstrate that dam safety is an integral part of asset management which, when properly done, ensures that all objectives relating to safety and compliance, profitability, stakeholders' expectations and customer satisfaction, are achieved. The means to achieving this integration of the dam safety program and the level of effort required for each core function have been identified using the risk management approach to pinpoint vulnerabilities, and subsequently to focus priorities. The process is considered appropriate for any combination of numbers, sizes and uses of dams, and is designed to prevent exposure to unacceptable risks. 5 refs., 1 tab

  10. PX–An Innovative Safety Concept for an Unmanned Reactor

    Directory of Open Access Journals (Sweden)

    Sung-Jae Yi

    2016-02-01

    Full Text Available An innovative safety concept for a light water reactor has been developed at the Korea Atomic Energy Research Institute. It is a unique concept that adopts both a fast heat transfer mechanism for a small containment and a changing mechanism of the cooling geometry to take advantage of the potential, thermal, and dynamic energies of the cold water in the containment. It can bring about rapid cooling of the containment and long-term cooling of the decay heat. By virtue of this innovative concept, nuclear fuel damage events can be prevented. The ultimate heat transfer mechanism contributes to minimization of the heat exchanger size and containment volume. A small containment can ensure the underground construction, which can use river or seawater as an ultimate heat sink. The changing mechanism of the cooling geometry simplifies several safety systems and unifies diverse functions. Simplicity of the present safety system does not require any operator actions during events or accidents. Therefore, the unique safety concept of PX can realize both economic competitiveness and inherent safety.

  11. Safety assessments for potential exposures

    International Nuclear Information System (INIS)

    Dunn, D.I.

    2012-04-01

    Safety Assessment of potential exposures have been carried out in major practices, namely: industrial radiography, gamma irradiators and electron accelerators used in industry and research, and radiotherapy. This paper focuses on reviewing safety assessment methodologies and using developed software to analyse radiological accidents, also review, and discuss these past accidents.The primary objective of the assessment is to assess the adequacy of planned or existing measures for protection and safety and to identify any additional measures that should be put in place. As such, both routine use of the source and the probability and magnitude of potential exposures arising from accidents or incidents should be considered. Where the assessment indicates that there is a realistic possibility of an accident affecting workers or members of the public or having consequences for the environment, the registrant or licensee should prepare a suitable emergency plan. A safety assessment for normal operation addresses all the conditions under which the radiation source operates as expected, including all phases of the lifetime of the source. Due account needs to be taken of the different factors and conditions that will apply during non-operational phases, such as installation, commissioning and maintenance. (author)

  12. Safety culture and accident analysis-A socio-management approach based on organizational safety social capital

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Suman [Risk Analyst (India)]. E-mail: sumanashokrao@yahoo.co.in

    2007-04-11

    One of the biggest challenges for organizations in today's competitive business environment is to create and preserve a self-sustaining safety culture. Typically, Key drivers of safety culture in many organizations are regulation, audits, safety training, various types of employee exhortations to comply with safety norms, etc. However, less evident factors like networking relationships and social trust amongst employees, as also extended networking relationships and social trust of organizations with external stakeholders like government, suppliers, regulators, etc., which constitute the safety social capital in the Organization-seem to also influence the sustenance of organizational safety culture. Can erosion in safety social capital cause deterioration in safety culture and contribute to accidents? If so, how does it contribute? As existing accident analysis models do not provide answers to these questions, CAMSoC (Curtailing Accidents by Managing Social Capital), an accident analysis model, is proposed. As an illustration, five accidents: Bhopal (India), Hyatt Regency (USA), Tenerife (Canary Islands), Westray (Canada) and Exxon Valdez (USA) have been analyzed using CAMSoC. This limited cross-industry analysis provides two key socio-management insights: the biggest source of motivation that causes deviant behavior leading to accidents is 'Faulty Value Systems'. The second biggest source is 'Enforceable Trust'. From a management control perspective, deterioration in safety culture and resultant accidents is more due to the 'action controls' rather than explicit 'cultural controls'. Future research directions to enhance the model's utility through layering are addressed briefly.

  13. Guidance on the Import and Export of Radioactive Sources. 2012 Edition

    International Nuclear Information System (INIS)

    2012-05-01

    The IAEA Code of Conduct on the Safety and Security of Radioactive Sources, published as IAEA/CODEOC/2004 in January 2004, provides guidance on how States can safely and securely manage radioactive sources that may pose a significant risk. The concept of such an international undertaking on the safety and security of radioactive sources was highlighted in the major findings of the International Conference on the Safety of Radiation Sources and Security of Radioactive Materials held in Dijon, France, in September 1998. Following that conference, the IAEA Board of Governors requested the Director General to initiate exploratory discussions relating to an international undertaking in the areas of the safety and security of radiation sources. This request was reflected in an Action Plan on the Safety of Radiation Sources and Security of Radioactive Materials, with the Secretariat organizing a series of open-ended meetings of technical and legal experts nominated by Member States to further explore the concept of such an undertaking. Noting comments made during meetings of the Board of Governors, the experts agreed that any international undertaking should, for the present, be in the form of a 'code of conduct'. The text of a Code of Conduct on the Safety and Security of Radioactive Sources was accordingly developed. Steps to strengthen the provisions of the Code were subsequently initiated following the International Conference of National Regulatory Authorities with Competence in the Safety of Radiation Sources and the Security of Radioactive Material held in Buenos Aires in December 2000. Moreover, growing international concern about the security of radioactive sources after the events of 11 September 2001 led to a number of issues being considered further by technical and legal experts. Furthermore, the International Conference on Security of Radioactive Sources held in Vienna in March 2003 made recommendations regarding additional actions that might be needed. In

  14. Management of 'orphan' sources

    International Nuclear Information System (INIS)

    Telleria, D.; Spano, F.; Rudelli, M.D.

    1998-01-01

    The experience has shown that most of the accidents with severe radiological consequences take place when radioactive sources were beyond the control system. In Argentina, the primary framework in radiological safety was established in the late fifties, with a non-prescriptive regulatory approach. For any application involving radioactive material, users must be authorised by the Authority, unless the application has demonstrated to be exempted. The licensees are responsible for ensuring protection against the risk associated with exposure to radiation, and for safety of radioactive sources. To obtain an authorisation, the applicant has to prove to the Authority knowledge and capability to carry on an application. Not only normal operation circumstances are considered, but every conceivable accidental situation. It has been shown the existence of radioactive sources not attributed to an authorised user or installation, and therefore outside of the primary control structure described above. These sources, from here on called 'orphans' recognise several origins. The regulatory authority should necessary foresee mechanisms to afford early detection and management of these sources, before an undesired consequence arises. Up to some extent, the deployment of multiple and varied organisations or procedures, could be understood as a 'defence in depth' concept, applied to the control. (author)

  15. Safety Auditing and Assessments

    Science.gov (United States)

    Goodin, James Ronald (Ronnie)

    2005-01-01

    Safety professionals typically do not engage in audits and independent assessments with the vigor as do our quality brethren. Taking advantage of industry and government experience conducting value added Independent Assessments or Audits benefits a safety program. Most other organizations simply call this process "internal audits." Sources of audit training are presented and compared. A relation of logic between audit techniques and mishap investigation is discussed. An example of an audit process is offered. Shortcomings and pitfalls of auditing are covered.

  16. Main results and tasks in studies on radiation safety ensurance when using nuclear power and radiation sources in national economy

    International Nuclear Information System (INIS)

    Semenov, A.P.; Ivanov, V.I.

    1978-01-01

    The basic problems and the results of work in the field of ensuring radiation safety for personnel engaged in work related to the use of nuclear energy and sources of ionizing radiation are discussed. Long standing observation of labour hygiene and health conditions of people engaged at research nuclear reactors have shown that the irradiation levels under normal operating conditions do not exceed the established standards. Radiation conditions in radiological laboratories have been studied. Much attention is given to studies of internal irradiation due to inhalation of radioactive aerosols. New methods and apparatuses have been developed for analysis of aerosols and control of intake of radioactive substances by man. Work has been done to improve the methods of emergency dosimetry and design of individual emergency dosimeters. Investigations have been performed to determine the safety levels in working with rare-metal ores containing naturally occurring radioactive substances and industrial radiochemical processes. It is of interest to study small load doses. Different documents for providing safety in working with sources of ionizing radiation have been developed

  17. The Forest Service Safety Survey: results from an employee-wide safety attitude survey

    Science.gov (United States)

    Vanessa R. Lane; Ken Cordell; Stanley J. Zarnoch; Gary T. Green; Neelam Poudyal; Susan Fox

    2014-01-01

    The Forest Service, U.S. Department of Agriculture launched a Safety Journey in 2011 aimed at elevating safety consciousness and practice in the Agency. All employees were required to attend an engagement session during the year to introduce them to the Safety Journey. In September, a survey was launched to help Forest Service leadership better understand employee...

  18. Building competence in radiation protection and the safe use of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    An essential element of a national infrastructure for radiation protection and safety is the maintenance of an adequate number of competent personnel. This Safety Guide makes recommendations concerning the building of competence in protection and safety, which relate to the training and assessment of qualification of new personnel and retraining of existing personnel in order to develop and maintain appropriate levels of competence. This Safety Guide addresses training in protection and safety aspects in relation to all practices and intervention situations in nuclear and radiation related technologies. This document covers the following aspects: the categories of persons to be trained. The requirements for education, training and experience for each category. The processes of qualification and authorization of persons. A national strategy for building competence

  19. There are radiation sources out there!

    International Nuclear Information System (INIS)

    Bahran, M.Y.

    2001-01-01

    During the past few years we have been working in the area of the safety of radiation sources and radioactive materials. In this paper we summarize our findings and describe the recovery of an abandoned source. We call for further international co-operation in this area. In particular, we suggest an international system for the tagging and tracking of radioactive sources. (author)

  20. Radiation safety: New international standards

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    This article highlights an important result of this work for the international harmonization of radiation safety: specifically, it present an overview of the forthcoming International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources - the so-called BSS. They have been jointly developed by six organizations - the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (NEA/OECD), the Pan American Health Organization (PAHO), and the World Health Organization (WHO)

  1. A primer of drug safety surveillance: an industry perspective. Part I: Information flow, new drug development, and federal regulations.

    Science.gov (United States)

    Allan, M C

    1992-01-01

    To place the fundamentals of clinical drug safety surveillance in a conceptual framework that will facilitate understanding and application of adverse drug event data to protect the health of the public and support a market for pharmaceutical manufacturers' products. Part I of this series provides a background for the discussion of drug safety by defining the basic terms and showing the flow of safety information through a pharmaceutical company. The customers for adverse drug event data are identified to provide a basis for providing quality service. The development of a drug product is briefly reviewed to show the evolution of safety data. Drug development and safety are defined by federal regulations. These regulations are developed by the FDA with information from pharmaceutical manufacturers. The intent of the regulations and the accompanying guidelines is described. An illustration from the news media is cited to show an alternative, positive approach to handling an adverse event report. This review uses primary sources from the federal laws (regulations), commentaries, and summaries. Very complex topics are briefly summarized in the text and additional readings are presented in an appendix. Secondary sources, ranging from newspaper articles to judicial summaries, illustrate the interpretation of adverse drug events and opportunities for drug safety surveillance intervention. The reference materials used were articles theoretically or practically applicable in the day-to-day practice of drug safety surveillance. The role of clinical drug safety surveillance in product monitoring and drug development is described. The process of drug safety surveillance is defined by the Food and Drug Administration regulations, product labeling, product knowledge, and database management. Database management is subdivided into the functions of receipt, retention, retrieval, and review of adverse event reports. Emphasis is placed on the dynamic interaction ;of the components

  2. A holistic approach to food safety risks: Food fraud as an example.

    Science.gov (United States)

    Marvin, Hans J P; Bouzembrak, Yamine; Janssen, Esmée M; van der Fels-Klerx, H J; van Asselt, Esther D; Kleter, Gijs A

    2016-11-01

    Production of sufficient, safe and nutritious food is a global challenge faced by the actors operating in the food production chain. The performance of food-producing systems from farm to fork is directly and indirectly influenced by major changes in, for example, climate, demographics, and the economy. Many of these major trends will also drive the development of food safety risks and thus will have an effect on human health, local societies and economies. It is advocated that a holistic or system approach taking into account the influence of multiple "drivers" on food safety is followed to predict the increased likelihood of occurrence of safety incidents so as to be better prepared to prevent, mitigate and manage associated risks. The value of using a Bayesian Network (BN) modelling approach for this purpose is demonstrated in this paper using food fraud as an example. Possible links between food fraud cases retrieved from the RASFF (EU) and EMA (USA) databases and features of these cases provided by both the records themselves and additional data obtained from other sources are demonstrated. The BN model was developed from 1393 food fraud cases and 15 different data sources. With this model applied to these collected data on food fraud cases, the product categories that thus showed the highest probabilities of being fraudulent were "fish and seafood" (20.6%), "meat" (13.4%) and "fruits and vegetables" (10.4%). Features of the country of origin appeared to be important factors in identifying the possible hazards associated with a product. The model had a predictive accuracy of 91.5% for the fraud type and demonstrates how expert knowledge and data can be combined within a model to assist risk managers to better understand the factors and their interrelationships. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The status of safety of radiation sources and security of radioactive materials in Ethiopia

    International Nuclear Information System (INIS)

    Gebeyehu Wolde, G.

    2001-01-01

    Since 1993, the National Radiation Protection Authority (NRPA) has been empowered by the 'Radiation Protection Proclamation no. 79/1993' to authorize and inspect regulated activities, issue guidelines and standards and enforce the legislation and regulations. The report describes the status of the safety of radiation sources and the security of radioactive materials in Ethiopia and the progress made towards building a sound and effective national regulatory infrastructure. Also, the report highlights the challenges and difficulties encountered and concludes by indicating the way forward towards the strategic goals. (author)

  4. Inherent/passive safety in fusion power plants

    International Nuclear Information System (INIS)

    Piet, S.J.; Crocker, J.G.

    1986-01-01

    The concept of inherent or passive safety for fusion energy is explored, defined, and partially quantified. Four levels of safety assurance are defined, which range from true inherent safety to passive safety to protection via active engineered safeguard systems. Fusion has the clear potential for achieving inherent or passive safety, which should be an objective of fusion research and design. Proper material choice might lead to both inherent/passive safety and high mass power density, improving both safety and economics. When inherent or passive safety is accomplished, fusion will be well on the way to achieving its ultimate potential and to be a truly superior energy source for the future

  5. Strengthening the safety of radiation sources and the security of radioactive materials: Timely action

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1999-01-01

    When used as they should be, commercial radiation sources and radioactive materials are useful tools that pose no unacceptable risks to people or environment. In fact, their applications in fields such as medicine, industry, agriculture, and environmental research help countries to achieve sizeable social and economic benefits important to global goals of sustainable development. For most of the past half century, the IAEA has been instrumental in advancing the application of techniques that constructively make use of ionizing radiation properties, particularly in developing countries. But though global standards are in place, and being strengthened, a disturbing picture is emerging. It is regrettably framed by tragic consequences from accidents that involved unsafe, abandoned, lost, or uncontrolled radiation sources, including illicit trafficking of radioactive materials, notably in the 1990s. A turning point in global awareness of serious problems came in 1998, at an international conference in France. In March 1999, the IAEA Board of Governors discussed the issue, and a multi faced Action Plan is being submitted to the general Conference. This edition of IAEA Bulletin looks closely at the problems and issues the international community is facing, and the steps States are taking to reinforce the safety and security of radioactive materials

  6. The IAEA and Control of Radioactive Sources

    International Nuclear Information System (INIS)

    Dodd, B.

    2004-01-01

    The presentation discusses the authoritative functions and the departments of the IAEA, especially the Department of Nuclear Safety and Security and its Safety and Security of Radiation Sources Unit. IAEA safety series and IAEA safety standards series inform about international standards, provide underlying principles, specify obligations and responsibilities and give recommendations to support requirements. Other IAEA relevant publications comprise safety reports, technical documents (TECDOCs), conferences and symposium papers series and accident reports. Impacts of loss of source control is discussed, definitions of orphan sources and vulnerable sources is given. Accidents with orphan sources, radiological accidents statistic (1944-2000) and its consequences are discussed. These incidents lead to development of the IAEA guidance. The IAEA's action plan for the safety of radiation sources and the security of radioactive material was approved by the IAEA Board of Governors and the General Conference in September 1999. This led to the 'Categorization of Radiation Sources' and the 'Code of Conduct on the Safety and Security of Radioactive Sources'. After 0911 the IAEA developed a nuclear security plan of activities including physical protection of nuclear material and nuclear facilities, detection of malicious activities involving nuclear and other radioactive materials, state systems for nuclear material accountancy and control, security of radioactive material other than nuclear material, assessment of safety and security related vulnerability of nuclear facilities, response to malicious acts, or threats thereof, adherence to and implementation of international agreements, guidelines and recommendations and nuclear security co-ordination and information management. The remediation of past problems comprised collection and disposal of known disused sources, securing vulnerable sources and especially high-risk sources (Tripartite initiative), searching for

  7. Safety Case Development as an Information Modelling Problem

    Science.gov (United States)

    Lewis, Robert

    This paper considers the benefits from applying information modelling as the basis for creating an electronically-based safety case. It highlights the current difficulties of developing and managing large document-based safety cases for complex systems such as those found in Air Traffic Control systems. After a review of current tools and related literature on this subject, the paper proceeds to examine the many relationships between entities that can exist within a large safety case. The paper considers the benefits to both safety case writers and readers from the future development of an ideal safety case tool that is able to exploit these information models. The paper also introduces the idea that the safety case has formal relationships between entities that directly support the safety case argument using a methodology such as GSN, and informal relationships that provide links to direct and backing evidence and to supporting information.

  8. Safety of Novel Protein Sources (Insects, Microalgae, Seaweed, Duckweed, and Rapeseed) and Legislative Aspects for Their Application in Food and Feed Production

    NARCIS (Netherlands)

    Spiegel, van der M.; Noordam, M.Y.; Fels-Klerx, van der H.J.

    2013-01-01

    Novel protein sources (like insects, algae, duckweed, and rapeseed) are expected to enter the European feed and food market as replacers for animal-derived proteins. However, food safety aspects of these novel protein sources are not well-known. The aim of this article is to review the state of the

  9. [Organisational responsibility versus individual responsibility: safety culture? About the relationship between patient safety and medical malpractice law].

    Science.gov (United States)

    Hart, Dieter

    2009-01-01

    The contribution is concerned with the correlations between risk information, patient safety, responsibility and liability, in particular in terms of liability law. These correlations have an impact on safety culture in healthcare, which can be evaluated positively if--in addition to good quality of medical care--as many sources of error as possible can be identified, analysed, and minimised or eliminated by corresponding measures (safety or risk management). Liability influences the conduct of individuals and enterprises; safety is (probably) also a function of liability; this should also apply to safety culture. The standard of safety culture does not only depend on individual liability for damages, but first of all on strict enterprise liability (system responsibility) and its preventive effects. Patient safety through quality and risk management is therefore also an organisational programme of considerable relevance in terms of liability law.

  10. Safety culture as an element of contact and cooperation between utilities, research and safety authorities

    International Nuclear Information System (INIS)

    Hoegberg, L.

    1994-01-01

    The safety culture approach may simply be seen as a recognition of the close interdependence between safety and organisational processes: achievement of technical safety objectives will largely depend on the quality of the implementation processes in the organisations concerned. With a slight modification of the original INSAG formulation, SKI defines safety culture as 'a consciously formulated and implemented set of values in an organisation, which establishes that, as an overriding priority, safety issues receive the attention warranted by their significance'. In practice, a high level of safety culture means the systematic organisation and implementation of a number of activities aimed at creating a high quality defence in depth against both technical and human failures that may cause accidents. An enquiring and learning attitude is a key element of such a safety culture. For example, to prevent accidents, the organisation always needs to be reactive to incidents, by performing proper root cause analysis of both technical and organisational factors, and taking appropriate corrective actions. The long term organisational objective should be to be proactive and identify deficiencies in technology and organisation that may lead to serious incidents or, at worst, accidents and take corrective action even before actual occurrence of incidents of substantial safety significance. (author) 13 refs

  11. Safety parameter display system: an operator support system for enhancement of safety in Indian PHWRs

    International Nuclear Information System (INIS)

    Subramaniam, K.; Biswas, T.

    1994-01-01

    Ensuring operational safety in nuclear power plants is important as operator errors are observed to contribute significantly to the occurrence of accidents. Computerized operator support systems, which process and structure information, can help operators during both normal and transient conditions, and thereby enhance safety and aid effective response to emergency conditions. An important operator aid being developed and described in this paper, is the safety parameter display system (SPDS). The SPDS is an event-independent, symptom-based operator aid for safety monitoring. Knowledge-based systems can provide operators with an improved quality of information. An information processing model of a knowledge based operator support system (KBOSS) developed for emergency conditions using an expert system shell is also presented. The paper concludes with a discussion of the design issues involved in the use of a knowledge based systems for real time safety monitoring and fault diagnosis. (author). 8 refs., 4 figs., 1 tab

  12. Safety culture improvement. An adaptive management framework

    International Nuclear Information System (INIS)

    Obadia, Isaac Jose

    2005-01-01

    After the Chernobyl nuclear accident in 1986, the International Atomic Energy Agency (IAEA) established the safety culture concept as a proactive mean to contribute to safety improvement, starting a worldwide safety culture enhancement program within nuclear organizations mainly focused on nuclear power plants. More recently, the safety culture concept has been extended to non-power applications such as nuclear research reactors and nuclear technological research and development organizations. In 1999, the Nuclear Engineering Institute (IEN), a research and technological development unit of the Brazilian Nuclear Energy Commission (CNEN), started a management change program aiming at improving its performance level of excellence. This change program has been developed assuming the occurrence of complex causal inter-relationships between the organizational culture and the implementation of the management process. A systematic and adaptive management framework comprised of a safety culture improvement practice integrated to a management process based on the Criteria for Excellence of the Brazilian Quality Award Model, has been developed and implemented at IEN. The case study has demonstrated that the developed framework makes possible an effective safety culture improvement and simultaneously facilitates an effective implementation of the management process, thus providing some governance to the change program. (author)

  13. Measuring and benchmarking safety culture: application of the safety attitudes questionnaire to an acute medical admissions unit.

    Science.gov (United States)

    Relihan, E; Glynn, S; Daly, D; Silke, B; Ryder, S

    2009-12-01

    To assess the safety culture in an acute medical admissions unit (AMAU) of a teaching hospital in order to benchmark results against international data and guide a unit-based, integrated, risk management strategy. The safety attitudes questionnaire (SAQ), a validated instrument for the measurement of safety culture was applied to an AMAU. All AMAU healthcare staff (n = 92) were surveyed: doctors, nurses, healthcare assistants (HCAs) and allied healthcare professionals (AHPs). Safety attitude scores for the overall unit and individual caregiver types were assessed across six domains of safety culture. When compared against an international benchmark, the AMAU scored significantly higher for four of the six safety domains: p < 0.01 for 'teamwork climate', 'safety climate' and 'stress recognition' and p < 0.05 for 'job satisfaction'. The difference between nurse manager scores and the overall mean for the study group was statistically significant for the domains of 'teamwork climate' (p < 0.05) and 'safety climate' (p < 0.01). HCAs scored significantly lower relative to staff overall with regard to 'working conditions' (p < 0.05) and 'perceptions of management' (p < 0.01). The SAQ was successfully applied to an AMAU setting giving a valuable insight into staff issues of concern across the safety spectrum: employee and environmental safety, clinical risk management and medication safety.

  14. Analysis of radiation environmental safety for China's Spallation Neutron Source (CSNS)

    International Nuclear Information System (INIS)

    Wang Qingbin; Wu Qingbiao; Ma Zhongjian; Zhang Qingjiang; Li Nan; Wu Jingmin; Liu Jian; Zhang Gang

    2010-01-01

    The China Spallation Neutron Source (CSNS) is going to be located in Dalang Town, Dongguan City in the Guangdong Province.In this paper we report the results of the parameters related with environment safety based on experiential calculations and Monte Carlo simulations. The main project of the accelerator is an under ground construction.On top there is a 0.5 m concrete and 5.0 m soil covering for shielding,which can reduce the dose out of the tunnel's top down to 0.2 μSv/h. For the residents on the boundary of the CSNS, the dose produced by skyshine, which is caused by the penetrated radiation leaking from the top of the accelerator, is no more than 0.68 μSv/a. When CSNS is operating normally, the maximal annual effective dose due to the emission of gas from the tunnel is 2.40 x 10 -3 mSv/a to the public adult, and 2.29 x 10 -3 mSv/a to a child, both values are two orders of magnitude less than the limiting value for control and management. CSNS may give rise to an activation of the soil and groundwater in the nearest tunnels, where the main productions are 3 H, 7 Be, 22 Na, 54 Mn, etc. But the specific activity is less than the exempt specific activity in the national standard GB13376-92. So it is safe to say that the environmental impact caused by the activation of soil and groundwater is insignificant. To sum up, for CSNS, as a powerful neutron source device, driven by a high-energy high-current proton accelerator, a lot of potential factors affecting the environment exist. However, as long as effective shieldings for protection are adopted and strict rules are drafted, the environmental impact can be kept under control within the limits of the national standard. (authors)

  15. An international nuclear safety regime

    International Nuclear Information System (INIS)

    Rosen, M.

    1995-01-01

    For all the parties involved with safe use of nuclear energy, the opening for signature of the 'Convention on Nuclear Safety' (signed by 60 countries) and the ongoing work to prepare a 'Convention on Radioactive Waste Safety' are particularly important milestones. 'Convention on Nuclear Safety' is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The two conventions are only one facet of international cooperation to enhance safety. A review of some cooperative efforts of the past decades, and some key provisions of the new safety conventions, presented in this paper, show how international cooperation is increasing nuclear safety worldwide. The safety philosophy and practices involved with legal framework for the safe use of nuclear power will foster a collective international involvement and commitment. It will be a positive step towards increasing public confidence in nuclear power

  16. The technical approach: The IAEA action plan on the safety of radiation sources

    International Nuclear Information System (INIS)

    Bilbao, A.; Wrixon, A.; Ortiz-Lopez, P.

    2001-01-01

    As part of the measures to strengthen international co-operation in nuclear, radiation and waste safety, the report refers to the implementation of the Action Plan for the Safety of Radiation Sources and the Security of Radioactive Materials. Starting with background information, the report references the main results of the Dijon Conference and of General Conference resolution GC(42)/RES/12 in September 1998, describing the actions taken by the Secretariat pursuant such resolution and also by the Board of Governors, in its sessions of March and September 1999, as well as by the General Conference, in October 1999 when by resolution GC(43)/RES/10 the Action Plan was endorsed and the Secretariat was urged to implement it. Finally, the report provides information on the status of implementation of the seven areas covered by the Action Plan and on the suggested further actions to be carried out for its implementation taking into account the decisions of the Board in its meeting of 11 September 2000 and the resolutions GC(44)/RES/11, GC(44)/RES/13 and GC(44)/RES/16 of the forty-fourth regular session of the General Conference. (author)

  17. Fusion reactor safety

    International Nuclear Information System (INIS)

    1987-12-01

    Nuclear fusion could soon become a viable energy source. Work in plasma physics, fusion technology and fusion safety is progressing rapidly in a number of Member States and international collaboration continues on work aiming at the demonstration of fusion power generation. Safety of fusion reactors and technological and radiological aspects of waste management are important aspects in the development and design of fusion machines. In order to provide an international forum to review and discuss the status and the progress made since 1983 in programmes related to operational safety aspects of fusion reactors, their waste management and decommissioning concepts, the IAEA had organized the Technical Committee on ''Fusion Reactor Safety'' in Culham, 3-7 November 1986. All presentations of this meeting were divided into four sessions: 1. Statements on National-International Fusion Safety Programmes (5 papers); 2. Operation and System Safety (15 papers); 3. Waste Management and Decommissioning (5 papers); 4. Environmental Impacts (6 papers). A separate abstract was prepared for each of these 31 papers. Refs, figs, tabs

  18. General-Purpose Heat Source Safety Verification Test program: Edge-on flyer plate tests

    International Nuclear Information System (INIS)

    George, T.G.

    1987-03-01

    The radioisotope thermoelectric generator (RTG) that will supply power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. The GPHS modules provide power by transmitting the heat of 238 Pu α-decay to an array of thermoelectric elements. Each module contains four 238 PuO 2 -fueled clads and generates 250 W(t). Because the possibility of a launch vehicle explosion always exists, and because such an explosion could generate a field of high-energy fragments, the fueled clads within each GPHS module must survive fragment impact. The edge-on flyer plate tests were included in the Safety Verification Test series to provide information on the module/clad response to the impact of high-energy plate fragments. The test results indicate that the edge-on impact of a 3.2-mm-thick, aluminum-alloy (2219-T87) plate traveling at 915 m/s causes the complete release of fuel from capsules contained within a bare GPHS module, and that the threshold velocity sufficient to cause the breach of a bare, simulant-fueled clad impacted by a 3.5-mm-thick, aluminum-alloy (5052-T0) plate is approximately 140 m/s

  19. General-Purpose Heat Source development: Safety Verification Test Program. Bullet/fragment test series

    Energy Technology Data Exchange (ETDEWEB)

    George, T.G.; Tate, R.E.; Axler, K.M.

    1985-05-01

    The radioisotope thermoelectric generator (RTG) that will provide power for space missions contains 18 General-Purpose Heat Source (GPHS) modules. Each module contains four /sup 238/PuO/sub 2/-fueled clads and generates 250 W/sub (t)/. Because a launch-pad or post-launch explosion is always possible, we need to determine the ability of GPHS fueled clads within a module to survive fragment impact. The bullet/fragment test series, part of the Safety Verification Test Plan, was designed to provide information on clad response to impact by a compact, high-energy, aluminum-alloy fragment and to establish a threshold value of fragment energy required to breach the iridium cladding. Test results show that a velocity of 555 m/s (1820 ft/s) with an 18-g bullet is at or near the threshold value of fragment velocity that will cause a clad breach. Results also show that an exothermic Ir/Al reaction occurs if aluminum and hot iridium are in contact, a contact that is possible and most damaging to the clad within a narrow velocity range. The observed reactions between the iridium and the aluminum were studied in the laboratory and are reported in the Appendix.

  20. 10 CFR 39.53 - Energy compensation source.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which is...

  1. What Food is to be Kept Safe and for Whom? Food-Safety Governance in an Unsafe Food System

    Directory of Open Access Journals (Sweden)

    Martha McMahon

    2013-10-01

    Full Text Available This paper argues that discussion of new food-safety governance should be framed by the realization that the dominant food system within which food-safety governance is designed to makes food safe is itself a structural and systemic sources of food un-safety, poor health and a future of food insecurity for many. For some, an appropriate policy response lies in addressing the connections between the food system and diseases such as heart disease, obesity and diabetes. For others it means subsuming food-safety governance within food security governance. For yet others, safe food implies food sovereignty governance and the primacy of a climate change resilient food system. Conventional approaches to food-safety governance are typically framed within a liability model of responsibility that has limited usefulness for addressing institutional, structural or systemic sources of harm such as those critics increasingly attribute to the dominant food system and which are not amenable to remedy by food-safety governance as it is widely understood. One cannot identify critical hazard points where risk is to be managed. These are food-system safety challenges. Because food-safety governance is so deeply political there needs to be greater attention to issues of governance rather than the more usual focus on the technologies of food-safety. Feminist political theorists have much to contribute to re-thinking food-safety governance in the context of diversity and the complexities of power. One could usefully start with the simple questions, “what food is to be kept-safe, for whom and who is the subject of food-safety governance in a post-Westphalian political economic order?” These questions can help unpack both the narrow parochialism and the misleading universalism of food-safety talk. This paper answers that neither the citizens of a particular state (or network of states nor the falsely universalizing identity of ‘the consumer’ are adequate answers

  2. FLIGHT SAFETY MANAGEMENT PROBLEMS AND EVALUATION OF FLIGHT SAFETY LEVEL OF AN AVIATION ENTERPRISE

    Directory of Open Access Journals (Sweden)

    B. V. Zubkov

    2017-01-01

    Full Text Available This article is devoted to studying the problem of safety management system (SMS and evaluating safety level of an aviation enterprise.This article discusses the problems of SMS, presented at the 41st meeting of the Russian Aviation Production Commanders Club in June 2014 in St. Petersburg in connection with the verification of the status of the CA of the Russian Federation by the International Civil Aviation Organization (ICAO in the same year, a set of urgent measures to eliminate the deficiencies identified in the current safety management system by participants of this meeting were proposed.In addition, the problems of evaluating flight safety level based on operation data of an aviation enterprise were analyzed. This analysis made it possible to take into account the problems listed in this article as a tool for a comprehensive study of SMS parameters and allows to analyze the quantitative indicators of the flights safety level.The concepts of Acceptable Safety Level (ASL indicators are interpreted differently depending on the available/applicable methods of their evaluation and how to implement them in SMS. However, the indicators for assessing ASL under operational condition at the aviation enterprise should become universal. Currently, defined safety levels and safety indicators are not yet established functionally and often with distorted underrepresented models describing their contextual contents, as well as ways of integrating them into SMS aviation enterprise.The results obtained can be used for better implementation of SMS and solving problems determining the aviation enterprise technical level of flight safety.

  3. Security of radioactive sources in radiation facilities

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and safety standards are formulated on the basis of internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides and guidelines elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Board before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. In India, radiation sources are being widely used for societal benefits in industry, medical practices, research, training and agriculture. It has been reported from all over the world that unsecured radioactive sources caused serious radiological accidents involving radiation injuries and fatalities. Particular concern was expressed regarding radioactive sources that have become orphaned (not under regulatory control) or vulnerable (under weak regulatory control and about to be orphaned). There is a concern about safety and security of radioactive sources and hence the need of stringent regulatory control over the handling of the sources and their security. In view of this, this guide is prepared which gives provisions necessary to safeguard radiation installations against theft of radioactive sources and other malevolent acts that may result in radiological consequences. It is, therefore, required that the radiation sources are used safely and managed securely by only authorised personnel. This guide is intended to be used by users of radiation sources in developing the necessary security plan for

  4. Towards a radiation safety culture at Universidad Nacional de Colombia

    International Nuclear Information System (INIS)

    Poveda, Jairo F.; Munera, Hector A.

    2008-01-01

    Full text: During the 20th century, nuclear and radiation techniques for research, teaching, and medical and engineering practice slowly appeared at the National University of Colombia, mainly at the Bogota, Medellin and Manizales branches. Each individual laboratory or researcher obtained the license for the use of the radioactive source, or radiation emitting apparatus. However, the University as a whole does not have as yet a Radiation Safety Manual, nor an inventory of laboratories using radiation. From the viewpoint of radiation safety and culture, this situation is undesirable, and may easily lead to inappropriate waste management practices, including the possibility of orphan sources (one such source has been already found). As part of the program of environmental management of dangerous wastes promoted by the National Division of Laboratories of our University, an office of radiation safety was created in the year 2006. This paper describes the situation that was found, the activities that have been carried out, some of the difficulties that we have met, and the plans that we have to help shape a safety culture at our institution. Currently we are pursuing an inventory of laboratories using radioactive sources and radiation emitting apparatuses, starting with the branches in Bogota and Manizales which are perceived as the most urgent to deal with. Fortunately, the branch in Medellin has been for about a decade under the care of a former radiation safety officer of our national Institute of Nuclear Affairs, who presently teaches there. During 2006 and 2007, 13 laboratories using radioactive sources were visited in the Bogota branch. Safety procedures and waste handling protocols were checked, safety manuals prepared and/or revised, and recommendations for safety culture provided. During 2008 we will visit Manizales, and will continue visiting a number of X-ray machines used in the Bogota branch for engineering, veterinary, and diagnostic, and surgery medical

  5. The regulatory control of radiation sources in Turkey

    International Nuclear Information System (INIS)

    Uslu, I.; Birol, E.

    2001-01-01

    In Turkey, the national competent authority for regulating activities involving radioactive sources is the Turkish Atomic Energy Authority, which implements the responsibility for the safety and security of radiation sources through its Radiation Health and Safety Department. The report describes the organization of the regulatory infrastructure for radiation safety in Turkey and, after a brief explanation of the current legal framework for such purpose, it refers to how the management of radiation sources is carried out and to the new provisions regarding radiation sources, including inspections of licensees and training on source safety. Finally, the report provides information on the Ikitelli radiological accident in Turkey and the current public concern about radiation sources after it happened. (author)

  6. Refurbishing tritium contaminated ion sources

    International Nuclear Information System (INIS)

    Wright, K.E.; Carnevale, R.H.; McCormack, B.E.; Stevenson, T.; Halle, A. von

    1995-01-01

    Extended tritium experimentation on TFTR has necessitated refurbishing Neutral Beam Long Pulse Ion Sources (LPIS) which developed operational difficulties, both in the TFTR Test Cell and later, in the NB Source Refurbishment Shop. Shipping contaminated sources off-site for repair was not permissible from a transport and safety perspective. Therefore, the NB source repair facility was upgraded by relocating fixtures, tooling, test apparatus, and three-axis coordinate measuring equipment; purchasing and fabricating fume hoods; installing exhaust vents; and providing a controlled negative pressure environment in the source degreaser/decon area. Appropriate air flow monitors, pressure indicators, tritium detectors and safety alarms were also included. The effectiveness of various decontamination methods was explored while the activation was monitored. Procedures and methods were developed to permit complete disassembly and rebuild of an ion source while continuously exhausting the internal volume to the TFTR Stack to avoid concentrations of tritium from outgassing and minimize personnel exposure. This paper presents upgrades made to the LPIS repair facility, various repair tasks performed, and discusses the effectiveness of the decontamination processes utilized

  7. Knowledge Representation in Patient Safety Reporting: An Ontological Approach

    OpenAIRE

    Liang Chen; Yang Gong

    2016-01-01

    Purpose: The current development of patient safety reporting systems is criticized for loss of information and low data quality due to the lack of a uniformed domain knowledge base and text processing functionality. To improve patient safety reporting, the present paper suggests an ontological representation of patient safety knowledge. Design/methodology/approach: We propose a framework for constructing an ontological knowledge base of patient safety. The present paper describes our desig...

  8. Radiation and waste safety

    International Nuclear Information System (INIS)

    1997-01-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. Nuclear radiation is a powerful source of benefit to mankind, whether applied in the field of medicine, agriculture, environmental management or elsewhere. The health effects of radiation - both natural and artificial - are relatively well understood and can be minimized through careful safety measures and practices. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Safety Department aiming at establishing Basic Safety Standard requirements in all Member States. (IAEA)

  9. To dimension safety valves. Probabilist study

    International Nuclear Information System (INIS)

    Noel, Robert; Couvreur, Denis

    1982-01-01

    The gauge of safety valves of a steam pressure apparatus is usually determined according to an operating situation envelope which it is admitted covers all that can happen in reality. For the safety of the dryer-superheaters of turbines in nuclear power stations, Electricite de France and Alsthom-Atlantique made a reliability study; its method is exposed and the results are discussed. Such a study is heavy going and complex, but in return it permits a better quantitative understanding of the various dimension and operating parameters of an installation which condition its safety. It is therefore a source of progress [fr

  10. Fission product gamma-ray sources as an alternative to cobalt-60 sources for sewage sludge sterilization

    International Nuclear Information System (INIS)

    Herrnberger, V.R.D.

    1975-01-01

    , if the flow-rate is proportional to the decreasing source activity. In this case they are the lowest of all source types considered. Further advantages of the integrated irradiation plant are its inherent safety aspects, because additional source handling and transport are avoided. The 137 Cs type source is cheaper by 17% and therefore can compete with the 60 Co source. The compatibility of the caesium in the form of chloride with the stainless-steel capsules is assured for the 30 years of planned source utilization and plant operation time. Fission product gamma sources offer an alternative to 60 Co sources for sewage sludge sterilization, because they are competitive with 60 Co sources. (Author)

  11. An Innovative Multimedia Approach to Laboratory Safety

    Science.gov (United States)

    Anderson, M. B.; Constant, K. P.

    1996-01-01

    A new approach for teaching safe laboratory practices has been developed for materials science laboratories at Iowa State university. Students are required to complete a computerized safety tutorial and pass an exam before working in the laboratory. The safety tutorial includes sections on chemical, electrical, radiation, and high temperature safety. The tutorial makes use of a variety of interactions, including 'assembly' interactions where a student is asked to drag and drop items with the mouse (either labels or pictures) to an appropriate place on the screen (sometimes in a specific order). This is extremely useful for demonstrating safe lab practices and disaster scenarios. Built into the software is a record tracking scheme so that a professor can access a file that records which students have completed the tutorial and their scores on the exam. This paper will describe the development and assessment of the safety tutorials.

  12. Nuclear Safety

    International Nuclear Information System (INIS)

    1978-09-01

    In this short paper it has only been possible to deal in a rather general way with the standards of safety used in the UK nuclear industry. The record of the industry extending over at least twenty years is impressive and, indeed, unique. No other industry has been so painstaking in protection of its workers and in its avoidance of damage to the environment. Headings are: introduction; how a nuclear power station works; radiation and its effects (including reference to ICRP, the UK National Radiological Protection Board, and safety standards); typical radiation doses (natural radiation, therapy, nuclear power programme and other sources); safety of nuclear reactors - design; key questions (matters of concern which arise in the public mind); safety of operators; safety of people in the vicinity of a nuclear power station; safety of the general public; safety bodies. (U.K.)

  13. Development of a Novel Nuclear Safety Culture Evaluation Method for an Operating Team Using Probabilistic Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sangmin; Lee, Seung Min; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    IAEA defined safety culture as follows: 'Safety Culture is that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance'. Also, celebrated behavioral scientist, Cooper, defined safety culture as,'safety culture is that observable degree of effort by which all organizational members direct their attention and actions toward improving safety on a daily basis' with his internal psychological, situational, and behavioral context model. With these various definitions and criteria of safety culture, several safety culture assessment methods have been developed to improve and manage safety culture. To develop a new quantitative safety culture evaluation method for an operating team, we unified and redefined safety culture assessment items. Then we modeled a new safety culture evaluation by adopting level 1 PSA concept. Finally, we suggested the criteria to obtain nominal success probabilities of assessment items by using 'operational definition'. To validate the suggested evaluation method, we analyzed the collected audio-visual recording data collected from a full scope main control room simulator of a NPP in Korea.

  14. Development of a Novel Nuclear Safety Culture Evaluation Method for an Operating Team Using Probabilistic Safety Analysis

    International Nuclear Information System (INIS)

    Han, Sangmin; Lee, Seung Min; Seong, Poong Hyun

    2015-01-01

    IAEA defined safety culture as follows: 'Safety Culture is that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance'. Also, celebrated behavioral scientist, Cooper, defined safety culture as,'safety culture is that observable degree of effort by which all organizational members direct their attention and actions toward improving safety on a daily basis' with his internal psychological, situational, and behavioral context model. With these various definitions and criteria of safety culture, several safety culture assessment methods have been developed to improve and manage safety culture. To develop a new quantitative safety culture evaluation method for an operating team, we unified and redefined safety culture assessment items. Then we modeled a new safety culture evaluation by adopting level 1 PSA concept. Finally, we suggested the criteria to obtain nominal success probabilities of assessment items by using 'operational definition'. To validate the suggested evaluation method, we analyzed the collected audio-visual recording data collected from a full scope main control room simulator of a NPP in Korea

  15. Leakage of an irradiator source: The June 1988 Georgia RSI [Radiation Sterilizers, Inc.] incident

    International Nuclear Information System (INIS)

    1990-02-01

    On June 6, 1988, operators of a pool irradiator in Decatur, Georgia, were prevented by a safety system from raising sources from the pool. Radiation levels of 60 millirem per hour at the surface of the pool water were found, indicative of a leak of one or more of the 252 Cs-137 source capsules used at the irradiator. A summary of the Incident Evaluation Task Force's First Interim Report has been prepared for person's needing an overview of the incident and lessons learned to date. This report provides a summary of Agreement States' views and recommendations on some of the issues raised by the incident

  16. Construction safety and waste management an economic analysis

    CERN Document Server

    Li, Rita Yi Man

    2015-01-01

    This monograph presents an analysis of construction safety problems and on-site safety measures from an economist’s point of view. The book includes examples from both emerging countries, e.g. China and India, and developed countries, e.g. Australia and Hong Kong. Moreover, the author covers an analysis on construction safety knowledge sharing by means of updatable mobile technology such as apps in Androids and iOS platform mobile devices. The target audience comprises primarily researchers and experts in the field but the book may also be beneficial for graduate students.

  17. Risk based limits for Operational Safety Requirements

    International Nuclear Information System (INIS)

    Cappucci, A.J. Jr.

    1993-01-01

    OSR limits are designed to protect the assumptions made in the facility safety analysis in order to preserve the safety envelope during facility operation. Normally, limits are set based on ''worst case conditions'' without regard to the likelihood (frequency) of a credible event occurring. In special cases where the accident analyses are based on ''time at risk'' arguments, it may be desirable to control the time at which the facility is at risk. A methodology has been developed to use OSR limits to control the source terms and the times these source terms would be available, thus controlling the acceptable risk to a nuclear process facility. The methodology defines a new term ''gram-days''. This term represents the area under a source term (inventory) vs time curve which represents the risk to the facility. Using the concept of gram-days (normalized to one year) allows the use of an accounting scheme to control the risk under the inventory vs time curve. The methodology results in at least three OSR limits: (1) control of the maximum inventory or source term, (2) control of the maximum gram-days for the period based on a source term weighted average, and (3) control of the maximum gram-days at the individual source term levels. Basing OSR limits on risk based safety analysis is feasible, and a basis for development of risk based limits is defensible. However, monitoring inventories and the frequencies required to maintain facility operation within the safety envelope may be complex and time consuming

  18. A review of international sources for road safety measures assessment.

    NARCIS (Netherlands)

    Yannis, G. Weijermars, W. & Kauppila, J.

    2012-01-01

    The efficiency assessment of road safety measures is considered to be an extremely useful tool in decision making; in particular, cost-benefit and cost-effectiveness analyses are carried out in several countries, in a more or less systematic way. The objective of this paper is to present findings

  19. Does lean management improve patient safety culture? An extensive evaluation of safety culture in a radiotherapy institute.

    Science.gov (United States)

    Simons, Pascale A M; Houben, Ruud; Vlayen, Annemie; Hellings, Johan; Pijls-Johannesma, Madelon; Marneffe, Wim; Vandijck, Dominique

    2015-02-01

    The importance of a safety culture to maximize safety is no longer questioned. However, achieving sustainable culture improvements are less evident. Evidence is growing for a multifaceted approach, where multiple safety interventions are combined. Lean management is such an integral approach to improve safety, quality and efficiency and therefore, could be expected to improve the safety culture. This paper presents the effects of lean management activities on the patient safety culture in a radiotherapy institute. Patient safety culture was evaluated over a three year period using triangulation of methodologies. Two surveys were distributed three times, workshops were performed twice, data from an incident reporting system (IRS) was monitored and results were explored using structured interviews with professionals. Averages, chi-square, logistical and multi-level regression were used for analysis. The workshops showed no changes in safety culture, whereas the surveys showed improvements on six out of twelve dimensions of safety climate. The intention to report incidents not reaching patient-level decreased in accordance with the decreasing number of reports in the IRS. However, the intention to take action in order to prevent future incidents improved (factorial survey presented β: 1.19 with p: 0.01). Due to increased problem solving and improvements in equipment, the number of incidents decreased. Although the intention to report incidents not reaching patient-level decreased, employees experienced sustained safety awareness and an increased intention to structurally improve. The patient safety culture improved due to the lean activities combined with an organizational restructure, and actual patient safety outcomes might have improved as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Safety culture: the concept and its practical application

    International Nuclear Information System (INIS)

    Edmondson, B.

    1994-01-01

    This paper draws together a number of topics concerned with safety culture: the first part of the paper describe the characteristics of an organisation giving rise to a good safety culture as suggested in INSAG-4. The second part of the paper examines sources of information on the characteristics of organisations giving rise to good and poor safety performance including a study into the causes of a number of recent severe accidents such as Clapham Junction and Piper Alpha. The final part of the paper describes the means by which safety culture within an organisation may be measured and therefore controlled. This enables an organisation to provide for a good safety culture and improve commercial performance by a process of continuous safety improvement eliminating the losses arising from poor safety standards. (author) 6 tabs., 5 refs

  1. Nuclear reaction models - source term estimation for safety design in accelerators

    International Nuclear Information System (INIS)

    Nandy, Maitreyee

    2013-01-01

    Accelerator driven subcritical system (ADSS) employs proton induced spallation reaction at a few GeV. Safety design of these systems involves source term estimation in two steps - multiple fragmentation of the target and n+γ emission through a fast process followed by statistical decay of the primary fragments. The prompt radiation field is estimated in the framework of quantum molecular dynamics (QMD) theory, intra-nuclear cascade or Monte Carlo calculations. A few nuclear reaction model codes used for this purpose are QMD, JQMD, Bertini, INCL4, PHITS, followed by statistical decay codes like ABLA, GEM, GEMINI, etc. In the case of electron accelerators photons and photoneutrons dominate the prompt radiation field. High energy photon yield through Bremsstrahlung is estimated in the framework of Born approximation while photoneutron production is calculated using giant dipole resonance and quasi-deuteron formation cross section. In this talk hybrid and exciton PEQ models and QMD formalism will be discussed briefly

  2. 2011 Annual Criticality Safety Program Performance Summary

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Hoffman

    2011-12-01

    TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400

  3. Correlation between safety climate and contractor safety assessment programs in construction.

    Science.gov (United States)

    Sparer, Emily H; Murphy, Lauren A; Taylor, Kathryn M; Dennerlein, Jack T

    2013-12-01

    Contractor safety assessment programs (CSAPs) measure safety performance by integrating multiple data sources together; however, the relationship between these measures of safety performance and safety climate within the construction industry is unknown. Four hundred and one construction workers employed by 68 companies on 26 sites and 11 safety managers employed by 11 companies completed brief surveys containing a nine-item safety climate scale developed for the construction industry. CSAP scores from ConstructSecure, Inc., an online CSAP database, classified these 68 companies as high or low scorers, with the median score of the sample population as the threshold. Spearman rank correlations evaluated the association between the CSAP score and the safety climate score at the individual level, as well as with various grouping methodologies. In addition, Spearman correlations evaluated the comparison between manager-assessed safety climate and worker-assessed safety climate. There were no statistically significant differences between safety climate scores reported by workers in the high and low CSAP groups. There were, at best, weak correlations between workers' safety climate scores and the company CSAP scores, with marginal statistical significance with two groupings of the data. There were also no significant differences between the manager-assessed safety climate and the worker-assessed safety climate scores. A CSAP safety performance score does not appear to capture safety climate, as measured in this study. The nature of safety climate in construction is complex, which may be reflective of the challenges in measuring safety climate within this industry. Am. J. Ind. Med. 56:1463-1472, 2013. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.

  4. Emergency preparedness source term development for the Office of Nuclear Material Safety and Safeguards-Licensed Facilities

    International Nuclear Information System (INIS)

    Sutter, S.L.; Mishima, J.; Ballinger, M.Y.; Lindsey, C.G.

    1984-08-01

    In order to establish requirements for emergency preparedness plans at facilities licensed by the Office of Nuclear Materials Safety and Safeguards, the Nuclear Regulatory Commission (NRC) needs to develop source terms (the amount of material made airborne) in accidents. These source terms are used to estimate the potential public doses from the events, which, in turn, will be used to judge whether emergency preparedness plans are needed for a particular type of facility. Pacific Northwest Laboratory is providing the NRC with source terms by developing several accident scenarios for eleven types of fuel cycle and by-product operations. Several scenarios are developed for each operation, leading to the identification of the maximum release considered for emergency preparedness planning (MREPP) scenario. The MREPP scenarios postulated were of three types: fire, tornado, and criticality. Fire was significant at oxide fuel fabrication, UF 6 production, radiopharmaceutical manufacturing, radiopharmacy, sealed source manufacturing, waste warehousing, and university research and development facilities. Tornadoes were MREPP events for uranium mills and plutonium contaminated facilities, and criticalities were significant at nonoxide fuel fabrication and nuclear research and development facilities. Techniques for adjusting the MREPP release to different facilities are also described

  5. The low power miniature neutron source reactors: Design, safety and applications

    International Nuclear Information System (INIS)

    Ahmed, Y.A.; Ewa, I.O.B.; Umar, M.; Bezboruah, T.; Johri, M.; Akaho, E.H.K.

    2006-04-01

    The Chinese Miniature Neutron Source Reactor (MNSR) is a low power research reactor with maximum thermal neutron flux of 1 x 10 12 n.cm -2 .s -1 in one of its inner irradiation channels and thermal power of approximately 30kW. The MNSR is designed based on the Canadian SLOWPOKE reactor and is one of the smallest commercial research reactors presently available in the world. Its commercial versions currently in operation in China, Ghana, Iran, Nigeria, Pakistan and Syria, is considered as an excellent tool for Neutron Activation Analysis (NAA), training of Scientist, and Engineers in nuclear science and technology and small scale radioisotope production. The paper highlights the basic design and theory of the commercial MNSR, its safety features, applications and advantages over the Chinese Prototype. The experimental flux characteristics determined in this work and in similar studies by other authors reveal that the commercial MNSR has more flux stability, longer life span, higher negative temperature coefficient of reactivity and low under-moderation compared to its prototype in China. The result shows that the facility is safe for reactor physics experiments, teaching and training of students and also ideal for application of NAA for the determination of elemental composition of biological and environmental samples. It can also be a useful tool for geochemical and soil fertility mapping. (author)

  6. Establishment of an international nuclear safety body

    International Nuclear Information System (INIS)

    Rosen, M.

    1983-01-01

    During the past year there has been increasing interest in the establishment of new international mechanisms for developing a more uniform approach to nuclear safety. The tasks, organizational nature and affiliation, composition and structure, and financial support of an international nuclear safety body are discussed in the article

  7. Advanced neutron source reactor conceptual safety analysis report, three-element-core design: Chapter 15, accident analysis

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L.; Harrington, R.M.

    1996-02-01

    In order to utilize reduced enrichment fuel, the three-element-core design for the Advanced Neutron Source has been proposed. The proposed core configuration consists of inner, middle, and outer elements, with the middle element offset axially beneath the inner and outer elements, which are axially aligned. The three-element-core RELAP5 model assumes that the reactor hardware is changed only within the core region, so that the loop piping, heat exchangers, and pumps remain as assumed for the two-element-core configuration. To assess the impact of changes in the core region configuration and the thermal-hydraulic steady-state conditions, the safety analysis has been updated. This report gives the safety margins for the loss-of-off-site power and pressure-boundary fault accidents based on the RELAP5 results. AU margins are greater for the three-element-core simulations than those calculated for the two-element core

  8. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    International Nuclear Information System (INIS)

    Leahy, Timothy J.

    2010-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated 'toolkit' consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  9. Need for an "integrated safety assessment" of GMOs, linking food safety and environmental considerations.

    Science.gov (United States)

    Haslberger, Alexander G

    2006-05-03

    Evidence for substantial environmental influences on health and food safety comes from work with environmental health indicators which show that agroenvironmental practices have direct and indirect effects on human health, concluding that "the quality of the environment influences the quality and safety of foods" [Fennema, O. Environ. Health Perspect. 1990, 86, 229-232). In the field of genetically modified organisms (GMOs), Codex principles have been established for the assessment of GM food safety and the Cartagena Protocol on Biosafety outlines international principles for an environmental assessment of living modified organisms. Both concepts also contain starting points for an assessment of health/food safety effects of GMOs in cases when the environment is involved in the chain of events that could lead to hazards. The environment can act as a route of unintentional entry of GMOs into the food supply, such as in the case of gene flow via pollen or seeds from GM crops, but the environment can also be involved in changes of GMO-induced agricultural practices with relevance for health/food safety. Examples for this include potential regional changes of pesticide uses and reduction in pesticide poisonings resulting from the use of Bt crops or influences on immune responses via cross-reactivity. Clearly, modern methods of biotechnology in breeding are involved in the reasons behind the rapid reduction of local varieties in agrodiversity, which constitute an identified hazard for food safety and food security. The health/food safety assessment of GM foods in cases when the environment is involved needs to be informed by data from environmental assessment. Such data might be especially important for hazard identification and exposure assessment. International organizations working in these areas will very likely be needed to initiate and enable cooperation between those institutions responsible for the different assessments, as well as for exchange and analysis of

  10. Regulation for radiation protection in applications of radiation sources

    International Nuclear Information System (INIS)

    Sonawane, Avinash U.

    2016-01-01

    Applications of ionising radiation in multifarious field are increasing in the country for the societal benefits. The national regulatory body ensures safety and security of radiation sources by enforcing provisions in the national law and other relevant rules issued under the principle law. In addition, the enforcement of detailed requirements contained in practice specific safety codes and standard and issuance of safety directives brings effectiveness in ensuring safe handling and secure management of radiation sources. The regulatory requirements for control over radiation sources throughout their life-cycle have evolved over the years from experience gained. Nevertheless, some of the regulatory activities which require special attention have been identified such as the development of regulation to deal with advance emerging radiation technology in applications of radiation in medicine and industry; sustaining continuity in ensuring human resource development programme; inspections of category 3 and 4 disused sources and their safe disposal; measures for controlling transboundary movement of radiation sources. The regulatory measures have been contemplated and are being enforced to deal with the above issues in an effective manner. The complete involvement of the management of radiation facilities, radiation workers and their commitment in establishing and maintaining safety and security culture is essential to handle the radiation sources safely and efficiently at all times

  11. Safety Culture in organisations, facilities and activities entailing ionising radiation sources

    International Nuclear Information System (INIS)

    Ferro Fernandez, R.; Cruz Suarez, R.; Arciniega Torres, J.; Blanes Tabernero, A.; Bomben, A. M.; Da Silva Silveira, C.; Ordonez Gutierrez, E. B.; Perera Meas, J. F.; Ramirez Quijada, R.; Videla Valdebenito, R.

    2016-01-01

    The Latin American Forum of Radiological and Nuclear Regulatory Authorities is an association created in 1997 with the aim of promoting the highest levels of nuclear and radiological safety and security among its member countries. (Author)

  12. Cluster monte carlo method for nuclear criticality safety calculation

    International Nuclear Information System (INIS)

    Pei Lucheng

    1984-01-01

    One of the most important applications of the Monte Carlo method is the calculation of the nuclear criticality safety. The fair source game problem was presented at almost the same time as the Monte Carlo method was applied to calculating the nuclear criticality safety. The source iteration cost may be reduced as much as possible or no need for any source iteration. This kind of problems all belongs to the fair source game prolems, among which, the optimal source game is without any source iteration. Although the single neutron Monte Carlo method solved the problem without the source iteration, there is still quite an apparent shortcoming in it, that is, it solves the problem without the source iteration only in the asymptotic sense. In this work, a new Monte Carlo method called the cluster Monte Carlo method is given to solve the problem further

  13. Safety in Serbian animal source food industry and the impact of hazard analysis and critical control points: A review

    Science.gov (United States)

    Tomašević, I.; Đekić, I.

    2017-09-01

    There is a significant lack of HACCP-educated and/or HACCP-highly trained personnel within the Serbian animal source food workforces and veterinary inspectors, and this can present problems, particularly in hazard identification and assessment activities. However, despite obvious difficulties, HACCP benefits to the Serbian dairy industry are widespread and significant. Improving prerequisite programmes on the farms, mainly through infrastructural investments in milk collectors and transportation vehicles on one hand, and increasing hygiene awareness of farmers through training on the other hand has improved the safety of milk. The decline in bacterial numbers on meat contact surfaces, meat handlers’ hands and cooling facilities presents strong evidence of improved process hygiene and justifies the adoption of HACCP in Serbian meat establishments. Apart from the absence of national food poisoning statistics or national foodborne disease databases, the main obstacle to fully recognising the impact of HACCP on the safety of animal source food in Serbia is the lack of research regarding the occurrence of chemical and/or physical hazards interrelated with its production.

  14. The safety of nuclear installations as a source of international conflict

    International Nuclear Information System (INIS)

    Schnurer, H.; Breest, H.C.

    1975-01-01

    The author outlines safety problems regarding nuclear reactors, nuclear power plants and the whole nuclear fuel cycle and gives an account of national supervision in the FRG. Suggestions are made for easing international conflicts. (HP/LN) [de

  15. Radiation safety

    International Nuclear Information System (INIS)

    Van Riessen, A.

    2002-01-01

    Full text: Experience has shown that modem, fully enclosed, XRF and XRD units are generally safe. This experience may lead to complacency and ultimately a lowering of standards which may lead to accidents. Maintaining awareness of radiation safety issues is thus an important role for all radiation safety officers. With the ongoing progress in technology, a greater number of radiation workers are more likely to use a range of instruments/techniques - eg portable XRF, neutron beam analysis, and synchrotron radiation analysis. The source for each of these types of analyses is different and necessitates an understanding of the associated dangers as well as use of specific radiation badges. The trend of 'suitcase science' is resulting in scientists receiving doses from a range of instruments and facilities with no coordinated approach to obtain an integrated dose reading for an individual. This aspect of radiation safety needs urgent attention. Within Australia a divide is springing up between those who work on Commonwealth property and those who work on State property. For example a university staff member may operate irradiating equipment on a University campus and then go to a CSIRO laboratory to operate similar equipment. While at the University State regulations apply and while at CSIRO Commonwealth regulations apply. Does this individual require two badges? Is there a need to obtain two licences? The application of two sets of regulations causes unnecessary confusion and increases the workload of radiation safety officers. Radiation safety officers need to introduce risk management strategies to ensure that both existing and new procedures result in risk minimisation. A component of this strategy includes ongoing education and revising of regulations. AXAA may choose to contribute to both of these activities as a service to its members as well as raising the level of radiation safety for all radiation workers. Copyright (2002) Australian X-ray Analytical

  16. Passengers' perception of the safety demonstration on board an aircraft

    Science.gov (United States)

    Ruenruoy, Ratchada

    The cabin safety demonstration on board an aircraft is one of the methods to provide safety information for passengers before aircraft takeoff. However, passengers' enthusiasm toward safety demonstrations is normally low. Therefore, the study of passengers' perception toward safety briefings on board an aircraft is important in increasing the safety awareness for the travelling public on commercial aircraft. A survey was distributed to measure the perceptions of Middle Tennessee State University (MTSU) faculty and staff, Aerospace students, and international students who have traveled in the last year. It was generally found that watching the cabin safety demonstration before aircraft takeoff was believed to be important for passengers. However, the attention to the safety demonstration remained low because the safety briefings were not good enough in terms of clear communication, particularly in the recorded audio demonstration and the live safety demonstration methods of briefing.

  17. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    . The standards are also applied by regulatory bodies and operators around the world to enhance safety in nuclear power generation and in nuclear applications in medicine, industry, agriculture and research. Safety is not an end in itself but a prerequisite for the purpose of the protection of people in all States and of the environment - now and in the future. The risks associated with ionizing radiation must be assessed and controlled without unduly limiting the contribution of nuclear energy to equitable and sustainable development. Governments, regulatory bodies and operators everywhere must ensure that nuclear material and radiation sources are used beneficially, safely and ethically. The IAEA safety standards are designed to facilitate this, and I encourage all Member States to make use of them.

  18. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    . The standards are also applied by regulatory bodies and operators around the world to enhance safety in nuclear power generation and in nuclear applications in medicine, industry, agriculture and research. Safety is not an end in itself but a prerequisite for the purpose of the protection of people in all States and of the environment - now and in the future. The risks associated with ionizing radiation must be assessed and controlled without unduly limiting the contribution of nuclear energy to equitable and sustainable development. Governments, regulatory bodies and operators everywhere must ensure that nuclear material and radiation sources are used beneficially, safely and ethically. The IAEA safety standards are designed to facilitate this, and I encourage all Member States to make use of them.

  19. Safety Teams: An Approach to Engage Students in Laboratory Safety

    Science.gov (United States)

    Alaimo, Peter J.; Langenhan, Joseph M.; Tanner, Martha J.; Ferrenberg, Scott M.

    2010-01-01

    We developed and implemented a yearlong safety program into our organic chemistry lab courses that aims to enhance student attitudes toward safety and to ensure students learn to recognize, demonstrate, and assess safe laboratory practices. This active, collaborative program involves the use of student "safety teams" and includes…

  20. Inadequate control of world's radioactive sources

    International Nuclear Information System (INIS)

    2002-01-01

    The radioactive materials needed to build a 'dirty bomb' can be found in almost any country in the world, and more than 100 countries may have inadequate control and monitoring programs necessary to prevent or even detect the theft of these materials. The IAEA points out that while radioactive sources number in the millions, only a small percentage have enough strength to cause serious radiological harm. It is these powerful sources that need to be focused on as a priority. In a significant recent development, the IAEA, working in collaboration with the United States Department of Energy (DOE) and the Russian Federation's Ministry for Atomic Energy (MINATOM), have established a tripartite working group on 'Securing and Managing Radioactive Sources'. Through its program to help countries improve their national infrastructures for radiation safety and security, the IAEA has found that more than 100 countries may have no minimum infrastructure in place to properly control radiation sources. However, many IAEA Member States - in Africa, Asia, Latin America, and Europe - are making progress through an IAEA project to strengthen their capabilities to control and regulate radioactive sources. The IAEA is also concerned about the over 50 countries that are not IAEA Member States (there are 134), as they do not benefit from IAEA assistance and are likely to have no regulatory infrastructure. The IAEA has been active in lending its expertise to search out and secure orphaned sources in several countries. More than 70 States have joined with the IAEA to collect and share information on trafficking incidents and other unauthorized movements of radioactive sources and other radioactive materials. The IAEA and its Member States are working hard to raise levels of radiation safety and security, especially focusing on countries known to have urgent needs. The IAEA has taken the leading role in the United Nations system in establishing standards of safety, the most significant of

  1. The safety features of an integrated maritime reactor

    International Nuclear Information System (INIS)

    Miyakoshi, Junichi; Yamada, Nobuyuki; Kuwahara, Shin-ichi

    1975-01-01

    The EFDR-80, a typical integrated maritime reactor, which is being developed in West Germany is outlined. The safety features of the integrated maritime reactor are presented with the analysis of reactor accidents and hazards, and are compared with those of the separated maritime reactor. Furthermore, the safety criteria of maritime reactors in Japan and West Germany are compared, and some of the differences are presented from the viewpoint of reactor design and safety analysis. In this report the authors express an earnest desire that the definite and reasonable safety criteria of the integrated maritime reactor should be established and that the safety criteria of the nuclear ship should be standardized internationally. (auth.)

  2. The role of the International Atomic Energy Agency in radiation and waste safety

    International Nuclear Information System (INIS)

    Wrixon, A.D.; Ortiz-Lopez, P.

    1999-01-01

    The International Atomic Energy Agency is specifically required by its Statute 'to establish or adopt ... standards of safety for protection of health and minimization of danger to life and property ... and to provide for the application of these standards ...'. Standards encompass three main elements: legally binding international undertakings among States; globally agreed international safety standards; and the provision for facilitating the application of those standards. Radiation safety standards are national responsibilities, but there is considerable value in formulating harmonized approaches throughout the world. The Agency has attempted to do this by establishing internationally agreed safety standards and by prompting their application. Of prime importance are the Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. These deal with the basic requirements that must be met in order to ensure an adequate standard of safety. More detailed guidance on the application of these requirements is given in Safety Guides established under them. Fuller technical support is given in a series of Safety Reports. A number of Safety Guides are relevant to this meeting. An existing Safety Guide on exemption is being revised to cover related topics such as exclusion and clearance, and this is the subject of a separate presentation. As part of the programme to combat illicit trafficking in radioactive materials, a new Safety Guide on the topic is being developed. Both are near completion. Another Safety Guide is being produced to elaborate the requirements in the Basic Safety Standards on the safety of radioactive sources. The topics of illicit trafficking in radioactive materials and the safety of radioactive sources were given added impetus by resolutions of the last General Conference of the Agency. This paper provides an overview of these activities of the Agency. (author)

  3. Phynx: an open source software solution supporting data management and web-based patient-level data review for drug safety studies in the general practice research database and other health care databases.

    Science.gov (United States)

    Egbring, Marco; Kullak-Ublick, Gerd A; Russmann, Stefan

    2010-01-01

    To develop a software solution that supports management and clinical review of patient data from electronic medical records databases or claims databases for pharmacoepidemiological drug safety studies. We used open source software to build a data management system and an internet application with a Flex client on a Java application server with a MySQL database backend. The application is hosted on Amazon Elastic Compute Cloud. This solution named Phynx supports data management, Web-based display of electronic patient information, and interactive review of patient-level information in the individual clinical context. This system was applied to a dataset from the UK General Practice Research Database (GPRD). Our solution can be setup and customized with limited programming resources, and there is almost no extra cost for software. Access times are short, the displayed information is structured in chronological order and visually attractive, and selected information such as drug exposure can be blinded. External experts can review patient profiles and save evaluations and comments via a common Web browser. Phynx provides a flexible and economical solution for patient-level review of electronic medical information from databases considering the individual clinical context. It can therefore make an important contribution to an efficient validation of outcome assessment in drug safety database studies.

  4. INSAG's ongoing work on nuclear, radiation and waste safety

    International Nuclear Information System (INIS)

    Baer, A.J.

    1999-01-01

    The International Nuclear Safety Advisory Group (INSAG) is an advisory group to the Director General of the IAEA. It identifies current nuclear safety issues, draws conclusions from its analyses and gives advice on those issues. INSAG is currently working on four documents: a complete revision of INSAG-3, the classical paper on safety principles for nuclear plants, published in 1988; 'Safety Management', the effective system for the management of operational strategy; 'Safe Management of the Life Cycle of Nuclear Power Plants'; and the fourth document in preparation entitled 'The Safe Management of Sources of Radiation: Principles and Strategies'. The fourth document is aimed primarily at political decision makers who have no knowledge of radiation safety or of nuclear matters generally but are called upon to make important decisions in this field. INSAG has attempted to present them with a 'unified doctrine' of the management of all radiation sources, even though, for historical reasons radiation protection and nuclear safety have evolved largely independently of each other. The major conclusion to be drawn from the paper is that a systematic application of protection and safety principles, and of appropriate strategies, goes a long way towards ensuring the safe management of technologies involving radiation. Furthermore, the management of sources of radiation could benefit from the experience accumulated in other industries facing comparable challenges

  5. Lessons learned from measuring safety culture: an Australian case study.

    Science.gov (United States)

    Allen, Suellen; Chiarella, Mary; Homer, Caroline S E

    2010-10-01

    adverse events in maternity care are relatively common but often avoidable. International patient safety strategies advocate measuring safety culture as a strategy to improve patient safety. Evidence suggests it is necessary to fully understand the safety culture of an organisation to make improvements to patient safety. this paper reports a case study examining the safety culture in one maternity service in Australia and considers the benefits of using surveys and interviews to understand safety culture as an approach to identify possible strategies to improve patient safety in this setting. the study took place in one maternity service in two public hospitals in NSW, Australia. Concurrently, both hospitals were undergoing an organisational restructure which was part of a major health reform agenda. The priorities of the reform included improving the quality of care and patient safety; and, creating a more efficient health system by reducing administration inefficiencies and duplication. a descriptive case study using three approaches: the safety culture was identified to warrant improvement across all six safety culture domains. There was reduced infrastructure and capacity to support incident management activities required to improve safety, which was influenced by instability from the organisational restructure. There was a perceived lack of leadership at all levels to drive safety and quality and improving the safety culture was neither a key priority nor was it valued by the organisation. the safety culture was complex as was undertaking this study. We were unable to achieve a desired 60% response rate highlighting the limitations of using safety culture surveys in isolation as a strategy to improve safety culture. Qualitative interviews provided greater insight into the factors influencing the safety culture. The findings of this study provide evidence of the benefits of including qualitative methods with quantitative surveys when examining safety culture

  6. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this Safety Guide is to provide harmonized guidance to designers, operators, regulators and providers of technical support on deterministic safety analysis for nuclear power plants. It provides information on the utilization of the results of such analysis for safety and reliability improvements. The Safety Guide addresses conservative, best estimate and uncertainty evaluation approaches to deterministic safety analysis and is applicable to current and future designs. Contents: 1. Introduction; 2. Grouping of initiating events and associated transients relating to plant states; 3. Deterministic safety analysis and acceptance criteria; 4. Conservative deterministic safety analysis; 5. Best estimate plus uncertainty analysis; 6. Verification and validation of computer codes; 7. Relation of deterministic safety analysis to engineering aspects of safety and probabilistic safety analysis; 8. Application of deterministic safety analysis; 9. Source term evaluation for operational states and accident conditions; References

  7. Radiation sources in the EU. A review of steps in the European Union

    International Nuclear Information System (INIS)

    Ciani, V.

    1999-01-01

    This article reviews the role and activities of the European Union concerning safety of radiation sources. A brief presentation is given of the results from a recent study of the management of radiation sources in EU Member Sates. A Number of legal texts which apply to radiation sources are cited as well. In 1998, the EC co-sponsored together with the IAEA, the International Criminal Police Organization and the World Customs Organization, a Conference on the safety of radiation Sources and the Security of Radioactive Materials in France. Commission supports follow-up actions to that Conference and welcomes the IAEA initiative to develop an action plan that would address the international dimensions of the safety of radiation sources

  8. Social Media Listening for Routine Post-Marketing Safety Surveillance.

    Science.gov (United States)

    Powell, Gregory E; Seifert, Harry A; Reblin, Tjark; Burstein, Phil J; Blowers, James; Menius, J Alan; Painter, Jeffery L; Thomas, Michele; Pierce, Carrie E; Rodriguez, Harold W; Brownstein, John S; Freifeld, Clark C; Bell, Heidi G; Dasgupta, Nabarun

    2016-05-01

    Post-marketing safety surveillance primarily relies on data from spontaneous adverse event reports, medical literature, and observational databases. Limitations of these data sources include potential under-reporting, lack of geographic diversity, and time lag between event occurrence and discovery. There is growing interest in exploring the use of social media ('social listening') to supplement established approaches for pharmacovigilance. Although social listening is commonly used for commercial purposes, there are only anecdotal reports of its use in pharmacovigilance. Health information posted online by patients is often publicly available, representing an untapped source of post-marketing safety data that could supplement data from existing sources. The objective of this paper is to describe one methodology that could help unlock the potential of social media for safety surveillance. A third-party vendor acquired 24 months of publicly available Facebook and Twitter data, then processed the data by standardizing drug names and vernacular symptoms, removing duplicates and noise, masking personally identifiable information, and adding supplemental data to facilitate the review process. The resulting dataset was analyzed for safety and benefit information. In Twitter, a total of 6,441,679 Medical Dictionary for Regulatory Activities (MedDRA(®)) Preferred Terms (PTs) representing 702 individual PTs were discussed in the same post as a drug compared with 15,650,108 total PTs representing 946 individual PTs in Facebook. Further analysis revealed that 26 % of posts also contained benefit information. Social media listening is an important tool to augment post-marketing safety surveillance. Much work remains to determine best practices for using this rapidly evolving data source.

  9. General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-05-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work

  10. Assessment of safety regulation using an artificial society

    International Nuclear Information System (INIS)

    Furuta, Kazuo; Nagase, Masaya

    2005-01-01

    This study proposes using an artificial society to assess impacts of safety regulation on the society. The artificial society used in this study is a multi-agent system, which consists of many agents representing companies. The agents cannot survive unless they get profits by producing some products. Safety regulation functions as the business environment, which the agents will evolve to fit to. We modeled this process of survival and adaptation by the genetic algorithm. Using the proposed model, case simulations were performed to compare various regulation styles, and some interesting insights were obtained how regulation style influences behavior of the agents and then productivity and safety level of the industry. In conclusion, an effective method for assessment of safety regulation has been developed, and then several insights were shown in this study

  11. Safety culture: personal considerations of an owner/operator

    International Nuclear Information System (INIS)

    Fuchs, H.

    1994-01-01

    Safety culture with nuclear energy is above all a people's business. This means that all you can do is attempting to create the type of ideal environment that helps all plant people to perform their safety-related tasks in an optimum way. This is a continuous challenge for all who are involved. In the last years the political environment has exhibited the most noteworthy shortcomings regarding safety culture. (author) figs

  12. Biosignal PI, an Affordable Open-Source ECG and Respiration Measurement System

    Directory of Open Access Journals (Sweden)

    Farhad Abtahi

    2014-12-01

    Full Text Available Bioimedical pilot projects e.g., telemedicine, homecare, animal and human trials usually involve several physiological measurements. Technical development of these projects is time consuming and in particular costly. A versatile but affordable biosignal measurement platform can help to reduce time and risk while keeping the focus on the important goal and making an efficient use of resources. In this work, an affordable and open source platform for development of physiological signals is proposed. As a first step an 8–12 leads electrocardiogram (ECG and respiration monitoring system is developed. Chips based on iCoupler technology have been used to achieve electrical isolation as required by IEC 60601 for patient safety. The result shows the potential of this platform as a base for prototyping compact, affordable, and medically safe measurement systems. Further work involves both hardware and software development to develop modules. These modules may require development of front-ends for other biosignals or just collect data wirelessly from different devices e.g., blood pressure, weight, bioimpedance spectrum, blood glucose, e.g., through Bluetooth. All design and development documents, files and source codes will be available for non-commercial use through project website, BiosignalPI.org.

  13. Potential off-normal events and associated radiological source terms for the compact ignition tokamak: Fusion Safety Program

    International Nuclear Information System (INIS)

    Holland, D.F.; Lyon, R.E.

    1987-10-01

    The Compact Ignition Tokamak (CIT), the latest step in the United States program to develop the commercial application of fusion power, is designed as the first fusion device to achieve ignition conditions. It is to be constructed near Princeton, New Jersey on the site of the existing Tokamak Fusion Test Reactor (TFTR). To address the environmental impact and public safety concerns, a preliminary analysis was performed of potential off-normal radiological releases. Operational occurrences, natural phenomena, accidents with external origins, and accidents external to the PPPL site were considered as potential sources for off-normal events. Based on an initial screening, events were selected for preliminary analysis. Included in these events were tritium releases from the tritium delivery and recovery system, tritium releases from the torus, releases of activated nitrogen from the test cell or cryostat, seismic events, and shipping accidents. In each case, the design considerations related to the event were reviewed and the release scenarios discussed. Because of the complexity of some of the proposed safety systems, in some cases event trees were used to describe the accident scenarios. For each scenario, the probability was estimated as well as the release magnitude, isotope, chemical form, and release mode. 10 refs., 17 figs., 5 tabs

  14. Activities of the PNC Nuclear Safety Working Group

    International Nuclear Information System (INIS)

    Kato, W.Y.

    1991-01-01

    The Nuclear Safety Working Group of the Pacific Nuclear Council promotes nuclear safety cooperation among its members. Status of safety research, emergency planning, development of lists of technical experts, severe accident prevention and mitigation have been the topics of discussion in the NSWG. This paper reviews and compares the severe accident prevention and mitigation program activities in some of the areas of the Pacific Basin region based on papers presented at a special session organized by the NSWG at an ANS Topical Meeting as well as papers from other sources

  15. National regulatory authorities with competence in the safety of radiation sources and the security of radioactive materials. Proceedings

    International Nuclear Information System (INIS)

    2001-01-01

    The Buenos Aires Conference, hosted by the Government of Argentina, was attended by 89 regulatory officials from 57 Member States. The conference provided a forum for fostering the exchange of information and experience on the development of adequate regulatory systems for effective control of the safety of radiation sources and security of radioactive materials. This publication contains 64 individual presentations delivered at the Conference. Each of them was indexed separately

  16. National regulatory authorities with competence in the safety of radiation sources and the security of radioactive materials. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-08-01

    The Buenos Aires Conference, hosted by the Government of Argentina, was attended by 89 regulatory officials from 57 Member States. The conference provided a forum for fostering the exchange of information and experience on the development of adequate regulatory systems for effective control of the safety of radiation sources and security of radioactive materials. This publication contains 64 individual presentations delivered at the Conference. Each of them was indexed separately.

  17. Security of radioactive sources and materials

    International Nuclear Information System (INIS)

    Rodriguez, C.; D'Amato, E.; Fernandez Moreno, S.

    1998-01-01

    The activities involving the use of radiation sources and radioactive materials are subject to the control of the national bodies dedicated to the nuclear regulation. The main objective of this control is to assure an appropriate level of radiological protection and nuclear safety. In Argentina, this function is carried out by the 'Nuclear Regulatory Authority' (ARN) whose regulatory system for radiation sources and radioactive materials comprises a registration, licensing and inspection scheme. The system is designed to keep track of such materials and to allow taking immediate corrective actions in case some incident occurs. Due to the appearance of a considerable number of illicit traffic events involving radiation sources and radioactive materials, the specialized national and international community has begun to evaluate the adoption of supplementary measures to those of 'safety' guided to its prevention and detection (i.e. 'security measures'). This paper presents a view on when the adoption of complementary 'security' measures to those of 'safety' would be advisable and which they would be. This will be done through the analysis of two hypothesis of illicit traffic, the first one with sources and radioactive materials considered as 'registered' and the second, with the same materials designated as 'not registered'. It will also describe succinctly the measures adopted by the ARN or under its analysis regarding the 'security' measures to sources and radioactive materials. (author)

  18. Organisation et mise en oeuvre d'une infrastructure reglementaire nationale chargee de la protection contre les rayonnements ionisants et de la surete des sources de rayonnements. Rapport interimaire pour observations; Organization and implementation of a national regulatory infrastructure governing protection against ionizing radiation and the safety of radiation sources. Interim report for comment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-01

    A number of IAEA Member States are undertaking to strengthen their radiation protection and safety infrastructures in order to facilitate the adoption of the requirements established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Standards). In this connection, the IAEA has developed a technical co-operation programme (Model Project on Upgrading Radiation Protection Infrastructure) to improve radiation protection and safety infrastructures in 51 Member States, taking into account national profiles and needs of the individual participating, countries. The present report deals with the elements of a regulatory infrastructure for radiation protection and safety and intends to facilitate the, implementation of the Basic Safety Standards in practice. It takes into account the proposals in an earlier report, IAEA-TECDOC-663, but it has been expanded to include enabling legislation and modified to be more attuned to infrastructure issues related to implementation of the Standards. The orientation is toward infrastructures concerned with protection and safety for radiation sources used in medicine, agriculture, research, industry and education rather than infrastructures for protection and safety for complex nuclear facilities. It also discusses options for enhancing the effectiveness and efficiency of the infrastructure in accordance with the size and scope of radiation practices and available regulatory resources within a country.

  19. An analysis of safety control effectiveness

    International Nuclear Information System (INIS)

    Son, K.S.; Melchers, R.E.; Kal, W.M.

    2000-01-01

    The cost of injuries and 'accidents' to an organisation is very important in establishing how much it should spend on safety control. Despite the usefulness of information about the cost of a company's accidents, it is not customary accounting practice to make these data available. Of the two kinds of costs incurred by a company through occupational injuries and accidents, direct costs and indirect costs; the direct costs are much easier to estimate. However, the uninsured costs are usually more critical and should be estimated by each company. The authors investigate a general model to estimate the above costs and hence to establish efficient safety control. One construction company has been a pilot for this study. By analysing actual company data for three years, it is found that the efficient safety control cost should be 1.2-1.3% of total contract costs

  20. Status of the safety concept and safety demonstration for an HLW repository in salt. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Bollingerfehr, W.; Buhmann, D.; Filbert, W.; and others

    2013-12-15

    Salt formations have been the preferred option as host rocks for the disposal of high level radioactive waste in Germany for more than 40 years. During this period comprehensive geological investigations have been carried out together with a broad spectrum of concept and safety related R and D work. The behaviour of an HLW repository in salt formations, particularly in salt domes, has been analysed in terms of assessment of the total system performance. This was first carried out for concepts of generic waste repositories in salt and, since 1998, for a repository concept with specific boundary conditions, taking the geology of the Gorleben salt dome as an example. Suitable repository concepts and designs were developed, the technical feasibility has been proven and operational and long-term safety evaluated. Numerical modelling is an important input into the development of a comprehensive safety case for a waste repository. Significant progress in the development of numerical tools and their application for long-term safety assessment has been made in the last two decades. An integrated approach has been used in which the repository concept and relevant scientific and engineering data are combined with the results from iterative safety assessments to increase the clarity and the traceability of the evaluation. A safety concept that takes full credit of the favourable properties of salt formations was developed in the course of the R and D project ISIBEL, which started in 2005. This concept is based on the safe containment of radioactive waste in a specific part of the host rock formation, termed the containment providing rock zone, which comprises the geological barrier, the geotechnical barriers and the compacted backfill. The future evolution of the repository system will be analysed using a catalogue of Features, Events and Processes (FEP), scenario development and numerical analysis, all of which are adapted to suit the safety concept. Key elements of the

  1. IAEA activities in nuclear safety: future perspectives. Spanish Nuclear Safety Council, Madrid, 28 May 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document represents the conference given by the Director General of the IAEA at the Spanish Nuclear Safety Council in Madrid, on 28 May 1998, on Agency's activities in nuclear safety. The following aspects are emphasized: Agency's role in creating a legally binding nuclear safety regime, non-binding safety standards, services provided by the Agency to assist its Member States in the Application of safety standards, Agency's nuclear safety strategy, and future perspective concerning safety aspects related to radioactive wastes, residues of past nuclear activities, and security of radiological sources

  2. An open ecosystem engagement strategy through the lens of global food safety

    Science.gov (United States)

    Stacey, Paul; Fons, Garin; Bernardo, Theresa M

    2015-01-01

    The Global Food Safety Partnership (GFSP) is a public/private partnership established through the World Bank to improve food safety systems through a globally coordinated and locally-driven approach. This concept paper aims to establish a framework to help GFSP fully leverage the potential of open models. In preparing this paper the authors spoke to many different GFSP stakeholders who asked questions about open models such as: what is it?what’s in it for me?why use an open rather than a proprietary model?how will open models generate equivalent or greater sustainable revenue streams compared to the current “traditional” approaches?  This last question came up many times with assertions that traditional service providers need to see opportunity for equivalent or greater revenue dollars before they will buy-in. This paper identifies open value propositions for GFSP stakeholders and proposes a framework for creating and structuring that value. Open Educational Resources (OER) were the primary open practice GFSP partners spoke to us about, as they provide a logical entry point for collaboration. Going forward, funders should consider requiring that educational resources and concomitant data resulting from their sponsorship should be open, as a public good. There are, however, many other forms of open practice that bring value to the GFSP. Nine different open strategies and tactics (Appendix A) are described, including: open content (including OER and open courseware), open data, open access (research), open government, open source software, open standards, open policy, open licensing and open hardware. It is recommended that all stakeholders proactively pursue "openness" as an operating principle. This paper presents an overall GFSP Open Ecosystem Engagement Strategy within which specific local case examples can be situated. Two different case examples, China and Colombia, are presented to show both project-based and crowd-sourced, direct-to-public paths

  3. Training and Action for Patient Safety: Embedding Interprofessional Education for Patient Safety within an Improvement Methodology

    Science.gov (United States)

    Slater, Beverley L.; Lawton, Rebecca; Armitage, Gerry; Bibby, John; Wright, John

    2012-01-01

    Introduction: Despite an explosion of interest in improving safety and reducing error in health care, one important aspect of patient safety that has received little attention is a systematic approach to education and training for the whole health care workforce. This article describes an evaluation of an innovative multiprofessional, team-based…

  4. Nuclear criticality safety: 3-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1993-06-01

    The open-quotes 3-Day Training Courseclose quotes is an intensive course in criticality safety consisting of lectures and laboratory sessions, including active student participation in actual critical experiments, a visit to a plutonium processing facility, and in-depth discussions on safety philosophy. The program is directed toward personnel who currently have criticality safety responsibilities in the capacity of supervisory staff and/or line management. This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course's primary instructor. It should be noted that when chapters were extracted, an attempt was made to maintain footnotes and references as originally written. Photographs and illustrations are numbered sequentially

  5. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  6. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  7. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  8. Safety in an international work environment: CERN

    CERN Document Server

    Potter, K.

    1990-01-01

    The European Laboratory for Particle Physics (CERN) has recently completed a new accelerator. The installation of this accelerator and its experimental areas represents an example of harmonization of safety rules in supranational areas, as CERN is an international organization and the machine is housed in a tunnel of 26.7 km circumference, of which 20 km is on French territory and 6.7 km on Swiss territory. The work was carried out by a large number of firms from all over Europe, CERN staff and physicists and technicians from all over the world, and represented almost 4 million working hours. The safety organization chosen and applied with the agreement of the two host-State safety authorities is described and the resulting application, including the results in terms of accident statistics, from the installation of the machine, experimental areas and detectors are presented.

  9. Plutonium safety training course

    International Nuclear Information System (INIS)

    Moe, H.J.

    1976-03-01

    This course seeks to achieve two objectives: to provide initial safety training for people just beginning work with plutonium, and to serve as a review and reference source for those already engaged in such work. Numerous references have been included to provide information sources for those wishing to pursue certain topics more fully. The first part of the course content deals with the general safety approach used in dealing with hazardous materials. Following is a discussion of the four properties of plutonium that lead to potential hazards: radioactivity, toxicity, nuclear properties, and spontaneous ignition. Next, the various hazards arising from these properties are treated. The relative hazards of both internal and external radiation sources are discussed, as well as the specific hazards when plutonium is the source. Similarly, the general hazards involved in a criticality, fire, or explosion are treated. Comments are made concerning the specific hazards when plutonium is involved. A brief summary comparison between the hazards of the transplutonium nuclides relative to 239 Pu follows. The final portion deals with control procedures with respect to contamination, internal and external exposure, nuclear safety, and fire protection. The philosophy and approach to emergency planning are also discussed

  10. Improving safety in small enterprises through an integrated safety management intervention.

    Science.gov (United States)

    Kines, Pete; Andersen, Dorte; Andersen, Lars Peter; Nielsen, Kent; Pedersen, Louise

    2013-02-01

    This study tests the applicability of a participatory behavior-based injury prevention approach integrated with safety culture initiatives. Sixteen small metal industry enterprises (10-19 employees) are randomly assigned to receive the intervention or not. Safety coaching of owners/managers result in the identification of 48 safety tasks, 85% of which are solved at follow-up. Owner/manager led constructive dialogue meetings with workers result in the prioritization of 29 tasks, 79% of which are accomplished at follow-up. Intervention enterprises have significant increases on six of eight safety-perception-survey factors, while comparisons increase on only one factor. Both intervention and comparison enterprises demonstrate significant increases in their safety observation scores. Interview data validate and supplement these results, providing some evidence for behavior change and the initiation of safety culture change. Given that over 95% of enterprises in most countries have less than 20 employees, there is great potential for adapting this integrated approach to other industries. Copyright © 2012 National Safety Council and Elsevier Ltd. All rights reserved.

  11. Implementing the Comprehensive Unit-Based Safety Program (CUSP) to Improve Patient Safety in an Academic Primary Care Practice.

    Science.gov (United States)

    Pitts, Samantha I; Maruthur, Nisa M; Luu, Ngoc-Phuong; Curreri, Kimberly; Grimes, Renee; Nigrin, Candace; Sateia, Heather F; Sawyer, Melinda D; Pronovost, Peter J; Clark, Jeanne M; Peairs, Kimberly S

    2017-11-01

    While there is growing awareness of the risk of harm in ambulatory health care, most patient safety efforts have focused on the inpatient setting. The Comprehensive Unit-based Safety Program (CUSP) has been an integral part of highly successful safety efforts in inpatient settings. In 2014 CUSP was implemented in an academic primary care practice. As part of CUSP implementation, staff and clinicians underwent training on the science of safety and completed a two-question safety assessment survey to identify safety concerns in the practice. The concerns identified by team members were used to select two initial safety priorities. The impact of CUSP on safety climate and teamwork was assessed through a pre-post comparison of results on the validated Safety Attitudes Questionnaire. Ninety-six percent of staff completed science of safety training as part of CUSP implementation, and 100% of staff completed the two-question safety assessment. The most frequently identified safety concerns were related to medications (n = 11, 28.2), diagnostic testing (n = 9, 25), and communication (n = 5, 14). The CUSP team initially prioritized communication and infection control, which led to standardization of work flows within the practice. Six months following CUSP implementation, large but nonstatistically significant increases were found for the percentage of survey respondents who reported knowledge of the proper channels for questions about patient safety, felt encouraged to report safety concerns, and believed that the work setting made it easy to learn from the errors of others. CUSP is a promising tool to improve safety climate and to identify and address safety concerns within ambulatory health care. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  12. Environmental radiation safety source term evaluation program

    International Nuclear Information System (INIS)

    Moss, O.R.; Filipy, R.E.; Cannon, W.C.; Craig, D.K.

    1977-04-01

    Plutonium-238 is currently used in the form of a pure refractory oxide as a power source on a number of space vehicles that have already been or will be launched during the next few years. Although the sources are designed and built to withstand re-entry into the earth's atmosphere and impact with the earth's surface without releasing any plutonium, the possibility of such an event can never be absolutely excluded. Three separate tasks were undertaken in this study. The interactions between soils and 238 PuO 2 aerosols which might be created in a space launch about environment were examined. Aging of the plutonium-soil mixture under a humid atmosphere showed a trend toward the slow coagulation of two dilute aerosols. Studies on marine animals were conducted to assess the response of 238 PuO 2 pellets to conditions found 60 feet below the ocean surface. Ultrafilterability studies measured the solubility of 238 PuO 2 as a function of time, temperature, suspension concentration and molality of solvent

  13. Measuring safety climate in a nuclear power plant - an experience sharing

    International Nuclear Information System (INIS)

    Vincy, M.U.; Varshney, Aloke; Khot, Pankaj

    2016-01-01

    In this paper the author discusses the experience gained in safety climate measurement of an Indian nuclear power plant. Safety performance is increasingly part of an organization's sustainable development. Nuclear power stations are falling under the category 'high reliability' industries in the world as far as work safety is concerned. Both the research and the practical experience continually point to two underlying factors that drive safety outcomes: the quality of an organisation's leadership and the resulting culture. After years of development in safety technology and safety management system in the industry, management of nuclear industry world over has come to recognize that safety culture has to be addressed if high standards of health and safety are to be maintained. Therefore, nuclear industries in India have been carrying out measurement of safety climate for more than ten years. The objectives of the study are to examine people's values, attitude, perception, competencies, and patterns of behaviour that determine the commitment to, and effectiveness of health and safety management in the industry based on a questionnaires survey and their analysis

  14. General purpose heat source task group. Final report

    International Nuclear Information System (INIS)

    1979-01-01

    The results of thermal analyses and impact tests on a modified design of a 238 Pu-fueled general purpose heat source (GPHS) for spacecraft power supplies are presented. This work was performed to establish the safety of a heat source with pyrolytic graphite insulator shells located either inside or outside the graphite impact shell. This safety is dependent on the degree of aerodynamic heating of the heat source during reentry and on the ability of the heat source capsule to withstand impact after reentry. Analysis of wind tunnel and impact test data result in a recommended GPHS design which should meet all temperature and safety requirements. Further wind tunnel tests, drop tests, and impact tests are recommended to verify the safety of this design

  15. Safety certification of airborne software: An empirical study

    International Nuclear Information System (INIS)

    Dodd, Ian; Habli, Ibrahim

    2012-01-01

    Many safety-critical aircraft functions are software-enabled. Airborne software must be audited and approved by the aerospace certification authorities prior to deployment. The auditing process is time-consuming, and its outcome is unpredictable, due to the criticality and complex nature of airborne software. To ensure that the engineering of airborne software is systematically regulated and is auditable, certification authorities mandate compliance with safety standards that detail industrial best practice. This paper reviews existing practices in software safety certification. It also explores how software safety audits are performed in the civil aerospace domain. The paper then proposes a statistical method for supporting software safety audits by collecting and analysing data about the software throughout its lifecycle. This method is then empirically evaluated through an industrial case study based on data collected from 9 aerospace projects covering 58 software releases. The results of this case study show that our proposed method can help the certification authorities and the software and safety engineers to gain confidence in the certification readiness of airborne software and predict the likely outcome of the audits. The results also highlight some confidentiality issues concerning the management and retention of sensitive data generated from safety-critical projects.

  16. Safety in Schools: An Integral Approach

    Science.gov (United States)

    Gairin, Joaquin; Castro, Diego

    2011-01-01

    The present paper summarizes a research project into integral safety in schools. The aims of this particular research are, firstly, to evaluate the degree of integral safety in schools, secondly, to propose means for improving prevention and integral safety systems and thirdly, to identify the characteristics of safety culture. The field work was…

  17. The Advanced Neutron Source design: A status report

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Nuetron Source (ANS) facility is being designed as a user laboratory for all types of neutron-based research, centered around a nuclear fission reactor (D 2 O cooled, moderated, and reflected), operating at approximately 300 MW th . Safety, and especially passive safety features, have been emphasized throughout the design process

  18. Safety culture in nuclear installations: Summary of an international topical meeting

    International Nuclear Information System (INIS)

    Carnino, A.; Derrough, M.; Weimann, G.

    1996-01-01

    An international topical meeting, Safety Culture in Nuclear Installations, was organized by the American Nuclear Society (ANS) Austria Local Section, cosponsored by the ANS Nuclear Reactor Safety and Human Factors Divisions in cooperation with the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (NEA/OECD) and held in Vienna April 24-28, 1995. Some 250 experts from 30 different countries and organizations took part in the 85 paper presentations and two workshops. The concept of safety culture was initially used in the first International Nuclear Safety Advisory Group (INSAG) report on the Chernobyl accident analysis report in 1986. Although some elements of safety culture have been used over the years in nuclear safety activities, the new phrase safety culture and the concept were found interesting as highlighting the 'soft' aspects of safety and as encompassing more than human errors. Unfortunately, for many years it was used more in the way of identifying lack of safety culture. Conscious of this application, INSAG further developed the safety culture concept in the INSAG 4 report: The report contains a definition, the universal aspects of safety culture, the two main components of safety culture management and individual behaviour, and performance indicators of a good safety culture. This report is now quite famous and adopted with some additions or complementary definitions by many institutes and organizations for their daily activities

  19. The Safety Culture of an Effective Nuclear Regulatory Body

    International Nuclear Information System (INIS)

    Carlsson, Lennart; Bernard, Benoit; Lojk, Robert; Koskinen, Kaisa; Rigail, Anne-Cecile; Stoppa, Gisela; Lorand, Ferenc; Aoki, Masahiro; Fujita, Kenichi; Takada, Hiroko; Kurasaki, Takaaki; Choi, Young Sung; Smit, Martin; Bogdanova, Tatiana; Sapozhnikov, Alexander; Smetnik, Alexander; Cid Campo, Rafael; Axelsson, Lars; Carlsson, Lennart; Edland, Anne; Ryser, Cornelia; Cohen, Miriam; Ficks, Ben; Valentin, Andrea; Nicic, Adriana; Lorin, Aurelie; Nezuka, Takayoshi; Creswell, Len

    2016-01-01

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that activities related to the peaceful use of nuclear energy are carried out in a safe manner within their respective countries. In order to effectively achieve this objective, the nuclear regulatory body requires specific characteristics, one of which is a healthy safety culture. This regulatory guidance report describes five principles that support the safety culture of an effective nuclear regulatory body. These principles concern leadership for safety, individual responsibility and accountability, co-operation and open communication, a holistic approach, and continuous improvement, learning and self-assessment. The report also addresses some of the challenges to a regulatory body's safety culture that must be recognised, understood and overcome. It provides a unique resource to countries with existing, mature regulators and can be used for benchmarking as well as for training and developing staff. It will also be useful for new entrant countries in the process of developing and maintaining an effective nuclear safety regulator. (authors)

  20. Effective regulatory control of radioactive sources

    International Nuclear Information System (INIS)

    Meserve, R.A.

    2001-01-01

    This paper provides an overview of the situation in the USA regarding government control over use of radiation sources, the challenges it faces and the potential paths to their resolution. In the light of the large number of radiation sources in use worldwide, the safety record on balance is remarkably good. But there is still considerable room for improvement. The IAEA has an important role to play, and it is playing it effectively

  1. An examination of the proposals for the off-site electrical power sources at the Sizewell B PWR

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, P. A. [HM Nuclear Installations Inspectorate, London (United Kingdom)

    1986-02-15

    Over the past few years there has been an increase in the attention being given to the adequacy and reliability of alternative sources of power provided to supply safety equipment should off-site electrical sources fail. This paper discusses the rationale of HM Nuclear Installations Inspectorates assessment of the electrical systems proposed for the UK's first Pressurized water Reactor, Sizewell 3. The requirements for on-site sources are given, and a discussion is provided of the NII's Assessment Principles including common mode failure, single failure criterion and reliability targets. Where the assessment has resulted in notifications to the original design the reasons are given. The UK's large interconnected Grid System makes complete losses of off-site power comparatively rare. The potential exists however and this paper shows how the current approach ensures that not only are adequate on-site sources available but also that their siting, maintenance and testing are such that loss of off-site power will not cause an unacceptable risk to the public. (author)

  2. Development and initial validation of an Aviation Safety Climate Scale.

    Science.gov (United States)

    Evans, Bronwyn; Glendon, A Ian; Creed, Peter A

    2007-01-01

    A need was identified for a consistent set of safety climate factors to provide a basis for aviation industry benchmarking. Six broad safety climate themes were identified from the literature and consultations with industry safety experts. Items representing each of the themes were prepared and administered to 940 Australian commercial pilots. Data from half of the sample (N=468) were used in an exploratory factor analysis that produced a 3-factor model of Management commitment and communication, Safety training and equipment, and Maintenance. A confirmatory factor analysis on the remaining half of the sample showed the 3-factor model to be an adequate fit to the data. The results of this study have produced a scale of safety climate for aviation that is both reliable and valid. This study developed a tool to assess the level of perceived safety climate, specifically of pilots, but may also, with minor modifications, be used to assess other groups' perceptions of safety climate.

  3. General problems associated with the control and safe use of radiation sources (199)

    International Nuclear Information System (INIS)

    Ahmed, J.U.

    1993-01-01

    There are problems at various levels in ensuring safety in the use of radiation sources. A relatively new problem that warrants international action is the smuggling of radioactive material across international borders. An international convention on the control and safe use of radiation sources is essential to provide a universally harmonized mechanism for ensuring safety

  4. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide

    International Nuclear Information System (INIS)

    2014-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as … well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  5. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  6. Making safety an integral part of 5S in healthcare.

    Science.gov (United States)

    Ikuma, Laura H; Nahmens, Isabelina

    2014-01-01

    Healthcare faces major challenges with provider safety and rising costs, and many organizations are using Lean to instigate change. One Lean tool, 5S, is becoming popular for improving efficiency of physical work environments, and it can also improve safety. This paper demonstrates that safety is an integral part of 5S by examining five specific 5S events in acute care facilities. We provide two arguments for how safety is linked to 5S:1. Safety is affected by 5S events, regardless of whether safety is a specific goal and 2. Safety can and should permeate all five S's as part of a comprehensive plan for system improvement. Reports of 5S events from five departments in one health system were used to evaluate how changes made at each step of the 5S impacted safety. Safety was affected positively in each step of the 5S through initial safety goals and side effects of other changes. The case studies show that 5S can be a mechanism for improving safety. Practitioners may reap additional safety benefits by incorporating safety into 5S events through a safety analysis before the 5S, safety goals and considerations during the 5S, and follow-up safety analysis.

  7. System safety analysis of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Bartos, R.J.

    1994-01-01

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate trademark robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA copyright) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection

  8. General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-04-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work

  9. 2011 Annual Meeting of the Safety Pharmacology Society: an overview.

    Science.gov (United States)

    Cavero, Icilio

    2012-03-01

    The keynote address of 2011 Annual Meeting of the Safety Pharmacology Society examined the known and the still to be known on drug-induced nephrotoxicity. The nominee of the Distinguished Service Award Lecture gave an account of his career achievements particularly on the domain of chronically instrumented animals for assessing cardiovascular safety. The value of Safety Pharmacology resides in the benefits delivered to Pharma organizations, regulators, payers and patients. Meticulous due diligence concerning compliance of Safety Pharmacology studies to best practices is an effective means to ensure that equally stringent safety criteria are applied to both in-licensed and in-house compounds. Innovative technologies of great potential for Safety Pharmacology presented at the meeting are organs on chips (lung, heart, intestine) displaying mechanical and biochemical features of native organs, electrical field potential (MEA) or impedance (xCELLigence Cardio) measurements in human induced pluripotent stem cell-derived cardiomyocytes for unveiling cardiac electrophysiological and mechanical liabilities, functional human airway epithelium (MucilAir™) preparations with unique 1-year shelf-life for acute and chronic in vitro evaluation of drug efficacy and toxicity. Custom-designed in silico and in vitro assay platforms defining the receptorome space occupied by chemical entities facilitate, throughout the drug discovery phase, the selection of candidates with optimized safety profile on organ function. These approaches can now be complemented by advanced computational analysis allowing the identification of compounds with receptorome, or clinically adverse effect profiles, similar to those of the drug candidate under scrutiny for extending the safety assessment to potential liability targets not captured by classical approaches. Nonclinical data supporting safety can be quite reassuring for drugs with a discovered signal of risk. However, for marketing authorization

  10. Towards an international regime on radiation and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2000-01-01

    The 1990s have seen the de facto emergence of what might be called an 'international regime on nuclear and radiation safety'. It may be construed to encompass three key elements: legally binding international undertakings among States; globally agreed international safety standards; and provisions for facilitating the application of those standards. While nuclear and radiation safety are national responsibilities, governments have long been interested in formulating harmonised approaches to radiation and nuclear safety. A principal mechanism for achieving harmonisation has been the establishment of internationally agreed safety standards and the promotion of their global application. The development of nuclear and radiation safety standards is a statutory function of the IAEA, which is unique in the United Nations system. The IAEA Statute expressly authorises the Agency 'to establish standards of safety' and 'to provide for the application of these standards'. As the following articles and supplement in this edition of the IAEA Bulletin point out, facilitating international conventions; developing safety standards; and providing mechanisms for their application are high priorities for the IAEA. (author)

  11. Radiation Protection, Safety and Security Issues in Ghana.

    Science.gov (United States)

    Boadu, Mary; Emi-Reynolds, Geoffrey; Amoako, Joseph Kwabena; Akrobortu, Emmanuel; Hasford, Francis

    2016-11-01

    Although the use of radioisotopes in Ghana began in 1952, the Radiation Protection Board of Ghana was established in 1993 and served as the national competent authority for authorization and inspection of practices and activities involving radiation sources until 2015. The law has been superseded by an Act of Parliament, Act 895 of 2015, mandating the Nuclear Regulatory Authority of Ghana to take charge of the regulation of radiation sources and their applications. The Radiation Protection Institute in Ghana provided technical support to the regulatory authority. Regulatory and service activities that were undertaken by the Institute include issuance of permits for handling of a radiation sources, authorization and inspection of radiation sources, radiation safety assessment, safety assessment of cellular signal towers, and calibration of radiation-emitting equipment. Practices and activities involving application of radiation are brought under regulatory control in the country through supervision by the national competent authority.

  12. Recommendation for an European wind turbine safety standard

    Energy Technology Data Exchange (ETDEWEB)

    Hjuler Jensen, P.; Hauge Madsen, P.; Winther-Jensen, M.; Machielse, L.; Stam, W.; Einsfeld, V.; Woelfel, E.; Elliot, G.; Wilde, L. de

    1988-09-15

    The objective is to establish an European standard for wind safety which should apply for all member countries of the European Communities. The document contains a list of recommended safety requirements in relation to the system, structure, electrical installations, operation and maintenance of wind turbines. The recommended safety standards cover electricity producing wind turbines connected to electricity grids in both single and cluster applications and with a swept area in excess of 25 square meters and/or a rated power of 10kW. The document should be used in combination with The European Standards for Wind Turbine Loads and other relevant European Standards. Environmental condition, with the emphasis of wind conditions and more extreme climatic conditions, are also considered in relation to safety requirements. (AB).

  13. Lean Six-Sigma in Aviation Safety: An implementation guide for measuring aviation system’s safety performance

    OpenAIRE

    Panagopoulos, I.; Atkin, C.J.; Sikora, I.

    2016-01-01

    The paper introduces a conceptual framework that could improve the safety performance measurement process and ultimately the aviation system safety performance. The framework provides an implementation guide on how organisations could design and develop a proactive, measurement tool for assessing and measuring the Acceptable Level of Safety Performance (ALoSP) at sigma (σ) level, a statistical measurement unit. In fact, the methodology adapts and combines quality management tools, a leading i...

  14. Safety policy in the production of electricity

    International Nuclear Information System (INIS)

    Siddall, E.

    1982-01-01

    When safety is properly understood, defined and quantified, it can be seen that the development of our present industrial civilization has resulted in a progressive improvement in human safety. Increased safety has come with increased wealth in such close association that a high degree of cause-and-effect relationship must be considered. The quantitative relationship between wealth production and safety improvement is derived from different sources of evidence. When this is applied to the wealth production from electricity generation in a standard module of population in an advanced society, a safety benefit is indicated which exceeds the assessed direct risk associated with the electricity generation by orders of magnitude. It appears that a goal or policy intended to confer the greatest safety benefit to the population would result in attitudes and actions diametrically opposite to those which are conventional at the moment

  15. Safety Concepts in Structural Glass Engineering : Towards an Integrated Approach

    NARCIS (Netherlands)

    Bos, F.P.

    2009-01-01

    This dissertation proposes the Integrated Approach to Structural Glass Safety, based on four clearly defined element safety properties, damage sensitivity, relative resistance, redundancy, and fracture mode. The Element Safety Diagram (ESD) is introduced to provide an easy-to-read graphical

  16. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    International Nuclear Information System (INIS)

    Lee, Seunghee; Kim, Juyoul

    2017-01-01

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • 14 C, 226 Ra, 241 Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing 14 C, 226 Ra and 241 Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10 −7 mSv/yr, for both disposal options and satisfied the regulatory limit of 0.1 mSv/yr. However, in the

  17. Safety climate mapping in a nuclear power plant - an experience sharing

    International Nuclear Information System (INIS)

    Vincy, M.U.; Varshney, Aloke; Khot, Pankaj

    2016-01-01

    In this paper the author discusses the experience gained in safety climate measurement of an Indian nuclear power plant. Safety performance is increasingly part of an organisation's sustainable development. Nuclear power stations are falling under the category 'high reliability' industries in the world as far as work safety is concerned. Both the research and the practical experience continually point to two underlying factors that drive safety outcomes: the quality of an organisation's leadership and the resulting culture. After years of development in safety technology and safety management system in the industry, management of nuclear industry world over has come to recognize that safety culture has to be addressed if high standards of health and safety are to be maintained. Therefore, nuclear industries in India have been carrying out measurement of safety climate for more than ten years. The objectives of the study are to examine people's values, attitude, perception, competencies, and patterns of behaviour that determine the commitment to, and effectiveness of health and safety management in the industry based on questionnaires survey and their analysis. A questionnaire, consists of 66 statements with 11 attributes, was designed to seek the views of managers, supervisors and front line workers on key aspects of the safety culture. Each of the discrete group was also classified according to their role in the organisation

  18. An Empirical Analysis of Human Performance and Nuclear Safety Culture

    International Nuclear Information System (INIS)

    Jeffrey Joe; Larry G. Blackwood

    2006-01-01

    The purpose of this analysis, which was conducted for the US Nuclear Regulatory Commission (NRC), was to test whether an empirical connection exists between human performance and nuclear power plant safety culture. This was accomplished through analyzing the relationship between a measure of human performance and a plant's Safety Conscious Work Environment (SCWE). SCWE is an important component of safety culture the NRC has developed, but it is not synonymous with it. SCWE is an environment in which employees are encouraged to raise safety concerns both to their own management and to the NRC without fear of harassment, intimidation, retaliation, or discrimination. Because the relationship between human performance and allegations is intuitively reciprocal and both relationship directions need exploration, two series of analyses were performed. First, human performance data could be indicative of safety culture, so regression analyses were performed using human performance data to predict SCWE. It also is likely that safety culture contributes to human performance issues at a plant, so a second set of regressions were performed using allegations to predict HFIS results

  19. People-Technology-Ecosystem Integration: A Framework to Ensure Regional Interoperability for Safety, Sustainability, and Resilience of Interdependent Energy, Water, and Seafood Sources in the (Persian) Gulf.

    Science.gov (United States)

    Meshkati, Najmedin; Tabibzadeh, Maryam; Farshid, Ali; Rahimi, Mansour; Alhanaee, Ghena

    2016-02-01

    The aim of this study is to identify the interdependencies of human and organizational subsystems of multiple complex, safety-sensitive technological systems and their interoperability in the context of sustainability and resilience of an ecosystem. Recent technological disasters with severe environmental impact are attributed to human factors and safety culture causes. One of the most populous and environmentally sensitive regions in the world, the (Persian) Gulf, is on the confluence of an exponentially growing number of two industries--nuclear power and seawater desalination plants--that is changing its land- and seascape. Building upon Rasmussen's model, a macrosystem integrative framework, based on the broader context of human factors, is developed, which can be considered in this context as a "meta-ergonomics" paradigm, for the analysis of interactions, design of interoperability, and integration of decisions of major actors whose actions can affect safety and sustainability of the focused industries during routine and nonroutine (emergency) operations. Based on the emerging realities in the Gulf region, it is concluded that without such systematic approach toward addressing the interdependencies of water and energy sources, sustainability will be only a short-lived dream and prosperity will be a disappearing mirage for millions of people in the region. This multilayered framework for the integration of people, technology, and ecosystem--which has been applied to the (Persian) Gulf--offers a viable and vital approach to the design and operation of large-scale complex systems wherever the nexus of water, energy, and food sources are concerned, such as the Black Sea. © 2016, Human Factors and Ergonomics Society.

  20. Categorization of radiation sources

    International Nuclear Information System (INIS)

    2000-12-01

    The objective of this report is to develop a categorization scheme for radiation sources that could be relevant to decisions both in a retrospective application to bring sources under control and in a prospective sense to guide the application of the regulatory infrastructure. The Action Plan envisages that the preparation of guidance on national strategies and programmes for the detection and location of orphan sources and their subsequent management should commence after the categorization of sources has been carried out. In the prospective application of the system of notification, registration, and licensing, the categorization is relevant to prioritize a regulatory authority's resources and training activities; to guide the degree of detail necessary for a safety assessment; and to serve as a measure of the intensity of effort which a regulatory authority should apply to the safety and security of a particular type of source

  1. X-33 Telemetry Best Source Selection, Processing, Display, and Simulation Model Comparison

    Science.gov (United States)

    Burkes, Darryl A.

    1998-01-01

    The X-33 program requires the use of multiple telemetry ground stations to cover the launch, ascent, transition, descent, and approach phases for the flights from Edwards AFB to landings at Dugway Proving Grounds, UT and Malmstrom AFB, MT. This paper will discuss the X-33 telemetry requirements and design, including information on fixed and mobile telemetry systems, best source selection, and support for Range Safety Officers. A best source selection system will be utilized to automatically determine the best source based on the frame synchronization status of the incoming telemetry streams. These systems will be used to select the best source at the landing sites and at NASA Dryden Flight Research Center to determine the overall best source between the launch site, intermediate sites, and landing site sources. The best source at the landing sites will be decommutated to display critical flight safety parameters for the Range Safety Officers. The overall best source will be sent to the Lockheed Martin's Operational Control Center at Edwards AFB for performance monitoring by X-33 program personnel and for monitoring of critical flight safety parameters by the primary Range Safety Officer. The real-time telemetry data (received signal strength, etc.) from each of the primary ground stations will also be compared during each nu'ssion with simulation data generated using the Dynamic Ground Station Analysis software program. An overall assessment of the accuracy of the model will occur after each mission. Acknowledgment: The work described in this paper was NASA supported through cooperative agreement NCC8-115 with Lockheed Martin Skunk Works.

  2. Patient involvement in patient safety: Protocol for developing an intervention using patient reports of organisational safety and patient incident reporting

    Directory of Open Access Journals (Sweden)

    Armitage Gerry

    2011-05-01

    Full Text Available Abstract Background Patients have the potential to provide a rich source of information on both organisational aspects of safety and patient safety incidents. This project aims to develop two patient safety interventions to promote organisational learning about safety - a patient measure of organisational safety (PMOS, and a patient incident reporting tool (PIRT - to help the NHS prevent patient safety incidents by learning more about when and why they occur. Methods To develop the PMOS 1 literature will be reviewed to identify similar measures and key contributory factors to error; 2 four patient focus groups will ascertain practicality and feasibility; 3 25 patient interviews will elicit approximately 60 items across 10 domains; 4 10 patient and clinician interviews will test acceptability and understanding. Qualitative data will be analysed using thematic content analysis. To develop the PIRT 1 individual and then combined patient and clinician focus groups will provide guidance for the development of three potential reporting tools; 2 nine wards across three hospital directorates will pilot each of the tools for three months. The best performing tool will be identified from the frequency, volume and quality of reports. The validity of both measures will be tested. 300 patients will be asked to complete the PMOS and PIRT during their stay in hospital. A sub-sample (N = 50 will complete the PMOS again one week later. Health professionals in participating wards will also be asked to complete the AHRQ safety culture questionnaire. Case notes for all patients will be reviewed. The psychometric properties of the PMOS will be assessed and a final valid and reliable version developed. Concurrent validity for the PIRT will be assessed by comparing reported incidents with those identified from case note review and the existing staff reporting scheme. In a subsequent study these tools will be used to provide information to wards/units about their

  3. Investigation on regulatory requirements for radiation safety management

    International Nuclear Information System (INIS)

    Han, Eun Ok; Choi, Yoon Seok; Cho, Dae Hyung

    2013-01-01

    NRC recognizes that efficient management of radiation safety plan is an important factor to achieve radiation safety service. In case of Korea, the contents to perform the actual radiation safety management are legally contained in radiation safety management reports based on the Nuclear Safety Act. It is to prioritize the importance of safety regulations in each sector in accordance with the current situation of radiation and radioactive isotopes-used industry and to provide a basis for deriving safety requirements and safety regulations system maintenance by the priority of radiation safety management regulations. It would be helpful to achieve regulations to conform to reality based on international standards if consistent safety requirements is developed for domestic users, national standards and international standards on the basis of the results of questions answered by radiation safety managers, who lead on-site radiation safety management, about the priority of important factors in radioactive sources use, sales, production, moving user companies, to check whether derived configuration requirements for radiation safety management are suitable for domestic status

  4. Enhancing NPP Safety Through an Effective Dependability Management

    Energy Technology Data Exchange (ETDEWEB)

    Vieru, G., E-mail: g_vieru@yahoo.com [AREN, Bucharest (Romania)

    2014-10-15

    Taking into account the importance of the continuous improvement of the performance and reliability of a NPP and practical measures to strengthen nuclear safety and security, it is to be noted that a good management for a nuclear power reactor involves a ''good dependability management'' of the activities, such as: Reliability, Availability, Maintainability (RAM) and maintenance support. In order to evaluate certain safety assessment criteria intended to be applied at the level of the nuclear reactor unit management, equipment dependability indicators and their impact over the availability and reactor safety have to be evaluated. Reactor equipment dependability indicators provide a quantitative indication of equipment RAM performances (Reliability, Availability and Maintenance). One of the important benefits of maintenance and failure data gathering is that it can be used as a support of probabilistic safety assessment (PSA). Also, a good dependability management implementation may be used to complement reactor level unit performance indicators in the field of safe operation, maintenance and improving operating parameters, as well as for Strengthening Safety and Improving Reliability of a NPP. This paper underlines the importance of nuclear safety and security as prerequisites for nuclear power. In addition, it demonstrates how different technical aspects, through implementation of a good dependability management, contribute to a strengthened safety and an improvement of availability of the NPP through dependability indicators determination and evaluation. (author)

  5. Automating the Generation of Heterogeneous Aviation Safety Cases

    Science.gov (United States)

    Denney, Ewen W.; Pai, Ganesh J.; Pohl, Josef M.

    2012-01-01

    A safety case is a structured argument, supported by a body of evidence, which provides a convincing and valid justification that a system is acceptably safe for a given application in a given operating environment. This report describes the development of a fragment of a preliminary safety case for the Swift Unmanned Aircraft System. The construction of the safety case fragment consists of two parts: a manually constructed system-level case, and an automatically constructed lower-level case, generated from formal proof of safety-relevant correctness properties. We provide a detailed discussion of the safety considerations for the target system, emphasizing the heterogeneity of sources of safety-relevant information, and use a hazard analysis to derive safety requirements, including formal requirements. We evaluate the safety case using three classes of metrics for measuring degrees of coverage, automation, and understandability. We then present our preliminary conclusions and make suggestions for future work.

  6. IAEA safety glossary. Terminology used in nuclear safety and radiation protection, multilingual 2007 edition, including the IAEA safety fundamentals [no. SF-1

    International Nuclear Information System (INIS)

    2008-10-01

    The IAEA Safety Glossary defines and explains technical terms used in the IAEA Safety Standards and other safety related IAEA publications, and provides information on their usage.The publication is multilingual and covers the six official IAEA languages,, Arabic, Chinese, English, French, Russian and Spanish. It has been in use since April 2000. The 2007 Edition is a revised and updated version. The primary purpose of the publication is to harmonize terminology and usage in the IAEA Safety Standards. It is a source of information for users of the IAEA Safety Standards and other safety related IAEA publications and provides guidance for the drafters and reviewers of publications, including IAEA technical officers and consultants, and members of technical committees, advisory groups, working groups and bodies for the endorsement of safety standards

  7. Workplace Safety and Health Topics: Safety & Prevention

    Science.gov (United States)

    ... 1, 2018 Content source: National Institute for Occupational Safety and Health Education and Information Division Email Recommend Tweet YouTube Instagram Listen Watch RSS ABOUT About CDC Jobs Funding LEGAL Policies Privacy FOIA No Fear Act OIG 1600 Clifton Road Atlanta , GA 30329-4027 USA 800-CDC-INFO ( ...

  8. Reactor safety

    International Nuclear Information System (INIS)

    Meneley, D.A.

    The people of Ontario have begun to receive the benefits of a low cost, assured supply of electrical energy from CANDU nuclear stations. This indigenous energy source also has excellent safety characteristics. Safety has been one of the central themes of the CANDU development program from its very beginning. A great deal of work has been done to establish that public risks are small. However, safety design criteria are now undergoing extensive review, with a real prospect of more stringent requirements being applied in the future. Considering the newness of the technology it is not surprising that a consensus does not yet exist; this makes it imperative to discuss the issues. It is time to examine the policies and practice of reactor safety management in Canada to decide whether or not further restrictions are justified in the light of current knowledge

  9. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    Paci, Rustem; Ylli, Fatos

    2008-01-01

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. The issue of the establishing and functioning of the radiation safety infrastructure in Albania was considered as a prerequisite for a good practices development in the peaceful uses of radiation sources . The existence of the adequate legislation and the regulatory authority, functioning based in the Basic Safety Standards (BSS), are the necessary condition providing the fulfilment of the most important issues in the mentioned field. The first document on radiation protection in Albania stated that 'for the safe use of radiation sources it is mandatory that the legal person should have a valid permission issued by Radiation Protection Commission'. A special organ was established in the Ministry of Health to supervise providing of the radiation protection measures. This organization of radiation protection showed many lacks as result of the low efficiency . The personnel monitoring, import, transport, waste management and training of workers were in charge of Institute of Nuclear Physics (INP). In 1992 an IAEA RAPAT mission visited Albania and proposed some recommendations for radiation protection improvements. The mission concluded that 'the legislation of the radiation protection should be developed'. In 1995 Albania was involved in the IAEA Model Project 'Upgrading of Radiation Protection Infrastructure'. This project, which is still in course, intended to establish the modern radiation safety infrastructures in the countries with low efficiency ones and to update and upgrade all aspects related with radiation safety: legislation and regulations, regulatory

  10. The French nuclear safety authority, an independent administrative body

    International Nuclear Information System (INIS)

    Lacoste, A.C.

    2007-01-01

    The Nuclear Safety Authority (ASN) is officially responsible for controlling safety and radioactivity in France so as to protect wage-earners, patients, the public and the environment from nuclear-related risks. It draws on the work done by the Institute of Radioprotection and Nuclear Safety (IRSN), and provides information to the public on these questions. The Authority's goal is to ensure an effective, legitimate, impartial and creditable control recognized by the public and serving as an international reference mark. ASN is led by a board of 5 commissaries, has a staff of 420 employees most of them civil servants, has an annual budget of 50 million euros and relies on 11 regional departments

  11. An exercise in safety

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    On 14 October, a large-scale evacuation exercise took place. Ten buildings (1-2-3-4-50-51-52-53-58-304), with a total capacity of almost 1900 people, were successfully evacuated.   The exercise, which for the first time involved all of the central buildings on the Meyrin site, was organised by the PH Department in collaboration with the HSE Unit, the GS Department and the safety officers of all the various departments involved. On the day, around 400 people were evacuated in just a few minutes.  “It took us three months to prepare for the exercise,” explains Niels Dupont, safety officer for the PH Department, who organised the exercise. “Around 100 people: safety officers, firefighters, emergency guides, observers, representatives from the control centre, etc. attended four preparatory meetings and five training sessions. We also purchased equipment such as evacuation chairs, high-visibility vests and signs to mark the evacuation route.” The dec...

  12. Safety policy in the production of electricity

    International Nuclear Information System (INIS)

    Siddall, E.

    1983-01-01

    When safety is properly understood, defined and quantified, it can be seen that the development of our present industrial civilization has resulted in a progressive and great improvement in human safety which is still continuing. Increased safety has come with increased wealth in such close association that a high degree of cause-and-effect relationship must be considered. The quantitative relationship between wealth production and safety improvement is derived from different sources of evidence. When this is applied to the wealth production from electricity generation in a standard module of population in an advanced society, a safety benefit is indicated which exceeds the assessed direct risk associated with the electricity generation by orders of magnitude. It appears that a goal or policy intended to confer the greatest safety benefit to the population would result in attitudes and actions diametrically opposite to those which are conventional at the moment

  13. The safety relief valve handbook design and use of process safety valves to ASME and International codes and standards

    CERN Document Server

    Hellemans, Marc

    2009-01-01

    The Safety Valve Handbook is a professional reference for design, process, instrumentation, plant and maintenance engineers who work with fluid flow and transportation systems in the process industries, which covers the chemical, oil and gas, water, paper and pulp, food and bio products and energy sectors. It meets the need of engineers who have responsibilities for specifying, installing, inspecting or maintaining safety valves and flow control systems. It will also be an important reference for process safety and loss prevention engineers, environmental engineers, and plant and process designers who need to understand the operation of safety valves in a wider equipment or plant design context. . No other publication is dedicated to safety valves or to the extensive codes and standards that govern their installation and use. A single source means users save time in searching for specific information about safety valves. . The Safety Valve Handbook contains all of the vital technical and standards informat...

  14. Additional safety assessments. Report by the Nuclear Safety Authority - December 2011

    International Nuclear Information System (INIS)

    2011-12-01

    The first part of this voluminous report proposes an assessment of targeted audits performed in French nuclear installations (water pressurized reactors on the one hand, laboratories, factories and waste and dismantling installations on the other hand) on issues related to the Fukushima accident. The examined issues were the protection against flooding and against earthquake, and the loss of electricity supplies and of cooling sources. The second part addresses the additional safety assessments of the reactors and the European resistance tests: presentation of the French electronuclear stock, earthquake, flooding and natural hazards (installation sizing, safety margin assessment), loss of electricity supplies and cooling systems, management of severe accidents, subcontracting conditions. The third part addresses the same issues for nuclear installations other than nuclear power reactors

  15. Nuclear and radiation safety policy

    International Nuclear Information System (INIS)

    Mikus, T; Strycek, E.

    1998-01-01

    Slovenske elektrarne (SE) is a producer of electricity and heat, including from nuclear fuel source. The board of SE is ultimately responsible for nuclear and radiation safety matters. In this leaflet main principles of maintaining nuclear and radiation safety of the Company SE are explained

  16. Selenide isotope generator for the Galileo Mission: safety test plan

    International Nuclear Information System (INIS)

    1979-01-01

    The intent of this safety test plan is to outline particular kinds of safety tests designed to produce information which would be useful in the safety analysis process. The program deals primarily with the response of the RTG to accident environments; accordingly two criteria were established: (1) safety tests should be performed for environments which are the most critical in terms of risk contribution; and (2) tests should be formulated to determine failure conditions for critical heat source components rather than observe heat source response in reference accident environments. To satisfy criterion 1. results of a recent safety study were used to rank various accidents in terms of expected source terms. Six kinds of tests were then proposed which would provide information meeting the second criterion

  17. Radiation safety systems at the NSLS

    International Nuclear Information System (INIS)

    Dickinson, T.

    1987-04-01

    This report describes design principles that were used to establish the radiation safety systems at the National Synchrotron Light Source. The author described existing safety systems and the history of partial system failures. 1 fig

  18. Trends in use of non-medical radiation sources in Slovenia

    International Nuclear Information System (INIS)

    Giacomelli, M.; Cesarek, J.; Osojnik, I.

    2007-01-01

    Slovenian Nuclear Safety Administration is the regulatory authority competent also for administrative control in the fields of radiation practices and use of radiation sources in industry and research, with exception in medicine and veterinary medicine. Prior to the adoption of the Act on Protection against Ionizing Radiation and Nuclear Safety the responsible authority was the Health Inspectorate of Republic of Slovenia. The article presents an overview of the use of radiation sources in Slovenia, in industry, research and education. Analysis of the data from abovementioned regulators shall examine trends in use in recent years as number of sources and organizations, and according to the type of their intended use. (author)

  19. Design of an artificial intelligence system for safety function maintenance

    International Nuclear Information System (INIS)

    Sharma, D.D.; Miller, D.W.; Chandrasekaran, B.

    1985-01-01

    The safety function (SF) maintenance concept provides a systematic approach to mitigate the consequences of an unforeseen event. Safety functions are a set of actions for mitigating or limiting consequences of a safety threatening event. The current approach to SF maintenance of selecting a success path (SP) from a library of predefined SPs is inadequate because it includes only anticipated modes of challenging an SF. To cover all possible modes of challenging an SF, the library of success paths would be extremely large and difficult to implement on any existing computer. In this paper the authors describe a method based on artificial intelligence (AI) theory of planning to synthesize an SP using available resources to satisfy a hierarchy of safety goals. The method has been applied to SF maintenance of a boiling water reactor (BWR) using data from the Perry nuclear power plant

  20. Prototype of source package to dispose of in the Aube repository

    International Nuclear Information System (INIS)

    Robbe, Marie-France; Vincon, Eric; Coutaud, Jean-Luc; Crabol, Bernard; Martin, Vincent

    2003-01-01

    The Aube facility managed by the ANDRA is a surface repository devoted to the disposal of low and medium-level radwastes. An agreement is under negotiation between the CEA and the ANDRA to dispose of some low-level short-lived spent sources in the Aube facility. The source package is based on an existing grouted package. As sources are small objects, a frame of distribution was designed to guarantee the final distribution of sources in the grouted package. To demonstrate the feasibility of the source package and to ensure that this package won't threaten the global safety of the Aube facility, the Safety Authorities required the constitution of a prototype of 995 sources. As the CEA collected thousands of sources up to now to abide by its legislative obligations of source maker, the sources to introduce in the package have to be identified and picked up among the stock of spent sources stored at the CEA. This paper describes the design of the packing, the tests of grouting to carry out on a test package, and the identification and sorting of the sources to introduce in the prototype. (author)

  1. An Evaluation Method for Team Competencies to Enhance Nuclear Safety Culture

    International Nuclear Information System (INIS)

    Hang, S. M.; Seong, P. H.; Kim, A. R.

    2016-01-01

    Safety culture has received attention in safety-critical industries, including nuclear power plants (NPPs), due to various prominent accidents such as concealment of a Station Blackout (SBO) of Kori NPP unit 1 in 2012, the Sewol ferry accident in 2014, and the Chernobyl accident in 1986. Analysis reports have pointed out that one of the major contributors to the cause of the accidents is ‘the lack of safety culture’. The term, nuclear safety culture, was firstly defined after the Chernobyl accident by the IAEA in INSAG report no. 4, as follows “Safety culture is that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention warranted their significance.” Afterwards, a wide consensus grew among researchers and nuclear-related organizations, that safety culture should be evaluated and managed in a certain manner. Consequently, each nuclear-related organization defined and developed their own safety culture definitions and assessment methods. However, none of these methods provides a way for an individual or a team to enhance the safety culture of an organization. Especially for a team, which is the smallest working unit in NPPs, team members easily overlook their required practices to improve nuclear safety culture. Therefore in this study, we suggested a method to estimate nuclear safety culture of a team, by approaching with the ‘competency’ point of view. The competency is commonly focused on individuals, and defined as, “underlying characteristics of an individual that are causally related to effective or superior performance in a job.” Similar to safety culture, the definition of competency focuses on characteristics and attitudes of individuals. Thus, we defined ‘safety culture competency’ as “underlying characteristics and outward attitudes of individuals that are causally related to a healthy and strong nuclear safety

  2. Safety in waste management plants: An Indian perspective

    International Nuclear Information System (INIS)

    Shekhar, P.; Ozarde, P.D.; Gandhi, P.M.

    2000-01-01

    Assurance of safety of public and plant workers and protection of the environment are prime objectives in the design and construction of Waste Management Plants. In India, waste management principles and strategies have been evolved in accordance with national and international regulations and standards for radiation protection. The regulations governing radiation protection have a far-reaching impact on the management of the radioactive waste. The wastes arise at each stages of the fuel cycle with varying chemical nature, generation rate and specific activity levels depending upon the type of the facility. Segregation of waste based on its chemical nature and specific activity levels is an essential feature, as its aids in selection of treatment and conditioning process. Selection of the process, equipment and materials in the plant, are governed by safety consideration alongside factors like efficiency and simplicity. The plant design considerations like physical separation, general arrangement, ventilation zoning, access control, remote handling, process piping routing, decontamination etc. have major role in realizing waste safety. Stringent quality control measures during all stages of construction have helped in achieving the design intended safety. These aspects together with operating experience gained form basis for the improved safety features in the design and construction of waste management plants. The comprehensive safety is derived from adoption of waste management strategies and appropriate plant design considerations. The paper briefly brings safety in waste management programme in India, in its current perspective. (author)

  3. Safety techniques in the change of nuclear systems. Radiation protection at spallation neutron sources and transmutation facilities

    International Nuclear Information System (INIS)

    Nuenighoff, Kay

    2009-01-01

    : production of secondary particles, induced radiotoxicity, energy deposition, and the moderation of neutrons and their transport through neutron guides. All these topics are discussed, and numerical solutions are presented. To answer questions concerning the radiation protection of such facilities complex numerical simulations are mandatory. Especially the strong interest in the field of basic research in cold neutron beams requires not only the study of the interaction of high energetic particles with matter, but furthermore the investigation of the influence of neutron optical phenomenons. The presented numerical methods allow the engineer responsible for radiation protection to analyse radiological hazards during the design phase of a project and the early and cheap implementation of technical solutions improving safety. Quoted as an example spallation neutron sources as well as energy amplifiers are discussed. At the end the philosophy of the safety of high power accelerator driven systems are discussed from the point of view of a safety scientist. (orig.)

  4. Benchmarking shielding simulations for an accelerator-driven spallation neutron source

    Directory of Open Access Journals (Sweden)

    Nataliia Cherkashyna

    2015-08-01

    Full Text Available The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS, currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ, at the Paul Scherrer Institute (PSI, Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolith wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters instruments at ESS.

  5. An optimization model for improving highway safety

    Directory of Open Access Journals (Sweden)

    Promothes Saha

    2016-12-01

    Full Text Available This paper developed a traffic safety management system (TSMS for improving safety on county paved roads in Wyoming. TSMS is a strategic and systematic process to improve safety of roadway network. When funding is limited, it is important to identify the best combination of safety improvement projects to provide the most benefits to society in terms of crash reduction. The factors included in the proposed optimization model are annual safety budget, roadway inventory, roadway functional classification, historical crashes, safety improvement countermeasures, cost and crash reduction factors (CRFs associated with safety improvement countermeasures, and average daily traffics (ADTs. This paper demonstrated how the proposed model can identify the best combination of safety improvement projects to maximize the safety benefits in terms of reducing overall crash frequency. Although the proposed methodology was implemented on the county paved road network of Wyoming, it could be easily modified for potential implementation on the Wyoming state highway system. Other states can also benefit by implementing a similar program within their jurisdictions.

  6. Design of an indicator for health and safety governance

    OpenAIRE

    Minguillón, Roberto F.; Yacuzzi, Enrique

    2009-01-01

    Occupational Health and Safety Governance (OHSG) is a branch of Corporate Governance by which the board directs and controls labor risks created by their own enterprise. The OHSG concept is relatively new; unlike Occupational Health and Safety Management, which is mostly related to the work of managerial ranks, OHSG deals with principles, the interests of stakeholders, and the work of directors. The paper defines the new concept, OHSG, develops an original health and safety indicator, and pre...

  7. Electron backstream to the source plasma region in an ion source

    International Nuclear Information System (INIS)

    Ohara, Y.; Akiba, M.; Arakawa, Y.; Okumura, Y.; Sakuraba, J.

    1980-01-01

    The flux of backstream electrons to the source plasma region increases significantly with the acceleration voltage of an ion beam, so that the back plate in the arc chamber should be broken for quasi-dc operation. The flux of backstream electrons is estimated at the acceleration voltage of 50--100 kV for a proton beam with the aid of ion beam simulation code. The power flux of backstream electrons is up to about 7% of the total beam output at the acceleration voltage of 75 kV. It is pointed out that the conventional ion sources such as the duoPIGatron or the bucket source which use a magnetic field for source plasma production are not suitable for quasi-dc and high-energy ion sources, because the surface heat flux of the back plate is increased by the focusing of backstream electrons and the removal of it is quite difficult. A new ion source which has an electron beam dump in the arc chamber is proposed

  8. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seunghee; Kim, Juyoul, E-mail: gracemi@fnctech.com

    2017-03-15

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • {sup 14}C, {sup 226}Ra, {sup 241}Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing {sup 14}C, {sup 226}Ra and {sup 241}Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10{sup −7} mSv/yr, for both disposal options and satisfied the regulatory limit

  9. Administrative practices for nuclear criticality safety, ANSI/ANS-8.19-1996

    International Nuclear Information System (INIS)

    Smith, D.R.

    1996-01-01

    American National Standard, open-quotes Administrative Practices for Nuclear Criticality Safety,close quotes American National Standards Institute/American Nuclear Society (ANSI/ANS)-8.19-1996, addresses the responsibilities of management, supervision, and the criticality safety staff in the administration of an effective criticality safety program. Characteristics of operating procedures, process evaluations, material control procedures, and emergency plans are discussed

  10. Formalising Java safety -- An overview

    NARCIS (Netherlands)

    Hartel, Pieter H.; Domingo-Ferrer, J; Chan, D.; Watson, A.

    We review the existing literature on Java safety, emphasizing formal approaches, and the impact of Java safety on small footprint devices such as smart cards. The conclusion is that while a lot of good work has been done, a more concerted effort is needed to build a coherent set of machine readable

  11. Lecture notes on the safety aspects in the industrial applications of radiation sources - Part I

    International Nuclear Information System (INIS)

    The report comprises the notes of the lectures delivered on the safety aspects in industrial applications of radiation sources. The notes are presented in 9 chapters. Basic mathematics relevant to the topic and basic concepts of nuclear physics are introduced in chapters I and II respectively. Various aspects of interaction of radiation with matter and living cells are discussed in chapters III and IV respectively. The biological effects of ionizing radiations are described in chapter V. Various commonly used units of measurement of radiation and radioactivity are defined and explained and measuring methods of radiation exposure are described in chapter VI. Chapter VII deals with the maximum permissible levels of radiation, both internal and external, for occupational workers as well as population. The same chapter also deals with ICRP recommendations in this connection. Commonly used radiation detectors and instruments with associated electronics are described in chapter VIII. Production of radioisotopes, radiation sources and labelled compounds is described in chapter IX. A table of useful radioisotopes is appended to this chapter. A bibliography in which references are arranged chapterwise is also given at the end. (M.G.B.)

  12. Regulatory control of radiation sources and radioactive materials: The UK position

    International Nuclear Information System (INIS)

    Englefield, C.; Holyoak, B.; Ledgerwood, K.; Littlewood, K.

    2001-01-01

    The paper presents the organizations involved in the regulation of the safety of radiation sources and the security of radioactive materials across the UK. The safety of radiation sources is within the regulatory remit of the Health and Safety Executive, under the Health and safety of Work Act 1974 and associated regulations. Any employer using radiation sources has a statutory duty to comply with this legislation, thereby protecting workers and the public from undue risk. From a radioactive waste management perspective, the storage and use of radioactive materials and the accumulation and disposal of radioactive waste are regulated by the environment agencies of England and Wales, Scotland, and Northern Ireland, under the Radioactive Substances Act 1993. Special regulatory arrangements apply to nuclear sites, such as power stations and fuel cycle plants, and some additional bodies are involved in the regulation of the security of fissile materials. An explanation is given in the paper as to how these organizations to work together to provide a comprehensive and effective regulatory regime. An overview of how these regulators have recently started to work more closely with other enforcement bodies, such as the Police and Customs and Excise is also given, to illustrate the approach that is being applied in the UK to deal with orphan sources and illicit trafficking. (author)

  13. Setting quality and safety priorities in a target-rich environment: an academic medical center's challenge.

    Science.gov (United States)

    Mort, Elizabeth A; Demehin, Akinluwa A; Marple, Keith B; McCullough, Kathryn Y; Meyer, Gregg S

    2013-08-01

    Hospitals are continually challenged to provide safer and higher-quality patient care despite resource constraints. With an ever-increasing range of quality and safety targets at the national, state, and local levels, prioritization is crucial in effective institutional quality goal setting and resource allocation.Organizational goal-setting theory is a performance improvement methodology with strong results across many industries. The authors describe a structured goal-setting process they have established at Massachusetts General Hospital for setting annual institutional quality and safety goals. Begun in 2008, this process has been conducted on an annual basis. Quality and safety data are gathered from many sources, both internal and external to the hospital. These data are collated and classified, and multiple approaches are used to identify the most pressing quality issues facing the institution. The conclusions are subject to stringent internal review, and then the top quality goals of the institution are chosen. Specific tactical initiatives and executive owners are assigned to each goal, and metrics are selected to track performance. A reporting tool based on these tactics and metrics is used to deliver progress updates to senior hospital leadership.The hospital has experienced excellent results and strong organizational buy-in using this effective, low-cost, and replicable goal-setting process. It has led to improvements in structural, process, and outcomes aspects of quality.

  14. Radiation sources and materials safety and security in Georgia

    International Nuclear Information System (INIS)

    Mandjgaladze, G.; Tsitskishvili, M.; Abramidze, Sh.; Katamadze, N.

    1998-01-01

    This paper explains the problems of safety and security in Georgia, the most important incidents and accidents, their consequences (including severe injuries and deaths) and governmental actions for prevention and mitigation. (author)

  15. Considerations on nuclear reactor passive safety systems

    International Nuclear Information System (INIS)

    2016-01-01

    After having indicated some passive safety systems present in electronuclear reactors (control bars, safety injection system accumulators, reactor cooling after stoppage, hydrogen recombination systems), this report recalls the main characteristics of passive safety systems, and discusses the main issues associated with the assessment of new passive systems (notably to face a sustained loss of electric supply systems or of cold water source) and research axis to be developed in this respect. More precisely, the report comments the classification of safety passive systems as it is proposed by the IAEA, outlines and comments specific aspects of these systems regarding their operation and performance. The next part discusses the safety approach, the control of performance of safety passive systems, issues related to their reliability, and the expected contribution of R and D (for example: understanding of physical phenomena which have an influence of these systems, capacities of simulation of these phenomena, needs of experimentations to validate simulation codes)

  16. Security of radioactive sources. Interim guidance for comment

    International Nuclear Information System (INIS)

    2003-06-01

    In previous IAEA publications, there have been only rather general security requirements for non-nuclear radioactive material. These requirements were primarily directed to such issues as unintentional exposure to radiation, negligence and inadvertent loss. However, it is clear that more guidance is needed to not only try and prevent further events involving orphan sources, but also to prevent the deliberate attempt to acquire radioactive sources for malevolent purposes. Member States have requested guidance on the type and nature of security measures that might be put in place and on the methodology to be used in choosing such measures. These requests were also endorsed in the findings of the international conference on 'Security of Radioactive Sources' held in March 2003. Practical advice on assessing and implementing security measures complements the general commitments in the proposed Revised Code of Conduct on Safety and Security of radioactive Sources. A Safety Guide entitled 'Safety and Security of Radiation Sources' that, amongst other things, discusses these issues is being drafted. However, it is recognized that guidance material is required before this document will be finalized in order to allow Member States opportunity to put in place appropriate actions and planning to address current issues. Hence the purpose of the current document is to provide advice on security approaches and to allow comment on detailed recommendations for levels of security on radioactive sources that may be incorporated within the Safety Guide. This report is primarily addressed to Regulatory Authorities but it is also intended to provide guidance to manufacturers, suppliers and users of sources. Its objective is to assist Member States in deciding which security measures are needed to ensure consistency with the International Basic Safety Standards and the Revised Code of Conduct for the Safety and Security of Radioactive Sources. It is recognized that there must be a

  17. Environmental and radiological safety studies. Interaction of 238PuO2 heat sources with terrestrial and aquatic environments. Progress report, July 1-September 30, 1980

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1981-01-01

    The containers for 238 PuO 2 heat sources in radioisotope thermoelectric generators are designed with large safety factors to ensure that they will withstand reentry from orbit and impact with the earth and safely contain the nuclear fuel until it is recovered. Existing designs have proved more than adequately safe, but the Space and Terrestrial Division of the Department of Energy Office of Advanced Nuclear Systems and Projects continually seeks more information about the heat sources to improve their safety. The work discussed here includes studies of the effects on the heat source of terrestrial and aquatic environments to obtain data for design of even safer systems. The data obtained in several ongoing experiments are presented; these data tables will be updated quarterly. Discussions of experimental details are minimized and largely repetitive in succeeding reports. Compilations of usable data generated in each experiment are emphasized. These compilations include data from environmental chamber experiments that simulate terrestrial conditions, experiments to measure PuO 2 dissolution rates, soil column experiments to measure sorption of plutonium by soils, and several aquatic experiments

  18. RB research reactor Safety Report

    International Nuclear Information System (INIS)

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This RB reactor safety report is a revised and improved version of the Safety report written in 1962. It contains descriptions of: reactor building, reactor hall, control room, laboratories, reactor components, reactor control system, heavy water loop, neutron source, safety system, dosimetry system, alarm system, neutron converter, experimental channels. Safety aspects of the reactor operation include analyses of accident causes, errors during operation, measures for preventing uncontrolled activity changes, analysis of the maximum possible accident in case of different core configurations with natural uranium, slightly and highly enriched fuel; influence of possible seismic events

  19. Laser safety tools and training

    CERN Document Server

    Barat, Ken

    2008-01-01

    Lasers perform many unique functions in a plethora of applications, but there are many inherent risks with this continually burgeoning technology. Laser Safety: Tools and Training presents simple, effective ways for users in a variety of facilities to evaluate the hazards of any laser procedure and ensure they are following documented laser safety standards.Designed for use as either a stand-alone volume or a supplement to Laser Safety Management, this text includes fundamental laser and laser safety information and critical laser use information rarely found in a single source. The first lase

  20. An overview-probabilistic safety analysis for research reactors

    International Nuclear Information System (INIS)

    Liu Jinlin; Peng Changhong

    2015-01-01

    For long-term application, Probabilistic Safety Analysis (PSA) has proved to be a valuable tool for improving the safety and reliability of power reactors. In China, 'Nuclear safety and radioactive pollution prevention 'Twelfth Five Year Plan' and the 2020 vision' raises clearly that: to develop probabilistic safety analysis and aging evaluation for research reactors. Comparing with the power reactors, it reveals some specific features in research reactors: lower operating power, lower coolant temperature and pressure, etc. However, the core configurations may be changed very often and human actions play an important safety role in research reactors due to its specific experimental requirement. As a result, there is a necessary to conduct the PSA analysis of research reactors. This paper discusses the special characteristics related to the structure and operation and the methods to develop the PSA of research reactors, including initiating event analysis, event tree analysis, fault tree analysis, dependent failure analysis, human reliability analysis and quantification as well as the experimental and external event evaluation through the investigation of various research reactors and their PSAs home and abroad, to provide the current situation and features of research reactors PSAs. (author)

  1. An Organizational Learning Framework for Patient Safety.

    Science.gov (United States)

    Edwards, Marc T

    Despite concerted effort to improve quality and safety, high reliability remains a distant goal. Although this likely reflects the challenge of organizational change, persistent controversy over basic issues suggests that weaknesses in conceptual models may contribute. The essence of operational improvement is organizational learning. This article presents a framework for identifying leverage points for improvement based on organizational learning theory and applies it to an analysis of current practice and controversy. Organizations learn from others, from defects, from measurement, and from mindfulness. These learning modes correspond with contemporary themes of collaboration, no blame for human error, accountability for performance, and managing the unexpected. The collaborative model has dominated improvement efforts. Greater attention to the underdeveloped modes of organizational learning may foster more rapid progress in patient safety by increasing organizational capabilities, strengthening a culture of safety, and fixing more of the process problems that contribute to patient harm.

  2. RAF/9/049: Enhancing and Sustaining the National Regulatory Bodies for safety

    International Nuclear Information System (INIS)

    Keter, C.J.

    2017-01-01

    The main objective of this project is to enhance regulatory infrastructure, sustainability and cooperation among national regulatory bodies. This will support strengthening of the existing regulatory framework and capacity building in the region. Self-Assessment using the Self-Assessment Regulatory Infrastructure for Safety (SARIS) was completed on 26th May 2016. Changes made to the legislation is ongoing. The Nuclear Regulatory Bill 2017 is at an advanced stage and about to be tabled to Cabinet. The project objectives shall be addressed under a new project, RAF/9/058 – Improving the Regulatory Framework for the Control of Radiation Sources in Member States. Two major tasks for Kenya to focus include Review of regulations on waste safety, radiation sources and on safety of NPP and advising on drafting of radiation safety guides

  3. Strengthening the Global Nuclear Safety Regime. INSAG-21. A report by the International Nuclear Safety Group

    International Nuclear Information System (INIS)

    2014-01-01

    The Global Nuclear Safety Regime is the framework for achieving the worldwide implementation of a high level of safety at nuclear installations. Its core is the activities undertaken by each country to ensure the safety and security of the nuclear installations within its jurisdiction. But national efforts are and should be augmented by the activities of a variety of international enterprises that facilitate nuclear safety - intergovernmental organizations, multinational networks among operators, multinational networks among regulators, the international nuclear industry, multinational networks among scientists, international standards setting organizations and other stakeholders such as the public, news media and non-governmental organizations (NGOs) that are engaged in nuclear safety. All of these efforts should be harnessed to enhance the achievement of safety. The existing Global Nuclear Safety Regime is functioning at an effective level today. But its impact on improving safety could be enhanced by pursuing some measured change. This report recommends action in the following areas: - Enhanced use of the review meetings of the Convention on Nuclear Safety as a vehicle for open and critical peer review and a source for learning about the best safety practices of others; - Enhanced utilization of IAEA Safety Standards for the harmonization of national safety regulations, to the extent feasible; - Enhanced exchange of operating experience for improving operating and regulatory practices; and - Multinational cooperation in the safety review of new nuclear power plant designs. These actions, which are described more fully in this report, should serve to enhance the effectiveness of the Global Nuclear Safety Regime

  4. An intelligent safety system concept for future CANDU reactors

    International Nuclear Information System (INIS)

    Hinds, H.W.

    1980-01-01

    A review of the current Regional Over-power Trip (ROPT) system employed on the Bruce NGS-A reactors confirmed the belief that future reactors should have an improved ROPT system. We are developing such an 'intelligent' safety system. It uses more of the available information on reactor status and employs modern computer technology. Fast triplicated safety computers compute maps of fuel channel power, based on readings from prompt-responding flux detectors. The coefficients for this calculation are downloaded periodically from a fourth supervisor computer. These coefficients are based on a detailed 3-D flux shape derived from physics data and other plant information. A demonstration of one of three safety channels of such a system is planned. (auth)

  5. Experience With Laser Safety In The USA--A Review

    Science.gov (United States)

    Sliney, David H.

    1986-10-01

    Following several research programs in the 1960's aimed at studying the adverse biological effects of lasers and other optical radiation sources, laser occupational exposure limits were set and general safety standards were developed. Today, the experience from laser accidents and the development of new lasers and new applications have altered the format of the exposure limits and the safety procedures. It is critically important to distinguish between different biological injury mechanisms. The biological effects of ultraviolet radiation upon the skin and eye are additive over a period of at least one workday, and require different safety procedures. The scattered UV irradiance from excimer lasers may be quite hazardous, depending upon wavelength and action spectra. Since laser technology is young, the exposure of an individual in natural sunlight must be studied to evaluate the potential for chronic effects. The safety measures necessary in the use of lasers depend upon a hazard evaluation. The appropriate control measures and alternate means of enclosure, baffling, and operational control measures are presented. Present laser safety standards are explained briefly. Eye protective techniques and eyewear are considered for a variety of sources. The optical properties of enclosure materials are also discussed.

  6. FLIGHT SAFETY MANAGEMENT PROBLEMS AND EVALUATION OF FLIGHT SAFETY LEVEL OF AN AVIATION ENTERPRISE

    OpenAIRE

    B. V. Zubkov; H. E. Fourar

    2017-01-01

    This article is devoted to studying the problem of safety management system (SMS) and evaluating safety level of an aviation enterprise.This article discusses the problems of SMS, presented at the 41st meeting of the Russian Aviation Production Commanders Club in June 2014 in St. Petersburg in connection with the verification of the status of the CA of the Russian Federation by the International Civil Aviation Organization (ICAO) in the same year, a set of urgent measures to eliminate the def...

  7. An evaluation of an airline cabin safety education program for elementary school children.

    Science.gov (United States)

    Liao, Meng-Yuan

    2014-04-01

    The knowledge, attitude, and behavior intentions of elementary school students about airline cabin safety before and after they took a specially designed safety education course were examined. A safety education program was designed for school-age children based on the cabin safety briefings airlines given to their passengers, as well as on lessons learned from emergency evacuations. The course is presented in three modes: a lecture, a demonstration, and then a film. A two-step survey was used for this empirical study: an illustrated multiple-choice questionnaire before the program, and, upon completion, the same questionnaire to assess its effectiveness. Before the program, there were significant differences in knowledge and attitude based on school locations and the frequency that students had traveled by air. After the course, students showed significant improvement in safety knowledge, attitude, and their behavior intention toward safety. Demographic factors, such as gender and grade, also affected the effectiveness of safety education. The study also showed that having the instructor directly interact with students by lecturing is far more effective than presenting the information using only video media. A long-term evaluation, the effectiveness of the program, using TV or video accessible on the Internet to deliver a cabin safety program, and a control group to eliminate potential extraneous factors are suggested for future studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Lessons learned from accidents in radiotherapy. An IAEA Safety Report

    International Nuclear Information System (INIS)

    Ortiz, P.

    1998-01-01

    Radiotherapy is a very special application from the view point of protection because humans are deliberately exposed to high doses of radiation, and no physical barrier can be placed between the source and the patient. It deserves, therefore, special considerations from the point of view of potential exposure. An IAEA's Safety Report (in preparation) reviews a large collection of accident information, their initiating events and contributing factors, followed by a set of lessons learned and measures for prevention. The most important causes were: deficiencies in education and training, lack of procedures and protocols for essential tasks (such as commissioning, calibration, commissioning and treatment delivery), deficient communication and information transfer, absence of defence in depth and deficiencies in design, manufacture, testing and maintenance of equipment. Often a combination of more than one of these causes was present in an accident, thus pointing to a problem of management. Arrangements for a comprehensive quality assurance and accident prevention should be required by regulations and compliance be monitored by a Regulatory Authority. (author)

  9. Development of an expert system for tsunami warning: a unit source approach

    International Nuclear Information System (INIS)

    Roshan, A.D.; Pisharady, Ajai S.; Bishnoi, L.R.; Shah, Meet

    2015-01-01

    Coastal region of India has been experiencing tsunamis since historical times. Many nuclear facilities including nuclear power plants (NPPs), located along the coast are thus exposed to the hazards of tsunami. For the safety of these facilities as well as the safety of the citizens it is necessary to predict the possibility of occurrence of tsunamis for a recorded earthquake event and evaluate the tsunami hazard posed by the earthquake. To address these concerns, this work aims to design an expert system for Tsunami Warning for the Indian Coast with emphasis on evaluation of tsunami heights and arrival times at various nuclear facility sites. The expert system identifies possibility or otherwise of a tsunamigenic event based on earthquake data inputs. Rupture parameters are worked out for the event and unit tsunami source estimations which are available as precomputed database are combined appropriately to estimate the wave heights and time of arrivals at desired locations along the coast. The system also predicts tsunami wave heights at some pre-defined locations such as Nuclear Power Plant (NPP) and other nuclear facility sites. Time of arrivals of first wave along Indian coast is also evaluated

  10. The Net Enabled Waste Management Database as an international source of radioactive waste management information

    International Nuclear Information System (INIS)

    Csullog, G.W.; Friedrich, V.; Miaw, S.T.W.; Tonkay, D.; Petoe, A.

    2002-01-01

    The IAEA's Net Enabled Waste Management Database (NEWMDB) is an integral part of the IAEA's policies and strategy related to the collection and dissemination of information, both internal to the IAEA in support of its activities and external to the IAEA (publicly available). The paper highlights the NEWMDB's role in relation to the routine reporting of status and trends in radioactive waste management, in assessing the development and implementation of national systems for radioactive waste management, in support of a newly developed indicator of sustainable development for radioactive waste management, in support of reporting requirements for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, in support of IAEA activities related to the harmonization of waste management information at the national and international levels and in relation to the management of spent/disused sealed radioactive sources. (author)

  11. Qualification of safety-critical software for digital reactor safety system in nuclear power plants

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Park, Gee-Yong; Kim, Jang-Yeol; Lee, Jang-Soo

    2013-01-01

    This paper describes the software qualification activities for the safety-critical software of the digital reactor safety system in nuclear power plants. The main activities of the software qualification processes are the preparation of software planning documentations, verification and validation (V and V) of the software requirements specifications (SRS), software design specifications (SDS) and codes, and the testing of the integrated software and integrated system. Moreover, the software safety analysis and software configuration management are involved in the software qualification processes. The V and V procedure for SRS and SDS contains a technical evaluation, licensing suitability evaluation, inspection and traceability analysis, formal verification, software safety analysis, and an evaluation of the software configuration management. The V and V processes for the code are a traceability analysis, source code inspection, test case and test procedure generation. Testing is the major V and V activity of the software integration and system integration phases. The software safety analysis employs a hazard operability method and software fault tree analysis. The software configuration management in each software life cycle is performed by the use of a nuclear software configuration management tool. Through these activities, we can achieve the functionality, performance, reliability, and safety that are the major V and V objectives of the safety-critical software in nuclear power plants. (author)

  12. Programmes and Systems for Source and Environmental Radiation Monitoring

    International Nuclear Information System (INIS)

    2010-01-01

    The discharge of radionuclides to the atmosphere and aquatic environments is a legitimate practice in the nuclear and other industries, hospitals and research. Where appropriate, monitoring of the discharges and of relevant environmental media is an essential regulatory requirement in order to ensure appropriate radiation protection of the public. Such monitoring provides information on the actual amounts of radioactive material discharged and the radionuclide concentrations in the environment, and is needed to demonstrate compliance with authorized limits, to assess the radiation exposure of members of the public and to provide data to aid in the optimization of radiation protection. Uncontrolled releases of radionuclides to the atmosphere and aquatic environments may occur as a result of a nuclear or radiological accident. Again, monitoring at the source of the release and of the environment is necessary. In this case, monitoring is used both to assess the radiation exposure of members of the public and to determine the actions necessary for public protection, including longer term countermeasures. Source and environmental monitoring associated with the release of radionuclides to the environment is the subject of a number of IAEA Safety Standards, particularly IAEA Safety Standard RS-G-1.8 (Environmental and Source Monitoring for Purposes of Radiation Protection). This publication is intended to complement this Safety Guide and, by so doing, replaces Safety Series No. 41 (Objectives and Design of Environmental Monitoring Programmes for Radioactive Contaminants) and Safety Series No. 46 (Monitoring of Airborne and Liquid Radioactive Releases from Nuclear Facilities to the Environment). Like Safety Standard RS-G-1.8, this Safety Report deals with monitoring at the source and in the environment associated with authorized releases of radionuclides to the environment. It also deals with the general issues of emergency monitoring during and in the aftermath of an

  13. Risk-based safety indicators

    International Nuclear Information System (INIS)

    Sedlak, J.

    2001-12-01

    The report is structured as follows: 1. Risk-based safety indicators: Typology of risk-based indicators (RBIs); Tools for defining RBIs; Requirements for the PSA model; Data sources for RBIs; Types of risks monitored; RBIs and operational safety indicators; Feedback from operating experience; PSO model modification for RBIs; RBI categorization; RBI assessment; RBI applications; Suitable RBI applications. 2. Proposal for risk-based indicators: Acquiring information from operational experience; Method of acquiring safety relevance coefficients for the systems from a PSA model; Indicator definitions; On-line indicators. 3. Annex: Application of RBIs worldwide. (P.A.)

  14. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  15. SAFETY

    CERN Multimedia

    M. Plagge, C. Schaefer and N. Dupont

    2013-01-01

    Fire Safety – Essential for a particle detector The CMS detector is a marvel of high technology, one of the most precise particle measurement devices we have built until now. Of course it has to be protected from external and internal incidents like the ones that can occur from fires. Due to the fire load, the permanent availability of oxygen and the presence of various ignition sources mostly based on electricity this has to be addressed. Starting from the beam pipe towards the magnet coil, the detector is protected by flooding it with pure gaseous nitrogen during operation. The outer shell of CMS, namely the yoke and the muon chambers are then covered by an emergency inertion system also based on nitrogen. To ensure maximum fire safety, all materials used comply with the CERN regulations IS 23 and IS 41 with only a few exceptions. Every piece of the 30-tonne polyethylene shielding is high-density material, borated, boxed within steel and coated with intumescent (a paint that creates a thick co...

  16. Safety guide data on radiation shielding in a reprocessing facility

    International Nuclear Information System (INIS)

    Sekiguchi, Noboru; Naito, Yoshitaka

    1986-04-01

    In a reprocessing facility, various radiation sources are handled and have many geometrical conditions. To aim drawing up a safety guidebook on radiation shielding in order to evaluate shielding safety in a reprocessing facility with high reliability and reasonableness, JAERI trusted investigation on safety evaluation techniques of radiation shielding in a reprocessing facility to Nuclear Safety Research Association. This report is the collection of investigation results, and describes concept of shielding safety design principle, radiation sources in reprocessing facility and estimation of its strength, techniques of shielding calculations, and definite examples of shielding calculation in reprocessing facility. (author)

  17. Laser Safety for the Experimental Halls at SLAC_s Linac Coherent Light Source (LCLS)

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Michael; Anthony, Perry; /SLAC; Barat, Ken; /LBL, Berkeley; Gilevich, Sasha; Hays, Greg; White, William E.; /SLAC

    2009-01-15

    The LCLS at the SLAC National Accelerator Laboratory will be the world's first source of an intense hard x-ray laser beam, generating x-rays with wavelengths of 1nm and pulse durations less than 100fs. The ultrafast x-ray pulses will be used in pump-probe experiments to take stop-motion pictures of atoms and molecules in motion, with pulses powerful enough to take diffraction images of single molecules, enabling scientists to elucidate fundamental processes of chemistry and biology. Ultrafast conventional lasers will be used as the pump. In 2009, LCLS will deliver beam to the Atomic Molecular and Optical (AMO) Experiment, located in one of 3 x-ray Hutches in the Near Experimental Hall (NEH). The NEH includes a centralized Laser Hall, containing up to three Class 4 laser systems, three x-ray Hutches for experiments and vacuum transport tubes for delivering laser beams to the Hutches. The main components of the NEH laser systems are a Ti:sapphire oscillator, a regen amplifier, green pump lasers for the oscillator and regen, a pulse compressor and a harmonics conversion unit. Laser safety considerations and controls for the ultrafast laser beams, multiple laser controlled areas, and user facility issues are discussed.

  18. Cultural safety as an ethic of care: a praxiological process.

    Science.gov (United States)

    McEldowney, Rose; Connor, Margaret J

    2011-10-01

    New writings broadening the construct of cultural safety, a construct initiated in Aotearoa New Zealand, are beginning to appear in the literature. Therefore, it is considered timely to integrate these writings and advance the construct into a new theoretical model. The new model reconfigures the constructs of cultural safety and cultural competence as an ethic of care informed by a postmodern perspective. Central to the new model are three interwoven, co-occurring components: an ethic of care, which unfolds within a praxiological process shaped by the context. Context is expanded through identifying the three concepts of relationality, generic competence, and collectivity, which are integral to each client-nurse encounter. The competence associated with cultural safety as an ethic of care is always in the process of development. Clients and nurses engage in a dialogue to establish the level of cultural safety achieved at given points in a care trajectory.

  19. System Safety in an IT Service Organization

    Science.gov (United States)

    Parsons, Mike; Scutt, Simon

    Within Logica UK, over 30 IT service projects are considered safetyrelated. These include operational IT services for airports, railway infrastructure asset management, nationwide radiation monitoring and hospital medical records services. A recent internal audit examined the processes and documents used to manage system safety on these services and made a series of recommendations for improvement. This paper looks at the changes and the challenges to introducing them, especially where the service is provided by multiple units supporting both safety and non-safety related services from multiple locations around the world. The recommendations include improvements to service agreements, improved process definitions, routine safety assessment of changes, enhanced call logging, improved staff competency and training, and increased safety awareness. Progress is reported as of today, together with a road map for implementation of the improvements to the service safety management system. A proposal for service assurance levels (SALs) is discussed as a way forward to cover the wide variety of services and associated safety risks.

  20. An approach to maintenance optimization where safety issues are important

    International Nuclear Information System (INIS)

    Vatn, Jorn; Aven, Terje

    2010-01-01

    The starting point for this paper is a traditional approach to maintenance optimization where an object function is used for optimizing maintenance intervals. The object function reflects maintenance cost, cost of loss of production/services, as well as safety costs, and is based on a classical cost-benefit analysis approach where a value of prevented fatality (VPF) is used to weight the importance of safety. However, the rationale for such an approach could be questioned. What is the meaning of such a VPF figure, and is it sufficient to reflect the importance of safety by calculating the expected fatality loss VPF and potential loss of lives (PLL) as being done in the cost-benefit analyses? Should the VPF be the same number for all type of accidents, or should it be increased in case of multiple fatality accidents to reflect gross accident aversion? In this paper, these issues are discussed. We conclude that we have to see beyond the expected values in situations with high safety impacts. A framework is presented which opens up for a broader decision basis, covering considerations on the potential for gross accidents, the type of uncertainties and lack of knowledge of important risk influencing factors. Decisions with a high safety impact are moved from the maintenance department to the 'Safety Board' for a broader discussion. In this way, we avoid that the object function is used in a mechanical way to optimize the maintenance and important safety-related decisions are made implicit and outside the normal arena for safety decisions, e.g. outside the traditional 'Safety Board'. A case study from the Norwegian railways is used to illustrate the discussions.

  1. An approach to maintenance optimization where safety issues are important

    Energy Technology Data Exchange (ETDEWEB)

    Vatn, Jorn, E-mail: jorn.vatn@ntnu.n [NTNU, Production and Quality Engineering, 7491 Trondheim (Norway); Aven, Terje [University of Stavanger (Norway)

    2010-01-15

    The starting point for this paper is a traditional approach to maintenance optimization where an object function is used for optimizing maintenance intervals. The object function reflects maintenance cost, cost of loss of production/services, as well as safety costs, and is based on a classical cost-benefit analysis approach where a value of prevented fatality (VPF) is used to weight the importance of safety. However, the rationale for such an approach could be questioned. What is the meaning of such a VPF figure, and is it sufficient to reflect the importance of safety by calculating the expected fatality loss VPF and potential loss of lives (PLL) as being done in the cost-benefit analyses? Should the VPF be the same number for all type of accidents, or should it be increased in case of multiple fatality accidents to reflect gross accident aversion? In this paper, these issues are discussed. We conclude that we have to see beyond the expected values in situations with high safety impacts. A framework is presented which opens up for a broader decision basis, covering considerations on the potential for gross accidents, the type of uncertainties and lack of knowledge of important risk influencing factors. Decisions with a high safety impact are moved from the maintenance department to the 'Safety Board' for a broader discussion. In this way, we avoid that the object function is used in a mechanical way to optimize the maintenance and important safety-related decisions are made implicit and outside the normal arena for safety decisions, e.g. outside the traditional 'Safety Board'. A case study from the Norwegian railways is used to illustrate the discussions.

  2. Nuclear Regulatory Systems in Africa: Improving Safety and Security Culture Through Education and Training

    International Nuclear Information System (INIS)

    Kazadi Kabuya, F.

    2016-01-01

    The purpose of this paper is to address the important issue of supporting safety and security culture through an educational and training course program designed both for regulatory staff and licensees. Enhancing the safety and security of nuclear facilities may involve assessing the overall effectiveness of the organization's safety culture. Safety Culture implies steps such as identifying and targeting areas requiring attention, putting emphasis on organizational strengths and weaknesses, human attitudes and behaviours that may positively impact an organization's safety culture, resulting in improving workplace safety and developing and maintaining a high level of awareness within these facilities. Following the terrorist attacks of September 11, 2001, international efforts were made towards achieving such goals. This was realized through meetings, summits and training courses events, with main aim to enhance security at facilities whose activities, if attacked, could impact public health and safety. During regulatory oversight inspections undertaken on some licensee's premises, violations of security requirements were identified. They mostly involved inadequate management oversight of security, lack of a questioning attitude, complacency and mostly inadequate training in both security and safety issues. Using training and education approach as a support to raise awareness on safety and security issues in the framework of improving safety and security culture, a tentative training program in nuclear and radiological safety was started in 2002 with the main aim of vulgarizing the regulatory framework. Real first needs for a training course program were identified among radiographers and radiologists with established working experience but with limited knowledge in radiation safety. In the field of industrial uses of radiation the triggering events for introducing and implementing a training program were: the loss of a radioactive source in a mining

  3. Design of an Active Automotive Safety System

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2013-07-01

    Full Text Available With the development of the national economy, the people's standard of living got corresponding improvement, cars has been one of the indispensable traffic tools in many families. An active safety system is proposed, which can real-time detect the vehicle's running status and judge the security status of the vehicle. The system, which takes single-chip microcomputer as the controlling core and combines with millimeter-wave and ultrasonic distance measurement technology, can detect the distance from vehicle to vehicle and judge the security status of the vehicle. The hardware composition of the system and the data acquiring circuit are proposed, the mathematic model for different situation is established, and the controlling algorithm is completed. This system can accurately measure speed and distance between vehicles; the active safety control system can meet the relevant data measurement and transmission requirement; and can meet the functional requirement of the active safety control system

  4. Nuclear safety. Seguranca nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Aveline, A [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica

    1981-01-01

    What is nuclear safety Is there any technical way to reduce risks Is it possible to put them at reasonable levels Are there competitiveness and economic reliability to employ the nuclear energy by means of safety technics Looking for answers to these questions the author describes the sources of potential risks to nuclear reactors and tries to apply the answers to the Brazilian Nuclear Programme. (author).

  5. Safety impacts of bicycle infrastructure: A critical review.

    Science.gov (United States)

    DiGioia, Jonathan; Watkins, Kari Edison; Xu, Yanzhi; Rodgers, Michael; Guensler, Randall

    2017-06-01

    This paper takes a critical look at the present state of bicycle infrastructure treatment safety research, highlighting data needs. Safety literature relating to 22 bicycle treatments is examined, including findings, study methodologies, and data sources used in the studies. Some preliminary conclusions related to research efficacy are drawn from the available data and findings in the research. While the current body of bicycle safety literature points toward some defensible conclusions regarding the safety and effectiveness of certain bicycle treatments, such as bike lanes and removal of on-street parking, the vast majority treatments are still in need of rigorous research. Fundamental questions arise regarding appropriate exposure measures, crash measures, and crash data sources. This research will aid transportation departments with regard to decisions about bicycle infrastructure and guide future research efforts toward understanding safety impacts of bicycle infrastructure. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  6. OSART Independent Safety Culture Assessment (ISCA) Guidelines

    International Nuclear Information System (INIS)

    2016-01-01

    in this publication follows the same principles as the IAEA methodology for safety culture self-assessments, but has one more essential data collection source, as it includes the OSART team’s data findings in the analysis. This publication can also be used whenever independent safety culture assessments are performed as a standalone or as add-on modules for other types of safety review service. Nevertheless, an integrated approach helps to ensure diversity of competences, and so the assessment addresses all aspects of nuclear safety. This publication updates IAEA Services Series No. 16, SCART Guidelines

  7. Feed safety in the feed supply chain

    Directory of Open Access Journals (Sweden)

    Pinotti, L.

    2011-01-01

    Full Text Available A number of issues have weakened the public's confidence in the quality and wholesomeness of foods of animal origin. As a result farmers, nutritionists, industry and governments have been forced to pay serious attention to animal feedstuff production processes, thereby acknowledging that animal feed safety is an essential prerequisite for human food safety. Concerns about these issues have produced a number of important effects including the ban on the use of processed animal proteins, the ban on the addition of most antimicrobials to farm animals diets for growth‐promotion purposes, and the implementation of feed contaminant regulations in the EU. In this context it is essential to integrate knowledge on feed safety and feed supply. Consequently, purchase of new and more economic sources of energy and protein in animal diets, which is expected to conform to adequate quality, traceability, environmental sustainability and safety standards, is an emerging issue in livestock production system.

  8. Development of a Quality and Safety Competency Curriculum for Radiation Oncology Residency: An International Delphi Study

    International Nuclear Information System (INIS)

    Adleman, Jenna; Gillan, Caitlin; Caissie, Amanda; Davis, Carol-Anne; Liszewski, Brian; McNiven, Andrea; Giuliani, Meredith

    2017-01-01

    Purpose: To develop an entry-to-practice quality and safety competency profile for radiation oncology residency. Methods and Materials: A comprehensive list of potential quality and safety competency items was generated from public and professional resources and interprofessional focus groups. Redundant or out-of-scope items were eliminated through investigator consensus. Remaining items were subjected to an international 2-round modified Delphi process involving experts in radiation oncology, radiation therapy, and medical physics. During Round 1, each item was scored independently on a 9-point Likert scale indicating appropriateness for inclusion in the competency profile. Items indistinctly ranked for inclusion or exclusion were re-evaluated through web conference discussion and reranked in Round 2. Results: An initial 1211 items were compiled from 32 international sources and distilled to 105 unique potential quality and safety competency items. Fifteen of the 50 invited experts participated in round 1: 10 radiation oncologists, 4 radiation therapists, and 1 medical physicist from 13 centers in 5 countries. Round 1 rankings resulted in 80 items included, 1 item excluded, and 24 items indeterminate. Two areas emerged more prominently within the latter group: change management and human factors. Web conference with 5 participants resulted in 9 of these 24 items edited for content or clarity. In Round 2, 12 participants rescored all indeterminate items resulting in 10 items ranked for inclusion. The final 90 enabling competency items were organized into thematic groups consisting of 18 key competencies under headings adapted from Deming's System of Profound Knowledge. Conclusions: This quality and safety competency profile may inform minimum training standards for radiation oncology residency programs.

  9. Development of a Quality and Safety Competency Curriculum for Radiation Oncology Residency: An International Delphi Study

    Energy Technology Data Exchange (ETDEWEB)

    Adleman, Jenna [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Gillan, Caitlin [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Caissie, Amanda [Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia (Canada); Saint John Regional Hospital, Saint John, New Brunswick (Canada); Davis, Carol-Anne [Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia (Canada); Nova Scotia Cancer Centre, Halifax, Nova Scotia (Canada); Liszewski, Brian [Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); McNiven, Andrea [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Giuliani, Meredith, E-mail: Meredith.Giuliani@rmp.uhn.ca [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada)

    2017-06-01

    Purpose: To develop an entry-to-practice quality and safety competency profile for radiation oncology residency. Methods and Materials: A comprehensive list of potential quality and safety competency items was generated from public and professional resources and interprofessional focus groups. Redundant or out-of-scope items were eliminated through investigator consensus. Remaining items were subjected to an international 2-round modified Delphi process involving experts in radiation oncology, radiation therapy, and medical physics. During Round 1, each item was scored independently on a 9-point Likert scale indicating appropriateness for inclusion in the competency profile. Items indistinctly ranked for inclusion or exclusion were re-evaluated through web conference discussion and reranked in Round 2. Results: An initial 1211 items were compiled from 32 international sources and distilled to 105 unique potential quality and safety competency items. Fifteen of the 50 invited experts participated in round 1: 10 radiation oncologists, 4 radiation therapists, and 1 medical physicist from 13 centers in 5 countries. Round 1 rankings resulted in 80 items included, 1 item excluded, and 24 items indeterminate. Two areas emerged more prominently within the latter group: change management and human factors. Web conference with 5 participants resulted in 9 of these 24 items edited for content or clarity. In Round 2, 12 participants rescored all indeterminate items resulting in 10 items ranked for inclusion. The final 90 enabling competency items were organized into thematic groups consisting of 18 key competencies under headings adapted from Deming's System of Profound Knowledge. Conclusions: This quality and safety competency profile may inform minimum training standards for radiation oncology residency programs.

  10. Criticality safety benchmark evaluation project: Recovering the past

    Energy Technology Data Exchange (ETDEWEB)

    Trumble, E.F.

    1997-06-01

    A very brief summary of the Criticality Safety Benchmark Evaluation Project of the Westinghouse Savannah River Company is provided in this paper. The purpose of the project is to provide a source of evaluated criticality safety experiments in an easily usable format. Another project goal is to search for any experiments that may have been lost or contain discrepancies, and to determine if they can be used. Results of evaluated experiments are being published as US DOE handbooks.

  11. Elements of safety and non proliferation

    International Nuclear Information System (INIS)

    Jalouneix, Jean; Aurelle, Jacques; Funk, Pierre; Ladsous, David; Bon Nguyen, Romuald; Goue, Georges; Lefevre, Odile

    2015-01-01

    This book on nuclear safety and non proliferation is based on knowledge and expertise of the IRSN. The first chapter addresses the safety of nuclear materials, of their installations and of their transportations. It proposes some contextual elements, presents the general guidelines of the French nuclear safety arrangement, the approach to take risks into account, the involved governmental and public bodies, the legal framework, and the protection and control arrangement (in terms of planning of safety-related activities, in terms of operator obligations, in terms of exercises and management crisis). The second part addresses the safety of radioactive sources: context (peculiarity, losses and thefts), international framework (source categories, Euratom directive), and the French organisation. The third chapter addresses nuclear non proliferation: historical background (creation and role of the IAEA and of the EAEC, definitions), principle of statements, inspection process, and French organisation (legal framework, governmental bodies, the IRSN). The last chapter addresses the issue of chemical non proliferation: historical background, international context (Convention on chemical weapons, organisation for their ban), and the French organisation

  12. Radioactive source recovery program responses to neutron source emergencies

    International Nuclear Information System (INIS)

    Dinehart, S.M.; Hatler, V.A.; Gray, D.W.; Guillen, A.D.

    1997-01-01

    Recovery of neutron sources containing Pu 239 and Be is currently taking place at Los Alamos National Laboratory. The program was initiated in 1979 by the Department of Energy (DOE) to dismantle and recover sources owned primarily by universities and the Department of Defense. Since the inception of this program, Los Alamos has dismantled and recovered more than 1000 sources. The dismantlement and recovery process involves the removal of source cladding and the chemical separation of the source materials to eliminate neutron emissions. While this program continues for the disposal of 239 Pu/Be sources, there is currently no avenue for the disposition of any sources other than those containing Pu 239 . Increasingly, there have been demands from agencies both inside and outside the Federal Government and from the public to dispose of unwanted sources containing 238 Pu/Be and 241 Am/Be. DOE is attempting to establish a formal program to recover these sources and is working closely with the Nuclear Regulatory Commission (NRC) on a proposed Memorandum of Understanding to formalize an Acceptance Program. In the absence of a formal program to handle 238 Pu/Be and 241 Am/Be neutron sources, Los Alamos has responded to several emergency requests to receive and recover sources that have been determined to be a threat to public health and safety. This presentation will: (1) review the established 239 Pu neutron source recovery program at Los Alamos, (2) detail plans for a more extensive neutron source disposal program, and (3) focus on recent emergency responses

  13. Safety Review Services, Site Review Services and IRRS

    International Nuclear Information System (INIS)

    Yllera, Javier

    2010-01-01

    The selection and the evaluation of the site for a nuclear power plant are crucial parts of establishing a nuclear power programme and can be significantly affected by costs, public acceptance and safety considerations. Siting is the process of selecting a suitable site for a facility. This is area containing the plant, defined by a boundary and under effective control of the Plant Management. For safety related issues comparison within topics is generally quite straightforward. For example, sites with relatively higher seismic hazard would be penalized in comparison with those in more stable areas. The site for the NPP is generally chosen at a relatively ‘aseismic’ part of the country. This generally means that well known seismogenic sources are more than at least 50 kms from the site. The proposed sites for nuclear installations shall be examined with respect to the frequency and the severity of natural and human induced events and phenomena that could affect the safety of the installation. The Events unconnected with the operation of a facility or activity which could have an effect on the safety of the facility or activity. The relationship between the site and the design for the nuclear installation shall be examined to ensure that the radiological risk to the public and the environment arising from releases defined by the source terms is acceptably low. The Nuclear Regulatory Authority should issue a document that sets out the technical safety and security criteria against which the Site Permit Application for a new NPP will be reviewed. The objective of the Site Safety Review Services (SSRS) is provided upon request from a Member State. An independent review and assessment of the site and nuclear installation safety in relation to external natural and man induced hazards. This is to make recommendations on additional analysis or plant modifications to be carried out in order to comply with the IAEA Safety Standards and to enhance safety

  14. Development of the safety assessment technology for the radioactive waste disposal

    International Nuclear Information System (INIS)

    Kim, Chang Lak; Choi, Kwang Sub; Cho, Chan Hee; Lee, Myung Chan; Kim, Jhin Wung

    1992-03-01

    The major goal of this project is to develop a source-term model for the safety assessment of a low- and intermediate-level radioactive waste repository as follows: 1) estimation of the arising of low- and intermediate-level radioactive wastes, 2) development of inventory data base, 3) development of a source-term code for shallow-land disposal, and 4) improvement of the REPS source-term code for rock cavern type disposal developed already in 1990 and conservative safety assessment for an imaginary repository. In addition, the source of C-14 in the inventory is assessed by two methods: decontamination factor and scaling factor. The source-term code for shallow-land disposal include the following submodels: surface water penetration into the repository, concrete degradation, corrosion of container drums, leaching of radionuclides from waste forms, and migration of radionuclides from engineered disposal facility is estimated by this code. (Author)

  15. Radiation Safety of Electromagnetic Waves

    International Nuclear Information System (INIS)

    Hussein, A.Z.

    2009-01-01

    The wide spread of Electromagnetic Waves (EMW) through the power lines, multimedia, communications, devices, appliances, etc., are well known. The probable health hazards associated with EMW and the radiation safety criteria are to be reviewed. However, the principles of the regulatory safety are based on radiation protection procedure, intervention to combat the relevant risk and to mitigate consequences. The oscillating electric magnetic fields (EMF) of the electromagnetic radiation (EMR) induce electrical hazards. The extremely high power EMR can cause fire hazards and explosions of pyrotechnic (Rad Haz). Biological hazards of EMF result as dielectric heat, severe burn, as well as the hazards of eyes. Shielding is among the technical protective measures against EMR hazards. Others are limitation of time of exposure and separation distance apart of the EMR source. Understanding and safe handling of the EMR sources are required to feel safety.

  16. Molten salt reactors - safety options galore

    International Nuclear Information System (INIS)

    Gat, U.; Dodds, H.L.

    1997-01-01

    Safety features and attributes of molten salt reactors (MSR) are described. The unique features of fluid fuel reactors of on-line continuous processing and the ability for so-called external cooling result in simple and safe designs with low excess reactivity, low fission product inventory, and small source term. These, in turn, make a criticality accident unlikely and reduce the severity of a loss of coolant to where they are no longer severe accidents. A melt down is not an accident for a reactor that uses molten fuel. The molten salts are stable, non-reactive and efficient heat transfer media that operate at high temperatures at low pressures and are highly compatible with selected structural materials. All these features reduce the accident plethora. Freeze valves can be used for added safety. An ultimate safe reactor (U.S.R) is described with safety features that are passive, inherent and non-tamperable (PINT)

  17. Orphan sources control in the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, C.-W.

    2001-01-01

    In this paper, the orphan source control programme in Korea will be discussed. Orphan sources are, in general, classified into three groups: 1) Illegally trafficking radioactive sources; 2) Domestic loss of radioactive sources due to the bankruptcy of licensees or authorized suppliers; and 3) Contaminated metal scrap, which has been imported. There are, currently, two approaches going on to control and manage orphan sources in Korea. First, the Korean regulatory authority (Ministry of Science and Technology: MOST) will fully run an information system on radiation safety to effectively trace and monitor all radioactive sources in the country by the year 2001. Second, the regulatory authority strongly advises steel mill companies to closely scrutinize and inspect scrap metal through a scrap monitoring system when they attempt to reutilize it in order to prevent it from being contaminated by uncontrolled sources. The Korea Institute of Nuclear Safety (KINS), a regulatory expert organization, is carrying out a three-year multiphase project to control and monitor orphan sources in Korea. The system, called the Information System on Integrated Radiation Safety (ISIRS) on the inter- and intra-net system has been developed to effectively control and accurately monitor radioactive sources on a real time basis since 1998. If the system is successfully set up as scheduled by the middle of May next year, the regulatory authority will be able to control any reutilization of uncontrolled sources efficiently. At the same time, the system can also provide, not only licensees, suppliers, or perspective end users but also the Korean general public of interests with information on radiation safety, safe radiation management tools and public services. The system has been created because of the necessity to effectively control radioactive sources safely. Also, it serves to prepare necessary protective measures in a timely manner for abnormal events of uncontrolled radiation from

  18. Study of fundamental safety-related aspects in connection with the decommissioning of nuclear installations. Pt. 2. Safety considerations and emissions

    International Nuclear Information System (INIS)

    John, T.; Thierfeldt, S.

    1993-01-01

    The procedures used so far for the examination of selected decommissioning projects in expert opinions on safety, in particular of nuclear power plants, were screened, with special emphasis on the examination of safety considerations, i.e. analysis of possible accidents. Generic examinations on safety in connection with the decommissioning of nuclear installations were used to assess safety considerations. Different approaches were taken with regard to the selection of analysed accidents and determination of parameters defining activity release and assumptions in safety opinions. Therefore it seems to be appropriate to establish a scenario to be used for nuclear power plant accident analyses, which covers the range of radiologically relevant accidents during decommissioning activities. Although it might be controversially discussed, because of specific plant designs (test and prototype reactors as well as first power reactors), to establish such a radiologically covering accident scenario for older nuclear power plants, it seems to be no problem for modern light water reactors. The radiologically most relevant possible accident in a decommissioned nuclear power plant is fire in the plant. Parameter values and assumptions are suggested which determine the source term in the event of a fire in the plant. Inspite of a conservative determination of parameter values and assumptions, an environmental dose commitment of less than 50 mSv is to be expected for the resulting source term. (orig.) [de

  19. An integrated approach to bicycle safety.

    NARCIS (Netherlands)

    Wittink, R.D.

    1997-01-01

    The advantages of cycling are outlined, as well as the conditions under which use of the bicycle and the safety of cycling can he promoted. Bicycles are an attractive product. The potential to use a bicycle for trips shorter than 5 km is high and it's use can also be substantial for longer

  20. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Arabic Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-09-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  1. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  2. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  3. An Approach to Enhancement of the Safety Culture of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The culture of an organization is very complex to study and evaluate, but it is possible to examine the specific norms that figure out the culture for the safety of a system. This paper describes an initiation plan to study the safety culture issue in Korean NPPs. Recently there happened successively events that turned out to be socially prominent in Korea. Many issues on the safety culture aspect of NPPs have been raised including the types of errors such as violations, an intended concealment of safety-related information, counterfeit items, forgery process in procurement, and so on. Those were investigated in detail for the root causes of these issues as human and organizational errors and for the countermeasures to prevent those events. They are integrated into a correspondent long-term plan including the establishment of a fundamental infrastructure of safety culture management for operating NPPs in Korea. A monitoring system with analysis functions utilizing system dynamics simulation and data mining is proposed to be incorporated into a safety culture management system. Additionally, a set of training and support programs are to be developed for the enhancement of some selected competence of the operating personnel in Korean NPPs. The safe operation of NPPs requires the typical safety culture characteristics of the high reliability organization (HRO). The culture of an organization is very complex to study and evaluate, but it is possible to examine the specific norms that figure out the culture for the safety of a system. This paper describes an integrated systems approach as an initiating plan to study the safety culture issue in Korean NPPs.

  4. An Approach to Enhancement of the Safety Culture of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Yong Hee

    2014-01-01

    The culture of an organization is very complex to study and evaluate, but it is possible to examine the specific norms that figure out the culture for the safety of a system. This paper describes an initiation plan to study the safety culture issue in Korean NPPs. Recently there happened successively events that turned out to be socially prominent in Korea. Many issues on the safety culture aspect of NPPs have been raised including the types of errors such as violations, an intended concealment of safety-related information, counterfeit items, forgery process in procurement, and so on. Those were investigated in detail for the root causes of these issues as human and organizational errors and for the countermeasures to prevent those events. They are integrated into a correspondent long-term plan including the establishment of a fundamental infrastructure of safety culture management for operating NPPs in Korea. A monitoring system with analysis functions utilizing system dynamics simulation and data mining is proposed to be incorporated into a safety culture management system. Additionally, a set of training and support programs are to be developed for the enhancement of some selected competence of the operating personnel in Korean NPPs. The safe operation of NPPs requires the typical safety culture characteristics of the high reliability organization (HRO). The culture of an organization is very complex to study and evaluate, but it is possible to examine the specific norms that figure out the culture for the safety of a system. This paper describes an integrated systems approach as an initiating plan to study the safety culture issue in Korean NPPs

  5. Design of safety mechanism for an industrial manipulator based on passive compliance

    International Nuclear Information System (INIS)

    Kim, Hwi Su; Park, Jung Jun; Song, Jae Bok; Kyung, Jin Ho

    2010-01-01

    In recent years, collision safety between humans and robots has drawn much attention since human-robot cooperation is increasingly needed in various fields. Since positioning accuracy and collision safety are both important, an industrial manipulator should maintain very high stiffness for positioning accuracy in a normal situation, but exhibit very low stiffness when subjected to a collision force greater than the tolerance for human injury. To satisfy these requirements, we proposed in our previous research a safety mechanism composed of a linear spring and a double-slider mechanism for a service robot with a small payload. We modified this device to meet more stringent requirements for an industrial manipulator which usually has a payload higher than a service robot. Several experiments on static and dynamic collisions showed high stiffness of the safety mechanism in response to an external torque that was less than a predetermined threshold torque, but low stiffness that enabled absorption of the collision force when the external torque exceeded the threshold. Thus, positioning accuracy and collision safety were improved using the proposed design. Furthermore, a new safety criterion is suggested to verify the collision safety of a manipulator that uses the proposed safety mechanism

  6. Radiation protection and regulatory aspects in the use of radiation sources

    International Nuclear Information System (INIS)

    Sen, Amit; Dash Sharma, P.K.; Sonawane, A.U.

    2012-01-01

    The uses of ionising radiation sources (i.e. radioisotopes and radiation generating equipment such as accelerators and X-ray machines) for multifarious applications in industry, medicine, agriculture, research and teaching have been significantly increasing all over the world. In India, the application of radiation sources in various fields has registered phenomenal growth during the last decade. The use of radiation sources mainly include radiation processing for food preservation and sterilization of healthcare products, radiotherapy for treatment of cancer, nuclear medicine for diagnosis and therapy, gamma chambers for several R and D studies, blood irradiators, industrial radiography for non destructive examinations of steel structures, industrial ionising radiation gauging devices for monitoring/measurement of on-line quality control parameters (e.g. thickness, level, density, moisture, elemental analysis), consumer products such as gaseous tritium light sources (GTLS), gaseous tritium light devices (GTLD), ionisation chamber smoke detectors (ICSD), fluorescent light starters, antistatic devices and incandescent gas mantles containing thorium etc. All these beneficial applications involve use of both sealed and unsealed radioactive sources and amount of radioactivity varies from few kBq (μCi) to hundreds of TBq (thousands of curies). Radiation sources emit ionising radiations and if not handled properly and safely, may give rise to potential exposures leading to an unacceptable hazard. Therefore, it is necessary to ensure a high standard of safety and reliability in handling of radiation equipment and sources through their careful design by ensuring adequate built-in-safety as per applicable national/international standard, safe operation and periodic maintenance procedures, safe transport from one place to another, secured storage when not in use, physical security to radiation sources, effective emergency response plans and preparedness, including safe

  7. Safety inspection guide, Mod III (a systematic approach to conducting a safety inspection)

    International Nuclear Information System (INIS)

    Davidson, J.E.

    1977-06-01

    This guide was developed as a comprehensive/systematic approach to the problem of performing a safety inspection. Five basic sections (categories) are considered in the guide: physical work place; machines/mechanical equipment; hazardous materials/processes/environments; energy sources; and management hazard . control factors. The basic concept is that one starts evaluating hazard potentials from the physical work place and continues considering other elements as they are added to the physical work place. This approach provides a better understanding of the interfaces of each section to the entire group. The guide is supported by an Area Safety Inspection Result form to record defects or conditions found, the evaluation (best estimate) of the urgency or priority for correcting deficiencies or areas of noncompliance, and the status of corrective action. Additionally, the guide serves as an educational tool in accident prevention for supervisors and employees

  8. Food safety in an organic perspective

    OpenAIRE

    Kristensen, Erik Steen; Alrøe, Hugo Fjelsted; Hansen, Birgitte

    2002-01-01

    The holistic perspective of organic farming implies a broader conception of food safety that includes both product safety and agri-food system safety. The credibility of organic food can only be maintained if the organic agri-food system is developed in correspondence with the basic organic principles. In this way it will be possible to show the whole organic agri-food system as a safer alternative to conventional farming. Thereby trust will be supported in organic foods despite the sparse (a...

  9. Developing patient safety in dentistry.

    Science.gov (United States)

    Pemberton, M N

    2014-10-01

    Patient safety has always been important and is a source of public concern. Recent high profile scandals and subsequent reports, such as the Francis report into the failings at Mid Staffordshire, have raised those concerns even higher. Mortality and significant morbidity associated with the practice of medicine has led to many strategies to help improve patient safety, however, with its lack of associated mortality and lower associated morbidity, dentistry has been slower at systematically considering how patient safety can be improved. Recently, several organisations, researchers and clinicians have discussed the need for a patient safety culture in dentistry. Strategies are available to help improve patient safety in healthcare and deserve further consideration in dentistry.

  10. Nuclear Criticality Safety Assessment Using the SCALE Computer Code Package. A demonstration based on an independent review of a real application

    International Nuclear Information System (INIS)

    Mennerdahl, Dennis

    1998-06-01

    The purpose of this project was to instruct a young scientist from the Lithuanian Energy Institute (LEI) on how to carry out an independent review of a safety report. In particular, emphasis, was to be put on how to use the personal computer version of the calculation system SCALE 4.3 in this process. Nuclear criticality safety together with radiation shielding from gamma and neutron sources were areas of interest. This report concentrates on nuclear criticality safety aspects while a separate report covers radiation shielding. The application was a proposed storage cask for irradiated fuel assemblies from the Ignalina RBMK reactors in Lithuania. The safety report contained various documents involving many design and safety considerations. A few other documents describing the Ignalina reactors and their operation were available. The time for the project was limited to approximately one month, starting 'clean' with a SCALE 4.3 CD-ROM, a thick safety report and a fast personal computer. The results should be of general interest to Swedish authorities, in particular related to shielding where experience in using advanced computer codes like those available in SCALE is limited. It has been known for many years that criticality safety is very complicated, and that independent reviews are absolutely necessary to reduce the risk from quite common errors in the safety assessments. Several important results were obtained during the project. Concerning use of SCALE 4.3, it was confirmed that a young scientist, without extensive previous experience in the code system, can learn to use essentially all options. During the project, it was obvious that familiarity with personal computers, operating systems (including network system) and office software (word processing, spreadsheet and Internet browser software) saved a lot of time. Some of the Monte Carlo calculations took several hours. Experience is valuable in quickly picking out input or source document errors. Understanding

  11. An index of financial safety of China

    Directory of Open Access Journals (Sweden)

    Xiaojun Jia

    2015-04-01

    Full Text Available Purpose: This paper combines a synthetic index system by the variables and evaluates China’s financial safety through the change of indexes in a comprehensive way. First of all, it builds the financial industry evaluation index system composed of 25indicators in terms of the operation of the financial industry and external economic environment and particularly takes into consideration factors which might trigger liquidity risks such as off-balance-sheet business, interbank business and shadow banking; then it selects 10 indicators to conduct empirical analysis and identifies the indicator weight through principal component analysis; finally it combines the financial safety indexes through the linear weighted comprehensive evaluation model.Design/methodology/approach: Synthesis of indexes is made by constructing a proper comprehensive evaluation mathematical model, integrating a number of evaluation indexes into one comprehensive evaluation index and then obtaining corresponding comprehensive evaluation results. In this paper, it selects 10 indexes to conduct empirical analysis and identifies the index weight through principal component analysis; finally it combines the financial safety indexes through the linear weighted comprehensive evaluation model. Principal component analysis (PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. PCA was invented in 1901 and was later independently developed (and named by Harold Hotelling in the 1930s.Findings: From 2003 to 2013 China’s financial safety indexes fluctuated. From 2003 to 2007 indexes rose, which indicates China’s financial safety status gradually improved; from 2007 to 2009 indexes declined, which indicates due to the impact of subprime crisis, China’s financial safety status took a turn for the worse; from 2009 to 2012

  12. Environmental radiation safety: source term modification by soil aerosols. Interim report

    International Nuclear Information System (INIS)

    Moss, O.R.; Allen, M.D.; Rossignol, E.J.; Cannon, W.C.

    1980-08-01

    The goal of this project is to provide information useful in estimating hazards related to the use of a pure refractory oxide of 238 Pu as a power source in some of the space vehicles to be launched during the next few years. Although the sources are designed and built to withstand re-entry into the earth's atmosphere, and to impact with the earth's surface without releasing any plutonium, the possibility that such an event might produce aerosols composed of soil and 238 PuO 2 cannot be absolutely excluded. This report presents the results of our most recent efforts to measure the degree to which the plutonium aerosol source term might be modified in a terrestrial environment. The five experiments described represent our best effort to use the original experimental design to study the change in the size distribution and concentration of a 238 PuO 2 aerosol due to coagulation with an aerosol of clay or sandy loam soil

  13. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    Science.gov (United States)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  14. Propagation of Exploration Seismic Sources in Shallow Water

    Science.gov (United States)

    Diebold, J. B.; Tolstoy, M.; Barton, P. J.; Gulick, S. P.

    2006-05-01

    The choice of safety radii to mitigation the impact of exploration seismic sources upon marine mammals is typically based on measurement or modeling in deep water. In shallow water environments, rule-of-thumb spreading laws are often used to predict the falloff of amplitude with offset from the source, but actual measurements (or ideally, near-perfect modeling) are still needed to account for the effects of bathymetric changes and subseafloor characteristics. In addition, the question: "how shallow is 'shallow?'" needs an answer. In a cooperative effort by NSF, MMS, NRL, IAGC and L-DEO, a series of seismic source calibration studies was carried out in the Northern Gulf of Mexico during 2003. The sources used were the two-, six-, ten-, twelve-, and twenty-airgun arrays of R/V Ewing, and a 31-element, 3-string "G" gun array, deployed by M/V Kondor, an exploration industry source ship. The results of the Ewing calibrations have been published, documenting results in deep (3200m) and shallow (60m) water. Lengthy analysis of the Kondor results, presented here, suggests an approach to answering the "how shallow is shallow" question. After initially falling off steadily with source-receiver offset, the Kondor levels suddenly increased at a 4km offset. Ray-based modeling with a complex, realistic source, but with a simple homogeneous water column-over-elastic halfspace ocean shows that the observed pattern is chiefly due to geophysical effects, and not focusing within the water column. The same kind of modeling can be used to predict how the amplitudes will change with decreasing water depth, and when deep-water safety radii may need to be increased. Another set of data (see Barton, et al., this session) recorded in 20 meters of water during early 2005, however, shows that simple modeling may be insufficient when the geophysics becomes more complex. In this particular case, the fact that the seafloor was within the near field of the R/V Ewing source array seems to have

  15. An interprofessional approach to improving paediatric medication safety

    Directory of Open Access Journals (Sweden)

    Kennedy Neil

    2010-02-01

    Full Text Available Abstract Background Safe drug prescribing and administration are essential elements within undergraduate healthcare curricula, but medication errors, especially in paediatric practice, continue to compromise patient safety. In this area of clinical care, collective responsibility, team working and communication between health professionals have been identified as key elements in safe clinical practice. To date, there is limited research evidence as to how best to deliver teaching and learning of these competencies to practitioners of the future. Methods An interprofessional workshop to facilitate learning of knowledge, core competencies, communication and team working skills in paediatric drug prescribing and administration at undergraduate level was developed and evaluated. The practical, ward-based workshop was delivered to 4th year medical and 3rd year nursing students and evaluated using a pre and post workshop questionnaire with open-ended response questions. Results Following the workshop, students reported an increase in their knowledge and awareness of paediatric medication safety and the causes of medication errors (p Conclusion This study has helped bridge the knowledge-skills gap, demonstrating how an interprofessional approach to drug prescribing and administration has the potential to improve quality and safety within healthcare.

  16. School Climate: An Essential Component of a Comprehensive School Safety Plan

    Science.gov (United States)

    Stark, Heidi

    2017-01-01

    The intentional assessment and management of school climate is an essential component of a comprehensive school safety plan. The value of this preventive aspect of school safety is often diminished as schools invest resources in physical security measures as a narrowly focused effort to increase school safety (Addington, 2009). This dissertation…

  17. Safety case: An international perspective

    International Nuclear Information System (INIS)

    Pescatore, C.; Voinis, S.

    2002-01-01

    In recent years, it has become more and more evident that repository development will involve a number of stages punctuated by interdependent decisions on whether and how to move to the next stage. These decisions require a clear and traceable presentation of technical arguments that will help in giving confidence in the feasibility and safety of the proposed concept. The depth of understanding and technical information available to support decisions will vary from step to step. A safety case is a key item to support the decision to move to the next stage in repository development. Progress is noted, in the past decade, in the performance and safety assessment areas, particularly in the methodologies for repository system analysis. Progress is also observed regarding the understanding of the natural system and its characterisation, treatment of uncertainties, and modelling. Some areas are under active development, e.g. the area of scenario development and analysis. Finally, to increase confidence, rigorous quality assurance procedures need to be implemented, as well as the factoring of the contribution of R and D in underground research laboratories. The paper summarises the lessons learnt within relevant NEA initiatives as they evolved over the course of a decade and now allow a comprehensive view of what constitutes a safety case. (author)

  18. Cross-validation of an employee safety climate model in Malaysia.

    Science.gov (United States)

    Bahari, Siti Fatimah; Clarke, Sharon

    2013-06-01

    Whilst substantial research has investigated the nature of safety climate, and its importance as a leading indicator of organisational safety, much of this research has been conducted with Western industrial samples. The current study focuses on the cross-validation of a safety climate model in the non-Western industrial context of Malaysian manufacturing. The first-order factorial validity of Cheyne et al.'s (1998) [Cheyne, A., Cox, S., Oliver, A., Tomas, J.M., 1998. Modelling safety climate in the prediction of levels of safety activity. Work and Stress, 12(3), 255-271] model was tested, using confirmatory factor analysis, in a Malaysian sample. Results showed that the model fit indices were below accepted levels, indicating that the original Cheyne et al. (1998) safety climate model was not supported. An alternative three-factor model was developed using exploratory factor analysis. Although these findings are not consistent with previously reported cross-validation studies, we argue that previous studies have focused on validation across Western samples, and that the current study demonstrates the need to take account of cultural factors in the development of safety climate models intended for use in non-Western contexts. The results have important implications for the transferability of existing safety climate models across cultures (for example, in global organisations) and highlight the need for future research to examine cross-cultural issues in relation to safety climate. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  19. Nurses' response to parents' 'speaking-up' efforts to ensure their hospitalized child's safety: an attribution theory perspective.

    Science.gov (United States)

    Bsharat, Sondos; Drach-Zahavy, Anat

    2017-09-01

    To understand how attribution processes (control and stability), which the nurse attributes to parental involvement in maintaining child safety, determine the nurse's response to a safety alert. Participation of parents in maintaining their child's safety is shown to reduce the incidence of and risk of clinical errors. Unless nurses respond appropriately to parents' safety alerts, this potential source of support could diminish. A 2 (controllability: high vs. low) × 2 (consistency: high vs. low) factorial design. Data were collected during the period 2013-2014 in paediatric wards. Four variants of scenarios were created corresponding to the different combinations of these variables. A total of 126 nurses read a scenario and completed self-report questionnaires measuring their response to the parent's safety alert. Additional data were collected about the manipulation check, safety norms in the ward and demographic variables. Data were analysed using analysis of variance. Results showed a main effect of stability and a significant two-way interaction effect of stability and controllability, on a nurse's tendency to help the parent and fix the safety problem. Furthermore, safety norms were significantly related to nurses' response. These findings contribute to the understanding of antecedents that affect nurses' responses to parents' speaking-up initiatives: whether nurses will reject or heed the alert. Theoretical and practical implications for promoting parents' engagement in their safety are discussed. © 2017 John Wiley & Sons Ltd.

  20. Development of an FPGA-based controller for safety critical application

    International Nuclear Information System (INIS)

    Xing, A.; De Grosbois, J.; Sklyar, V.; Archer, P.; Awwal, A.

    2011-01-01

    In implementing safety functions, Field Programmable Gate Arrays (FPGA) technology offers a distinct combination of benefits and advantages over microprocessor-based systems. FPGAs can be designed such that the final product is purely hardware, without any overhead runtime software, bringing the design closer to a conventional hardware-based solution. On the other hand, FPGAs can implement more complex safety logic that would generally require microprocessor-based safety systems. There are now qualified FPGA-based platforms available on the market with a credible use history in safety applications in nuclear power plants. Atomic Energy of Canada (AECL), in collaboration with RPC Radiy, has initiated a development program to define a vigorous FPGA engineering process suitable for implementing safety critical functions at the application development level. This paper provides an update on the FPGA development program along with the proposed design model using function block diagrams for the development of safety controllers in CANDU applications. (author)

  1. Nuclear safety after Three Mile Island and Chernobyl

    International Nuclear Information System (INIS)

    Ballard, G.M.

    1988-01-01

    This book contains the proceedings on nuclear safety after Three Mile island and Chernobyl. Topics covered include: Design for safety; Man-machine interaction; Source terms and consequence; and accident response

  2. A novel integrated approach for the hazardous radioactive dust source terms estimation in future nuclear fusion power plants.

    Science.gov (United States)

    Poggi, L A; Malizia, A; Ciparisse, J F; Gaudio, P

    2016-10-01

    An open issue still under investigation by several international entities working on the safety and security field for the foreseen nuclear fusion reactors is the estimation of source terms that are a hazard for the operators and public, and for the machine itself in terms of efficiency and integrity in case of severe accident scenarios. Source term estimation is a crucial key safety issue to be addressed in the future reactors safety assessments, and the estimates available at the time are not sufficiently satisfactory. The lack of neutronic data along with the insufficiently accurate methodologies used until now, calls for an integrated methodology for source term estimation that can provide predictions with an adequate accuracy. This work proposes a complete methodology to estimate dust source terms starting from a broad information gathering. The wide number of parameters that can influence dust source term production is reduced with statistical tools using a combination of screening, sensitivity analysis, and uncertainty analysis. Finally, a preliminary and simplified methodology for dust source term production prediction for future devices is presented.

  3. Defining safety culture and the nexus between safety goals and safety culture. 4. Enhancing Safety Culture Through the Establishment of Safety Goals

    International Nuclear Information System (INIS)

    Tateiwa, Kenji; Miyata, Koichi; Yahagi, Kimitoshi

    2001-01-01

    Safety culture is the perception of each individual and organization of a nuclear power plant that safety is the first priority, and at Tokyo Electric Power Company (TEPCO), we have been practicing it in everyday activities. On the other hand, with the demand for competitiveness of nuclear power becoming even more intense these days, we need to pursue efficient management while maintaining the safety level at the same time. Below, we discuss how to achieve compatibility between safety culture and efficient management as well as enhance safety culture. Discussion at Tepco: safety culture-nurturing activities such as the following are being implemented: 1. informing the employees of the 'Declaration of Safety Promotion' by handing out brochures and posting it on the intranet home page; 2. publishing safety culture reports covering stories on safety culture of other industry sectors, recent movements on safety culture, etc.; 3. conducting periodic questionnaires to employees to grasp how deeply safety culture is being established; 4. carrying out educational programs to learn from past cases inside and outside the nuclear industry; 5. committing to common ownership of information with the public. The current status of safety culture in Japan sometimes seems to be biased to the quest of ultimate safety; rephrasing it, there have been few discussions regarding the sufficiency of the quantitative safety level in conjunction with the safety culture. Safety culture is one of the most crucial foundations guaranteeing the plant's safety, and for example, the plant safety level evaluated by probabilistic safety assessment (PSA) could be said to be valid only on the ground that a sound and sufficient safety culture exists. Although there is no doubt that the safety culture is a fundamental and important attitude of an individual and organization that keeps safety the first priority, the safety culture in itself should not be considered an obstruction to efforts to implement

  4. An investigation and analysis of safety issues in Polish small construction plants.

    Science.gov (United States)

    Dąbrowski, Andrzej

    2015-01-01

    The construction industry is a booming sector of the Polish economy; however, it is stigmatised by a lower classification due to high occupational risks and an unsatisfactory state of occupational safety. Safety on construction sites is compromised by small construction firms which dominate the market and have high accident rates. This article presents the results of studies (using a checklist) conducted in small Polish construction companies in terms of selected aspects of safety, such as co-operation with the general contractor, occupational health and safety documents, occupational risk assessment, organization of work, protective gear and general work equipment. The mentioned studies and analyses provided the grounds to establish the main directions of preventive measures decreasing occupational risk in small construction companies, e.g., an increase in engagement of investors and general contractors, improvement of occupational health and safety (OSH) documents, an increase in efficiency of construction site managers, better stability of employment and removal of opposing objectives between economic strategy and work safety.

  5. Safety Training: a right or an obligation?

    CERN Multimedia

    HSE Unit

    2014-01-01

    CERN’s Safety Training programme currently offers around 50 classroom courses and 17 e-learning courses. Although anyone can attend any of these courses, some are compulsory for everyone working at CERN. In particular, “CERN Safety Introduction” and “Safety during LS1” are compulsory for all new arrivals.   The "Self-Rescue Mask" training course. Photo: Christoph Balle. However, depending on the type of activities, the type of workstation, the role you have been assigned (TSO, project leader, etc.) and/or the area where you will be working (e.g. confined spaces), you might be required to follow additional safety training provided by CERN. In accordance with the provisions of the CERN Safety Policy, members of the personnel must keep themselves informed of their obligations in terms of safety training and of the actions they must take to keep up to date. Most training courses are valid for three years, and as they reach the ...

  6. Development of an evaluation framework for African-European hospital patient safety partnerships.

    Science.gov (United States)

    Rutter, Paul; Syed, Shamsuzzoha B; Storr, Julie; Hightower, Joyce D; Bagheri-Nejad, Sepideh; Kelley, Edward; Pittet, Didier

    2014-04-01

    Patient safety is recognised as a significant healthcare problem worldwide, and healthcare-associated infections are an important aspect. African Partnerships for Patient Safety is a WHO programme that pairs hospitals in Africa with hospitals in Europe with the objective to work together to improve patient safety. To describe the development of an evaluation framework for hospital-to-hospital partnerships participating in the programme. The framework was structured around the programme's three core objectives: facilitate strong interhospital partnerships, improve in-hospital patient safety and spread best practices nationally. Africa-based clinicians, their European partners and experts in patient safety were closely involved in developing the evaluation framework in an iterative process. The process defined six domains of partnership strength, each with measurable subdomains. We developed a questionnaire to measure these subdomains. Participants selected six indicators of hospital patient safety improvement from a short-list of 22 based on their relevance, sensitivity to intervention and measurement feasibility. Participants proposed 20 measures of spread, which were refined into a two-part conceptual framework, and a data capture tool created. Taking a highly participatory approach that closely involved its end users, we developed an evaluation framework and tools to measure partnership strength, patient safety improvements and the spread of best practice.

  7. X-ray and nuclear radiation facilities: personnel safety features

    International Nuclear Information System (INIS)

    Mason, W.J.; Pipes, E.W.; Rucker, T.R.; Smith, D.N.; West, C.M.

    1976-10-01

    The Oak Ridge Y-12 Plant is a research and production installation. The nature and versatility of this work require the use of a large number and variety of x-ray and radiographic sources for nondestructive testing and material analyses. Presently, there are over 80 x-ray generators in the plant, which range in size from small, portable units which operate at a less than 50 kilovolts potential and 0.1 milliampere current to an electron linear accelerator which operates at 12-million electron volts and produces a radiation beam of such intensity that it could deliver a lethal dose to man in a fraction of a minute. There are also almost 50 gamma and neutron sources in use in the plant. These units range in size from a few millicuries to several hundred curies. Although the radiation safety at each of these facilities was considered adequate, the administrative and maintenance procedures became unduly complicated. Accordingly, engineering standards and uniform operating procedures were considered necessary to alleviate these complications and, in so doing, provide an improved measure of radiation safety. Development and implementation of these standards are described and the general philosophy and approach to these standards are outlined. Use of a matrix (type of installation versus radiation safety feature) to facilitate equipment classification and personnel safety feature requirements is presented. Included is a set of the standards showing formats, matrices, etc., and the detailed standards for each safety feature

  8. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-02-01

    Studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two 238 PuO 2 pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported

  9. Nuclear safety cooperation for Soviet designed reactors

    International Nuclear Information System (INIS)

    Reisman, A.W.; Horak, W.C.

    1995-01-01

    The nuclear accident at the Chernobyl nuclear power plant in 1986 first alerted the West to the significant safety risks of Soviet designed reactors. Five years later, this concern was reaffirmed when the IAEA, as a result of a review by an international team of nuclear safety experts, announced that it did not believe the Kozloduy nuclear power plants in Bulgaria could be operated safely. To address these safety concerns, the G-7 summit in Munich in July 1992 outlined a five point program to address the safety problems of Soviet Designed Reactors: operational safety improvement; near-term technical improvements to plants based on safety assessment; enhancing regulatory regimes; examination of the scope for replacing less safe plants by the development of alternative energy sources and the more efficient use of energy; and upgrading of the plants of more recent design. As of early 1994, over 20 countries and international organizations have pledged hundreds of millions of dollars in financial assistance to improve safety. This paper summarizes these assistance efforts for Soviet designed reactors, draws lessons learned from these activities, and offers some options for better addressing these concerns

  10. Standardization and improvement of safety for radioisotope equipped instruments

    International Nuclear Information System (INIS)

    Sumi, Tetsuo

    1980-01-01

    The safety for radioisotope-equipped instruments is considered. The one is the safety for the source assembly. The radioisotopes employed for radioisotope-equipped instruments are sealed sources which are used in the state of being contained in the enclosures. Many of the enclosures are provided with shutter mechanism for the purpose of emitting radiation only during the period required. If the possible troubles that might lead to the accidents are sampled out of the results of field operation of radiation instruments, and the safety measures for source enclosures are considered in connection with these troubles, it is no exaggeration to say that the safety for source enclosures has been maintained by preventing the critical accidents by the management of users and the cooperation of manufactures though there were the chance for investigating the safety in the common field and the establishment of JIS Z 4614 standard. Another consideration is concerned with the measures to improve the safety. No accident in the past never guarantees no accident in the future. Accumulation of experience is most effective for those measures, and the more experiences the better. It may be most effective that the manufacturers disclose their experiences each other from the wide outlook overcoming the barrier of trade secret. Fortunately, such consciousness has risen since a few years ago, and the investigation group is doing the works in the Japan Radioisotope Association. On the other hand, the reasonable revision of the radiation injury prevention law is desired. (Wakatsuki, Y.)

  11. Flibe Use in Fusion Reactors - An Initial Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles; Longhurst, Glen Reed

    1999-04-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of Flibe (LiF-BeF2) as a molten salt coolant for nuclear fusion power plant applications. Flibe experience in the Molten Salt Reactor Experiment is briefly reviewed. Safety issues identified include chemical toxicity, radiological issues resulting from neutron activation, and the operational concerns of handling a high temperature coolant. Beryllium compounds and fluorine pose be toxicological concerns. Some controls to protect workers are discussed. Since Flibe has been handled safely in other applications, its hazards appear to be manageable. Some safety issues that require further study are pointed out. Flibe salt interaction with strong magnetic fields should be investigated. Evolution of Flibe constituents and activation products at high temperature (i.e., will Fluorine release as a gas or remain in the molten salt) is an issue. Aerosol and tritium release from a Flibe spill requires study, as does neutronics analysis to characterize radiological doses. Tritium migration from Flibe into the cooling system is also a safety concern. Investigation of these issues will help determine the extent to which Flibe shows promise as a fusion power plant coolant or plasma-facing material.

  12. Flibe use in fusion reactors: An initial safety assessment

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Longhurst, G.R.

    1999-01-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of Flibe (LiF-BeF 2 ) as a molten salt coolant for nuclear fusion power plant applications. Flibe experience in the Molten Salt Reactor Experiment is briefly reviewed. Safety issues identified include chemical toxicity, radiological issues resulting from neutron activation, and the operational concerns of handling a high temperature coolant. Beryllium compounds and fluorine pose be toxicological concerns. Some controls to protect workers are discussed. Since Flibe has been handled safely in other applications, its hazards appear to be manageable. Some safety issues that require further study are pointed out. Flibe salt interaction with strong magnetic fields should be investigated. Evolution of Flibe constituents and activation products at high temperature (i.e., will Fluorine release as a gas or remain in the molten salt) is an issue. Aerosol and tritium release from a Flibe spill requires study, as does neutronics analysis to characterize radiological doses. Tritium migration from Flibe into the cooling system is also a safety concern. Investigation of these issues will help determine the extent to which Flibe shows promise as a fusion power plant coolant or plasma-facing material

  13. Human factors in nuclear safety oversight

    International Nuclear Information System (INIS)

    Taylor, K.

    1989-01-01

    The mission of the nuclear safety oversight function at the Savannah River Plant is to enhance the process and nuclear safety of site facilities. One of the major goals surrounding this mission is the reduction of human error. It is for this reason that several human factors engineers are assigned to the Operations assessment Group of the Facility Safety Evaluation Section (FSES). The initial task of the human factors contingent was the design and implementation of a site wide root cause analysis program. The intent of this system is to determine the most prevalent sources of human error in facility operations and to assist in determining where the limited human factors resources should be focused. In this paper the strategy used to educate the organization about the field of human factors is described. Creating an awareness of the importance of human factors engineering in all facets of design, operation, and maintenance is considered to be an important step in reducing the rate of human error

  14. A Reliability Assessment Method for the VHTR Safety Systems

    International Nuclear Information System (INIS)

    Lee, Hyung Sok; Jae, Moo Sung; Kim, Yong Wan

    2011-01-01

    The Passive safety system by very high temperature reactor which has attracted worldwide attention in the last century is the reliability safety system introduced for the improvement in the safety of the next generation nuclear power plant design. The Passive system functionality does not rely on an external source of energy, but on an intelligent use of the natural phenomena, such as gravity, conduction and radiation, which are always present. Because of these features, it is difficult to evaluate the passive safety on the risk analysis methodology having considered the existing active system failure. Therefore new reliability methodology has to be considered. In this study, the preliminary evaluation and conceptualization are tried, applying the concept of the load and capacity from the reliability physics model, designing the new passive system analysis methodology, and the trial applying to paper plant.

  15. Design of an Yb-169 source optimized for gold nanoparticle-aided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso, Francisco J.; Manohar, Nivedh [Nuclear/Radiological Engineering and Medical Physics Programs, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Krishnan, Sunil [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Cho, Sang Hyun, E-mail: scho@mdanderson.org [Department of Radiation Physics and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-10-15

    Purpose: To find an optimum design of a new high-dose rate ytterbium (Yb)-169 brachytherapy source that would maximize the dose enhancement during gold nanoparticle-aided radiation therapy (GNRT), while meeting practical constraints for manufacturing a clinically relevant brachytherapy source. Methods: Four different Yb-169 source designs were considered in this investigation. The first three source models had a single encapsulation made of one of the following materials: aluminum, titanium, and stainless steel. The last source model adopted a dual encapsulation design with an inner aluminum capsule surrounding the Yb-core and an outer titanium capsule. Monte Carlo (MC) simulations using the Monte Carlo N-Particle code version 5 (MCNP5) were conducted initially to investigate the spectral changes caused by these four source designs and the associated variations in macroscopic dose enhancement across the tumor loaded with gold nanoparticles (GNPs) at 0.7% by weight. Subsequent MC simulations were performed using the EGSnrc and NOREC codes to determine the secondary electron spectra and microscopic dose enhancement as a result of irradiating the GNP-loaded tumor with the MCNP-calculated source spectra. Results: Effects of the source filter design were apparent in the current MC results. The intensity-weighted average energy of the Yb-169 source varied from 108.9 to 122.9 keV, as the source encapsulation material changed from aluminum to stainless steel. Accordingly, the macroscopic dose enhancement calculated at 1 cm away from the source changed from 51.0% to 45.3%. The sources encapsulated by titanium and aluminum/titanium combination showed similar levels of dose enhancement, 49.3% at 1 cm, and average energies of 113.0 and 112.3 keV, respectively. While the secondary electron spectra due to the investigated source designs appeared to look similar in general, some differences were noted especially in the low energy region (<50 keV) of the spectra suggesting the

  16. Inter-organisational knowledge transfer: building and sustaining the sources of innovation in nuclear safety and security

    International Nuclear Information System (INIS)

    Staude, Fabio; Ramirez, Matias

    2013-01-01

    The current complexity of innovation processes has led to an understanding that the models of innovation have changed from linear model to a model characterised by multiple interactions and complex networks. Within this more multifaceted environment, has emerged a new set of actors, generally termed as intermediaries, performing a variety of tasks in the innovation process. The innovation literature has recognised various important supporting activities performed by intermediaries, by linking and facilitating the movement of information and knowledge between actors within an innovation system, in order to fill information gaps. Complementary, we make the assumption that the intermediary can assume a more central role in the innovation process, performing activities beyond to filling information gaps, since they intervene to create, prioritise, and articulate meaning to practices. Under this argument, this paper explores how intermediaries work in making innovation happen in the Brazilian nuclear safety and security area, demonstrating the influence of intermediary organisations in improving nuclear regulatory activities. We make sense of these processes by analyzing intermediary roles in the recent regulatory activities improvements, specifically those related to the practices involving radiation sources in medicine. Thus, through an empirical case study, this paper examines the issue of intermediation in a wide sense, including strategic activities preformed by intermediaries, associated with accessing, diffusing, coordinating and enabling knowledge activities. (author)

  17. Sources and basic threats of biological safety

    International Nuclear Information System (INIS)

    Nazarova, O.D.

    2010-01-01

    Full text: Biological safety of any state is connected with development of its public protection against biological weapons and opportunity to prevent bio terrorist attacks. That's why in modern social-economic and geo-political conditions, the problem of biological safety strengthening become significant, which is connected with migration process globalization, development of bio-technology and dramatically increased risk of pathogenic germ infections proliferation, which can be used as biological weapon. Despite of undertaken efforts by world community on full prohibition of biological weapon, its proliferation in the world still takes place. Biology revolution during second and third millennium lead to development not only biotechnology but new achievements in medicine, agriculture and other fields of economy, but also created scientific and research preconditions for development of advanced biological means of mass destruction, that make it more attractive for achieving superiority and assigned targets: low developments costs, opportunity to create it by one small laboratory with two-three high qualified specialists bio technologists; tremendous impact effect: one substance gram can contain from one till one hundreds quintillions (10"1"8 - 10"2"0) active pathogen molecules and in case if they belong to amplificated RNA and DNA, each molecule getting to organism, will multiply and contaminate environment (the last one is its principal difference from chemical weapon); bypass of organism immunological barriers and specific vaccinations; unusual clinic finding, hard diagnosis; weakness of traditional medications and treatment methods; lack of material destruction; opportunity of tight-lipped developments; opportunity of tight-lipped application; opportunity of delayed effect; opportunity of selective influence on specific population (by use of genetic, climatic and cultural specifications of race, nations and nationalities). Above mentioned specifications create

  18. Safety considerations and countermeasures against fire and explosion at an HTGR-hydrogen production system. Proposal of safety design concept

    International Nuclear Information System (INIS)

    Nishihara, T.; Hada, K.; Shibata, T.; Shiozawa, S.

    1996-01-01

    Establishment of safety design concept and countermeasures against fire and explosion accidents is among key safety-related issues in an HTGR-hydrogen production system. We propose the different safety design concepts depending upon the origin of fire and explosion which may happen in the HTGR-hydrogen production plant. Against fire and explosion originated outside the reactor building (R/B), namely in the area of hydrogen production plant, the safety design concept is primarily to take a safe distance for preventing the damage on safety-related items or a proof wall if necessary. Because the hydrogen production plant is designed in the same safety level as a conventional chemical plant. The safe distance is proposed to limit an incident overpressure to 10 kPa so as not to suffer any damage on the items and to limit a wall-averaged temperature of concrete structures of the R/B to 175degC according to the current regulation. On the other hand, against a potential possibility of explosion originated inside the R/B, the safety design concept is to minimize the possibility of explosion low enough to assume no occurrence inside the R/B. That is, the measure is to exclude a simultaneous failure of a secondary helium piping and an endothermic chemical reactor. Furthermore, in severe accident condition in which the explosion may be postulated a priori, an incidental overpressure of explosion inside the reactor containment vessel (C/V) should be limited so as not to fail the C/V through restricting the amount of combustible gas ingress into the C/V by means of a combination of C/V isolation valve installed in the helium piping and emergency shut off valve in the process feed gas line. (author)

  19. [Analysis of patient complaints in Primary Care: An opportunity to improve clinical safety].

    Science.gov (United States)

    Añel-Rodríguez, R M; Cambero-Serrano, M I; Irurzun-Zuazabal, E

    2015-01-01

    To determine the prevalence and type of the clinical safety problems contained in the complaints made by patients and users in Primary Care. An observational, descriptive, cross-sectional study was conducted by analysing both the complaint forms and the responses given to them in the period of one year. At least 4.6% of all claims analysed in this study contained clinical safety problems. The family physician is the professional who received the majority of the complaints (53.6%), and the main reason was the problems related to diagnosis (43%), mainly the delay in diagnosis. Other variables analysed were the severity of adverse events experienced by patients (in 68% of cases the patient suffered some harm), the subsequent impact on patient care, which was affected in 39% of cases (7% of cases even requiring hospital admission), and the level of preventability of adverse events (96% avoidable) described in the claims. Finally the type of response issued to each complaint was analysed, being purely bureaucratic in 64% of all cases. Complaints are a valuable source of information about the deficiencies identified by patients and healthcare users. There is considerable scope for improvement in the analysis and management of claims in general, and those containing clinical safety issues in particular. To date, in our area, there is a lack of appropriate procedures for processing these claims. Likewise, we believe that other pathways or channels should be opened to enable communication by patients and healthcare users. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  20. The advanced neutron source design - A status report

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Neutron Source (ANS) facility is being designed as a user laboratory for all types of neutron-based research, centered around a nuclear fission reactor (D 2 O cooled, moderated, and reflected), operating at approximately 300 MWth. Safety, and especially passive safety features, have been emphasized throughout the design process. The design also provides experimental facilities for neutron scattering and nuclear and fundamental physics research, transuranic and other isotope production, radiation effects research, and materials analysis. (author)