WorldWideScience

Sample records for source affects metabolism

  1. Dietary energy source affecting fat deposition mechanism, muscle fiber metabolic and overall meat quality

    Directory of Open Access Journals (Sweden)

    M. Al-Hijazeen

    2017-03-01

    Full Text Available A study was conducted to investigate the effect of two dietary energy sources, soy bean oil, and sucrose on regulatory mechanisms of meat preservation. Twenty one day-old Hubbard commercial broilers were randomly allocated into two dietary treatment groups with six replicates per treatment, and four broilers per replicate. All birds were coded for the influence of energy source: fat based diet (FD, and sugar based diet (SD. Formulated grower diets were isonitrogenous and isocaloric. The chickens were slaughtered and then boneless, skinless ground chicken tight meat was prepared. Both raw and cooked meats were analyzed for lipid and protein oxidation, and sensory panel evaluation. In addition, meat from the small muscles of the raw thigh was used to evaluate other meat quality characteristics. Proximate analyses showed no significant differences between both dietary treatments on protein, ash and moisture percentage values. Meat samples of the group that was fed FD showed higher significant values of both TBARS and total carbonyl at day 7 of storage time. However, samples of the second group (Fed SD showed lower values of both ultimate pH and water separation % using raw thigh meat. The effect of FD treatment on the meat composition appeared clearly especially on fat percentage content. In addition, meat samples obtained from chickens fed SD showed better significant values of the overall acceptability attribute. According to the current findings, sucrose could be an excellent alternative to oil in dietary broilers which improved the meat preservation bio-system, and post-mortem storage stability.

  2. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis.

    Science.gov (United States)

    Schlüter, Urte; Mascher, Martin; Colmsee, Christian; Scholz, Uwe; Bräutigam, Andrea; Fahnenstich, Holger; Sonnewald, Uwe

    2012-11-01

    Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mM) or limiting (0.15 mM) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype- and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions.

  3. Does methamphetamine affect bone metabolism?

    International Nuclear Information System (INIS)

    Tomita, Masafumi; Katsuyama, Hironobu; Watanabe, Yoko; Okuyama, Toshiko; Fushimi, Shigeko; Ishikawa, Takaki; Nata, Masayuki; Miyamoto, Osamu

    2014-01-01

    There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10 mg/kg METH groups (n = 6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5 mg/kg METH showed an increased locomotor activity, whereas those receiving 10 mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5 mg/kg METH group, but not in the 10 mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5 mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10 mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that

  4. Does methamphetamine affect bone metabolism?

    Science.gov (United States)

    Tomita, Masafumi; Katsuyama, Hironobu; Watanabe, Yoko; Okuyama, Toshiko; Fushimi, Shigeko; Ishikawa, Takaki; Nata, Masayuki; Miyamoto, Osamu

    2014-05-07

    There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10mg/kg METH groups (n=6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5mg/kg METH showed an increased locomotor activity, whereas those receiving 10mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5mg/kg METH group, but not in the 10mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that METH might

  5. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  6. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency.

    Science.gov (United States)

    Gondret, F; Louveau, I; Mourot, J; Duclos, M J; Lagarrigue, S; Gilbert, H; van Milgen, J

    2014-11-01

    The use and partition of feed energy are key elements in productive efficiency of pigs. This study aimed to determine whether dietary energy sources affect the partition of body lipids and tissue biochemical pathways of energy use between pigs differing in feed efficiency. Forty-eight barrows (pure Large White) from two divergent lines selected for residual feed intake (RFI), a measure of feed efficiency, were compared. From 74 d to 132 ± 0.5 d of age, pigs (n = 12 by line and by diet) were offered diets with equal protein and ME contents. A low fat, low fiber diet (LF) based on cereals and a high fat, high fiber diet (HF) where vegetal oils and wheat straw were used to partially substitute cereals, were compared. Irrespective of diet, gain to feed was 10% better (P energy sources modified the partition of energy between liver, adipose tissue, and muscle in a way that was partly dependent of the genetics for feed efficiency, and changed the activity levels of biochemical pathways involved in lipid and glucose storage in tissues.

  7. Methionine metabolism in piglets Fed DL-methionine or its hydroxy analogue was affected by distribution of enzymes oxidizing these sources to keto-methionine.

    Science.gov (United States)

    Fang, Zhengfeng; Luo, Hefeng; Wei, Hongkui; Huang, Feiruo; Qi, Zhili; Jiang, Siwen; Peng, Jian

    2010-02-10

    Previous evidence shows that the extensive catabolism of dietary essential amino acids (AA) by the intestine results in decreased availability of these AA for protein synthesis in extraintestinal tissues. This raises the possibility that extraintestinal availability of AA may be improved by supplying the animal with an AA source more of which can bypass the intestine. To test this hypothesis, six barrows (35-day-old, 8.6 +/- 1.4 kg), implanted with arterial, portal, and mesenteric catheters, were fed a DL-methionine (DL-MET) or DL-2-hydroxy-4-methylthiobutyrate (DL-HMTB) diet once hourly and infused intramesenterically with 1% p-amino hippurate. Although the directly available L-MET in DL-MET diet was about 1.2-fold that in DL-HMTB diet, the net portal appearance of L-MET was not different between the two diets. Compared with the low mRNA abundance and low activity of D-2-hydroxy acid dehydrogenase (D-HADH) and l-2-hydroxy acid oxidase (L-HAOX) in the intestine, the high mRNA abundance and high activity of D-AA oxidase (D-AAOX) indicated that the intestine had a relatively higher capacity of D-MET utilization than of dl-HMTB utilization to L-MET synthesis and its subsequent metabolism. However, in contrast to the much lower D-AAOX activity (nmol/g tissue) in the stomach than in the liver and kidney, both d-HADH and L-HAOX activity in the stomach was comparable with those in the liver and/or kidney, indicating the substantial capacity of the stomach to convert DL-HMTB to L-MET. Collectively, the difference in distribution of activity and mRNA abundance of D-AAOX, D-HADH, and L-HAOX in the piglets may offer a biological basis for the similar portal appearance of L-MET between DL-MET and DL-HMTB diets, and thus may provide new important insights into nutritional efficiency of different L-MET sources.

  8. Dietary fat source affects metabolism of fatty acids in pigs as evaluated by altered expression of lipogenic genes in liver and adipose tissues

    DEFF Research Database (Denmark)

    Duran-Montge, P; Theil, Peter Kappel; Lauridsen, Charlotte

    2009-01-01

    Little is known about pig gene expressions related to dietary fatty acids (FAs) and most work have been conducted in rodents. The aim of this study was to investigate how dietary fats regulate fat metabolism of pigs in different tissues. Fifty-six crossbred gilts (62 ± 5.2 kg BW) were fed one of ...

  9. How does concurrent sourcing affect performance?

    DEFF Research Database (Denmark)

    Mols, Niels Peter

    2010-01-01

    be modelled. The propositions and discussion offer researchers a starting-point for further research. Practical implications – The propositions that are developed suggest that managers should consider using concurrent sourcing when they face problems caused by volume uncertainty, technological uncertainty....../methodology/approach – Based on transaction cost, agency, neoclassical economic, knowledge-based, and resource-based theory, it is proposed to show how concurrent sourcing affects performance. Findings – The paper argues that concurrent sourcing improves performance when firms face a combination of volume uncertainty...... how concurrent sourcing affects performance of the market and the hierarchy....

  10. Flavanol plasma bioavailability is affected by metabolic syndrome in rats

    NARCIS (Netherlands)

    Margalef, M.; Pons, Z.; Iglesias-Carres, L.; Bravo, F.I.; Muguerza, B.; Arola-Arnal, A.

    2017-01-01

    Flavanols, which exert several health benefits, are metabolized after ingestion. Factors such as the host physiological condition could affect the metabolism and bioavailability of flavanols, influencing their bioactivities. This study aimed to qualitatively evaluate whether a pathological state

  11. Sources of Verticillium dahliae affecting lettuce.

    Science.gov (United States)

    Atallah, Zahi K; Maruthachalam, Karunakaran; Subbarao, Krishna V

    2012-11-01

    ABSTRACT Since 1995, lettuce in coastal California, where more than half of the crop in North America is grown, has consistently suffered from severe outbreaks of Verticillium wilt. The disease is confined to this region, although the pathogen (Verticillium dahliae) and the host are present in other crop production regions in California. Migration of the pathogen with infested spinach seed was previously documented, but the geographic sources of the pathogen, as well as the impact of lettuce seed sparsely infested with V. dahliae produced outside coastal California on the pathogen population in coastal California remain unclear. Population analyses of V. dahliae were completed using 16 microsatellite markers on isolates from lettuce plants in coastal California, infested lettuce seed produced in the neighboring Santa Clara Valley of California, and spinach seed produced in four major spinach seed production regions: Chile, Denmark, the Netherlands, and the United States (Washington State). California produces 80% of spinach in the United States and all seed planted with the majority infested by V. dahliae comes from the above four sources. Three globally distributed genetic populations were identified, indicating sustained migration among these distinct geographic regions with multiple spinach crops produced each year and repeated every year in coastal California. The population structure of V. dahliae from coastal California lettuce plants was heavily influenced by migration from spinach seed imported from Denmark and Washington. Conversely, the sparsely infested lettuce seed had limited or no contribution to the Verticillium wilt epidemic in coastal California. The global trade in plant and seed material is likely contributing to sustained shifts in the population structure of V. dahliae, affecting the equilibrium of native populations, and likely affecting disease epidemiology.

  12. Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source

    OpenAIRE

    Zhang, Jianbo; Sturla, Shana; Lacroix, Christophe; Schwab, Clarissa

    2018-01-01

    ABSTRACT Acrolein is a highly reactive electrophile causing toxic effects, such as DNA and protein adduction, oxidative stress, endoplasmic reticulum stress, immune dysfunction, and membrane damage. This Opinion/Hypothesis provides an overview of endogenous and exogenous acrolein sources, acrolein’s mode of action, and its metabolic fate. Recent reports underpin the finding that gut microbial glycerol metabolism leading to the formation of reuterin is an additional source of endogenous acrole...

  13. Rewiring carbohydrate catabolism differentially affects survival of pancreatic cancer cell lines with diverse metabolic profiles

    Science.gov (United States)

    Tataranni, Tiziana; Agriesti, Francesca; Ruggieri, Vitalba; Mazzoccoli, Carmela; Simeon, Vittorio; Laurenzana, Ilaria; Scrima, Rosella; Pazienza, Valerio; Capitanio, Nazzareno; Piccoli, Claudia

    2017-01-01

    An increasing body of evidence suggests that targeting cellular metabolism represents a promising effective approach to treat pancreatic cancer, overcome chemoresistance and ameliorate patient's prognosis and survival. In this study, following whole-genome expression analysis, we selected two pancreatic cancer cell lines, PANC-1 and BXPC-3, hallmarked by distinct metabolic profiles with specific concern to carbohydrate metabolism. Functional comparative analysis showed that BXPC-3 displayed a marked deficit of the mitochondrial respiratory and oxidative phosphorylation activity and a higher production of reactive oxygen species and a reduced NAD+/NADH ratio, indicating their bioenergetic reliance on glycolysis and a different redox homeostasis as compared to PANC-1. Both cell lines were challenged to rewire their metabolism by substituting glucose with galactose as carbon source, a condition inhibiting the glycolytic flux and fostering full oxidation of the sugar carbons. The obtained data strikingly show that the mitochondrial respiration-impaired-BXPC-3 cell line was unable to sustain the metabolic adaptation required by glucose deprivation/substitution, thereby resulting in a G2\\M cell cycle shift, unbalance of the redox homeostasis, apoptosis induction. Conversely, the mitochondrial respiration-competent-PANC-1 cell line did not show clear evidence of cell sufferance. Our findings provide a strong rationale to candidate metabolism as a promising target for cancer therapy. Defining the metabolic features at time of pancreatic cancer diagnosis and likely of other tumors, appears to be crucial to predict the responsiveness to therapeutic approaches or coadjuvant interventions affecting metabolism. PMID:28476035

  14. Metabolic and affective consequences of fatherhood in male California mice.

    Science.gov (United States)

    Zhao, Meng; Garland, Theodore; Chappell, Mark A; Andrew, Jacob R; Saltzman, Wendy

    2017-08-01

    Physiological and affective condition can be modulated by the social environment and parental state in mammals. However, in species in which males assist with rearing offspring, the metabolic and affective effects of pair bonding and fatherhood on males have rarely been explored. In this study we tested the hypothesis that fathers, like mothers, experience energetic costs as well as behavioral and affective changes (e.g., depression, anxiety) associated with parenthood. We tested this hypothesis in the monogamous, biparental California mouse (Peromyscus californicus). Food intake, blood glucose and lipid levels, blood insulin and leptin levels, body composition, pain sensitivity, and depression-like behavior were compared in males from three reproductive groups: virgin males (VM, housed with another male), non-breeding males (NB, housed with a tubally ligated female), and breeding males (BM, housed with a female and their first litter). We found statistically significant (Pfatherhood influences several metabolic, morphological, and affective measures in male California mice. Overall, the changes we observed in breeding males were minor, but stronger effects might occur in long-term breeding males and/or under more challenging environmental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Risk factors that affect metabolic health status in obese children.

    Science.gov (United States)

    Elmaogullari, Selin; Demirel, Fatma; Hatipoglu, Nihal

    2017-01-01

    While some obese children are metabolically healthy (MHO), some have additional health problems, such as hypertension, dyslipidemia, insulin resistance, and hepatosteatosis, which increase mortality and morbidity related to cardiovascular diseases (CVD) during adulthood. These children are metabolically unhealthy obese (MUO) children. In this study we assessed the factors that affect metabolic health in obesity and the clinical and laboratory findings that distinguish between MHO and MUO children. In total, 1085 patients aged 6-18 years, with age- and sex-matched BMI exceeding the 95th percentile were included in the study (mean 11.1±2.9 years, 57.6% female, 59.7% pubertal). Patients without dyslipidemia, insulin resistance, hepatosteatosis, or hypertension were considered as MHO. Dyslipidemia was defined as total cholesterol level over 200 mg/dL, triglyceride over 150 mg/dL, LDL over 130 mg/dL, or HDL under 40 mg/dL. Insulin resistance was calculated using the homeostasis model of assesment for insulin resistance (HOMA-IR) index. Hepatosteatosis was evaluated with abdominal ultrasound. Duration of obesity, physical activity and nutritional habits, screen time, and parental obesity were questioned. Thyroid and liver function tests were performed. Six hundred and forty-two cases (59.2%) were MUO. Older age, male sex, increased BMI-SDS, and sedentary lifestyle were associated with MUO. Excessive junk food consumption was associated with MUO particularly among the prepubertal obese patients. Our results revealed that the most important factors that affect metabolic health in obesity are age and BMI. Positive effects of an active lifestyle and healthy eating habits are prominent in the prepubertal period and these habits should be formed earlier in life.

  16. Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source

    Directory of Open Access Journals (Sweden)

    Jianbo Zhang

    2018-01-01

    Full Text Available Acrolein is a highly reactive electrophile causing toxic effects, such as DNA and protein adduction, oxidative stress, endoplasmic reticulum stress, immune dysfunction, and membrane damage. This Opinion/Hypothesis provides an overview of endogenous and exogenous acrolein sources, acrolein’s mode of action, and its metabolic fate. Recent reports underpin the finding that gut microbial glycerol metabolism leading to the formation of reuterin is an additional source of endogenous acrolein. Reuterin is an antimicrobial multicomponent system consisting of 3-hydroxypropionaldehyde, its dimer and hydrate, and also acrolein. The major conclusion is that gut microbes can metabolize glycerol to reuterin and that this transformation occurs in vivo. Given the known toxicity of acrolein, the observation that acrolein is formed in the gut necessitates further investigations on functional relevance for gut microbiota and the host.

  17. 40 CFR 63.821 - Designation of affected sources.

    Science.gov (United States)

    2010-07-01

    ...) National Emission Standards for the Printing and Publishing Industry § 63.821 Designation of affected... flexographic printing affected source. (7) Other presses are part of the printing and publishing industry...-flexographic presses are part of the printing and publishing industry source category, but are not part of the...

  18. Black leaf streak disease affects starch metabolism in banana fruit.

    Science.gov (United States)

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots.

  19. The Choice of Euthanasia Method Affects Metabolic Serum Biomarkers.

    Science.gov (United States)

    Pierozan, Paula; Jernerén, Fredrik; Ransome, Yusuf; Karlsson, Oskar

    2017-08-01

    The impact of euthanasia methods on endocrine and metabolic parameters in rodent tissues and biological fluids is highly relevant for the accuracy and reliability of the data collected. However, few studies concerning this issue are found in the literature. We compared the effects of three euthanasia methods currently used in animal experimentation (i.e. decapitation, CO 2 inhalation and pentobarbital injection) on the serum levels of corticosterone, insulin, glucose, triglycerides, cholesterol and a range of free fatty acids in rats. The corticosterone and insulin levels were not significantly affected by the euthanasia protocol used. However, euthanasia by an overdose of pentobarbital (120 mg/kg intraperitoneal injection) increased the serum levels of glucose, and decreased cholesterol, stearic and arachidonic acids levels compared with euthanasia by CO 2 inhalation and decapitation. CO 2 inhalation appears to increase the serum levels of triglycerides, while euthanasia by decapitation induced no individual discrepant biomarker level. We conclude that choice of the euthanasia methods is critical for the reliability of serum biomarkers and indicate the importance of selecting adequate euthanasia methods for metabolic analysis in rodents. Decapitation without anaesthesia may be the most adequate method of euthanasia when taking both animal welfare and data quality in consideration. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  20. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    Science.gov (United States)

    Cartwright, Stephanie P; Bill, Roslyn M; Hipkiss, Alan R

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  1. Hyperthyroidism affects lipid metabolism in lactating and suckling rats.

    Science.gov (United States)

    Varas, S M; Jahn, G A; Giménez, M S

    2001-08-01

    Two per thousand pregnant women have hyperthyroidism (HT), and although the symptoms are attenuated during pregnancy, they rebound after delivery, affecting infant development. To examine the effects of hyperthyroidism on lactation, we studied lipid metabolism in maternal mammary glands and livers of hyperthyroid rats and their pups. Thyroxine (10 microg/100 g body weight/d) or vehicle-treated rats were made pregnant 2 wk after commencement of treatment and sacrificed on days 7, 14, and 21 of lactation with the litters. Circulating triiodothyronine and tetraiodothyronine concentrations in the HT mothers were increased on all days. Hepatic esterified cholesterol (EC) and free cholesterol (FC) and triglyceride (TG) concentrations were diminished on days 14 and 21. Lipid synthesis, measured by incorporation of [3H]H2O into EC, FC, and TG, fatty acid synthase, and acetyl CoA carboxylase activities increased at day 14, while incorporation into FC and EC decreased at days 7 and 21, respectively. Mammary FC and TG concentrations were diminished at day 14; incorporation of [3H]H2O into TG decreased at days 7 and 21, and incorporation of [3H]H2O into FC increased at day 14. In the HT pups, growth rate was diminished, tetraiodothyronine concentration rose at days 7 and 14 of lactation, and triiodothyronine increased only at day 14. Liver TG concentrations increased at day 7 and fell at day 14, while FC increased at day 14 and only acetyl CoA carboxylase activity fell at day 14. Thus, hyperthyroidism changed maternal liver and mammary lipid metabolism, with decreased lipid concentration in spite of increased liver rate of synthesis and decreases in mammary synthesis. These changes, along with the mild hyperthyroidism of the litters, may have contributed to their reduced growth rate.

  2. Does vitamin D affects components of the metabolic syndrome?

    OpenAIRE

    Sevil Karahan Yılmaz; Aylin Ayaz

    2015-01-01

    Metabolic syndrome is a major public health problem which has become increasingly common worlwide with cardiometabolic complications and have high morbidity and mortality. In addition to some genetical features, environmental factors such sedentary lifestyle, improper eating habits constitutes a risk factor for metabolic syndrome. Important components of the metabolic syndrome are dyslipidemia (low HDL levels, high triglycerides level), hyperglycemia, elevated blood...

  3. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    DEFF Research Database (Denmark)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  4. Metabolic factors affecting enhanced phosphorus uptake by activated sludge.

    Science.gov (United States)

    Boughton, W H; Gottfried, R J; Sinclair, N A; Yall, I

    1971-10-01

    Activated sludges obtained from the Rilling Road plant located at San Antonio, Tex., and from the Hyperion treatment plant located at Los Angeles, Calif., have the ability to remove all of the orthophosphate normally present in Tucson sewage within 3 hr after being added to the waste water. Phosphorus removal was independent of externally supplied sources of energy and ions, since orthophosphate and (32)P radioactivity were readily removed from tap water, glass-distilled water, and deionized water. Phosphorus uptake by Rilling sludge in the laboratory appears to be wholly biological, as it has an optimum pH range (7.7 to 9.7) and an optimum temperature range (24 to 37 C). It was inhibited by HgCl(2), iodoacetic acid, p-chloromercuribenzoic acid, NaN(3), and 2, 4-dinitrophenol (compounds that affect bacterial membrane permeability, sulfhydryl enzymes, and adenosine triphosphate synthesis). Uptake was inhibited by 1% NaCl but was not affected by 10(-3)m ethylenediaminetetraacetic acid disodium salt (a chelating agent for many metallic ions).

  5. Isotopic labeling affects 1,25-dihydroxyvitamin D metabolism

    International Nuclear Information System (INIS)

    Halloran, B.P.; Bikle, D.D.; Castro, M.E.; Gee, E.

    1989-01-01

    Isotope substitution can change the biochemical properties of vitamin D. To determine the effect of substituting 3H for 1H on the metabolism of 1,25(OH)2D3, we measured the metabolic clearance rate and renal metabolism of unlabeled and 3H-labeled 1,25(OH)2D3. Substitution of 3H for 1H on carbons 26 and 27 [1,25(OH)2[26,27(n)-3H]D3] or on carbons 23 and 24 [1,25(OH)2[23,24(n)-3H]D3] reduced the in vivo metabolic clearance rate of 1,25(OH)2D3 by 36% and 37%, respectively, and reduced the in vitro renal catabolism of 1,25(OH)2D3 by 11% and 54%, respectively. Substitutions of 3H for 1H on carbons 23 and 24 as opposed to carbons 26 and 27 reduced conversion of [3H]1,25(OH)2D3 to [3H]1,24,25(OH)2D3 by 25% and to putative 24-oxo-1,23,25-dihydroxyvitamin D3 by 1600%. These results indicate that substitution of 3H for 1H on carbons 26 and 27 or on carbons 23 and 24 can reduce the metabolic clearance rate and in vitro metabolism of 1,25(OH)2D3 and quantitatively alter the pattern of metabolic products produced

  6. Influential sources affecting Bangkok adolescent body image perceptions.

    Science.gov (United States)

    Thianthai, Chulanee

    2006-01-01

    The study of body image-related problems in non-Western countries is still very limited. Thus, this study aims to identify the main influential sources and show how they affect the body image perceptions of Bangkok adolescents. The researcher recruited 400 Thai male and female adolescents in Bangkok, attending high school to freshmen level, ranging from 16-19 years, to participate in this study. Survey questionnaires were distributed to every student and follow-up interviews conducted with 40 students. The findings showed that there are eight main influential sources respectively ranked from the most influential to the least influential: magazines, television, peer group, familial, fashion trend, the opposite gender, self-realization and health knowledge. Similar to those studies conducted in Western countries, more than half of the total percentage was the influence of mass media and peer groups. Bangkok adolescents also internalized Western ideal beauty through these mass media channels. Alike studies conducted in the West, there was similarities in the process of how these influential sources affect Bangkok adolescent body image perception, with the exception of familial source. In conclusion, taking the approach of identifying the main influential sources and understanding how they affect adolescent body image perceptions can help prevent adolescents from having unhealthy views and taking risky measures toward their bodies. More studies conducted in non-Western countries are needed in order to build a cultural sensitive program, catered to the body image problems occurring in adolescents within that particular society.

  7. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    Directory of Open Access Journals (Sweden)

    Stephanie P Cartwright

    Full Text Available The dipeptide L-carnosine (β-alanyl-L-histidine has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose, 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol, L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  8. Genetic alterations affecting cholesterol metabolism and human fertility.

    Science.gov (United States)

    DeAngelis, Anthony M; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle

    2014-11-01

    Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. © 2014 by the Society for the Study of Reproduction, Inc.

  9. How coffee affects metabolic syndrome and its components.

    Science.gov (United States)

    Baspinar, B; Eskici, G; Ozcelik, A O

    2017-06-21

    Metabolic syndrome, with its increasing prevalence, is becoming a major public health problem throughout the world. Many risk factors including nutrition play a role in the emergence of metabolic syndrome. Of the most-consumed beverages in the world, coffee contains more than 1000 components such as caffeine, chlorogenic acid, diterpenes and trigonelline. It has been proven in many studies that coffee consumption has a positive effect on chronic diseases. In this review, starting from the beneficial effects of coffee on health, the relationship between coffee consumption and metabolic syndrome and its components has been investigated. There are few studies investigating the relationship between coffee and metabolic syndrome, and the existing ones put forward different findings. The factors leading to the differences are thought to stem from coffee variety, the physiological effects of coffee elements, and the nutritional ingredients (such as milk and sugar) added to coffee. It is reported that consumption of coffee in adults up to three cups a day reduces the risk of Type-2 diabetes and metabolic syndrome.

  10. Do diabetes and obesity affect the metabolic response to exercise?

    Science.gov (United States)

    Plomgaard, Peter; Weigert, Cora

    2017-07-01

    Exercise is recommended as therapeutic intervention for people at risk to develop type 2 diabetes to prevent or treat the disease. Recent studies on the influence of obesity and type 2 diabetes on the outcome of exercise programs are discussed. Poor glycemic control before an intervention can be a risk factor of reduced therapeutic benefit from exercise. But the acute metabolic response to exercise and the transcriptional profile of the working muscle is similar in healthy controls and type 2 diabetic patients, including but not limited to intact activation of skeletal muscle AMP-activated kinase signaling, glucose uptake and expression of peroxisome proliferator-activated receptor gamma coactivator 1α. The increase in plasma acylcarnitines during exercise is not influenced by type 2 diabetes or obesity. The hepatic response to exercise is dependent on the glucagon/insulin ratio and the exercise-induced increase in hepatokines such as fibroblast growth factor 21 and follistatin is impaired in type 2 diabetes and obesity, but consequences for the benefit from exercise are unknown yet. Severe metabolic dysregulation can reduce the benefit from exercise, but the intact response of key metabolic regulators in exercising skeletal muscle of diabetic patients demonstrates the effectiveness of exercise programs to treat the disease.

  11. Grocery store baking soda. A source of sodium bicarbonate in the management of chronic metabolic acidosis.

    Science.gov (United States)

    Booth, B E; Gates, J; Morris, R C

    1984-02-01

    Oral sodium bicarbonate is used to treat metabolic acidosis in patients with renal tubular acidosis. Since infants and young children are unable to swallow tablets, those affected must ingest sodium bicarbonate in a powder or liquid form. Pharmacy-weighed sodium bicarbonate is expensive and inconvenient to obtain; some pharmacists are reluctant to provide it. We determined that the sodium bicarbonate contained in 8-oz boxes of Arm and Hammer Baking Soda was sufficiently constant in weight that, dissolved in water to a given volume, it yielded a quantitatively acceptable therapeutic solution of sodium bicarbonate at a cost of approximately 3 percent of that of pharmacy-weighed sodium bicarbonate. Grocery store baking soda can be a safe, economical, and convenient source of sodium bicarbonate for the treatment of chronic metabolic acidosis in infants and young children.

  12. Experimental sources of variation in avian energetics: estimated basal metabolic rate decreases with successive measurements.

    Science.gov (United States)

    Jacobs, Paul J; McKechnie, Andrew E

    2014-01-01

    Basal metabolic rate (BMR) is one of the most widely used metabolic variables in endotherm ecological and evolutionary physiology. Surprisingly few studies have investigated how BMR is influenced by experimental and analytical variables over and above the standardized conditions required for minimum normothermic resting metabolism. We tested whether avian BMR is affected by habituation to the conditions experienced during laboratory gas exchange measurements by measuring BMR five times in succession in budgerigars (Melopsittacus undulatus) housed under constant temperature and photoperiod. Both the magnitude and the variability of BMR decreased significantly with repeated measurements, from 0.410 ± 0.092 W (n = 9) during the first measurement to 0.285 ± 0.042 W (n = 9) during the fifth measurement. Thus, estimated BMR decreased by ∼30% within individuals solely on account of the number of times they had previously experienced the experimental conditions. The most likely explanation for these results is an attenuation with repeated exposure of the acute stress response induced by birds being handled and placed in respirometry chambers. Our data suggest that habituation to experimental conditions is potentially an important determinant of observed BMR, and this source of variation needs to be taken into account in future studies of metabolic variation among individuals, populations, and species.

  13. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses

    Directory of Open Access Journals (Sweden)

    Jia Li

    2016-01-01

    Full Text Available Higher protein meals increase satiety and the thermic effect of feeding (TEF in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume and quantity (10%, 20%, or 30% of energy from protein on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER in overweight and obese adults. Subjects were randomly assigned to one protein source and then consumed diets with different quantities of protein (4 weeks each in a randomized crossover manner. Perceived appetite ratings (free-living and in-lab, TEF, and fasting cardio-metabolic indices were assessed at the end of each 4-week period. Protein source and quantity did not affect TEF, hunger, or desire to eat, other than a modestly higher daily composite fullness rating with 30% vs. 10% protein diet (p = 0.03. While the 20% and 30% protein diets reduced cholesterol, triacylglycerol, and APO-B vs. 10% protein (p < 0.05, protein source did not affect cardio-metabolic indices. In conclusion, diets varying in protein quantity with either beef/pork or soy/legume as the predominant source have minimal effects on appetite control, energy expenditure and cardio-metabolic risk factors during ER-induced weight loss.

  14. Review of Sealed Source Designs and Manufacturing Techniques Affecting Disused Source Management

    International Nuclear Information System (INIS)

    2012-10-01

    This publication presents an investigation on the influence of the design and technical features of sealed radioactive sources (SRSs) on predisposal and disposal activities when the sources become disused. The publication also addresses whether design modifications could contribute to safer and/or more efficient management of disused sources without compromising the benefits provided by the use of the sealed sources. This technical publication aims to collect information on the most typical design features and manufacturing techniques of sealed radioactive sources and examines how they affect the safe management of disused sealed radioactive sources (DSRS). The publication also aims to assist source designers and manufacturers by discussing design features that are important from the waste management point of view. It has been identified that most SRS manufacturers use similar geometries and materials for their designs and apply improved and reliable manufacturing techniques e.g. double- encapsulation. These designs and manufacturing techniques have been proven over time to reduce contamination levels in fabrication and handling, and improve source integrity and longevity. The current source designs and materials ensure as well as possible that SRSs will maintain their integrity in use and when they become disused. No significant improvement options to current designs have been identified. However, some design considerations were identified as important to facilitate source retrieval, to increase the possibility of re-use and to ensure minimal contamination risk and radioactive waste generation at recycling. It was also concluded that legible identifying markings on a source are critical for DSRS management. The publication emphasizes the need for a common understanding of the radioactive source's recommended working life (RWL) for manufacturers and regulators. The conditions of use (COU) are important for the determination of RWL. A formal system for specification

  15. Do diabetes and obesity affect the metabolic response to exercise?

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Weigert, Cora

    2017-01-01

    control before an intervention can be a risk factor of reduced therapeutic benefit from exercise. But the acute metabolic response to exercise and the transcriptional profile of the working muscle is similar in healthy controls and type 2 diabetic patients, including but not limited to intact activation...... of skeletal muscle AMP-activated kinase signaling, glucose uptake and expression of peroxisome proliferator-activated receptor gamma coactivator 1α. The increase in plasma acylcarnitines during exercise is not influenced by type 2 diabetes or obesity. The hepatic response to exercise is dependent......PURPOSE OF REVIEW: Exercise is recommended as therapeutic intervention for people at risk to develop type 2 diabetes to prevent or treat the disease. Recent studies on the influence of obesity and type 2 diabetes on the outcome of exercise programs are discussed. RECENT FINDINGS: Poor glycemic...

  16. Coping, affect, and the metabolic syndrome in older men: how does coping get under the skin?

    Science.gov (United States)

    Yancura, Loriena A; Aldwin, Carolyn M; Levenson, Michael R; Spiro, Avron

    2006-09-01

    The metabolic syndrome is a complex construct with interrelated factors of obesity, blood pressure, lipids, and glucose. It is a risk factor for a number of chronic diseases in late life. This study tested a model in which the relationship between stress and the metabolic syndrome was mediated by appraisal, coping, and affect. Data were collected from 518 male participants in the Normative Aging Study (X(age) = 68.17 years). The model was partially confirmed. Relationships among stress, appraisal, coping, and affect were valenced along positive and negative pathways. However, affect was not directly related to the metabolic syndrome. The metabolic syndrome was related to positive coping as operationalized by self-regulatory strategies. The results of this study suggest that the influence of coping on physical health may occur through emotional regulation.

  17. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    Science.gov (United States)

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-01-01

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health. PMID:24336061

  18. Spastin binds to lipid droplets and affects lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Chrisovalantis Papadopoulos

    2015-04-01

    Full Text Available Mutations in SPAST, encoding spastin, are the most common cause of autosomal dominant hereditary spastic paraplegia (HSP. HSP is characterized by weakness and spasticity of the lower limbs, owing to progressive retrograde degeneration of the long corticospinal axons. Spastin is a conserved microtubule (MT-severing protein, involved in processes requiring rearrangement of the cytoskeleton in concert to membrane remodeling, such as neurite branching, axonal growth, midbody abscission, and endosome tubulation. Two isoforms of spastin are synthesized from alternative initiation codons (M1 and M87. We now show that spastin-M1 can sort from the endoplasmic reticulum (ER to pre- and mature lipid droplets (LDs. A hydrophobic motif comprised of amino acids 57 through 86 of spastin was sufficient to direct a reporter protein to LDs, while mutation of arginine 65 to glycine abolished LD targeting. Increased levels of spastin-M1 expression reduced the number but increased the size of LDs. Expression of a mutant unable to bind and sever MTs caused clustering of LDs. Consistent with these findings, ubiquitous overexpression of Dspastin in Drosophila led to bigger and less numerous LDs in the fat bodies and increased triacylglycerol levels. In contrast, Dspastin overexpression increased LD number when expressed specifically in skeletal muscles or nerves. Downregulation of Dspastin and expression of a dominant-negative variant decreased LD number in Drosophila nerves, skeletal muscle and fat bodies, and reduced triacylglycerol levels in the larvae. Moreover, we found reduced amount of fat stores in intestinal cells of worms in which the spas-1 homologue was either depleted by RNA interference or deleted. Taken together, our data uncovers an evolutionarily conserved role of spastin as a positive regulator of LD metabolism and open up the possibility that dysfunction of LDs in axons may contribute to the pathogenesis of HSP.

  19. Childhood obesity affects adult metabolic syndrome and diabetes.

    Science.gov (United States)

    Liang, Yajun; Hou, Dongqing; Zhao, Xiaoyuan; Wang, Liang; Hu, Yuehua; Liu, Junting; Cheng, Hong; Yang, Ping; Shan, Xinying; Yan, Yinkun; Cruickshank, J Kennedy; Mi, Jie

    2015-09-01

    We seek to observe the association between childhood obesity by different measures and adult obesity, metabolic syndrome (MetS), and diabetes. Thousand two hundred and nine subjects from "Beijing Blood Pressure Cohort Study" were followed 22.9 ± 0.5 years in average from childhood to adulthood. We defined childhood obesity using body mass index (BMI) or left subscapular skinfold (LSSF), and adult obesity as BMI ≥ 28 kg/m(2). MetS was defined according to the joint statement of International Diabetes Federation and American Heart Association with modified waist circumference (≥ 90/85 cm for men/women). Diabetes was defined as fasting plasma glucose ≥ 7.0 mmol/L or blood glucose 2 h after oral glucose tolerance test ≥ 11.1 mmol/L or currently using blood glucose-lowering agents. Multiple linear and logistic regression models were used to assess the association. The incidence of adult obesity was 13.4, 60.0, 48.3, and 65.1 % for children without obesity, having obesity by BMI only, by LSSF only, and by both, respectively. Compared to children without obesity, children obese by LSSF only or by both had higher risk of diabetes. After controlling for adult obesity, childhood obesity predicted independently long-term risks of diabetes (odds ratio 2.8, 95 % confidence interval 1.2-6.3) or abdominal obesity (2.7, 1.6-4.7) other than MetS as a whole (1.2, 0.6-2.4). Childhood obesity predicts long-term risk of adult diabetes, and the effect is independent of adult obesity. LSSF is better than BMI in predicting adult diabetes.

  20. Does family history of metabolic syndrome affect the metabolic profile phenotype in young healthy individuals?

    Science.gov (United States)

    Lipińska, Anna; Koczaj-Bremer, Magdalena; Jankowski, Krzysztof; Kaźmierczak, Agnieszka; Ciurzyński, Michał; Ou-Pokrzewińska, Aisha; Mikocka, Ewelina; Lewandowski, Zbigniew; Demkow, Urszula; Pruszczyk, Piotr

    2014-01-01

    Early identification of high-risk individuals is key for the prevention of cardiovascular disease (CVD). The aim of this study was to assess the potential impact of a family history of metabolic syndrome (fhMetS) on the risk of metabolic disorders (abnormal body mass, lipid profile, glucose metabolism, insulin resistance, and blood pressure) in healthy young individuals. We studied CVD risk factors in 90 healthy volunteers, aged 27-39 years; of these, 78 had fhMetS and 12 were without fhMetS (control group). Fasting serum lipids, glucose, and insulin levels were assayed, and anthropometric parameters and blood pressure using, an ambulatory blood pressure monitoring system, were measured. Nutritional and physical activity habits were assessed. Despite similar nutritional and physical activity habits, abnormal body mass was found in 53.2% of the fhMetS participants and 46.1% of the control participants (p = 0.54). The occurrence of obesity was 19.4% and 0%, respectively (p = 0.69). Compared to the control participants, fhMetS was associated with significantly higher total cholesterol (5.46 mmol/L vs. 4.69 mmol/L, p family history of MetS.

  1. The medical food Souvenaid affects brain phospholipid metabolism in mild Alzheimer's disease: results from a randomized controlled trial

    NARCIS (Netherlands)

    Rijpma, A.; Graaf, M. van der; Lansbergen, M.M.; Meulenbroek, O.V.; Cetinyurek-Yavuz, A.; Sijben, J.W.; Heerschap, A.; Olde Rikkert, M.G.M.

    2017-01-01

    BACKGROUND: Synaptic dysfunction contributes to cognitive impairment in Alzheimer's disease and may be countered by increased intake of nutrients that target brain phospholipid metabolism. In this study, we explored whether the medical food Souvenaid affects brain phospholipid metabolism in patients

  2. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men

    NARCIS (Netherlands)

    Bisschop, PH; de Sain-van der Velden, MGM; Stellaard, F; Kuipers, F; Meijer, AJ; Sauerwein, HP; Romijn, JA

    Because insulin is an important regulator of protein metabolism, we hypothesized that physiological modulation of insulin secretion, by means of extreme variations in dietary carbohydrate content, affects postabsorptive protein metabolism. Therefore, we studied the effects of three isocaloric diets

  3. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men

    NARCIS (Netherlands)

    Bisschop, P. H.; de Sain-van der Velden, M. G. M.; Stellaard, F.; Kuipers, F.; Meijer, A. J.; Sauerwein, H. P.; Romijn, J. A.

    2003-01-01

    Because insulin is an important regulator of protein metabolism, we hypothesized that physiological modulation of insulin secretion, by means of extreme variations in dietary carbohydrate content, affects postabsorptive protein metabolism. Therefore, we studied the effects of three isocaloric diets

  4. Dietary fatty acids early in life affect lipid metabolism and adiposity in young rats.

    Science.gov (United States)

    Silva, Ana Paula S; Guimarães, Daniella E D; Mizurini, Daniella M; Maia, Ingrid C; Ortiz-Costa, Susana; Sardinha, Fátima L; do Carmo, Maria G Tavares

    2006-06-01

    The purpose of this study was to evaluate the effects of four isoenergetic diets of differing fat composition on blood lipid profile and adiposity in young rats. Diets containing different lipid sources--partially hydrogenated vegetable oil (PHVO), palm oil (PO), canola oil (CO), and soy oil (SO)--were fed to lactating rats during the 21 days of lactation, and then fed to young males following weaning until the 45th day of life. In vivo lipogenesis rate (LR), lipid content (LC), relative level of FA, and the activity of lipoprotein lipase (LPL) enzyme were measured in epididymal adipose tissue (EPI). Fasting blood lipoproteins and LC in the carcass were also appraised. Body weight of PO and PHVO groups was significantly higher than CO and SO groups from day 14 of lactation to day 45, despite the lower food intake in the PHVO group. PO and PHVO groups presented higher LR and LC in EPI than SO and CO groups. Carcass fat content was significantly higher in PHVO and PO groups than in CO and SO groups. The LPL activity in EPI was unaffected by dietary lipids. PHVO group had increased total cholesterol and TAG concentrations in comparison with the PO group, and significantly lower HDL level compared with the other groups. These results show that the kind of FA in the dietary lipid offered early in life can affect lipid metabolism and adiposity.

  5. Chlamydia pneumoniae acute liver infection affects hepatic cholesterol and triglyceride metabolism in mice.

    Science.gov (United States)

    Marangoni, Antonella; Fiorino, Erika; Gilardi, Federica; Aldini, Rita; Scotti, Elena; Nardini, Paola; Foschi, Claudio; Donati, Manuela; Montagnani, Marco; Cevenini, Monica; Franco, Placido; Roda, Aldo; Crestani, Maurizio; Cevenini, Roberto

    2015-08-01

    Chlamydia pneumoniae has been linked to atherosclerosis, strictly associated with hyperlipidemia. The liver plays a central role in the regulation of lipid metabolism. Since in animal models C. pneumoniae can be found at hepatic level, this study aims to elucidate whether C. pneumoniae infection accelerates atherosclerosis by affecting lipid metabolism. Thirty Balb/c mice were challenged intra-peritoneally with C. pneumoniae elementary bodies and thirty with Chlamydia trachomatis, serovar D. Thirty mice were injected with sucrose-phosphate-glutamate buffer, as negative controls. Seven days after infection, liver samples were examined both for presence of chlamydia and expression of genes involved in inflammation and lipid metabolism. C. pneumoniae was isolated from 26 liver homogenates, whereas C. trachomatis was never re-cultivated (P triglycerides levels compared both with negative controls (P metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Sources and Processes Affecting Particulate Matter Pollution over North China

    Science.gov (United States)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  7. Differential glucose metabolism in mice and humans affected by McArdle disease

    DEFF Research Database (Denmark)

    Krag, Thomas O; Pinós, Tomàs; Nielsen, Tue L

    2016-01-01

    McArdle disease (muscle glycogenosis type V) is a disease caused by myophosphorylase deficiency leading to "blocked" glycogen breakdown. A significant but varying glycogen accumulation in especially distal hind limb muscles of mice affected by McArdle disease has recently been demonstrated......, which could lead to lower glycogen accumulation. In comparison, tibialis anterior, extensor digitorum longus, and soleus had massive glycogen accumulation, but few, if any, changes or adaptations in glucose metabolism compared with wild-type mice. The findings suggest plasticity in glycogen metabolism....... In this study, we investigated how myophosphorylase deficiency affects glucose metabolism in hind limb muscle of 20-wk-old McArdle mice and vastus lateralis muscles from patients with McArdle disease. Western blot analysis and activity assay demonstrated that glycogen synthase was inhibited in glycolytic muscle...

  8. Vascular affection in relation to oxidative DNA damage in metabolic syndrome.

    Science.gov (United States)

    Abd El Aziz, Rokayaa; Fawzy, Mary Wadie; Khalil, Noha; Abdel Atty, Sahar; Sabra, Zainab

    2018-02-01

    Obesity has become an important issue affecting both males and females. Obesity is now regarded as an independent risk factor for atherosclerosis-related diseases. Metabolic syndrome is associated with increased risk for development of cardiovascular disease. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine concentration has been used to express oxidation status. Twenty-seven obese patients with metabolic syndrome, 25 obese patients without metabolic syndrome and 31 healthy subjects were included in our study. They were subjected to full history and clinical examination; fasting blood sugar (FBS), 2 hour post prandial blood sugar (2HPP), lipid profile, urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine and carotid duplex, A/B index and tibial diameters were all assessed. There was a statistically significant difference ( p = 0.027) in diameter of the right anterior tibial artery among the studied groups, with decreased diameter of the right anterior tibial artery in obese patients with metabolic syndrome compared to those without metabolic syndrome; the ankle brachial index revealed a lower index in obese patients with metabolic syndrome compared to those without metabolic syndrome. There was a statistically insignificant difference ( p = 0.668) in the 8-oxodG in the studied groups. In obese patients with metabolic syndrome there was a positive correlation between 8-oxodG and total cholesterol and LDL. Urinary 8-oxodG is correlated to total cholesterol and LDL in obese patients with metabolic syndrome; signifying its role in the mechanism of dyslipidemia in those patients. Our study highlights the importance of anterior tibial artery diameter measurement and ankle brachial index as an early marker of atherosclerosis, and how it may be an earlier marker than carotid intima-media thickness.

  9. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    Directory of Open Access Journals (Sweden)

    Thais de Castro Barbosa

    2016-03-01

    Conclusion: Our results provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations.

  10. Short-term fructose ingestion affects the brain independently from establishment of metabolic syndrome.

    Science.gov (United States)

    Jiménez-Maldonado, Alberto; Ying, Zhe; Byun, Hyae Ran; Gomez-Pinilla, Fernando

    2018-01-01

    Chronic fructose ingestion is linked to the global epidemic of metabolic syndrome (MetS), and poses a serious threat to brain function. We asked whether a short period (one week) of fructose ingestion potentially insufficient to establish peripheral metabolic disorder could impact brain function. We report that the fructose treatment had no effect on liver/body weight ratio, weight gain, glucose tolerance and insulin sensitivity, was sufficient to reduce several aspects of hippocampal plasticity. Fructose consumption reduced the levels of the neuronal nuclear protein NeuN, Myelin Basic Protein, and the axonal growth-associated protein 43, concomitant with a decline in hippocampal weight. A reduction in peroxisome proliferator-activated receptor gamma coactivator-1 alpha and Cytochrome c oxidase subunit II by fructose treatment is indicative of mitochondrial dysfunction. Furthermore, the GLUT5 fructose transporter was increased in the hippocampus after fructose ingestion suggesting that fructose may facilitate its own transport to brain. Fructose elevated levels of ketohexokinase in the liver but did not affect SIRT1 levels, suggesting that fructose is metabolized in the liver, without severely affecting liver function commensurable to an absence of metabolic syndrome condition. These results advocate that a short period of fructose can influence brain plasticity without a major peripheral metabolic dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running.

    Directory of Open Access Journals (Sweden)

    Thomas K Uchida

    Full Text Available Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2-5 m/s with tendon force-strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2-3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail.

  12. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    Motoi Tamura

    2013-12-01

    Full Text Available This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group and those fed a 0.05% daidzein-containing control diet (CD group for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05. Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05. The fecal lipid contents (% dry weight were significantly greater in the XD group than in the CD group (p < 0.01. The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05. This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  13. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice.

    Science.gov (United States)

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-12-10

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p XD group than in the CD group (p XD group than in the CD group (p XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  14. Sugar Allocation to Metabolic Pathways is Tightly Regulated and Affects the Virulence of Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Miki Kawada-Matsuo

    2016-12-01

    Full Text Available Bacteria take up and metabolize sugar as a carbohydrate source for survival. Most bacteria can utilize many sugars, including glucose, sucrose, and galactose, as well as amino sugars, such as glucosamine and N-acetylglucosamine. After entering the cytoplasm, the sugars are mainly allocated to the glycolysis pathway (energy production and to various bacterial component biosynthesis pathways, including the cell wall, nucleic acids and amino acids. Sugars are also utilized to produce several virulence factors, such as capsule and lipoteichoic acid. Glutamine-fructose-6-phosphate aminotransferase (GlmS and glucosamine-6-phosphate deaminase (NagB have crucial roles in sugar distribution to the glycolysis pathway and to cell wall biosynthesis. In Streptococcus mutans, a cariogenic pathogen, the expression levels of glmS and nagB are coordinately regulated in response to the presence or absence of amino sugars. In addition, the disruption of this regulation affects the virulence of S. mutans. The expression of nagB and glmS is regulated by NagR in S. mutans, but the precise mechanism underlying glmS regulation is not clear. In Staphylococcus aureus and Bacillus subtilis, the mRNA of glmS has ribozyme activity and undergoes self-degradation at the mRNA level. However, there is no ribozyme activity region on glmS mRNA in S. mutans. In this review article, we summarize the sugar distribution, particularly the coordinated regulation of GlmS and NagB expression, and its relationship with the virulence of S. mutans.

  15. Multiple metabolic alterations exist in mutant PI3K cancers, but only glucose is essential as a nutrient source.

    Directory of Open Access Journals (Sweden)

    Rebecca Foster

    Full Text Available Targeting tumour metabolism is becoming a major new area of pharmaceutical endeavour. Consequently, a systematic search to define whether there are specific energy source dependencies in tumours, and how these might be dictated by upstream driving genetic mutations, is required. The PI3K-AKT-mTOR signalling pathway has a seminal role in regulating diverse cellular processes including cell proliferation and survival, but has also been associated with metabolic dysregulation. In this study, we sought to define how mutations within PI3KCA may affect the metabolic dependency of a cancer cell, using precisely engineered isogenic cell lines. Studies revealed gene expression signatures in PIK3CA mutant cells indicative of a consistent up-regulation of glycolysis. Interestingly, the genes up- and down-regulated varied between isogenic models suggesting that the primary node of regulation is not the same between models. Additional gene expression changes were also observed, suggesting that metabolic pathways other than glycolysis, such as glutaminolysis, were also affected. Nutrient dependency studies revealed that growth of PIK3CA mutant cells is highly dependent on glucose, whereas glutamine dependency is independent of PIK3CA status. In addition, the glucose dependency exhibited by PIK3CA mutant cells could not be overridden by supplementation with other nutrients. This specific dependence on glucose for growth was further illustrated by studies evaluating the effects of targeted disruption of the glycolytic pathway using siRNA and was also found to be present across a wider panel of cancer cell lines harbouring endogenous PIK3CA mutations. In conclusion, we have found that PIK3CA mutations lead to a shift towards a highly glycolytic phenotype, and that despite suggestions that cancer cells are adept at utilising alternative nutrient sources, PIK3CA mutant cells are not able to compensate for glucose withdrawal. Understanding the metabolic

  16. Factors affecting high-sensitivity cardiac troponin T elevation in Japanese metabolic syndrome patients

    Directory of Open Access Journals (Sweden)

    Hitsumoto T

    2015-03-01

    Full Text Available Takashi Hitsumoto,1 Kohji Shirai2 1Hitsumoto Medical Clinic, Yamaguchi, Japan; 2Department of Vascular Function (donated, Sakura Hospital, Toho University School of Medicine, Chiba, Japan Purpose: The blood concentration of cardiac troponin T (ie, high-sensitivity cardiac troponin T [hs-cTnT], measured using a highly sensitive assay, represents a useful biomarker for evaluating the pathogenesis of heart failure or predicting cardiovascular events. However, little is known about the clinical significance of hs-cTnT in metabolic syndrome. The aim of this study was to examine the factors affecting hs-cTnT elevation in Japanese metabolic syndrome patients. Patients and methods: We enrolled 258 metabolic syndrome patients who were middle-aged males without a history of cardiovascular events. We examined relationships between hs-cTnT and various clinical parameters, including diagnostic parameters of metabolic syndrome. Results: There were no significant correlations between hs-cTnT and diagnostic parameters of metabolic syndrome. However, hs-cTnT was significantly correlated with age (P<0.01, blood concentrations of brain natriuretic peptide (P<0.01, reactive oxygen metabolites (markers of oxidative stress, P<0.001, and the cardio–ankle vascular index (marker of arterial function, P<0.01. Furthermore, multiple regression analysis revealed that these factors were independent variables for hs-cTnT as a subordinate factor. Conclusion: The findings of this study indicate that in vivo oxidative stress and abnormality of arterial function are closely associated with an increase in hs-cTnT concentrations in Japanese metabolic syndrome patients. Keywords: troponin, metabolic syndrome, risk factor, oxidative stress, cardio–ankle vascular index

  17. Does source population size affect performance in new environments?

    Science.gov (United States)

    Yates, Matthew C; Fraser, Dylan J

    2014-01-01

    Small populations are predicted to perform poorly relative to large populations when experiencing environmental change. To explore this prediction in nature, data from reciprocal transplant, common garden, and translocation studies were compared meta-analytically. We contrasted changes in performance resulting from transplantation to new environments among individuals originating from different sized source populations from plants and salmonids. We then evaluated the effect of source population size on performance in natural common garden environments and the relationship between population size and habitat quality. In ‘home-away’ contrasts, large populations exhibited reduced performance in new environments. In common gardens, the effect of source population size on performance was inconsistent across life-history stages (LHS) and environments. When transplanted to the same set of new environments, small populations either performed equally well or better than large populations, depending on life stage. Conversely, large populations outperformed small populations within native environments, but only at later life stages. Population size was not associated with habitat quality. Several factors might explain the negative association between source population size and performance in new environments: (i) stronger local adaptation in large populations and antagonistic pleiotropy, (ii) the maintenance of genetic variation in small populations, and (iii) potential environmental differences between large and small populations. PMID:25469166

  18. Physical activity and metabolic disease among people with affective disorders: Prevention, management and implementation.

    Science.gov (United States)

    Vancampfort, Davy; Stubbs, Brendon

    2017-12-15

    One in ten and one in three of people with affective disorders experience diabetes and metabolic syndrome respectively. Physical activity (PA) and sedentary behaviour (SB) are key risk factors that can ameliorate the risk of metabolic disease among this population. However, PA is often seen as luxury and/or a secondary component within the management of people with affective disorders. The current article provides a non-systematic best-evidence synthesis of the available literature, detailing a number of suggestions for the implementation of PA into clinical practice. Whilst the evidence is unequivocal for the efficacy of PA to prevent and manage metabolic disease in the general population, it is in its infancy in this patient group. Nonetheless, action must be taken now to ensure that PA and reducing SB are given a priority to prevent and manage metabolic diseases and improve wider health outcomes. PA should be treated as a vital sign and all people with affective disorders asked about their activity levels and if appropriate advised to increase this. There is a need for investment in qualified exercise specialists in clinical practice such as physiotherapists to undertake and oversee PA in practice. Behavioural strategies such as the self-determined theory should be employed to encourage adherence. Funding is required to develop the evidence base and elucidate the optimal intervention characteristics. PA interventions should form an integral part of the multidisciplinary management of people with affective disorders and our article outlines the evidence and strategies to implement this in practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses.

    Science.gov (United States)

    Li, Jia; Armstrong, Cheryl L H; Campbell, Wayne W

    2016-01-26

    Higher protein meals increase satiety and the thermic effect of feeding (TEF) in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume) and quantity (10%, 20%, or 30% of energy from protein) on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER) in overweight and obese adults. Subjects were randomly assigned to one protein source and then consumed diets with different quantities of protein (4 weeks each) in a randomized crossover manner. Perceived appetite ratings (free-living and in-lab), TEF, and fasting cardio-metabolic indices were assessed at the end of each 4-week period. Protein source and quantity did not affect TEF, hunger, or desire to eat, other than a modestly higher daily composite fullness rating with 30% vs. 10% protein diet (p = 0.03). While the 20% and 30% protein diets reduced cholesterol, triacylglycerol, and APO-B vs. 10% protein (p appetite control, energy expenditure and cardio-metabolic risk factors during ER-induced weight loss.

  20. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Sulek, Karolina; Skov, Kasper

    2014-01-01

    (NCFM) on the intestinal metabolome (jejunum, caecum, and colon) in mice by comparing NCFM mono-colonized (MC) mice with GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice...... by deconjugation and dehydroxylation of bile acids. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine. Especially, the digestion of larger carbohydrates (penta- and tetrasaccharides) was increased in MC mice. Interestingly, we also found vitamin E (α...

  1. Preliminary investigation of processes that affect source term identification

    International Nuclear Information System (INIS)

    Wickliff, D.S.; Solomon, D.K.; Farrow, N.D.

    1991-09-01

    Solid Waste Storage Area (SWSA) 5 is known to be a significant source of contaminants, especially tritium ( 3 H), to the White Oak Creek (WOC) watershed. For example, Solomon et al. (1991) estimated the total 3 H discharge in Melton Branch (most of which originates in SWSA 5) for the 1988 water year to be 1210 Ci. A critical issue for making decisions concerning remedial actions at SWSA 5 is knowing whether the annual contaminant discharge is increasing or decreasing. Because (1) the magnitude of the annual contaminant discharge is highly correlated to the amount of annual precipitation (Solomon et al., 1991) and (2) a significant lag may exist between the time of peak contaminant release from primary sources (i.e., waste trenches) and the time of peak discharge into streams, short-term stream monitoring by itself is not sufficient for predicting future contaminant discharges. In this study we use 3 H to examine the link between contaminant release from primary waste sources and contaminant discharge into streams. By understanding and quantifying subsurface transport processes, realistic predictions of future contaminant discharge, along with an evaluation of the effectiveness of remedial action alternatives, will be possible. The objectives of this study are (1) to characterize the subsurface movement of contaminants (primarily 3 H) with an emphasis on the effects of matrix diffusion; (2) to determine the relative strength of primary vs secondary sources; and (3) to establish a methodology capable of determining whether the 3 H discharge from SWSA 5 to streams is increasing or decreasing

  2. Does the light source affect the repairability of composite resins?

    Science.gov (United States)

    Karaman, Emel; Gönülol, Nihan

    2014-01-01

    The aim of this study was to examine the effect of the light source on the microshear bond strength of different composite resins repaired with the same substrate. Thirty cylindrical specimens of each composite resin--Filtek Silorane, Filtek Z550 (3M ESPE), Gradia Direct Anterior (GC), and Aelite Posterior (BISCO)--were prepared and light-cured with a QTH light curing unit (LCU). The specimens were aged by thermal cycling and divided into three subgroups according to the light source used--QTH, LED, or PAC (n = 10). They were repaired with the same substrate and a Clearfil Repair Kit (Kuraray). The specimens were light-cured and aged for 1 week in distilled water at 37 °C. The microshear bond strength and failure modes were assessed. There was no significant difference in the microshear bond strength values among the composite resins, except for the Filtek Silorane group that showed significantly lower bond strength values when polymerized with the PAC unit compared to the QTH or LED unit. In conclusion, previously placed dimethacrylate-based composites can be repaired with different light sources; however, if the composite to be repaired is silorane-based, then using a QTH or LED device may be the best option.

  3. SRV: an open-source toolbox to accelerate the recovery of metabolic biomarkers and correlations from metabolic phenotyping datasets.

    Science.gov (United States)

    Navratil, Vincent; Pontoizeau, Clément; Billoir, Elise; Blaise, Benjamin J

    2013-05-15

    Supervised multivariate statistical analyses are often required to analyze the high-density spectral information in metabolic datasets acquired from complex mixtures in metabolic phenotyping studies. Here we present an implementation of the SRV-Statistical Recoupling of Variables-algorithm as an open-source Matlab and GNU Octave toolbox. SRV allows the identification of similarity between consecutive variables resulting from the high-resolution bucketing. Similar variables are gathered to restore the spectral dependency within the datasets and identify metabolic NMR signals. The correlation and significance of these new NMR variables for a given effect under study can then be measured and represented on a loading plot to allow a visual and efficient identification of candidate biomarkers. Further on, correlations between these candidate biomarkers can be visualized on a two-dimensional pseudospectrum, representing a correlation map, helping to understand the modifications of the underlying metabolic network. SRV toolbox is encoded in MATLAB R2008A (Mathworks, Natick, MA) and in GNU Octave. It is available free of charge at http://www.prabi.fr/redmine/projects/srv/repository with a tutorial. benjamin.blaise@chu-lyon.fr or vincent.navratil@univ-lyon1.fr.

  4. Nutritional Ketosis Affects Metabolism and Behavior in Sprague-Dawley Rats in Both Control and Chronic Stress Environments

    Directory of Open Access Journals (Sweden)

    Milene L. Brownlow

    2017-05-01

    Full Text Available Nutritional ketosis may enhance cerebral energy metabolism and has received increased interest as a way to improve or preserve performance and resilience. Most studies to date have focused on metabolic or neurological disorders while anecdotal evidence suggests that ketosis may enhance performance in the absence of underlying dysfunction. Moreover, decreased availability of glucose in the brain following stressful events is associated with impaired cognition, suggesting the need for more efficient energy sources. We tested the hypotheses that ketosis induced by endogenous or exogenous ketones could: (a augment cognitive outcomes in healthy subjects; and (b prevent stress-induced detriments in cognitive parameters. Adult, male, Sprague Dawley rats were used to investigate metabolic and behavioral outcomes in 3 dietary conditions: ketogenic (KD, ketone supplemented (KS, or NIH-31 control diet in both control or chronic stress conditions. Acute administration of exogenous ketones resulted in reduction in blood glucose and sustained ketosis. Chronic experiments showed that in control conditions, only KD resulted in pronounced metabolic alterations and improved performance in the novel object recognition test. The hypothalamic-pituitary-adrenal (HPA axis response revealed that KD-fed rats maintained peripheral ketosis despite increases in glucose whereas no diet effects were observed in ACTH or CORT levels. Both KD and KS-fed rats decreased escape latencies on the third day of water maze, whereas only KD prevented stress-induced deficits on the last testing day and improved probe test performance. Stress-induced decrease in hippocampal levels of β-hydroxybutyrate was attenuated in KD group while both KD and KS prevented stress effects on BDNF levels. Mitochondrial enzymes associated with ketogenesis were increased in both KD and KS hippocampal samples and both endothelial and neuronal glucose transporters were affected by stress but only in the

  5. Perinatal exposure to perfluorooctane sulfonate affects glucose metabolism in adult offspring.

    Directory of Open Access Journals (Sweden)

    Hin T Wan

    Full Text Available Perfluoroalkyl acids (PFAAs are globally present in the environment and are widely distributed in human populations and wildlife. The chemicals are ubiquitous in human body fluids and have a long serum elimination half-life. The notorious member of PFAAs, perfluorooctane sulfonate (PFOS is prioritized as a global concerning chemical at the Stockholm Convention in 2009, due to its harmful effects in mammals and aquatic organisms. PFOS is known to affect lipid metabolism in adults and was found to be able to cross human placenta. However the effects of in utero exposure to the susceptibility of metabolic disorders in offspring have not yet been elucidated. In this study, pregnant CD-1 mice (F0 were fed with 0, 0.3 or 3 mg PFOS/kg body weight/day in corn oil by oral gavage daily throughout gestational and lactation periods. We investigated the immediate effects of perinatal exposure to PFOS on glucose metabolism in both maternal and offspring after weaning (PND 21. To determine if the perinatal exposure predisposes the risk for metabolic disorder to the offspring, weaned animals without further PFOS exposure, were fed with either standard or high-fat diet until PND 63. Fasting glucose and insulin levels were measured while HOMA-IR index and glucose AUCs were reported. Our data illustrated the first time the effects of the environmental equivalent dose of PFOS exposure on the disturbance of glucose metabolism in F1 pups and F1 adults at PND 21 and 63, respectively. Although the biological effects of PFOS on the elevated levels of fasting serum glucose and insulin levels were observed in both pups and adults of F1, the phenotypes of insulin resistance and glucose intolerance were only evident in the F1 adults. The effects were exacerbated under HFD, highlighting the synergistic action at postnatal growth on the development of metabolic disorders.

  6. C282Y-HFE gene variant affects cholesterol metabolism in human neuroblastoma cells.

    Science.gov (United States)

    Ali-Rahmani, Fatima; Huang, Michael A; Schengrund, C-L; Connor, James R; Lee, Sang Y

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.

  7. Lipids Reprogram Metabolism to Become a Major Carbon Source for Histone Acetylation

    DEFF Research Database (Denmark)

    McDonnell, Eoin; Crown, Scott B; Fox, Douglas B

    2016-01-01

    Cells integrate nutrient sensing and metabolism to coordinate proper cellular responses to a particular nutrient source. For example, glucose drives a gene expression program characterized by activating genes involved in its metabolism, in part by increasing glucose-derived histone acetylation....... Here, we find that lipid-derived acetyl-CoA is a major source of carbon for histone acetylation. Using (13)C-carbon tracing combined with acetyl-proteomics, we show that up to 90% of acetylation on certain histone lysines can be derived from fatty acid carbon, even in the presence of excess glucose...

  8. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    Science.gov (United States)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  9. Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions.

    Science.gov (United States)

    de Bruin, Wieke; Oerlemans, Frank; Wieringa, Bé

    2004-07-01

    Adenylate kinase (AK)-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy in cells of fully differentiated tissues with highly variable energy demand, such as muscle and brain. To investigate if AK isoenzymes have a comparable function in the energy-demand management of proliferating cells, AK1 and AK1beta were expressed in mouse neuroblastoma N2a cells and in human colon carcinoma SW480 cells. Glucose deprivation, galactose feeding, and metabolic inhibitor tests revealed a differential energy dependency for these two cell lines. N2a cells showed a faster proliferation rate and strongest coupling to mitochondrial activity, SW480 proliferation was more dependent on glycolysis. Despite these differences, ectopic expression of AK1 or AK1beta did not affect their growth characteristics under normal conditions. Also, no differential effects were seen under metabolic stress upon treatment with mitochondrial and glycolytic inhibitors in in vitro culture or in solid tumors grown in vivo. Although many intimate connections have been revealed between cell death and metabolism, our results suggest that AK1- or AK1beta-mediated high-energy phosphoryl transfer is not a modulating factor in the survival of tumor cells during episodes of metabolic crisis.

  10. Comprehensive assessment of variables affecting metabolic control in patients with type 2 diabetes mellitus in Jordan.

    Science.gov (United States)

    Qteishat, Rola Reyad; Ghananim, Abdel Rahman Al

    2016-01-01

    The aim of the study was to identify variables affecting metabolic control among diabetic patients treated at diabetes and endocrine clinic in Jordan. A total of 200 patients were studied by using a cross sectional study design. Data were collected from patients' medical records, glycemic control tests and prestructured questionnaires about variables that were potentially important based on previous researches and clinical judgment: Adherence evaluation, Patients' knowledge about drug therapy and non-pharmacological therapy, Anxiety and depression, Beliefs about diabetes treatment (benefits and barriers of treatment), Knowledge about treatment goals, Knowledge about diabetes, Self efficacy, and Social support. The mean (±SD) age was 53.5 (±10.38) years and mean HbA1c was 8.4 (±1.95). In the multivariate analysis, education level, and self efficacy found to have significantly independent association with metabolic control (Pknowledge and high self efficacy was significant in patients with good metabolic control. Emphasizing the importance of continuous educational programs and improving the self efficacy as well, could warrant achieving good metabolic control. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  11. Chromium in Drinking Water: Sources, Metabolism, and Cancer Risks

    Science.gov (United States)

    2011-01-01

    Drinking water supplies in many geographic areas contain chromium in the +3 and +6 oxidation states. Public health concerns are centered on the presence of hexavalent Cr that is classified as a known human carcinogen via inhalation. Cr(VI) has high environmental mobility and can originate from anthropogenic and natural sources. Acidic environments with high organic content promote the reduction of Cr(VI) to nontoxic Cr(III). The opposite process of Cr(VI) formation from Cr(III) also occurs, particularly in the presence of common minerals containing Mn(IV) oxides. Limited epidemiological evidence for Cr(VI) ingestion is suggestive of elevated risks for stomach cancers. Exposure of animals to Cr(VI) in drinking water induced tumors in the alimentary tract, with linear and supralinear responses in the mouse small intestine. Chromate, the predominant form of Cr(VI) at neutral pH, is taken up by all cells through sulfate channels and is activated nonenzymatically by ubiquitously present ascorbate and small thiols. The most abundant form of DNA damage induced by Cr(VI) is Cr-DNA adducts, which cause mutations and chromosomal breaks. Emerging evidence points to two-way interactions between DNA damage and epigenetic changes that collectively determine the spectrum of genomic rearrangements and profiles of gene expression in tumors. Extensive formation of DNA adducts, clear positivity in genotoxicity assays with high predictive values for carcinogenicity, the shape of tumor–dose responses in mice, and a biological signature of mutagenic carcinogens (multispecies, multisite, and trans-sex tumorigenic potency) strongly support the importance of the DNA-reactive mutagenic mechanisms in carcinogenic effects of Cr(VI). Bioavailability results and kinetic considerations suggest that 10–20% of ingested low-dose Cr(VI) escapes human gastric inactivation. The directly mutagenic mode of action and the incompleteness of gastric detoxification argue against a threshold in low

  12. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances.

    Science.gov (United States)

    Du, Baoguo; Kreuzwieser, Jürgen; Dannenmann, Michael; Junker, Laura Verena; Kleiber, Anita; Hess, Moritz; Jansen, Kirstin; Eiblmeier, Monika; Gessler, Arthur; Kohnle, Ulrich; Ensminger, Ingo; Rennenberg, Heinz; Wildhagen, Henning

    2018-01-01

    The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats.

  13. Phytosterol supplementation does not affect plasma antioxidant capacity in patients with metabolic syndrome.

    Science.gov (United States)

    Sialvera, Theodora-Eirini; Koutelidakis, Antonios E; Richter, Dimitris J; Yfanti, Georgia; Kapsokefalou, Maria; Micha, Renata; Goumas, Giorgos; Diamantopoulos, Emmanouil; Zampelas, Antonis

    2013-02-01

    Several studies have observed decreased levels of lipophilic antioxidants after supplementation with phytosterols and stanols. The aim of this study was to examine the effect of phytosterol supplementation on plasma total antioxidant capacity in patients with metabolic syndrome. In a parallel arm, randomized placebo-controlled design, 108 patients with metabolic syndrome were assigned to consume yogurt beverage which provided 4 g of phytosterols per day or yogurt beverage without phytosterols. The duration of the study was 2 months and the patients in both groups followed their habitual westernized type diet. Blood samples were drawn at baseline and after 2 months, and the total antioxidant capacity of plasma was measured using the ferric reducing antioxidant power of plasma and oxygen radical absorbance capacity assays. After 2 months of intervention, plasma total antioxidant capacity did not differ between and within the intervention and the control groups. Phytosterol supplementation does not affect plasma antioxidant status.

  14. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera).

    Science.gov (United States)

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2017-03-07

    Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera , detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food.

  15. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Angela M Liu

    Full Text Available In contrast to normal differentiated cells that depend on mitochondrial oxidative phosphorylation for energy production, cancer cells have evolved to utilize aerobic glycolysis (Warburg's effect, with benefit of providing intermediates for biomass production. MicroRNA-122 (miR-122 is highly expressed in normal liver tissue regulating a wide variety of biological processes including cellular metabolism, but is reduced in hepatocellular carcinoma (HCC. Overexpression of miR-122 was shown to inhibit cancer cell proliferation, metastasis, and increase chemosensitivity, but its functions in cancer metabolism remains unknown. The present study aims to identify the miR-122 targeted genes and to investigate the associated regulatory mechanisms in HCC metabolism. We found the ectopic overexpression of miR-122 affected metabolic activities of HCC cells, evidenced by the reduced lactate production and increased oxygen consumption. Integrated gene expression analysis in a cohort of 94 HCC tissues revealed miR-122 level tightly associated with a battery of glycolytic genes, in which pyruvate kinase (PK gene showed the strongest anti-correlation coefficient (Pearson r = -0.6938, p = <0.0001. In addition, reduced PK level was significantly associated with poor clinical outcomes of HCC patients. We found isoform M2 (PKM2 is the dominant form highly expressed in HCC and is a direct target of miR-122, as overexpression of miR-122 reduced both the mRNA and protein levels of PKM2, whereas PKM2 re-expression abrogated the miR-122-mediated glycolytic activities. The present study demonstrated the regulatory role of miR-122 on PKM2 in HCC, having an implication of therapeutic intervention targeting cancer metabolic pathways.

  16. Effect of supplemental protein source during the winter on pre- and postpartum glucose metabolism

    Science.gov (United States)

    Circulating serum glucose concentrations as well as glucose utilization have been shown to be affected by forage quality. Supplemental protein provided to grazing range cows while consuming low quality forage may improve glucose metabolism. The objective of our study was to determine the effects of ...

  17. The glycaemic index values of foods containing fructose are affected by metabolic differences between subjects.

    Science.gov (United States)

    Wolever, T M S; Jenkins, A L; Vuksan, V; Campbell, J

    2009-09-01

    Glycaemic responses are influenced by carbohydrate absorption rate, type of monosaccharide absorbed and the presence of fat; the effect of some of these factors may be modulated by metabolic differences between subjects. We hypothesized that glycaemic index (GI) values are affected by the metabolic differences between subjects for foods containing fructose or fat, but not for starchy foods. The GI values of white bread (WB), fruit leather (FL) and chocolate-chip cookies (CCC) (representing starch, fructose and fat, respectively) were determined in subjects (n=77) recruited to represent all 16 possible combinations of age (40 years), sex (male, female), ethnicity (Caucasian, non-Caucasian) and body mass index (BMI) (25 kg/m2) using glucose as the reference. At screening, fasting insulin, lipids, c-reactive protein (CRP), aspartate transaminase (AST) and waist circumference (WC) were measured. There were no significant main effects of age, sex, BMI or ethnicity on GI, but there were several food x subject-factor interactions. Different factors affected each food's area under the curve (AUC) and GI. The AUC after oral glucose was related to ethnicity, age and triglycerides (r 2=0.27); after WB to ethnicity, age, triglycerides, sex and CRP (r 2=0.43); after CCC to age and weight (r 2=0.18); and after FL to age and CRP (r 2=0.12). GI of WB was related to ethnicity (r 2=0.12) and of FL to AST, insulin and WC (r 2=0.23); but there were no significant correlations for CCC. The GI values of foods containing fructose might be influenced by metabolic differences between -subjects, whereas the GI of starchy foods might be affected by ethnicity. However, the proportion of variation explained by subject factors is small.

  18. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    Science.gov (United States)

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  19. Toxicokinetics of the food-toxin IQ in human placental perfusion is not affected by ABCG2 or xenobiotic metabolism

    DEFF Research Database (Denmark)

    Immonen, E; Kummu, M; Petsalo, A

    2010-01-01

    Metabolizing enzymes and transporters affect toxicokinetics of foreign compounds (e.g. drugs and carcinogens) in human placenta. The heterocyclic amine, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is a food-borne carcinogen being metabolically activated by cytochrome P450 (CYP) enzymes, especial...

  20. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism.

    Science.gov (United States)

    Mourtzakis, M; Graham, T E; González-Alonso, J; Saltin, B

    2008-08-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (PTCA cycle intermediates. In the UT thigh, peak exercise (vs. rest) induced an increase in fumarate (0.33+/-0.07 vs. 0.02+/-0.01 mmol/kg dry wt (dw), PTCA cycle, glutamate and TCA cycle intermediates do not directly affect VO2peak in either trained or untrained muscle.

  1. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism

    Science.gov (United States)

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-09-01

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L-1, reaching 80% and 100% inhibition at 10 mg L-1 and 50 mg L-1, respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry.

  2. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes.

    Science.gov (United States)

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2016-05-11

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species. © 2016 The Author(s).

  3. DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance.

    Science.gov (United States)

    Caron, Alexandre; Labbé, Sébastien M; Mouchiroud, Mathilde; Huard, Renaud; Lanfray, Damien; Richard, Denis; Laplante, Mathieu

    2016-06-01

    We have recently demonstrated that specific overexpression of DEP-domain containing mTOR-interacting protein (DEPTOR) in the mediobasal hypothalamus (MBH) protects mice against high-fat diet-induced obesity, revealing DEPTOR as a significant contributor to energy balance regulation. On the basis of evidence that DEPTOR is expressed in the proopiomelanocortin (POMC) neurons of the MBH, the present study aimed to investigate whether these neurons mediate the metabolic effects of DEPTOR. Here, we report that specific DEPTOR overexpression in POMC neurons does not recapitulate any of the phenotypes observed when the protein was overexpressed in the MBH. Unlike the previous model, mice overexpressing DEPTOR only in POMC neurons 1) did not show differences in feeding behavior, 2) did not exhibit changes in locomotion activity and oxygen consumption, 3) did not show an improvement in systemic glucose metabolism, and 4) were not resistant to high-fat diet-induced obesity. These results support the idea that other neuronal populations are responsible for these phenotypes. Nonetheless, we observed a mild elevation in fasting blood glucose, insulin resistance, and alterations in liver glucose and lipid homeostasis in mice overexpressing DEPTOR in POMC neurons. Taken together, these results show that DEPTOR overexpression in POMC neurons does not affect energy balance regulation but could modulate metabolism through a brain-liver connection. Copyright © 2016 the American Physiological Society.

  4. Xenobiotic-contaminated diets affect hepatic lipid metabolism: Implications for liver steatosis in Sparus aurata juveniles

    Energy Technology Data Exchange (ETDEWEB)

    Maradonna, F.; Nozzi, V. [Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona (Italy); Santangeli, S. [Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona (Italy); INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Traversi, I. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università di Genova, 16132 Genova (Italy); Gallo, P. [INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Napoli (Italy); Fattore, E. [Dipartimento Ambiente e Salute, IRCCS–Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano (Italy); Mita, D.G. [INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Mandich, A. [INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università di Genova, 16132 Genova (Italy); Carnevali, O., E-mail: o.carnevali@univpm.it [Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona (Italy); INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy)

    2015-10-15

    Highlights: • Diets contaminated with NP, BPA, or t-OP affect lipid metabolism. • Xenobiotic-contaminated diets induce metabolic disorders. • Hepatic metabolic disorders may be related to environmental pollution. - Abstract: The metabolic effects induced by feed contaminated with a lower or a higher concentration of -nonylpnenol (NP), 4-tert-octylphenol (t-OP) or bisphenol A (BPA), three environmental endocrine disruptors, were assessed in juvenile sea bream liver. Histological analysis demonstrated that all these three xenobiotics induced hepatic lipid accumulation and steatosis. These findings prompted analysis of the expression of the major molecules involved in lipid metabolism: peroxisome proliferator activated receptors (which is encoded by ppars), fatty acid synthase (encoded by fas), lipoprotein lipase (encoded by lpl) and hormone-sensitive lipase (encoded by hsl). The enzymes encoded by ppars and fas are in fact responsible for lipid accumulation, whereas lpl- and hsl- encoded proteins play a pivotal role in fat mobilization. The three xenobiotics modulated ppar mRNA expression: pparα mRNA expression was induced by the higher dose of each contaminant; pparβ mRNA expression was upregulated by the lower doses and in BPA2 fish ppary mRNA overexpression was induced by all pollutants. These data agreed with the lipid accumulation profiles documented by histology. Fas mRNA levels were modulated by the two NP doses and the higher BPA concentration. Lpl mRNA was significantly upregulated in all experimental groups except for BPA1 fish while hsl mRNA was significantly downregulated in all groups except for t-OP2 and BPA1 fish. The plasma concentrations of cortisol, the primary stress biomarker, were correlated with the levels of pepck mRNA level. This gene encodes phosphoenolpyruvate carboxykinase which is one of the key enzymes of gluconeogenesis. Pepck mRNA was significantly overexpressed in fish exposed to NP2 and both t-OP doses. Finally, the genes

  5. Xenobiotic-contaminated diets affect hepatic lipid metabolism: Implications for liver steatosis in Sparus aurata juveniles

    International Nuclear Information System (INIS)

    Maradonna, F.; Nozzi, V.; Santangeli, S.; Traversi, I.; Gallo, P.; Fattore, E.; Mita, D.G.; Mandich, A.; Carnevali, O.

    2015-01-01

    Highlights: • Diets contaminated with NP, BPA, or t-OP affect lipid metabolism. • Xenobiotic-contaminated diets induce metabolic disorders. • Hepatic metabolic disorders may be related to environmental pollution. - Abstract: The metabolic effects induced by feed contaminated with a lower or a higher concentration of -nonylpnenol (NP), 4-tert-octylphenol (t-OP) or bisphenol A (BPA), three environmental endocrine disruptors, were assessed in juvenile sea bream liver. Histological analysis demonstrated that all these three xenobiotics induced hepatic lipid accumulation and steatosis. These findings prompted analysis of the expression of the major molecules involved in lipid metabolism: peroxisome proliferator activated receptors (which is encoded by ppars), fatty acid synthase (encoded by fas), lipoprotein lipase (encoded by lpl) and hormone-sensitive lipase (encoded by hsl). The enzymes encoded by ppars and fas are in fact responsible for lipid accumulation, whereas lpl- and hsl- encoded proteins play a pivotal role in fat mobilization. The three xenobiotics modulated ppar mRNA expression: pparα mRNA expression was induced by the higher dose of each contaminant; pparβ mRNA expression was upregulated by the lower doses and in BPA2 fish ppary mRNA overexpression was induced by all pollutants. These data agreed with the lipid accumulation profiles documented by histology. Fas mRNA levels were modulated by the two NP doses and the higher BPA concentration. Lpl mRNA was significantly upregulated in all experimental groups except for BPA1 fish while hsl mRNA was significantly downregulated in all groups except for t-OP2 and BPA1 fish. The plasma concentrations of cortisol, the primary stress biomarker, were correlated with the levels of pepck mRNA level. This gene encodes phosphoenolpyruvate carboxykinase which is one of the key enzymes of gluconeogenesis. Pepck mRNA was significantly overexpressed in fish exposed to NP2 and both t-OP doses. Finally, the genes

  6. Litter environment affects behavior and brain metabolic activity of adult knockout mice

    Directory of Open Access Journals (Sweden)

    David Crews

    2009-08-01

    Full Text Available In mammals, the formative environment for social and anxiety-related behaviors is the family unit; in the case of rodents, this is the litter and the mother-young bond. A deciding factor in this environment is the sex ratio of the litter and, in the case of mice lacking functional copies of gene(s, the ratio of the various genotypes in the litter. Both Sex and Genotype ratios of the litter affect the nature and quality of the individual’s behavior later in adulthood, as well as metabolic activity in brain nuclei that underlie these behaviors. Mice were raised in litters reconstituted shortly after to birth to control for Sex ratio and Genotype ratio (wild type pups vs. pups lacking a functional estrogen receptor α. In both males and females the Sex and Genotype of siblings in the litter affected aggressive behaviors as well as patterns of metabolic activity in limbic nuclei in the social behavior network later in adulthood. Further, this pattern in males varied depending upon the Genotype of their brothers and sisters. Principal Components Analysis revealed two components comprised of several amygdalar and hypothalamic nuclei; the VMH showed strong correlations in both clusters, suggesting its pivotal nature in the organization of two neural networks.

  7. Nonsense mutations in the human β-globin gene affect mRNA metabolism

    International Nuclear Information System (INIS)

    Baserga, S.J.; Benz, E.J. Jr.

    1988-01-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human α- and β-globin genes. Studies on mRNA isolated from patients with β 0 -thalassemia have shown that for both the β-17 and the β-39 mutations less than normal levels of β-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human β-globin mRNA). In vitro studies using the cloned β-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human β-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation

  8. A Systematic Review of the Effects of Plant Compared with Animal Protein Sources on Features of Metabolic Syndrome.

    Science.gov (United States)

    Chalvon-Demersay, Tristan; Azzout-Marniche, Dalila; Arfsten, Judith; Egli, Léonie; Gaudichon, Claire; Karagounis, Leonidas G; Tomé, Daniel

    2017-03-01

    Dietary protein may play an important role in the prevention of metabolic dysfunctions. However, the way in which the protein source affects these dysfunctions has not been clearly established. The aim of the current systematic review was to compare the impact of plant- and animal-sourced dietary proteins on several features of metabolic syndrome in humans. The PubMed database was searched for both chronic and acute interventional studies, as well as observational studies, in healthy humans or those with metabolic dysfunctions, in which the impact of animal and plant protein intake was compared while using the following variables: cholesterolemia and triglyceridemia, blood pressure, glucose homeostasis, and body composition. Based on data extraction, we observed that soy protein consumption (with isoflavones), but not soy protein alone (without isoflavones) or other plant proteins (pea and lupine proteins, wheat gluten), leads to a 3% greater decrease in both total and LDL cholesterol compared with animal-sourced protein ingestion, especially in individuals with high fasting cholesterol concentrations. This observation was made when animal proteins were provided as a whole diet rather than given supplementally. Some observational studies reported an inverse association between plant protein intake and systolic and diastolic blood pressure, but this was not confirmed by intervention studies. Moreover, plant protein (wheat gluten, soy protein) intake as part of a mixed meal resulted in a lower postprandial insulin response than did whey. This systematic review provides some evidence that the intake of soy protein associated with isoflavones may prevent the onset of risk factors associated with cardiovascular disease, i.e., hypercholesterolemia and hypertension, in humans. However, we were not able to draw any further conclusions from the present work on the positive effects of plant proteins relating to glucose homeostasis and body composition. © 2017 American

  9. Location of odor sources and the affected population in Imperial County, California

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, J.L.

    1981-08-01

    This report is divided into four sections. The first two sections contain general background information on Imperial County. The third section is a general discussion of odor sources in Imperial County, and the fourth maps the specific odor sources, the expected areas of perception, and the affected populations. this mapping is done for the Imperial Valley and each of the four Imperial County KGRA's (Known Geothermal Resource Areas) where odor from the development of the geothermal energy may affect population.

  10. Chronic contamination with 137Cesium affects Vitamin D3 metabolism in rats

    International Nuclear Information System (INIS)

    Tissandie, E.; Gueguen, Y.; Lobaccaro, J.M.A.; Aigueperse, J.; Gourmelon, P.; Paquet, F.; Souidi, M.

    2006-01-01

    Twenty years after Chernobyl disaster, many people are still chronically exposed to low dose of 137 Cs, mainly through the food consumption. A large variety of diseases have been described in highly exposed people with 137 Cs, which include bone disorders. The aim of this work was to investigate the biological effects of a chronic exposure to 137 Cs on Vitamin D 3 metabolism, a hormone essential in bone homeostasis. Rats were exposed to 137 Cs in their drinking water for 3 months at a dose of 6500 Bq/l (approximately 150 Bq/rat/day), a similar concentration ingested by the population living in contaminated territories in the former USSR countries. Cytochromes P450 enzymes involved in Vitamin D 3 metabolism, related nuclear receptors and Vitamin D 3 target genes were assessed by real time PCR in liver, kidney and brain. Vitamin D, PTH, calcium and phosphate levels were measured in plasma. An increase in the expression level of cyp2r1 (40%, p 137 Cs-exposed rats. However a significant decrease of Vitamin D (1,25(OH)D 3 ) plasma level (53%, p = 0.02) was observed. In brain, cyp2r1 mRNA level was decreased by 20% (p 137 Cs contamination. In conclusion, this study showed for the first time that chronic exposure with post-accidental doses of 137 Cs affects Vitamin D 3 active form level and induces molecular modifications of CYPs enzymes involved its metabolism in liver and brain, without leading to mineral homeostasis disorders

  11. OptFlux: an open-source software platform for in silico metabolic engineering

    DEFF Research Database (Denmark)

    Rocha, I.; Maia, P.; Evangelista, P.

    2010-01-01

    to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. Results: OptFlux is an open-source and modular...... available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community. Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network...

  12. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature.

    Science.gov (United States)

    Norambuena, Fernando; Morais, Sofia; Emery, James A; Turchini, Giovanni M

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  13. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature.

    Directory of Open Access Journals (Sweden)

    Fernando Norambuena

    Full Text Available Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3, with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher

  14. Using open source computational tools for predicting human metabolic stability and additional absorption, distribution, metabolism, excretion, and toxicity properties.

    Science.gov (United States)

    Gupta, Rishi R; Gifford, Eric M; Liston, Ted; Waller, Chris L; Hohman, Moses; Bunin, Barry A; Ekins, Sean

    2010-11-01

    Ligand-based computational models could be more readily shared between researchers and organizations if they were generated with open source molecular descriptors [e.g., chemistry development kit (CDK)] and modeling algorithms, because this would negate the requirement for proprietary commercial software. We initially evaluated open source descriptors and model building algorithms using a training set of approximately 50,000 molecules and a test set of approximately 25,000 molecules with human liver microsomal metabolic stability data. A C5.0 decision tree model demonstrated that CDK descriptors together with a set of Smiles Arbitrary Target Specification (SMARTS) keys had good statistics [κ = 0.43, sensitivity = 0.57, specificity = 0.91, and positive predicted value (PPV) = 0.64], equivalent to those of models built with commercial Molecular Operating Environment 2D (MOE2D) and the same set of SMARTS keys (κ = 0.43, sensitivity = 0.58, specificity = 0.91, and PPV = 0.63). Extending the dataset to ∼193,000 molecules and generating a continuous model using Cubist with a combination of CDK and SMARTS keys or MOE2D and SMARTS keys confirmed this observation. When the continuous predictions and actual values were binned to get a categorical score we observed a similar κ statistic (0.42). The same combination of descriptor set and modeling method was applied to passive permeability and P-glycoprotein efflux data with similar model testing statistics. In summary, open source tools demonstrated predictive results comparable to those of commercial software with attendant cost savings. We discuss the advantages and disadvantages of open source descriptors and the opportunity for their use as a tool for organizations to share data precompetitively, avoiding repetition and assisting drug discovery.

  15. The degree of saturation of fatty acids in dietary fats does not affect the metabolic response to ingested carbohydrate.

    Science.gov (United States)

    Radulescu, Angela; Hassan, Youssef; Gannon, Mary C; Nuttall, Frank Q

    2009-06-01

    We are interested in the metabolic response to ingested macronutrients, and the interaction between macronutrients in meals. Previously, we and others reported that the postprandial rise in serum glucose following ingestion of 50 g carbohydrate, consumed as potato, was markedly attenuated when butter was ingested with the carbohydrate, whereas the serum insulin response was little affected by the combination. To determine whether a similar response would be observed with three other dietary fats considerably different in fatty acid composition. Nine healthy subjects received lard, twelve received olive oil and eleven received safflower oil as a test meal. The subjects ingested meals of 25 g fat (lard, olive oil or safflower oil), 50 g CHO (potato), 25 g fat with 50 g CHO or water only. Glucose, C peptide, insulin, triacylglycerols and nonesterified fatty acids were determined. Ingestion of lard, olive oil or safflower oil with potato did not affect the quantitative glucose and insulin responses to potato alone. However, the responses were delayed, diminished and prolonged. All three fats when ingested alone modestly increased the insulin concentration when compared to ingestion of water alone. When either lard, olive oil or safflower oil was ingested with the potato, there was an accelerated rise in triacylglycerols. This was most dramatic with safflower oil. Our data indicate that the glucose and insulin response to butter is unique when compared with the three other fat sources varying in their fatty acid composition.

  16. Food odors trigger an endocrine response that affects food ingestion and metabolism.

    Science.gov (United States)

    Lushchak, Oleh V; Carlsson, Mikael A; Nässel, Dick R

    2015-08-01

    Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.

  17. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    DEFF Research Database (Denmark)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle...... HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  18. A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats

    Directory of Open Access Journals (Sweden)

    Motoyama Caio SM

    2011-09-01

    Full Text Available Abstract Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H or the alternation of chow (C and an H diet (CH regimen induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age.

  19. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis.

    Science.gov (United States)

    Ward, Diane M; Chen, Opal S; Li, Liangtao; Kaplan, Jerry; Bhuiyan, Shah Alam; Natarajan, Selvamuthu K; Bard, Martin; Cox, James E

    2018-05-17

    Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial Fe metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29. Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increase mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Effect of altered sink:source ratio on photosynthetic metabolism of source leaves

    International Nuclear Information System (INIS)

    Plaut, Z.; Mayoral, M.L.; Reinhold, L.

    1987-01-01

    When seven crop species were grown under identical environmental conditions, decreased sink:source ratio led to a decreased photosynthetic rate within 1 to 3 days in Cucumis sativus L., Gossypium hirsutum L., and Raphanus sativus L., but not in Capsicum annuum L., Solanum melongena L., Phaseolus vulgaris L., or Ricinus communis L. The decrease was not associated with stomatal closure. In cotton and cucumbers, sink removal led to an increase in starch and sugar content, in glucose 6-phosphate and fructose 6-phosphate pools, and in the proportion of 14 C detected in sugar phosphates and UDPglucose following 14 CO 2 supply. When mannose was supplied to leaf discs to sequester cytoplasmic inorganic phosphate, promotion of starch synthesis, and inhibition of CO 2 fixation, were observed in control discs, but not in discs from treated plants. Phosphate buffer reduced starch synthesis in the latter, but not the former discs. The findings suggest that sink removal led to a decreased ratio inorganic phosphate:phosphorylated compounds. In beans 14 C in sugar phosphates increased following sink removal, but without sucrose accumulation, suggesting tighter feedback control of sugar level. Starch accumulated to higher levels than in the other plants, but CO 2 fixation rate was constant for several days

  1. Endocrine and metabolic changes in transition dairy cows are affected by prepartum infusions of a serotonin precursor

    DEFF Research Database (Denmark)

    Hernandez Castellano, Lorenzo E; Hernandez, Laura L.; Sauerwein, Helga

    2017-01-01

    Serotonin (5-HT) has been shown to be involved in calcium homeostasis, modulating calcium concentration in blood. In addition, 5-HT participates in a variety of metabolic pathways, mainly through the modulation of glucose and lipid metabolism. The hypothesis of the present study...... was that the prepartum administration of 5-hydroxy-l-tryptophan (5-HTP), a 5-HT precursor, would affect endocrine systems related to calcium homeostasis, and interact with other endocrine and metabolic pathways during the transition period. In this study, 20 Holstein dairy cows were randomly assigned to 2 experimental...... homeostasis independent of PTH. The lack of treatment effects on IgG and on other hormones and metabolites indicates that 5-HTP did not affect these other metabolic pathways and the IgG concentration during the transition period....

  2. OptFlux: an open-source software platform for in silico metabolic engineering.

    Science.gov (United States)

    Rocha, Isabel; Maia, Paulo; Evangelista, Pedro; Vilaça, Paulo; Soares, Simão; Pinto, José P; Nielsen, Jens; Patil, Kiran R; Ferreira, Eugénio C; Rocha, Miguel

    2010-04-19

    Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. OptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes. OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph. The OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization

  3. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  4. The medical food Souvenaid affects brain phospholipid metabolism in mild Alzheimer's disease: results from a randomized controlled trial

    OpenAIRE

    Rijpma, A.; Graaf, M. van der; Lansbergen, M.M.; Meulenbroek, O.V.; Cetinyurek-Yavuz, A.; Sijben, J.W.; Heerschap, A.; Olde Rikkert, M.G.M.

    2017-01-01

    Background Synaptic dysfunction contributes to cognitive impairment in Alzheimer?s disease and may be countered by increased intake of nutrients that target brain phospholipid metabolism. In this study, we explored whether the medical food Souvenaid affects brain phospholipid metabolism in patients with Alzheimer?s disease. Methods Thirty-four drug-naive patients with mild Alzheimer?s disease (Mini Mental State Examination score ?20) were enrolled in this exploratory, double-blind, randomized...

  5. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch......Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...

  6. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...... in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch...

  7. Assessment of chitosan-affected metabolic response by peroxisome proliferator-activated receptor bioluminescent imaging-guided transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Kao

    Full Text Available Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholesteremic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice, which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR, a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo.

  8. Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio).

    Science.gov (United States)

    Al-Habsi, Aziz A; Massarsky, Andrey; Moon, Thomas W

    2016-09-01

    The commonly used lipid-lowering pharmaceuticals gemfibrozil (GEM) and atorvastatin (ATV) are detected in the aquatic environment; however, their potential effects on non-target fish species are yet to be fully understood. This study examined the effects of GEM and/or ATV on female and male adult zebrafish after a 30d dietary exposure. The exposure led to changes in several biochemical parameters, including reduction in cholesterol, triglycerides, cortisol, testosterone, and estradiol. Changes in cholesterol and triglycerides were also associated with changes in transcript levels of key genes involved with cholesterol and lipid regulation, including SREBP2, HMGCR1, PPARα, and SREBP1. We also noted higher CYP3A65 and atrogin1 mRNA levels in drug-treated male fish. Sex differences were apparent in some of the examined parameters at both biochemical and molecular levels. This study supports these drugs affecting cholesterol metabolism and steroid production in adult zebrafish. We conclude that the reduction in cortisol may impair the ability of these fish to mount a suitable stress response, whereas the reduction of sex steroids may negatively affect reproduction. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Road transport and diet affect metabolic response to exercise in horses.

    Science.gov (United States)

    Connysson, M; Muhonen, S; Jansson, A

    2017-11-01

    This study investigated the effects of transport and diet on metabolic response during a subsequent race-like test in Standardbred horses in training fed a forage-only diet and a 50:50 forage:oats diet. Six trained and raced Standardbred trotter mares were used. Two diets, 1 forage-only diet (FONLY) and 1 diet with 50% of DM intake from forage and 50% from oats (FOATS), were fed for two 29-d periods in a crossover design. At Day 21, the horses were subjected to transport for 100 km before and after they performed an exercise test (transport test [TT]). At Day 26, the horses performed a control test (CT), in which they were kept in their stall before and after the exercise test. Blood samples were collected throughout the study, and heart rate and water intake were recorded. Heart rate and plasma cortisol, glucose, and NEFA concentrations were greater for the TT than for the CT ( = 0.008, = 0.020, = 0.010, and = 0.0002, respectively) but were not affected by diet. Plasma acetate concentration was lower during the TT than during the CT ( = 0.034) and greater for the FONLY than for the FOATS ( = 0.003). There were no overall effects of the TT compared with the CT on total plasma protein concentration (TPP), but TPP was lower with the FONLY than with the FOATS ( = 0.016). There was no overall effect of the TT compared with the CT on water intake, but water intake was greater with the FONLY than the FOATS ( = 0.011). There were no overall effects of transport or diet on BW, plasma lactate, or plasma urea concentration. It was concluded that both transport and diet affect metabolic response during exercise in horses. Aerobic energy supply was most likely elevated by transportation and by the FONLY. The FONLY also decreased exercise-induced effects on extracellular fluid regulation. These results highlight the importance of experimental design in nutrition studies. If the aim is to examine how a diet affects exercise response in competition horses, transport should

  10. Acidosis, but Not Alkalosis, Affects Anaerobic Metabolism and Performance in a 4-km Time Trial.

    Science.gov (United States)

    Correia-Oliveira, Carlos Rafaell; Lopes-Silva, João Paulo; Bertuzzi, Romulo; McConell, Glenn K; Bishop, David John; Lima-Silva, Adriano Eduardo; Kiss, Maria Augusta Peduti Dal'molin

    2017-09-01

    This study aimed to determine the effect of preexercise metabolic acidosis and alkalosis on power output (PO) and aerobic and anaerobic energy expenditure during a 4-km cycling time trial (TT). Eleven recreationally trained cyclists (V˙O2peak 54.1 ± 9.3 mL·kg·min) performed a 4-km TT 100 min after ingesting in a double-blind matter 0.15 g·kg of body mass of ammonium chloride (NH4Cl, acidosis), 0.3 g·kg of sodium bicarbonate (NaHCO3, alkalosis), or 0.15 g·kg of CaCO3 (placebo). A preliminary study (n = 7) was conducted to establish the optimal doses to promote the desirable preexercise blood pH alterations without gastrointestinal distress. Data for PO, aerobic and anaerobic energy expenditure, and blood and respiratory parameters were averaged for each 1 km and compared between conditions using two-way repeated-measures ANOVA (condition and distance factors). Gastrointestinal discomfort was analyzed qualitatively. Compared with placebo (pH 7.37 ± 0.02, [HCO3]: 27.5 ± 2.6 mmol·L), the NaHCO3 ingestion resulted in a preexercise blood alkalosis (pH +0.06 ± 0.04, [HCO3]: +4.4 ± 2.0 mmol·L, P 0.05). Minimal gastrointestinal distress was noted in all conditions. Preexercise acidosis, but not alkalosis, affects anaerobic metabolism and PO during a 4-km cycling TT.

  11. 40 CFR 63.5985 - What are my alternatives for meeting the emission limits for tire production affected sources?

    Science.gov (United States)

    2010-07-01

    ... the emission limits for tire production affected sources? 63.5985 Section 63.5985 Protection of... Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Production Affected Sources § 63.5985 What are my alternatives for meeting the emission limits for tire production affected sources? You must use...

  12. 40 CFR 63.7887 - What are the general standards I must meet for my affected equipment leak sources?

    Science.gov (United States)

    2010-07-01

    ... meet for my affected equipment leak sources? 63.7887 Section 63.7887 Protection of Environment... affected equipment leak sources? (a) You must control HAP emissions from equipment leaks from each equipment component that is part of the affected source by implementing leak detection and control measures...

  13. Factors affecting the repeatability of gamma camera calibration for quantitative imaging applications using a sealed source

    International Nuclear Information System (INIS)

    Anizan, N; Wahl, R L; Frey, E C; Wang, H; Zhou, X C

    2015-01-01

    Several applications in nuclear medicine require absolute activity quantification of single photon emission computed tomography images. Obtaining a repeatable calibration factor that converts voxel values to activity units is essential for these applications. Because source preparation and measurement of the source activity using a radionuclide activity meter are potential sources of variability, this work investigated instrumentation and acquisition factors affecting repeatability using planar acquisition of sealed sources. The calibration factor was calculated for different acquisition and geometry conditions to evaluate the effect of the source size, lateral position of the source in the camera field-of-view (FOV), source-to-camera distance (SCD), and variability over time using sealed Ba-133 sources. A small region of interest (ROI) based on the source dimensions and collimator resolution was investigated to decrease the background effect. A statistical analysis with a mixed-effects model was used to evaluate quantitatively the effect of each variable on the global calibration factor variability. A variation of 1 cm in the measurement of the SCD from the assumed distance of 17 cm led to a variation of 1–2% in the calibration factor measurement using a small disc source (0.4 cm diameter) and less than 1% with a larger rod source (2.9 cm diameter). The lateral position of the source in the FOV and the variability over time had small impacts on calibration factor variability. The residual error component was well estimated by Poisson noise. Repeatability of better than 1% in a calibration factor measurement using a planar acquisition of a sealed source can be reasonably achieved. The best reproducibility was obtained with the largest source with a count rate much higher than the average background in the ROI, and when the SCD was positioned within 5 mm of the desired position. In this case, calibration source variability was limited by the quantum

  14. Gustatory Perception and Fat Body Energy Metabolism Are Jointly Affected by Vitellogenin and Juvenile Hormone in Honey Bees

    OpenAIRE

    Wang, Ying; Brent, Colin S.; Fennern, Erin; Amdam, Gro V.

    2012-01-01

    Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and e...

  15. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    DEFF Research Database (Denmark)

    de Castro Barbosa, Thais; Ingerslev, Lars R; Alm, Petter S

    2016-01-01

    OBJECTIVES: Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. METHODS: F0-male rats fed either HFD or chow diet......1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. CONCLUSION: Our results provide insight...... into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations....

  16. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2012-06-01

    Full Text Available Honey bees (Apis mellifera provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses usually feed the brood and other adult bees inside the nest, while older bees (foragers forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg and juvenile hormone (JH. However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1, the adipokinetic hormone receptor (AKHR, and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor. Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH, and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  17. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    Science.gov (United States)

    Wang, Ying; Brent, Colin S; Fennern, Erin; Amdam, Gro V

    2012-06-01

    Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor). Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  18. Metabolic syndrome prevalence in different affective temperament profiles in bipolar-I disorder

    Directory of Open Access Journals (Sweden)

    Kursat Altinbas

    2013-06-01

    Full Text Available Objective: Temperament originates in the brain structure, and individual differences are attributable to neural and physiological function differences. It has been suggested that temperament is associated with metabolic syndrome (MetS markers, which may be partly mediated by lifestyle and socioeconomic status. Therefore, we aim to compare MetS prevalence between different affective temperamental profiles for each season in bipolar patients. Methods: Twenty-six bipolar type-I patients of a specialized outpatient mood disorder unit were evaluated for MetS according to new definition proposed by the International Diabetes Federation in the four seasons of a year. Temperament was assessed using the Temperament Evaluation of Memphis, Pisa, Paris and San Diego - autoquestionnaire version (TEMPS-A. Results: The proportions of MetS were 19.2, 23.1, 34.6, and 38.5% in the summer, fall, spring, and winter, respectively. Only depressive temperament scores were higher (p = 0.002 during the winter in patients with MetS. Conclusion: These data suggest that depressive temperament profiles may predispose an individual to the development of MetS in the winter.

  19. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    Directory of Open Access Journals (Sweden)

    Anastasia V. Ponasenko

    2017-01-01

    Full Text Available Infective endocarditis (IE is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE.

  20. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    Science.gov (United States)

    Rutkovskaya, Natalia V.; Kondyukova, Natalia V.; Odarenko, Yuri N.; Kazachek, Yana V.; Tsepokina, Anna V.; Barbarash, Leonid S.

    2017-01-01

    Infective endocarditis (IE) is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE. PMID:28659664

  1. Acute Consumption of Flavan-3-ol-Enriched Dark Chocolate Affects Human Endogenous Metabolism.

    Science.gov (United States)

    Ostertag, Luisa M; Philo, Mark; Colquhoun, Ian J; Tapp, Henri S; Saha, Shikha; Duthie, Garry G; Kemsley, E Kate; de Roos, Baukje; Kroon, Paul A; Le Gall, Gwénaëlle

    2017-07-07

    Flavan-3-ols and methylxanthines have potential beneficial effects on human health including reducing cardiovascular risk. We performed a randomized controlled crossover intervention trial to assess the acute effects of consumption of flavan-3-ol-enriched dark chocolate, compared with standard dark chocolate and white chocolate, on the human metabolome. We assessed the metabolome in urine and blood plasma samples collected before and at 2 and 6 h after consumption of chocolates in 42 healthy volunteers using a nontargeted metabolomics approach. Plasma samples were assessed and showed differentiation between time points with no further separation among the three chocolate treatments. Multivariate statistics applied to urine samples could readily separate the postprandial time points and distinguish between the treatments. Most of the markers responsible for the multivariate discrimination between the chocolates were of dietary origin. Interestingly, small but significant level changes were also observed for a subset of endogenous metabolites. 1 H NMR revealed that flavan-3-ol-enriched dark chocolate and standard dark chocolate reduced urinary levels of creatinine, lactate, some amino acids, and related degradation products and increased the levels of pyruvate and 4-hydroxyphenylacetate, a phenolic compound of bacterial origin. This study demonstrates that an acute chocolate intervention can significantly affect human metabolism.

  2. Dietary folate and choline status differentially affect lipid metabolism and behavior-mediated neurotransmitters in young rats

    Science.gov (United States)

    The relationship between choline and folate metabolisms is an important issue due to the essential role of these nutrients in brain plasticity and cognitive functions. Present study was designed to investigate whether modification of the dietary folate-choline status in young rats would affect brain...

  3. Metabolism

    Science.gov (United States)

    ... lin), which signals cells to increase their anabolic activities. Metabolism is a complicated chemical process, so it's not ... how those enzymes or hormones work. When the metabolism of body chemicals is ... Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism ...

  4. 40 CFR Table 1 to Subpart Xxxx of... - Emission Limits for Tire Production Affected Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Emission Limits for Tire Production Affected Sources 1 Table 1 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION.... 63, Subpt. XXXX, Table 1 Table 1 to Subpart XXXX of Part 63—Emission Limits for Tire Production...

  5. 40 CFR Table 3 to Subpart Xxxx of... - Emission Limits for Puncture Sealant Application Affected Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Emission Limits for Puncture Sealant Application Affected Sources 3 Table 3 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL... Manufacturing Pt. 63, Subpt. XXXX, Table 3 Table 3 to Subpart XXXX of Part 63—Emission Limits for Puncture...

  6. 40 CFR Table 2 to Subpart Xxxx of... - Emission Limits for Tire Cord Production Affected Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Emission Limits for Tire Cord Production Affected Sources 2 Table 2 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL... Manufacturing Pt. 63, Subpt. XXXX, Table 2 Table 2 to Subpart XXXX of Part 63—Emission Limits for Tire Cord...

  7. Ethanol and Acetate Acting as Carbon/Energy Sources Negatively Affect Yeast Chronological Aging

    Directory of Open Access Journals (Sweden)

    Ivan Orlandi

    2013-01-01

    Full Text Available In Saccharomyces cerevisiae, the chronological lifespan (CLS is defined as the length of time that a population of nondividing cells can survive in stationary phase. In this phase, cells remain metabolically active, albeit at reduced levels, and responsive to environmental signals, thus simulating the postmitotic quiescent state of mammalian cells. Many studies on the main nutrient signaling pathways have uncovered the strong influence of growth conditions, including the composition of culture media, on CLS. In this context, two byproducts of yeast glucose fermentation, ethanol and acetic acid, have been proposed as extrinsic proaging factors. Here, we report that ethanol and acetic acid, at physiological levels released in the exhausted medium, both contribute to chronological aging. Moreover, this combined proaging effect is not due to a toxic environment created by their presence but is mainly mediated by the metabolic pathways required for their utilization as carbon/energy sources. In addition, measurements of key enzymatic activities of the glyoxylate cycle and gluconeogenesis, together with respiration assays performed in extreme calorie restriction, point to a long-term quiescent program favoured by glyoxylate/gluconeogenesis flux contrary to a proaging one based on the oxidative metabolism of ethanol/acetate via TCA and mitochondrial respiration.

  8. Coupled effects of light and nitrogen source on the urea cycle and nitrogen metabolism over a diel cycle in the marine diatom Thalassiosira pseudonana.

    Science.gov (United States)

    Bender, Sara J; Parker, Micaela S; Armbrust, E Virginia

    2012-03-01

    Diatoms are photoautotrophic organisms capable of growing on a variety of inorganic and organic nitrogen sources. Discovery of a complete urea cycle in diatoms was surprising, as this pathway commonly functions in heterotrophic organisms to rid cells of waste nitrogen. To determine how the urea cycle is integrated into cellular nitrogen metabolism and energy management, the centric diatom Thalassiosira pseudonana was maintained in semi-continuous batch cultures on nitrate, ammonium, or urea as the sole nitrogen source, under a 16: 8 light: dark cycle and at light intensities that were low, saturating, or high for growth. Steady-state transcript levels were determined for genes encoding enzymes linked to the urea cycle, urea hydrolysis, glutamine synthesis, pyrimidine synthesis, photorespiration, and energy storage. Transcript abundances were significantly affected by nitrogen source, light intensity and a diel cycle. The impact of N source on differential transcript accumulation was most apparent under the highest light intensity. Models of cellular metabolism under high light were developed based on changes in transcript abundance and predicted enzyme localizations. We hypothesize that the urea cycle is integrated into nitrogen metabolism through its connection to glutamine and in the eventual production of urea. These findings have important implications for nitrogen flow in the cell over diel cycles at surface ocean irradiances. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Affective attitudes to face images associated with intracerebral EEG source location before face viewing.

    Science.gov (United States)

    Pizzagalli, D; Koenig, T; Regard, M; Lehmann, D

    1999-01-01

    We investigated whether different, personality-related affective attitudes are associated with different brain electric field (EEG) sources before any emotional challenge (stimulus exposure). A 27-channel EEG was recorded in 15 subjects during eyes-closed resting. After recording, subjects rated 32 images of human faces for affective appeal. The subjects in the first (i.e., most negative) and fourth (i.e., most positive) quartile of general affective attitude were further analyzed. The EEG data (mean=25+/-4. 8 s/subject) were subjected to frequency-domain model dipole source analysis (FFT-Dipole-Approximation), resulting in 3-dimensional intracerebral source locations and strengths for the delta-theta, alpha, and beta EEG frequency band, and for the full range (1.5-30 Hz) band. Subjects with negative attitude (compared to those with positive attitude) showed the following source locations: more inferior for all frequency bands, more anterior for the delta-theta band, more posterior and more right for the alpha, beta and 1.5-30 Hz bands. One year later, the subjects were asked to rate the face images again. The rating scores for the same face images were highly correlated for all subjects, and original and retest affective mean attitude was highly correlated across subjects. The present results show that subjects with different affective attitudes to face images had different active, cerebral, neural populations in a task-free condition prior to viewing the images. We conclude that the brain functional state which implements affective attitude towards face images as a personality feature exists without elicitors, as a continuously present, dynamic feature of brain functioning. Copyright 1999 Elsevier Science B.V.

  10. Free fatty acids and their metabolism affect function and survival of podocytes

    Directory of Open Access Journals (Sweden)

    Jonas eSieber

    2014-10-01

    Full Text Available Podocyte injury and loss critically contribute to the pathogenesis of proteinuric kidney diseases including diabetic nephropathy. Deregulated lipid metabolism with disturbed free fatty acid (FFA metabolism is a characteristic of metabolically unhealthy obesity and type 2 diabetes and likely contributes to end-stage kidney disease irrespective of the underlying kidney disease. In the current review we summarize recent findings related to FFAs and altered renal FFA metabolism with a special focus on podocytes. We will outline the opposing effects of saturated and monounsaturated FFAs and a particular emphasis will be given to the underlying molecular mechanisms involving insulin resistance and endoplasmic reticulum homeostasis. Finally, recent data suggesting a critical role of renal FFA metabolism to adapt to an altered lipid environment will be discussed.

  11. Metabolic Syndrome as a Factor Affecting Systemic Inflammation in Patients with Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Rubinsztajn, R; Przybyłowski, T; Maskey-Warzęchowska, M; Paplińska-Goryca, M; Nejman-Gryz, P; Karwat, K; Chazan, R

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a systemic disease which may be associated with other comorbidities. The aim of the study was to estimate the incidence of metabolic syndrome (MS) in COPD patients and to assess its impact on systemic inflammation and lung function. MS was diagnosed in accordance with the recommendations of the Polish Forum for the Prevention of Cardiovascular Diseases. The study group consisted of 267 patients with stable COPD in all stages of severity. All patients underwent spirometry with bronchial reversibility testing and 6 min walk test (6MWT). The following blood tests were evaluated: lipid profile, glucose and C-reactive protein as well as serum concentration of IL-6, leptin, adiponectin, and endothelin. MS was diagnosed in 93 patients (35.8%). No differences were observed in the incidence of MS in relation to airflow limitation severity (mild; moderate; severe and very severe: 38.9; 36.3; 35.2 and 25.0%, respectively). FEV 1 (% predicted), FVC (% predicted), 6MWT distance (6MWD), age, and the number of pack-years were similar in patients with and without MS. MS was more frequent in males than females (38.7 vs. 28.4%, p > 0.05). Serum concentrations of IL-6, endothelin, leptin, and CRP were higher in the MS group, contrary to adiponectin concentration which was lower (p < 0.01). MS was more frequent in male COPD patients, but there were no differences in its frequency between patients with different severity of airflow limitation. We conclude that MS, as a comorbidity, occurs in all COPD stages and affects systemic inflammation. MS incidence does not depend on COPD severity.

  12. Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees.

    Science.gov (United States)

    Domec, Jean-Christophe; Pruyn, Michele L

    2008-10-01

    Effects of trunk girdling on seasonal patterns of xylem water status, water transport and woody tissue metabolic properties were investigated in ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) trees. At the onset of summer, there was a sharp decrease in stomatal conductance (g(s)) in girdled trees followed by a full recovery after the first major rainfall in September. Eliminating the root as a carbohydrate sink by girdling induced a rapid reversible reduction in g(s). Respiratory potential (a laboratory measure of tissue-level respiration) increased above the girdle (branches and upper trunk) and decreased below the girdle (lower trunk and roots) relative to control trees during the growing season, but the effect was reversed after the first major rainfall. The increase in branch respiratory potential induced by girdling suggests that the decrease in g(s) was caused by the accumulation of carbohydrates above the girdle, which is consistent with an observed increase in leaf mass per area in the girdled trees. Trunk girdling did not affect native xylem embolism or xylem conductivity. Both treated and control trunks experienced loss of xylem conductivity ranging from 10% in spring to 30% in summer. Girdling reduced xylem growth and sapwood to leaf area ratio, which in turn reduced branch leaf specific conductivity (LSC). The girdling-induced reductions in g(s) and transpiration were associated with a decrease in leaf hydraulic conductance. Two years after girdling, when root-to-shoot phloem continuity had been restored, girdled trees had a reduced density of new wood, which increased xylem conductivity and whole-tree LSC, but also vulnerability to embolism.

  13. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism

    DEFF Research Database (Denmark)

    Mourtzakis, M.; Graham, T.E.; Gonzalez-Alonso, J.

    2008-01-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate...... declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70......% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (Pglutamate infusion. Peak...

  14. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    Science.gov (United States)

    Deluc, Laurent G; Quilici, David R; Decendit, Alain; Grimplet, Jérôme; Wheatley, Matthew D; Schlauch, Karen A; Mérillon, Jean-Michel; Cushman, John C; Cramer, Grant R

    2009-01-01

    Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1) transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation. Chardonnay berries, which lack any

  15. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    Directory of Open Access Journals (Sweden)

    Deluc Laurent G

    2009-05-01

    Full Text Available Abstract Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1 transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation

  16. Effects of Different Carbohydrate Sources on Fructan Metabolism in Plants of Chrysolaena obovata Grown in vitro

    Directory of Open Access Journals (Sweden)

    Flavio eTrevisan

    2015-09-01

    Full Text Available Chrysolaena obovata (Less. Dematt., previously named Vernonia herbacea, is an Asteraceae native to the Cerrado which accumulates about 80% of the rhizophore dry mass as inulin-type fructans. Considering its high inulin production and the wide application of fructans, a protocol for C. obovata in vitro culture was recently established. Carbohydrates are essential for in vitro growth and development of plants and can also act as signaling molecules involved in cellular adjustments and metabolic regulation. This work aimed to evaluate the effect of different sources of carbohydrate on fructan metabolism in plants grown in vitro. For this purpose, C. obovata plants cultivated in vitro were submitted to carbon deprivation and transferred to MS medium supplemented with sucrose, glucose or fructose. Following, their fructan composition and activity and expression of genes encoding enzymes for fructan synthesis (1-SST and 1-FFT and degradation (1-FEH were evaluated. For qRT-PCR analysis partial cDNA sequences encoding two different C. obovata genes, 1-SST and 1-FFT, were isolated. As expected, C. obovata sequences showed highest sequence identity to other Asteraceae 1-SST and 1-FFT, than to Poaceae related proteins. A carbon deficit treatment stimulated the transcription of the gene 1-FEH and inhibited 1-SST and 1-FFT and carbohydrate supplementation promoted reversal of the expression profile of these genes. With the exception of 1-FFT, a positive correlation between enzyme activity and gene expression was observed. The overall results indicate that sucrose, fructose and glucose act similarly on fructan metabolism and that 1-FEH and 1-SST are transcriptionally regulated by sugar in this species. Cultivation of plants in increasing sucrose concentrations stimulated synthesis and inhibited fructan mobilization, and induced a distinct pattern of enzyme activity for 1-SST and 1-FFT, indicating the existence of a mechanism for differential regulation

  17. Effects of different carbohydrate sources on fructan metabolism in plants of Chrysolaena obovata grown in vitro.

    Science.gov (United States)

    Trevisan, Flavio; Oliveira, Vanessa F; Carvalho, Maria A M; Gaspar, Marília

    2015-01-01

    Chrysolaena obovata (Less.) Dematt., previously named Vernonia herbacea, is an Asteraceae native to the Cerrado which accumulates about 80% of the rhizophore dry mass as inulin-type fructans. Considering its high inulin production and the wide application of fructans, a protocol for C. obovata in vitro culture was recently established. Carbohydrates are essential for in vitro growth and development of plants and can also act as signaling molecules involved in cellular adjustments and metabolic regulation. This work aimed to evaluate the effect of different sources of carbohydrate on fructan metabolism in plants grown in vitro. For this purpose, C. obovata plants cultivated in vitro were submitted to carbon deprivation and transferred to MS medium supplemented with sucrose, glucose or fructose. Following, their fructan composition and activity and expression of genes encoding enzymes for fructan synthesis (1-SST and 1-FFT) and degradation (1-FEH) were evaluated. For qRT-PCR analysis partial cDNA sequences corresponding to two different C. obovata genes, 1-SST and 1-FFT, were isolated. As expected, C. obovata sequences showed highest sequence identity to other Asteraceae 1-SST and 1-FFT, than to Poaceae related proteins. A carbon deficit treatment stimulated the transcription of the gene 1-FEH and inhibited 1-SST and 1-FFT and carbohydrate supplementation promoted reversal of the expression profile of these genes. With the exception of 1-FFT, a positive correlation between enzyme activity and gene expression was observed. The overall results indicate that sucrose, fructose and glucose act similarly on fructan metabolism and that 1-FEH and 1-SST are transcriptionally regulated by sugar in this species. Cultivation of plants in increasing sucrose concentrations stimulated synthesis and inhibited fructan mobilization, and induced a distinct pattern of enzyme activity for 1-SST and 1-FFT, indicating the existence of a mechanism for differential regulation between them.

  18. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products

    Directory of Open Access Journals (Sweden)

    Volker Fritz Wendisch

    2012-10-01

    Full Text Available Corynebacterium glutamicum is well known as the amino acid-producing workhorse of fermentation industry, being used for multi-million-ton scale production of glutamate and lysine for more than 60 years. However, it is only recently that extensive research has focused on engineering it beyond the scope of amino acids. Meanwhile, a variety of corynebacterial strains allows access to alternative carbon sources and/or allows production of a wide range of industrially relevant compounds. Some of these efforts set new standards in terms of titers and productivities achieved whereas others represent a proof-of-principle. These achievements manifest the position of C. glutamicum as an important industrial microorganism with capabilities far beyond the traditional amino acid production. In this review we focus on the state of the art of metabolic engineering of C. glutamicum for utilization of alternative carbon sources, (e.g. coming from wastes and unprocessed sources, and construction of C. glutamicum strains for production of new products such as diamines, organic acids and alcohols.

  19. Formate as an energy source for microbial metabolism in chemosynthetic zones of hydrothermal ecosystems.

    Science.gov (United States)

    Windman, Todd; Zolotova, Natalya; Schwandner, Florian; Shock, Everett L

    2007-12-01

    Formate, a simple organic acid known to support chemotrophic hyperthermophiles, is found in hot springs of varying temperature and pH. However, it is not yet known how metabolic strategies that use formate could contribute to primary productivity in hydrothermal ecosystems. In an effort to provide a quantitative framework for assessing the role of formate metabolism, concentration data for dissolved formate and many other solutes in samples from Yellowstone hot springs were used, together with data for coexisting gas compositions, to evaluate the overall Gibbs energy for many reactions involving formate oxidation or reduction. The result is the first rigorous thermodynamic assessment of reactions involving formate oxidation to bicarbonate and reduction to methane coupled with various forms of iron, nitrogen, sulfur, hydrogen, and oxygen for hydrothermal ecosystems. We conclude that there are a limited number of reactions that can yield energy through formate reduction, in contrast to numerous formate oxidation reactions that can yield abundant energy for chemosynthetic microorganisms. Because the energy yields are so high, these results challenge the notion that hydrogen is the primary energy source of chemosynthetic microbes in hydrothermal ecosystems.

  20. Respiratory muscle strength and muscle endurance are not affected by acute metabolic acidemia.

    NARCIS (Netherlands)

    Nizet, T.A.C.; Heijdra, Y.F.; Elshout, F.J.J. van den; Ven, M.J.T. van de; Bosch, F.H.; Mulder, P.H.M. de; Folgering, H.T.M.

    2009-01-01

    Respiratory muscle fatigue in asthma and chronic obstructive lung disease (COPD) contributes to respiratory failure with hypercapnia, and subsequent respiratory acidosis. Therapeutic induction of acute metabolic acidosis further increases the respiratory drive and, therefore, may diminish

  1. Ammonium-related metabolic changes affect somatic embryogenesis in pumpkin (Cucurbita pepo L.).

    Science.gov (United States)

    Mihaljević, Snježana; Radić, Sandra; Bauer, Nataša; Garić, Rade; Mihaljević, Branka; Horvat, Gordana; Leljak-Levanić, Dunja; Jelaska, Sibila

    2011-11-01

    Somatic embryogenesis in pumpkin can be induced on auxin-containing medium and also on hormone-free medium containing 1mM ammonium (NH(4)(+)) as the sole source of nitrogen. Growth of NH(4)(+)-induced embryogenic tissue was slow and caused considerable acidification of the culture medium. Small spherical cells with dense cytoplasma formed proembryogenic cell clusters that could not develop into late stage embryos. Buffering of NH(4)(+) medium with 25mM 2-(N-morpholino)-ethane-sulfonic acid enhanced tissue proliferation, but no further differentiation was observed. Later stage embryos developed only after re-supply of nitrogen in form of nitrate or l-glutamine. Effects of nitrogen status and pH of culture media on ammonium assimilation were analyzed by following the activity of glutamine synthetase (GS) in relation to phenylalanine ammonia-lyase (PAL). Increased activity of GS and PAL in NH(4)(+) induced tissue coincided with significantly higher activity of stress-related enzymes superoxide dismutase (SOD) and soluble peroxidase (POD), indicating oxidative stress response of embryogenic tissue to NH(4)(+) as the sole source of nitrogen. In addition, considerable increase was observed in callose accumulation and esterase activity, the early markers of somatic embryogenesis. Activity of stress-related enzymes decreased after the re-supply of nitrate (20mM) or Gln (10mM) in combination with NH(4)(+) (1mM), which subsequently triggered globular embryo development. Together, these results suggest that stress responses, as affected by nitrogen supply, contribute to the regulation of embryogenic competence in pumpkin. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations.

    Science.gov (United States)

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena M

    2017-07-01

    Running-specific prostheses enable athletes with lower limb amputations to run by emulating the spring-like function of biological legs. Current prosthetic stiffness and height recommendations aim to mitigate kinematic asymmetries for athletes with unilateral transtibial amputations. However, it is unclear how different prosthetic configurations influence the biomechanics and metabolic cost of running. Consequently, we investigated how prosthetic model, stiffness, and height affect the biomechanics and metabolic cost of running. Ten athletes with unilateral transtibial amputations each performed 15 running trials at 2.5 or 3.0 m/s while we measured ground reaction forces and metabolic rates. Athletes ran using three different prosthetic models with five different stiffness category and height combinations per model. Use of an Ottobock 1E90 Sprinter prosthesis reduced metabolic cost by 4.3 and 3.4% compared with use of Freedom Innovations Catapult [fixed effect (β) = -0.177; P Run (β = -0.139; P = 0.002) prostheses, respectively. Neither prosthetic stiffness ( P ≥ 0.180) nor height ( P = 0.062) affected the metabolic cost of running. The metabolic cost of running was related to lower peak (β = 0.649; P = 0.001) and stance average (β = 0.772; P = 0.018) vertical ground reaction forces, prolonged ground contact times (β = -4.349; P = 0.012), and decreased leg stiffness (β = 0.071; P running. Instead, an optimal prosthetic model, which improves overall biomechanics, minimizes the metabolic cost of running for athletes with unilateral transtibial amputations. NEW & NOTEWORTHY The metabolic cost of running for athletes with unilateral transtibial amputations depends on prosthetic model and is associated with lower peak and stance average vertical ground reaction forces, longer contact times, and reduced leg stiffness. Metabolic cost is unrelated to prosthetic stiffness, height, and stride kinematic symmetry. Unlike nonamputees who decrease leg stiffness with

  3. Activity of carbohydrate metabolism enzymes of bone marrow cells of rats affected by radiation

    International Nuclear Information System (INIS)

    Sukhomlinov, B.F.; Grinyuk, Yu.S.; Sibirnaya, N.A.; Starikovich, L.S.; Khmil', M.V.

    1990-01-01

    The influence of ionizing radiation (154.8 mC/kg on activity of some carbohydrate metabolism dehydrogenases in cells of the whole and fractionated rat bone marrow has been investigated. Different glucose metabolism units differently responded to radiation, the highest radiation response being exhibited by pentosophosphate cycle processes. The pattern of changes in the enzyme activity of different myelocaryocyte populations was shown to depend directly on the functional specilization of cells and the energy exchange types predominated in them

  4. Plasma metabolic profiling of dairy cows affected with clinical ketosis using LC/MS technology.

    Science.gov (United States)

    Li, Y; Xu, C; Xia, C; Zhang, Hy; Sun, Lw; Gao, Y

    2014-01-01

    Ketosis in dairy cattle is an important metabolic disorder. Currently, the plasma metabolic profile of ketosis as determined using liquid chromatography-mass spectrometry (LC/MS) has not been reported. To investigate plasma metabolic profiles from cows with clinical ketosis in comparison to control cows. Twenty Holstein dairy cows were divided into two groups based on clinical signs and plasma β-hydroxybutyric acid and glucose concentrations 7-21 days postpartum: clinical ketosis and control cows. Plasma metabolic profiles were analyzed using LC/MS. Data were processed using principal component analysis and orthogonal partial least-squares discriminant analysis. Compared to control cows, the levels of valine, glycine, glycocholic, tetradecenoic acid, and palmitoleic acid increased significantly in clinical ketosis. On the other hand, the levels of arginine, aminobutyric acid, leucine/isoleucine, tryptophan, creatinine, lysine, norcotinine, and undecanoic acid decreased markedly. Our results showed that the metabolic changes in cows with clinical ketosis involve complex metabolic networks and signal transduction. These results are important for future studies elucidating the pathogenesis, diagnosis, and prevention of clinical ketosis in dairy cows.

  5. Organic and inorganic sources of zinc, copper and selenium in diets for dairy cows: intake, blood metabolic profile, milk yield and composition

    Directory of Open Access Journals (Sweden)

    Cristina Simões Cortinhas

    2012-06-01

    Full Text Available The present study was carried out with the objective of evaluating the effects of feeding dairy cows with organic or inorganic sources of zinc (Zn, copper (Cu and selenium (Se on blood concentrations of these minerals, blood metabolic profiles, nutrient intake and milk yield and composition. Nineteen Holstein cows were selected and randomly assigned to two groups for receiving organic (n = 9 or inorganic (n = 10 sources of Zn, Cu and Se from 60 days before the expected date of calving to 80 days of lactation. Samples of feed, orts and milk were collected for analysis. Body condition score (BCS was determined and blood samples were collected for analysis of Zn, Cu and Se concentrations, as well as for metabolic profile. Supplying organic or inorganic sources of Zn, Cu, and Se did not affect dry matter and nutrient intake, blood metabolic profile, milk yield and composition, plasma concentration of these minerals, and BCS or change the BCS in cows from 60 days before the expected date of calving to 80 days of lactation. An effect of time was observed on all feed intake variables, plasma concentrations of Zn and Se, milk yield, milk protein content, BCS and change in BCS.

  6. Respiratory and metabolic acidosis differentially affect the respiratory neuronal network in the ventral medulla of neonatal rats.

    Science.gov (United States)

    Okada, Yasumasa; Masumiya, Haruko; Tamura, Yoshiyasu; Oku, Yoshitaka

    2007-11-01

    Two respiratory-related areas, the para-facial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pre-Bötzinger complex/ventral respiratory group (preBötC/VRG), are thought to play key roles in respiratory rhythm. Because respiratory output patterns in response to respiratory and metabolic acidosis differ, we hypothesized that the responses of the medullary respiratory neuronal network to respiratory and metabolic acidosis are different. To test these hypotheses, we analysed respiratory-related activity in the pFRG/RTN and preBötC/VRG of the neonatal rat brainstem-spinal cord in vitro by optical imaging using a voltage-sensitive dye, and compared the effects of respiratory and metabolic acidosis on these two populations. We found that the spatiotemporal responses of respiratory-related regional activities to respiratory and metabolic acidosis are fundamentally different, although both acidosis similarly augmented respiratory output by increasing respiratory frequency. PreBötC/VRG activity, which is mainly inspiratory, was augmented by respiratory acidosis. Respiratory-modulated pixels increased in the preBötC/VRG area in response to respiratory acidosis. Metabolic acidosis shifted the respiratory phase in the pFRG/RTN; the pre-inspiratory dominant pattern shifted to inspiratory dominant. The responses of the pFRG/RTN activity to respiratory and metabolic acidosis are complex, and involve either augmentation or reduction in the size of respiratory-related areas. Furthermore, the activation pattern in the pFRG/RTN switched bi-directionally between pre-inspiratory/inspiratory and post-inspiratory. Electrophysiological study supported the results of our optical imaging study. We conclude that respiratory and metabolic acidosis differentially affect activities of the pFRG/RTN and preBötC/VRG, inducing switching and shifts of the respiratory phase. We suggest that they differently influence the coupling states between the pFRG/RTN and preBötC/VRG.

  7. Acclimation temperature affects the metabolic response of amphibian skeletal muscle to insulin.

    Science.gov (United States)

    Petersen, Ann M; Gleeson, Todd T

    2011-09-01

    Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (Pmuscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (Pmuscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Intracerebroventricular ghrelin treatment affects lipid metabolism in liver of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Velasco, Cristina; Librán-Pérez, Marta; Otero-Rodiño, Cristina; López-Patiño, Marcos A; Míguez, Jesús M; Soengas, José L

    2016-03-01

    We aimed to elucidate in rainbow trout (Oncorhynchus mykiss) the effects of central ghrelin (GHRL) treatment on the regulation of liver lipid metabolism, and the possible modulatory effect of central GHRL treatment on the simultaneous effects of raised levels of oleate. Thus, we injected intracerebroventricularly (ICV) rainbow trout GHRL in the presence or absence of oleate and evaluated in liver variables related to lipid metabolism. Oleate treatment elicited in liver of rainbow trout decreased lipogenesis and increased oxidative capacity in agreement with previous studies. Moreover, as demonstrated for the first time in fish in the present study, GHRL also acts centrally modulating lipid metabolism in liver, resulting in increased potential for lipogenesis and decreased potential for fatty acid oxidation, i.e. the converse effects to those elicited by central oleate treatment. The simultaneous treatment of GHRL and oleate confirmed these counteractive effects. Thus, the nutrient sensing mechanisms present in hypothalamus, particularly those involved in sensing of fatty acid, are involved in the control of liver energy metabolism in fish, and this control is modulated by the central action of GHRL. These results give support to the notion of hypothalamus as an integrative place for the regulation of peripheral energy metabolism in fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86

    Science.gov (United States)

    Mohan, Karishma

    2017-01-01

    ABSTRACT Pseudomonas putida CSV86 degrades lignin-derived metabolic intermediates, viz., veratryl alcohol, ferulic acid, vanillin, and vanillic acid, as the sole sources of carbon and energy. Strain CSV86 also degraded lignin sulfonate. Cell respiration, enzyme activity, biotransformation, and high-pressure liquid chromatography (HPLC) analyses suggest that veratryl alcohol and ferulic acid are metabolized to vanillic acid by two distinct carbon source-dependent inducible pathways. Vanillic acid was further metabolized to protocatechuic acid and entered the central carbon pathway via the β-ketoadipate route after ortho ring cleavage. Genes encoding putative enzymes involved in the degradation were found to be present at fer, ver, and van loci. The transcriptional analysis suggests a carbon source-dependent cotranscription of these loci, substantiating the metabolic studies. Biochemical and quantitative real-time (qRT)-PCR studies revealed the presence of two distinct O-demethylases, viz., VerAB and VanAB, involved in the oxidative demethylation of veratric acid and vanillic acid, respectively. This report describes the various steps involved in metabolizing lignin-derived aromatic compounds at the biochemical level and identifies the genes involved in degrading veratric acid and the arrangement of phenylpropanoid metabolic genes as three distinct inducible transcription units/operons. This study provides insight into the bacterial degradation of lignin-derived aromatics and the potential of P. putida CSV86 as a suitable candidate for producing valuable products. IMPORTANCE Pseudomonas putida CSV86 metabolizes lignin and its metabolic intermediates as a carbon source. Strain CSV86 displays a unique property of preferential utilization of aromatics, including for phenylpropanoids over glucose. This report unravels veratryl alcohol metabolism and genes encoding veratric acid O-demethylase, hitherto unknown in pseudomonads, thereby providing new insight into the

  10. Designing and determining validity and reliability of a questionnaire to identify factors affecting nutritional behavior among patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Naseh Esmaeili

    2017-06-01

    Full Text Available Background : A number of studies have shown a clear relationship between diet and component of metabolic syndrome. Based on the Theory of Reasoned Action (TRA, attitude and subjective norm are factors affecting behavioral intention and subsequently behavior. The aim of the present study is to design a valid questionnaire identifying factors affecting nutritional behavior among patients with metabolic syndrome. Materials and Methods: Via literature review, six focus group discussion and interview with nutrition specialists were performed to develop an instrument based on the theory of reasoned action. To determine validity of the instrument, content and face validity analyses with 15 expert panels conducted and also to determine reliability, Cronbach’s Alpha coefficient performed. Results: A draft of 100 items questionnaire was developed and after evaluation of validity and reliability, final questionnaire included 46 items: 17 items for attitude, 13 items for subjective norms and 16 items for behavioral intention. For the final questionnaire average of content validity index was 0/92 and Cronbach’s Alpha coefficient was 0/85. Conclusion: Based on the results of the current study the developed questionnaire is a valid and reliable instrument and it can be used to identify factors affecting nutritional behavior among people with metabolic syndrome based on the theory of reasoned action.

  11. Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism

    NARCIS (Netherlands)

    Soeters, Maarten R.; Lammers, Nicolette M.; Dubbelhuis, Peter F.; Ackermans, Mariëtte T.; Jonkers-Schuitema, Cora F.; Fliers, Eric; Sauerwein, Hans P.; Aerts, Johannes M.; Serlie, Mireille J.

    2009-01-01

    Background: Intermittent fasting (IF) was shown to increase whole-body insulin sensitivity, but it is uncertain whether IF selectively influences intermediary metabolism. Such selectivity might be advantageous when adapting to periods of food abundance and food shortage. Objective: The objective was

  12. Metabolic syndrome in a cohort of affectively ill patients, a naturalistic study

    DEFF Research Database (Denmark)

    Vinberg, Maj; Madsen, Maiken; Breum, Leif

    2012-01-01

    at a Mood Disorder Clinic. Methods: Patients were evaluated for the presence of metabolic syndrome (MeS) according to modified NCEP ATP III criteria. Results: Of the 143 patients eligible for participation, 100 patients participated in the study (32% male, mean age 43.6 ± 14.2); the prevalence of MeS was 26...

  13. Eucalypt plants are physiologically and metabolically affected by infection with Ceratocystis fimbriata.

    Science.gov (United States)

    da Silva, André Costa; de Oliveira Silva, Franklin Magnum; Milagre, Jocimar Caiafa; Omena-Garcia, Rebeca Patricia; Abreu, Mário Castro; Mafia, Reginaldo Gonçalves; Nunes-Nesi, Adriano; Alfenas, Acelino Couto

    2018-02-01

    Ceratocystis wilt, caused by Ceratocystis fimbriata, is currently one of the most important disease in eucalypt plantations. Plants infected by C. fimbriata have lower volumetric growth, lower pulp yields and reduced timber values. The physiological bases of infection induced by this pathogen in eucalypt plant are not known. Therefore, this study aims to assess the physiological and metabolic changes in eucalypt clones that are resistant and susceptible to C. fimbriata. Once, we evaluated in detail their leaf gas exchange, chlorophyll a fluorescence, water potential, metabolite profiling and growth-related parameters. When inoculated, the susceptible clone displayed reduced water potential, CO 2 assimilation rate, stomatal conductance, transpiration rate, photochemical quenching coefficient, electron transport rate, and root biomass. Inoculated resistant and susceptible clones both presented higher respiration rates than healthy plants. Many compounds of primary and secondary metabolism were significantly altered after fungal infection in both clones. These results suggest that, C. fimbriata interferes in the primary and secondary metabolism of plants that may be linked to the induction of defense mechanisms and that, due to water restrictions caused by the fungus in susceptible plants, there is a partial closure of the stomata to prevent water loss and a consequent reduction in photosynthesis and the transpiration rate, which in turn, leads to a decrease in the plant's growth-related. These results combined, allowed for a better understanding of the physiological and metabolic changes following the infectious process of C. fimbriata, which limit eucalypt plant growth. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Does acute tryptophan depletion affect peripheral serotonin metabolism in the intestine?

    NARCIS (Netherlands)

    Keszthelyi, D.; Troost, F.J.; Jonkers, D.M.; Donkelaar, van E.L.; Dekker, J.; Buurman, W.A.; Masclee, A.A.

    2012-01-01

    Background: Serotonin (5-hydroxytryptamine; 5-HT), a tryptophan metabolite, plays an important regulatory role in the human central nervous system and in the gastrointestinal tract. Acute tryptophan depletion (ATD) is currently the most widely established method to investigate 5-HT metabolism.

  15. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.

    Science.gov (United States)

    McCollom, Thomas M

    2007-12-01

    Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.

  16. Resistin, an adipokine, may affect the improvement of insulin sensitivity in the metabolic syndrome patient treated with metformin.

    Science.gov (United States)

    Yuan, Hong; Weng, Chunyan; Yang, Youbo; Huang, Lihua; Xing, Xiaowei

    2013-12-01

    The metabolic syndrome (MS) is a cluster of metabolic disorders arising from insulin resistance, characterized by the presence of central obesity, impaired fasting glucose level, dyslipidemia and hypertension. As the first-line medication, metformin is commonly used for MS to reduce insulin resistance. Comparing with rosiglitazone, metformin does not increase cardiovascular mortality risk in patients with MS. However, metformin is not good enough in improving insulin sensitivity. Its molecular mechanism is still not clear. Recent studies have demonstrated that resistin, an adipokine, could induce IR by both AMPK-dependent and AMPK-independent pathways. Though there were conflicting findings of resistin in metabolic syndrome or type 2 diabetes mellitus in different studies, resistin was significant decreased in the rosiglitazone treated patients than in the metformin-treated patients in most of studies. Here, we hypothesized that resistin, an adipokine, may affect the improvement of insulin sensitivity in the metabolic syndrome patient treated with metformin. This hypothesis could explain why rosiglitazone is superior to metformin in enhancement of insulin sensitivity. Copyright © 2013. Published by Elsevier Ltd.

  17. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams

    International Nuclear Information System (INIS)

    Shin, Woo-Jin; Ryu, Jong-Sik; Mayer, Bernhard; Lee, Kwang-Sik; Lee, Sin-Woo

    2014-01-01

    Acid mine drainage (AMD) in a watershed provides potential sources of pollutants for surface and subsurface waters that can deteriorate water quality. Between March and early August 2011, water samples were collected from two streams in South Korea, one dominantly draining a watershed with carbonate bedrock affected by coal mines and another draining a watershed with silicate bedrock and a relatively undisturbed catchment area. The objective of the study was to identify the sources and processes controlling water chemistry, which was dependent on bedrock and land use. In the Odae stream (OS), the stream in the silicate-dominated catchment, Ca, Na, and HCO 3 were the dominant ions and total dissolved solids (TDS) was low (26.1–165 mg/L). In the Jijang stream (JS), in the carbonate-dominated watershed, TDS (224–434 mg/L) and ion concentrations were typically higher, and Ca and SO 4 were the dominant ions due to carbonate weathering and oxidation of pyrite exposed at coal mines. Dual isotopic compositions of sulfate (δ 34 S SO4 and δ 18 O SO4 ) verified that the SO 4 in JS is derived mainly from sulfide mineral oxidation in coal mines. Cl in JS was highest upstream and decreased progressively downstream, which implies that pollutants from recreational facilities in the uppermost part of the catchment are the major source governing Cl concentrations within the discharge basin. Dual isotopic compositions of nitrate (δ 15 N NO3 and δ 18 O NO3 ) indicated that NO 3 in JS is attributable to nitrification of soil organic matter but that NO 3 in OS is derived mostly from manure. Additionally, the contributions of potential anthropogenic sources to the two streams were estimated in more detail by using a plot of δ 34 S SO4 and δ 15 N NO3 . This study suggests that the dual isotope approach for sulfate and nitrate is an excellent additional tool for elucidating the sources and processes controlling the water chemistry of streams draining watersheds having different

  18. VAT regime affecting the acquisition of electronic information sources in Slovenia and in the European Union

    Directory of Open Access Journals (Sweden)

    Tilen Mandelj

    2010-01-01

    Full Text Available Tax legislation system in the Republic of Slovenia as well as that of the European Union does not keep pace with the rapid technological development. A lot of problems arise in the field of purchasing and providing access to electronic information sources, namely electronic journals which are very important to disseminate research results. Problems arising from the application of the EC Directive 2006/112 in the Slovenian legislation system are described. The goal that the Value Added Tax (VAT would not affect the international competitiveness of the EU Member states was not met. Different levels of general and reduced tax rates and even different levels of taxation of electronic information sources put Member States in unequal positions. Tax regimes in Member States and their responses to the problem of VAT are discussed. The article shows the complexity of electronic information sources which can partly be taxed as services and party as goods in electronic form. A simulation of expenditure on electronic information sources at different tax rates and possible changes of tax legislation are presented.

  19. Radiolabeled hydroxamate-based matrix metalloproteinase inhibitors: How chemical modifications affect pharmacokinetics and metabolic stability

    International Nuclear Information System (INIS)

    Hugenberg, Verena; Hermann, Sven; Galla, Fabian; Schäfers, Michael

    2016-01-01

    Introduction: Dysregulated MMP expression or activation is associated with several diseases. To study MMP activity in vivo by means of PET a radiolabeled MMP inhibitor (MMPI) functioning as radiotracer has been developed by our group based on the lead structure CGS 25966. Materials and methods: Aiming at the modification of the pharmacokinetics of this lipophilic model tracer a new class of MMPIs has been discovered, consisting of additional fluorinated hydrophilic substructures, such as mini-PEG and/or 1,2,3-triazole units. To identify the best candidate for further clinical applications, radiofluorinated compounds of each subgroup have been (radio) synthesized and evaluated regarding their biodistribution behavior and their metabolic stability. Results: Radiosyntheses of different triazole based MMPIs could be realized using two step “click chemistry” procedures. Compared to lead structure [ 18 F]FEtO-CGS 25966 ([ 18 F]1e, log D(exp) = 2.02, IC 50 = 2–50 nM) all selected candidates showed increased hydrophilicities and inhibition potencies (log D(exp) = 0.23–1.25, IC 50 = 0.006–6 nM). Interestingly, despite different hydrophilicities most triazole based MMPIs showed no significant differences in their in vivo biodistribution behavior and were cleared predominantly via the hepatobiliary excretion route. Biostability and metabolism studies in vitro and in vivo revealed significant higher metabolic stability for the triazole moiety compared to the benzyl ring in the lead structure. Cleavage of ethylene glycol subunits of the mini-PEG chain led to a faster metabolism of mini-PEG containing MMPIs. Conclusion: The introduction of hydrophilic groups such as mini-PEG and 1,2,3-triazole units did not lead to a significant shift of the hepatobiliary elimination towards renal clearance. Particularly the introduction of mini-PEG chains led to an intense metabolic decomposition. Substitution of the benzyl moiety in lead structure 1e by a 1,2,3-trizole ring resulted

  20. Diurnal modulation and sources of variation affecting ventricular repolarization in Warmblood horses

    DEFF Research Database (Denmark)

    Pedersen, Philip Juul; Moeller, Sine B.; Madsen, Mette Flethøj

    2014-01-01

    Te) are used as repolarization markers. To support the use of these markers in horses, we sought to describe the possible influence of the environment, time of day, day-to-day effects, T wave conformation, age, body weight (BW), and horse-to-horse variation on repolarization measurements. ANIMALS: 12 Warmblood...... affecting these intervals. RESULTS: Differences between individual horses were the largest source of repolarization variability although the environment had a significant effect on repolarization as well. Diurnal variation affected both the RR interval and the repolarization markers. The QT, QTc and Tp......, diurnal variation, the environment, and T wave conformation. These factors must be considered if markers of equine repolarization are used diagnostically....

  1. Deletion of Adseverin in Osteoclasts Affects Cell Structure But Not Bone Metabolism.

    Science.gov (United States)

    Cao, Yixuan; Wang, Yongqiang; Sprangers, Sara; Picavet, Daisy I; Glogauer, Michael; McCulloch, Christopher A; Everts, Vincent

    2017-08-01

    Adseverin is an actin-severing/capping protein that may contribute to osteoclast differentiation in vitro but its role in bone remodeling of healthy animals is not defined. We analyzed bone and osteoclast structure in adseverin conditional null mice at alveolar and long bone sites. In wild-type and adseverin null mice, as measured by dual-energy X-ray absorptiometry, there were no differences of bone mineral content or bone mineral density, indicating no change of bone metabolism. In tibiae, TRAcP + osteoclasts were formed in comparable numbers in adseverin null and wild-type mice. Ultrastructural analysis showed normal and similar abundance of ruffled borders, sealing zones, and mitochondria, and with no difference of osteoclast nuclear numbers. In contrast, analyses of long bone showed that in the absence of adseverin osteoclasts were smaller (120 ± 13 vs. 274 ± 19 µm 2 ; p structure but not to bone metabolism in vivo.

  2. The Endocannabinoid System Affects Myocardial Glucose Metabolism in the DOCA-Salt Model of Hypertension

    Directory of Open Access Journals (Sweden)

    Agnieszka Polak

    2018-03-01

    Full Text Available Background/Aims: Recent interest in the use of cannabinoids as therapeutic agents has revealed the involvement of the endogenous cannabinoid system (ECS in the regulation of the cardiovascular system in hypertension. Abnormalities in glucose metabolism and insulin action are commonly detected in hypertensive animals. Thus, potential antihypertensive drugs should be investigated with respect to modulation of glucose homeostasis. Therefore, the aim of the present study was to evaluate the effects of the ECS activation after chronic fatty acid amide hydrolase inhibitor (URB597 administration on plasma glucose and insulin concentrations as well as parameters of myocardial glucose metabolism in the deoxycorticosterone acetate (DOCA-salt hypertensive rats, an animal model of secondary hypertension. Methods: Hypertension was induced by DOCA (25mg/kg injections and addition of 1% NaCl in the drinking water for six weeks. Chronic activation of the ECS was performed by URB597 (1mg/kg injections for two weeks. We examined fasting plasma levels of insulin (ELISA, glucose and intramyocardial glycogen (colorimetric method. Expressions of glucose transporters (GLUT1, 4 and selected proteins engaged in GLUT translocation as well as glucose metabolism were determined using Western blotting. Results: Hypertension induced hypoinsulinemia with concomitant lack of significant changes in glycemia, reduced intramyocardial glycogen content and increased pyruvate dehydrogenase (PDH expression in the cardiac muscle. Importantly, chronic URB597 administration in the hypertensive rats increased insulin concentration, elevated plasmalemmal GLUT1 and GLUT4 expression and concomitantly improved myocardial glycogen storage. Conclusion: Chronic administration of fatty acid amide hydrolase (FAAH inhibitor has potential protective properties on myocardial glucose metabolism in hypertension.

  3. Dim Light at Night Disrupts Molecular Circadian Rhythms and Affects Metabolism

    Science.gov (United States)

    Fonken, Laura K.; Aubrecht, Taryn G.; Meléndez-Fernández, O. Hecmarie; Weil, Zachary M.; Nelson, Randy J.

    2014-01-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms which are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electrical lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to nighttime light and investigated changes in the circadian system and body weight. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night attenuate core circadian clock rhythms in the SCN at both the gene and protein level. Moreover, circadian clock rhythms were perturbed in the liver by nighttime light exposure. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide mechanistic evidence for how mild changes in environmental lighting can alter circadian and metabolic function. PMID:23929553

  4. Nitrogen Metabolism in Lactating Goats Fed with Diets Containing Different Protein Sources

    Directory of Open Access Journals (Sweden)

    A. B. Santos

    2014-05-01

    Full Text Available This study aimed to evaluate urea excretion, nitrogen balance and microbial protein synthesis in lactating goats fed with diets containing different protein sources in the concentrate (soybean meal, cottonseed meal, aerial part of cassava hay and leucaena hay. Four Alpine goats whose mean body weight was 42.6±6.1 kg at the beginning of the experiment, a mean lactation period of 94.0±9.0 days and a production of 1.7±0.4 kg of milk were distributed in a 4×4 Latin square with four periods of 15 days. Diets were formulated to be isonitrogenous, containing 103.0 g/kg of CP, 400 g/kg of Tifton 85 hay and 600 g/kg of concentrate. Diet containing cottonseed meal provided (p<0.05 increased excretion of urea and urea nitrogen in the urine (g/d and mg/kg of BW when compared with leucaena hay. The diets affected the concentrations of urea nitrogen in plasma (p<0.05 and excretion of urea nitrogen in milk, being that soybean meal and cottonseed meal showed (p<0.05 higher than the average aerial part of the cassava hay. The use of diets with cottonseed meal as protein source in the concentrate in feeding of lactating goats provides greater nitrogen excretion in urine and negative nitrogen balance, while the concentrate with leucaena hay as a source of protein, provides greater ruminal microbial protein synthesis.

  5. Effects of dietary energy sources on early postmortem muscle metabolism of finishing pigs.

    Science.gov (United States)

    Li, Yanjiao; Yu, Changning; Li, Jiaolong; Zhang, Lin; Gao, Feng; Zhou, Guanghong

    2017-12-01

    This study investigated the effects of different dietary energy sources on early postmortem muscle metabolism of finishing pigs. Seventy-two barrow (Duroc×Landrace×Yorkshire, DLY) pigs (65.0±2.0 kg) were allotted to three iso-energetic and iso-nitrogenous diets: A (44.1% starch, 5.9% crude fat, and 12.6% neutral detergent fibre [NDF]), B (37.6% starch, 9.5% crude fat, and 15.4% NDF) or C (30.9% starch, 14.3% crude fat, and 17.8% NDF). After the duration of 28-day feeding experiment, 24 pigs (eight per treatment) were slaughtered and the M. longissimus lumborum (LL) samples at 45 min postmortem were collected. Compared with diet A, diet C resulted in greater adenosine triphosphate and decreased phosphocreatine (PCr) concentrations, greater activity of creatine kinase and reduced percentage bound activities of hexokinase (HK), and pyruvate kinase (PK) in LL muscles (p<0.05). Moreover, diet C decreased the phosphor-AKT level and increased the hydroxy-hypoxia-inducible factor-1α (HIF-1α) level, as well as decreased the bound protein expressions of HK II, PKM2, and lactate dehydrogenase A (p<0.05). Diet C with the lowest level of starch and the highest levels of fat and NDF could enhance the PCr utilization and attenuate glycolysis early postmortem in LL muscle of finishing pigs.

  6. The medical food Souvenaid affects brain phospholipid metabolism in mild Alzheimer's disease: results from a randomized controlled trial.

    Science.gov (United States)

    Rijpma, Anne; van der Graaf, Marinette; Lansbergen, Marieke M; Meulenbroek, Olga; Cetinyurek-Yavuz, Aysun; Sijben, John W; Heerschap, Arend; Olde Rikkert, Marcel G M

    2017-07-26

    Synaptic dysfunction contributes to cognitive impairment in Alzheimer's disease and may be countered by increased intake of nutrients that target brain phospholipid metabolism. In this study, we explored whether the medical food Souvenaid affects brain phospholipid metabolism in patients with Alzheimer's disease. Thirty-four drug-naive patients with mild Alzheimer's disease (Mini Mental State Examination score ≥20) were enrolled in this exploratory, double-blind, randomized controlled study. Before and after 4-week intervention with Souvenaid or an isocaloric control product, phosphorus and proton magnetic resonance spectroscopy (MRS) was performed to assess surrogate measures of phospholipid synthesis and breakdown (phosphomonoesters [PME] and phosphodiesters [PDEs]), neural integrity (N-acetyl aspartate), gliosis (myo-inositol), and choline metabolism (choline-containing compounds [tCho]). The main outcome parameters were PME and PDE signal intensities and the PME/PDE ratio. MRS data from 33 patients (60-86 years old; 42% males; Souvenaid arm n = 16; control arm n = 17) were analyzed. PME/PDE and tCho were higher after 4 weeks of Souvenaid compared with control (PME/PDE least squares [LS] mean difference [95% CI] 0.18 [0.06-0.30], p = 0.005; tCho LS mean difference [95% CI] 0.01 [0.00-0.02], p = 0.019). No significant differences were observed in the other MRS outcome parameters. MRS reveals that Souvenaid affects brain phospholipid metabolism in mild Alzheimer's disease, in line with findings in preclinical studies. Netherlands Trial Register, NTR3346 . Registered on 13 March 2012.

  7. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction.

    Directory of Open Access Journals (Sweden)

    Enise Bagci

    Full Text Available Thyroid hormone (TH balance is essential for vertebrate development. Deiodinase type 1 (D1 and type 2 (D2 increase and deiodinase type 3 (D3 decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray, biochemistry, morphology and physiology using morpholino (MO knockdown. Knockdown of D1+D2 (D1D2MO and knockdown of D3 (D3MO both resulted in transcriptional regulation of energy metabolism and (muscle development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct

  8. Basaltic substrate composition affects microbial community development and acts as a source of nutrients in the deep biosphere

    Science.gov (United States)

    Bailey, B.; Sudek, L.; Templeton, A.; Staudigel, H.; Tebo, B.; Moyer, C.; Davis, R.

    2006-12-01

    Studies of the oceanic crust over the past decade have revealed that in spite of the oligotrophic nature of this environment, a diverse biosphere is present in the upper 1 km of basaltic crust. The key energy source in this setting may be the high content of transistion metals (Fe, Mn) found in the basaltic glass, but in order to discover the role of Fe and Mn in the deep biosphere, we must first determine which microbes are present and how they attain the necessary metabolites for proliferation. Our work contributes to both questions through the use of molecular microbiology techniques and the exposure of specifically designed substrates on the ocean floor. Loihi Seamount off the southeast coast of the Big Island of Hawai'i provides a unique laboratory for the study of distribution and population of microbial communities associated with iron rich environments on the ocean floor. Iron oxide flocculent material (floc) dominates the direct and diffuse hydrothermal venting areas on Loihi which makes it a prime target for understanding the role of iron in biological systems in the deep biosphere. We collected iron oxide floc and basaltic glass from pillow basalts around several hydrothermal vents on the crater rim, within the pit crater Pele's Pit, and from deep off of the southern rift zone of Loihi using the HURL PISCES IV/V submersibles. We also deployed basaltic glass sand amended with various nutrients (phosphate, oxidized and reduced iron, manganese) and recovered them in subsequent years to determine how substrate composition affects community structure. We extracted DNA from both rock and iron flocs and used t-RFLP to obtain a genetic fingerprint of the microbial communities associated with each substrate. From olivine and tholeiitic basalt enrichments, it appears that substrate composition strongly influences microbial colonization and subsequent community development even when deployed in the same conditions. Culturing efforts have yielded several iron

  9. Sources

    International Nuclear Information System (INIS)

    Duffy, L.P.

    1991-01-01

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  10. Source-to-detector distance and beam center do not affect radiographic measurements of acetabular morphology

    International Nuclear Information System (INIS)

    Goldman, Ashton H.; Hoover, Kevin B.

    2017-01-01

    Multiple radiographic acquisition techniques have been evaluated for their effect on measurements of acetabular morphology. This cadaveric study examined the effect of two acquisition parameters not previously evaluated: beam center position and source-to-detector distance. This study also evaluated the effect of reader differences on measurements. Following calibration of measurements between two readers using five clinical radiographs (training), radiographs were obtained from two cadavers using four different source-to-detector distances and three different radiographic centers for a total of 12 radiographic techniques (experimental). Two physician readers acquired four types of measurements from each cadaver radiograph: lateral center edge angle, peak-to-edge distance, Sharp's angle, and the Tonnis angle. All measurements were evaluated for intra-class correlation coefficient (ICC), kappa statistics for hip dysplasia, and factors that resulted in measurement differences using a mixed statistical model. After training of the two physician readers, there was strong agreement in their hip morphology measurements (ICC 0.84-0.93), agreement in the presence of hip dysplasia (κ = 0.58-1.0), and no measurement difference between physician readers (p = 0.12-1.0). Experimental cadaver measurements showed moderate-to-strong agreement of the readers (ICC 0.74-0.93) and complete agreement on dysplasia (κ = 1). After accounting for reader and radiographic technique, there was no difference in hip morphology measurements (p = 0.83-0.99). In this cadaveric study, measurements of hip morphology were not affected by varying source-to-detector distance or beam center. We conclude that these acquisition parameters are not likely to affect the diagnosis of hip dysplasia in a clinical setting. (orig.)

  11. Source-to-detector distance and beam center do not affect radiographic measurements of acetabular morphology

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Ashton H. [Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA (United States); Hoover, Kevin B. [Virginia Commonwealth University, Department of Radiology, 1250 E Marshall St. 3rd Floor, PO Box 980615, Richmond, VA (United States)

    2017-04-15

    Multiple radiographic acquisition techniques have been evaluated for their effect on measurements of acetabular morphology. This cadaveric study examined the effect of two acquisition parameters not previously evaluated: beam center position and source-to-detector distance. This study also evaluated the effect of reader differences on measurements. Following calibration of measurements between two readers using five clinical radiographs (training), radiographs were obtained from two cadavers using four different source-to-detector distances and three different radiographic centers for a total of 12 radiographic techniques (experimental). Two physician readers acquired four types of measurements from each cadaver radiograph: lateral center edge angle, peak-to-edge distance, Sharp's angle, and the Tonnis angle. All measurements were evaluated for intra-class correlation coefficient (ICC), kappa statistics for hip dysplasia, and factors that resulted in measurement differences using a mixed statistical model. After training of the two physician readers, there was strong agreement in their hip morphology measurements (ICC 0.84-0.93), agreement in the presence of hip dysplasia (κ = 0.58-1.0), and no measurement difference between physician readers (p = 0.12-1.0). Experimental cadaver measurements showed moderate-to-strong agreement of the readers (ICC 0.74-0.93) and complete agreement on dysplasia (κ = 1). After accounting for reader and radiographic technique, there was no difference in hip morphology measurements (p = 0.83-0.99). In this cadaveric study, measurements of hip morphology were not affected by varying source-to-detector distance or beam center. We conclude that these acquisition parameters are not likely to affect the diagnosis of hip dysplasia in a clinical setting. (orig.)

  12. Does vagal nerve stimulation affect body composition and metabolism? Experimental study of a new potential technique in bariatric surgery.

    Science.gov (United States)

    Sobocki, Jacek; Fourtanier, Gilles; Estany, Joan; Otal, Phillipe

    2006-02-01

    It has been shown that vagal nerve stimulation (VNS) can affect body mass. The aim of this study was to evaluate effect of VNS on body mass, body composition, metabolic rate, and plasma leptin and IGF-I levels. Eight female pigs were included in the study. Under general anesthesia, a bipolar electrode was implanted on the anterior vagal nerve by laparoscopy. Group A was treated by VNS, and group B was the control. After 4 weeks, stimulation was discontinued in group A and started in group B. The following parameters were evaluated: body mass, body composition, metabolic rate, plasma leptin and IGF-1 levels and intramuscular fat content (IMF). VNS attenuated body weight gain (2.28 +/- 3.47 kg vs 14.04 +/- 6.75 kg; P = .0112, for stimulation and nonstimulation periods, respectively), backfat gain (0.04 +/- 0.26 mm vs 2.31 +/- 1.12 mm) and IMF gain (-3.76 +/- 6.06 mg/g MS vs 7.24 +/- 12.90 mg/g MS; P = .0281). VNS resulted in lower backfat depth/loin muscle area ratio (0.33 +/- 0.017 vs 0.38 +/- 0.35; P = .0476). Lower plasma IGF-I concentration was found after VNS (-3.67 +/- -11.55 ng/mL vs 9.86 +/- 10.74 ng/mL; P = .0312). No significant changes in other parameters were observed. VNS affects body weight mainly at the expense of body fat resources; however, metabolic rate is not affected.

  13. Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children

    Directory of Open Access Journals (Sweden)

    Patrick Lyn

    2009-10-01

    Full Text Available Abstract Among dietary factors, learning and behavior are influenced not only by nutrients, but also by exposure to toxic food contaminants such as mercury that can disrupt metabolic processes and alter neuronal plasticity. Neurons lacking in plasticity are a factor in neurodevelopmental disorders such as autism and mental retardation. Essential nutrients help maintain normal neuronal plasticity. Nutritional deficiencies, including deficiencies in the long chain polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, the amino acid methionine, and the trace minerals zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder. Nutritional deficiencies and mercury exposure have been shown to alter neuronal function and increase oxidative stress among children with autism. These dietary factors may be directly related to the development of behavior disorders and learning disabilities. Mercury, either individually or in concert with other factors, may be harmful if ingested in above average amounts or by sensitive individuals. High fructose corn syrup has been shown to contain trace amounts of mercury as a result of some manufacturing processes, and its consumption can also lead to zinc loss. Consumption of certain artificial food color additives has also been shown to lead to zinc deficiency. Dietary zinc is essential for maintaining the metabolic processes required for mercury elimination. Since high fructose corn syrup and artificial food color additives are common ingredients in many foodstuffs, their consumption should be considered in those individuals with nutritional deficits such as zinc deficiency or who are allergic or sensitive to the effects of mercury or unable to effectively metabolize and eliminate it from the body.

  14. Heat exposure of Cannabis sativa extracts affects the pharmacokinetic and metabolic profile in healthy male subjects.

    Science.gov (United States)

    Eichler, Martin; Spinedi, Luca; Unfer-Grauwiler, Sandra; Bodmer, Michael; Surber, Christian; Luedi, Markus; Drewe, Juergen

    2012-05-01

    The most important psychoactive constituent of CANNABIS SATIVA L. is Δ (9)-tetrahydrocannabinol (THC). Cannabidiol (CBD), another important constituent, is able to modulate the distinct unwanted psychotropic effect of THC. In natural plant extracts of C. SATIVA, large amounts of THC and CBD appear in the form of THCA-A (THC-acid-A) and CBDA (cannabidiolic acid), which can be transformed to THC and CBD by heating. Previous reports of medicinal use of cannabis or cannabis preparations with higher CBD/THC ratios and use in its natural, unheated form have demonstrated that pharmacological effects were often accompanied with a lower rate of adverse effects. Therefore, in the present study, the pharmacokinetics and metabolic profiles of two different C. SATIVA extracts (heated and unheated) with a CBD/THC ratio > 1 were compared to synthetic THC (dronabinol) in a double-blind, randomized, single center, three-period cross-over study involving 9 healthy male volunteers. The pharmacokinetics of the cannabinoids was highly variable. The metabolic pattern was significantly different after administration of the different forms: the heated extract showed a lower median THC plasma AUC (24 h) than the unheated extract of 2.84 vs. 6.59 pmol h/mL, respectively. The later was slightly higher than that of dronabinol (4.58 pmol h/mL). On the other hand, the median sum of the metabolites (THC, 11-OH-THC, THC-COOH, CBN) plasma AUC (24 h) was higher for the heated than for the unheated extract. The median CBD plasma AUC (24 h) was almost 2-fold higher for the unheated than for the heated extract. These results indicate that use of unheated extracts may lead to a beneficial change in metabolic pattern and possibly better tolerability. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Phenobarbital and neonatal seizures affect cerebral oxygen metabolism: a near-infrared spectroscopy study.

    Science.gov (United States)

    Sokoloff, Max D; Plegue, Melissa A; Chervin, Ronald D; Barks, John D E; Shellhaas, Renée A

    2015-07-01

    Near-infrared spectroscopy (NIRS) measures oxygen metabolism and is increasingly used for monitoring critically ill neonates. The implications of NIRS-recorded data in this population are poorly understood. We evaluated NIRS monitoring for neonates with seizures. In neonates monitored with video-electroencephalography, NIRS-measured cerebral regional oxygen saturation (rSO2) and systemic O2 saturation were recorded every 5 s. Mean rSO2 was extracted for 1-h blocks before, during, and after phenobarbital doses. For each electrographic seizure, mean rSO2 was extracted for a period of three times the duration of the seizure before and after the ictal pattern, as well as during the seizure. Linear mixed models were developed to assess the impact of phenobarbital administration and of seizures on rSO2 and fractional tissue oxygen extraction. For 20 neonates (estimated gestational age: 39.6 ± 1.5 wk), 61 phenobarbital doses and 40 seizures were analyzed. Cerebral rSO2 rose (P = 0.005), and fractional tissue oxygen extraction declined (P = 0.018) with increasing phenobarbital doses. rSO2 declined during seizures, compared with baseline and postictal phases (baseline 81.2 vs. ictal 77.7 vs. postictal 79.4; P = 0.004). Fractional tissue oxygen extraction was highest during seizures (P = 0.002). Cerebral oxygen metabolism decreases after phenobarbital administration and increases during seizures. These small, but clear, changes in cerebral oxygen metabolism merit assessment for potential clinical impact.

  16. Salmonella Typhimurium metabolism affects virulence in the host – A mini-review

    DEFF Research Database (Denmark)

    Herrero-fresno, Ana; Olsen, John Elmerdhahl

    2018-01-01

    Salmonella enterica remains an important food borne pathogen in all regions of the world with S. Typhimurium as one of the most frequent serovars causing food borne disease. Since the majority of human cases are caused by food of animal origin, there has been a high interest in understanding how S....... Typhimurium interacts with the animal host, mostly focusing on factors that allow it to breach host barriers and to manipulate host cells to the benefit of itself. Up to recently, such studies have ignored the metabolic factors that allow the bacteria to multiply in the host, but this is changing rapidly...

  17. Functions and sources of perceived social support among children affected by HIV/AIDS in China.

    Science.gov (United States)

    Zhao, Guoxiang; Li, Xiaoming; Fang, Xiaoyi; Zhao, Junfeng; Hong, Yan; Lin, Xiuyun; Stanton, Bonita

    2011-06-01

    While the relationship between perceived social support (PSS) and psychosocial well-being has been well documented in the global literature, existing studies also suggest the existence of multiple domains in definition and measurement of PSS. The current study, utilizing data from 1299 rural children affected by HIV/AIDS in central China, examines the relative importance of PSS functional measures (informational/emotional, material/tangible, affectionate, and social interaction) and PSS structural measures (family/relatives, teachers, friends, and significant others) in predicting psychosocial outcomes including internalizing problems, externalizing problems, and educational resilience. Both functional and structural measures of PSS provided reliable measures of related but unique aspects of PSS. The findings of the current study confirmed the previous results that PSS is highly correlated with children's psychosocial well-being and such correlations vary by functions and sources of the PSS as well as different psychosocial outcomes. The findings in the current study suggested the roles of specific social support functions or resources may need to be assessed in relation to specific psychosocial outcome and the context of children's lives. The strong association between PSS and psychosocial outcomes underscores the importance of adequate social support to alleviate stressful life events and improve psychosocial well-being of children affected by HIV/AIDS. Meanwhile, the study findings call for gender and developmentally appropriate and situation-specific social support for children and families affected by HIV/AIDS.

  18. [The study on metabolic difference of human body affected by active stress and passive stress under special events].

    Science.gov (United States)

    Guo, Guang-hong; Gu, Feng; Dong, Zhen-nan; Yuan, Xin-hong; Wang, Ling; Tian, Ya-ping

    2010-05-01

    To study the metabolic difference of body influenced by active stress and passive stress under special events. To detect serum multiple biochemistry index of 57 earthquake rescue medical team and 13 victims of a natural calamity in Wenchuan earthquake by using Hitachi 7600 automatic analyzer. Stress affected biochemistry index deeply. To compared with rescue medical team, the serum ADA, ALP and TG of victims increased obviously and TP, ALB, MAO, Cr, UA, K, Na, Cl, Ca, ApoA1 and HDL decreased obviously. Many biochemistry index have been changed under stress and it relate with stress extent. The human body function status was better in active stress than in passive stress.

  19. Affect

    NARCIS (Netherlands)

    Cetinic, M.; Diamanti, J.; Szeman, I.; Blacker, S.; Sully, J.

    2017-01-01

    This chapter historicizes four divergent but historically contemporaneous genres of affect theory – romantic, realist, speculative, and materialist. While critics credited with the turn to affect in the 1990s wrote largely in the wake of poststructuralism from the perspective of gender and queer

  20. Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary Spastic Paraplegia

    Science.gov (United States)

    Tesson, Christelle; Nawara, Magdalena; Salih, Mustafa A.M.; Rossignol, Rodrigue; Zaki, Maha S.; Al Balwi, Mohammed; Schule, Rebecca; Mignot, Cyril; Obre, Emilie; Bouhouche, Ahmed; Santorelli, Filippo M.; Durand, Christelle M.; Oteyza, Andrés Caballero; El-Hachimi, Khalid H.; Al Drees, Abdulmajeed; Bouslam, Naima; Lamari, Foudil; Elmalik, Salah A.; Kabiraj, Mohammad M.; Seidahmed, Mohammed Z.; Esteves, Typhaine; Gaussen, Marion; Monin, Marie-Lorraine; Gyapay, Gabor; Lechner, Doris; Gonzalez, Michael; Depienne, Christel; Mochel, Fanny; Lavie, Julie; Schols, Ludger; Lacombe, Didier; Yahyaoui, Mohamed; Al Abdulkareem, Ibrahim; Zuchner, Stephan; Yamashita, Atsushi; Benomar, Ali; Goizet, Cyril; Durr, Alexandra; Gleeson, Joseph G.; Darios, Frederic; Brice, Alexis; Stevanin, Giovanni

    2012-01-01

    Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function. PMID:23176821

  1. BIOCHEMICAL PARAMETERS OF LIPID METABOLISM IN ANIMALS AFFECTED BY HEAVY METAL SALTS AND TREATED WITH CARNITINE CHLORIDE AND SODIUM ALGINATE

    Directory of Open Access Journals (Sweden)

    I. R. Bekus

    2017-02-01

    Full Text Available Background. Lipid metabolism disorders in the organism affected by environmental pollutants, including poisoning with cadmium and lead salts are of topical matter nowadays. Objective. The study was aimed to examine biochemical features of lipid metabolism in rats subjected to toxic damage by lead and cadmium salts and treated with carnitine chloride and Algigel. Methods. Experiments were carried out on white mature outbred male rats weighing 180-200 g. To cause the toxic damage the animals were administered with aqueous solution of cadmium chloride and lead acetate daily for the period of 30 days using intra-gastric lavage. The indices of lipid metabolism were detected by biochemical methods. Results. In animals treated with cadmium chloride and lead acetate the following changes were observed: HDL-cholesterol concentrations significantly decreased, resulting in 87% of the levels in the intact animals on the third day, 84% on the fifth and 80% on the seventh day. Conversely, concentrations of HDL-cholesterol and VLDL-cholesterol significantly increased during the experiment. Respectively, the ratios for HDL-cholesterol are 240%, 352%, and 388%; and for VLDL-cholesterol 108%, 116%, and 132%. Conclusions. Lipids profile of the rats displayed changes in the levels of cholesterol, triglycerides and lipoproteins of low, high and very low density.

  2. ML-Ask: Open Source Affect Analysis Software for Textual Input in Japanese

    Directory of Open Access Journals (Sweden)

    Michal Ptaszynski

    2017-06-01

    Full Text Available We present ML-Ask – the first Open Source Affect Analysis system for textual input in Japanese. ML-Ask analyses the contents of an input (e.g., a sentence and annotates it with information regarding the contained general emotive expressions, specific emotional words, valence-activation dimensions of overall expressed affect, and particular emotion types expressed with their respective expressions. ML-Ask also incorporates the Contextual Valence Shifters model for handling negation in sentences to deal with grammatically expressible shifts in the conveyed valence. The system, designed to work mainly under Linux and MacOS, can be used for research on, or applying the techniques of Affect Analysis within the framework Japanese language. It can also be used as an experimental baseline for specific research in Affect Analysis, and as a practical tool for written contents annotation.   Funding statement: This research has been supported by: a Research Grant from the Nissan Science Foundation (years 2009–2010, The GCOE Program founded by Japan’s Ministry of Education, Culture, Sports, Science and Technology (years 2009–2010, (JSPS KAKENHI Grant-in-Aid for JSPS Fellows (Project Number: 22-00358 (years 2010–2012, (JSPS KAKENHI Grant-in-Aid for Scientific Research (Project Number: 24600001 (years 2012–2015, (JSPS KAKENHI Grant-in-Aid for Research Activity Start-up (Project Number: 25880003 (years 2013–2015, and (JSPS KAKENHI Grant-in-Aid for Encouragement of Young Scientists (B (Project Number: 15K16044 (years 2015-present, project estimated to end in March 2018.

  3. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles.

    Science.gov (United States)

    Zaya, Renee M; Amini, Zakariya; Whitaker, Ashley S; Ide, Charles F

    2011-08-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p=0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule, also

  4. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    International Nuclear Information System (INIS)

    Zaya, Renee M.; Amini, Zakariya; Whitaker, Ashley S.; Ide, Charles F.

    2011-01-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule

  5. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Zaya, Renee M., E-mail: renee.zaya@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Amini, Zakariya, E-mail: zakariya.amini@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Whitaker, Ashley S., E-mail: ashley.s.whitaker@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Ide, Charles F., E-mail: charles.ide@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States)

    2011-08-15

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 {mu}g/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 {mu}g/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 {mu}g/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 {mu}g/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor {beta} (PPAR-{beta}) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid {beta}-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-{beta}, an energy

  6. Dietary Energy Source in Dairy Cows in Early Lactation: Metabolites and Metabolic Hormones

    NARCIS (Netherlands)

    Knegsel, van A.T.M.; Brand, van den H.; Graat, E.A.M.; Dijkstra, J.; Jorritsma, R.; Decuypere, M.P.; Tamminga, S.; Kemp, B.

    2007-01-01

    Negative energy balance-related metabolic disorders suggest that the balance between available lipogenic and glucogenic nutrients is important. The objectives of this study were to compare the effects of a glucogenic or a lipogenic diet on liver triacylglycerides (TAG), metabolites, and metabolic

  7. "Predictability of body mass index for diabetes: Affected by the presence of metabolic syndrome?"

    Directory of Open Access Journals (Sweden)

    Khalili Davood

    2011-05-01

    Full Text Available Abstract Background Metabolic syndrome (MetS and body mass index (BMI, kg.m-2 are established independent risk factors in the development of diabetes; we prospectively examined their relative contributions and joint relationship with incident diabetes in a Middle Eastern cohort. Method participants of the ongoing Tehran lipid and glucose study are followed on a triennial basis. Among non-diabetic participants aged≥ 20 years at baseline (8,121 those with at least one follow-up examination (5,250 were included for the current study. Multivariate logistic regression models were used to estimate sex-specific adjusted odd ratios (ORs and 95% confidence intervals (CIs of baseline BMI-MetS categories (normal weight without MetS as reference group for incident diabetes among 2186 men and 3064 women, aged ≥ 20 years, free of diabetes at baseline. Result During follow up (median 6.5 years; there were 369 incident diabetes (147 in men. In women without MetS, the multivariate adjusted ORs (95% CIs for overweight (BMI 25-30 kg/m2 and obese (BMI≥30 participants were 2.3 (1.2-4.3 and 2.2 (1.0-4.7, respectively. The corresponding ORs for men without MetS were 1.6 (0.9-2.9 and 3.6 (1.5-8.4 respectively. As compared to the normal-weight/without MetS, normal-weight women and men with MetS, had a multivariate-adjusted ORs for incident diabetes of 8.8 (3.7-21.2 and 3.1 (1.3-7.0, respectively. The corresponding ORs for overweight and obese women with MetS reached to 7.7 (4.0-14.9 and 12.6 (6.9-23.2 and for men reached to 3.4(2.0-5.8 and 5.7(3.9-9.9, respectively. Conclusion This study highlights the importance of screening for MetS in normal weight individuals. Obesity increases diabetes risk in the absence of MetS, underscores the need for more stringent criteria to define healthy metabolic state among obese individuals. Weight reduction measures, thus, should be encouraged in conjunction with achieving metabolic targets not addressed by current definition of

  8. DsSWEET17, a Tonoplast-Localized Sugar Transporter from Dianthus spiculifolius, Affects Sugar Metabolism and Confers Multiple Stress Tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Aimin Zhou

    2018-05-01

    Full Text Available Plant SWEETs (Sugars Will Eventually be Exported Transporters affect the growth of plants by regulating the transport of sugar from source to sink and its intracellular transport between different organelles. In this study, DsSWEET17 from Dianthus spiculifolius was identified and characterized. Real-time quantitative PCR analysis revealed that the expression of DsSWEET17 was affected by exogenous application of fructose and glucose as well as under salt, osmotic, and oxidation stress. Colocalization experiments showed that the DsSWEET17-GFP (green fluorescent protein fusion protein was localized to the FM4-64-labeled tonoplasts in Arabidopsis. Compared to the wild type, the transgenic Arabidopsis seedlings overexpressing DsSWEET17 had longer roots, greater fresh weight, and a faster root growth upon exogenous application of fructose. Furthermore, transgenic Arabidopsis seedlings had significantly higher fructose accumulation than was observed for the wild-type seedlings. The analysis of root length revealed that transgenic Arabidopsis had higher tolerance to salt, osmotic, and oxidative stresses. Taken together, our results suggest that DsSWEET17 may be a tonoplast sugar transporter, and its overexpression affects sugar metabolism and confers multiple stress tolerance in Arabidopsis.

  9. DsSWEET17, a Tonoplast-Localized Sugar Transporter from Dianthus spiculifolius, Affects Sugar Metabolism and Confers Multiple Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Aimin; Ma, Hongping; Feng, Shuang; Gong, Shufang; Wang, Jingang

    2018-05-24

    Plant SWEETs (Sugars Will Eventually be Exported Transporters) affect the growth of plants by regulating the transport of sugar from source to sink and its intracellular transport between different organelles. In this study, DsSWEET17 from Dianthus spiculifolius was identified and characterized. Real-time quantitative PCR analysis revealed that the expression of DsSWEET17 was affected by exogenous application of fructose and glucose as well as under salt, osmotic, and oxidation stress. Colocalization experiments showed that the DsSWEET17-GFP (green fluorescent protein) fusion protein was localized to the FM4-64-labeled tonoplasts in Arabidopsis . Compared to the wild type, the transgenic Arabidopsis seedlings overexpressing DsSWEET17 had longer roots, greater fresh weight, and a faster root growth upon exogenous application of fructose. Furthermore, transgenic Arabidopsis seedlings had significantly higher fructose accumulation than was observed for the wild-type seedlings. The analysis of root length revealed that transgenic Arabidopsis had higher tolerance to salt, osmotic, and oxidative stresses. Taken together, our results suggest that DsSWEET17 may be a tonoplast sugar transporter, and its overexpression affects sugar metabolism and confers multiple stress tolerance in Arabidopsis .

  10. Robust metabolic responses to varied carbon sources in natural and laboratory strains of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Wayne A Van Voorhies

    Full Text Available Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was compared to strain isolated from natural condition when grown on different substrates. Previous studies had determined that there are numerous genetic differences between these two strains. However, the overall metabolic and growth rates of a wild isolate of yeast was very similar to that of a strain that had been maintained under laboratory conditions for many decades. This indicates that, at in least this case, metabolism and growth appear to be well buffered against genetic differences. Metabolic rate and cell number did not co-vary in a simple linear manner. When grown in either dextrose or galactose, both strains showed a growth pattern in which the number of cells continued to increase well after the metabolic rate began a sharp decline. Previous studied have reported that O₂ consumption in S. cerevisiae grown in reduced dextrose levels were elevated compared to higher levels. Low dextrose levels have been proposed to induce caloric restriction and increase life span in yeast. However, there was no evidence that reduced levels of dextrose increased metabolic rates, measured by either O₂ consumption or CO₂ production, in the strains used in this study.

  11. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.

    Directory of Open Access Journals (Sweden)

    Marie S A Palmnäs

    Full Text Available Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat or high fat (HF, 60% kcal fat and further into ad libitum water control (W or low-dose aspartame (A, 5-7 mg/kg/d in drinking water treatments for 8 week (n = 10-12 animals/treatment. Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P<0.05. Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation.

  12. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.

    Science.gov (United States)

    Palmnäs, Marie S A; Cowan, Theresa E; Bomhof, Marc R; Su, Juliet; Reimer, Raylene A; Vogel, Hans J; Hittel, Dustin S; Shearer, Jane

    2014-01-01

    Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat) or high fat (HF, 60% kcal fat) and further into ad libitum water control (W) or low-dose aspartame (A, 5-7 mg/kg/d in drinking water) treatments for 8 week (n = 10-12 animals/treatment). Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (Paspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation.

  13. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Woo-Jin [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Ryu, Jong-Sik [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Mayer, Bernhard [Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Lee, Kwang-Sik, E-mail: kslee@kbsi.re.kr [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Lee, Sin-Woo [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Department of Geology, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2014-07-01

    Acid mine drainage (AMD) in a watershed provides potential sources of pollutants for surface and subsurface waters that can deteriorate water quality. Between March and early August 2011, water samples were collected from two streams in South Korea, one dominantly draining a watershed with carbonate bedrock affected by coal mines and another draining a watershed with silicate bedrock and a relatively undisturbed catchment area. The objective of the study was to identify the sources and processes controlling water chemistry, which was dependent on bedrock and land use. In the Odae stream (OS), the stream in the silicate-dominated catchment, Ca, Na, and HCO{sub 3} were the dominant ions and total dissolved solids (TDS) was low (26.1–165 mg/L). In the Jijang stream (JS), in the carbonate-dominated watershed, TDS (224–434 mg/L) and ion concentrations were typically higher, and Ca and SO{sub 4} were the dominant ions due to carbonate weathering and oxidation of pyrite exposed at coal mines. Dual isotopic compositions of sulfate (δ{sup 34}S{sub SO4} and δ{sup 18}O{sub SO4}) verified that the SO{sub 4} in JS is derived mainly from sulfide mineral oxidation in coal mines. Cl in JS was highest upstream and decreased progressively downstream, which implies that pollutants from recreational facilities in the uppermost part of the catchment are the major source governing Cl concentrations within the discharge basin. Dual isotopic compositions of nitrate (δ{sup 15}N{sub NO3} and δ{sup 18}O{sub NO3}) indicated that NO{sub 3} in JS is attributable to nitrification of soil organic matter but that NO{sub 3} in OS is derived mostly from manure. Additionally, the contributions of potential anthropogenic sources to the two streams were estimated in more detail by using a plot of δ{sup 34}S{sub SO4} and δ{sup 15}N{sub NO3}. This study suggests that the dual isotope approach for sulfate and nitrate is an excellent additional tool for elucidating the sources and processes

  14. Effects of different starch sources on metabolic profile, production and fertility parameters in dairy cows.

    Science.gov (United States)

    Mikuła, R; Nowak, W; Jaśkowski, J M; Maćkowiak, P; Oszmałek, E Pruszyńska

    2011-01-01

    The objective of the study was to determine the effect of replacing triticale (high rumen degradable starch) with maize grain (low rumen degradable starch) during the transition period and the first 120 days of lactation on metabolic and hormonal profile indices, milk production and fertility performance in cows. Forty-eight Holstein-Friesian dairy cows were divided into 4 groups: TT (2.5 kg triticale grain/cow per day supplemented from 14 days prepartum to day 120 postpartum), TM (2.5 kg triticale grain/cow per day supplemented from day 14 before parturition to calving, and then 2.5 kg maize grain to 120 days of lactation), MT (2.5 kg maize grain/cow per day supplemented from day 14 before parturition to calving, and then 2.5 kg triticale grain to 120 days of lactation), MM (2.5 kg maize grain/cow per day supplemented from 14 days prepartum to day 120 postpartum). Blood samples were collected 3 weeks and 1 week before calving and on days 14, 56 and 70 of lactation, and they were analyzed in terms of concentrations of glucose, insulin, leptin, insulin-like growth factor I, nonesterified fatty acids, triglycerides, cholesterol, blood urea nitrogen and activities of aspartate aminotransferase and gamma glutamyl transpeptidase. Milk samples were collected twice a day at weekly intervals and analyzed for fat, protein and lactose. Milk yield and individual dry mater intake were recorded at weekly intervals. Body condition was estimated 3 weeks before calving, on parturition day and on days 14, 56 and 120 of lactation. Replacing triticale grain with maize grain in the transition period and during lactation positively affected fertility of lactating cows. An increased first service conception rate and shortening of the days open period was observed in MM and TM groups in comparison to those found in group MT (P cows than triticale grain.

  15. Electrical stimulation affects metabolic enzyme phosphorylation, protease activation and meat tenderization in beef

    DEFF Research Database (Denmark)

    Li, C.B.; Li, J.; Zhou, G.H.

    2012-01-01

    The objective of this study was to investigate the response of sarcoplasmic proteins in bovine longissimus muscle to low-voltage electrical stimulation (ES, 80 V, 35 s) after dressing and its contribution to meat tenderization at early postmortem time. Proteome analysis showed that ES resulted...... muscles up to 24 h. Immunohistochemistry and transmission electron microscopy further indicated that lysosomal enzymes were released at early postmortem time. ES also induced ultrastructural disruption of sarcomeres. In addition, ES accelerated (P ..., as well as pH decline and more preferred pH/temperature decline mode. Finally, ES accelerated meat tenderization with lower (P time. A possible relationship was suggested between change in phosphorylation level of energy metabolic enzymes and postmortem...

  16. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse

    Science.gov (United States)

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  17. Sucrose, glucose and fructose have similar genotoxicity in the rat colon and affect the metabolism

    DEFF Research Database (Denmark)

    Hansen, Max; Baunsgaard, D.; Autrup, H.

    2008-01-01

    We have shown previously that a high sucrose intake increases the background level of somatic mutations and the level of bulky DNA adducts in the colon epithelium of rats. The mechanism may involve either glucose or fructose formed by hydrolysis of sucrose. Male Big Blue (R) rats were fed 30......% sucrose, glucose, fructose or potato starch as part of the diet. Mutation rates and bulky DNA adduct levels were determined in colon and liver. The concentration of short-chain fatty acids and pH were deter-mined in caecum, C-peptide was determined in plasma, biomarkers for oxidative damage....... The metabonomic studies indicated disturbed amino acid metabolism and decrease in plasma and urinary acetate as a common feature for all sugars and confirmed triglyceridemic effects of fructose. In conclusion, the genotoxicity may be related to the altered chemical environment in the caecum and thereby also...

  18. Programming of intermediate metabolism in young lambs affected by late gestational maternal undernourishment

    DEFF Research Database (Denmark)

    Husted, Sanne; Nielsen, Mette Olaf; Tygesen, Malin Plumhoff

    2007-01-01

    Effects of moderate maternal undernourishment during late gestation on the intermediary metabolism and maturational changes in young lambs were investigated. 20 twin-bearing sheep, bred to two different rams, were randomly allocated the last 6 wk of gestation to either a NORM diet [barley, protein...... supplement, and silage ad libitum ˜ 15 MJ metabolizable energy (ME/day] or a LOW diet (50% of ME intake in NORM, offered exclusively as silage ¨7 MJ ME/day). Post partum, ewes were fed to requirement. After weaning, lambs were fed concentrate and hay ad libitum. At 10 and 19 wk of age, lambs wee subjected...... to an intravenous glucose tolerance test (IGTT) followed by 24 h of fasting. Heat energy (HE) was determined in a respiration chamber at 9 or 20 wk of age. LOW lambs had a lower birth weight and continued to be lighter throughout the experiment. Glucose tolerance did not differ between groups. However, 19-wk...

  19. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    Science.gov (United States)

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  20. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    Science.gov (United States)

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety.

  1. Skeletal muscle expression of p43, a truncated thyroid hormone receptor α, affects lipid composition and metabolism.

    Science.gov (United States)

    Casas, François; Fouret, Gilles; Lecomte, Jérome; Cortade, Fabienne; Pessemesse, Laurence; Blanchet, Emilie; Wrutniak-Cabello, Chantal; Coudray, Charles; Feillet-Coudray, Christine

    2018-02-01

    Thyroid hormone is a major regulator of metabolism and mitochondrial function. Thyroid hormone also affects reactions in almost all pathways of lipids metabolism and as such is considered as the main hormonal regulator of lipid biogenesis. The aim of this study was to explore the possible involvement of p43, a 43 Kda truncated form of the nuclear thyroid hormone receptor TRα1 which stimulates mitochondrial activity. Therefore, using mouse models overexpressing p43 in skeletal muscle (p43-Tg) or lacking p43 (p43-/-), we have investigated the lipid composition in quadriceps muscle and in mitochondria. Here, we reported in the quadriceps muscle of p43-/- mice, a fall in triglycerides, an inhibition of monounsaturated fatty acids (MUFA) synthesis, an increase in elongase index and an decrease in desaturase index. However, in mitochondria from p43-/- mice, fatty acid profile was barely modified. In the quadriceps muscle of p43-Tg mice, MUFA content was decreased whereas the unsaturation index was increased. In addition, in quadriceps mitochondria of p43-Tg mice, we found an increase of linoleic acid level and unsaturation index. Last, we showed that cardiolipin content, a key phospholipid for mitochondrial function, remained unchanged both in quadriceps muscle and in its mitochondria whatever the mice genotype. In conclusion, this study shows that muscle lipid content and fatty acid profile are strongly affected in skeletal muscle by p43 levels. We also demonstrate that regulation of cardiolipin biosynthesis by the thyroid hormone does not imply p43.

  2. Extracted oat and barley β-glucans do not affect cholesterol metabolism in young healthy adults

    DEFF Research Database (Denmark)

    Ibrügger, Sabine; Kristensen, Mette Bredal; Poulsen, Malene Wibe

    2013-01-01

    for β-glucan functionality. This study investigates the effects of 3 different β-glucan sources, incorporated into a beverage and yogurt, on blood lipids and fecal endpoints. Fourteen participants completed this randomized, crossover, single-blinded study with four 3-wk periods: control and 3.3 g/d oat...

  3. Molybdate:sulfate ratio affects redox metabolism and viability of the dinoflagellate Lingulodinium polyedrum

    International Nuclear Information System (INIS)

    Barros, M.P.; Hollnagel, H.C.; Glavina, A.B.; Soares, C.O.; Ganini, D.; Dagenais-Bellefeuille, S.; Morse, D.; Colepicolo, P.

    2013-01-01

    Highlights: •Molybdenum (Mo) is a key micronutrient for nitrogen and redox metabolism in many microalgae. •Molybdate and (more abundant) sulfate anions compete for uptake, although proper mechanism is still obscure. •Higher concentrations of molybdate in culture medium diminish sulfur content in L. polyedrum. •Mo toxicity was monitored as a function of [Mo]:[sulfate] ratios in L. polyedrum and was linked to oxidative stress. •Induction of xanthine oxidase activity and/or depletion of thiol-dependent antioxidants are suggested as plausible mechanisms to explain Mo toxicity in dinoflagellates. -- Abstract: Molybdenum is a transition metal used primarily (90% or more) as an additive to steel and corrosion-resistant alloys in metallurgical industries and its release into the environment is a growing problem. As a catalytic center of some redox enzymes, molybdenum is an essential element for inorganic nitrogen assimilation/fixation, phytohormone synthesis, and free radical metabolism in photosynthesizing species. In oceanic and estuarine waters, microalgae absorb molybdenum as the water-soluble molybdate anion (MoO 4 2− ), although MoO 4 2− uptake is thought to compete with uptake of the much more abundant sulfate anion (SO 4 2− , approximately 25 mM in seawater). Thus, those aspects of microalgal biology impacted by molybdenum would be better explained by considering both MoO 4 2− and SO 4 2− concentrations in the aquatic milieu. This work examines toxicological, physiological and redox imbalances in the dinoflagellate Lingulodinium polyedrum that have been induced by changes in the molybdate:sulfate ratios. We prepared cultures of Lingulodinium polyedrum grown in artificial seawater containing eight different MoO 4 2− concentrations (from 0 to 200 μM) and three different SO 4 2− concentrations (3.5 mM, 9.6 mM and 25 mM). We measured sulfur content in cells, the activities of the three major antioxidant enzymes (superoxide dismutase, catalase

  4. Molybdate:sulfate ratio affects redox metabolism and viability of the dinoflagellate Lingulodinium polyedrum

    Energy Technology Data Exchange (ETDEWEB)

    Barros, M.P., E-mail: marcelo.barros@cruzeirodosul.edu.br [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Hollnagel, H.C. [Pós-Graduação, Faculdade Mario Schenberg, 06710500 Cotia, SP (Brazil); Glavina, A.B. [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Soares, C.O. [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Department of Biochemistry, Instituto de Química, Universidade de São Paulo (IQ-USP), São Paulo (Brazil); Ganini, D. [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 (United States); Dagenais-Bellefeuille, S.; Morse, D. [Departement de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montreal, QC H1X 2B2 (Canada); Colepicolo, P. [Department of Biochemistry, Instituto de Química, Universidade de São Paulo (IQ-USP), São Paulo (Brazil)

    2013-10-15

    Highlights: •Molybdenum (Mo) is a key micronutrient for nitrogen and redox metabolism in many microalgae. •Molybdate and (more abundant) sulfate anions compete for uptake, although proper mechanism is still obscure. •Higher concentrations of molybdate in culture medium diminish sulfur content in L. polyedrum. •Mo toxicity was monitored as a function of [Mo]:[sulfate] ratios in L. polyedrum and was linked to oxidative stress. •Induction of xanthine oxidase activity and/or depletion of thiol-dependent antioxidants are suggested as plausible mechanisms to explain Mo toxicity in dinoflagellates. -- Abstract: Molybdenum is a transition metal used primarily (90% or more) as an additive to steel and corrosion-resistant alloys in metallurgical industries and its release into the environment is a growing problem. As a catalytic center of some redox enzymes, molybdenum is an essential element for inorganic nitrogen assimilation/fixation, phytohormone synthesis, and free radical metabolism in photosynthesizing species. In oceanic and estuarine waters, microalgae absorb molybdenum as the water-soluble molybdate anion (MoO{sub 4}{sup 2−}), although MoO{sub 4}{sup 2−} uptake is thought to compete with uptake of the much more abundant sulfate anion (SO{sub 4}{sup 2−}, approximately 25 mM in seawater). Thus, those aspects of microalgal biology impacted by molybdenum would be better explained by considering both MoO{sub 4}{sup 2−} and SO{sub 4}{sup 2−} concentrations in the aquatic milieu. This work examines toxicological, physiological and redox imbalances in the dinoflagellate Lingulodinium polyedrum that have been induced by changes in the molybdate:sulfate ratios. We prepared cultures of Lingulodinium polyedrum grown in artificial seawater containing eight different MoO{sub 4}{sup 2−} concentrations (from 0 to 200 μM) and three different SO{sub 4}{sup 2−} concentrations (3.5 mM, 9.6 mM and 25 mM). We measured sulfur content in cells, the activities of

  5. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants.

    Science.gov (United States)

    Pauwels, Sara; Ghosh, Manosij; Duca, Radu Corneliu; Bekaert, Bram; Freson, Kathleen; Huybrechts, Inge; Langie, Sabine A S; Koppen, Gudrun; Devlieger, Roland; Godderis, Lode

    2017-01-01

    Maternal nutrition during pregnancy and infant nutrition in the early postnatal period (lactation) are critically involved in the development and health of the newborn infant. The Maternal Nutrition and Offspring's Epigenome (MANOE) study was set up to assess the effect of maternal methyl-group donor intake (choline, betaine, folate, methionine) on infant DNA methylation. Maternal intake of dietary methyl-group donors was assessed using a food-frequency questionnaire (FFQ). Before and during pregnancy, we evaluated maternal methyl-group donor intake through diet and supplementation (folic acid) in relation to gene-specific ( IGF2 DMR, DNMT1 , LEP , RXRA ) buccal epithelial cell DNA methylation in 6 months old infants ( n  = 114) via pyrosequencing. In the early postnatal period, we determined the effect of maternal choline intake during lactation (in mothers who breast-fed for at least 3 months) on gene-specific buccal DNA methylation ( n  = 65). Maternal dietary and supplemental intake of methyl-group donors (folate, betaine, folic acid), only in the periconception period, was associated with buccal cell DNA methylation in genes related to growth ( IGF2 DMR), metabolism ( RXRA ), and appetite control ( LEP ). A negative association was found between maternal folate and folic acid intake before pregnancy and infant LEP (slope = -1.233, 95% CI -2.342; -0.125, p  = 0.0298) and IGF2 DMR methylation (slope = -0.706, 95% CI -1.242; -0.107, p  = 0.0101), respectively. Positive associations were observed for maternal betaine (slope = 0.875, 95% CI 0.118; 1.633, p  = 0.0241) and folate (slope = 0.685, 95% CI 0.245; 1.125, p  = 0.0027) intake before pregnancy and RXRA methylation. Buccal DNMT1 methylation in the infant was negatively associated with maternal methyl-group donor intake in the first and second trimester of pregnancy and negatively in the third trimester. We found no clear association between maternal choline intake

  6. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis.

    Directory of Open Access Journals (Sweden)

    Sunwoo Chun

    Full Text Available A high phosphorus (HP diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus or a HP diet (containing 1.2% phosphorus. Gene Ontology analysis of differentially expressed genes (DEGs revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα, a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054 in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty

  7. Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum).

    Science.gov (United States)

    Cocetta, Giacomo; Rossoni, Mara; Gardana, Claudio; Mignani, Ilaria; Ferrante, Antonio; Spinardi, Anna

    2015-02-01

    Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health-promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars ('Duke' and 'Blueray') in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the 'Blueray' variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. 'Duke' is a richer sourche of anthocyanins compared to 'Blueray', treatment with methyl jasmonate promoted in 'Blueray' an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated 'Duke' berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars. © 2014 Scandinavian Plant Physiology Society.

  8. [Metabolism of thyroid gland cells as affected by prolactin and emotional-physical stress].

    Science.gov (United States)

    Strizhkov, V V

    1991-01-01

    A study was made of the role of prolactin (PRL) in the regulation of thyroid function in intact animals and in those exposed to stress (swimming was used as physical exercise). A single daily dose of 125 micrograms of PRL per 100 g of body mass was injected subcutaneously in 0.5 ml of saline solution during a week to male rats (control: intact rats; injection of 0.5 ml of saline solution subcutaneously). Redox enzymes; succinate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, NAD.H2 and NADP.H2, ATPase and monoamine oxidase, total protein, RNA and glycogen in glandular cells were investigated histochemically 24 h after the last injection of PRL or saline, 30 min., 1, 2, 3, 5 and 7 hours after swimming or right after complete fatigue (in the presence of experimental hyperprolactinemia). A conclusion has been made that one of the most important mechanisms of the adaptive effect of PRL is its ability to suppress thyroid function, thus decreasing the metabolism level, which results in reduction of oxygen consumption and improves body tolerance to stress.

  9. Aminocarnitine and acylaminocarnitines: Carnitine acyltransferase inhibitors affecting long-chain fatty acid and glucose metabolism

    International Nuclear Information System (INIS)

    Clark, D.J.

    1989-01-01

    DL-Aminocarnitine (DL-3-amino-4-trimethylaminobutyrate) and the acylaminocarnitines acetyl-, decanoyl- and palmitoyl-DL-aminocarnitine have been synthesized and tested as inhibitors of carnitine palmitoyl-transferase and carnitine acetyltransferase in vitro and in vivo. Acetyl-DL-aaminocarnitine is the most potent reversible inhibitor of carnitine acetyltransferase reported to date, and is competitive with respect to acetyl-L-carnitine. Mice given acetyl-DL-aminocarnitine metabolize [U- 14 C]acetyl-L-carnitine at about 60% of the rate of control mice. Palmitoyl-DL-aminocarnitine is the most potent reversible inhibitor of carnitine palmitoyltransferase reported to date. Decanoyl-DL-aminocarnitine and DL-aminocarnitine are also very potent inhibitors; all compounds inhibit the catabolism of [ 14 C]palmitate to 14 CO 2 in intact mice by at least 50%. Carnitine palmitoyltransferase controls the entry of long-chain fatty acids into the mitochondrial matrix for β-oxidation. The inhibition of carnitine palmitoyltransferase by aminocarnitine or acylaminocarnitines in vivo prevents or reverses ketogenesis in fasted mice, and causes the reversible accumulation of triglycerides in liver, kidney and plasma. Administration of DL-aminocarnitine to streptozotocindiabetic mice lowers plasma glucose levels and improves the glucose tolerance test

  10. Endocrine and metabolic changes in transition dairy cows are affected by prepartum infusions of a serotonin precursor.

    Science.gov (United States)

    Hernández-Castellano, Lorenzo E; Hernandez, Laura L; Sauerwein, Helga; Bruckmaier, Rupert M

    2017-06-01

    Serotonin (5-HT) has been shown to be involved in calcium homeostasis, modulating calcium concentration in blood. In addition, 5-HT participates in a variety of metabolic pathways, mainly through the modulation of glucose and lipid metabolism. The hypothesis of the present study was that the prepartum administration of 5-hydroxy-l-tryptophan (5-HTP), a 5-HT precursor, would affect endocrine systems related to calcium homeostasis, and interact with other endocrine and metabolic pathways during the transition period. In this study, 20 Holstein dairy cows were randomly assigned to 2 experimental groups. Both groups received a daily i.v. infusion of 1 L of either 0.9% NaCl (control group; n = 10) or 0.9% NaCl containing 1 mg of 5-HTP/kg of BW (5-HTP group, n = 10). Infusions started d 10 before estimated parturition date and ended the day of parturition, resulting in a minimum of 4 d of infusion (8.4 ± 0.7 d of infusion). Until parturition, blood samples were collected before the daily infusions, and postpartum daily until d 7, and on d 30. Plasma concentrations of parathyroid hormone (PTH) were transiently increased at parturition and on d 1 in control cows. In the 5-HTP group PTH remained unchanged. The concentration of pyridinoline (PYD), an established marker for calcium release from the bone to the bloodstream, increased on d 1 postpartum only in the 5-HTP group. In control cows, PYD concentrations did not change on d 1 postpartum. Melatonin concentrations were slightly but significantly increased in the 5-HTP group compared with the control group. Insulin concentrations decreased in both groups postpartum. Before parturition, leptin concentrations decreased in both groups and remained at this level until d 30 postpartum. Plasma IgG concentrations decreased in both groups on d -1 postpartum. Haptoglobin increased in both groups on d -1 and remained at this level until d 7 postpartum. No differences between groups were observed for insulin, glucagon, IgG, leptin

  11. Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model.

    Directory of Open Access Journals (Sweden)

    Lucie Šedová

    Full Text Available Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16 and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx into the genomic background of the spontaneously hypertensive rat (SHR strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference and diastolic (10-15 mmHg difference blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001. The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1. Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic

  12. Metabolism of early-lactation dairy cows as affected by dietary starch and monensin supplementation.

    Science.gov (United States)

    McCarthy, M M; Yasui, T; Ryan, C M; Pelton, S H; Mechor, G D; Overton, T R

    2015-05-01

    The objective of this study was to evaluate the effect of dietary starch content and monensin (MON) on metabolism of dairy cows during early lactation. Before parturition, primiparous (n=21) and multiparous (n=49) Holstein cows were fed a common controlled-energy close-up diet with a daily topdress of either 0 or 400mg/d monensin. From d 1 to 21 postpartum, cows were fed a high-starch (HS; 26.2% starch, 34.3% neutral detergent fiber, 22.7% acid detergent fiber, 15.5% crude protein) or low-starch (LS; 21.5% starch, 36.9% neutral detergent fiber, 25.2% acid detergent fiber, 15.4% crude protein) total mixed ration with a daily topdress of either 0mg/d monensin (CON) or 450mg/d monensin (MON), continuing with prepartum topdress assignment. From d 22 through 63 postpartum, all cows were fed HS and continued with the assigned topdress treatment until d 63. Cows fed HS had higher plasma glucose and insulin and lower nonesterified fatty acids (NEFA) than cows fed LS during d 1 to 21 postpartum. Cows fed LS had elevated early-lactation β-hydroxybutyrate (BHBA) compared with cows fed HS. Cows fed HS had greater insulin resistance and increased plasma haptoglobin in the early lactation period. There was no effect of MON on postpartum plasma NEFA. Cows fed MON had higher plasma glucose compared with CON cows, which was driven by a MON × parity interaction in which primiparous cows fed MON had greater plasma glucose concentrations than cows fed CON. Cows fed MON had lower plasma BHBA compared with CON, which was contributed to by a MON × parity interaction in which primiparous cows fed MON had lower BHBA concentrations than CON. Starch treatment had no effect on overall liver triglyceride content. Primiparous cows fed MON had increased liver triglyceride content compared with CON primiparous cows, and multiparous cows fed MON had decreased liver triglyceride content compared with CON cows. Multiparous cows fed LS with MON had higher liver glycogen content than multiparous

  13. Ecdysteroids affect in vivo protein metabolism of the flight muscle of the tobacco hornworm (Manduca sexta)

    Science.gov (United States)

    Tischler, M. E.; Wu, M.; Cook, P.; Hodsden, S.

    1990-01-01

    Ecdysteroid growth promotion of the dorsolongitudinal flight muscle of Manduca sexta was studied by measuring in vivo protein metabolism using both "flooding-dose" and "non-carrier" techniques. These procedures differ in that the former method includes injection of non-labelled phenylalanine (30 micromoles/insect) together with the [3H]amino acid. Injected radioactivity plateaued in the haemolymph within 7 min. With the flooding-dose method, haemolymph and intramuscular specific radioactivities were similar between 15 min and 2 h. Incorporation of [3H]phenylalanine into muscle protein was linear with either method between 30 and 120 min. Fractional rates (%/12 h) of synthesis with the flooding-dose technique were best measured after 1 h because of the initial delay in radioactivity equilibration. Estimation of body phenylalanine turnover with the non-carrier method showed 24-53%/h which was negligible with the flooding-dose method. Since the two methods yielded similar rates of protein synthesis, the large injection of non-labelled amino acid did not alter the rate of synthesis. Because the flooding-dose technique requires only a single time point measurement, it is the preferred method. The decline and eventual cessation of flight-muscle growth was mostly a consequence of declining protein synthesis though degradation increased between 76-86 h before eclosion and was relatively rapid. This decline in muscle growth could be prevented by treating pupae with 20-hydroxyecdysone (10 micrograms/insect). Protein accretion was promoted by a decline of up to 80% in protein breakdown, which was offset in part by a concurrent though much smaller decrease in protein synthesis. Therefore, ecdysteroids may increase flight-muscle growth by inhibiting proteolysis.

  14. [Metabolic Syndrome and Bipolar Affective Disorder: A Review of the Literature].

    Science.gov (United States)

    Jaramillo, Carlos López; Mejía, Adelaida Castaño; Velásquez, Alicia Henao; Restrepo Palacio, Tomás Felipe; Zuluaga, Julieta Osorio

    2013-09-01

    Bipolar disorder (BD) is a chronic psychiatric disorder that is found within the first ten causes of disability and premature mortality. The metabolic syndrome (MS) is a group of risk factors (RF) that predispose to cardiovascular disease (CV), diabetes and early mortality. Both diseases generate high costs to the health system. Major studies have shown that MS has a higher prevalence in patients with mental disorders compared to the general population. The incidence of MS in BD is multifactorial, and due to iatrogenic, genetic, economic, psychological, and behavioral causes related to the health system. The most common RF found is these patients was an increased abdominal circumference, and it was found that the risk of suffering this disease was greater in women and Hispanic patients. As regards the increase in RF to develop a CV in patients with BD, there have been several explanations based on the risky behavior of patients with mental illness, included tobacco abuse, physical inactivity and high calorie diets. An additional explanation described in literature is the view of BD as a multisystemic inflammatory illness, supported by the explanation that inflammation is a crucial element in atherosclerosis, endothelial dysfunction, platelet rupture, and thrombosis. The pathophysiology of MS and BD include factors such as adrenal, thyroid and sympathetic nervous system dysfunction, as well as poor lifestyle and medication common in these patients. This article attempts to give the reader an overall view of the information published in literature to date, as regards the association between BD and MS. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  15. Does exercise training affect resting metabolic rate in adolescents with obesity?

    Science.gov (United States)

    Alberga, Angela S; Prud'homme, Denis; Sigal, Ronald J; Goldfield, Gary S; Hadjiyannakis, Stasia; Gougeon, Réjeanne; Phillips, Penny; Malcolm, Janine; Wells, George A; Doucette, Steve; Ma, Jinhui; Kenny, Glen P

    2017-01-01

    We evaluated the hypothesis that resistance exercise training performed alone or in combination with aerobic exercise training would increase resting metabolic rate (RMR) relative to aerobic-only and nonexercising control groups. Postpubertal adolescents (N = 304) aged 14-18 years with obesity (body mass index (BMI) ≥ 95th percentile) or overweight (BMI ≥ 85th percentile + additional diabetes risk factor(s)) were randomized to 4 groups for 22 weeks: Aerobic exercise training, Resistance exercise training, Combined aerobic and resistance exercise training, or Control. All participants received dietary counselling targeting a daily energy deficit of 250 kcal. RMR was measured by indirect calorimetry and body composition by magnetic resonance imaging. There was no significant change in RMR in any group, in spite of significant within-group increases in fat-free mass in the Aerobic, Resistance, and Combined exercise training groups. RMR at baseline and 6 months were Aerobic: 1972 ± 38 and 1990 ± 41; Resistance: 2024 ± 37 and 1992 ± 41; Combined: 2023 ± 38 and 1995 ± 38; Control: 2075 ± 38 and 2073 ± 39 kcal/day (p > 0.05). There were no between-group differences in RMR after adjustment for total body weight or fat-free mass between groups over time. Per-protocol analyses including only participants with ≥70% adherence, and analyses stratified by sex, also showed no within- or between-group differences in RMR. In conclusion, despite an increase in fat-free mass in all exercise groups, 6 months of aerobic, resistance, or combined training with modest dietary restriction did not increase RMR compared with diet only in adolescents with obesity.

  16. Markers of bone metabolism are affected by renal function and growth hormone therapy in children with chronic kidney disease.

    Science.gov (United States)

    Doyon, Anke; Fischer, Dagmar-Christiane; Bayazit, Aysun Karabay; Canpolat, Nur; Duzova, Ali; Sözeri, Betül; Bacchetta, Justine; Balat, Ayse; Büscher, Anja; Candan, Cengiz; Cakar, Nilgun; Donmez, Osman; Dusek, Jiri; Heckel, Martina; Klaus, Günter; Mir, Sevgi; Özcelik, Gül; Sever, Lale; Shroff, Rukshana; Vidal, Enrico; Wühl, Elke; Gondan, Matthias; Melk, Anette; Querfeld, Uwe; Haffner, Dieter; Schaefer, Franz

    2015-01-01

    The extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric chronic kidney disease cohort. Bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin and C-terminal FGF-23 (cFGF23) normalized for age and sex were analyzed in 556 children aged 6-18 years with an estimated glomerular filtration rate (eGFR) of 10-60 ml/min/1.73 m2. 41 children receiving recombinant growth hormone therapy were compared to an untreated matched control group. Standardized levels of BAP, TRAP5b and cFGF-23 were increased whereas sclerostin was reduced. BAP was correlated positively and cFGF-23 inversely with eGFR. Intact serum parathormone was an independent positive predictor of BAP and TRAP5b and negatively associated with sclerostin. BAP and TRAP5B were negatively affected by increased C-reactive protein levels. In children receiving recombinant growth hormone, BAP was higher and TRAP5b lower than in untreated controls. Sclerostin levels were in the normal range and higher than in untreated controls. Serum sclerostin and cFGF-23 independently predicted height standard deviation score, and BAP and TRAP5b the prospective change in height standard deviation score. Markers of bone metabolism indicate a high-bone turnover state in children with chronic kidney disease. Growth hormone induces an osteoanabolic pattern and normalizes osteocyte activity. The osteocyte markers cFGF23 and sclerostin are associated with standardized height, and the markers of bone turnover predict height velocity.

  17. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.

    Directory of Open Access Journals (Sweden)

    Helin Tan

    Full Text Available Canola (Brassica napus is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS. The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld, phloem-peeling (Pe, and selective silique darkening (Sd. Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA, organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms

  18. A high-fat diet differentially affects the gut metabolism and blood lipids of rats depending on the type of dietary fat and carbohydrate.

    Science.gov (United States)

    Jurgoński, Adam; Juśkiewicz, Jerzy; Zduńczyk, Zenon

    2014-02-03

    The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated) and carbohydrate (simple vs. complex). The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet) as the source of saturated or unsaturated fatty acids, respectively; further, each lard- and soybean oil-rich diet contained either fructose or corn starch (45.3% of the diet) as the source of simple or complex carbohydrates, respectively. Both dietary factors contributed to changes in the caecal short-chain fatty acid concentrations, especially to the butyrate concentration, which was higher in rats fed lard- and corn starch-rich diets compared to soybean oil- and fructose-rich diets, respectively. The lowest butyrate concentration was observed in rats fed the soybean oil- and fructose-rich diet. On the other hand, the lard- and fructose-rich diet vs. the other dietary combinations significantly increased serum total cholesterol concentration, to more than two times serum triglyceride concentration and to more than five times the atherogenic index. In conclusion, a high-fat diet rich in fructose can unfavorably affect gut metabolism when unsaturated fats are predominant in the diet or the blood lipids when a diet is rich in saturated fats.

  19. Glucagon-Like Peptide 2 Stimulates Postresection Intestinal Adaptation in Preterm Pigs by Affecting Proteins Related to Protein, Carbohydrate, and Sulphur Metabolism

    DEFF Research Database (Denmark)

    Jiang, Pingping; Vegge, Andreas; Thymann, Thomas

    2017-01-01

    cellular structural proteins, while the added GLP-2 treatment affected proteins involved in protein processing and the metabolism of protein, carbohydrate, and sulphur. CONCLUSION: In the first days following resection, proteins affected by resection plus GLP-2 treatment differed markedly from those...

  20. Positive Affect as a Source of Resilience for Women in Chronic Pain

    OpenAIRE

    Zautra, Alez J.; Johnson, Lisa M.; Davis, Mary C.

    2005-01-01

    A sample of 124 women with osteoarthritis (OA) and/or fibromyalgia (FMS) completed initial assessments for demographic data, health status, and personality traits and 10 to 12 weekly interviews regarding pain, stress, negative affect, and positive affect. Multilevel modeling analyses indicated that weekly elevations of pain and stress predicted increases in negative affect. Both higher weekly positive affect as well as greater positive affect on average resulted in lower negative affect both ...

  1. GlmS and NagB regulate amino sugar metabolism in opposing directions and affect Streptococcus mutans virulence.

    Directory of Open Access Journals (Sweden)

    Miki Kawada-Matsuo

    Full Text Available Streptococcus mutans is a cariogenic pathogen that produces an extracellular polysaccharide (glucan from dietary sugars, which allows it to establish a reproductive niche and secrete acids that degrade tooth enamel. While two enzymes (GlmS and NagB are known to be key factors affecting the entrance of amino sugars into glycolysis and cell wall synthesis in several other bacteria, their roles in S. mutans remain unclear. Therefore, we investigated the roles of GlmS and NagB in S. mutans sugar metabolism and determined whether they have an effect on virulence. NagB expression increased in the presence of GlcNAc while GlmS expression decreased, suggesting that the regulation of these enzymes, which functionally oppose one another, is dependent on the concentration of environmental GlcNAc. A glmS-inactivated mutant could not grow in the absence of GlcNAc, while nagB-inactivated mutant growth was decreased in the presence of GlcNAc. Also, nagB inactivation was found to decrease the expression of virulence factors, including cell-surface protein antigen and glucosyltransferase, and to decrease biofilm formation and saliva-induced S. mutans aggregation, while glmS inactivation had the opposite effects on virulence factor expression and bacterial aggregation. Our results suggest that GlmS and NagB function in sugar metabolism in opposing directions, increasing and decreasing S. mutans virulence, respectively.

  2. Roostocks/scion/ nitrogen interactions affect secondary metabolism in the grape berry

    Directory of Open Access Journals (Sweden)

    Aude Habran

    2016-08-01

    Full Text Available ABSTRACT : The present work investigates the interactions between soil content, rootstock and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS and Pinot Noir (PN varieties were grafted either on Riparia Gloire de Montpellier (RGM or 110 Richter (110R rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic and hydroxybenzoic acids. that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization.

  3. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry.

    Science.gov (United States)

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization.

  4. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism

    DEFF Research Database (Denmark)

    Christensen, Lise-Lotte; True, Kirsten; Hamilton, Mark P.

    2016-01-01

    It is well established that lncRNAs are aberrantly expressed in cancer where they have been shown to act as oncogenes or tumor suppressors. RNA profiling of 314 colorectal adenomas/adenocarcinomas and 292 adjacent normal colon mucosa samples using RNA-sequencing demonstrated that the snoRNA host...... gene 16 (SNHG16) is significantly up-regulated in adenomas and all stages of CRC. SNHG16 expression was positively correlated to the expression of Wnt-regulated transcription factors, including ASCL2, ETS2, and c-Myc. In vitro abrogation of Wnt signaling in CRC cells reduced the expression of SNHG16...... indicating that SNHG16 is regulated by the Wnt pathway. Silencing of SNHG16 resulted in reduced viability, increased apoptotic cell death and impaired cell migration. The SNHG16 silencing particularly affected expression of genes involved in lipid metabolism. A connection between SNHG16 and genes involved...

  5. The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. Palmer) fruit during storage.

    Science.gov (United States)

    Cosme Silva, Gláucia Michelle; Silva, Willian Batista; Medeiros, David B; Salvador, Acácio Rodrigues; Cordeiro, Maria Helena Menezes; da Silva, Natália Martins; Santana, Diederson Bortolini; Mizobutsi, Gisele Polete

    2017-12-15

    Mango is a highly perishable fruit with a short post-harvest time due to the intense metabolic activity after harvesting. In attempt to evaluate the effects of chitosan in mango fruits, it was treated with 0%, 1%, 2% or 3% of chitosan solutions, placed into plastic trays, and stored at room temperature. Changes in physical and chemical parameters were evaluated. Chitosan delayed the climacteric peak, water loss and firmness. Further, few changes in soluble solid content, titratable acidity, pH of the pulp as well as in sugar content and decreased starch degradation were observed. Altogether, our results suggest chitosan edible coating effectively prolongs the quality attributes, affecting basic mitochondrial respiration and starch degradation rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Estimation of sources and factors affecting indoor VOC levels using basic numerical methods

    Directory of Open Access Journals (Sweden)

    Sibel Mentese

    2016-11-01

    Full Text Available Volatile Organic Compounds (VOCs are a concern due to their adverse health effects and extensive usage. Levels of indoor VOCs were measured in six homes located in three different towns in Çanakkale, Turkey. Monthly indoor VOC samples were collected by passive sampling throughout a year. The highest levels of total volatile organic compounds (TVOC, benzene, toluene, and xylenes occurred in industrial, rural, and urban sites in a descending order. VOC levels were categorized as average values annually, during the heating period, and non-heating period. Several building/environmental factors together with occupants’ habits were scored to obtain a basic indoor air pollution index (IAPi for the homes. Bivariate regression analysis was applied to find the associations between the pollutant levels and home scores. IAPi scores were found to be correlated with average indoor VOC levels. In particular, very strong associations were found for occupants’ habits. Furthermore, observed indoor VOC levels were categorized by using self-organizing map (SOM and two simple scoring approaches, rounded average and maximum value methods, to classify the indoor environments based on their VOC compositions (IAPvoc. Three classes were used for both IAPi and IAPvoc approaches, namely “good”, “moderate”, and “bad”. There is an urgent need for indexing studies to determine the potential sources and/or factors affecting observed VOCs. This study gives a basic but good start for further studies.

  7. Cre-Mediated Stress Affects Sirtuin Expression Levels, Peroxisome Biogenesis and Metabolism, Antioxidant and Proinflammatory Signaling Pathways

    Science.gov (United States)

    Xiao, Yu; Karnati, Srikanth; Qian, Guofeng; Nenicu, Anca; Fan, Wei; Tchatalbachev, Svetlin; Höland, Anita; Hossain, Hamid; Guillou, Florian; Lüers, Georg H.; Baumgart-Vogt, Eveline

    2012-01-01

    Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts), inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14) as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase). In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2) and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7) in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt) with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  8. Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner

    Directory of Open Access Journals (Sweden)

    Jessica M. V. Pino

    2017-05-01

    Full Text Available Iron is an essential micronutrient for several physiological functions, including the regulation of dopaminergic neurotransmission. On the other hand, both iron, and dopamine can affect the folding and aggregation of proteins related with neurodegenerative diseases, such as cellular prion protein (PrPC and α-synuclein, suggesting that deregulation of iron homeostasis and the consequential disturbance of dopamine metabolism can be a risk factor for conformational diseases. These proteins, in turn, are known to participate in the regulation of iron and dopamine metabolism. In this study, we evaluated the effects of dietary iron restriction on brain ferritin levels, dopamine metabolism, and the expression levels of PrPC and α-synuclein. To achieve this goal, C57BL/6 mice were fed with iron restricted diet (IR or with normal diet (CTL for 1 month. IR reduced iron and ferritin levels in liver. Ferritin reduction was also observed in the hippocampus. However, in the striatum of IR group, ferritin level was increased, suggesting that under iron-deficient condition, each brain area might acquire distinct capacity to store iron. Increased lipid peroxidation was observed only in hippocampus of IR group, where ferritin level was reduced. IR also generated discrete results regarding dopamine metabolism of distinct brain regions: in striatum, the level of dopamine metabolites (DOPAC and HVA was reduced; in prefrontal cortex, only HVA was increased along with the enhanced MAO-A activity; in hippocampus, no alterations were observed. PrPC levels were increased only in the striatum of IR group, where ferritin level was also increased. PrPC is known to play roles in iron uptake. Thus, the increase of PrPC in striatum of IR group might be related to the increased ferritin level. α-synuclein was not altered in any regions. Abnormal accumulation of ferritin, increased MAO-A activity or lipid peroxidation are molecular features observed in several neurological

  9. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    Full Text Available Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts, inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14 as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase. In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2 and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7 in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  10. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.

    Science.gov (United States)

    Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi

    2011-08-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed.

  11. Patterns and sources of alcohol consumption preceding alcohol-affected attendances to a New Zealand hospital emergency department.

    Science.gov (United States)

    Das, Manidipa; Stewart, Rebecca; Ardagh, Michael; Deely, Joanne M; Dodd, Stuart; Bartholomew, Nadia V; Pearson, Scott; Spearing, Ruth; Williams, Tracey; Than, Martin

    2014-08-29

    To perform a descriptive study of the drinking behaviour (amounts, types, sources of alcohol consumed) preceding alcohol-affected presentations to Christchurch Hospital Emergency Department (ED). Over 336 hours in the ED, patients with recent alcohol consumption or alcohol-related attendances were identified, classified as alcohol-affected or alcohol- unaffected, and invited to consent to answering questions on types, amounts and sources of alcohol consumed in the drinking session preceding or implicated in their ED attendance. Demographic information and level of intoxication were also recorded. Data were summarised descriptively. Alcohol-affected patients were more frequently young (16-25 years) and male. Median alcohol consumption was 14 (range 1 to 71) standard drinks. Beer was the most popular beverage (34%), but spirits (23%), ready-to-drink mixes (21%) and wine (20%) were also popular. Liquor stores (45%) were the most popular source of alcohol, followed by on-licence premises (25%), and supermarkets (21%). The popularity of different types of beverages and their source varied according to patient age and gender. Consumption of large amounts, as well as allegedly 'safe' amounts, of a range of alcoholic beverages, most commonly from an off-licence source, contributed to alcohol-affected presentations to the ED. Beverage and source popularity varied by age and gender.

  12. Physiological and endocrino-metabolic factors affecting serum myoglobin levels assayed by a radioimmunological method

    International Nuclear Information System (INIS)

    Clerico, A.; Giampietro, O.; Del Chicca, M.G.

    1984-01-01

    Only recently with the introduction of accurate and sensitive RIA methods it has been possible to detect significant amounts of myoglobin (M) in human sera. We studied serum M levels by a RIA in normal subjects and athletes with different age, sex and muscle mass, at rest and in different hours of the day, and after physical training, in hypothyroid and acromegalic patients before and after therapy, with the aim to evidentiate the possible factors affecting serum M levels. We used for M assay a very sensitive RIA method. We studied 62 normal adult persons (32 men and 30 women, 16-62 years of age), 93 children (0-12 year old), 15 neonates and 9 athletes. In addition, in 21 normal adult subjects (11 men, 10 women) circadian profiles of M concentrations were studied at rest. A significant circadian rhythm was found in 18 out 21 subjects studied, with higher M levels in the morning hours. Children showed low M concentrations (10.8 - 6.1 ng/ml), while in neonates higher M levels were found. Adult men showed significantly higher M levels (26.2 +- 10.3 ng/ml) than women (19.1 +- 7.3 ng/ml) at 8-10 a.m. A significant correlation between body mass and M levels was found in nonobese-adult men, women and athletes (r=0.7195, n=60, p<0.001) at 8-10 a.m. This correlation was also clearly evident at every hour of the day in the 21 subjects studied for circadian profiles. Myoglobin levels greatly increased after physical training. In 6 of 10 hypothyroid patients M was cleary elevated before substitutive therapy; a significant inverse correlation was found between serum M levels and circulating peripheral (free and total) thyroid hormones. Before treatment, in all acromegalics basal M levels were found to be slightly higher than normal, with significant circadian rhythm, as in normals. In addition, a 'biphasic' pattern of M levels in relation to the behaviour of serum GH concentrations was observed. (Author)

  13. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water.

    Science.gov (United States)

    Chen, Baowei; Arnold, Lora L; Cohen, Samuel M; Thomas, David J; Le, X Chris

    2011-12-01

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic (iAs) producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated arsenicals may contribute to toxicity associated with exposure to inorganic arsenic. Here, adult female wild-type (WT) C57BL/6 mice and female As3mt knockout (KO) mice received drinking water that contained 1, 10, or 25 ppm (mg/l) of arsenite for 33 days and blood, liver, kidney, and lung were taken for arsenic speciation. Genotype markedly affected concentrations of arsenicals in tissues. Summed concentrations of arsenicals in plasma were higher in WT than in KO mice; in red blood cells, summed concentrations of arsenicals were higher in KO than in WT mice. In liver, kidney, and lung, summed concentrations of arsenicals were greater in KO than in WT mice. Although capacity for arsenic methylation is much reduced in KO mice, some mono-, di-, and tri-methylated arsenicals were found in tissues of KO mice, likely reflecting the activity of other tissue methyltransferases or preabsorptive metabolism by the microbiota of the gastrointestinal tract. These results show that the genotype for arsenic methylation determines the phenotypes of arsenic retention and distribution and affects the dose- and organ-dependent toxicity associated with exposure to inorganic arsenic.

  14. Factors Affecting Source-Water Quality after Disturbance of Forests by Wildfire

    Science.gov (United States)

    Murphy, S. F.; Martin, D. A.; McCleskey, R. B.; Writer, J. H.

    2015-12-01

    Forests yield high-quality water supplies to communities throughout the world, in part because forest cover reduces flooding and the consequent transport of suspended and dissolved constituents to surface water. Disturbance by wildfire reduces or eliminates forest cover, leaving watersheds susceptible to increased surface runoff during storms and reduced ability to retain contaminants. We assessed water-quality response to hydrologic events for three years after a wildfire in the Fourmile Creek Watershed, near Boulder, Colorado, and found that hydrologic and geochemical responses downstream of a burned area were primarily driven by small, brief convective storms that had relatively high, but not unusual, rainfall intensity. Total suspended sediment, dissolved organic carbon, nitrate, and manganese concentrations were 10-156 times higher downstream of a burned area compared to upstream, and water quality was sufficiently impaired to pose water-treatment concerns. The response in both concentration and yield of water-quality constituents differed depending on source availability and dominant watershed processes controlling the constituent. For example, while all constituent concentrations were highest during storm events, annual sediment yields downstream of the burned area were controlled by storm events and subsequent mobilization, whereas dissolved organic carbon yields were more dependent on spring runoff from upstream areas. The watershed response was affected by a legacy of historical disturbance: the watershed had been recovering from extensive disturbance by mining, railroad and road development, logging, and fires in the late 19th and early 20th centuries, and we observed extensive erosion of mine waste in response to these summer storms. Therefore, both storm characteristics and historical disturbance in a burned watershed must be considered when evaluating the role of wildfire on water quality.

  15. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production.

    Science.gov (United States)

    Xie, Dongming; Jackson, Ethel N; Zhu, Quinn

    2015-02-01

    The omega-3 fatty acids, cis-5, 8, 11, 14, and 17-eicosapentaenoic acid (C20:5; EPA) and cis-4, 7, 10, 13, 16, and 19-docosahexaenoic acid (C22:6; DHA), have wide-ranging benefits in improving heart health, immune function, mental health, and infant cognitive development. Currently, the major source for EPA and DHA is from fish oil, and a minor source of DHA is from microalgae. With the increased demand for EPA and DHA, DuPont has developed a clean and sustainable source of the omega-3 fatty acid EPA through fermentation using metabolically engineered strains of Yarrowia lipolytica. In this mini-review, we will focus on DuPont's technology for EPA production. Specifically, EPA biosynthetic and supporting pathways have been introduced into the oleaginous yeast to synthesize and accumulate EPA under fermentation conditions. This Yarrowia platform can also produce tailored omega-3 (EPA, DHA) and/or omega-6 (ARA, GLA) fatty acid mixtures in the cellular lipid profiles. Fundamental research such as metabolic engineering for strain construction, high-throughput screening for strain selection, fermentation process development, and process scale-up were all needed to achieve the high levels of EPA titer, rate, and yield required for commercial application. Here, we summarize how we have combined the fundamental bioscience and the industrial engineering skills to achieve large-scale production of Yarrowia biomass containing high amounts of EPA, which led to two commercial products, New Harvest™ EPA oil and Verlasso® salmon.

  16. Astragalus membranaceus-Polysaccharides Ameliorates Obesity, Hepatic Steatosis, Neuroinflammation and Cognition Impairment without Affecting Amyloid Deposition in Metabolically Stressed APPswe/PS1dE9 Mice

    Directory of Open Access Journals (Sweden)

    Yung-Cheng Huang

    2017-12-01

    Full Text Available Astragalus membranaceus is commonly used in traditional Chinese medicine for strengthening the host defense system. Astragalus membranaceus-polysaccharides is an effective component with various important bioactivities, such as immunomodulation, antioxidant, anti-diabetes, anti-inflammation and neuroprotection. In the present study, we determine the effects of Astragalus membranaceus-polysaccharides on metabolically stressed transgenic mice in order to develop this macromolecules for treatment of sporadic Alzheimer’s disease, a neurodegenerative disease with metabolic risk factors. Transgenic mice, at 10 weeks old prior to the appearance of senile plaques, were treated in combination of administrating high-fat diet and injecting low-dose streptozotocin to create the metabolically stressed mice model. Astragalus membranaceus-polysaccharides was administrated starting at 14 weeks for 7 weeks. We found that Astragalus membranaceus-polysaccharides reduced metabolic stress-induced increase of body weight, insulin and insulin and leptin level, insulin resistance, and hepatic triglyceride. Astragalus membranaceus-polysaccharides also ameliorated metabolic stress-exacerbated oral glucose intolerance, although the fasting blood glucose was only temporally reduced. In brain, metabolic stress-elicited astrogliosis and microglia activation in the vicinity of plaques was also diminished by Astragalus membranaceus-polysaccharides administration. The plaque deposition, however, was not significantly affected by Astragalus membranaceus-polysaccharides administration. These findings suggest that Astragalus membranaceus-polysaccharides may be used to ameliorate metabolic stress-induced diabesity and the subsequent neuroinflammation, which improved the behavior performance in metabolically stressed transgenic mice.

  17. Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea.

    Science.gov (United States)

    Portes, Maria Teresa; Figueiredo-Ribeiro, Rita de Cássia L; de Carvalho, Maria Angela M

    2008-10-09

    In addition to the storage function, fructans in Asteraceae from floras with seasonal growth have been associated with drought and freezing tolerance. Vernonia herbacea, native of the Brazilian Cerrado, bears underground reserve organs, rhizophores, accumulating inulin-type fructans. The rhizophore is a cauline branched system with positive geotropic growth, with the apex (distal region) presenting younger tissues; sprouting of new shoots occurs by development of buds located on the opposite end (proximal region). Plants induced to sprouting by excision of the aerial organs present increased 1-fructan exohydrolase (1-FEH) activity in the proximal region, while plants at the vegetative stage present high 1-sucrose:sucrose fructosyltransferase (1-SST) in the distal region. The aim of the present study was to analyze how low temperature (5 degrees C) could affect fructan-metabolizing enzymes and fructan composition in the different regions of the rhizophores of intact and excised plants. 1-SST and 1-fructan:fructan fructosyltransferase (1-FFT) were higher in the distal region decreasing towards the proximal region in intact plants at the vegetative phase, and were drastically diminished when cold and/or excision were imposed. In contrast, 1-FEH increased in the proximal region of treated plants, mainly in excised plants subjected to cold. The ratio fructo-oligo to fructo-polysaccharides was significantly higher in plants exposed to low temperature (1.17 in intact plants and 1.64 in excised plants) than in plants exposed to natural temperature conditions (0.84 in intact vegetative plants and 0.58 in excised plants), suggesting that oligosaccharides are involved in the tolerance of plants to low temperature via 1-FEH, in addition to 1-FFT. Principal component analysis indicated different response mechanisms in fructan metabolism under defoliation and low temperature, which could be interpreted as part of the strategies to undergo unfavorable environmental conditions

  18. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.

    Science.gov (United States)

    Zelik, Karl E; Collins, Steven H; Adamczyk, Peter G; Segal, Ava D; Klute, Glenn K; Morgenroth, David C; Hahn, Michael E; Orendurff, Michael S; Czerniecki, Joseph M; Kuo, Arthur D

    2011-08-01

    Lower-limb amputees expend more energy to walk than non-amputees and have an elevated risk of secondary disabilities. Insufficient push-off by the prosthetic foot may be a contributing factor. We aimed to systematically study the effect of prosthetic foot mechanics on gait, to gain insight into fundamental prosthetic design principles. We varied a single parameter in isolation, the energy-storing spring in a prototype prosthetic foot, the controlled energy storage and return (CESR) foot, and observed the effect on gait. Subjects walked on the CESR foot with three different springs. We performed parallel studies on amputees and on non-amputees wearing prosthetic simulators. In both groups, spring characteristics similarly affected ankle and body center-of-mass (COM) mechanics and metabolic cost. Softer springs led to greater energy storage, energy return, and prosthetic limb COM push-off work. But metabolic energy expenditure was lowest with a spring of intermediate stiffness, suggesting biomechanical disadvantages to the softest spring despite its greater push-off. Disadvantages of the softest spring may include excessive heel displacements and COM collision losses. We also observed some differences in joint kinetics between amputees and non-amputees walking on the prototype foot. During prosthetic push-off, amputees exhibited reduced energy transfer from the prosthesis to the COM along with increased hip work, perhaps due to greater energy dissipation at the knee. Nevertheless, the results indicate that spring compliance can contribute to push-off, but with biomechanical trade-offs that limit the degree to which greater push-off might improve walking economy. © 2011 IEEE

  19. Negative Affectivity Predicts Lower Quality of Life and Metabolic Control in Type 2 Diabetes Patients: A Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    Chiara Conti

    2017-05-01

    Full Text Available Introduction: It is essential to consider the clinical assessment of psychological aspects in patients with Diabetes Mellitus (DM, in order to prevent potentially adverse self-management care behaviors leading to diabetes-related complications, including declining levels of Quality of Life (QoL and negative metabolic control.Purpose: In the framework of Structural Equation Modeling (SEM, the specific aim of this study is to evaluate the influence of distressed personality factors as Negative Affectivity (NA and Social Inhibition (SI on diabetes-related clinical variables (i.e., QoL and glycemic control.Methods: The total sample consists of a clinical sample, including 159 outpatients with Type 2 Diabetes Mellitus (T2DM, and a control group composed of 102 healthy respondents. All participants completed the following self- rating scales: The Type D Scale (DS14 and the World Health Organization QoL Scale (WHOQOLBREF. Furthermore, the participants of the clinical group were assessed for HbA1c, disease duration, and BMI. The observed covariates were BMI, gender, and disease duration, while HbA1c was considered an observed variable.Results: SEM analysis revealed significant differences between groups in regards to the latent construct of NA and the Environmental dimension of QoL. For the clinical sample, SEM showed that NA had a negative impact on both QoL dimensions and metabolic control.Conclusions: Clinical interventions aiming to improve medication adherence in patients with T2DM should include the psychological evaluation of Type D Personality traits, by focusing especially on its component of NA as a significant risk factor leading to negative health outcomes.

  20. Polyol synthesis in Aspergillus niger : influence of oxygen availability, carbon and nitrogen sources on the metabolism

    DEFF Research Database (Denmark)

    Diano, Audrey; Bekker-Jensen, S; Dynesen, Jens Østergaard

    2006-01-01

    Polyol production has been studied in Aspergillus niger under different conditions. Fermentations have been run using high concentration of glucose or xylose as carbon source and ammonium or nitrate as nitrogen source. The growth of biomass, as freely dispersed hyphae, led to an increase of medium...

  1. Source segregation of food waste in office areas: Factors affecting waste generation rates and quality

    DEFF Research Database (Denmark)

    Edjabou, Vincent Maklawe Essonanawe; Boldrin, Alessio; Scheutz, Charlotte

    2015-01-01

    Existing legislation mandates that the amount of waste being recycled should be increased. Among others, in its Resource Strategy Plan, the Danish Government decided that at least 60% of food waste generated by the service sector, including in office areas, should be source-sorted and collected...... separately by 2018. To assess the achievability of these targets, source-sorted food waste and residual waste from office areas was collected and weighed on a daily basis during 133 working days. Waste composition analyses were conducted every week to investigate the efficiency of the source-sorting campaign...... and the purity of the source-sorted food waste. The moisture content of source-sorted food waste and residual waste fractions, and potential methane production from source-sorted food waste, was also investigated.Food waste generation equated to 23. ±. 5. kg/employee/year, of which 20. ±. 5. kg...

  2. Aging affects the interaction between attentional control and source memory: an fMRI study.

    Science.gov (United States)

    Dulas, Michael R; Duarte, Audrey

    2014-12-01

    Age-related source memory impairments may be due, at least in part, to deficits in executive processes mediated by the PFC at both study and test. Behavioral work suggests that providing environmental support at encoding, such as directing attention toward item-source associations, may improve source memory and reduce age-related deficits in the recruitment of these executive processes. The present fMRI study investigated the effects of directed attention and aging on source memory encoding and retrieval. At study, participants were shown pictures of objects. They were either asked to attend to the objects and their color (source) or to their size. At test, participants determined if objects were seen before, and if so, whether they were the same color as previously. Behavioral results showed that direction of attention improved source memory for both groups; however, age-related deficits persisted. fMRI results revealed that, across groups, direction of attention facilitated medial temporal lobe-mediated contextual binding processes during study and attenuated right PFC postretrieval monitoring effects at test. However, persistent age-related source memory deficits may be related to increased recruitment of medial anterior PFC during encoding, indicative of self-referential processing, as well as underrecruitment of lateral anterior PFC-mediated relational processes. Taken together, this study suggests that, even when supported, older adults may fail to selectively encode goal-relevant contextual details supporting source memory performance.

  3. Morphology, chemistry and distribution of neoformed spherulites in agricultural land affected by metallurgical point-source pollution

    NARCIS (Netherlands)

    Leguedois, S.; Oort, van F.; Jongmans, A.G.; Chevalier, P.

    2004-01-01

    Metal distribution patterns in superficial soil horizons of agricultural land affected by metallurgical point-source pollution were studied using optical and electron microscopy, synchrotron radiation and spectroscopy analyses. The site is located in northern France, at the center of a former entry

  4. 40 CFR Table 12 to Subpart Xxxx of... - Continuous Compliance With the Emission Limits for Tire Cord Production Affected Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With the Emission Limits for Tire Cord Production Affected Sources 12 Table 12 to Subpart XXXX of Part 63 Protection of... Pollutants: Rubber Tire Manufacturing Pt. 63, Subpt. XXXX, Table 12 Table 12 to Subpart XXXX of Part 63...

  5. 40 CFR Table 10 to Subpart Xxxx of... - Continuous Compliance With the Emission Limits for Tire Production Affected Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With the Emission Limits for Tire Production Affected Sources 10 Table 10 to Subpart XXXX of Part 63 Protection of... Pollutants: Rubber Tire Manufacturing Pt. 63, Subpt. XXXX, Table 10 Table 10 to Subpart XXXX of Part 63...

  6. 40 CFR Table 6 to Subpart Xxxx of... - Initial Compliance With the Emission Limits for Tire Production Affected Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Initial Compliance With the Emission Limits for Tire Production Affected Sources 6 Table 6 to Subpart XXXX of Part 63 Protection of... Pollutants: Rubber Tire Manufacturing Pt. 63, Subpt. XXXX, Table 6 Table 6 to Subpart XXXX of Part 63—Initial...

  7. 40 CFR Table 7 to Subpart Xxxx of... - Initial Compliance With the Emission Limits for Tire Cord Production Affected Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Initial Compliance With the Emission Limits for Tire Cord Production Affected Sources 7 Table 7 to Subpart XXXX of Part 63 Protection of... Pollutants: Rubber Tire Manufacturing Pt. 63, Subpt. XXXX, Table 7 Table 7 to Subpart XXXX of Part 63—Initial...

  8. Kinetics of metabolism of glucose, propionate and CO2 in steers as affected by injecting phlorizin and feeding propionate

    International Nuclear Information System (INIS)

    Veenhuizen, J.J.; Russell, R.W.; Young, J.W.

    1988-01-01

    Effects of injecting phlorizin subcutaneously and/or feeding propionate on metabolism of glucose, propionate and CO2 were determined for four steers used in a 4 x 4 Latin square design. Isotope dilution techniques were used to determine a four-pool kinetic solution for the flux of carbon among plasma glucose, rumen propionate, blood CO2 and rumen CO2. Injecting 1 g of phlorizin twice daily for 19 d resulted in 7.1 mol glucose C/d being excreted in urine. The basal glucose production of 13.4 mol C/d was increased to 17.9 mol C/d with phlorizin. There was no change in glucose oxidation or propionate production. The percentage of plasma glucose derived from propionate was unaffected by phlorizin, but 54 +/- 0.4% of total propionate was converted to plasma glucose during phlorizin treatment versus 40 +/- 0.6% during the basal treatment. When propionate was fed (18.3 mol C/d) glucose production increased to 21.2 mol C/d from the basal value of 13.4 mol C/d, and propionate oxidation to CO2 increased to 14.9 mol C/d from the basal value of 4.1 mol C/d. Glucose derived from propionate was 43 +/- 5% for the basal treatment and 67 +/- 3% during propionate feeding. The percentage of propionate converted to plasma glucose and blood and rumen CO2 was not affected by feeding propionate. An increased need for glucose, because of glucose excretion during phlorizin treatment, caused an increased utilization of propionate for gluconeogenesis, but an increased availability of propionate caused an increase in glucose production without affecting the relative distribution of carbon from propionate

  9. Semantic Trouble Sources and Their Repair in Conversations Affected by Parkinson's Disease

    Science.gov (United States)

    Saldert, Charlotta; Ferm, Ulrika; Bloch, Steven

    2014-01-01

    Background: It is known that dysarthria arising from Parkinson's disease may affect intelligibility in conversational interaction. Research has also shown that Parkinson's disease may affect cognition and cause word-retrieval difficulties and pragmatic problems in the use of language. However, it is not known whether or how these…

  10. Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches

    NARCIS (Netherlands)

    Beamonte Barrientos, Rene; Verhulst, Simon

    Understanding the sources of variation in oxidative stress level is a challenging issue due to the implications of oxidative stress for late age diseases, longevity and life-history trade-offs. Reactive oxygen species that cause oxidative stress are mostly a by-product of energy metabolism and it is

  11. The Gustatory Signaling Pathway and Bitter Taste Receptors Affect the Development of Obesity and Adipocyte Metabolism in Mice.

    Directory of Open Access Journals (Sweden)

    Bert Avau

    Full Text Available Intestinal chemosensory signaling pathways involving the gustatory G-protein, gustducin, and bitter taste receptors (TAS2R have been implicated in gut hormone release. Alterations in gut hormone profiles may contribute to the success of bariatric surgery. This study investigated the involvement of the gustatory signaling pathway in the development of diet-induced obesity and the therapeutic potential of targeting TAS2Rs to induce body weight loss. α-gustducin-deficient (α-gust-/- mice became less obese than wild type (WT mice when fed a high-fat diet (HFD. White adipose tissue (WAT mass was lower in α-gust-/- mice due to increased heat production as a result of increases in brown adipose tissue (BAT thermogenic activity, involving increased protein expression of uncoupling protein 1. Intra-gastric treatment of obese WT and α-gust-/- mice with the bitter agonists denatonium benzoate (DB or quinine (Q during 4 weeks resulted in an α-gustducin-dependent decrease in body weight gain associated with a decrease in food intake (DB, but not involving major changes in gut peptide release. Both WAT and 3T3-F442A pre-adipocytes express TAS2Rs. Treatment of pre-adipocytes with DB or Q decreased differentiation into mature adipocytes. In conclusion, interfering with the gustatory signaling pathway protects against the development of HFD-induced obesity presumably through promoting BAT activity. Intra-gastric bitter treatment inhibits weight gain, possibly by directly affecting adipocyte metabolism.

  12. An infection of human adenovirus 31 affects the differentiation of preadipocytes into fat cells, its metabolic profile and fat accumulation.

    Science.gov (United States)

    Bil-Lula, Iwona; Krzywonos-Zawadzka, Anna; Sawicki, Grzegorz; Woźniak, Mieczysław

    2016-03-01

    The primary issue undertaken in this study was to test the hypothesis that preadipocytes would have intrinsically elevated propensity to differentiate into mature adipocytes due to HAdV31 infection. To prove that, the metabolic and molecular mechanisms responsible for HAdV31-induced adipogenesis were examined. 3T3L1 cells (mouse embryonic fibroblast, adipose like cell line) were used as a surrogate model to analyze an increased proliferation, differentiation, and maturation of preadipocytes infected with human adenovirus. An expression of E4orf1, C/EBP-β, PPAR-γ, GAPDH, aP2, LEP, and fatty acid synthase genes, intracellular lipid accumulation as well as cytokine release from the fat cells were assessed. Data showed that HAdV31 increased an expression of C/EBP-β and PPAR-γ genes leading to an enhanced differentiation of preadipocytes into fat cells. Besides, overexpression of GAPDH and fatty acid synthase, and decreased expression of leptin caused an increased accumulation of intracellular lipids. Secretion of TNF-α and IL-6 from HAdV31-infected cells was strongly decreased, leading to unlimited virus replication. The results obtained from this study provided the evidences that HAdV31, likewise previously documented HAdV36, is a subsequent human adenovirus affecting the differentiation and lipid accumulation of 3T3L1 cells. © 2015 Wiley Periodicals, Inc.

  13. A High-Fat Diet Differentially Affects the Gut Metabolism and Blood Lipids of Rats Depending on the Type of Dietary Fat and Carbohydrate

    Directory of Open Access Journals (Sweden)

    Adam Jurgoński

    2014-02-01

    Full Text Available The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated and carbohydrate (simple vs. complex. The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet as the source of saturated or unsaturated fatty acids, respectively; further, each lard- and soybean oil-rich diet contained either fructose or corn starch (45.3% of the diet as the source of simple or complex carbohydrates, respectively. Both dietary factors contributed to changes in the caecal short-chain fatty acid concentrations, especially to the butyrate concentration, which was higher in rats fed lard- and corn starch-rich diets compared to soybean oil- and fructose-rich diets, respectively. The lowest butyrate concentration was observed in rats fed the soybean oil- and fructose-rich diet. On the other hand, the lard- and fructose-rich diet vs. the other dietary combinations significantly increased serum total cholesterol concentration, to more than two times serum triglyceride concentration and to more than five times the atherogenic index. In conclusion, a high-fat diet rich in fructose can unfavorably affect gut metabolism when unsaturated fats are predominant in the diet or the blood lipids when a diet is rich in saturated fats.

  14. Nitrogen and carbon source balance determines longevity, independently of fermentative or respiratory metabolism in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Santos, Júlia; Leitão-Correia, Fernanda; Sousa, Maria João; Leão, Cecília

    2016-04-26

    Dietary regimens have proven to delay aging and age-associated diseases in several eukaryotic model organisms but the input of nutritional balance to longevity regulation is still poorly understood. Here, we present data on the role of single carbon and nitrogen sources and their interplay in yeast longevity. Data demonstrate that ammonium, a rich nitrogen source, decreases chronological life span (CLS) of the prototrophic Saccharomyces cerevisiae strain PYCC 4072 in a concentration-dependent manner and, accordingly, that CLS can be extended through ammonium restriction, even in conditions of initial glucose abundance. We further show that CLS extension depends on initial ammonium and glucose concentrations in the growth medium, as long as other nutrients are not limiting. Glutamine, another rich nitrogen source, induced CLS shortening similarly to ammonium, but this effect was not observed with the poor nitrogen source urea. Ammonium decreased yeast CLS independently of the metabolic process activated during aging, either respiration or fermentation, and induced replication stress inhibiting a proper cell cycle arrest in G0/G1 phase. The present results shade new light on the nutritional equilibrium as a key factor on cell longevity and may contribute for the definition of interventions to promote life span and healthy aging.

  15. Mineral nitrogen sources differently affect root glutamine synthetase isoforms and amino acid balance among organs in maize.

    Science.gov (United States)

    Prinsi, Bhakti; Espen, Luca

    2015-04-03

    Glutamine synthetase (GS) catalyzes the first step of nitrogen assimilation in plant cell. The main GS are classified as cytosolic GS1 and plastidial GS2, of which the functionality is variable according to the nitrogen sources, organs and developmental stages. In maize (Zea mays L.) one gene for GS2 and five genes for GS1 subunits are known, but their roles in root metabolism are not yet well defined. In this work, proteomic and biochemical approaches have been used to study root GS enzymes and nitrogen assimilation in maize plants re-supplied with nitrate, ammonium or both. The plant metabolic status highlighted the relevance of root system in maize nitrogen assimilation during both nitrate and ammonium nutrition. The analysis of root proteomes allowed a study to be made of the accumulation and phosphorylation of six GS proteins. Three forms of GS2 were identified, among which only the phosphorylated one showed an accumulation trend consistent with plastidial GS activity. Nitrogen availabilities enabled increments in root total GS synthetase activity, associated with different GS1 isoforms according to the nitrogen sources. Nitrate nutrition induced the specific accumulation of GS1-5 while ammonium led to up-accumulation of both GS1-1 and GS1-5, highlighting co-participation. Moreover, the changes in thermal sensitivity of root GS transferase activity suggested differential rearrangements of the native enzyme. The amino acid accumulation and composition in roots, xylem sap and leaves deeply changed in response to mineral sources. Glutamine showed the prevalent changes in all nitrogen nutritions. Besides, the ammonium nutrition was associated with an accumulation of asparagine and reducing sugars and a drop in glutamic acid level, significantly alleviated by the co-provision with nitrate. This work provides new information about the multifaceted regulation of the GS enzyme in maize roots, indicating the involvement of specific isoenzymes/isoforms, post

  16. Theobromine does not affect postprandial lipid metabolism and duodenal gene expression, but has unfavorable effects on postprandial glucose and insulin responses in humans

    NARCIS (Netherlands)

    Smolders, Lotte; Mensink, Ronald P.; Boekschoten, Mark V.; Ridder, de Rogier J.J.; Plat, Jogchum

    2018-01-01

    Background & aims: Chocolate consumption is associated with a decreased risk for CVD. Theobromine, a compound in cocoa, may explain these effects as it favorably affected fasting serum lipids. However, long-term effects of theobromine on postprandial metabolism as well as underlying mechanisms

  17. Apportionment of sources affecting water quality: Case study of Kandla Creek, Gulf of Katchchh

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Shirodkar, P.V.; Verlekar, X.N.; Jagtap, T.G.; Rao, G.S.

    status of the environment. Several multivariate models are used for source apportionment studies, as they pinpoint the possible factors or sources that influence the water quality (Morales et al., 1999; Wunderlin et al., 2001; Petersen et al., 2001... and statistical approaches. Ecology 74: 2201– 2214. Morales, M. M., Martih, P., Llopis, A., Campos, L., and Sagrado, J. 1999. An environmental study by factor analysis of surface seawater in the Gulf of Valencia (western Mediterranean). Analytica Chimica Acta 394...

  18. Revealing transboundary and local air pollutant sources affecting Metro Manila through receptor modeling studies

    International Nuclear Information System (INIS)

    Pabroa, Preciosa Corazon B.; Bautista VII, Angel T.; Santos, Flora L.; Racho, Joseph Michael D.

    2011-01-01

    Ambient fine particulate matter (PM 2 .5) levels at the Metro Manila air sampling stations of the Philippine Nuclear Research Research Institute were found to be above the WHO guideline value of 10 μg m 3 indicating, in general, very poor air quality in the area. The elemental components of the fine particulate matter were obtained using the energy-dispersive x-ray fluorescence spectrometry. Positive matrix factorization, a receptor modelling tool, was used to identify and apportion air pollution sources. Location of probable transboundary air pollutants were evaluated using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) while location of probable local air pollutant sources were determined using the conditional probability function (CPF). Air pollutant sources can either be natural or anthropogenic. This study has shown natural air pollutant sources such as volcanic eruptions from Bulusan volcano in 2006 and from Anatahan volcano in 2005 to have impacted on the region. Fine soils was shown to have originated from China's Mu US Desert some time in 2004. Smoke in the fine fraction in 2006 show indications of coming from forest fires in Sumatra and Borneo. Fine particulate Pb in Valenzuela was shown to be coming from the surrounding area. Many more significant air pollution impacts can be evaluated with the identification of probable air pollutant sources with the use of elemental fingerprints and locating these sources with the use of HYSPLIT and CPF. (author)

  19. N-3 polyunsaturated fatty acids supplementation does not affect changes of lipid metabolism induced in rats by altered thyroid status.

    Science.gov (United States)

    Rauchová, H; Vokurková, M; Pavelka, S; Behuliak, M; Tribulová, N; Soukup, T

    2013-07-01

    Epidemiological studies have demonstrated that n-3 polyunsaturated fatty acid (PUFA) consumption is associated with a reduced risk of atherosclerosis and hyperlipidemia. It is well known that lipid metabolism is also influenced by thyroid hormones. The aim of our study was to test whether n-3 PUFA supplementation (200 mg/kg of body weight/day for 6 weeks given intragastrically) would affect lipid metabolism in Lewis male rats with altered thyroid status. Euthyroid, hypothyroid, and hyperthyroid status of experimental groups was well defined by plasma levels of triiodothyronine, the activity of liver mitochondrial glycerol-3-phosphate dehydrogenase, and by relative heart weight. Fasting blood glucose levels were significantly higher in the hyperthyroid compared to the euthyroid and hypothyroid rats (5.0±0.2 vs. 3.7±0.4 and 4.4±0.2 mmol/l, respectively). In hyperthyroid animals, the concentration of plasma postprandial triglycerides was also increased compared to euthyroid and hypothyroid rats (0.9±0.1 vs. 0.5±0.1 and 0.4±0.1 mmol/l, respectively). On the other hand, hypothyroidism compared to euthyroid and hyperthyroid status was associated with elevated plasma levels of total cholesterol (2.6±0.2 vs. 1.5±0.1 and 1.6±0.1 mmol/l, respectively), LDL cholesterol (0.9±0.1 vs. 0.4±0.1 and 0.2±0.1 mmol/l, respectively) as well as HDL cholesterol (1.6±0.1 vs. 1.0±0.1 and 1.3±0.1 mmol/l, respectively). Supplementation of n-3 PUFA in the present study did not significantly modify either relative heart weight or glucose and lipid levels in any thyroid status. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets.

    Directory of Open Access Journals (Sweden)

    Mario Mureddu

    Full Text Available The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players' behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents' behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data.

  1. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets.

    Science.gov (United States)

    Mureddu, Mario; Caldarelli, Guido; Chessa, Alessandro; Scala, Antonio; Damiano, Alfonso

    2015-01-01

    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players' behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents' behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data.

  2. 40 CFR Table 1 to Subpart Oooo of... - Emission Limits for New or Reconstructed and Existing Affected Sources in the Printing, Coating...

    Science.gov (United States)

    2010-07-01

    ... Reconstructed and Existing Affected Sources in the Printing, Coating and Dyeing of Fabrics and Other Textiles... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Printing, Coating, and Dyeing...—Emission Limits for New or Reconstructed and Existing Affected Sources in the Printing, Coating and Dyeing...

  3. Persistent abnormal coronary flow reserve in association with abnormal glucose metabolism affects prognosis in acute myocardial infarction

    DEFF Research Database (Denmark)

    Løgstrup, Brian B; Høfsten, Dan E; Christophersen, Thomas B

    2011-01-01

    baseline CFR (P = 0.004), S' (P = 0.045) and abnormal glucose metabolism (P = 0.001) were predictors of a decreased CFR at 3 months of follow-up. In multivariate analyses abnormal glucose metabolism (OR: 5.3; 95%CI: 1.9-14.4; P = 0.001) remained a predictor of decreased CFR at follow-up, furthermore...

  4. Nitrogen deposition in precipitation to a monsoon-affected eutrophic embayment: Fluxes, sources, and processes

    Science.gov (United States)

    Wu, Yunchao; Zhang, Jingping; Liu, Songlin; Jiang, Zhijian; Arbi, Iman; Huang, Xiaoping; Macreadie, Peter Ian

    2018-06-01

    Daya Bay in the South China Sea (SCS) has experienced rapid nitrogen pollution and intensified eutrophication in the past decade due to economic development. Here, we estimated the deposition fluxes of nitrogenous species, clarified the contribution of nitrogen from precipitation and measured ions and isotopic composition (δ15N and δ18O) of nitrate in precipitation in one year period to trace its sources and formation processes among different seasons. We found that the deposition fluxes of total dissolved nitrogen (TDN), NO3-, NH4+, NO2-, and dissolved organic nitrogen (DON) to Daya Bay were 132.5, 64.4 17.5, 1.0, 49.6 mmol m-2•yr-1, respectively. DON was a significant contributor to nitrogen deposition (37% of TDN), and NO3- accounted for 78% of the DIN in precipitation. The nitrogen deposition fluxes were higher in spring and summer, and lower in winter. Nitrogen from precipitation contributed nearly 38% of the total input of nitrogen (point sources input and dry and wet deposition) in Daya Bay. The δ15N-NO3- abundance, ion compositions, and air mass backward trajectories implicated that coal combustion, vehicle exhausts, and dust from mainland China delivered by northeast monsoon were the main sources in winter, while fossil fuel combustion (coal combustion and vehicle exhausts) and dust from PRD and southeast Asia transported by southwest monsoon were the main sources in spring; marine sources, vehicle exhausts and lightning could be the potential sources in summer. δ18O results showed that OH pathway was dominant in the chemical formation process of nitrate in summer, while N2O5+ DMS/HC pathways in winter and spring.

  5. Influence of the hypothalamic-pituitary-adrenal axis dysregulation on the metabolic profile of patients affected by diabetes mellitus-associated late onset hypogonadism.

    Science.gov (United States)

    Tirabassi, G; Chelli, F M; Ciommi, M; Lenzi, A; Balercia, G

    2016-01-01

    Functional hypercortisolism (FH) is generated by clinical states able to chronically activate the hypothalamic-pituitary-adrenal (HPA) axis [e.g. diabetes mellitus (DM)]. No study has evaluated FH influence in worsening the metabolic profile of male patients affected by DM-associated hypogonadism. In this retrospective work, we assess the possible association between HPA axis-dysregulation and cardiovascular risk factors in men simultaneously affected by DM and late-onset hypogonadism (LOH). Fourteen DM and LOH subjects affected by FH (Hypercort-DM-LOH) and fourteen DM and LOH subjects who were not suffering from FH (Normocort-DM-LOH) were retrospectively considered. Clinical, hormonal and metabolic parameters were retrieved. All metabolic parameters, except for systolic blood pressure, were significantly worse in Hypercort-DM-LOH than in Normocort-DM-LOH. After adjustment for body mass index, waist and total testosterone, Hypercort-DM-LOH subjects showed significantly worse metabolic parameters than Normocort-DM-LOH ones. In Normocort-DM-LOH, no significant correlation between general/hormonal parameters and metabolic variables was present. In Hypercort-DM-LOH, positive and significant correlations of cortisol area under the curve (AUC) after corticotropin releasing hormone with glycemia, triglycerides and blood pressure were evident; on the other hand, negative and significant correlation was present between cortisol AUC and high density lipoprotein (HDL) cholesterol. The associations of AUC cortisol with glycemia, HDL cholesterol and diastolic blood pressure (DBP) were further confirmed at quantile regression after adjustment for therapy. FH may determine a worsening of the metabolic profile in DM-associated hypogonadism. Copyright © 2015 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by

  6. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    Science.gov (United States)

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment.

  7. Evolution of mammalian endothermic metabolism: leaky membranes as a source of heat

    International Nuclear Information System (INIS)

    Else, P.L.; Hulbert, A.J.

    1987-01-01

    O 2 consumption was measured at 37/degrees/C in tissue slices of liver, kidney, and brain from Amphilbolurus vitticeps and Rattus norvegicus (a reptile and mammal with same weight and body temperature) both in the presence and absence of ouabain. O 2 consumption of the mammalian tissues was two to four times that of the reptilian tissues and the mammalian tissues used three to six times the energy for Na + -K + transport than the reptilian tissues. Passive permeability to 42 K + was measured at 37/degrees/C in liver and kidney slices, and passive permeability to 22 Na + was measured at 37/degrees/C in isolated and cultured liver cells from each species. The mammalian cell membrane was severalfold leakier to both these ions than was the reptilian cell membrane, and thus the membrane pumps must use more energy to maintain the transmembrane ion gradients. It is postulated that this is a general difference between the cells of ectotherms and endotherms and thus partly explains the much higher levels of metabolism found in endothermic mammals

  8. A temporal and spatial analysis of anthropogenic noise sources affecting SNMR

    Science.gov (United States)

    Dalgaard, E.; Christiansen, P.; Larsen, J. J.; Auken, E.

    2014-11-01

    One of the biggest challenges when using the surface nuclear magnetic resonance (SNMR) method in urban areas is a relatively low signal level compared to a high level of background noise. To understand the temporal and spatial behavior of anthropogenic noise sources like powerlines and electric fences, we have developed a multichannel instrument, noiseCollector (nC), which measures the full noise spectrum up to 10 kHz. Combined with advanced signal processing we can interpret the noise as seen by a SNMR instrument and also obtain insight into the more fundamental behavior of the noise. To obtain a specified acceptable noise level for a SNMR sounding the stack size can be determined by quantifying the different noise sources. Two common noise sources, electromagnetic fields stemming from powerlines and fences are analyzed and show a 1/r2 dependency in agreement with theoretical relations. A typical noise map, obtained with the nC instrument prior to a SNMR field campaign, clearly shows the location of noise sources, and thus we can efficiently determine the optimal location for the SNMR sounding from a noise perspective.

  9. Energy balance of lactating primiparous sows as affected by feeding level and dietary energy source

    NARCIS (Netherlands)

    Brand, van den H.; Heetkamp, M.J.W.; Soede, N.M.; Schrama, J.W.; Kemp, B.

    2000-01-01

    The effects of feeding level and major dietary energy source used during lactation on sow milk composition, piglet body composition, and energy balance of sows were determined. During a 21-d lactation, 48 primiparous sows were fed either a Fat-rich (134.9 g/kg fat; 196.8 g/kg carbohydrate) or a

  10. Carbohydrate source affects the synthesis of silver nanoparticles by Lactobacillus plantarum 1449 and Lactobacillus ruminis 1313.

    Science.gov (United States)

    Reyes-Escogido, María de Lourdes; Meneses-Rodríguez, David; Guardado-Mendoza, Rodolfo

    2017-12-01

    Strains of Lactobacillus have been used for the synthesis of metallic nanoparticles. Since the carbohydrate source could influence the yield and size of the synthesised nanoparticles, the authors evaluated the potential of Lactobacillus plantarum 1449 and Lactobacillus ruminis 1313 to produce silver nanoparticles (AgNPs) using three carbohydrate sources and AgNO 3 . The presence of AgNO 3 in the medium extended the duration of the acceleration and logarithmic phases of the two strains independently of the carbohydrate source used but did not inhibit their growth. The synthesis of AgNPs started at the second day of culture. In general, the size of the AgNPsranged from 10 to 150 nm; they were smaller and more homogeneous in lactose. In the medium supplemented with glucose, there was a lower production of nanoparticles for both strains. The AgNPs synthesised by L. ruminis 1313 remained enclosed in an extracellular polymeric substance, which probably played an important role in the synthesis of the nanoparticles. The carbohydrate source influenced the yield and size of the AgNPssynthesised by L. plantarum 1449 and L. ruminis 1313; the pH was also important for obtaining nanoparticles of uniform size.

  11. Do knowledge, knowledge sources and reasoning skills affect the accuracy of nursing diagnoses? a randomised study

    NARCIS (Netherlands)

    Paans, W.; Sermeus, W.; Nieweg, R.M.; Krijnen, W.P.; van der Schans, C.P.

    2012-01-01

    ABSTRACT: BACKGROUND: This paper reports a study about the effect of knowledge sources, such as handbooks, an assessment format and a predefined record structure for diagnostic documentation, as well as the influence of knowledge, disposition toward critical thinking and reasoning skills, on the

  12. Do knowledge, knowledge sources and reasoning skills affect the accuracy of nursing diagnoses? : a randomised study

    NARCIS (Netherlands)

    Paans, Wolter; Sermeus, Walter; Nieweg, Roos; Krijnen, Wim P.; van der Schans, Cees P.

    2012-01-01

    BACKGROUND: This paper reports a study about the effect of knowledge sources, such as handbooks, an assessment format and a predefined record structure for diagnostic documentation, as well as the influence of knowledge, disposition toward critical thinking and reasoning skills, on the accuracy of

  13. 40 CFR Table 1 to Subpart Xxxxxx... - Description of Source Categories Affected by This Subpart

    Science.gov (United States)

    2010-07-01

    ... heating units, combination gas-oil burners, oil or gas swimming pool heaters, heating apparatus (except... supplies industry sector of this source category includes establishments primarily engaged in high energy...), coke and gas burning salamanders, liquid or gas solar energy collectors, solar heaters, space heaters...

  14. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach.

    Directory of Open Access Journals (Sweden)

    Luz A Betancur

    Full Text Available Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities.

  15. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach

    Science.gov (United States)

    Betancur, Luz A.; Naranjo-Gaybor, Sandra J.; Vinchira-Villarraga, Diana M.; Moreno-Sarmiento, Nubia C.; Maldonado, Luis A.; Suarez-Moreno, Zulma R.; Acosta-González, Alejandro; Padilla-Gonzalez, Gillermo F.; Puyana, Mónica; Castellanos, Leonardo; Ramos, Freddy A.

    2017-01-01

    Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities. PMID:28225766

  16. [Lipid and metabolic profiles in adolescents are affected more by physical fitness than physical activity (AVENA study)].

    Science.gov (United States)

    García-Artero, Enrique; Ortega, Francisco B; Ruiz, Jonatan R; Mesa, José L; Delgado, Manuel; González-Gross, Marcela; García-Fuentes, Miguel; Vicente-Rodríguez, Germán; Gutiérrez, Angel; Castillo, Manuel J

    2007-06-01

    To determine whether the level of physical activity or physical fitness (i.e., aerobic capacity and muscle strength) in Spanish adolescents influences lipid and metabolic profiles. From a total of 2859 Spanish adolescents (age 13.0-18.5 years) taking part in the AVENA (Alimentación y Valoración del Estado Nutricional en Adolescentes) study, 460 (248 male, 212 female) were randomly selected for blood analysis. Their level of physical activity was determined by questionnaire. Aerobic capacity was assessed using the Course-Navette test. Muscle strength was evaluated using manual dynamometry, the long jump test, and the flexed arm hang test. A lipid-metabolic cardiovascular risk index was derived from the levels of triglycerides, low-density lipoprotein cholesterol (LDLC), high-density lipoprotein cholesterol (HDLC), and glucose. No relationship was found between the level of physical activity and lipid-metabolic index in either sex. In contrast, there was an inverse relationship between the lipid-metabolic index and aerobic capacity in males (P=.003) after adjustment for physical activity level and muscle strength. In females, a favorable lipid-metabolic index was associated with greater muscle strength (P=.048) after adjustment for aerobic capacity. These results indicate that, in adolescents, physical fitness, and not physical activity, is related to lipid and metabolic cardiovascular risk. Higher aerobic capacity in males and greater muscle strength in females were associated with lower lipid and metabolic risk factors for cardiovascular disease.

  17. Upgrading of citric acid production from cheap carbohydrate sources as affected by aspergillus

    International Nuclear Information System (INIS)

    Elbatal, A.I.; Khalaf, S.A.; Khalil, A.H.

    1995-01-01

    Five strains of aspergillus niger (EMCC 102, EMCC 104, EMCC 111, EMCC 132 and EMCC 147) were for citric acid production at different incubation period using different cheap carbohydrate substrates, such as beet, cane and citrus molasses and milk whey. A. niger EMCC 111 was found to be the most potent strain for citric acid production from beet molasses after 11 days of incubation at 30 degree. The studies concerning molasses concentration and nitrogen sources (inorganic and organic sources with different concentration, revealed that 30 g% beet molasses and ammonium sulfate with 0.05 g% as N 2 content, gave the highest production of citric acid. Gamma irradiated inocula of A. niger EMCC 111 at doses (0.05-0.8 KGy), showed that the dose 0.4 KGy was the optimum for maximum citric acid production. 8 tabs

  18. Factors affecting quality for beta dose rate measurements using ISO 6980 series I reference sources

    Energy Technology Data Exchange (ETDEWEB)

    Burns, R.E. Jr.; O`Brien, J.M. Jr. [Atlan-Tech, Rosewll, GA (United States)

    1993-12-31

    Atlan-Tech, Inc. has performed several calibrations of ISO 6980 Series 1 reference beta sources over the past two to three years. There were many problems encountered in attempting to compare the results of these calibrations with those from other laboratories, indicating the need for more standardization in the methodology employed for the measurement of the absorbed dose rate from ISO 6980 Series 1 reference beta sources. This document describes some of the problems encountered in attempting to intercompare results of beta dose-rate measurements. It proposes some solutions in an attempt to open a dialogue among facilities using reference beta standards for the purpose of promoting better measurement quality assurance through data intercomparison.

  19. Factors affecting quality for beta dose rate measurements using ISO 6980 series I reference sources

    International Nuclear Information System (INIS)

    Burns, R.E. Jr.; O'Brien, J.M. Jr.

    1993-01-01

    Atlan-Tech, Inc. has performed several calibrations of ISO 6980 Series 1 reference beta sources over the past two to three years. There were many problems encountered in attempting to compare the results of these calibrations with those from other laboratories, indicating the need for more standardization in the methodology employed for the measurement of the absorbed dose rate from ISO 6980 Series 1 reference beta sources. This document describes some of the problems encountered in attempting to intercompare results of beta dose-rate measurements. It proposes some solutions in an attempt to open a dialogue among facilities using reference beta standards for the purpose of promoting better measurement quality assurance through data intercomparison

  20. Do knowledge, knowledge sources and reasoning skills affect the accuracy of nursing diagnoses? a randomised study.

    Science.gov (United States)

    Paans, Wolter; Sermeus, Walter; Nieweg, Roos Mb; Krijnen, Wim P; van der Schans, Cees P

    2012-08-01

    This paper reports a study about the effect of knowledge sources, such as handbooks, an assessment format and a predefined record structure for diagnostic documentation, as well as the influence of knowledge, disposition toward critical thinking and reasoning skills, on the accuracy of nursing diagnoses.Knowledge sources can support nurses in deriving diagnoses. A nurse's disposition toward critical thinking and reasoning skills is also thought to influence the accuracy of his or her nursing diagnoses. A randomised factorial design was used in 2008-2009 to determine the effect of knowledge sources. We used the following instruments to assess the influence of ready knowledge, disposition, and reasoning skills on the accuracy of diagnoses: (1) a knowledge inventory, (2) the California Critical Thinking Disposition Inventory, and (3) the Health Science Reasoning Test. Nurses (n = 249) were randomly assigned to one of four factorial groups, and were instructed to derive diagnoses based on an assessment interview with a simulated patient/actor. The use of a predefined record structure resulted in a significantly higher accuracy of nursing diagnoses. A regression analysis reveals that almost half of the variance in the accuracy of diagnoses is explained by the use of a predefined record structure, a nurse's age and the reasoning skills of `deduction' and `analysis'. Improving nurses' dispositions toward critical thinking and reasoning skills, and the use of a predefined record structure, improves accuracy of nursing diagnoses.

  1. Do knowledge, knowledge sources and reasoning skills affect the accuracy of nursing diagnoses? a randomised study

    Directory of Open Access Journals (Sweden)

    Paans Wolter

    2012-08-01

    Full Text Available Abstract Background This paper reports a study about the effect of knowledge sources, such as handbooks, an assessment format and a predefined record structure for diagnostic documentation, as well as the influence of knowledge, disposition toward critical thinking and reasoning skills, on the accuracy of nursing diagnoses. Knowledge sources can support nurses in deriving diagnoses. A nurse’s disposition toward critical thinking and reasoning skills is also thought to influence the accuracy of his or her nursing diagnoses. Method A randomised factorial design was used in 2008–2009 to determine the effect of knowledge sources. We used the following instruments to assess the influence of ready knowledge, disposition, and reasoning skills on the accuracy of diagnoses: (1 a knowledge inventory, (2 the California Critical Thinking Disposition Inventory, and (3 the Health Science Reasoning Test. Nurses (n = 249 were randomly assigned to one of four factorial groups, and were instructed to derive diagnoses based on an assessment interview with a simulated patient/actor. Results The use of a predefined record structure resulted in a significantly higher accuracy of nursing diagnoses. A regression analysis reveals that almost half of the variance in the accuracy of diagnoses is explained by the use of a predefined record structure, a nurse’s age and the reasoning skills of `deduction’ and `analysis’. Conclusions Improving nurses’ dispositions toward critical thinking and reasoning skills, and the use of a predefined record structure, improves accuracy of nursing diagnoses.

  2. Head position in the MEG helmet affects the sensitivity to anterior sources.

    Science.gov (United States)

    Marinkovic, K; Cox, B; Reid, K; Halgren, E

    2004-11-30

    Current MEG instruments derive the whole-head coverage by utilizing a helmet-shaped opening at the bottom of the dewar. These helmets, however, are quite a bit larger than most people's heads so subjects commonly lean against the back wall of the helmet in order to maintain a steady position. In such cases the anterior brain sources may be too distant to be picked up by the sensors reliably. Potential "invisibility" of the frontal and anterior temporal sources may be particularly troublesome for the studies of cognition and language, as they are subserved significantly by these areas. We examined the sensitivity of the distributed anatomically-constrained MEG (aMEG) approach to the head position ("front" vs. "back") secured within a helmet with custom-tailored bite-bars during a lexical decision task. The anterior head position indeed resulted in much greater sensitivity to language-related activity in frontal and anterior temporal locations. These results emphasize the need to adjust the head position in the helmet in order to maximize the "visibility" of the sources in the anterior brain regions in cognitive and language tasks.

  3. The affective reactivity of psychotic speech: The role of internal source monitoring in explaining increased thought disorder under emotional challenge.

    Science.gov (United States)

    de Sousa, Paulo; Sellwood, William; Spray, Amy; Bentall, Richard P

    2016-04-01

    Thought disorder (TD) has been shown to vary in relation to negative affect. Here we examine the role internal source monitoring (iSM, i.e. ability to discriminate between inner speech and verbalized speech) in TD and whether changes in iSM performance are implicated in the affective reactivity effect (deterioration of TD when participants are asked to talk about emotionally-laden topics). Eighty patients diagnosed with schizophrenia-spectrum disorder and thirty healthy controls received interviews that promoted personal disclosure (emotionally salient) and interviews on everyday topics (non-salient) on separate days. During the interviews, participants were tested on iSM, self-reported affect and immediate auditory recall. Patients had more TD, poorer ability to discriminate between inner and verbalized speech, poorer immediate auditory recall and reported more negative affect than controls. Both groups displayed more TD and negative affect in salient interviews but only patients showed poorer performance on iSM. Immediate auditory recall did not change significantly across affective conditions. In patients, the relationship between self-reported negative affect and TD was mediated by deterioration in the ability to discriminate between inner speech and speech that was directed to others and socially shared (performance on the iSM) in both interviews. Furthermore, deterioration in patients' performance on iSM across conditions significantly predicted deterioration in TD across the interviews (affective reactivity of speech). Poor iSM is significantly associated with TD. Negative affect, leading to further impaired iSM, leads to increased TD in patients with psychosis. Avenues for future research as well as clinical implications of these findings are discussed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Depletion of Essential Fatty Acids in the Food Source Affects Aerobic Capacities of the Golden Grey Mullet Liza aurata in a Warming Seawater Context.

    Science.gov (United States)

    Vagner, Marie; Lacoue-Labarthe, Thomas; Zambonino Infante, José-Luis; Mazurais, David; Dubillot, Emmanuel; Le Delliou, Hervé; Quazuguel, Patrick; Lefrançois, Christel

    2015-01-01

    The objective of this study was to evaluate the combined effects of thermal acclimation and n-3 highly unsaturated fatty acids (n-3 HUFA) content of the food source on the aerobic capacities of fish in a thermal changing environment. The model used was the golden grey mullet Liza aurata, a species of high ecological importance in temperate coastal areas. For four months, fish were exposed to two food sources with contrasting n-3 HUFA contents (4.8% ecosapentaenoic acid EPA + docosahexaenoic acid DHA on the dry matter DM basis vs. 0.2% EPA+DHA on DM) combined with two acclimation temperatures (12°C vs. 20°C). The four experimental conditions were LH12, LH20, HH12 and HH20. Each group was then submitted to a thermal challenge consisting of successive exposures to five temperatures (9°C, 12°C, 16°C, 20°C, 24°C). At each temperature, the maximal and minimal metabolic rates, metabolic scope, and the maximum swimming speed were measured. Results showed that the cost of maintenance of basal metabolic activities was particularly higher when n-3 HUFA food content was low. Moreover, fish exposed to high acclimation temperature combined with a low n-3 HUFA dietary level (LH20) exhibited a higher aerobic scope, as well as a greater expenditure of energy to reach the same maximum swimming speed as other groups. This suggested a reduction of the amount of energy available to perform other physiological functions. This study is the first to show that the impact of lowering n-3 HUFA food content is exacerbated for fish previously acclimated to a warmer environment. It raises the question of the consequences of longer and warmer summers that have already been recorded and are still expected in temperate areas, as well as the pertinence of the lowering n-3 HUFA availability in the food web expected with global change, as a factor affecting marine organisms and communities.

  5. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    Energy Technology Data Exchange (ETDEWEB)

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  6. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  7. Different exogenous sugars affect the hormone signal pathway and sugar metabolism in "Red Globe" (Vitis vinifera L.) plantlets grown in vitro as shown by transcriptomic analysis.

    Science.gov (United States)

    Mao, Juan; Li, Wenfang; Mi, Baoqin; Dawuda, Mohammed Mujitaba; Calderón-Urrea, Alejandro; Ma, Zonghuan; Zhang, Yongmei; Chen, Baihong

    2017-09-01

    Exogenously applied 2% fructose is the most appropriate carbon source that enhances photosynthesis and growth of grape plantlets compared with the same concentrations of sucrose and glucose. The role of the sugars was regulated by the expression of key candidate genes related to hormones, key metabolic enzymes, and sugar metabolism of grape plantlets ( Vitis vinifera L.) grown in vitro. The addition of sugars including sucrose, glucose, and fructose is known to be very helpful for the development of grape (V. vinifera L.) plantlets in vitro. However, the mechanisms by which these sugars regulate plant development and sugar metabolism are poorly understood. In grape plantlets, sugar metabolism and hormone synthesis undergo special regulation. In the present study, transcriptomic analyses were performed on grape (V. vinifera L., cv. Red Globe) plantlets in an in vitro system, in which the plantlets were grown in 2% each of sucrose (S20), glucose (G20), and fructose (F20). The sugar metabolism and hormone synthesis of the plantlets were analyzed. In addition, 95.72-97.29% high-quality 125 bp reads were further analyzed out of which 52.65-60.80% were mapped to exonic regions, 13.13-28.38% to intronic regions, and 11.59-28.99% to intergenic regions. The F20, G20, and S20 displayed elevated sucrose synthase (SS) activities; relative chlorophyll contents; Rubisco activity; and IAA and zeatin (ZT) contents. We found F20 improved the growth and development of the plantlets better than G20 and S20. Sugar metabolism was a complex process, which depended on the balanced expression of key potential candidate genes related to hormones (TCP15, LOG3, IPT3, ETR1, HK2, HK3, CKX7, SPY, GH3s, MYBH, AGB1, MKK2, PP2C, PYL, ABF, SnRK, etc.), key metabolic enzymes (SUS, SPS, A/V-INV, and G6PDH), and sugar metabolism (BETAFRUCT4 and AMY). Moreover, sugar and starch metabolism controls the generation of plant hormone transduction pathway signaling molecules. Our dataset advances our

  8. Dietary vitamin E dosage and source affects meat quality parameters in light weight lambs.

    Science.gov (United States)

    Leal, Leonel N; Beltrán, José A; Alonso, Verónica; Bello, José M; den Hartog, Leo A; Hendriks, Wouter H; Martín-Tereso, Javier

    2018-03-01

    Supra-nutritional vitamin E supplementation is a commonly used approach to delay lipid oxidation and colour deterioration in lamb and beef meat marketed under modified atmosphere packaging. However, these applications lack a precise calibration of dose for the desired effect and, in addition, limited information is available regarding the use of natural vitamin E for this purpose. Three hundred and sixty Rasa Aragonesa lambs were fed diets supplemented with all-rac-α-tocopheryl acetate (250, 500, 1000 and 2000 mg kg -1 compound feed), RRR-α-tocopheryl acetate (125, 250, 500 and 1000 mg kg -1 compound feed) and a basal diet without vitamin E supplementation for 14 days before slaughter at 25.8 ± 1.67 kg body weight. Vitamin E supplementation had no effect (P > 0.05) on average daily weight gain, feed intake and feed efficiency. Display time had larger effects on lipid oxidation, colour stability, myoglobin forms and meat discolouration parameters compared to vitamin E supplementation. However, vitamin E source and dosage significantly extended meat shelf-life as indicated by lipid oxidation, redness, hue angle, metmyoglobin formation, deoxymyoglobin formation, A 580-630 and I SO2 . The quantification of these effects demonstrated that the biological activity value of 1.36 used to distinguish both vitamin E sources is not appropriate for meat quality enhancing properties. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Aryl hydrocarbon receptor signaling modulates antiviral immune responses: ligand metabolism rather than chemical source is the stronger predictor of outcome.

    Science.gov (United States)

    Boule, Lisbeth A; Burke, Catherine G; Jin, Guang-Bi; Lawrence, B Paige

    2018-01-29

    The aryl hydrocarbon receptor (AHR) offers a compelling target to modulate the immune system. AHR agonists alter adaptive immune responses, but the consequences differ across studies. We report here the comparison of four agents representing different sources of AHR ligands in mice infected with influenza A virus (IAV): TCDD, prototype exogenous AHR agonist; PCB126, pollutant with documented human exposure; ITE, novel pharmaceutical; and FICZ, degradation product of tryptophan. All four compounds diminished virus-specific IgM levels and increased the proportion of regulatory T cells. TCDD, PCB126 and ITE, but not FICZ, reduced virus-specific IgG levels and CD8 + T cell responses. Similarly, ITE, PCB126, and TCDD reduced Th1 and Tfh cells, whereas FICZ increased their frequency. In Cyp1a1-deficient mice, all compounds, including FICZ, reduced the response to IAV. Conditional Ahr knockout mice revealed that all four compounds require AHR within hematopoietic cells. Thus, differences in the immune response to IAV likely reflect variances in quality, magnitude, and duration of AHR signaling. This indicates that binding affinity and metabolism may be stronger predictors of immune effects than a compound's source of origin, and that harnessing AHR will require finding a balance between dampening immune-mediated pathologies and maintaining sufficient host defenses against infection.

  10. Conflicts during response selection affect response programming: reactions toward the source of stimulation.

    Science.gov (United States)

    Buetti, Simona; Kerzel, Dirk

    2009-06-01

    In the Simon effect, participants make a left or right keypress in response to a nonspatial attribute (e.g., color) that is presented on the left or right. Reaction times (RTs) increase when the response activated by the irrelevant stimulus location and the response retrieved by instruction are in conflict. The authors measured RTs and movement parameters (MPs) of pointing responses in a typical Simon task. Their results show that the trajectories veer toward the imperative stimulus. This bias decreased as RTs increased. The authors suggest that the time course of trajectory deviations reflects the resolution of the response conflict over time. Further, time pressure did not affect the size of the Simon effect in MPs or its time course, but strongly reduced the Simon effect in RTs. In contrast, response selection before the onset of a go signal on the left or right did not affect the Simon effect in RTs, but reduced the Simon effect in MPs and reversed the time course. The authors speculate about independent Simon effects associated with response selection and programming. (c) 2009 APA, all rights reserved.

  11. Energy balance of lactating primiparous sows as affected by feeding level and dietary energy source

    OpenAIRE

    Brand, van den, H.; Heetkamp, M.J.W.; Soede, N.M.; Schrama, J.W.; Kemp, B.

    2000-01-01

    The effects of feeding level and major dietary energy source used during lactation on sow milk composition, piglet body composition, and energy balance of sows were determined. During a 21-d lactation, 48 primiparous sows were fed either a Fat-rich (134.9 g/kg fat; 196.8 g/kg carbohydrate) or a Starch-rich (33.2 g/kg fat; 380.9 g/kg carbohydrate) diet at either a High (44 MJ NE/d; 1,050 g protein/d) or a Low (33 MJ NE/d; 790 g protein/d) feeding level. Within each feeding level, the two diets...

  12. Nitrogen sources affect productivity, desiccation tolerance and storage stability of Beauveria bassiana blastospores.

    Science.gov (United States)

    Mascarin, G M; Kobori, N N; Jackson, M A; Dunlap, C A; Delalibera, Í

    2018-03-01

    Nitrogen is a critical element in industrial fermentation media. This study investigated the influence of various nitrogen sources on blastospore production, desiccation tolerance and storage stability using two strains of the cosmopolitan insect-pathogenic fungus Beauveria bassiana. Complex organic sources of nitrogen such as soy flour, autolysed yeast and cottonseed flour induced great numbers of blastospores after 2-3 days of fermentation, which also survived drying and remained viable (32-56% survival) after 9 months storage at 4°C, although variations were found between strains. Nitrogen availability in the form of free amino acids directly influenced blastospore production and resistance to desiccation. Increasing glucose and nitrogen concentrations up to 120 and 30 g l -1 , respectively, did not improve blastospore production but enhanced desiccation tolerance. Cell viability after drying and upon fast-rehydration was increased when ≥25 g acid-hydrolysed casein per litre was supplemented in the liquid culture medium. These findings indicate that low-cost complex nitrogen compounds are suitable to enhance yeast-like growth by B. bassiana with good desiccation tolerance and therefore support its further scale-up production as a mycoinsecticide. Nitrogen is the most expensive nutrient in liquid media composition, but this study underscores the feasibility of using low-cost nitrogen compounds composed mainly of agro-industrial by-products for rapid production of desiccation-tolerant B. bassiana blastospores by liquid culture fermentation. © 2018 The Society for Applied Microbiology.

  13. Intestinal Fluid Permeability in Atlantic Salmon (Salmo salar L. Is Affected by Dietary Protein Source.

    Directory of Open Access Journals (Sweden)

    Haibin Hu

    Full Text Available In Atlantic salmon (Salmo salar L., and also in other fish species, certain plant protein ingredients can increase fecal water content creating a diarrhea-like condition which may impair gut function and reduce fish growth. The present study aimed to strengthen understanding of the underlying mechanisms by observing effects of various alternative plant protein sources when replacing fish meal on expression of genes encoding proteins playing key roles in regulation of water transport across the mucosa of the distal intestine (DI. A 48-day feeding trial was conducted with five diets: A reference diet (FM in which fish meal (72% was the only protein source; Diet SBMWG with a mix of soybean meal (30% and wheat gluten (22%; Diet SPCPM with a mix of soy protein concentrate (30% and poultry meal (6%; Diet GMWG with guar meal (30% and wheat gluten (14.5%; Diet PM with 58% poultry meal. Compared to fish fed the FM reference diet, fish fed the soybean meal containing diet (SBMWG showed signs of enteritis in the DI, increased fecal water content of DI chyme and higher plasma osmolality. Altered DI expression of a battery of genes encoding aquaporins, ion transporters, tight junction and adherens junction proteins suggested reduced transcellular transport of water as well as a tightening of the junction barrier in fish fed the SBMWG diet, which may explain the observed higher fecal water content and plasma osmolality. DI structure was not altered for fish fed the other experimental diets but alterations in target gene expression and fecal water content were observed, indicating that alterations in water transport components may take place without clear effects on intestinal structure.

  14. New Source Review and coal plant efficiency gains: How new and forthcoming air regulations affect outcomes

    International Nuclear Information System (INIS)

    Adair, Sarah K.; Hoppock, David C.; Monast, Jonas J.

    2014-01-01

    Forthcoming carbon dioxide (CO 2 ) regulations for existing power plants in the United States have heightened interest in thermal efficiency gains for coal-fired power plants. Plant modifications to improve thermal efficiency can trigger New Source Review (NSR), a Clean Air Act requirement to adopt of state-of-the-art pollution controls. This article explores whether existing coal plants would likely face additional pollution control requirements if they undertake modifications that trigger NSR. Despite emissions controls that are or will be installed under the Mercury and Air Toxics Standards (MATS) and Clean Air Interstate Rule (CAIR) or its replacement, 80% of coal units (76% of capacity) that are expected to remain in operation are not projected to meet the minimum NSR requirements for at least one pollutant: nitrogen oxides or sulfur dioxide. This is an important consideration for the U.S. Environmental Protection Agency and state policymakers as they determine the extent to which CO 2 regulation will rely on unit-by-unit thermal efficiency gains versus potential flexible compliance strategies such as averaging, trading, energy efficiency, and renewable energy. NSR would likely delay and add cost to thermal efficiency projects at a majority of coal units, including projects undertaken to comply with forthcoming CO 2 regulation. - Highlights: • We explore the status of the U.S. coal-fired fleet relative to New Source Review (NSR) requirements. • Modifications to improve thermal efficiency can trigger NSR. • Thermal efficiency gains may also be an important strategy for forthcoming CO 2 regulation. • 80% Of non-retiring coal-fired units are projected not to meet minimum NSR requirements. • NSR is an important consideration for the design of CO 2 regulations for existing plants

  15. Peers and teachers as sources of relatedness perceptions, motivation, and affective responses in physical education.

    Science.gov (United States)

    Cox, Anne; Duncheon, Nicole; McDavid, Lindley

    2009-12-01

    Research has demonstrated the importance of relatedness perceptions to self-determined motivation in physical education. Therefore, studies have begun to examine the social factors contributing to feelings of relatedness. The purpose of this study was to examine teacher (perceived emotional support) and peer (acceptance, friendship quality) relationship variables to feelings of relatedness, motivation, and affective responses in junior high physical education students (N = 411). Results revealed that perceived relatedness mediated the relationship between variables and self-determined motivation and related directly to the amount of enjoyment and worry students experienced. These findings demonstrate that relationships with both teachers and peers are important for students' relatedness perceptions, motivation, enjoyment, and worry in physical education.

  16. Influence and adjustment goals: sources of cultural differences in ideal affect.

    Science.gov (United States)

    Tsai, Jeanne L; Miao, Felicity F; Seppala, Emma; Fung, Helene H; Yeung, Dannii Y

    2007-06-01

    Previous studies have found that in American culture high-arousal positive states (HAP) such as excitement are valued more and low-arousal positive states (LAP) such as calm are valued less than they are in Chinese culture. What specific factors account for these differences? The authors predicted that when people and cultures aimed to influence others (i.e., assert personal needs and change others' behaviors to meet those needs), they would value HAP more and LAP less than when they aimed to adjust to others (i.e., suppress personal needs and change their own behaviors to meet others' needs). They test these predictions in 1 survey and 3 experimental studies. The findings suggest that within and across American and Chinese contexts, differences in ideal affect are due to specific interpersonal goals. (c) 2007 APA, all rights reserved.

  17. Hawaii Integrated Energy Assessment. Volume V. Rules, regulations, permits and policies affecting the development of alternate energy sources in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A comprehensive presentaton of the major permits, regulations, rules, and controls which are likely to affect the development of alternate energy sources in Hawaii is presented. An overview of the permit process, showing the major categories and types of permits and controls for energy alternatives is presented. This is followed by a brief resume of current and projected changes designed to streamline the permit process. The permits, laws, regulations, and controls that are applicable to the development of energy alternatives in Hawaii are described. The alternate energy technologies affected, a description of the permit or control, and the requirements for conformance are presented for each applicable permit. Federal, state, and county permits and controls are covered. The individual energy technologies being considered as alternatives to the State's present dependence on imported fossil fuels are emphasized. The alternate energy sources covered are bioconversion, geothermal, ocean thermal, wind, solar (direct), and solid waste. For each energy alternative, the significant permits are summarized with a brief explanation of why they may be necessary. The framework of policy development at each of the levels of government with respect to the alternate energy sources is covered.

  18. Doubling the CO{sub 2} concentration enhanced the activity of carbohydrate-metabolism enzymes, source carbohydrate production, photoassimilate transport, and sink strength for Opuntia ficus-indica

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ning; Nobel, P.S. [Univ. of California, Los Angeles, CA (United States)

    1996-03-01

    After exposure to a doubled CO{sub 2} concentration of 750 {mu}mol mol{sup -1} air for about 3 months, glucose and starch in the chlorenchyma of basal cladodes of Opuntia ficus-indica increased 175 and 57%, respectively, compared with the current CO{sub 2} concentration of 370 {mu}mol mol{sup -1}, but sucrose content was virtually unaffected. Doubling the CO{sub 2} concentration increased the noncturnal malate production in basal cladodes by 75%, inorganic phosphate (Pi) by 32% soluble starch synthase activity by 30%, and sucrose-Pi synthase activity by 146%, but did not affect the activity of hexokinase. Doubling CO{sub 2} accelerated phloem transport of sucrose out of the basal cladodes, resulting in a 73% higher dry weight for the daughter cladodes. Doubling CO{sub 2} increased the glucose content in 14-d-old daughter cladodes by 167%, increased nocturnal malate production by 22%, decreased total amino acid content by 61%, and increased soluble starch synthase activity by 30% and sucrose synthase activity by 62%. No downward acclimation of photosynthesis during long-term exposure to elevated CO{sub 2} concentrations occurs for O. ficus-indica, consistent with its higher source capacity and sink strength than under current CO{sub 2}. These changes apparently do not result in Pi limitation of photosynthesis or suppression of genes governing photosynthesis for this perennial Crassulacean acid metabolism species, as occur for some annual crops.

  19. SVD identifies transcript length distribution functions from DNA microarray data and reveals evolutionary forces globally affecting GBM metabolism.

    Directory of Open Access Journals (Sweden)

    Nicolas M Bertagnolli

    Full Text Available To search for evolutionary forces that might act upon transcript length, we use the singular value decomposition (SVD to identify the length distribution functions of sets and subsets of human and yeast transcripts from profiles of mRNA abundance levels across gel electrophoresis migration distances that were previously measured by DNA microarrays. We show that the SVD identifies the transcript length distribution functions as "asymmetric generalized coherent states" from the DNA microarray data and with no a-priori assumptions. Comparing subsets of human and yeast transcripts of the same gene ontology annotations, we find that in both disparate eukaryotes, transcripts involved in protein synthesis or mitochondrial metabolism are significantly shorter than typical, and in particular, significantly shorter than those involved in glucose metabolism. Comparing the subsets of human transcripts that are overexpressed in glioblastoma multiforme (GBM or normal brain tissue samples from The Cancer Genome Atlas, we find that GBM maintains normal brain overexpression of significantly short transcripts, enriched in transcripts that are involved in protein synthesis or mitochondrial metabolism, but suppresses normal overexpression of significantly longer transcripts, enriched in transcripts that are involved in glucose metabolism and brain activity. These global relations among transcript length, cellular metabolism and tumor development suggest a previously unrecognized physical mode for tumor and normal cells to differentially regulate metabolism in a transcript length-dependent manner. The identified distribution functions support a previous hypothesis from mathematical modeling of evolutionary forces that act upon transcript length in the manner of the restoring force of the harmonic oscillator.

  20. Plant uptake of phosphorus from sparingly available P- sources as affected by Trichoderma asperellum T34

    Directory of Open Access Journals (Sweden)

    Ana Maria Garcia-Lopez

    2015-10-01

    Full Text Available The contribution of Trichoderma asperellum T34 to the plant uptake of phosphorus (P from sparingly phytoavailable forms such as insoluble calcium (Ca phosphates and phytates was studied. Two experiments with cucumber (Cucumis sativus L. on siliceous sand were performed involving two factors, namely: (i P source, viz., KH2PO4, phytate (Ins6P, and phosphate rock (PR, and (ii inoculation with T34. Liquid pure cultures of T34 were also used. T34 increased the total content in P of cucumber roots irrespective of the particular P form and enhanced total P uptake by plants with P supplied as Ins6P or PR. The increased phytase activity observed with T34 contributes to explain its favourable influence on the uptake of P supplied as Ins6P. Solubilization of Ca phosphates from PR was favoured by the slightly acidifying effect and the increased organic anion concentration promoted by the fungus in the plant growth media. It can be concluded that T34 can improve P nutrition in plants grown on media containing phytates or insoluble Ca phosphates as dominant P forms.

  1. How parental dietary behavior and food parenting practices affect children's dietary behavior. Interacting sources of influence?

    Science.gov (United States)

    Larsen, Junilla K; Hermans, Roel C J; Sleddens, Ester F C; Engels, Rutger C M E; Fisher, Jennifer O; Kremers, Stef P J

    2015-06-01

    Until now, the literatures on the effects of food parenting practices and parents' own dietary behavior on children's dietary behavior have largely been independent from one another. Integrating findings across these areas could provide insight on simultaneous and interacting influences on children's food intake. In this narrative review, we provide a conceptual model that bridges the gap between both literatures and consists of three main hypotheses. First, parental dietary behavior and food parenting practices are important interactive sources of influence on children's dietary behavior and Body Mass Index (BMI). Second, parental influences are importantly mediated by changes in the child's home food environment. Third, parenting context (i.e., parenting styles and differential parental treatment) moderates effects of food parenting practices, whereas child characteristics (i.e., temperament and appetitive traits) mainly moderate effects of the home food environment. Future studies testing (parts of) this conceptual model are needed to inform effective parent-child overweight preventive interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Science.gov (United States)

    2010-07-01

    ... for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source? (a) A reinforced plastic composites production facility is a new...

  3. Nitrogen (15N) accumulation in corn grains as affected by source of nitrogen in red latosol

    International Nuclear Information System (INIS)

    Duete, Robson Rui Cotrim; Muraoka, Takashi; Trivelin, Paulo Cesar Ocheuze; Silva, Edson Cabral da; Ambrosano, Edmilson Jose

    2009-01-01

    Nitrogen is the most absorbed mineral nutrient by corn crop and most affects grains yield. It is the unique nutrient absorbed by plants as cation (NH 4 + ) or anion (NO 3 - ). The objectives of this work were to investigate the N accumulation by corn grains applied to the soil as NH 4 + or NO 3 - in the ammonium nitrate form compared to amidic form of the urea, labeled with 15 N; to determine the corn growth stage with highest fertilizer N utilization by the grains, and to quantify soil nitrogen exported by corn grains. The study was carried out in the Experimental Station of the Regional Pole of the Sao Paulo Northwestern Agribusiness Development (APTA), in Votuporanga, State of Sao Paulo, Brazil, in a Red Latosol. The experimental design was completely randomized blocks, with 13 treatments and four replications, disposed in factorial outline 6x2 + 1 (control, without N application). A nitrogen rate equivalent to 120 kg N ha-1 as urea- 15 N or as ammonium nitrate, labeled in the cation NH 4 + ( 15 NH 4 + NO 3 - ) or in the anion NO 3 - (NH 4 + 15N+O 3 - ), was applied in six fractions of 20 kg N ha-1 each, in different microplots, from seeding to the growth stage 7 (pasty grains). The forms of nitrogen, NH 4 + -N and N O 3 --N, were accumulated equitably by corn grains. The corn grains accumulated more N from urea than from ammonium nitrate. The N applied to corn crop at eight expanded leaves stage promoted largest accumulation of this nutrient in the grains. (author)

  4. Energy metabolism in young mink kits (Neovison vison) affected by protein and carbohydrate level in the diet

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Hansen, Niels Enggaard; Tauson, Anne-Helene

    2010-01-01

    The mink is a strict carnivore and mink diets usually have a high content of protein. The energy metabolism in young minks in the transition period from milk to solid food is not investigated in detail, and the protein requirement is poorly defined. The substrate oxidation can give useful...

  5. Protein metabolism in the rat cerebral cortex in vivo and in vitro as affected by the acquisition enhancing drug piracetam

    NARCIS (Netherlands)

    Nickolson, V.J.; Wolthuis, O.L.

    1976-01-01

    The effect of Piracetam on rat cerebral protein metabolism in vivo and in vitro was studied. It was found that the drug stimulates the uptake of labelled leucine by cerebral cortex slices, has no effect on the incorporation of leucine into cerebral protein, neither in slices nor in vivo, but

  6. Mineral absorption and excretion as affected by microbial phytase and their effect on energy metabolism in young piglets

    NARCIS (Netherlands)

    Kies, A.K.; Gerrits, W.J.J.; Schrama, J.W.; Heetkamp, M.J.W.; Linden, van der K.L.; Zandstra, T.; Verstegen, M.W.A.

    2005-01-01

    Positive effects of dietary phytase supplementation on pig performance are observed not only when phosphorus is limiting. Improved energy utilization might be one explanation. Using indirect calorimetry, phytase-induced changes in energy metabolism were evaluated in young piglets with adequate

  7. Sources and processes affecting the distribution of dissolved Nd isotopes and concentrations in the West Pacific

    Science.gov (United States)

    Behrens, Melanie K.; Pahnke, Katharina; Schnetger, Bernhard; Brumsack, Hans-Jürgen

    2018-02-01

    In the Atlantic, where deep circulation is vigorous, the dissolved neodymium (Nd) isotopic composition (expressed as ɛNd) is largely controlled by water mass mixing. In contrast, the factors influencing the ɛNd distribution in the Pacific, marked by sluggish circulation, is not clear yet. Indication for regional overprints in the Pacific is given based on its bordering volcanic islands. Our study aims to clarify the impact and relative importance of different Nd sources (rivers, volcanic islands), vertical (bio)geochemical processes and lateral water mass transport in controlling dissolved ɛNd and Nd concentration ([Nd]) distributions in the West Pacific between South Korea and Fiji. We find indication for unradiogenic continental input from South Korean and Chinese rivers to the East China Sea. In the tropical West Pacific, volcanic islands supply Nd to surface and subsurface waters and modify their ɛNd to radiogenic values of up to +0.7. These radiogenic signatures allow detailed tracing of currents flowing to the east and differentiation from westward currents with open ocean Pacific ɛNd composition in the complex tropical Pacific zonal current system. Modified radiogenic ɛNd of West Pacific intermediate to bottom waters upstream or within our section also indicates non-conservative behavior of ɛNd due to boundary exchange at volcanic island margins, submarine ridges, and with hydrothermal particles. Only subsurface to deep waters (3000 m) in the open Northwest Pacific show conservative behavior of ɛNd. In contrast, we find a striking correlation of extremely low (down to 2.77 pmol/kg Nd) and laterally constant [Nd] with the high-salinity North and South Pacific Tropical Water, indicating lateral transport of preformed [Nd] from the North and South Pacific subtropical gyres into the study area. This observation also explains the previously observed low subsurface [Nd] in the tropical West Pacific. Similarly, Western South Pacific Central Water, Antarctic

  8. Triple oxygen isotopes indicate urbanization affects sources of nitrate in wet and dry atmospheric deposition

    Science.gov (United States)

    Nelson, David M.; Tsunogai, Urumu; Ding, Dong; Ohyama, Takuya; Komatsu, Daisuke D.; Nakagawa, Fumiko; Noguchi, Izumi; Yamaguchi, Takashi

    2018-05-01

    Atmospheric nitrate deposition resulting from anthropogenic activities negatively affects human and environmental health. Identifying deposited nitrate that is produced locally vs. that originating from long-distance transport would help inform efforts to mitigate such impacts. However, distinguishing the relative transport distances of atmospheric nitrate in urban areas remains a major challenge since it may be produced locally and/or be transported from upwind regions. To address this uncertainty we assessed spatiotemporal variation in monthly weighted-average Δ17O and δ15N values of wet and dry nitrate deposition during one year at urban and rural sites along the western coast of the northern Japanese island of Hokkaido, downwind of the East Asian continent. Δ17O values of nitrate in wet deposition at the urban site mirrored those of wet and dry deposition at the rural site, ranging between ˜ +23 and +31 ‰ with higher values during winter and lower values in summer, which suggests the greater relative importance of oxidation of NO2 by O3 during winter and OH during summer. In contrast, Δ17O values of nitrate in dry deposition at the urban site were lower (+19 - +25 ‰) and displayed less distinct seasonal variation. Furthermore, the difference between δ15N values of nitrate in wet and dry nitrate deposition was, on average, 3 ‰ greater at the urban than rural site, and Δ17O and δ15N values were correlated for both forms of deposition at both sites with the exception of dry deposition at the urban site. These results suggest that, relative to nitrate in wet and dry deposition in rural environments and wet deposition in urban environments, nitrate in dry deposition in urban environments forms from relatively greater oxidation of NO by peroxy radicals and/or oxidation of NO2 by OH. Given greater concentrations of peroxy radicals and OH in cities, these results imply that dry nitrate deposition results from local NOx emissions more so than wet

  9. FluxPyt: a Python-based free and open-source software for 13C-metabolic flux analyses.

    Science.gov (United States)

    Desai, Trunil S; Srivastava, Shireesh

    2018-01-01

    13 C-Metabolic flux analysis (MFA) is a powerful approach to estimate intracellular reaction rates which could be used in strain analysis and design. Processing and analysis of labeling data for calculation of fluxes and associated statistics is an essential part of MFA. However, various software currently available for data analysis employ proprietary platforms and thus limit accessibility. We developed FluxPyt, a Python-based truly open-source software package for conducting stationary 13 C-MFA data analysis. The software is based on the efficient elementary metabolite unit framework. The standard deviations in the calculated fluxes are estimated using the Monte-Carlo analysis. FluxPyt also automatically creates flux maps based on a template for visualization of the MFA results. The flux distributions calculated by FluxPyt for two separate models: a small tricarboxylic acid cycle model and a larger Corynebacterium glutamicum model, were found to be in good agreement with those calculated by a previously published software. FluxPyt was tested in Microsoft™ Windows 7 and 10, as well as in Linux Mint 18.2. The availability of a free and open 13 C-MFA software that works in various operating systems will enable more researchers to perform 13 C-MFA and to further modify and develop the package.

  10. TNFα altered inflammatory responses, impaired health and productivity, but did not affect glucose or lipid metabolism in early-lactation dairy cows.

    Directory of Open Access Journals (Sweden)

    Kai Yuan

    Full Text Available Inflammation may be a major contributing factor to peripartum metabolic disorders in dairy cattle. We tested whether administering an inflammatory cytokine, recombinant bovine tumor necrosis factor-α (rbTNFα, affects milk production, metabolism, and health during this period. Thirty-three Holstein cows (9 primiparous and 24 multiparous were randomly assigned to 1 of 3 treatments at parturition. Treatments were 0 (Control, 1.5, or 3.0 µg/kg body weight rbTNFα, which were administered once daily by subcutaneous injection for the first 7 days of lactation. Statistical contrasts were used to evaluate the treatment and dose effects of rbTNFα administration. Plasma TNFα concentrations at 16 h post-administration tended to be increased (P0.10 was detected; rbTNFα treatments increased (P0.10 by rbTNFα administration, but 6 out of 16 measured eicosanoids changed (P0.10 by rbTNFα treatment. Glucose turnover rate was unaffected (P=0.18 by rbTNFα administration. The higher dose of rbTNFα tended to increase the risk of cows developing one or more health disorders (P=0.08. Taken together, these results indicate that administration of rbTNFα daily for the first 7 days of lactation altered inflammatory responses, impaired milk production and health, but did not significantly affect liver triglyceride accumulation or nutrient metabolism in dairy cows.

  11. Bacillus licheniformis affects the microbial community and metabolic profile in the spontaneous fermentation of Daqu starter for Chinese liquor making.

    Science.gov (United States)

    Wang, Peng; Wu, Qun; Jiang, Xuejian; Wang, Zhiqiang; Tang, Jingli; Xu, Yan

    2017-06-05

    Chinese liquor is produced from spontaneous fermentation starter (Daqu) that provides the microbes, enzymes and flavors for liquor fermentation. To improve the flavor character of Daqu, we inoculated Bacillus licheniformis and studied the effect of this strain on the community structure and metabolic profile in Daqu fermentation. The microbial relative abundance changed after the inoculation, including the increase in Bacillus, Clavispora and Aspergillus, and the decrease in Pichia, Saccharomycopsis and some other genera. This variation was also confirmed by pure culture and coculture experiments. Seventy-three metabolites were identified during Daqu fermentation process. After inoculation, the average content of aromatic compounds were significantly enriched from 0.37mg/kg to 0.90mg/kg, and the average content of pyrazines significantly increased from 0.35mg/kg to 5.71mg/kg. The increase in pyrazines was positively associated with the metabolism of the inoculated Bacillus and the native genus Clavispora, because they produced much more pyrazines in their cocultures. Whereas the increase in aromatic compounds might be related to the change of in situ metabolic activity of several native genera, in particular, Aspergillus produced more aromatic compounds in cocultures with B. licheniformis. It indicated that the inoculation of B. licheniformis altered the flavor character of Daqu by both its own metabolic activity and the variation of in situ metabolic activity. Moreover, B. licheniformis inoculation influenced the enzyme activity of Daqu, including the significant increase in amylase activity (from 1.3gstarch/g/h to 1.7gstarch/g/h), and the significant decrease in glucoamylase activity (from 627.6mgglucose/g/h to 445.6mgglucose/g/h) and esterase activity (from 28.1mgethylcaproate/g/100h to 17.2mgethylcaproate/g/100h). These effects of inoculation were important factors for regulating the metabolism of microbial communities, hence for improving the flavor profile

  12. Human TP53 polymorphism (rs1042522) modelled in mouse does not affect glucose metabolism and body composition.

    Science.gov (United States)

    Reiling, Erwin; Speksnijder, Ewoud N; Pronk, Amanda C M; van den Berg, Sjoerd A A; Neggers, Silvia J W; Rietbroek, Ilma; van Steeg, Harry; Dollé, Martijn E T

    2014-02-13

    Variation in TP53 has been associated with cancer. The pro-allele of a TP53 polymorphism in codon 72 (rs1042522) has been associated with longevity. Recently, we showed that the same allele might be involved in preservation of glucose metabolism, body composition and blood pressure during ageing. Here, we assessed glucose tolerance and body composition in mice carrying the human polymorphism. Our data do not support the previous findings in humans, suggesting that this polymorphism does not play a major role in development of glucose metabolism and body composition during ageing. Alternatively, the mouse model may not be suitable to validate these rs1042522-associated traits up to the age tested.

  13. Markers of bone metabolism are affected by renal function and growth hormone therapy in children with chronic kidney disease

    DEFF Research Database (Denmark)

    Doyon, Anke; Fischer, Dagmar Christiane; Bayazit, Aysun Karabay

    2015-01-01

    Objectives: The extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric...... turnover state in children with chronic kidney disease. Growth hormone induces an osteoanabolic pattern and normalizes osteocyte activity. The osteocyte markers cFGF23 and sclerostin are associated with standardized height, and the markers of bone turnover predict height velocity......./min/ 1.73m2. 41 children receiving recombinant growth hormone therapy were compared to an untreated matched control group. Results: Standardized levels of BAP, TRAP5b and cFGF-23 were increased whereas sclerostin was reduced. BAP was correlated positively and cFGF-23 inversely with eGFR. Intact serum...

  14. Casein and soy protein meals differentially affect whole-body and splanchnic protein metabolism in healthy humans.

    Science.gov (United States)

    Luiking, Yvette C; Deutz, Nicolaas E P; Jäkel, Martin; Soeters, Peter B

    2005-05-01

    Dietary protein quality is considered to be dependent on the degree and velocity with which protein is digested, absorbed as amino acids, and retained in the gut as newly synthesized protein. Metabolic animal studies suggest that the quality of soy protein is inferior to that of casein protein, but confirmatory studies in humans are lacking. The study objective was to assess the quality of casein and soy protein by comparing their metabolic effects in healthy human subjects. Whole-body protein kinetics, splanchnic leucine extraction, and urea production rates were measured in the postabsorptive state and during 8-h enteral intakes of isonitrogenous [0.42 g protein/(kg body weight . 8 h)] protein-based test meals, which contained either casein (CAPM; n = 12) or soy protein (SOPM; n = 10) in 2 separate groups. Stable isotope techniques were used to study metabolic effects. With enteral food intake, protein metabolism changed from net protein breakdown to net protein synthesis. Net protein synthesis was greater in the CAPM group than in the SOPM group [52 +/- 14 and 17 +/- 14 nmol/(kg fat-free mass (FFM) . min), respectively; P CAPM (P = 0.07). Absolute splanchnic extraction of leucine was higher in the subjects that consumed CAPM [306 +/- 31 nmol/(kg FFM . min)] vs. those that consumed SOPM [235 +/- 29 nmol/(kg FFM . min); P < 0.01]. In conclusion, a significantly larger portion of soy protein is degraded to urea, whereas casein protein likely contributes to splanchnic utilization (probably protein synthesis) to a greater extent. The biological value of soy protein must be considered inferior to that of casein protein in humans.

  15. Diet-induced hyperinsulinemia differentially affects glucose and protein metabolism: a high-throughput metabolomic approach in rats.

    Science.gov (United States)

    Etxeberria, U; de la Garza, A L; Martínez, J A; Milagro, F I

    2013-09-01

    Metabolomics is a high-throughput tool that quantifies and identifies the complete set of biofluid metabolites. This "omics" science is playing an increasing role in understanding the mechanisms involved in disease progression. The aim of this study was to determine whether a nontargeted metabolomic approach could be applied to investigate metabolic differences between obese rats fed a high-fat sucrose (HFS) diet for 9 weeks and control diet-fed rats. Animals fed with the HFS diet became obese, hyperleptinemic, hyperglycemic, hyperinsulinemic, and resistant to insulin. Serum samples of overnight-fasted animals were analyzed by (1)H NMR technique, and 49 metabolites were identified and quantified. The biochemical changes observed suggest that major metabolic processes like carbohydrate metabolism, β-oxidation, tricarboxylic acid cycle, Kennedy pathway, and folate-mediated one-carbon metabolism were altered in obese rats. The circulating levels of most amino acids were lower in obese animals. Serum levels of docosahexaenoic acid, linoleic acid, unsaturated n-6 fatty acids, and total polyunsaturated fatty acids also decreased in HFS-fed rats. The circulating levels of urea, six water-soluble metabolites (creatine, creatinine, choline, acetyl carnitine, formate, and allantoin), and two lipid compounds (phosphatidylcholines and sphingomyelin) were also significantly reduced by the HFS diet intake. This study offers further insight of the possible mechanisms implicated in the development of diet-induced obesity. It suggests that the HFS diet-induced hyperinsulinemia is responsible for the decrease in the circulating levels of urea, creatinine, and many amino acids, despite an increase in serum glucose levels.

  16. Estimation of Symptom Severity Scores for Patients with Schizophrenia Using ERP Source Activations during a Facial Affect Discrimination Task.

    Science.gov (United States)

    Kim, Do-Won; Lee, Seung-Hwan; Shim, Miseon; Im, Chang-Hwan

    2017-01-01

    Precise diagnosis of psychiatric diseases and a comprehensive assessment of a patient's symptom severity are important in order to establish a successful treatment strategy for each patient. Although great efforts have been devoted to searching for diagnostic biomarkers of schizophrenia over the past several decades, no study has yet investigated how accurately these biomarkers are able to estimate an individual patient's symptom severity. In this study, we applied electrophysiological biomarkers obtained from electroencephalography (EEG) analyses to an estimation of symptom severity scores of patients with schizophrenia. EEG signals were recorded from 23 patients while they performed a facial affect discrimination task. Based on the source current density analysis results, we extracted voxels that showed a strong correlation between source activity and symptom scores. We then built a prediction model to estimate the symptom severity scores of each patient using the source activations of the selected voxels. The symptom scores of the Positive and Negative Syndrome Scale (PANSS) were estimated using the linear prediction model. The results of leave-one-out cross validation (LOOCV) showed that the mean errors of the estimated symptom scores were 3.34 ± 2.40 and 3.90 ± 3.01 for the Positive and Negative PANSS scores, respectively. The current pilot study is the first attempt to estimate symptom severity scores in schizophrenia using quantitative EEG features. It is expected that the present method can be extended to other cognitive paradigms or other psychological illnesses.

  17. Estimation of Symptom Severity Scores for Patients with Schizophrenia Using ERP Source Activations during a Facial Affect Discrimination Task

    Directory of Open Access Journals (Sweden)

    Do-Won Kim

    2017-08-01

    Full Text Available Precise diagnosis of psychiatric diseases and a comprehensive assessment of a patient's symptom severity are important in order to establish a successful treatment strategy for each patient. Although great efforts have been devoted to searching for diagnostic biomarkers of schizophrenia over the past several decades, no study has yet investigated how accurately these biomarkers are able to estimate an individual patient's symptom severity. In this study, we applied electrophysiological biomarkers obtained from electroencephalography (EEG analyses to an estimation of symptom severity scores of patients with schizophrenia. EEG signals were recorded from 23 patients while they performed a facial affect discrimination task. Based on the source current density analysis results, we extracted voxels that showed a strong correlation between source activity and symptom scores. We then built a prediction model to estimate the symptom severity scores of each patient using the source activations of the selected voxels. The symptom scores of the Positive and Negative Syndrome Scale (PANSS were estimated using the linear prediction model. The results of leave-one-out cross validation (LOOCV showed that the mean errors of the estimated symptom scores were 3.34 ± 2.40 and 3.90 ± 3.01 for the Positive and Negative PANSS scores, respectively. The current pilot study is the first attempt to estimate symptom severity scores in schizophrenia using quantitative EEG features. It is expected that the present method can be extended to other cognitive paradigms or other psychological illnesses.

  18. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  19. Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii.

    Science.gov (United States)

    Kochhann, Daiani; Campos, Derek Felipe; Val, Adalberto Luis

    2015-12-01

    The primary goal of this study was to understand how changes in temperature and oxygen could influence social behaviour and aerobic metabolism of the Amazonian dwarf cichlid Apistogramma agassizii. Social hierarchies were established over a period of 96h by observing the social interactions, feeding behaviour and shelter use in groups of four males. In the experimental environment, temperature was increased to 29°C in the high-temperature treatment, and oxygen lowered to 1.0mg·L(-1)O2 in the hypoxia treatment. Fish were maintained at this condition for 96h. The control was maintained at 26°C and 6.6mg·L(-1)O2. After the experimental exposure, metabolism was measured as routine metabolic rate (RMR) and electron transport system (ETS) activity. There was a reduction in hierarchy stability at high-temperature. Aggression changed after environmental changes. Dominant and subdominant fish at high temperatures increased their biting, compared with control-dominant. In contrast, hypoxia-dominant fish decreased their aggressive acts compared with all other fish. Shelter use decreased in control and hypoxic dominant fish. Dominant fish from undisturbed environments eat more than their subordinates. There was a decrease of RMR in fish exposed to the hypoxic environment when compared with control or high-temperature fish, independent of social position. Control-dominant fish had higher RMR than their subordinates. ETS activity increased in fish exposed to high temperatures; however, there was no effect on social rank. Our study reinforces the importance of environmental changes for the maintenance of hierarchies and their characteristics and highlights that most of the changes occur in the dominant position. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Foliar urea application affects nitric oxide burst and glycine betaine metabolism in two maize cultivars under drought

    International Nuclear Information System (INIS)

    Zhang, L.; Zhang, X.; Wang, K.; Zhao, Y.; Zhai, Y.; Gao, M.

    2011-01-01

    Foliar urea has been proved to act a better role in alleviation of the negative effects of drought stress (DS). However, the modulation mechanism of foliar urea are not conclusive in view of nitric oxide (NO) burst and glycine betaine metabolism and their relationship. Two maize ( Zea mays L.) cultivars (Zhengdan 958, JD958, Jundan 20, ZD20) were grown in hydroponic medium, which were treated with spraying of urea concentration of 15 g L/sup -1/ and two water regimes (non-stress and DS simulated by the addition of polyethylene glycol (PEG, 15% w/v, MW 6000). The ten-day DS treatment increased betaine aldehyde dehydrogenase (BADH) activity, choline content and nitric oxide (NO) content acted as the key enzyme, initial substrate and a nitrogenous signal substance respectively in GB synthesis metabolism, thus, induced to great GB accumulation. The accumulation of NO reached the summit earlier than that of GB. The more positive/less negative responses were recorded in JD958 as compared with ZD20 to DS. Addition of foliar ur ea could increase accumulation of choline and BADH activity as well as NO content, thereby, increase GB accumulation under DS. These positive effects of urea applying foliarly on all parameters measured were more pronounced in cultivar JD20 than those in ZD958 under drought. It is, therefore, concluded that increases of both BADH activity and choline content possibly resulted in enhancement of GB accumulation. Foliar urea application could provoke better GB accumulation by modulation of GB metabolism, possibly mediating by NO burst as a signal molecule during drought, especially in the drought sensitive maize cultivar. (author)

  1. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism.

    Science.gov (United States)

    Zouari, Inès; Salvioli, Alessandra; Chialva, Matteo; Novero, Mara; Miozzi, Laura; Tenore, Gian Carlo; Bagnaresi, Paolo; Bonfante, Paola

    2014-03-21

    Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. Fruits were collected at 55 days after flowering, from plants colonized with Funneliformis mosseae and from control plants, which were fertilized to avoid responses related to nutrient deficiency. Transcriptome analysis identified 712 genes that are differentially expressed in fruits from mycorrhizal and control plants. Gene Ontology (GO) enrichment analysis of these genes showed 81 overrepresented functional GO classes. Up-regulated GO classes include photosynthesis, stress response, transport, amino acid synthesis and carbohydrate metabolism functions, suggesting a general impact of fungal symbiosis on primary metabolisms and, particularly, on mineral nutrition. Down-regulated GO classes include cell wall, metabolism and ethylene response pathways. Quantitative RT-PCR validated the RNA-Seq results for 12 genes out of 14 when tested at three fruit ripening stages, mature green, breaker and turning. Quantification of fruit nutraceutical and mineral contents produced values consistent with the expression changes observed by RNA-Seq analysis. This RNA-Seq profiling produced a novel data set that explores the intersection of mycorrhization and fruit development. We found that the fruits of mycorrhizal plants show two transcriptomic "signatures": genes characteristic of a climacteric fleshy fruit, and genes characteristic of mycorrhizal status, like phosphate and sulphate transporters. Moreover, mycorrhizal plants under low nutrient conditions produce fruits with a nutrient content similar to those from non-mycorrhizal plants under high nutrient conditions

  2. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Duparc, Thibaut; Plovier, Hubert; Marrachelli, Vannina G

    2017-01-01

    performed microarrays and quantitative PCRs in the liver. In addition, we investigated the gut microbiota composition, bile acid profile and both liver and plasma metabolome. We analysed the expression pattern of genes in the liver of obese humans developing non-alcoholic steatohepatitis (NASH). RESULTS...... proliferator activator receptor-α, farnesoid X receptor (FXR), liver X receptors and STAT3) and bile acid profiles involved in glucose, lipid metabolism and inflammation. In addition to these alterations, the genetic deletion of MyD88 in hepatocytes changes the gut microbiota composition and their metabolomes...

  3. Sex steroids do not affect muscle weight, oxidative metabolism or cytosolic androgen reception binding of functionally overloaded rat Plantaris muscles

    Science.gov (United States)

    Max, S. R.; Rance, N.

    1983-01-01

    The effects of sex steroids on muscle weight and oxidative capacity of rat planaris muscles subjected to functional overload by removal of synergistic muscles were investigated. Ten weeks after bilateral synergist removal, plantaris muscles were significantly hypertrophic compared with unoperated controls. After this period, the ability of the muscles to oxide three substrates of oxidative metabolism was assessed. Experimental procedures are discussed and results are presented herein. Results suggest a lack of beneficial effect of sex hormone status on the process of hypertrophy and on biochemical changes in overloaded muscle. Such findings are not consistent with the idea of synergistic effects of sex steroids and muscle usage.

  4. Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith.

    Science.gov (United States)

    King, Gary M

    2015-04-07

    Carbon monoxide occurs at relatively high concentrations (≥800 parts per million) in Mars' atmosphere, where it represents a potentially significant energy source that could fuel metabolism by a localized putative surface or near-surface microbiota. However, the plausibility of CO oxidation under conditions relevant for Mars in its past or at present has not been evaluated. Results from diverse terrestrial brines and saline soils provide the first documentation, to our knowledge, of active CO uptake at water potentials (-41 MPa to -117 MPa) that might occur in putative brines at recurrent slope lineae (RSL) on Mars. Results from two extremely halophilic isolates complement the field observations. Halorubrum str. BV1, isolated from the Bonneville Salt Flats, Utah (to our knowledge, the first documented extremely halophilic CO-oxidizing member of the Euryarchaeota), consumed CO in a salt-saturated medium with a water potential of -39.6 MPa; activity was reduced by only 28% relative to activity at its optimum water potential of -11 MPa. A proteobacterial isolate from hypersaline Mono Lake, California, Alkalilimnicola ehrlichii MLHE-1, also oxidized CO at low water potentials (-19 MPa), at temperatures within ranges reported for RSL, and under oxic, suboxic (0.2% oxygen), and anoxic conditions (oxygen-free with nitrate). MLHE-1 was unaffected by magnesium perchlorate or low atmospheric pressure (10 mbar). These results collectively establish the potential for microbial CO oxidation under conditions that might obtain at local scales (e.g., RSL) on contemporary Mars and at larger spatial scales earlier in Mars' history.

  5. Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources.

    Science.gov (United States)

    Vuilleumier, Stéphane; Chistoserdova, Ludmila; Lee, Ming-Chun; Bringel, Françoise; Lajus, Aurélie; Zhou, Yang; Gourion, Benjamin; Barbe, Valérie; Chang, Jean; Cruveiller, Stéphane; Dossat, Carole; Gillett, Will; Gruffaz, Christelle; Haugen, Eric; Hourcade, Edith; Levy, Ruth; Mangenot, Sophie; Muller, Emilie; Nadalig, Thierry; Pagni, Marco; Penny, Christian; Peyraud, Rémi; Robinson, David G; Roche, David; Rouy, Zoé; Saenampechek, Channakhone; Salvignol, Grégory; Vallenet, David; Wu, Zaining; Marx, Christopher J; Vorholt, Julia A; Olson, Maynard V; Kaul, Rajinder; Weissenbach, Jean; Médigue, Claudine; Lidstrom, Mary E

    2009-01-01

    Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared. The 6.88 Mb genome of strain AM1 comprises a 5.51 Mb chromosome, a 1.26 Mb megaplasmid and three plasmids, while the 6.12 Mb genome of strain DM4 features a 5.94 Mb chromosome and two plasmids. The chromosomes are highly syntenic and share a large majority of genes, while plasmids are mostly strain-specific, with the exception of a 130 kb region of the strain AM1 megaplasmid which is syntenic to a chromosomal region of strain DM4. Both genomes contain large sets of insertion elements, many of them strain-specific, suggesting an important potential for genomic plasticity. Most of the genomic determinants associated with methylotrophy are nearly identical, with two exceptions that illustrate the metabolic and genomic versatility of Methylobacterium. A 126 kb dichloromethane utilization (dcm) gene cluster is essential for the ability of strain DM4 to use DCM as the sole carbon and energy source for growth and is unique to strain DM4. The methylamine utilization (mau) gene cluster is only found in strain AM1, indicating that strain DM4 employs an alternative system for growth with methylamine. The dcm and mau clusters represent two of the chromosomal genomic islands (AM1: 28; DM4: 17) that were defined. The mau cluster is flanked by mobile elements, but the dcm cluster disrupts a gene annotated as chelatase and for which we propose the name "island integration determinant" (iid). These two genome sequences provide a platform for intra- and interspecies genomic comparisons in the genus Methylobacterium, and for investigations of the adaptive mechanisms which allow bacterial lineages to acquire methylotrophic

  6. Reciprocity in computer-human interaction: source-based, norm-based, and affect-based explanations.

    Science.gov (United States)

    Lee, Seungcheol Austin; Liang, Yuhua Jake

    2015-04-01

    Individuals often apply social rules when they interact with computers, and this is known as the Computers Are Social Actors (CASA) effect. Following previous work, one approach to understand the mechanism responsible for CASA is to utilize computer agents and have the agents attempt to gain human compliance (e.g., completing a pattern recognition task). The current study focuses on three key factors frequently cited to influence traditional notions of compliance: evaluations toward the source (competence and warmth), normative influence (reciprocity), and affective influence (mood). Structural equation modeling assessed the effects of these factors on human compliance with computer request. The final model shows that norm-based influence (reciprocity) increased the likelihood of compliance, while evaluations toward the computer agent did not significantly influence compliance.

  7. Peroxisome protein transportation affects metabolism of branched-chain fatty acids that critically impact growth and development of C. elegans.

    Directory of Open Access Journals (Sweden)

    Rencheng Wang

    Full Text Available The impact of specific lipid molecules, including fatty acid variants, on cellular and developmental regulation is an important research subject that remains under studied. Monomethyl branched-chain fatty acids (mmBCFAs are commonly present in multiple organisms including mammals, however our understanding of mmBCFA functions is very limited. C. elegans has been the premier model system to study the functions of mmBCFAs and their derived lipids, as mmBCFAs have been shown to play essential roles in post-embryonic development in this organism. To understand more about the metabolism of mmBCFAs in C. elegans, we performed a genetic screen for suppressors of the L1 developmental arrest phenotype caused by mmBCFA depletion. Extensive characterization of one suppressor mutation identified prx-5, which encodes an ortholog of the human receptor for the type-1 peroxisomal targeting signal protein. Our study showed that inactivating prx-5 function compromised the peroxisome protein import, resulting in an increased level of branched-chain fatty acid C17ISO in animals lacking normal mmBCFA synthesis, thereby restoring wild-type growth and development. This work reveals a novel connection between peroxisomal functions and mmBCFA metabolism.

  8. PamR, a new MarR-like regulator affecting prophages and metabolic genes expression in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Alba De San Eustaquio-Campillo

    Full Text Available B. subtilis adapts to changing environments by reprogramming its genetic expression through a variety of transcriptional regulators from the global transition state regulators that allow a complete resetting of the cell genetic expression, to stress specific regulators controlling only a limited number of key genes required for optimal adaptation. Among them, MarR-type transcriptional regulators are known to respond to a variety of stresses including antibiotics or oxidative stress, and to control catabolic or virulence gene expression. Here we report the characterization of the ydcFGH operon of B. subtilis, containing a putative MarR-type transcriptional regulator. Using a combination of molecular genetics and high-throughput approaches, we show that this regulator, renamed PamR, controls directly its own expression and influence the expression of large sets of prophage-related and metabolic genes. The extent of the regulon impacted by PamR suggests that this regulator reprograms the metabolic landscape of B. subtilis in response to a yet unknown signal.

  9. Hepatic metabolism affects the atropselective disposition of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) in mice.

    Science.gov (United States)

    Wu, Xianai; Barnhart, Christopher; Lein, Pamela J; Lehmler, Hans-Joachim

    2015-01-06

    To understand the role of hepatic vs extrahepatic metabolism in the disposition of chiral PCBs, we studied the disposition of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) and its hydroxylated metabolites (HO-PCBs) in mice with defective hepatic metabolism due to the liver-specific deletion of cytochrome P450 oxidoreductase (KO mice). Female KO and congenic wild type (WT) mice were treated with racemic PCB 136, and levels and chiral signatures of PCB 136 and HO-PCBs were determined in tissues and excreta 3 days after PCB administration. PCB 136 tissue levels were higher in KO compared to WT mice. Feces was a major route of PCB metabolite excretion, with 2,2',3,3',6,6'-hexachlorobiphenyl-5-ol being the major metabolite recovered from feces. (+)-PCB 136, the second eluting PCB 136 atropisomers, was enriched in all tissues and excreta. The second eluting atropisomers of the HO-PCBs metabolites were enriched in blood and liver; 2,2',3,3',6,6'-hexachlorobiphenyl-5-ol in blood was an exception and displayed an enrichment of the first eluting atropisomers. Fecal HO-PCB levels and chiral signatures changed with time and differed between KO and WT mice, with larger HO-PCB enantiomeric fractions in WT compared to KO mice. Our results demonstrate that hepatic and, possibly, extrahepatic cytochrome P450 (P450) enzymes play a role in the disposition of PCBs.

  10. Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota.

    Directory of Open Access Journals (Sweden)

    Tatsuki Ogura

    Full Text Available Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an "ECOMICS" web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation.

  11. Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass Zostera muelleri.

    Science.gov (United States)

    Kim, Mikael; Brodersen, Kasper Elgetti; Szabó, Milán; Larkum, Anthony W D; Raven, John A; Ralph, Peter J; Pernice, Mathieu

    2018-05-01

    Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy coastal ecosystems. Despite its ecological importance, little is known about the pathways of carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this study, the response of Z. muelleri exposed to control and very low oxygen conditions was investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to measure changes in photosynthesis and respiration, and (ii) reverse transcription quantitative real-time PCR to measure changes in expression levels of key genes involved in C 4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. muelleri, a characteristic of C 3 mechanism of carbon assimilation, and (ii) decreased the expression levels of phosphoenolpyruvate carboxylase and carbonic anhydrase. These molecular-physiological results suggest that regulation of the photophysiology of Z. muelleri might involve a close integration between the C 3 and C 4 , or other CO 2 concentrating mechanisms metabolic pathways. Overall, this study highlights that the photophysiological response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the dynamic modulation of pathways should be considered when assessing seagrass primary production.

  12. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians.

    Science.gov (United States)

    Kim, Sangkyu; Myers, Leann; Ravussin, Eric; Cherry, Katie E; Jazwinski, S Michal

    2016-08-01

    Energy expenditure decreases with age, but in the oldest-old, energy demand for maintenance of body functions increases with declining health. Uncoupling proteins have profound impact on mitochondrial metabolic processes; therefore, we focused attention on mitochondrial uncoupling protein genes. Alongside resting metabolic rate (RMR), two SNPs in the promoter region of UCP2 were associated with healthy aging. These SNPs mark potential binding sites for several transcription factors; thus, they may affect expression of the gene. A third SNP in the 3'-UTR of UCP3 interacted with RMR. This UCP3 SNP is known to impact UCP3 expression in tissue culture cells, and it has been associated with body weight and mitochondrial energy metabolism. The significant main effects of the UCP2 SNPs and the interaction effect of the UCP3 SNP were also observed after controlling for fat-free mass (FFM) and physical-activity related energy consumption. The association of UCP2/3 with healthy aging was not found in males. Thus, our study provides evidence that the genetic risk factors for healthy aging differ in males and females, as expected from the differences in the phenotypes associated with healthy aging between the two sexes. It also has implications for how mitochondrial function changes during aging.

  13. Theobromine does not affect postprandial lipid metabolism and duodenal gene expression, but has unfavorable effects on postprandial glucose and insulin responses in humans.

    Science.gov (United States)

    Smolders, Lotte; Mensink, Ronald P; Boekschoten, Mark V; de Ridder, Rogier J J; Plat, Jogchum

    2018-04-01

    Chocolate consumption is associated with a decreased risk for CVD. Theobromine, a compound in cocoa, may explain these effects as it favorably affected fasting serum lipids. However, long-term effects of theobromine on postprandial metabolism as well as underlying mechanisms have never been studied. The objective was to evaluate the effects of 4-week theobromine consumption (500 mg/day) on fasting and postprandial lipid, lipoprotein and glucose metabolism, and duodenal gene expression. In a randomized, double-blind crossover study, 44 healthy men and women, with low baseline HDL-C concentrations consumed 500 mg theobromine or placebo daily. After 4-weeks, fasting blood was sampled and subjects participated in a 4-h postprandial test. Blood was sampled frequently for analysis of lipid and glucose metabolism. In a subgroup of 10 men, 5 h after meal consumption duodenal biopsies were taken for microarray analysis. 4-weeks theobromine consumption lowered fasting LDL-C (-0.21 mmol/L; P = 0.006), and apoB100 (-0.04 g/L; P = 0.022), tended to increase HDL-C (0.03 mmol/L; P = 0.088) and increased hsCRP (1.2 mg/L; P = 0.017) concentrations. Fasting apoA-I, TAG, FFA, glucose and insulin concentrations were unchanged. In the postprandial phase, theobromine consumption increased glucose (P = 0.026), insulin (P = 0.011) and FFA (P = 0.003) concentrations, while lipids and (apo)lipoproteins were unchanged. In duodenal biopsies, microarray analysis showed no consistent changes in expression of genes, pathways or gene sets related to lipid, cholesterol or glucose metabolism. It is not likely that the potential beneficial effects of cocoa on CVD can be ascribed to theobromine. Although theobromine lowers serum LDL-C concentrations, it did not change fasting HDL-C, apoA-I, or postprandial lipid concentrations and duodenal gene expression, and unfavorably affected postprandial glucose and insulin responses. This trial was registered on clinicaltrials.gov under

  14. Nitrogen-Fixing Nodules Are an Important Source of Reduced Sulfur, Which Triggers Global Changes in Sulfur Metabolism in Lotus japonicus.

    Science.gov (United States)

    Kalloniati, Chrysanthi; Krompas, Panagiotis; Karalias, Georgios; Udvardi, Michael K; Rennenberg, Heinz; Herschbach, Cornelia; Flemetakis, Emmanouil

    2015-09-01

    We combined transcriptomic and biochemical approaches to study rhizobial and plant sulfur (S) metabolism in nitrogen (N) fixing nodules (Fix(+)) of Lotus japonicus, as well as the link of S-metabolism to symbiotic nitrogen fixation and the effect of nodules on whole-plant S-partitioning and metabolism. Our data reveal that N-fixing nodules are thiol-rich organs. Their high adenosine 5'-phosphosulfate reductase activity and strong (35)S-flux into cysteine and its metabolites, in combination with the transcriptional upregulation of several rhizobial and plant genes involved in S-assimilation, highlight the function of nodules as an important site of S-assimilation. The higher thiol content observed in nonsymbiotic organs of N-fixing plants in comparison to uninoculated plants could not be attributed to local biosynthesis, indicating that nodules are an important source of reduced S for the plant, which triggers whole-plant reprogramming of S-metabolism. Enhanced thiol biosynthesis in nodules and their impact on the whole-plant S-economy are dampened in plants nodulated by Fix(-) mutant rhizobia, which in most respects metabolically resemble uninoculated plants, indicating a strong interdependency between N-fixation and S-assimilation. © 2015 American Society of Plant Biologists. All rights reserved.

  15. 40 CFR Table 3 to Subpart Dd of... - Tank Control Levels for Tanks at Existing Affected Sources as Required by 40 CFR 63.685(b)(1)

    Science.gov (United States)

    2010-07-01

    ... Existing Affected Sources as Required by 40 CFR 63.685(b)(1) 3 Table 3 to Subpart DD of Part 63 Protection... Hazardous Air Pollutants from Off-Site Waste and Recovery Operations Pt. 63, Subpt. DD, Table 3 Table 3 to Subpart DD of Part 63—Tank Control Levels for Tanks at Existing Affected Sources as Required by 40 CFR 63...

  16. 40 CFR Table 4 to Subpart Dd of... - Tank Control Levels for Tanks at New Affected Sources as Required by 40 CFR 63.685(b)(2)

    Science.gov (United States)

    2010-07-01

    ... Affected Sources as Required by 40 CFR 63.685(b)(2) 4 Table 4 to Subpart DD of Part 63 Protection of... Hazardous Air Pollutants from Off-Site Waste and Recovery Operations Pt. 63, Subpt. DD, Table 4 Table 4 to Subpart DD of Part 63—Tank Control Levels for Tanks at New Affected Sources as Required by 40 CFR 63.685(b...

  17. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats.

    Science.gov (United States)

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-04-01

    To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life.

  18. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system.

    Science.gov (United States)

    Popławski, Piotr; Wiśniewski, Jacek R; Rijntjes, Eddy; Richards, Keith; Rybicka, Beata; Köhrle, Josef; Piekiełko-Witkowska, Agnieszka

    2017-01-01

    Type 1 iodothyronine deiodinase (DIO1) contributes to deiodination of 3,5,3',5'-tetraiodo-L-thyronine (thyroxine, T4) yielding of 3,5,3'-triiodothyronine (T3), a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The 'downregulated' group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2) that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2), enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2), sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10). DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression and changes

  19. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system.

    Directory of Open Access Journals (Sweden)

    Piotr Popławski

    Full Text Available Type 1 iodothyronine deiodinase (DIO1 contributes to deiodination of 3,5,3',5'-tetraiodo-L-thyronine (thyroxine, T4 yielding of 3,5,3'-triiodothyronine (T3, a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The 'downregulated' group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2 that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2, enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2, sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10. DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression

  20. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylationrelated product quality. In this work, different fed-batch processes with two chemically defined proprietary media......Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process...... and glutamine concentrations and uptake rates were positively correlated with intracellular UDP-Gal availability. All these findings are important for optimization of fed-batch culture for improving IgG production and directing glycosylation quality....

  1. Does overnight normalization of plasma glucose by insulin infusion affect assessment of glucose metabolism in Type 2 diabetes?

    DEFF Research Database (Denmark)

    Staehr, P; Højlund, Kurt; Hother-Nielsen, O

    2003-01-01

    AIMS: In order to perform euglycaemic clamp studies in Type 2 diabetic patients, plasma glucose must be reduced to normal levels. This can be done either (i) acutely during the clamp study using high-dose insulin infusion, or (ii) slowly overnight preceding the clamp study using a low-dose insulin...... infusion. We assessed whether the choice of either of these methods to obtain euglycaemia biases subsequent assessment of glucose metabolism and insulin action. METHODS: We studied seven obese Type 2 diabetic patients twice: once with (+ ON) and once without (- ON) prior overnight insulin infusion. Glucose...... turnover rates were quantified by adjusted primed-constant 3-3H-glucose infusions, and insulin action was assessed in 4-h euglycaemic, hyperinsulinaemic (40 mU m-2 min-1) clamp studies using labelled glucose infusates (Hot-GINF). RESULTS: Basal plasma glucose levels (mean +/- sd) were 5.5 +/- 0.5 and 10...

  2. Assessment of quality of life of the children and parents affected by inborn errors of metabolism with restricted diet: preliminary results of a cross-sectional study.

    Science.gov (United States)

    Fabre, Alexandre; Baumstarck, Karine; Cano, Aline; Loundou, Anderson; Berbis, Julie; Chabrol, Brigitte; Auquier, Pascal

    2013-09-19

    The development in therapeutic strategies has increased survival of children affected by inborn errors of metabolism with restricted diet (IEMRD). These diseases have mild- and long-term consequences on the health. Little is known about the impact on the quality of life (QoL) of children and their families. The aims of this study were: to compare the QoL of the children and parents affected by IEMRD with the QoL of the general population and one pathology associated with long-term consequences. This cross-sectional study was performed at the French Reference Center for inborn metabolic disorders (Marseille, France). Inclusion criteria were: a child with a diagnosis of organic aciduria, urea cycle defect, or maple syrups urine disease (MSUD). Socio-demographics, clinical data, and QoL were recorded. Twenty-one of 32 eligible families were included during a planned routine visit. Ten (47%, 95% CI 27-69%) children were affected by organic aciduria, six (29%, 95% CI 10-48%) by urea cycle defects, and five (24%, 95% CI 6-42%) by MSUD. Among the younger children, the general well-being was significantly lower in the children with IEMRD than in the leukemia children (58 ± 16 versus 76 ± 15, p = 0.012), and among the older children, the leisure activities were significantly lower in the children with IEMRD than in the leukemia children (29 ± 18 versus 62 ± 22, p eating and neurologic disorders, enteral nutrition, and feeding modalities. The children and the parents of children affected presented altered 'physical' and 'social' QoL scores compared with the norms and patients with leukemia and their families. Future studies based on larger cohort studies should determine the different weights of potential predictive factors of QoL.

  3. Exposure of embryos to cyclically cold incubation temperatures durably affects energy metabolism and antioxidant pathways in broiler chickens.

    Science.gov (United States)

    Loyau, T; Collin, A; Yenisey, C; Crochet, S; Siegel, P B; Akşit, M; Yalçin, S

    2014-08-01

    Cyclically cold incubation temperatures have been suggested as a means to improve resistance of broiler chickens to ascites; however, the underlying mechanisms are not known. Nine hundred eggs obtained from 48 wk Ross broiler breeders were randomly assigned to 2 incubation treatments: control I eggs were incubated at 37.6°C throughout, whereas for cold I eggs the incubation temperature was reduced by 1°C for 6 h daily from 10 to 18 d of incubation. Thereafter, chickens were reared at standard temperatures or under cold exposure that was associated or not with a postnatal cold acclimation at d 5 posthatch. At hatch, hepatic catalase activity and malondialdehyde content were measured. Serum thyroid hormone and triglyceride concentrations, and muscle expression of several genes involved in the regulation of energy metabolism and oxidative stress were also measured at hatch and 5 and 25 d posthatch. Cold incubation induced modifications in antioxidant pathways with higher catalase activity, but lower expression of avian uncoupling protein 3 at hatch. However, long-term enhancement in the expression of avian uncoupling protein 3 was observed, probably caused by an increase in the expression of the transcription factor peroxisome proliferator activated receptor-γ coactivator-1α. These effects were not systematically associated with an increase in serum triiodothyronine concentrations that were observed only in chickens exposed to both cold incubation and later acclimation at 5 d with cold rearing. Our results suggest that these conditions of cyclically cold incubation resulted in the long-term in changes in antioxidant pathways and energy metabolism, which could enhance the health of chickens reared under cold conditions. © Poultry Science Association Inc.

  4. Predicted optimum ambient temperatures for broiler chickens to dissipate metabolic heat do not affect performance or improve breast muscle quality.

    Science.gov (United States)

    Zahoor, I; Mitchell, M A; Hall, S; Beard, P M; Gous, R M; De Koning, D J; Hocking, P M

    2016-01-01

    An experiment was conducted to test the hypothesis that muscle damage in fast-growing broiler chickens is associated with an ambient temperature that does not permit the birds to lose metabolic heat resulting in physiological heat stress and a reduction in meat quality. The experiment was performed in 4 climate chambers and was repeated in 2 trials using a total of 200 male broiler chickens. Two treatments compared the recommended temperature profile and a cool regimen. The cool regimen was defined by a theoretical model that determined the environmental temperature that would enable heat generated by the bird to be lost to the environment. There were no differences in growth rate or feed intake between the two treatments. Breast muscles from birds on the recommended temperature regimen were lighter, less red and more yellow than those from the cool temperature regimen. There were no differences in moisture loss or shear strength but stiffness was greater in breast muscle from birds housed in the cool compared to the recommended regimen. Histopathological changes in the breast muscle were similar in both treatments and were characterised by mild to severe myofibre degeneration and necrosis with regeneration, fibrosis and adipocyte infiltration. There was no difference in plasma creatine kinase activity, a measure of muscle cell damage, between the two treatments consistent with the absence of differences in muscle pathology. It was concluded that breast muscle damage in fast-growing broiler chickens was not the result of an inability to lose metabolic heat at recommended ambient temperatures. The results suggest that muscle cell damage and breast meat quality concerns in modern broiler chickens are related to genetic selection for muscle yields and that genetic selection to address breast muscle integrity in a balanced breeding programme is imperative.

  5. Dairy cows affected by ketosis show alterations in innate immunity and lipid and carbohydrate metabolism during the dry off period and postpartum.

    Science.gov (United States)

    Zhang, Guanshi; Hailemariam, Dagnachew; Dervishi, Elda; Goldansaz, Seyed Ali; Deng, Qilan; Dunn, Suzanna M; Ametaj, Burim N

    2016-08-01

    The objective of this investigation was to search for alterations in blood variables related to innate immunity and carbohydrate and lipid metabolism during the transition period in cows affected by ketosis. One hundred multiparous Holstein dairy cows were involved in the study. Blood samples were collected at -8, -4, week of disease diagnosis (+1 to +3weeks), and +4weeks relative to parturition from 6 healthy cows (CON) and 6 cows with ketosis and were analyzed for serum variables. Results showed that cows with ketosis had greater concentrations of serum β-hydroxybutyric acid (BHBA), interleukin (IL)-6, tumor necrosis factor (TNF), serum amyloid A (SAA), and lactate in comparison with the CON animals. Serum concentrations of BHBA, IL-6, TNF, and lactate were greater starting at -8 and -4weeks prior to parturition in cows with ketosis vs those of CON group. Cows with ketosis also had lower DMI and milk production vs CON cows. Milk fat also was lower in ketotic cows at diagnosis of disease. Cows affected by ketosis showed an activated innate immunity and altered carbohydrate and lipid metabolism several weeks prior to diagnosis of disease. Serum IL-6 and lactate were the strongest discriminators between ketosis cows and CON ones before the occurrence of ketosis, which might be useful as predictive biomarkers of the disease state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. TNFα Altered Inflammatory Responses, Impaired Health and Productivity, but Did Not Affect Glucose or Lipid Metabolism in Early-Lactation Dairy Cows

    Science.gov (United States)

    Mamedova, Laman K.; Sordillo, Lorraine M.; Bradford, Barry J.

    2013-01-01

    Inflammation may be a major contributing factor to peripartum metabolic disorders in dairy cattle. We tested whether administering an inflammatory cytokine, recombinant bovine tumor necrosis factor-α (rbTNFα), affects milk production, metabolism, and health during this period. Thirty-three Holstein cows (9 primiparous and 24 multiparous) were randomly assigned to 1 of 3 treatments at parturition. Treatments were 0 (Control), 1.5, or 3.0 µg/kg body weight rbTNFα, which were administered once daily by subcutaneous injection for the first 7 days of lactation. Statistical contrasts were used to evaluate the treatment and dose effects of rbTNFα administration. Plasma TNFα concentrations at 16 h post-administration tended to be increased (P0.10) was detected; rbTNFα treatments increased (P0.10) by rbTNFα administration, but 6 out of 16 measured eicosanoids changed (Pinsulin, β-hydroxybutyrate, non-esterified fatty acids, triglyceride, 3-methylhistidine, and liver triglyceride were unaffected (P>0.10) by rbTNFα treatment. Glucose turnover rate was unaffected (P = 0.18) by rbTNFα administration. The higher dose of rbTNFα tended to increase the risk of cows developing one or more health disorders (P = 0.08). Taken together, these results indicate that administration of rbTNFα daily for the first 7 days of lactation altered inflammatory responses, impaired milk production and health, but did not significantly affect liver triglyceride accumulation or nutrient metabolism in dairy cows. PMID:24260367

  7. Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources.

    Directory of Open Access Journals (Sweden)

    Stéphane Vuilleumier

    Full Text Available Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared.The 6.88 Mb genome of strain AM1 comprises a 5.51 Mb chromosome, a 1.26 Mb megaplasmid and three plasmids, while the 6.12 Mb genome of strain DM4 features a 5.94 Mb chromosome and two plasmids. The chromosomes are highly syntenic and share a large majority of genes, while plasmids are mostly strain-specific, with the exception of a 130 kb region of the strain AM1 megaplasmid which is syntenic to a chromosomal region of strain DM4. Both genomes contain large sets of insertion elements, many of them strain-specific, suggesting an important potential for genomic plasticity. Most of the genomic determinants associated with methylotrophy are nearly identical, with two exceptions that illustrate the metabolic and genomic versatility of Methylobacterium. A 126 kb dichloromethane utilization (dcm gene cluster is essential for the ability of strain DM4 to use DCM as the sole carbon and energy source for growth and is unique to strain DM4. The methylamine utilization (mau gene cluster is only found in strain AM1, indicating that strain DM4 employs an alternative system for growth with methylamine. The dcm and mau clusters represent two of the chromosomal genomic islands (AM1: 28; DM4: 17 that were defined. The mau cluster is flanked by mobile elements, but the dcm cluster disrupts a gene annotated as chelatase and for which we propose the name "island integration determinant" (iid.These two genome sequences provide a platform for intra- and interspecies genomic comparisons in the genus Methylobacterium, and for investigations of the adaptive mechanisms which allow bacterial lineages to acquire

  8. Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism

    Science.gov (United States)

    Anterola, Aldwin M.; Jeon, Jae-Heung; Davin, Laurence B.; Lewis, Norman G.

    2002-01-01

    Transcriptional profiling of the phenylpropanoid pathway in Pinus taeda cell suspension cultures was carried out using quantitative real time PCR analyses of all known genes involved in the biosynthesis of the two monolignols, p-coumaryl and coniferyl alcohols (lignin/lignan precursors). When the cells were transferred to a medium containing 8% sucrose and 20 mm potassium iodide, the monolignol/phenylpropanoid pathway was induced, and transcript levels for phenylalanine ammonia lyase, cinnamate 4-hydroxylase, p-coumarate 3-hydroxylase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase, and cinnamyl alcohol dehydrogenase were coordinately up-regulated. Provision of increasing levels of exogenously supplied Phe to saturating levels (40 mm) to the induction medium resulted in further up-regulation of their transcript levels in the P. taeda cell cultures; this in turn was accompanied by considerable increases in both p-coumaryl and coniferyl alcohol formation and excretion. By contrast, transcript levels for both cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase were only slightly up-regulated. These data, when considered together with metabolic profiling results and genetic manipulation of various plant species, reveal that carbon allocation to the pathway and its differential distribution into the two monolignols is controlled by Phe supply and differential modulation of cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase activities, respectively. The coordinated up-regulation of phenylalanine ammonia lyase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase in the presence of increasing concentrations of Phe also indicates that these steps are not truly rate-limiting, because they are modulated according to metabolic demand. Finally, the transcript profile of a putative acid/ester O-methyltransferase, proposed as an alternative catalyst for O-methylation leading

  9. Temperature Affects the Use of Storage Fatty Acids as Energy Source in a Benthic Copepod (Platychelipus littoralis, Harpacticoida).

    Science.gov (United States)

    Werbrouck, Eva; Van Gansbeke, Dirk; Vanreusel, Ann; De Troch, Marleen

    2016-01-01

    The utilization of storage lipids and their associated fatty acids (FA) is an important means for organisms to cope with periods of food shortage, however, little is known about the dynamics and FA mobilization in benthic copepods (order Harpacticoida). Furthermore, lipid depletion and FA mobilization may depend on the ambient temperature. Therefore, we subjected the temperate copepod Platychelipus littoralis to several intervals (3, 6 and 14 days) of food deprivation, under two temperatures in the range of the normal habitat temperature (4, 15 °C) and under an elevated temperature (24 °C), and studied the changes in FA composition of storage and membrane lipids. Although bulk depletion of storage FA occurred after a few days of food deprivation under 4 °C and 15 °C, copepod survival remained high during the experiment, suggesting the catabolization of other energy sources. Ambient temperature affected both the degree of FA depletion and the FA mobilization. In particular, storage FA were more exhausted and FA mobilization was more selective under 15 °C compared with 4 °C. In contrast, depletion of storage FA was limited under an elevated temperature, potentially due to a switch to partial anaerobiosis. Food deprivation induced selective DHA retention in the copepod's membrane, under all temperatures. However, prolonged exposure to heat and nutritional stress eventually depleted DHA in the membranes, and potentially induced high copepod mortality. Storage lipids clearly played an important role in the short-term response of the copepod P. littoralis to food deprivation. However, under elevated temperature, the use of storage FA as an energy source is compromised.

  10. Weight loss on stimulant medication: how does it affect body composition and bone metabolism? – A prospective longitudinal study

    Directory of Open Access Journals (Sweden)

    Poulton Alison

    2012-12-01

    Full Text Available Abstract Objective Children treated with stimulant medication for attention deficit hyperactivity disorder (ADHD often lose weight. It is important to understand the implications of this during growth. This prospective study was designed to quantify the changes in body composition and markers of bone metabolism on starting treatment. Methods 34 children (29 boys aged 4.7 to 9.1 years newly diagnosed with ADHD were treated with dexamphetamine or methylphenidate, titrating the dose to optimise the therapeutic response. Medication was continued for as long as clinically indicated. Body composition and bone density (dual-energy X-ray absorptiometry were measured at baseline, 6 months and 3 years; changes were analysed in Z-scores based on data from 241 healthy, local children. Markers of bone turnover were measured at baseline, 3 months and 3 years. Results Fat loss of 1.4±0.96kg (total fat 5.7±3.6 to 4.3±3.1kg, p Conclusions Stimulant medication was associated with early fat loss and reduced bone turnover. Lean tissue including bone increased more slowly over 3 years of continuous treatment than would be expected for growth in height. There was long-term improvement in the proportion of central fat for height. This study shows that relatively minor reductions in weight on stimulant medication can be associated with long-term changes in body composition. Further study is required to determine the effects of these changes on adult health.

  11. Altitude, pasture type, and sheep breed affect bone metabolism and serum 25-hydroxyvitamin D in grazing lambs.

    Science.gov (United States)

    Willems, Helen; Leiber, Florian; Kohler, Martina; Kreuzer, Michael; Liesegang, Annette

    2013-05-15

    This study aimed to investigate the bone development of two mountain sheep breeds during natural summer grazing either in the lowlands or on different characteristic alpine pastures. Pasture types differed in topographic slope, plant species composition, general nutritional feeding value, Ca and P content, and Ca:P ratio of herbage. Twenty-seven Engadine sheep (ES) lambs and 27 Valaisian Black Nose sheep (VS) lambs were divided into four groups of 6 to 7 animals per breed and allocated to three contrasting alpine pasture types and one lowland pasture type. The lambs were slaughtered after 9 wk of experimental grazing. The steep alpine pastures in combination with a high (4.8) to very high (13.6) Ca:P ratio in the forage decreased total bone mineral content as measured in the middle of the left metatarsus of the lambs from both breeds, and cortical bone mineral content and cortical bone mineral density of ES lambs. Breed × pasture type interactions occurred in the development of total and cortical bone mineral content, and in cortical thickness, indicating that bone metabolism of different genotypes obviously profited differently from the varying conditions. An altitude effect occurred for 25-hydroxyvitamin D with notably higher serum concentrations on the three alpine sites, and a breed effect led to higher concentrations for ES than VS. Despite a high variance, there were pasture-type effects on serum markers of bone formation and resorption.

  12. Chronic Electromagnetic Exposure at Occupational Safety Level Does Not Affect the Metabolic Profile nor Cornea Healing after LASIK Surgery

    Directory of Open Access Journals (Sweden)

    David Crouzier

    2014-01-01

    Full Text Available LASIK eye surgery has become a very common practice for myopic people, especially those in the military. Sometimes undertaken by people who need to keep a specific medical aptitude, this surgery could be performed in secret from the hierarchy and from the institute medical staff. However, even though the eyes have been previously described as one of the most sensitive organs to electromagnetic fields in the human body, no data exist on the potential deleterious effects of electromagnetic fields on the healing eye. The consequences of chronic long-lasting radar exposures at power density, in accordance with the occupational safety standards (9.71 GHz, 50 W/m2, were investigated on cornea healing. The metabolic and clinical statuses after experimental LASIK keratotomy were assessed on the different eye segments in a New Zealand rabbit model. The analysis methods were performed after 5 months of exposure (1 hour/day, 3 times/week. Neither clinical or histological examinations, nor experimental data, such as light scattering, 1H-NMR HRMAS metabolomics, 13C-NMR spectra of lipidic extracts, and antioxidant status, evidenced significant modifications. It was concluded that withdrawing the medical aptitude of people working in electromagnetic field environments (i.e., radar operators in the navy after eye surgery was not justified.

  13. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available The mitochondrial phosphate transporter (MPT plays crucial roles in ATP production in plant cells. Three MPT genes have been identified in Arabidopsis thaliana. Here we report that the mRNA accumulations of AtMPTs were up-regulated by high salinity stress in A. thaliana seedlings. And the transgenic lines overexpressing AtMPTs displayed increased sensitivity to salt stress compared with the wild-type plants during seed germination and seedling establishment stages. ATP content and energy charge was higher in overexpressing plants than those in wild-type A. thaliana under salt stress. Accordingly, the salt-sensitive phenotype of overexpressing plants was recovered after the exogenous application of atractyloside due to the change of ATP content. Interestingly, Genevestigator survey and qRT-PCR analysis indicated a large number of genes, including those related to gibberellin synthesis could be regulated by the energy availability change under stress conditions in A. thaliana. Moreover, the exogenous application of uniconazole to overexpressing lines showed that gibberellin homeostasis was disturbed in the overexpressors. Our studies reveal a possible link between the ATP content mediated by AtMPTs and gibberellin metabolism in responses to high salinity stress in A. thaliana.

  14. Vitex agnus-castus essential oil affects thyroid C cells and bone metabolism in middle-aged male rats

    Directory of Open Access Journals (Sweden)

    Pantelić Jasmina

    2013-01-01

    Full Text Available Ageing in men is accompanied by an increased occurrence of osteoporosis, but traditional hormonal replacement therapy elevates the risk of developing endocrine cancer. Vitex agnus-castus L. (Vac essential oil is commonly used as an alternative therapy for ageing symptoms in both men and women. It is known that calcitonin (CT, thyroid C cell hormone, inhibits bone resorption. The purpose of this experimental study was to investigate the influence of Vac essential oil administration on the immunohistomorphometric features of thyroid C cells and bone metabolism in 16-month-old male Wistar rats. The first group of animals (n=8 was treated subcutaneously (s.c. with 60 mg/kg of Vac essential oil once a day for 3 weeks. Control animals (n=8 received sterile olive oil s.c. by the same schedule. After Vac treatment significant increases (p<0.05 were found in the volume of C cells (by 10% and serum CT level (by 27% compared with the controls. Serum osteocalcin (OC and calcium (Ca2+ levels were 31% and 8% lower (p<0.05 respectively, in comparison with the control group. These are the first experimental results suggesting that Vac essential oil stimulates thyroid C cells activity and decreases bone turnover in middle-aged male rats. [Projekat Ministarstva nauke Republike Srbije, br. 173009

  15. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    Science.gov (United States)

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Breeding status affects the hormonal and metabolic response to acute stress in a long-lived seabird, the king penguin.

    Science.gov (United States)

    Viblanc, Vincent A; Gineste, Benoit; Robin, Jean-Patrice; Groscolas, René

    2016-09-15

    Stress responses are suggested to physiologically underlie parental decisions promoting the redirection of behaviour away from offspring care when survival is jeopardized (e.g., when facing a predator). Besides this classical view, the "brood-value hypothesis" suggests that parents' stress responses may be adaptively attenuated to increase fitness, ensuring continued breeding when the relative value of the brood is high. Here, we test the brood-value hypothesis in breeding king penguins (Aptenodytes patagonicus), long-lived seabirds for which the energy commitment to reproduction is high. We subjected birds at different breeding stages (courtship, incubation and chick brooding) to an acute 30-min capture stress and measured their hormonal (corticosterone, CORT) and metabolic (non-esterified fatty acid, NEFA) responses to stress. We found that CORT responses were markedly attenuated in chick-brooding birds when compared to earlier stages of breeding (courtship and incubation). In addition, NEFA responses appeared to be rapidly attenuated in incubating and brooding birds, but a progressive increase in NEFA plasma levels in courting birds suggested energy mobilization to deal with the threat. Our results support the idea that stress responses may constitute an important life-history mechanism mediating parental reproductive decisions in relation to their expected fitness outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. AICAR administration affects glucose metabolism by upregulating the novel glucose transporter, GLUT8, in equine skeletal muscle.

    Science.gov (United States)

    de Laat, M A; Robinson, M A; Gruntmeir, K J; Liu, Y; Soma, L R; Lacombe, V A

    2015-09-01

    Equine metabolic syndrome is characterized by obesity and insulin resistance (IR). Currently, there is no effective pharmacological treatment for this insidious disease. Glucose uptake is mediated by a family of glucose transporters (GLUT), and is regulated by insulin-dependent and -independent pathways, including 5-AMP-activated protein kinase (AMPK). Importantly, the activation of AMPK, by 5-aminoimidazole-4-carboxamide-1-D-ribofuranoside (AICAR) stimulates glucose uptake in both healthy and diabetic humans. However, whether AICAR promotes glucose uptake in horses has not been established. It is hypothesized that AICAR administration would enhance glucose transport in equine skeletal muscle through AMPK activation. In this study, the effect of an intravenous AICAR infusion on blood glucose and insulin concentrations, as well as on GLUT expression and AMPK activation in equine skeletal muscle (quantified by Western blotting) was examined. Upon administration, plasma AICAR rapidly reached peak concentration. Treatment with AICAR resulted in a decrease (P change in lactate concentration. The ratio of phosphorylated to total AMPK was increased (P managing IR requires investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    Science.gov (United States)

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  19. Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration.

    Science.gov (United States)

    Vivancos, Pedro Diaz; Driscoll, Simon P; Bulman, Christopher A; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H

    2011-09-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.

  20. Obesity-metabolic derangement exacerbates cardiomyocyte loss distal to moderate coronary artery stenosis in pigs without affecting global cardiac function.

    Science.gov (United States)

    Li, Zi-Lun; Ebrahimi, Behzad; Zhang, Xin; Eirin, Alfonso; Woollard, John R; Tang, Hui; Lerman, Amir; Wang, Shen-Ming; Lerman, Lilach O

    2014-04-01

    Obesity associated with metabolic derangements (ObM) worsens the prognosis of patients with coronary artery stenosis (CAS), but the underlying cardiac pathophysiologic mechanisms remain elusive. We tested the hypothesis that ObM exacerbates cardiomyocyte loss distal to moderate CAS. Obesity-prone pigs were randomized to four groups (n = 6 each): lean-sham, ObM-sham, lean-CAS, and ObM-CAS. Lean and ObM pigs were maintained on a 12-wk standard or atherogenic diet, respectively, and left circumflex CAS was then induced by placing local-irritant coils. Cardiac structure, function, and myocardial oxygenation were assessed 4 wk later by computed-tomography and blood oxygenation level dependent (BOLD) MRI, the microcirculation with micro-computed-tomography, and injury mechanisms by immunoblotting and histology. ObM pigs showed obesity, dyslipidemia, and insulin resistance. The degree of CAS (range, 50-70%) was similar in lean and ObM pigs, and resting myocardial perfusion and global cardiac function remained unchanged. Increased angiogenesis distal to the moderate CAS observed in lean was attenuated in ObM pigs, which also showed microvascular dysfunction and increased inflammation (M1-macrophages, TNF-α expression), oxidative stress (gp91), hypoxia (BOLD-MRI), and fibrosis (Sirius-red and trichrome). Furthermore, lean-CAS showed increased myocardial autophagy, which was blunted in ObM pigs (downregulated expression of unc-51-like kinase-1 and autophagy-related gene-12; P < 0.05 vs. lean CAS) and associated with marked apoptosis. The interaction diet xstenosis synergistically inhibited angiogenic, autophagic, and fibrogenic activities. ObM exacerbates structural and functional myocardial injury distal to moderate CAS with preserved myocardial perfusion, possibly due to impaired cardiomyocyte turnover.

  1. Water requirements and metabolism of Egyptian sheep and goats as affected by breed, season and physiological status

    International Nuclear Information System (INIS)

    Hassan, G.A.; El-Nouty, F.D.; Salem, M.H.; Latif, M.G.; Badawy, A.M.

    1988-01-01

    Water requirements and metabolism and some physiological and blood characteristics were studied in dry non-pregnant Barki and Rahmani ewes and in Baladi goats during spring, summer and winter seasons. The Rahmani sheep showed greater thermal discomfort than the Barki during the summer season. Pregnancy was associated with a significant increase in body weight and a decline in PCV and total serum protein, and these changes were greater in goats than in sheep. They were accompanied by significant increases in TBW and WTR. All these changes were more pronounced during late pregnancy than during mid-pregnancy, although the effect of stage of pregnancy on TBW did not occur in the Barki ewes. The pregnancy induced changes in total protein and WTR were greater in spring, while those in TBW were greater in winter. The above parameters also showed similar changes during lactation (particularly during early lactation), but lactating animals showed a decrease instead of an increase in body weight. Goats showed greater reductions in body weight, PCV and water t 1/2 and greater increases in WTR than sheep during the spring season. Withdrawal of drinking water for four days caused a reduction in body weight, blood glucose and plasma T 3 and T 4 , and an increase in PCV, total serum protein and plasma osmolality. Plasma aldosterone increased slightly during dehydration but increased markedly during the rehydration period, particularly in the Rahmani sheep during the summer season. The above parameters changed similarly when the animals were starved for four days (feed but not water was withheld), but total serum protein showed a decrease instead of an increase. Changes during dehydration were more pronounced in summer, while those during starvation were greater in winter. 32 refs, 4 figs, 2 tabs

  2. Whole grain wheat sourdough bread does not affect plasminogen activator inhibitor-1 in adults with normal or impaired carbohydrate metabolism.

    Science.gov (United States)

    MacKay, K A; Tucker, A J; Duncan, A M; Graham, T E; Robinson, L E

    2012-09-01

    Epidemiological studies suggest whole grain consumption is associated with a reduced risk of cardiovascular disease (CVD), possibly through alterations in glucose metabolism and subsequent effects on plasminogen activator inhibitor (PAI)-1, a novel biomarker for CVD. Our aim was to investigate the effect of 6 wk of whole grain wheat sourdough bread consumption versus refined white bread on PAI-1. Normoglycemic/normoinsulinemic (NGI; n = 14; age 53 ± 6 y; BMI 26.5 ± 2.9 kg/m(2)) and hyperglycemic/hyperinsulinemic (HGI; n = 14; age 57 ± 7 y; BMI 35.7 ± 5.7 kg/m(2)) adults incorporated whole grain wheat sourdough (162.5 g) or white (168.8 g) bread into their diet, for 6 wk in a randomized crossover study. Pre- and post-intervention, fasting blood samples were analyzed for PAI-1 (primary outcome), as well as glucose, insulin and glucagon (secondary outcomes) at fasting and postprandially after an oral glucose tolerance test (OGTT). Anthropometric measures, fasting glucose, insulin, glucagon and PAI-1 antigen and activity were not different between treatments in either NGI or HGI adults. Glucose incremental area under the curve (iAUC) was lower (19%, P = 0.02) after 6 wk consumption of whole grain wheat sourdough bread compared to white bread in the HGI group, with no differences in insulin or glucagon iAUC in either group. Our data showed decreased glucose iAUC after an OGTT following 6 wk whole grain wheat bread consumption in adults with differing glycemic/insulinemic status, but no improvements in PAI-1 or fasting glycemic parameters. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Simultaneous intake of beta-glucan and plant stanol esters affects lipid metabolism in slightly hypercholesterolemic subjects.

    Science.gov (United States)

    Theuwissen, Elke; Mensink, Ronald P

    2007-03-01

    Intake of food products rich in water-soluble fiber beta-glucan and products enriched with plant stanol esters lower serum cholesterol. Combining 2 functional food ingredients into one food product may achieve additional reductions of serum cholesterol. Our objective was to investigate the effects of a simultaneous intake of beta-glucan plus plant stanol esters on lipid metabolism in mildly hypercholesterolemic volunteers. In a randomized, controlled, 3-period crossover study, 40 mildly hypercholesterolemic men and women received muesli in random order twice a day for 4 wk, which provided, in total, 5 g control fiber from wheat (control muesli), 5 g oat beta-glucan (beta-glucan muesli), or 5 g oat beta-glucan plus 1.5 g plant stanols (combination muesli). beta-Glucan muesli decreased serum LDL cholesterol by 5.0% compared with control muesli (P = 0.013). Combination muesli reduced LDL cholesterol by 9.6% compared with control muesli (P < 0.001), and by 4.4% compared with beta-glucan muesli (P = 0.036). Serum HDL cholesterol and triacylglycerol concentrations did not differ after the 3 treatments. Compared with control muesli, beta-glucan muesli increased bile acid synthesis (P = 0.043) and decreased cholesterol absorption (P = 0.011). Addition of plant stanols did not influence bile acid synthesis but decreased cholesterol absorption (P < 0.001) and raised cholesterol synthesis (P = 0.016) compared with control muesli, and the plant stanols decreased cholesterol absorption compared with beta-glucan muesli (P = 0.004). The combination muesli decreased serum concentrations of sitostanol compared with control muesli (P = 0.010). Plasma concentrations of lipid-soluble antioxidants did not differ after the 3 treatments. beta-Glucan muesli effectively lowered serum LDL cholesterol concentrations. The addition of plant stanol esters to beta-glucan-enriched muesli further lowered serum LDL cholesterol, although effects were slightly less than predicted.

  4. Morphology, chemistry and distribution of neoformed spherulites in agricultural land affected by metallurgical point-source pollution

    Energy Technology Data Exchange (ETDEWEB)

    Leguedois, Sophie; Oort, Folkert van; Jongmans, Toine; Chevallier, Pierre

    2004-07-01

    Metal distribution patterns in superficial soil horizons of agricultural land affected by metallurgical point-source pollution were studied using optical and electron microscopy, synchrotron radiation and spectroscopy analyses. The site is located in northern France, at the center of a former entry lane to a bunker of World War II, temporarily paved with coarse industrial waste fragments and removed at the end of the war. Thin sections made from undisturbed soil samples from A and B horizons were studied. Optical microscopy revealed the occurrence of yellow micrometer-sized (Ap horizon) and red decamicrometer-sized spherulites (AB, B{sub 1}g horizons) as well as distinct distribution patterns. The chemical composition of the spherulites was dominated by Fe, Mn, Zn, Pb, Ca, and P. Comparison of calculated Zn stocks, both in the groundmass and in spherulites, showed a quasi-exclusive Zn accumulation in these neoformed features. Their formation was related to several factors: (i) liberation of metal elements due to weathering of waste products, (ii) Ca and P supply from fertilizing practices, (iii) co-precipitation of metal elements and Ca and P in a porous soil environment, after slow exudation of a supersaturated soil solution in more confined mineral media. - Metal spherulites may act as high metal-trapping mineral phases in polluted agricultural soils.

  5. A Lagrangian identification of the main sources of moisture affecting northeastern Brazil during its pre-rainy and rainy seasons.

    Directory of Open Access Journals (Sweden)

    Anita Drumond

    Full Text Available This work examines the sources of moisture affecting the semi-arid Brazilian Northeast (NEB during its pre-rainy and rainy season (JFMAM through a Lagrangian diagnosis method. The FLEXPART model identifies the humidity contributions to the moisture budget over a region through the continuous computation of changes in the specific humidity along back or forward trajectories up to 10 days period. The numerical experiments were done for the period that spans between 2000 and 2004 and results were aggregated on a monthly basis. Results show that besides a minor local recycling component, the vast majority of moisture reaching NEB area is originated in the south Atlantic basin and that the nearby wet Amazon basin bears almost no impact. Moreover, although the maximum precipitation in the "Poligono das Secas" region (PS occurs in March and the maximum precipitation associated with air parcels emanating from the South Atlantic towards PS is observed along January to March, the highest moisture contribution from this oceanic region occurs slightly later (April. A dynamical analysis suggests that the maximum precipitation observed in the PS sector does not coincide with the maximum moisture supply probably due to the combined effect of the Walker and Hadley cells in inhibiting the rising motions over the region in the months following April.

  6. The intramolecular position of docosahexaenoic acid in the triacylglycerol sources used for pediatric nutrition has a minimal effect on its metabolic use.

    Science.gov (United States)

    Sala-Vila, Aleix; Castellote, Ana I; López-Sabater, M Carmen

    2008-03-01

    Docosahexaenoic acid (DHA) plays an important role in normal development of the brain and retina in the human. In utero, DHA is incorporated in the fetus, and its accretion continues throughout early postnatal life. Although human breast milk contains this fatty acid, several organizations recommend supplementing infant formulas with DHA for infants and premature infants. Traditionally, certain types of fish oil have been used for fortifying some infant formulas, but with the decline in world fisheries, the search for alternative sources of DHA continues. Among the viable ingredient sources of DHA is oil derived from single-cell organisms (marine microorganisms); however, these oil sources display different positional specificity of DHA in the glycerol lipids compared with that found in human breast milk lipids. In the latter, the DHA is mainly esterified in the central position of the glycerol backbone. Because of these differences in human milk and oils derived from single-cell organisms, recent research in biotechnology has focused on developing new structured triacylglycerols with an intramolecular structure resembling that found in human milk lipids. This research is justified by the potential differences in metabolism of DHA based on the hypothetical bioavailability and benefits in DHA found in human milk lipids. Presented herein is a review of the published research on the metabolism of DHA from different triacylglycerol sources including in vitro studies and animal studies. Despite small differences observed in digestion, the current data reveal a minimal effect on the parameters of development studied for the intramolecular position in which DHA is esterified.

  7. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.

    Science.gov (United States)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian; Wagtberg Sen, Jette; Rasmussen, Søren Kofoed; Kontoravdi, Cleo; Weilguny, Dietmar; Andersen, Mikael Rørdam

    2015-03-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylation-related product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4(+) and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase (GnTI) and UDP-GlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans

  8. Polymorphisms in metabolism and repair genes affects DNA damage caused by open-cast coal mining exposure.

    Science.gov (United States)

    Espitia-Pérez, Lyda; Sosa, Milton Quintana; Salcedo-Arteaga, Shirley; León-Mejía, Grethel; Hoyos-Giraldo, Luz Stella; Brango, Hugo; Kvitko, Katia; da Silva, Juliana; Henriques, João A P

    2016-09-15

    Increasing evidence suggest that occupational exposure to open-cast coal mining residues like dust particles, heavy metals and Polycyclic Aromatic Hydrocarbons (PAHs) may cause a wide range of DNA damage and genomic instability that could be associated to initial steps in cancer development and other work-related diseases. The aim of our study was to evaluate if key polymorphisms in metabolism genes CYP1A1Msp1, GSTM1Null, GSTT1Null and DNA repair genes XRCC1Arg194Trp and hOGG1Ser326Cys could modify individual susceptibility to adverse coal exposure effects, considering the DNA damage (Comet assay) and micronucleus formation in lymphocytes (CBMN) and buccal mucosa cells (BMNCyt) as endpoints for genotoxicity. The study population is comprised of 200 healthy male subjects, 100 open-cast coal-mining workers from "El Cerrejón" (world's largest open-cast coal mine located in Guajira - Colombia) and 100 non-exposed referents from general population. The data revealed a significant increase of CBMN frequency in peripheral lymphocytes of occupationally exposed workers carrying the wild-type variant of GSTT1 (+) gene. Exposed subjects carrying GSTT1null polymorphism showed a lower micronucleus frequency compared with their positive counterparts (FR: 0.83; P=0.04), while BMNCyt, frequency and Comet assay parameters in lymphocytes: Damage Index (DI) and percentage of DNA in the tail (Tail % DNA) were significantly higher in exposed workers with the GSTM1Null polymorphism. Other exfoliated buccal mucosa abnormalities related to cell death (Karyorrhexis and Karyolysis) were increased in GSTT/M1Null carriers. Nuclear buds were significantly higher in workers carrying the CYP1A1Msp1 (m1/m2, m2/m2) allele. Moreover, BMNCyt frequency and Comet assay parameters were significantly lower in exposed carriers of XRCC1Arg194Trp (Arg/Trp, Trp/Trp) and hOGG1Ser326Cys (Ser/Cys, Cys/Cys), thereby providing new data to the increasing evidence about the protective role of these polymorphisms

  9. Evaluation of ovarian function and metabolic factors in women affected by polycystic ovary syndrome after treatment with D-Chiro-Inositol.

    Science.gov (United States)

    Laganà, Antonio Simone; Barbaro, Luisa; Pizzo, Alfonsa

    2015-05-01

    To evaluate the effects of D-Chiro-Inositol in women affected by polycystic ovary syndrome (PCOS). We enrolled 48 patients, with homogeneous bio-physical characteristics, affected by PCOS and menstrual irregularities. These patients underwent treatment with 1 gr of D-Chiro-Inositol/die plus 400 mcg of Folic Acid/die orally for 6 months. We analyzed pre-treatment and post-treatment BMI, Systolic and Diastolic blood pressure, Ferriman-Gallwey score, Cremoncini score, serum LH, LH/FSH ratio, total and free testosterone, DHEA-S, Δ-4-androstenedione, SHBG, prolactin, glucose/IRI ratio, HOMA index, and resumption of regular menstrual cycles. We evidenced a statistically significant reduction of systolic blood pressure, Ferriman-Gallwey score, LH, LH/FSH ratio, total Testosterone, free Testosterone, ∆-4-Androstenedione, Prolactin, and HOMA Index; in the same patients, we noticed a statistically significant increase of SHBG and Glycemia/IRI ratio. Moreover, we observed statistically significant (62.5%; p treatment menstrual cycle regularization. D-Chiro-Inositol is effective in improving ovarian function and metabolism of patients affected by PCOS.

  10. Does feed restriction and re-alimentation differently affect lipid content and metabolism according to muscle type in pigs (Sus scrofa)?

    Science.gov (United States)

    Gondret, Florence; Lebret, Bénédicte

    2007-06-01

    This study aimed to investigate whether feed restriction and re-alimentation differently affect lipid content and activities of lipogenic or catabolic enzymes according to muscle types in pigs. At around 28 kg body mass (BW), sixty pigs (n=30 per group) were allocated to either ad libitum (AL) or restricted/re-feeding (RA) regimens. After feed restriction (80 kg BW), lipid content was reduced (P<0.01) in the oxidative rhomboideus (RH) as in the glycolytic biceps femoris (BF) muscles of RA pigs compared with AL pigs. Lower activities (P<0.05) of the lipogenic enzymes fatty acid synthase (FAS) and malic enzyme (ME) were observed in the RH but not in the BF of RA vs. AL pigs. After re-feeding (110 kg BW), lipid content was restored in the RH, but was still 12% lower (P<0.05) in the BF of RA compared with AL pigs. In the RH, the trend for an enhanced FAS activity and for a smaller weight-related decrease of ME activity in RA pigs than AL pigs during re-feeding, may have contributed to the muscle fat recovery observed in the RA pigs. In the BF, higher oxidative enzyme activities (P<0.10) in RA pigs compared to AL pigs might explain the incomplete lipid recovery observed after re-feeding in the former animals. In conclusion, metabolic activities in response to restriction and re-feeding differed according to muscle metabolic type.

  11. Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA metabolism in skeletal muscle at birth

    Directory of Open Access Journals (Sweden)

    Puglianiello Antonella

    2008-05-01

    Full Text Available Abstract Background Epidemiological studies have revealed a relationship between early growth restriction and the subsequent development of insulin resistance and type 2 diabetes. Ligation of the uterine arteries in rats mimics uteroplacental insufficiency and serves as a model of intrauterine growth restriction (IUGR and subsequent developmental programming of impaired glucose tolerance, hyperinsulinemia and adiposity in the offspring. The objective of this study was to investigate the effects of uterine artery ligation on the skeletal muscle expression of insulin receptor and key enzymes of LCFA metabolism. Methods Bilateral uterine artery ligation was performed on day 19 of gestation in Sprague-Dawley pregnant rats. Muscle of the posterior limb was dissected at birth and processed by real-time RT-PCR to analyze the expression of insulin receptor, ACCα, ACCβ (acetyl-CoA carboxylase alpha and beta subunits, ACS (acyl-CoA synthase, AMPK (AMP-activated protein kinase, alpha2 catalytic subunit, CPT1B (carnitine palmitoyltransferase-1 beta subunit, MCD (malonyl-CoA decarboxylase in 14 sham and 8 IUGR pups. Muscle tissue was treated with lysis buffer and Western immunoblotting was performed to assay the protein content of insulin receptor and ACC. Results A significant down regulation of insulin receptor protein (p Conclusion Our data suggest that uteroplacental insufficiency may affect skeletal muscle metabolism down regulating insulin receptor and reducing the expression of key enzymes involved in LCFA formation and oxidation.

  12. Compared with Powdered Lutein, a Lutein Nanoemulsion Increases Plasma and Liver Lutein, Protects against Hepatic Steatosis, and Affects Lipoprotein Metabolism in Guinea Pigs.

    Science.gov (United States)

    Murillo, Ana Gabriela; Aguilar, David; Norris, Gregory H; DiMarco, Diana M; Missimer, Amanda; Hu, Siqi; Smyth, Joan A; Gannon, Sarah; Blesso, Christopher N; Luo, Yangchao; Fernandez, Maria Luz

    2016-10-01

    It is not clear how oil-in-water nanoemulsions of lutein may affect bioavailability and consequently alter lipoprotein metabolism, oxidative stress, and inflammation. The bioavailability as well as effects of a powdered lutein (PL) and an oil-in-water lutein nanoemulsion (NANO; particle size: 254.2 nm; polydispersity index: 0.29; and ζ-potential: -65 mV) on metabolic variables in liver, plasma, and adipose tissue in a guinea pig model of hepatic steatosis were evaluated. Twenty-four 2-mo-old male Hartley guinea pigs, weighing 200-300 g (n = 8/group), were fed diets containing 0.25 g cholesterol/100 g to induce liver injury for the duration of the study. They were allocated to control (0 mg lutein), PL (3.5 mg/d), or NANO (3.5 mg/d) groups. After 6 wk, plasma, liver, and adipose tissue were collected for determination of lutein, plasma lipids, tissue cholesterol, and inflammatory cytokines. The NANO group had 2-fold higher concentrations of lutein in plasma (P guinea pigs. © 2016 American Society for Nutrition.

  13. MiR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells.

    Science.gov (United States)

    Lin, Xian-Zi; Luo, Jun; Zhang, Li-Ping; Wang, Wei; Shi, Heng-Bo; Zhu, Jiang-Jiang

    2013-05-25

    MicroRNAs (miRNAs), a well-defined group of small RNAs containing about 22 nucleotides, participate in various biological metabolic processes. miR-27a is a miRNA that is known to regulate fat synthesis and differentiation in preadipocyte cells. However, little is known regarding the role that miR-27a plays in regulating goat milk fat synthesis. In this study, we determined the miR-27a expression profile in goat mammary gland and found that miR-27a expression was correlated with the lactation cycle. Additionally, prolactin promoted miR-27a expression in goat mammary gland epithelial cells. Further functional analysis showed that over-expression of miR-27a down-regulated triglyceride accumulation and decreased the ratio of unsaturated/saturated fatty acid in mammary gland epithelial cells. miR-27a also significantly affected mRNA expression related to milk fat metabolism. Specifically, over-expression of miR-27a reduced gene mRNA expression associated with triglyceride synthesis by suppressing PPARγ protein levels. This study provides the first experimental evidence that miR-27a regulates triglyceride synthesis in goat mammary gland epithelial cells and improves our understanding about the importance of miRNAs in milk fat synthesis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  14. The effects of various sources of dietary fibre on cholesterol metabolism and colonic function in healthy subjects

    NARCIS (Netherlands)

    Stasse-Wolthuis, M.

    1980-01-01

    This thesis deals with the influence of several types of dietary fibre on cholesterol metabolism and colonic function in young healthy subjects. Dietary fibre has been defined as those plant polysaccharides (cellulose, hemicelluloses, pectic substances) and lignin which are resistant to hydrolysis

  15. Long-Term Intake of a High-Protein Diet Affects Body Phenotype, Metabolism, and Plasma Hormones in Mice.

    Science.gov (United States)

    Vu, John P; Luong, Leon; Parsons, William F; Oh, Suwan; Sanford, Daniel; Gabalski, Arielle; Lighton, John Rb; Pisegna, Joseph R; Germano, Patrizia M

    2017-12-01

    Background: High-protein diets (HPDs) recently have been used to obtain body weight and fat mass loss and expand muscle mass. Several studies have documented that HPDs reduce appetite and food intake. Objective: Our goal was to determine the long-term effects of an HPD on body weight, energy intake and expenditure, and metabolic hormones. Methods: Male C57BL/6 mice (8 wk old) were fed either an HPD (60% of energy as protein) or a control diet (CD; 20% of energy as protein) for 12 wk. Body composition and food intakes were determined, and plasma hormone concentrations were measured in mice after being fed and after overnight feed deprivation at several time points. Results: HPD mice had significantly lower body weight (in means ± SEMs; 25.73 ± 1.49 compared with 32.5 ± 1.31 g; P = 0.003) and fat mass (9.55% ± 1.24% compared with 15.78% ± 2.07%; P = 0.05) during the first 6 wk compared with CD mice, and higher lean mass throughout the study starting at week 2 (85.45% ± 2.25% compared with 75.29% ± 1.90%; P = 0.0001). Energy intake, total energy expenditure, and respiratory quotient were significantly lower in HPD compared with CD mice as shown by cumulative energy intake and eating rate. Water vapor was significantly higher in HPD mice during both dark and light phases. In HPD mice, concentrations of leptin [feed-deprived: 41.31 ± 11.60 compared with 3041 ± 683 pg/mL ( P = 0.0004); postprandial: 112.5 ± 102.0 compared with 8273 ± 1415 pg/mL ( P < 0.0001)] and glucagon-like peptide 1 (GLP-1) [feed-deprived: 5.664 ± 1.44 compared with 21.31 ± 1.26 pg/mL ( P = <0.0001); postprandial: 6.54 ± 2.13 compared with 50.62 ± 11.93 pg/mL ( P = 0.0037)] were significantly lower, whereas postprandial glucagon concentrations were higher than in CD-fed mice. Conclusions: In male mice, the 12-wk HPD resulted in short-term body weight and fat mass loss, but throughout the study preserved body lean mass and significantly reduced energy intake and expenditure as well as

  16. Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata.

    Science.gov (United States)

    Kakimoto, Masayuki; Ishikawa, Toshiki; Miyagi, Atsuko; Saito, Kazuaki; Miyazaki, Motonobu; Asaeda, Takashi; Yamaguchi, Masatoshi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2014-02-15

    A volatile metabolite, 2-methylisoborneol (2-MIB), causes an unpleasant taste and odor in tap water. Some filamentous cyanobacteria produce 2-MIB via a two-step biosynthetic pathway: methylation of geranyl diphosphate (GPP) by methyl transferase (GPPMT), followed by the cyclization of methyl-GPP by monoterpene cyclase (MIBS). We isolated the genes encoding GPPMT and MIBS from Pseudanabaena galeata, a filamentous cyanobacterium known to be a major causal organism of 2-MIB production in Japanese lakes. The predicted amino acid sequence showed high similarity with that of Pseudanabaena limnetica (96% identity in GPPMT and 97% identity in MIBS). P. galeata was cultured at different temperatures to examine the effect of growth conditions on the production of 2-MIB and major metabolites. Gas chromatograph-mass spectrometry (GC-MS) measurements showed higher accumulation of 2-MIB at 30 °C than at 4 °C or 20 °C after 24 h of culture. Real-time-RT PCR analysis showed that the expression levels of the genes encoding GPPMT and MIBS decreased at 4 °C and increased at 30 °C, compared with at 20 °C. Furthermore, metabolite analysis showed dramatic changes in primary metabolite concentrations in cyanobacteria grown at different temperatures. The data indicate that changes in carbon flow in the TCA cycle affect 2-MIB biosynthesis at higher temperatures. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Cold exposure affects carbohydrates and lipid metabolism, and induces Hog1p phosphorylation in Dekkera bruxellensis strain CBS 2499.

    Science.gov (United States)

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Zambelli, Paolo; Simonetti, Paolo; Foschino, Roberto; Compagno, Concetta

    2015-05-01

    Dekkera bruxellensis is a yeast known to affect the quality of wine and beer. This species, due to its high ethanol and acid tolerance, has been reported also to compete with Saccharomyces cerevisiae in distilleries producing fuel ethanol. In order to understand how this species responds when exposed to low temperatures, some mechanisms like synthesis and accumulation of intracellular metabolites, changes in lipid composition and activation of the HOG-MAPK pathway were investigated in the genome sequenced strain CBS 2499. We show that cold stress caused intracellular accumulation of glycogen, but did not induce accumulation of trehalose and glycerol. The cellular fatty acid composition changed after the temperature downshift, and a significant increase of palmitoleic acid was observed. RT-PCR analysis revealed that OLE1 encoding for Δ9-fatty acid desaturase was up-regulated, whereas TPS1 and INO1 didn't show changes in their expression. In D. bruxellensis Hog1p was activated by phosphorylation, as described in S. cerevisiae, highlighting a conserved role of the HOG-MAP kinase signaling pathway in cold stress response.

  18. Quantitative amd Qualitative Sources of Affect: How Unexpectedness and Valence Relate to Pleasantness and Preference. Technical Report No. 293.

    Science.gov (United States)

    Iran-Nejad, Asghar; Ortony, Andrew

    Optimal-level theories maintain that the quality of affect is a function of a quantitative arousal potential dimension. An alternative view is that the quantitative dimension merely modulates preexisting qualitative properties and is therefore only responsible for changes in the degree of affect. Thus, the quality of affect, whether it is positive…

  19. Impact of Hypoglycemia on Brain Metabolism During Diabetes.

    Science.gov (United States)

    Rehni, Ashish K; Dave, Kunjan R

    2018-04-10

    Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.

  20. Different sources of omega-3 polyunsaturated fatty acids affects apparent digestibility, tissue deposition, and tissue oxidative stability in growing female rats

    Directory of Open Access Journals (Sweden)

    Benedito Vagner A

    2011-10-01

    Full Text Available Abstract Background Numerous health benefits associated with increased omega-3 polyunsaturated fatty acid (n-3 PUFA consumption has lead to an increasing variety of available n-3 PUFA sources. However, sources differ in the type, amount, and structural form of the n-3 PUFAs. Therefore, the objective of this study was to determine the effect of different sources of ω-3 PUFAs on digestibility, tissue deposition, eicosanoid metabolism, and oxidative stability. Methods Female Sprague-Dawley rats (age 28 d were randomly assigned (n = 10/group to be fed a high fat 12% (wt diet consisting of either corn oil (CO or n-3 PUFA rich flaxseed (FO, krill (KO, menhaden (MO, salmon (SO or tuna (TO oil for 8 weeks. Rats were individually housed in metabolic cages to determine fatty acid digestibility. Diet and tissue fatty acid composition was analyzed by gas chromatography and lipid classes using thin layer chromatography. Eicosanoid metabolism was determined by measuring urinary metabolites of 2-series prostaglandins (PGs and thromoboxanes (TXBs using enzyme immunoassays. Oxidative stability was assessed by measuring thiobarbituric acid reactive substances (TBARS and total antioxidant capacity (TAC using colorimetric assays. Gene expression of antioxidant defense enzymes was determined by real time quantitative polymerase chain reaction (RT-qPCR. Results Rats fed KO had significantly lower DHA digestibility and brain DHA incorporation than SO and TO-fed rats. Of the n-3 PUFA sources, rats fed SO and TO had the highest n-3 PUFAs digestibility and in turn, tissue accretion. Higher tissue n-3 LC-PUFAs had no significant effect on 2-series PG and TXB metabolites. Despite higher tissue n-3 LC-PUFA deposition, there was no increase in oxidation susceptibility indicated by no significant increase in TBARS or decrease in TAC and gene expression of antioxidant defense enzymes, in SO or TO-fed rats. Conclusions On the basis that the optimal n-3 PUFA sources should

  1. Stocking density affects the growth performance and metabolism of Amur sturgeon by regulating expression of genes in the GH/IGF axis

    Science.gov (United States)

    Ren, Yuanyuan; Wen, Haishen; Li, Yun; Li, Jifang

    2017-07-01

    The effects of stocking density on the growth and metabolism of Amur sturgeon were assessed. Amur sturgeon were grown for 70 days at three different stocking densities (low stocking density, LSD: 5.5 kg/m3; medium stocking density, MSD: 8.0 kg/m3; and high stocking density, HSD: 11.0 kg/m3), and the biometric index, muscle composition, and serum biochemical parameters were evaluated. In addition, pituitary, liver, and muscle samples were collected for gene cloning and expression analyses. After 70 days of growth, the fish maintained at HSD had significantly lower final body weight and specific growth rate, and a higher feed conversion ratio than those of the fish in the MSD and LSD groups. The HSD group had the lowest lipid and protein concentrations in serum and muscle. The serum cortisol concentration increased significantly in the HSD group, indicating that the stress-response system was activated in these fish. There was no change in the concentration of serum insulin-like growth factor 2 (IGF-2), while the concentrations of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) decreased in the HSD group. The full-length cDNAs of GH and IGF-2 genes (995-bp and 1 207-bp long, respectively), were cloned and analyzed. In the HSD group, the expressions of GH in the pituitary and growth hormone receptor (GHR) and IGF-1 in the liver were down-regulated at the end of the 70-day experiment. In the HSD group, the transcript level of IGF-2 significantly decreased in the liver, but did not change in muscle. Overall, our results indicated that a HSD negatively affects the growth performance and leads to changes in lipid and protein metabolism in Amur sturgeon. The down-regulated expression of genes related to the GH/IGF axis may be responsible for the poor growth performance of Amur sturgeon under crowding stress.

  2. Secondary metabolism and interspecific competition affect accumulation of spontaneous mutants in the GacS-GacA regulatory system in Pseudomonas protegens

    Science.gov (United States)

    Secondary metabolites are synthesized by many microorganisms and provide a fitness benefit in the presence of competitors and predators. Secondary metabolism also can be costly, as it shunts energy and intermediates from primary metabolism. In Pseudomonas spp., secondary metabolism is controlled by ...

  3. Secondary metabolism and interspecific competition affect accumulation of spontaneous mutants in the gacS/gacA regulatory system in Pseudomonas protegens

    NARCIS (Netherlands)

    Yan, Qing; Lopes, Lucas D.; Schaffer, Brenda T.; Kidarsa, Teresa; Vining, Oliver; Philmus, Benjamin; Song, C.; Stockwell, Virginia O.; Raaijmakers, J.M.; McPhail, Kerry L.; Andreote, F.D.; Chang, Jeff H.; Loper, Joyce E.

    2018-01-01

    Secondary metabolites are synthesized by many microorganisms and provide a fitness benefit in the presence of competitors and predators. Secondary metabolism also can be costly, as it shunts energy and intermediates from primary metabolism. In Pseudomonas spp., secondary metabolism is controlled by

  4. [Low-molecular-weight regulators of biogenic polyamine metabolism affect cytokine production and expression of hepatitis С virus proteins in Huh7.5 human hepatocarcinoma cells].

    Science.gov (United States)

    Masalova, O V; Lesnova, E I; Samokhvalov, E I; Permyakova, K Yu; Ivanov, A V; Kochetkov, S N; Kushch, A A

    2017-01-01

    Hepatitis C virus (HCV) induces the expression of the genes of proinflammatory cytokines, the excessive production of which may cause cell death, and contribute to development of liver fibrosis and hepatocarcinoma. The relationship between cytokine production and metabolic disorders in HCV-infected cells remains obscure. The levels of biogenic polyamines, spermine, spermidine, and their precursor putrescine, may be a potential regulator of these processes. The purpose of the present work was to study the effects of the compounds which modulate biogenic polyamines metabolism on cytokine production and HCV proteins expression. Human hepatocarcinoma Huh7.5 cells have been transfected with the plasmids that encode HCV proteins and further incubated with the following low-molecular compounds that affect different stages of polyamine metabolism: (1) difluoromethylornithine (DFMO), the inhibitor of ornithine decarboxylase, the enzyme that catalyzes the biosynthesis of polyamines; (2) N,N'-bis(2,3-butane dienyl)-1,4-diaminobutane (MDL72.527), the inhibitor of proteins involved in polyamine degradation; and (3) synthetic polyamine analog N^(I),N^(II)-diethylnorspermine (DENSpm), an inducer of polyamine degradation enzyme. The intracellular accumulation and secretion of cytokines (IL-6, IL-1β, TNF-α, and TGF-β) was assessed by immunocytochemistry and in the immunoenzyme assay, while the cytokine gene expression was studied using reverse transcription and PCR. The effects of the compounds under analysis on the expression of HCV proteins were analyzed using the indirect immunofluorescence with anti-HCV monoclonal antibodies. It has been demonstrated that, in cells transfected with HCV genes, DFMO reduces the production of three out of four tested cytokines, namely, TNF-α and TGF-β in cells that express HCV core, Е1Е2, NS3, NS5A, and NS5B proteins, and IL-1β in the cells that express HCV core, Е1Е2, and NS3 proteins. MDL72527 and DENSpm decreased cytokine production

  5. 40 CFR Table 9 to Subpart Xxxx of... - Minimum Data for Continuous Compliance With the Emission Limits for Tire Production Affected Sources

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Minimum Data for Continuous Compliance With the Emission Limits for Tire Production Affected Sources 9 Table 9 to Subpart XXXX of Part 63... Hazardous Air Pollutants: Rubber Tire Manufacturing Pt. 63, Subpt. XXXX, Table 9 Table 9 to Subpart XXXX of...

  6. [Metabolic acidosis].

    Science.gov (United States)

    Regolisti, Giuseppe; Fani, Filippo; Antoniotti, Riccardo; Castellano, Giuseppe; Cremaschi, Elena; Greco, Paolo; Parenti, Elisabetta; Morabito, Santo; Sabatino, Alice; Fiaccadori, Enrico

    2016-01-01

    Metabolic acidosis is frequently observed in clinical practice, especially among critically ill patients and/or in the course of renal failure. Complex mechanisms are involved, in most cases identifiable by medical history, pathophysiology-based diagnostic reasoning and measure of some key acid-base parameters that are easily available or calculable. On this basis the bedside differential diagnosis of metabolic acidosis should be started from the identification of the two main subtypes of metabolic acidosis: the high anion gap metabolic acidosis and the normal anion gap (or hyperchloremic) metabolic acidosis. Metabolic acidosis, especially in its acute forms with elevated anion gap such as is the case of lactic acidosis, diabetic and acute intoxications, may significantly affect metabolic body homeostasis and patients hemodynamic status, setting the stage for true medical emergencies. The therapeutic approach should be first aimed at early correction of concurrent clinical problems (e.g. fluids and hemodynamic optimization in case of shock, mechanical ventilation in case of concomitant respiratory failure, hemodialysis for acute intoxications etc.), in parallel to the formulation of a diagnosis. In case of severe acidosis, the administration of alkalizing agents should be carefully evaluated, taking into account the risk of side effects, as well as the potential need of renal replacement therapy.

  7. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.

    Science.gov (United States)

    Wendisch, Volker F; Brito, Luciana Fernandes; Gil Lopez, Marina; Hennig, Guido; Pfeifenschneider, Johannes; Sgobba, Elvira; Veldmann, Kareen H

    2016-09-20

    Most biotechnological processes are based on glucose that is either present in molasses or generated from starch by enzymatic hydrolysis. At the very high, million-ton scale production volumes, for instance for fermentative production of the biofuel ethanol or of commodity chemicals such as organic acids and amino acids, competing uses of carbon sources e.g. in human and animal nutrition have to be taken into account. Thus, the biotechnological production hosts E. coli, C. glutamicum, pseudomonads, bacilli and Baker's yeast used in these large scale processes have been engineered for efficient utilization of alternative carbon sources. This flexible feedstock concept is central to the use of non-glucose second and third generation feedstocks in the emerging bioeconomy. The metabolic engineering efforts to broaden the substrate scope of E. coli, C. glutamicum, pseudomonads, B. subtilis and yeasts to include non-native carbon sources will be reviewed. Strategies to enable simultaneous consumption of mixtures of native and non-native carbon sources present in biomass hydrolysates will be summarized and a perspective on how to further increase feedstock flexibility for the realization of biorefinery processes will be given. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Factors affecting reservoir and stream-water quality in the Cambridge, Massachusetts, drinking-water source area and implications for source-water protection

    Science.gov (United States)

    Waldron, Marcus C.; Bent, Gardner C.

    2001-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the city of Cambridge, Massachusetts, Water Department, to assess reservoir and tributary-stream quality in the Cambridge drinking-water source area, and to use the information gained to help guide the design of a comprehensive water-quality monitoring program for the source area. Assessments of the quality and trophic state of the three primary storage reservoirs, Hobbs Brook Reservoir, Stony Brook Reservoir, and Fresh Pond, were conducted (September 1997-November 1998) to provide baseline information on the state of these resources and to determine the vulnerability of the reservoirs to increased loads of nutrients and other contaminants. The effects of land use, land cover, and other drainage-basin characteristics on sources, transport, and fate of fecal-indicator bacteria, highway deicing chemicals, nutrients, selected metals, and naturally occurring organic compounds in 11 subbasins that contribute water to the reservoirs also was investigated, and the data used to select sampling stations for incorporation into a water-quality monitoring network for the source area. All three reservoirs exhibited thermal and chemical stratification, despite artificial mixing by air hoses in Stony Brook Reservoir and Fresh Pond. The stratification produced anoxic or hypoxic conditions in the deepest parts of the reservoirs and these conditions resulted in the release of ammonia nitrogen orthophosphate phosphorus, and dissolved iron and manganese from the reservoir bed sediments. Concentrations of sodium and chloride in the reservoirs usually were higher than the amounts recommended by the U.S. Environmental Protection agency for drinking-water sources (20 milligrams per liter for sodium and 250 milligrams per liter for chloride). Maximum measured sodium concentrations were highest in Hobbs Brook Reservoir (113 milligrams per liter), intermediate in Stony Brook Reservoir (62

  9. Dynamics in organic matter processing, ecosystem metabolism and trophic sources for consumers in the Mara River, Kenya

    NARCIS (Netherlands)

    Masese, F.O.

    2015-01-01

    To properly conserve, restore and manage riverine ecosystems and the services they provide, it is pertinent to understand their functional dynamics. However, there is still a major knowledge gap concerning the functioning of tropical rivers in terms of energy sources supporting riverine

  10. Determination of Key Risk Supervision Areas around River-Type Water Sources Affected by Multiple Risk Sources: A Case Study of Water Sources along the Yangtze’s Nanjing Section

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2017-02-01

    Full Text Available To provide a reference for risk management of water sources, this study screens the key risk supervision areas around river-type water sources (hereinafter referred to as the water sources threatened by multiple fixed risk sources (the risk sources, and establishes a comprehensive methodological system. Specifically, it comprises: (1 method of partitioning risk source concentrated sub-regions for screening water source perimeter key risk supervision areas; (2 approach of determining sub-regional risk indexes (SrRI, which characterizes the scale of sub-regional risks considering factors like risk distribution intensity within sub-regions, risk indexes of risk sources (RIRS, characterizing the risk scale of risk sources and the number of risk sources; and (3 method of calculating sub-region’s risk threats to the water sources (SrTWS which considers the positional relationship between water sources and sub-regions as well as SrRI, and the criteria for determining key supervision sub-regions. Favorable effects are achieved by applying this methodological system in determining water source perimeter sub-regions distributed along the Yangtze’s Nanjing section. Results revealed that for water sources, the key sub-regions needing supervision were SD16, SD06, SD21, SD26, SD15, SD03, SD02, SD32, SD10, SD11, SD14, SD05, SD27, etc., in the order of criticality. The sub-region with the greatest risk threats on the water sources was SD16, which was located in the middle reaches of Yangtze River. In general, sub-regions along the upper Yangtze reaches had greater threats to water sources than the lower reach sub-regions other than SD26 and SD21. Upstream water sources were less subject to the threats of sub-regions than the downstream sources other than NJ09B and NJ03.

  11. Patterns of organic acids exuded by pioneering fungi from a glacier forefield are affected by carbohydrate sources

    Science.gov (United States)

    Brunner, Ivano; Goren, Asena; Schlumpf, Alessandro

    2014-01-01

    Bare soils in the area of retreating glaciers are ideal environments to study the role of microorganisms in the early soil formation and in processes of mineral weathering. The aim of our study was to investigate whether the source of carbohydrate would influence the patterns of organic acids exuded by fungal species. Three pioneering fungus species, isolated from fine granitic sediments in front of the Damma glacier from the central Swiss Alps, have previously been found to have the capability to exude organic acids and dissolve granite powder. In batch experiments, various carbohydrates, including glucose, cellulose, pectin, pollen, and cell remnants of cyanobacteria, fungi, and algae, were applied as carbohydrate sources and the patterns of exuded organic acids recorded. The results showed that two fungi, the zygomycete fungus Mucor hiemalis and the ascomycete fungus Penicillium chrysogenum, released a significantly higher amount of organic acids in dependence on specific carbohydrate sources. Pollen and algae as carbohydrate sources triggered significantly the exudation of malate in M. hiemalis, and pollen and cellulose that of oxalate in P. chrysogenum. We conclude that the occurrence of complex carbohydrate sources in nutrient-deficient deglaciated soils may positively influence the exudation of organic acids of fungi. In particular, pollen and remnants of other microorganisms can trigger the exudation of organic acids of fungi in order to promote the weathering of minerals and to make nutrients available that would otherwise be trapped in that cryospheric environment.

  12. Patterns of organic acids exuded by pioneering fungi from a glacier forefield are affected by carbohydrate sources

    International Nuclear Information System (INIS)

    Brunner, Ivano; Goren, Asena; Schlumpf, Alessandro

    2014-01-01

    Bare soils in the area of retreating glaciers are ideal environments to study the role of microorganisms in the early soil formation and in processes of mineral weathering. The aim of our study was to investigate whether the source of carbohydrate would influence the patterns of organic acids exuded by fungal species. Three pioneering fungus species, isolated from fine granitic sediments in front of the Damma glacier from the central Swiss Alps, have previously been found to have the capability to exude organic acids and dissolve granite powder. In batch experiments, various carbohydrates, including glucose, cellulose, pectin, pollen, and cell remnants of cyanobacteria, fungi, and algae, were applied as carbohydrate sources and the patterns of exuded organic acids recorded. The results showed that two fungi, the zygomycete fungus Mucor hiemalis and the ascomycete fungus Penicillium chrysogenum, released a significantly higher amount of organic acids in dependence on specific carbohydrate sources. Pollen and algae as carbohydrate sources triggered significantly the exudation of malate in M. hiemalis, and pollen and cellulose that of oxalate in P. chrysogenum. We conclude that the occurrence of complex carbohydrate sources in nutrient-deficient deglaciated soils may positively influence the exudation of organic acids of fungi. In particular, pollen and remnants of other microorganisms can trigger the exudation of organic acids of fungi in order to promote the weathering of minerals and to make nutrients available that would otherwise be trapped in that cryospheric environment. (paper)

  13. How Does a Collaborative Community Affect Diverse Students' Engagement with an Open Source Software Project: A Pedagogical Paradigm

    Science.gov (United States)

    Morgan, Becka S.

    2012-01-01

    Open Source Software (OSS) communities are homogenous and their lack of diversity is of concern to many within this field. This problem is becoming more pronounced as it is the practice of many technology companies to use OSS participation as a factor in the hiring process, disadvantaging those who are not a part of this community. We should…

  14. Starch source in high concentrate rations does not affect rumen pH, histamine and lipopolysaccharide concentrations in dairy cows

    NARCIS (Netherlands)

    Pilachai, R.; Schonewille, J.T.; Thamrongyoswittayakul, C.; Aiumlamai, S.; Wachirapakom, C.; Everts, H.; Hendriks, W.H.

    2012-01-01

    The replacement of ground corn by cassava meal on rumen pH, lipopolysaccharide (LPS) and histamine concentrations under typical Thai feeding conditions (high concentrate diets and rice straw as the sole source of roughage) was investigated. Four rumen-fistulated crossbred Holstein, non-pregnant, dry

  15. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.

    Science.gov (United States)

    Maxfield, Lynn; Palaparthi, Anil; Titze, Ingo

    2017-03-01

    The traditional source-filter theory of voice production describes a linear relationship between the source (glottal flow pulse) and the filter (vocal tract). Such a linear relationship does not allow for nor explain how changes in the filter may impact the stability and regularity of the source. The objective of this experiment was to examine what effect unpredictable changes to vocal tract dimensions could have on fo stability and individual harmonic intensities in situations in which low frequency harmonics cross formants in a fundamental frequency glide. To determine these effects, eight human subjects (five male, three female) were recorded producing fo glides while their vocal tracts were artificially lengthened by a section of vinyl tubing inserted into the mouth. It was hypothesized that if the source and filter operated as a purely linear system, harmonic intensities would increase and decrease at nearly the same rates as they passed through a formant bandwidth, resulting in a relatively symmetric peak on an intensity-time contour. Additionally, fo stability should not be predictably perturbed by formant/harmonic crossings in a linear system. Acoustic analysis of these recordings, however, revealed that harmonic intensity peaks were asymmetric in 76% of cases, and that 85% of fo instabilities aligned with a crossing of one of the first four harmonics with the first three formants. These results provide further evidence that nonlinear dynamics in the source-filter relationship can impact fo stability as well as harmonic intensities as harmonics cross through formant bandwidths. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  16. Associations between Sugar Intake from Different Food Sources and Adiposity or Cardio-Metabolic Risk in Childhood and Adolescence: The Korean Child-Adolescent Cohort Study.

    Science.gov (United States)

    Hur, Yang-Im; Park, Hyesook; Kang, Jae-Heon; Lee, Hye-Ah; Song, Hong Ji; Lee, Hae-Jeung; Kim, Ok-Hyun

    2015-12-31

    The increasing prevalence of childhood obesity is a serious public health problem associated with co-morbidities in adulthood, as well as childhood. This study was conducted to identify associations between total sugar intake and sugar intake from different foods (fruit, milk, and sugar-sweetened beverages (SSBs)), and adiposity and continuous metabolic syndrome scores (cMetS) among Korean children and adolescents using cohort data. The study subjects were children (n = 770) who participated in the 4th year (2008) of the Korean Child-Adolescent Cohort Study (KoCAS). Dietary intake data were collected via three-day 24-h food records, and sugar intake was calculated for the total sugar content of foods using our database compiled from various sources. Anthropometric measurements, assessments of body composition, and blood sample analysis were performed at baseline and at follow-up four years later. The cMetS was calculated based on waist circumference, triglycerides, high-density lipoprotein cholesterol, glucose, and mean arterial blood pressure. According to multiple linear regression analysis, there were no significant associations between total sugar intake and adiposity and cMetS. However, higher intake of fruit sugar at baseline was significantly associated with lower body mass index (BMI) z-scores and body fat percentages at baseline (β = -0.10, p = 0.02 and β = -0.78, p target particular food groups. Consequently, this information could be of value to obesity- and metabolic disease-prevention strategies.

  17. Cr(Vi) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication

    International Nuclear Information System (INIS)

    Ferro Orozco, A.M.; Contreras, E.M.; Zaritzky, N.E.

    2010-01-01

    The objectives of the present work were: (i) to analyze the capacity of activated sludge to reduce hexavalent chromium using different carbon sources as electron donors in batch reactors, (ii) to determine the relationship between biomass growth and the amount of Cr(VI) reduced considering the effect of the nitrogen to carbon source ratio, and (iii) to determine the effect of the Cr(VI) acclimation stage on the performance of the biological chromium reduction assessing the stability of the Cr(VI) reduction capacity of the activated sludge. The highest specific Cr(VI) removal rate (q Cr ) was attained with cheese whey or lactose as electron donors decreasing in the following order: cheese whey ∼ lactose > glucose > citrate > acetate. Batch assays with different nitrogen to carbon source ratio demonstrated that biological Cr(VI) reduction is associated to the cell multiplication phase; as a result, maximum Cr(VI) removal rates occur when there is no substrate limitation. The biomass can be acclimated to the presence of Cr(VI) and generate new cells that maintain the ability to reduce chromate. Therefore, the activated sludge process could be applied to a continuous Cr(VI) removal process.

  18. How Growing Complexity of Consumer Choices and Drivers of Consumption Behaviour Affect Demand for Animal Source Foods.

    Science.gov (United States)

    Perry, B D; Grace, D C

    2015-12-01

    Many societies are spoiled for choice when they purchase meat and other livestock products, and around the globe food choice has grown dramatically in the last two decades. What is more, besides the cost and obvious health concerns influencing commodity section, an increasing proportion of choices is made to contribute to the achievement of certain ideals, such as natural resource management, climate change mitigation, animal welfare concerns and personal lifestyle. At the same time, human health considerations are becoming more important for consumption choices as richer societies, and increasingly the urban poor in low- and middle-income countries, face an unprecedented epidemic of over-consumption and associated diet-related non-communicable diseases. Animal source foods are considered significant contributors to this trend. This paper reviews this complicated arena, and explores the range of considerations that influence consumers' preferences for meat and other animal source foods. This paper also argues that deeper drivers of consumption behaviour of many foods may act in opposition to the articulated preferences for choices around animal source food consumption. We review how the returns to different causes are being valued, how emerging metrics are helping to manage and influence consumption behaviours, and draw conclusions regarding options which influence food choice.

  19. Seasonality Affects the Diversity and Composition of Bacterioplankton Communities in Dongjiang River, a Drinking Water Source of Hong Kong

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2017-08-01

    Full Text Available Water quality ranks the most vital criterion for rivers serving as drinking water sources, which periodically changes over seasons. Such fluctuation is believed associated with the state shifts of bacterial community within. To date, seasonality effects on bacterioplankton community patterns in large rivers serving as drinking water sources however, are still poorly understood. Here we investigated the intra-annual bacterial community structure in the Dongjiang River, a drinking water source of Hong Kong, using high-throughput pyrosequencing in concert with geochemical property measurements during dry, and wet seasons. Our results showed that Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla of bacterioplankton communities, which varied in composition, and distribution from dry to wet seasons, and exhibited profound seasonal changes. Actinobacteria, Bacteroidetes, and Cyanobacteria seemed to be more associated with seasonality that the relative abundances of Actinobacteria, and Bacteroidetes were significantly higher in the dry season than those in the wet season (p < 0.01, while the relative abundance of Cyanobacteria was about 10-fold higher in the wet season than in the dry season. Temperature and NO3--N concentration represented key contributing factors to the observed seasonal variations. These findings help understand the roles of various bacterioplankton and their interactions with the biogeochemical processes in the river ecosystem.

  20. Dietary fat sources affect feed intake, digestibility, rumen microbial populations, energy partition and methane emissions in different beef cattle genotypes.

    Science.gov (United States)

    Kaewpila, C; Sommart, K; Mitsumori, M

    2018-03-20

    The mitigation of enteric methane emission in beef cattle production is important for reducing feed energy loss and increasing environmental sustainability. The main objective of this study was to evaluate the effect of different oilseeds included in fermented total mixed rations (whole soyabean seed (SBS, control), whole kapok seed (KPS) and cracked oil palm fruit (OPF)) on feed intake, digestibility, rumen microbial populations, energy partition and methane emissions in different cattle genotypes (Charolais crossbred v. Japanese Black crossbred). Three Charolais crossbred and three Japanese Black crossbred bulls were studied in a replicated 3×3 Latin square experimental design; genotypes were analysed in separate squares including three periods of 21 days each and three dietary oilseed treatments fed ad libitum. The cattle were placed in a metabolic cage equipped with a ventilated head box respiration system for evaluating digestibility and energy balance. As compared with Charolais crossbred individuals, Japanese Black crossbred bulls showed consistently lower dry matter intake (15.5%, P0.05) or diet (P>0.05) under the experimental conditions and ranged from 5.8% to 6.0% of gross energy intake. This value is lower than that reported by the Intergovernmental Panel on Climate Change (6.5%) for cattle fed with low-quality crop residues or by-products. Thus, our results imply that the Japanese Black crossbred cattle consume less feed and emits less enteric methane than the Charolais crossbred does, mainly owing to its lower ME requirement for maintenance. The OPF diet could be used to replace SBS for high beef production, although further studies are required to evaluate their application across a wide range of beef production systems.

  1. Nitrogen Fertilizer Sources and Application Timing Affects Wheat and Inter-Seeded Red Clover Yields on Claypan Soils

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2014-11-01

    Full Text Available Controlled-release N fertilizer, such as polymer-coated urea (PCU, may be a fall N management option for wheat (Triticum aestivum L. grown in poorly-drained claypan soils. Field research evaluated (1 urea release from fall-applied PCU in 2006 and 2007; (2 broadcast fall-spring split (25%:75% of N sources; and (3 a single fall (100% application of PCU, urea, urea plus NBPT (N-(n-butyl thiophosphoric triamide] (U + NBPT, ammonium nitrate (AN, or urea ammonium nitrate (UAN at 0, 56, 84, and 112 kg·N·ha−1 on wheat yield, wheat biomass, N uptake by wheat, and frost-seeded red clover (FSC (Trifolium pratense L. forage yield (2004–2007. PCU applied in fall released less than 30% urea by February. Urea released from PCU by harvest was 60% and 85% in 2006 and 2007, respectively. In poorly-drained soils, wheat yields ranked PCU > AN > U + NBPT > urea ≥ UAN over the rates evaluated for fall-only application. PCU was a viable fall-applied N source, with yields similar to or greater than urea or U + NBPT split-applied. Split-N applications of AN, urea, UAN, and U + NBPT generally resulted in greater wheat yields than a fall application. Enhanced efficiency fertilizers provide farmers with flexible options for maintaining high yielding production systems.

  2. Valuing the Potential Benefits of Water Quality Improvements in Watersheds Affected by Non-Point Source Pollution

    Directory of Open Access Journals (Sweden)

    Sergio Alvarez

    2016-03-01

    Full Text Available Nonpoint source (NPS pollution has been identified by the US Environmental Protection Agency (EPA as “the nation’s largest water quality problem”. Urban development, septic systems, and agricultural operations have been identified as the major sources of diffuse pollution in surface and ground water bodies. In recent decades, urban and agricultural Best Management Practices (BMP have been developed in several states to address agricultural water quality and water use impacts, including the reduction of nutrient loads to help meet water quality standards. Compliance with BMPs is associated with some costs to local governments, homeowners, and agricultural operations, but the improvements in water quality associated with BMP adoption are expected to yield significant benefits to society in the form of improved recreational opportunities, navigation, flood control, and ecosystem health. The development of sound policies and decision making processes require balancing the costs of BMP adoption to the agricultural operations with the social benefits to be derived from the improved water quality. In this paper we develop a benefits transfer model to provide estimates of the economic benefits of properly implemented and effective Best Management Practices (BMP throughout the state of Florida. These benefit estimates can be used in a cost-benefit framework to determine the optimal level of BMP adoption throughout the state of Florida and provide a framework for other regions to estimate the potential benefits of BMP-mediated water quality improvements.

  3. Differences in staining intensities affect reported occurrences and concentrations of Giardia spp. in surface drinking water sources.

    Science.gov (United States)

    Alderisio, K A; Villegas, L F; Ware, M W; McDonald, L A; Xiao, L; Villegas, E N

    2017-12-01

    USEPA Method 1623, or its equivalent, is currently used to monitor for protozoan contamination of surface drinking water sources worldwide. At least three approved staining kits used for detecting Cryptosporidium and Giardia are commercially available. This study focuses on understanding the differences among staining kits used for Method 1623. Merifluor and EasyStain labelling kits were used to monitor Cryptosporidium oocyst and Giardia cyst densities in New York City's raw surface water sources. In the year following a change to the approved staining kits for use with Method 1623, an anomaly was noted in the occurrence of Giardia cysts in New York City's raw surface water. Specifically, Merifluor-stained samples had higher Giardia cyst densities as compared with those stained with EasyStain. Side by side comparison revealed significantly lower fluorescence intensities of Giardia muris as compared with Giardia duodenalis cysts when labelled with EasyStain. This study showed very poor fluorescence intensity signals by EasyStain on G. muris cysts resulting in lower cyst counts, while Merifluor, with its broader Giardia cyst staining specificity, resulted in higher cyst counts, when using Methods 1623. These results suggest that detected Giardia cyst concentrations are dependent on the staining kits used, which can result in a more or less conservative estimation of occurrences and densities of zoonotic Giardia cysts by detecting a broader range of Giardia species/Assemblages. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  4. Trustworthy Tricksters: Violating a Negative Social Expectation Affects Source Memory and Person Perception When Fear of Exploitation Is High.

    Science.gov (United States)

    Süssenbach, Philipp; Gollwitzer, Mario; Mieth, Laura; Buchner, Axel; Bell, Raoul

    2016-01-01

    People who are high in victim-sensitivity-a personality trait characterized by a strong fear of being exploited by others-are more likely to attend to social cues associated with untrustworthiness rather than to cues associated with trustworthiness compared with people who are low in victim-sensitivity. But how do these people react when an initial expectation regarding a target's trustworthiness turns out to be false? Results from two studies show that victim-sensitive compared with victim-insensitive individuals show enhanced source memory and greater change in person perception for negatively labeled targets that violated rather than confirmed negative expectations (the "trustworthy trickster"). These findings are in line with recent theorizing on schema inconsistency and expectancy violation effects in social cognition and with research on the different facets of justice sensitivity in personality psychology.

  5. Assessment of Heavy Metal Contamination in Marine Sediments of East Coast of Tamil Nadu Affected by Different Pollution Sources.

    Science.gov (United States)

    Harikrishnan, N; Ravisankar, R; Chandrasekaran, A; Suresh Gandhi, M; Kanagasabapathy, K V; Prasad, M V R; Satapathy, K K

    2017-08-15

    The aim of this study was to determine the concentration of heavy metals in the sediments of Periyakalapet to Parangipettai coast, east coast of Tamil Nadu, by using energy-dispersive X-ray fluorescence (EDXRF) technique. The average heavy metal concentrations in the sediment samples were found in the order Al>Fe>Ca>Ti>K>Mg>Mn>Ba>V>Cr>Zn>La>Ni>Pb>Co>Cd>Cu. The average heavy metal concentrations were below the world crustal average. The degree of contamination by heavy metals was evaluated using pollution indices. The results of pollution indices revealed that titanium (Ti) and cadmium (Cd) were significantly enriched in sediments. Pearson correlation analysis was performed among heavy metal concentrations to know the existing relationship between them. Multivariate statistical technique was employed to identify the heavy metal pollution sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Delineating sources of groundwater recharge in an arsenic-affected Holocene aquifer in Cambodia using stable isotope-based mixing models

    Science.gov (United States)

    Richards, Laura A.; Magnone, Daniel; Boyce, Adrian J.; Casanueva-Marenco, Maria J.; van Dongen, Bart E.; Ballentine, Christopher J.; Polya, David A.

    2018-02-01

    Chronic exposure to arsenic (As) through the consumption of contaminated groundwaters is a major threat to public health in South and Southeast Asia. The source of As-affected groundwaters is important to the fundamental understanding of the controls on As mobilization and subsequent transport throughout shallow aquifers. Using the stable isotopes of hydrogen and oxygen, the source of groundwater and the interactions between various water bodies were investigated in Cambodia's Kandal Province, an area which is heavily affected by As and typical of many circum-Himalayan shallow aquifers. Two-point mixing models based on δD and δ18O allowed the relative extent of evaporation of groundwater sources to be estimated and allowed various water bodies to be broadly distinguished within the aquifer system. Model limitations are discussed, including the spatial and temporal variation in end member compositions. The conservative tracer Cl/Br is used to further discriminate between groundwater bodies. The stable isotopic signatures of groundwaters containing high As and/or high dissolved organic carbon plot both near the local meteoric water line and near more evaporative lines. The varying degrees of evaporation of high As groundwater sources are indicative of differing recharge contributions (and thus indirectly inferred associated organic matter contributions). The presence of high As groundwaters with recharge derived from both local precipitation and relatively evaporated surface water sources, such as ponds or flooded wetlands, are consistent with (but do not provide direct evidence for) models of a potential dual role of surface-derived and sedimentary organic matter in As mobilization.

  7. Lycopene from two food sources does not affect antioxidant or cholesterol status of middle-aged adults.

    Science.gov (United States)

    Collins, J K; Arjmandi, B H; Claypool, P L; Perkins-Veazie, P; Baker, R A; Clevidence, B A

    2004-09-15

    Epidemiological studies have reported associations between reduced cardiovascular disease and diets rich in tomato and/or lycopene. Intervention studies have shown that lycopene-containing foods may reduce cholesterol levels and lipid peroxidation, factors implicated in the initiation of cardiovascular disease. The objective of this study was to determine whether consumption of lycopene rich foods conferred cardiovascular protection to middle-aged adults as indicated by plasma lipid concentrations and measures of ex vivo antioxidants. Ten healthy men and women consumed a low lycopene diet with no added lycopene (control treatment) or supplemented with watermelon or tomato juice each containing 20 mg lycopene. Subjects consumed each treatment for three weeks in a crossover design. Plasma, collected weekly was analyzed for total cholesterol, high density lipoprotein cholesterol (HDL-C) and triglyceride concentrations and for the antioxidant biomarkers of malondialdehyde formation products (MDA), plasma glutathione peroxidase (GPX) and ferric reducing ability of plasma (FRAP). Data were analyzed using Proc Mixed Procedure and associations between antioxidant and lipid measures were identified by Pearson's product moment correlation analysis. Compared to the control diet, the lycopene-containing foods did not affect plasma lipid concentrations or antioxidant biomarkers. Women had higher total cholesterol, HDL-C and triglyceride concentrations than did the men. Total cholesterol was positively correlated to MDA and FRAP while HDL-C was positively correlated to MDA and GPX. GPX was negatively correlated to triglyceride concentration. The inclusion of watermelon or tomato juice containing 20 mg lycopene did not affect plasma lipid concentrations or antioxidant status of healthy subjects. However, plasma cholesterol levels impacted the results of MDA and FRAP antioxidant tests.

  8. Lycopene from two food sources does not affect antioxidant or cholesterol status of middle-aged adults

    Directory of Open Access Journals (Sweden)

    Baker RA

    2004-09-01

    Full Text Available Abstract Background Epidemiological studies have reported associations between reduced cardiovascular disease and diets rich in tomato and/or lycopene. Intervention studies have shown that lycopene-containing foods may reduce cholesterol levels and lipid peroxidation, factors implicated in the initiation of cardiovascular disease. The objective of this study was to determine whether consumption of lycopene rich foods conferred cardiovascular protection to middle-aged adults as indicated by plasma lipid concentrations and measures of ex vivo antioxidants. Methods Ten healthy men and women consumed a low lycopene diet with no added lycopene (control treatment or supplemented with watermelon or tomato juice each containing 20 mg lycopene. Subjects consumed each treatment for three weeks in a crossover design. Plasma, collected weekly was analyzed for total cholesterol, high density lipoprotein cholesterol (HDL-C and triglyceride concentrations and for the antioxidant biomarkers of malondialdehyde formation products (MDA, plasma glutathione peroxidase (GPX and ferric reducing ability of plasma (FRAP. Data were analyzed using Proc Mixed Procedure and associations between antioxidant and lipid measures were identified by Pearson's product moment correlation analysis. Results Compared to the control diet, the lycopene-containing foods did not affect plasma lipid concentrations or antioxidant biomarkers. Women had higher total cholesterol, HDL-C and triglyceride concentrations than did the men. Total cholesterol was positively correlated to MDA and FRAP while HDL-C was positively correlated to MDA and GPX. GPX was negatively correlated to triglyceride concentration. Conclusions The inclusion of watermelon or tomato juice containing 20 mg lycopene did not affect plasma lipid concentrations or antioxidant status of healthy subjects. However, plasma cholesterol levels impacted the results of MDA and FRAP antioxidant tests.

  9. Assessment of factors which affect multiple uses of water sources at household level in rural Zimbabwe - A case study of Marondera, Murehwa and Uzumba Maramba Pfungwe districts

    Science.gov (United States)

    Katsi, Luckson; Siwadi, Japson; Guzha, Edward; Makoni, Fungai S.; Smits, Stef

    Water with all its multiple uses plays a pivotal role in the sustenance of rural livelihoods, especially the poor. As such, the provision of water which go beyond domestic to include water for small-scale productive uses should be encouraged to enhance peoples’ livelihood options by making significant contribution to household income, food security, improved nutrition and health. All these multiple benefits, if combined can assist in the fight against hunger and poverty. This study was conducted in Mashonaland East province, covering Marondera, Murehwa and Uzumba Maramba Pfungwe districts in Zimbabwe for the period December 2005-May 2006 to assess factors which affect multiple uses of water sources at household level. Participatory Rural Appraisal tools such as discussions, observations and interviews were used for data collection. The survey found that people indeed require water for productive purposes apart from domestic uses, which are often given top priority. The study found out that multiple uses of water sources at household level can be affected by segmentation of water services into domestic and productive water supply schemes, technology and system design, water quality and quantity and distance to water sources among other factors. The study recommends that water service providers to be able to provide appropriate, efficient and sustainable services, they should understand and appreciate that people’s water needs are integrated and are part and parcel of their multifaceted livelihood strategies.

  10. [Cortical functional connectivity during retention of affective pictures in working memory: EEG-source theta coherence analysis].

    Science.gov (United States)

    Machinskaya, R I; Rozovskaya, R I; Kurgansky, A V; Pechenkova, E V

    2016-01-01

    A pattern of cortical functional connectivity in the source space was studied in a group of right-handed adult participants (N = 44:17 women, 27 men, aged M = 29.61 ± 6.45 years) who retained in their working memory (WM) traces of realistic pictures of positive, neutral, and negative emotional valence while in their working memory (WM) while performing same different task in which participants had to compare an etalon picture against a target picture that followed after a specified delay. A coherence (COH) between pairs of cortical sources chosen in advance according to fMRI data was estimated in the theta frequency range for the period of time preceding the etalon stimulus, distinct sets of functional links are found. The links of the first type that presumably reflect the involvement of sustained attention were between the dorsal anterior cingulate cortex, the prefrontal areas, and temporal areas of the right hemispheres. When compared to the rest period, links of this type showed strengthening not only during the retention period but also during the period preceding the etalon picture. The links of the second type presumably reflecting a progressive neocortex-to-hippocampus functional integration with increasing memory load and strengthened exclusively during retention period. Those links were between parietal, temporal and prefrontal cortices in the lateral surface of both hemispheres with the additional inclusion of the posterior cingulate cortex and the medial parietal cortex in the left hemisphere. An impact of emotional valence onto the strength and topography of the functional links of the second type was found. In the left hemisphere, an increase in the strength of cortical interaction was more pronounced for pictures of positive valence than for pictures of either neutral or negative valences. When compared to the pictures of neutral valence, the retention of pictorial information of both positive and negative valence showed some extraneous integration

  11. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  12. Associations between Sugar Intake from Different Food Sources and Adiposity or Cardio-Metabolic Risk in Childhood and Adolescence: The Korean Child–Adolescent Cohort Study

    Directory of Open Access Journals (Sweden)

    Yang-Im Hur

    2015-12-01

    Full Text Available The increasing prevalence of childhood obesity is a serious public health problem associated with co-morbidities in adulthood, as well as childhood. This study was conducted to identify associations between total sugar intake and sugar intake from different foods (fruit, milk, and sugar-sweetened beverages (SSBs, and adiposity and continuous metabolic syndrome scores (cMetS among Korean children and adolescents using cohort data. The study subjects were children (n = 770 who participated in the 4th year (2008 of the Korean Child–Adolescent Cohort Study (KoCAS. Dietary intake data were collected via three-day 24-h food records, and sugar intake was calculated for the total sugar content of foods using our database compiled from various sources. Anthropometric measurements, assessments of body composition, and blood sample analysis were performed at baseline and at follow-up four years later. The cMetS was calculated based on waist circumference, triglycerides, high-density lipoprotein cholesterol, glucose, and mean arterial blood pressure. According to multiple linear regression analysis, there were no significant associations between total sugar intake and adiposity and cMetS. However, higher intake of fruit sugar at baseline was significantly associated with lower body mass index (BMI z-scores and body fat percentages at baseline (β = −0.10, p = 0.02 and β = −0.78, p < 0.01, respectively. At follow-up, sugar intake from fruit at baseline was still negatively associated with the above outcomes, but only the relationship with BMI z-scores retained statistical significance (β = −0.08, p < 0.05. There was a significant positive relationship between consumption of sugar from SSBs and cMetS at baseline (β = 0.04, p = 0.02, but that relationship was not observed at follow-up (p = 0.83. Differences in consumption sugars from fruit and SSBs might play an important role in the risk of adiposity and metabolic disease in children and

  13. Interactions between barley grain processing and source of supplemental dietary fat on nitrogen metabolism and urea-nitrogen recycling in dairy cows.

    Science.gov (United States)

    Gozho, G N; Hobin, M R; Mutsvangwa, T

    2008-01-01

    The objective of this study was to determine the effects of methods of barley grain processing and source of supplemental fat on urea-N transfer to the gastrointestinal tract (GIT) and the utilization of this recycled urea-N in lactating dairy cows. Four ruminally cannulated Holstein cows (656.3 +/- 27.7 kg of BW; 79.8 +/- 12.3 d in milk) were used in a 4 x 4 Latin square design with 28-d periods and a 2 x 2 factorial arrangement of dietary treatments. Experimental diets contained dry-rolled barley or pelleted barley in combination with whole canola or whole flaxseed as supplemental fat sources. Nitrogen balance was measured from d 15 to 19, with concurrent measurements of urea-N kinetics using continuous intrajugular infusions of [15N 15N]-urea. Dry matter intake and N intake were higher in cows fed dry-rolled barley compared with those fed pelleted barley. Nitrogen retention was not affected by diet, but fecal N excretion was higher in cows fed dry-rolled barley than in those fed pelleted barley. Actual and energy-corrected milk yield were not affected by diet. Milk fat content and milk fat yield were higher in cows fed dry-rolled barley compared with those fed pelleted barley. Source of supplemental fat did not affect urea-N kinetics. Urea-N production was higher (442.2 vs. 334.3 g of N/d), and urea-N entering the GIT tended to be higher (272.9 vs. 202.0 g of N/d), in cows fed dry-rolled barley compared with those fed pelleted barley. The amount of urea-N entry into the GIT that was returned to the ornithine cycle was higher (204.1 vs. 159.5 g of N/d) in cows fed dry-rolled barley than in pelleted barley-fed cows. The amount of urea-N recycled to the GIT and used for anabolic purposes, and the amounts lost in the urine or feces were not affected by dietary treatment. Microbial nonammonia N supply, estimated using total urinary excretion of purine derivatives, was not affected by diet. These results show that even though barley grain processing altered urea

  14. Seawater pH Predicted for the Year 2100 Affects the Metabolic Response to Feeding in Copepodites of the Arctic Copepod Calanus glacialis.

    Science.gov (United States)

    Thor, Peter; Bailey, Allison; Halsband, Claudia; Guscelli, Ella; Gorokhova, Elena; Fransson, Agneta

    2016-01-01

    Widespread ocean acidification (OA) is transforming the chemistry of the global ocean, and the Arctic is recognised as a region where the earliest and strongest impacts of OA are expected. In the present study, metabolic effects of OA and its interaction with food availability was investigated in Calanus glacialis from the Kongsfjord, West Spitsbergen. We measured metabolic rates and RNA/DNA ratios (an indicator of biosynthesis) concurrently in fed and unfed individuals of copepodite stages CII-CIII and CV subjected to two different pH levels representative of present day and the "business as usual" IPCC scenario (RCP8.5) prediction for the year 2100. The copepods responded more strongly to changes in food level than to decreasing pH, both with respect to metabolic rate and RNA/DNA ratio. However, significant interactions between effects of pH and food level showed that effects of pH and food level act in synergy in copepodites of C. glacialis. While metabolic rates in copepodites stage CII-CIII increased by 78% as a response to food under present day conditions (high pH), the increase was 195% in CII-CIIIs kept at low pH-a 2.5 times greater increase. This interaction was absent for RNA/DNA, so the increase in metabolic rates were clearly not a reaction to changing biosynthesis at low pH per se but rather a reaction to increased metabolic costs per unit of biosynthesis. Interestingly, we did not observe this difference in costs of growth in stage CV. A 2.5 times increase in metabolic costs of growth will leave the copepodites with much less energy for growth. This may infer significant changes to the C. glacialis population during future OA.

  15. Genetic and Environmental Sources of Implicit and Explicit Self-Esteem and Affect: Results from a Genetically Sensitive Multi-group Design.

    Science.gov (United States)

    Stieger, Stefan; Kandler, Christian; Tran, Ulrich S; Pietschnig, Jakob; Voracek, Martin

    2017-03-01

    In today's world, researchers frequently utilize indirect measures of implicit (i.e., automatic, spontaneous) evaluations. The results of several studies have supported the usefulness of these measures in predicting behavior, as compared to utilizing direct measures of explicit (i.e., purposeful, deliberate) evaluations. A current, under-debate issue concerns the origin of these implicit evaluations. The present genetically sensitive multi-group study analyzed data from 223 twin pairs and 222 biological core families to estimate possible genetic and environmental sources of individual differences in implicit and explicit self-esteem and affect. The results show that implicit self-esteem and affect maintain a substantial genetic basis, but demonstrate little influence from the shared environment by siblings (e.g., shared familial socialization in childhood). A bivariate analysis found that implicit and explicit evaluations of the same construct share a common genetic core which aligns with the motivation and opportunity as determinants (MODE) model.

  16. The composition of readily available carbon sources produced by fermentation of fish faeces is affected by dietary protein:energy ratios

    DEFF Research Database (Denmark)

    Letelier-Gordo, Carlos Octavio; Larsen, Bodil Katrine; Dalsgaard, Johanne

    2017-01-01

    , 17, 19, 21 and 23 g/MJ) to rainbow trout (Oncorhynchus mykiss) on the production of volatile fatty acids (VFAs) and ethanol during 7 days fermentation of the produced fish faeces. The total yields of VFAs and ethanol obtained (expressed as chemical oxygen demand (COD)) ranged between 0.21–0.24 g...... of acetic and valeric acid. Changing the diet composition thus affects the composition of readily available carbon that can be derived from the faeces. This can be applied to enhance on-farm single sludge denitrification and reduce the need for adding external carbon sources such as e.g. methanol....

  17. Increasing levels of dietary crystalline methionine affect plasma methionine profiles, ammonia excretion, and the expression of genes related to the hepatic intermediary metabolism in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Rolland, Marine; Skov, Peter Vilhelm; Larsen, Bodil Katrine

    2016-01-01

    Strictly carnivorous fish with high requirements for dietary protein, such as rainbow trout (Oncorhynchus mykiss) are interesting models for studying the role of amino acids as key regulators of intermediary metabolism. Methionine is an essential amino acid for rainbow trout, and works as a signa......Strictly carnivorous fish with high requirements for dietary protein, such as rainbow trout (Oncorhynchus mykiss) are interesting models for studying the role of amino acids as key regulators of intermediary metabolism. Methionine is an essential amino acid for rainbow trout, and works...... as a signalling factor in different metabolic pathways. The study investigated the effect of increasing dietary methionine intake on the intermediary metabolism in the liver of juvenile rainbow trout. For this purpose, five diets were formulated with increasing methionine levels from 0.60 to 1.29% dry matter....... The diets were fed in excess for six weeks before three sampling campaigns carried out successively to elucidate (i) the hepatic expression of selected genes involved in lipid, glucose and amino acid metabolism; (ii) the postprandial ammonia excretion; and (iii) the postprandial plasma methionine...

  18. Anthocyanin-Rich Grape Pomace Extract (Vitis vinifera L. from Wine Industry Affects Mitochondrial Bioenergetics and Glucose Metabolism in Human Hepatocarcinoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Nathalia F. F. de Sales

    2018-03-01

    Full Text Available Cancer cells demand high ATP provisions to support proliferation, and targeting of energy metabolism is a good strategy to increase their sensitivity to treatments. In Brazil, wine manufacture is expanding, increasing the amount of pomace that is produced. We determined the phenolic composition and antioxidant properties of a dark skin Grape Pomace Extract and its effects on metabolism and redox state in human hepatocarcinoma HepG2 cells. The material and the methods used represented the industrial process since pomace derived from white wine production and the extract concentrated by pilot plant scale reverse osmosis. Grape pomace extract was rich in polyphenols, mainly anthocyanins, and presented high antioxidant capacity. Short-term metabolic effects, irrespective of any cytotoxicity, involved increased mitochondrial respiration and antioxidant capacity and decreased glycolytic metabolism. Long-term incubation was cytotoxic and cells died by necrosis and GPE was not toxic to non-cancer human fibroblasts. To the best of our knowledge, this is the first report to characterize pomace extract from white wine production from Brazilian winemaking regarding its effects on energy metabolism, suggesting its potential use for pharmaceutical and nutraceutical purposes.

  19. Anthocyanin-Rich Grape Pomace Extract (Vitis vinifera L.) from Wine Industry Affects Mitochondrial Bioenergetics and Glucose Metabolism in Human Hepatocarcinoma HepG2 Cells.

    Science.gov (United States)

    de Sales, Nathalia F F; Silva da Costa, Leandro; Carneiro, Talita I A; Minuzzo, Daniela A; Oliveira, Felipe L; Cabral, Lourdes M C; Torres, Alexandre G; El-Bacha, Tatiana

    2018-03-08

    Cancer cells demand high ATP provisions to support proliferation, and targeting of energy metabolism is a good strategy to increase their sensitivity to treatments. In Brazil, wine manufacture is expanding, increasing the amount of pomace that is produced. We determined the phenolic composition and antioxidant properties of a dark skin Grape Pomace Extract and its effects on metabolism and redox state in human hepatocarcinoma HepG2 cells. The material and the methods used represented the industrial process since pomace derived from white wine production and the extract concentrated by pilot plant scale reverse osmosis. Grape pomace extract was rich in polyphenols, mainly anthocyanins, and presented high antioxidant capacity. Short-term metabolic effects, irrespective of any cytotoxicity, involved increased mitochondrial respiration and antioxidant capacity and decreased glycolytic metabolism. Long-term incubation was cytotoxic and cells died by necrosis and GPE was not toxic to non-cancer human fibroblasts. To the best of our knowledge, this is the first report to characterize pomace extract from white wine production from Brazilian winemaking regarding its effects on energy metabolism, suggesting its potential use for pharmaceutical and nutraceutical purposes.

  20. Use of Nitrogen-15 Isotope Method in Soils and Ground Water to Determine Potential Nitrogen Sources Affecting a Municipal Water Supply in Kansas, USA

    Science.gov (United States)

    Townsend, M. A.; Macko, S. A.

    2004-12-01

    Nitrate-N concentrations have increased to greater than 10 mg/L in a municipal water supply in western Kansas from 1995 to 2002. A study was done by the Kansas Geological Survey using the nitrogen-15 natural abundance isotope method to determine potential sources for the increasing nitrate concentrations. Preliminary results of the isotope analyses on water samples suggest that animal waste and/or denitrification enrichment has affected the water supply. Soil samples from areas near the wells that were not treated with manure show a general increase of nitrogen-15 signature (+9 to +15 \\permil) to a depth of 5 m. Soils are silt loams with measurable carbonate (0.8 to 2 % by weight) in the profile, which may permit volatilization enrichment to occur in the soil profile. Wells in the area range from 11 to 20 m in alluvial deposits with depth to water at approximately 9 m). Nitrate-N values range from 8 to 26 mg/L. Nitrogen-15 values range from (+17 to +28 \\permil) with no obvious source of animal waste near the well sites. There are potential nearby long-term sources of animal waste - an abandoned sewage treatment plant and an agricultural testing farm. One well has a reducing chemistry with a nitrate value of 0.9 mg/L and a nitrogen-15 value of +17 \\permil suggesting that alluvial sediment variation also has an impact on the water quality in the study area. The other wells show values of nitrate and nitrogen-15 that are much greater than the associated soils. The use of nitrogen-15 alone permited limited evaluation of sources of nitrate to ground water particularly in areas with carbonate in the soils. Use of oxygen-18 on nitrate will permit the delineation of the processes affecting the nitrogen in the soil profile and determination of the probable sources and the processes that have affected the nitrogen in the ground water. Final results of the nitrogen-15 and oxygen-18 analyses will be presented.

  1. QMRAcatch - faecal microbial quality of water resources in a river-floodplain area affected by urban sources and recreational visitors

    Science.gov (United States)

    Derx, Julia; Schijven, Jack; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas H.; Blaschke, Alfred Paul

    2016-04-01

    QMRAcatch, a tool to simulate microbial water quality including infection risk assessment, was previously developed and successfully tested at a Danube river site (Schijven et al. 2015). In the tool concentrations of target faecal microorganisms and viruses (TMVs) are computed at a point of interest (PI) along the main river and the floodplain river at daily intervals for a one year period. Even though faecal microbial pathogen concentrations in water resources are usually below the sample limit of detection, this does not ensure, that the water quality complies with a certain required health based target. The aim of this study was therefore to improve the predictability of relevant human pathogenic viruses, i.e. enterovirus and norovirus, in the studied river/floodplain area. This was done by following an innovative calibration strategy based on human-associated microbial source tracking (MST) marker data which were determined following the HF183 TaqMan assay (Green et al. 2011). The MST marker is strongly associated with human faeces and communal sewage, occurring there in numbers by several magnitudes higher than for human enteric pathogens (Mayer et al 2015). The calibrated tool was then evaluated with measured enterovirus concentrations at the PI and in the floodplain river. In the simulation tool the discharges of 5 wastewater treatment plants (WWTPs) were considered with point discharges along a 200 km reach of the Danube river. The MST marker and target virus concentrations at the PI at a certain day were computed based on the concentrations of the previous day, plus the wastewater concentrations times the WWTP discharge divided by the river discharge. A ratio of the river width was also considered, over which the MST marker and virus particles have fully mixed with river water. In the tool, the excrements from recreational visitors frequenting the floodplain area every day were assumed to be homogeneously distributed in the area. A binomial distributed

  2. How does a Collaborative Community Affect Diverse Students' Engagement with an Open Source Software Project: A Pedagogical Paradigm

    Science.gov (United States)

    Morgan, Becka S.

    Open Source Software (OSS) communities are homogenous and their lack of diversity is of concern to many within this field. This problem is becoming more pronounced as it is the practice of many technology companies to use OSS participation as a factor in the hiring process, disadvantaging those who are not a part of this community. We should expect that any field would have a population that reflects the general population given no constraints. The constraints within OSS are documented as being a hostile environment for women and minorities to participate in. Additionally OSS communities rely predominately on volunteers to create and maintain source code, documentation, and user interface as well as the organizational structure of the project. The volunteer nature of OSS projects creates a need for an ongoing pool of participants. This research addresses the lack of diversity along with the continual need for new members by developing a pedagogical paradigm that uses a collaborative environment to promote participation in an OSS project by diverse students. This collaborative environment used a Communities of Practice (CoP) framework to design the course, the indicators of which were used to operationalize the collaboration. The outcomes of this course not only benefit the students by providing them with skills necessary to continue participation and experience for getting a job, but also provide a diverse pool of volunteers for the OSS community. This diverse pool shows promise of creating a more diverse culture within OSS. In the development of this pedagogical paradigm this research looked primarily at student's perception of the importance of their group members and mentors provided to guide their participation in and contribution to an OSS community. These elements were used to facilitate the formation of a CoP. Self-efficacy was also used as a measure; an increase in self-efficacy is associated with the successful formation of a CoP. Finally the intent to

  3. N sources affect growth, nutrient content, and net photosynthesis in maté (Ilex paraguariensis St. Hil.

    Directory of Open Access Journals (Sweden)

    Sérgio Gaiad

    2006-09-01

    Full Text Available The influence of different N sources on the growth of maté (Ilex paragurariensis St.Hil. seedlings grown in greenhouse was studied. All seedlings received a base fertilization of 10 mg N.kg-1 soil as NH4NO3, 60 mg P2O5.and 40 mg K2O.kg-1 soil as KH2PO4 15 days before treatments application. Treatments were as follow: Control, with no extra N added; Urea = 100 mg N.kg-1 soil as Urea; NO3- = 100 mg N.kg-1 soil as Ca(NO32; and NH4+ = 100 mg N.kg-1 soil as (NH42SO4. It was concluded that: 1 increasing N content in leaves alone was not able to promote gain in biomass production of maté seedlings; 2 seedlings receiving N-NH4 showed a higher accumulation of P and Mg on shoot biomass; and 3 an increase in leaf area, leaf number and net photosynthesis observed at the N-NH4 treatment was coincident with an increasing absorption of P and Mg.A influência de diferentes fontes de N sobre o crescimento de mudas de erva-mate (Ilex paraguariensis St.Hil. foi estudada, em casa de vegetação. Todas as mudas receberam uma fertilização base de 10 mg N.kg-1 de solo na forma de NH4NO3, 60 mg P2O5.kg-1 e 40 mg K2O.kg-1 de solo na forma de KH2PO4 quinze dias antes da aplicação dos tratamentos. Os tratamentos foram os seguintes: Controle, sem adição extra de N; Uréia = 100 mg N.kg-1 de solo como Uréia; NO3- = 100 mg N.kg-1 de solo como Ca(NO32; e NH4+ = 100 mg N.kg-1 de solo como (NH42SO4. Concluiu-se que: 1 o aumento do conteúdo de N nas folhas, por si, não é capaz de promover ganhos na produção de biomassa em mudas de erva-mate; 2 mudas que receberam N-NH4 apresentaram maior acumulo de P e Mg na biomassa aérea; e 3 o aumento na absorção de P e Mg coincidiu com um aumento na área foliar, no número de folhas e na fotossíntese liquida na fonte N-NH4.

  4. Water balance and N-metabolism in broccoli (Brassica oleracea L. var. Italica) plants depending on nitrogen source under salt stress and elevated CO2.

    Science.gov (United States)

    Zaghdoud, Chokri; Carvajal, Micaela; Ferchichi, Ali; Del Carmen Martínez-Ballesta, María

    2016-11-15

    Elevated [CO2] and salinity in the soils are considered part of the effects of future environmental conditions in arid and semi-arid areas. While it is known that soil salinization decreases plant growth, an increased atmospheric [CO2] may ameliorate the negative effects of salt stress. However, there is a lack of information about the form in which inorganic nitrogen source may influence plant performance under both conditions. Single factor responses and the interactive effects of two [CO2] (380 and 800ppm), three different NO3(-)/NH4(+) ratios in the nutrient solution (100/0, 50/50 and 0/100, with a total N concentration of 3.5mM) and two NaCl concentrations (0 and 80mM) on growth, leaf gas exchange parameters in relation to root hydraulic conductance and N-assimilating enzymes of broccoli (Brassica oleracea L. var. Italica) plants were determined. The results showed that a reduced NO3(-) or co-provision of NO3(-) and NH4(+) could be an optimal source of inorganic N for broccoli plants. In addition, elevated [CO2] ameliorated the effect of salt exposure on the plant growth through an enhanced rate of photosynthesis, even at low N-concentration. However, NO3(-) or NO3(-)/NH4(+) co-provision display differential plant response to salt stress regarding water balance, which was associated to N metabolism. The results may contribute to our understanding of N-fertilization modes under increasing atmospheric [CO2] to cope with salt stress, where variations in N nutrition significantly influenced plant response. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Dynamics and sources of reduced sulfur, humic substances and dissolved organic carbon in a temperate river system affected by agricultural practices.

    Science.gov (United States)

    Marie, Lauriane; Pernet-Coudrier, Benoît; Waeles, Matthieu; Gabon, Marine; Riso, Ricardo

    2015-12-15

    Although reduced organic sulfur substances (RSS) as well as humic substances (HS) are widely suspected to play a role in, for example, metal speciation or used as a model of dissolved organic carbon (DOC) in laboratory studies, reports of their quantification in natural waters are scarce. We have examined the dynamics and sources of reduced sulfur, HS and DOC over an annual cycle in a river system affected by agricultural practices. The new differential pulse cathodic stripping voltammetry was successfully applied to measure glutathione-like compounds (GSHs), thioacetamide-like compounds (TAs) and the liquid chromatography coupled to organic detector to analyze HS and DOC at high frequency in the Penzé River (NW France). The streamflow-concentration patterns, principal components analysis and flux analysis allowed discrimination of the source of each organic compound type. Surprisingly, the two RSS and HS detected in all samples, displayed different behavior. As previously shown, manuring practice is the main source of DOC and HS in this watershed where agricultural activity is predominant. The HS were then transferred to the river systems via runoff, particularly during the spring and autumn floods, which are responsible of >60% of the annual flux. TAs had a clear groundwater source and may be formed underground, whereas GSHs displayed two sources: one aquagenic in spring and summer probably linked to the primary productivity and a second, which may be related to bacterial degradation. High sampling frequency allowed a more accurate assessment of the flux values which were 280 tC y(-1) for DOC representing 20 kg C ha(-1) y(-1). HS, TAs and GSHs fluxes represented 60, 13, and 4% of the total annual DOC export, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a single-batch fermentation system.

    Science.gov (United States)

    Sasaki, Kengo; Sasaki, Daisuke; Okai, Naoko; Tanaka, Kosei; Nomoto, Ryohei; Fukuda, Itsuko; Yoshida, Ken-Ichi; Kondo, Akihiko; Osawa, Ro

    2017-01-01

    Accumulating evidence suggests that dietary taurine (2-aminoethanesulfonic acid) exerts beneficial anti-inflammatory effects in the large intestine. In this study, we investigated the possible impact of taurine on human colonic microbiota using our single-batch fermentation system (Kobe University Human Intestinal Microbiota Model; KUHIMM). Fecal samples from eight humans were individually cultivated with and without taurine in the KUHIMM. The results showed that taurine remained largely undegraded after 30 h of culturing in the absence of oxygen, although some 83% of the taurine was degraded after 30 h of culturing under aerobic conditions. Diversity in bacterial species in the cultures was analyzed by 16S rRNA gene sequencing, revealing that taurine caused no significant change in the diversity of the microbiota; both operational taxonomic unit and Shannon-Wiener index of the cultures were comparable to those of the respective source fecal samples. In addition, principal coordinate analysis indicated that taurine did not alter the composition of bacterial species, since the 16S rRNA gene profile of bacterial species in the original fecal sample was maintained in each of the cultures with and without taurine. Furthermore, metabolomic analysis revealed that taurine did not affect the composition of short-chain fatty acids produced in the cultures. These results, under these controlled but artificial conditions, suggested that the beneficial anti-inflammatory effects of dietary taurine in the large intestine are independent of the intestinal microbiota. We infer that dietary taurine may act directly in the large intestine to exert anti-inflammatory effects.

  7. Dental fluorosis, nutritional status, kidney damage, and thyroid function along with bone metabolic indicators in school-going children living in fluoride-affected hilly areas of Doda district, Jammu and Kashmir, India.

    Science.gov (United States)

    Khandare, Arjun L; Gourineni, Shankar Rao; Validandi, Vakdevi

    2017-10-23

    A case-control study was undertaken among the school children aged 8-15 years to know the presence and severity of dental fluorosis, nutrition and kidney status, and thyroid function along with bone metabolic indicators in Doda district situated at high altitude where drinking water was contaminated and heat stress. This study included 824 participants with an age of 8-15 years. The results of the study reviled that dental fluorosis was significantly higher in affected than control area children. Urinary fluoride was significantly higher (p school children. Nutritional status of affected children was lower than control area children. The chronic kidney damage (CKD) was higher in affected than control school children. Thyroid function was affected more in affected than control area schools. Serum creatinine, total alkaline phosphatase, parathyroid hormone, 1, 25(OH) 2 vitamin D, and osteocalcin were significantly higher in affected school children (p school children, whereas there was no significant difference in triiodothyronine (T3), thyroxine (T4), and 25-OH vitamin D among the two groups. There was a significant decrease in thyroid-stimulating hormone (TSH) in the affected area school children compared to control. In conclusion, fluorotic area school children were more affected with dental fluorosis, kidney damage, along and some bone indicators as compared to control school children.

  8. Peroxisome Proliferator-Activated Receptor-alpha Gene Level Differently Affects Lipid Metabolism and Inflammation in Apolipoprotein E2 Knock-In Mice

    NARCIS (Netherlands)

    Lalloyer, Fanny; Wouters, Kristiaan; Baron, Morgane; Caron, Sandrine; Vallez, Emmanuelle; Vanhoutte, Jonathan; Bauge, Eric; Shiri-Sverdlov, Ronit; Hofker, Marten; Staels, Bart; Tailleux, Anne

    Objective-Peroxisome proliferator-activated receptor-alpha (PPAR alpha) is a ligand-activated transcription factor that controls lipid metabolism and inflammation. PPAR alpha is activated by fibrates, hypolipidemic drugs used in the treatment of dyslipidemia. Previous studies assessing the influence

  9. Diets supplemented with seaweed affect metabolic rate, innate immune, and antioxidant responses, but not individual growth rate in European seabass (Dicentrarchus labrax)

    DEFF Research Database (Denmark)

    Peixoto, Maria J.; Svendsen, Jon Christian; Malte, Hans

    2016-01-01

    This study investigated the effects of seaweed dietary supplementation on measures of fish performance including aerobic metabolism, digestive enzymes activity, innate immune status, oxidative damage, and growth rate using European seabass (Dicentrarchus labrax). Fish were fed for 49 days with th...

  10. Relationship between the degree of insulin resistance during late gestation and postpartum performance in dairy cows and factors that affect growth and metabolic status of their calves.

    Science.gov (United States)

    Kawashima, Chiho; Munakata, Megumi; Shimizu, Takashi; Miyamoto, Akio; Kida, Katsuya; Matsui, Motozumi

    2016-06-01

    This study aimed to investigate the effects of insulin resistance (IR) during the close-up dry period on the metabolic status and performance of dairy cows as well as to determine the effects on body weight (BW) and metabolic status of their calves. An insulin tolerance test (ITT) was conducted by administering 0.05 IU/kg BW of insulin to 34 multiparous Holstein cows at 3 weeks prepartum. Blood samples were collected at 0, 30, 45 and 60 min after insulin injection, and cows were divided into two groups based on the time required for glucose to reach the minimum levels [non-IR (NIR), 45 min (n=28); and IR, 60 min (n=6)]. Blood or milk sampling and body condition score (BCS) estimation were performed twice weekly during the experimental period. Blood samples from calves were collected immediately after birth. Cows with IR showed lower BCS (Pinsulin-like growth factor-I concentration (Pinsulin concentration (Pdairy cows is related to postpartum metabolic status and performance along with growth and metabolic status of their calves.

  11. High intake of regular-fat cheese compared with reduced-fat cheese does not affect LDL cholesterol or risk markers of the metabolic syndrome

    DEFF Research Database (Denmark)

    Raziani, Farinaz; Tholstrup, Tine; Kristensen, Marlene Dahlwad

    2016-01-01

    was to compare the effects of regular-fat cheese with an equal amount of reduced-fat cheese and an isocaloric amount of carbohydrate-rich foods on LDL cholesterol and risk factors for the metabolic syndrome (MetS). DESIGN: The study was a 12-wk randomized parallel intervention preceded by a 2-wk run-in period...

  12. A neuronal lactate uptake inhibitor slows recovery of extracellular ion concentration changes in the hippocampal CA3 region by affecting energy metabolism.

    Science.gov (United States)

    Angamo, Eskedar Ayele; Rösner, Joerg; Liotta, Agustin; Kovács, Richard; Heinemann, Uwe

    2016-11-01

    Astrocyte-derived lactate supports pathologically enhanced neuronal metabolism, but its role under physiological conditions is still a matter of debate. Here, we determined the contribution of astrocytic neuronal lactate shuttle for maintenance of ion homeostasis and energy metabolism. We tested for the effects of α-cyano-4-hydroxycinnamic acid (4-CIN), which could interfere with energy metabolism by blocking monocarboxylate-transporter 2 (MCT2)-mediated neuronal lactate uptake, on evoked potentials, stimulus-induced changes in K + , Na + , Ca 2+ , and oxygen concentrations as well as on changes in flavin adenine dinucleotide (FAD) autofluorescence in the hippocampal area CA3. MCT2 blockade by 4-CIN reduced synaptically evoked but not antidromic population spikes. This effect was dependent on the activation of K ATP channels indicating reduced neuronal ATP synthesis. By contrast, lactate receptor activation by 3,5-dihydroxybenzoic acid (3,5-DHBA) resulted in increased antidromic and orthodromic population spikes suggesting that 4-CIN effects are not mediated by lactate accumulation and subsequent activation of lactate receptors. Recovery kinetics of all ion transients were prolonged and baseline K + concentration became elevated by blockade of lactate uptake. Lactate contributed to oxidative metabolism as both baseline respiration and stimulus-induced changes in Po 2 were decreased, while FAD fluorescence increased likely due to a reduced conversion of FAD into FADH 2 These data suggest that lactate shuttle contributes to regulation of ion homeostatsis and synaptic signaling even in the presence of ample glucose. Copyright © 2016 the American Physiological Society.

  13. Fibroblast growth factor 21 is elevated in metabolically unhealthy obesity and affects lipid deposition, adipogenesis, and adipokine secretion of human abdominal subcutaneous adipocytes

    Directory of Open Access Journals (Sweden)

    Lucia Berti

    2015-07-01

    Conclusions: The hepatokine FGF21 exerts weak lipogenic and anti-adipogenic actions and marked adiponectin-suppressive and leptin and interleukin-6 release-promoting effects in human differentiating preadipocytes. Together with the higher serum concentrations in MUHO subjects, our findings reveal FGF21 as a circulating factor promoting the development of metabolically unhealthy adipocytes.

  14. Dietary cranberry, blueberry, and black raspberry affects the development of dyslipidemia and insulin insensitivity associated with metabolic syndrome in high fructose fed rats

    Science.gov (United States)

    Effects of feeding cranberry, blueberry, and black raspberry powder on selected parameters of metabolic syndrome were investigated in 40 growing male Sprague Dawley rats. Animals were divided into five dietary treatments of 1) control AIN93G diet, 2) high fructose (65% by weight, HF) diet, and 3-5) ...

  15. The promising anticancer drug 3-bromopyruvate is metabolized through glutathione conjugation which affects chemoresistance and clinical practice: An evidence-based view.

    Science.gov (United States)

    El Sayed, Salah Mohamed; Baghdadi, Hussam; Zolaly, Mohammed; Almaramhy, Hamdi H; Ayat, Mongi; Donki, Jagadish G

    2017-03-01

    3-Bromopyruvate (3BP) is a promising effective anticancer drug against many different tumors in children and adults. 3BP exhibited strong anticancer effects in both preclinical and human studies e.g. energy depletion, oxidative stress, anti-angiogenesis, anti-metastatic effects, targeting cancer stem cells and antagonizing the Warburg effect. There is no report about 3BP metabolism to guide researchers and oncologists to improve clinical practice and prevent drug resistance. In this article, we provide evidences that 3BP is metabolized through glutathione (GSH) conjugation as a novel report where 3BP was confirmed to be attached to GSH followed by permanent loss of pharmacological effects in a picture similar to cisplatin. Both cisplatin and 3BP are alkylating agents. Reported decrease in endogenous cellular GSH content upon 3BP treatment was confirmed to be due to the formation of 3BP-GSH complex i.e. GSH consumption for conjugation with 3BP. Cancer cells having high endogenous GSH exhibit resistance to 3BP while 3BP sensitive cells acquire resistance upon adding exogenous GSH. Being a thiol blocker, 3BP may attack thiol groups in tissues and serum proteins e.g. albumin and GSH. That may decrease 3BP-induced anticancer effects and the functions of those proteins. We proved here that 3BP metabolism is different from metabolism of hydroxypyruvate that results from metabolism of D-serine using D-amino acid oxidase. Clinically, 3BP administration should be monitored during albumin infusion and protein therapy where GSH should be added to emergency medications. GSH exerts many physiological effects and is safe for human administration both orally and intravenously. Based on that, reported GSH-induced inhibition of 3BP effects makes 3BP effects reversible, easily monitored and easily controlled. This confers a superiority of 3BP over many anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Axling Ulrika

    2012-11-01

    Full Text Available Abstract Background Type 2 diabetes is associated with obesity, ectopic lipid accumulation and low-grade inflammation. A dysfunctional gut microbiota has been suggested to participate in the pathogenesis of the disease. Green tea is rich in polyphenols and has previously been shown to exert beneficial metabolic effects. Lactobacillus plantarum has the ability to metabolize phenolic acids. The health promoting effect of whole green tea powder as a prebiotic compound has not been thoroughly investigated previously. Methods C57BL/6J mice were fed a high-fat diet with or without a supplement of 4% green tea powder (GT, and offered drinking water supplemented with Lactobacillus plantarum DSM 15313 (Lp or the combination of both (Lp + GT for 22 weeks. Parameters related to obesity, glucose tolerance, lipid metabolism, hepatic steatosis and inflammation were examined. Small intestinal tissue and caecal content were collected for bacterial analysis. Results Mice in the Lp + GT group had significantly more Lactobacillus and higher diversity of bacteria in the intestine compared to both mice in the control and the GT group. Green tea strongly reduced the body fat content and hepatic triacylglycerol and cholesterol accumulation. The reduction was negatively correlated to the amount of Akkermansia and/or the total amount of bacteria in the small intestine. Markers of inflammation were reduced in the Lp + GT group compared to control. PLS analysis of correlations between the microbiota and the metabolic variables of the individual mice showed that relatively few components of the microbiota had high impact on the correlation model. Conclusions Green tea powder in combination with a single strain of Lactobacillus plantarum was able to promote growth of Lactobacillus in the intestine and to attenuate high fat diet-induced inflammation. In addition, a component of the microbiota, Akkermansia, correlated negatively with several metabolic parameters

  17. Do perfluoroalkyl substances affect metabolic function and plasma lipids?--Analysis of the 2007-2009, Canadian Health Measures Survey (CHMS) Cycle 1.

    Science.gov (United States)

    Fisher, Mandy; Arbuckle, Tye E; Wade, Mike; Haines, Douglas A

    2013-02-01

    Perfluorinated compounds (PFCs) are man-made chemicals that are heat stable, non-flammable and able to repel both water and oils. Biomonitoring research shows global distribution in human, animal and aquatic environments of these chemicals. PFCs have been shown to activate the peroxisome proliferator-activated receptors which play a large role in metabolism and the regulation of energy homeostasis. Previous epidemiological research has also suggested a potential role of PFCs on lipid and glucose metabolism. The objectives of this study were to examine the association between the levels of perfluorinated compounds perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonate (PFHxS) in plasma and metabolic function and plasma lipid levels. Using cross-sectional data from the Canadian Health Measures Survey (Cycle 1 2007-2009) we examined the association in adults between plasma levels of PFOA, PFOS and PFHxS (n=2700) on cholesterol outcomes, metabolic syndrome and glucose homeostasis using multivariate linear and logistic regression models. We found some evidence of a significant association between perfluoroalkyl substances, notably PFHxS, with total cholesterol (TC), low-density lipoprotein cholesterol (LDL), total cholesterol/high density lipoprotein cholesterol ratio (TC/HDL) and non-HDL cholesterol as well as an elevated odds of high cholesterol. We found some associations with PFOA and PFOS in our unweighted models but these results did not remain significant after weighting for sampling strategy. We found no association with metabolic syndrome, or glucose homeostasis parameters. This study showed lower levels of PFOA and PFOS and slightly higher levels of PFHxS than other published population studies. Our results did not give significant evidence to support the association with cholesterol outcomes with PFOS and PFOA. However, we did observe several significant associations with the PFHxS and cholesterol outcomes (LDL, TC, NON

  18. Effects of nonstructural carbohydrates and protein sources on intake, apparent total tract digestibility, and ruminal metabolism in vivo and in vitro with high-concentrate beef cattle diets.

    Science.gov (United States)

    Rotger, A; Ferret, A; Calsamiglia, S; Manteca, X

    2006-05-01

    To investigate the effects of synchronizing nonstructural carbohydrate (NSC) and protein degradation on intake and rumen microbial fermentation, four ruminally fistulated Holstein heifers (BW = 132.3 +/- 1.61 kg) fed high-concentrate diets were assigned to a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments studied in vivo and in vitro with a dual-flow continuous culture system. Two NSC sources (barley and corn) and 2 protein sources [soybean meal (SBM) and sunflower meal (SFM)] differing in their rate and extent of ruminal degradation were combined resulting in a synchronized rapid fermentation diet (barley-SFM), a synchronized slow fermentation diet (corn-SBM), and 2 unsynchronized diets with a rapidly and a slowly fermenting component (barley-SBM, and corn-SFM). In vitro, the fermentation profile was studied at a constant pH of 6.2, and at a variable pH with 12 h at pH 6.4 and 12 h at pH 5.8. Synchronization tended to result in greater true OM digestion (P = 0.072), VFA concentration (P = 0.067), and microbial N flow (P = 0.092) in vitro, but had no effects on in vivo fermentation pattern or on apparent total tract digestibility. The NSC source affected the efficiency of microbial protein synthesis in vitro, tending to be greater (P = 0.07) for barley-based diets, and in vivo, the NSC source tended to affect intake. Dry matter and OM intake tended to be greater (P > or = 0.06) for corn- than barley-based diets. Ammonia N concentration was lower in vitro (P = 0.006) and tended to be lower in vivo (P = 0.07) for corn- than barley-based diets. In vitro, pH could be reduced from 6.4 to 5.8 for 12 h/d without any effect on ruminal fermentation or microbial protein synthesis. In summary, ruminal synchronization seemed to have positive effects on in vitro fermentation, but in vivo recycling of endogenous N or intake differences could compensate for these effects.

  19. Dietary protein sources differentially affect microbiota, mTOR activity and transcription of mTOR signaling pathways in the small intestine.

    Directory of Open Access Journals (Sweden)

    Soumya K Kar

    Full Text Available Dietary protein sources can have profound effects on host-microbe interactions in the gut that are critically important for immune resilience. However more knowledge is needed to assess the impact of different protein sources on gut and animal health. Thirty-six wildtype male C57BL/6J mice of 35 d age (n = 6/group; mean ± SEM body weight 21.9 ± 0.25 g were randomly assigned to groups fed for four weeks with semi synthetic diets prepared with one of the following protein sources containing (300 g/kg as fed basis: soybean meal (SBM, casein, partially delactosed whey powder, spray dried plasma protein, wheat gluten meal and yellow meal worm. At the end of the experiment, mice were sacrificed to collect ileal tissue to acquire gene expression data, and mammalian (mechanistic target of rapamycin (mTOR activity, ileal digesta to study changes in microbiota and serum to measure cytokines and chemokines. By genome-wide transcriptome analysis, we identified fourteen high level regulatory genes that are strongly affected in SBM-fed mice compared to the other experimental groups. They mostly related to the mTOR pathway. In addition, an increased (P < 0.05 concentration of granulocyte colony-stimulating factor was observed in serum of SBM-fed mice compared to other dietary groups. Moreover, by 16S rRNA sequencing, we observed that SBM-fed mice had higher (P < 0.05 abundances of Bacteroidales family S24-7, compared to the other dietary groups. We showed that measurements of genome-wide expression and microbiota composition in the mouse ileum reveal divergent responses to diets containing different protein sources, in particular for a diet based on SBM.

  20. Hypoxia-induced decrease of UCP3 gene expression in rat heart parallels metabolic gene switching but fails to affect mitochondrial respiratory coupling.

    Science.gov (United States)

    Essop, M Faadiel; Razeghi, Peter; McLeod, Chris; Young, Martin E; Taegtmeyer, Heinrich; Sack, Michael N

    2004-02-06

    Mitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) are postulated to contribute to antioxidant defense, nutrient partitioning, and energy efficiency in the heart. To distinguish isotype function in response to metabolic stress we measured cardiac mitochondrial function and cardiac UCP gene expression following chronic hypobaric hypoxia. Isolated mitochondrial O(2) consumption and ATP synthesis rate were reduced but respiratory coupling was unchanged compared to normoxic groups. Concurrently, left ventricular UCP3 mRNA levels were significantly decreased with hypoxia (pheart as opposed to uncoupling of mitochondria. Moreover, the divergent hypoxia-induced regulation of UCP2 and UCP3 supports distinct mitochondrial regulatory functions of these inner mitochondrial membrane proteins in the heart in response to metabolic stress.

  1. Environmental and nutritional factors that affect growth and metabolism of the pneumococcal serotype 2 strain D39 and its nonencapsulated derivative strain R6.

    Directory of Open Access Journals (Sweden)

    Sandra M Carvalho

    Full Text Available Links between carbohydrate metabolism and virulence in Streptococcus pneumoniae have been recurrently established. To investigate these links further we developed a chemically defined medium (CDM and standardized growth conditions that allowed for high growth yields of the related pneumococcal strains D39 and R6. The utilization of the defined medium enabled the evaluation of different environmental and nutritional factors on growth and fermentation patterns under controlled conditions of pH, temperature and gas atmosphere. The same growth conditions impacted differently on the nonencapsulated R6, and its encapsulated progenitor D39. A semi-aerobic atmosphere and a raised concentration of uracil, a fundamental component of the D39 capsule, improved considerably D39 growth rate and biomass. In contrast, in strain R6, the growth rate was enhanced by strictly anaerobic conditions and uracil had no effect on biomass. In the presence of oxygen, the difference in the growth rates was mainly attributed to a lower activity of pyruvate oxidase in strain D39. Our data indicate an intricate connection between capsule production in strain D39 and uracil availability. In this study, we have also successfully applied the in vivo NMR technique to study sugar metabolism in S. pneumoniae R6. Glucose consumption, end-products formation and evolution of intracellular metabolite pools were monitored online by (13C-NMR. Additionally, the pools of NTP and inorganic phosphate were followed by (31P-NMR after a pulse of glucose. These results represent the first metabolic profiling data obtained non-invasively for S. pneumoniae, and pave the way to a better understanding of regulation of central metabolism.

  2. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats

    OpenAIRE

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-01-01

    Aim To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca- Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. Methods At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed ei...

  3. Not Only Glycaemic But Also Other Metabolic Factors Affect T Regulatory Cell Counts and Proinflammatory Cytokine Levels in Women with Type 1 Diabetes

    Czech Academy of Sciences Publication Activity Database

    Stechová, K.; Sklenarova-Labikova, J.; Kratzerova, T.; Pithová, P.; Filipp, Dominik

    zima, zima (2017), č. článku 5463273. ISSN 2314-6745 R&D Projects: GA ČR(CZ) GBP302/12/G101 Institutional support: RVO:68378050 Keywords : blood mononuclear-cells * vitamin-d * disease * autoimmunity * inflammation * obesity * marker * foxp3 Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Endocrinology and metabolism (including diabetes , hormones) Impact factor: 2.717, year: 2016

  4. Activation of the Tor/Myc signaling axis in intestinal stem and progenitor cells affects longevity, stress resistance and metabolism in drosophila.

    Science.gov (United States)

    Strilbytska, Olha M; Semaniuk, Uliana V; Storey, Kenneth B; Edgar, Bruce A; Lushchak, Oleh V

    2017-01-01

    The TOR (target of rapamycin) signaling pathway and the transcriptional factor Myc play important roles in growth control. Myc acts, in part, as a downstream target of TOR to regulate the activity and functioning of stem cells. Here we explore the role of TOR-Myc axis in stem and progenitor cells in the regulation of lifespan, stress resistance and metabolism in Drosophila. We found that both overexpression of rheb and myc-rheb in midgut stem and progenitor cells decreased the lifespan and starvation resistance of flies. TOR activation caused higher survival under malnutrition conditions. Furthermore, we demonstrate gut-specific activation of JAK/STAT and insulin signaling pathways to control gut integrity. Both genetic manipulations had an impact on carbohydrate metabolism and transcriptional levels of metabolic genes. Our findings indicate that activation of the TOR-Myc axis in midgut stem and progenitor cells influences a variety of traits in Drosophila. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    International Nuclear Information System (INIS)

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin; Berger, Claudia; Kunath, Anne; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-01-01

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA 1c , triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA 1c , triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition

  6. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    Energy Technology Data Exchange (ETDEWEB)

    Hesselbarth, Nico; Pettinelli, Chiara [Department of Medicine, University of Leipzig, D-04103 Leipzig (Germany); Gericke, Martin [Institute of Anatomy, University of Leipzig, D-04103 Leipzig (Germany); Berger, Claudia [IFB Adiposity Disease, Core Unit Animal Models, University of Leipzig, D-04103 Leipzig (Germany); Kunath, Anne [German Center for Diabetes Research (DZD), Leipzig (Germany); Stumvoll, Michael; Blüher, Matthias [Department of Medicine, University of Leipzig, D-04103 Leipzig (Germany); Klöting, Nora, E-mail: nora.kloeting@medizin.uni-leipzig.de [IFB Adiposity Disease, Core Unit Animal Models, University of Leipzig, D-04103 Leipzig (Germany)

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.

  7. L-Arginine Affects Aerobic Capacity and Muscle Metabolism in MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes Syndrome.

    Directory of Open Access Journals (Sweden)

    Lance H Rodan

    Full Text Available To study the effects of L-arginine (L-Arg on total body aerobic capacity and muscle metabolism as assessed by (31Phosphorus Magnetic Resonance Spectroscopy ((31P-MRS in patients with MELAS (Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes syndrome.We performed a case control study in 3 MELAS siblings (m.3243A>G tRNA(leu(UUR in MTTL1 gene with different % blood mutant mtDNA to evaluate total body maximal aerobic capacity (VO(2peak using graded cycle ergometry and muscle metabolism using 31P-MRS. We then ran a clinical trial pilot study in MELAS sibs to assess response of these parameters to single dose and a 6-week steady-state trial of oral L-Arginine.At baseline (no L-Arg, MELAS had lower serum Arg (p = 0.001. On 3(1P-MRS muscle at rest, MELAS subjects had increased phosphocreatine (PCr (p = 0.05, decreased ATP (p = 0.018, and decreased intracellular Mg(2+ (p = 0.0002 when compared to matched controls. With L-arginine therapy, the following trends were noted in MELAS siblings on cycle ergometry: (1 increase in mean % maximum work at anaerobic threshold (AT (2 increase in % maximum heart rate at AT (3 small increase in VO(2peak. On (31P-MRS the following mean trends were noted: (1 A blunted decrease in pH after exercise (less acidosis (2 increase in Pi/PCr ratio (ADP suggesting increased work capacity (3 a faster half time of PCr recovery (marker of mitochondrial activity following 5 minutes of moderate intensity exercise (4 increase in torque.These results suggest an improvement in aerobic capacity and muscle metabolism in MELAS subjects in response to supplementation with L-Arg. Intramyocellular hypomagnesemia is a novel finding that warrants further study.Class III evidence that L-arginine improves aerobic capacity and muscle metabolism in MELAS subjects.ClinicalTrials.gov NCT01603446.

  8. L-Arginine Affects Aerobic Capacity and Muscle Metabolism in MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes) Syndrome.

    Science.gov (United States)

    Rodan, Lance H; Wells, Greg D; Banks, Laura; Thompson, Sara; Schneiderman, Jane E; Tein, Ingrid

    2015-01-01

    To study the effects of L-arginine (L-Arg) on total body aerobic capacity and muscle metabolism as assessed by (31)Phosphorus Magnetic Resonance Spectroscopy ((31)P-MRS) in patients with MELAS (Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes) syndrome. We performed a case control study in 3 MELAS siblings (m.3243A>G tRNA(leu(UUR)) in MTTL1 gene) with different % blood mutant mtDNA to evaluate total body maximal aerobic capacity (VO(2peak)) using graded cycle ergometry and muscle metabolism using 31P-MRS. We then ran a clinical trial pilot study in MELAS sibs to assess response of these parameters to single dose and a 6-week steady-state trial of oral L-Arginine. At baseline (no L-Arg), MELAS had lower serum Arg (p = 0.001). On 3(1)P-MRS muscle at rest, MELAS subjects had increased phosphocreatine (PCr) (p = 0.05), decreased ATP (p = 0.018), and decreased intracellular Mg(2+) (p = 0.0002) when compared to matched controls. With L-arginine therapy, the following trends were noted in MELAS siblings on cycle ergometry: (1) increase in mean % maximum work at anaerobic threshold (AT) (2) increase in % maximum heart rate at AT (3) small increase in VO(2peak). On (31)P-MRS the following mean trends were noted: (1) A blunted decrease in pH after exercise (less acidosis) (2) increase in Pi/PCr ratio (ADP) suggesting increased work capacity (3) a faster half time of PCr recovery (marker of mitochondrial activity) following 5 minutes of moderate intensity exercise (4) increase in torque. These results suggest an improvement in aerobic capacity and muscle metabolism in MELAS subjects in response to supplementation with L-Arg. Intramyocellular hypomagnesemia is a novel finding that warrants further study. Class III evidence that L-arginine improves aerobic capacity and muscle metabolism in MELAS subjects. ClinicalTrials.gov NCT01603446.

  9. The symbiotic relationship between dominant canopy trees and soil microbes affects the nitrogen source utilization of co-existing understory trees

    Science.gov (United States)

    Iwaoka, C.; Hyodo, F.; Taniguchi, T.; Shi, W.; Du, S.; Yamanaka, N.; Tateno, R.

    2017-12-01

    The symbiotic relationship between dominant canopy trees and soil microbes such as mycorrhiza or nitrogen (N) fixer are important determinants of soil N dynamics of a forest. However, it is not known how and to what extent the symbiotic relationship of dominant canopy trees with soil microbes affect the N source of co-existing trees in forest. We measured the δ15N of surface soils (0-10 cm), leaves, and roots of the dominant canopy trees and common understory trees in an arbuscular mycorrhizal N-fixing black locust (Robinia pseudoacacia) plantation and an ectomycorrhizal oak (Quercus liaotungensis) natural forest in a China dryland. We also analyzed the soil dissolved N content in soil extracts and absorbed by ion exchange resin, and soil ammonia-oxidizer abundance using real-time PCR. The δ15N of soil and leaves were higher in the black locust forest than in the oak forest, although the δ15N of fine roots was similar in the two forests, in co-existing understory trees as well as dominant canopy trees. Accordingly, the δ15N of leaves was similar to or higher than that of fine roots in the black locust forest, whereas it was consistently lower than that of fine roots in the oak forest. In the black locust forest, the soil dissolved organic N and ammonium N contents were less abundant but the nitrate N contents in soils and absorbed by the ion exchange resin and ammonia-oxidizer abundance were greater, due to N fixation or less uptake of organic N from arbuscular mycorrhiza. In contrast, the soil dissolved organic N and ammonium N contents were more abundant in the oak forest, whereas the N content featured very low nitrate, due to ectomycorrhizal ability to access organic N. These results suggest that the main N source is nitrate N in the black locust forest, but dissolved organic N or ammonium N in the oak forest. N fixation or high N loss due to high N availability would cause high δ15N in soil and leaves in black locust forest. On the other hand, low soil N

  10. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes

    DEFF Research Database (Denmark)

    Juul, Trine Maxel; Smidt, Kamille; Larsen, Agnete

    2015-01-01

    of clinical importance, including body mass index, triglyceride, and insulin resistance, were inversely correlated with ZIP14. During early adipogensis an up-regulation of ZIP14 gene expression was found. PPARγ gene expression was positively correlated with the ZIP14 gene expression in both adipose tissue......BACKGROUND: The expansion and function of adipose tissue are important during the development of insulin resistance and inflammation in obesity. Zinc dyshomeostasis is common in obese individuals. In the liver, zinc influx transporter ZIP14, affects proliferation and glucose metabolism but the role...

  11. Exercise differentially affects metabolic functions and white adipose tissue in female letrozole- and dihydrotestosterone-induced mouse models of polycystic ovary syndrome.

    Science.gov (United States)

    Marcondes, Rodrigo R; Maliqueo, Manuel; Fornes, Romina; Benrick, Anna; Hu, Min; Ivarsson, Niklas; Carlström, Mattias; Cushman, Samuel W; Stenkula, Karin G; Maciel, Gustavo A R; Stener-Victorin, Elisabet

    2017-06-15

    Here we hypothesized that exercise in dihydrotestosterone (DHT) or letrozole (LET)-induced polycystic ovary syndrome mouse models improves impaired insulin and glucose metabolism, adipose tissue morphology, and expression of genes related to adipogenesis, lipid metabolism, Notch pathway and browning in inguinal and mesenteric fat. DHT-exposed mice had increased body weight, increased number of large mesenteric adipocytes. LET-exposed mice displayed increased body weight and fat mass, decreased insulin sensitivity, increased frequency of small adipocytes and increased expression of genes related to lipolysis in mesenteric fat. In both models, exercise decreased fat mass and inguinal and mesenteric adipose tissue expression of Notch pathway genes, and restored altered mesenteric adipocytes morphology. In conclusion, exercise restored mesenteric adipocytes morphology in DHT- and LET-exposed mice, and insulin sensitivity and mesenteric expression of lipolysis-related genes in LET-exposed mice. Benefits could be explained by downregulation of Notch, and modulation of browning and lipolysis pathways in the adipose tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides).

    Science.gov (United States)

    Ślesak, Ireneusz; Szechyńska-Hebda, Magdalena; Fedak, Halina; Sidoruk, Natalia; Dąbrowska-Bronk, Joanna; Witoń, Damian; Rusaczonek, Anna; Antczak, Andrzej; Drożdżek, Michał; Karpińska, Barbara; Karpiński, Stanisław

    2015-07-01

    The phytoalexin deficient 4 (PAD4) gene in Arabidopsis thaliana (AtPAD4) is involved in the regulation of plant--pathogen interactions. The role of PAD4 in woody plants is not known; therefore, we characterized its function in hybrid aspen and its role in reactive oxygen species (ROS)-dependent signalling and wood development. Three independent transgenic lines with different suppression levels of poplar PAD expression were generated. All these lines displayed deregulated ROS metabolism, which was manifested by an increased H2O2 level in the leaves and shoots, and higher activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) in the leaves in comparison to the wild-type plants. However, no changes in non-photochemical quenching (NPQ) between the transgenic lines and wild type were observed in the leaves. Moreover, changes in the ROS metabolism in the pad4 transgenic lines positively correlated with wood formation. A higher rate of cell division, decreased tracheid average size and numbers, and increased cell wall thickness were observed. The results presented here suggest that the Populus tremula × tremuloides PAD gene might be involved in the regulation of cellular ROS homeostasis and in the cell division--cell death balance that is associated with wood development. © 2014 John Wiley & Sons Ltd.

  13. Non-Targeted Metabolomics Analysis of Golden Retriever Muscular Dystrophy-Affected Muscles Reveals Alterations in Arginine and Proline Metabolism, and Elevations in Glutamic and Oleic Acid In Vivo

    Science.gov (United States)

    Abdullah, Muhammad; Kornegay, Joe N.; Honcoop, Aubree; Parry, Traci L.; Balog-Alvarez, Cynthia J.; Muehlbauer, Michael J.; Newgard, Christopher B.; Patterson, Cam

    2017-01-01

    Background: Like Duchenne muscular dystrophy (DMD), the Golden Retriever Muscular Dystrophy (GRMD) dog model of DMD is characterized by muscle necrosis, progressive paralysis, and pseudohypertrophy in specific skeletal muscles. This severe GRMD phenotype includes moderate atrophy of the biceps femoris (BF) as compared to unaffected normal dogs, while the long digital extensor (LDE), which functions to flex the tibiotarsal joint and serves as a digital extensor, undergoes the most pronounced atrophy. A recent microarray analysis of GRMD identified alterations in genes associated with lipid metabolism and energy production. Methods: We, therefore, undertook a non-targeted metabolomics analysis of the milder/earlier stage disease GRMD BF muscle versus the more severe/chronic LDE using GC-MS to identify underlying metabolic defects specific for affected GRMD skeletal muscle. Results: Untargeted metabolomics analysis of moderately-affected GRMD muscle (BF) identified eight significantly altered metabolites, including significantly decreased stearamide (0.23-fold of controls, p = 2.89 × 10−3), carnosine (0.40-fold of controls, p = 1.88 × 10−2), fumaric acid (0.40-fold of controls, p = 7.40 × 10−4), lactamide (0.33-fold of controls, p = 4.84 × 10−2), myoinositol-2-phosphate (0.45-fold of controls, p = 3.66 × 10−2), and significantly increased oleic acid (1.77-fold of controls, p = 9.27 × 10−2), glutamic acid (2.48-fold of controls, p = 2.63 × 10−2), and proline (1.73-fold of controls, p = 3.01 × 10−2). Pathway enrichment analysis identified significant enrichment for arginine/proline metabolism (p = 5.88 × 10−4, FDR 4.7 × 10−2), where alterations in L-glutamic acid, proline, and carnosine were found. Additionally, multiple Krebs cycle intermediates were significantly decreased (e.g., malic acid, fumaric acid, citric/isocitric acid, and succinic acid), suggesting that altered energy metabolism may be underlying the observed GRMD BF muscle

  14. Positive Correlation of Serum Adiponectin with Lipid Profile in Patients with Type 2 Diabetes Mellitus is Affected by Metabolic Syndrome Status.

    Science.gov (United States)

    Eslamian, Mohammad; Mohammadinejad, Payam; Aryan, Zahra; Nakhjavani, Manouchehr; Esteghamati, Alireza

    2016-04-01

    Type-2 diabetes mellitus (DM) and Metabolic syndrome (MetS) are both associated with dyslipidemia which may lead to development of vascular complications. Adiponectin is an anti-inflammatory protein synthesized by the adipose tissue. There is controversy regarding the association of adiponectin with lipid profile. To evaluate the correlation between serum adiponectin concentration and metabolic profile in patients with type-2 DM. A single center cross-sectional study was conducted on 173 patients with type-2 DM (82 males and 91 females). Plasma adiponectin concentration, lipid profile, glucose profile, and anthropometric features were investigated. Insulin resistance was determined using Homeostasis model assessment (HOMA). Correlation of serum adiponectin with lipid profile of patients with type-2 DM was assessed. Adiponectin was negatively correlated with waist circumference (r = -0.16, P = 0.06) and positively with HbA1c (r = 0.19, P = 0.032), total cholesterol (r = 0.23, P = 0.017), LDL (r = 0.30, P = 0.001), SD-LDL (r = 0.41, P < 0.001), and SD-LDL/LDL (r = 0.22, P = 0.023). We found a positive correlation between adiponectin and total cholesterol (r = 0.27, P = 0.055), LDL (r = 0.34, P = 0.026) and SD-LDL (r = 0.41, P = 0.006) in patients with at least 3 components of MetS criteria. Correlation of adiponectin with LDL and SD-LDL remained positively significant with increasing the number of MetS components. In patients with 5 components of MetS, serum adiponectin was significantly correlated with serum triglyceride (r = 0.89). Significant interaction was observed between adiponectin and metabolic syndrome in relation to serum lipid profile. The results of the present study suggest that in patients with type-2 DM and MetS, lipid profile is strongly correlated with blood concentration of adiponectin. The strongest association was observed between serum adiponectin and LDL.

  15. Body condition score and plane of nutrition prepartum affect adipose tissue transcriptome regulators of metabolism and inflammation in grazing dairy cows during the transition period.

    Science.gov (United States)

    Vailati-Riboni, M; Kanwal, M; Bulgari, O; Meier, S; Priest, N V; Burke, C R; Kay, J K; McDougall, S; Mitchell, M D; Walker, C G; Crookenden, M; Heiser, A; Roche, J R; Loor, J J

    2016-01-01

    Recent studies demonstrating a higher incidence of metabolic disorders after calving have challenged the management practice of increasing dietary energy density during the last ~3 wk prepartum. Despite our knowledge at the whole-animal level, the tissue-level mechanisms that are altered in response to feeding management prepartum remain unclear. Our hypothesis was that prepartum body condition score (BCS), in combination with feeding management, plays a central role in the peripartum changes associated with energy balance and inflammatory state. Twenty-eight mid-lactation grazing dairy cows of mixed age and breed were randomly allocated to 1 of 4 treatment groups in a 2 × 2 factorial arrangement: 2 prepartum BCS categories (4.0 and 5.0, based on a 10-point scale; BCS4, BCS5) obtained via differential feeding management during late-lactation, and 2 levels of energy intake during the 3 wk preceding calving (75 and 125% of estimated requirements). Subcutaneous adipose tissue was harvested via biopsy at -1, 1, and 4 wk relative to parturition. Quantitative polymerase chain reaction was used to measure mRNA and microRNA (miRNA) expression of targets related to fatty acid metabolism (lipogenesis, lipolysis), adipokine synthesis, and inflammation. Both prepartum BCS and feeding management had a significant effect on mRNA and miRNA expression throughout the peripartum period. Overfed BCS5 cows had the greatest prepartum expression of fatty acid synthase (FASN) and an overall greater expression of leptin (LEP); BCS5 was also associated with greater overall adiponectin (ADIPOQ) and peroxisome proliferator-activated receptor gamma (PPARG), whereas overfeeding upregulated expression of proadipogenic miRNA. Higher postpartum expression of chemokine ligand 5 (CCL5) and the cytokines interleukin 6 (IL6) and tumor necrosis factor (TNF) was detected in overfed BCS5 cows. Feed-restricted BCS4 cows had the highest overall interleukin 1 (IL1B) expression. Prepartum feed restriction

  16. Glucose homeostasis and metabolic adaptation in the pregnant and lactating sheep are affected by the level of nutrition previously provided during her late fetal life

    DEFF Research Database (Denmark)

    Husted, Sanne Munch; Nielsen, Mette Benedicte Olaf; Blache, D.

    2008-01-01

    during lactation. There was no effect of prenatal UN on glucose tolerance during G-IGTT, however, during RG-IGTT LOW was more glucose intolerant and apparently more insulin resistant compared to NORM. In conclusion, UN during late fetal life in sheep impairs subsequent pancreatic insulin secretory...... of a feed restriction period (RG-IGTT)), and a third around peak lactation (L-IGTT). LOW had lower basal insulin concentrations during lactation, and significantly decreased absolute insulin secretion during the L-IGTT in spite of similar glucose tolerance, indicating increased insulin sensitivity in LOW...... capacity during adult life, and reduces plasticity of down-regulation of insulin secretion in response to a metabolic challenge. Furthermore, prenatal UN appears to programme mechanisms, which in young adult females can shift the insulin hypersensitivity observed during early lactation into an insulin...

  17. Dietary Whey and Casein Differentially Affect Energy Balance, Gut Hormones, Glucose Metabolism, and Taste Preference in Diet-Induced Obese Rats.

    Science.gov (United States)

    Pezeshki, Adel; Fahim, Andrew; Chelikani, Prasanth K

    2015-10-01

    Dietary whey and casein proteins decrease food intake and body weight and improve glycemic control; however, little is known about the underlying mechanisms. We determined the effects of dietary whey, casein, and a combination of the 2 on energy balance, hormones, glucose metabolism, and taste preference in rats. In Expt. 1, Obesity Prone CD (OP-CD) rats were fed a high-fat control diet (33% fat energy) for 8 wk, and then randomly assigned to 4 isocaloric dietary treatments (n = 12/group): the control treatment (CO; 14% protein energy from egg white), the whey treatment (WH; 26% whey + 14% egg white), the casein treatment (CA; 26% casein + 14% egg white), or the whey plus casein treatment (WHCA; 13% whey + 13% casein + 14% egg white) for 28 d. Measurements included food intake, energy expenditure, body composition, metabolic hormones, glucose tolerance and key tissue markers of glucose and energy metabolism. In Expt. 2, naïve OP-CD rats were randomly assigned to 3 groups (n = 8/group). During an 8 d conditioning period, each group received on alternate days either the CO or WH, CO or CA, or CO or WHCA. Subsequently, preferences for the test diets were assessed on 2 consecutive days with food intake measurements at regular intervals. In Expt. 1, food intake was decreased by 17-37% for the first 14 d in the WH and CA rats, and by 18-34% only for the first 4 d in the WHCA compared with the CO rats. Fat mass decreased by 21-28% for the WH rats and 17-33% for the CA rats from day 14 onward, but by 30% only on day 28 in WHCA rats, relative to CO rats. Thus, food intake, body weight, and fat mass decreased more rapidly in WH and CA rats than in WHCA rats. Energy expenditure in WH rats decreased for the first 4 d compared with CA and WHCA rats, and for the first 7 d compared with the CO rats. Circulating leptin, glucose-dependent insulinotropic polypeptide, interleukin 6, and glucose concentrations were lower in WH, CA, and WHCA rats than in CO rats. Plasma glucagon

  18. Pulmonary metabolism of foreign compounds: Its role in metabolic activation

    International Nuclear Information System (INIS)

    Cohen, G.M.

    1990-01-01

    The lung has the potential of metabolizing many foreign chemicals to a vast array of metabolites with different pharmacological and toxicological properties. Because many chemicals require metabolic activation in order to exert their toxicity, the cellular distribution of the drug-metabolizing enzymes in a heterogeneous tissue, such as the lung, and the balance of metabolic activation and deactivation pathways in any particular cell are key factors in determining the cellular specificity of many pulmonary toxins. Environmental factors such as air pollution, cigarette smoking, and diet markedly affect the pulmonary metabolism of some chemicals and, thereby, possibly affect their toxicity

  19. Water deficit affects primary metabolism differently in two Lolium multiflorum/Festuca arundinacea introgression forms with a distinct capacity for photosynthesis and membrane regeneration.

    Directory of Open Access Journals (Sweden)

    Dawid Perlikowski

    2016-07-01

    Full Text Available Understanding how plants respond to drought at different levels of cell metabolism is an important aspect of research on the mechanisms involved in stress tolerance. Furthermore, a dissection of drought tolerance into its crucial components by the use of plant introgression forms facilitates to analyze this trait more deeply. The important components of plant drought tolerance are the capacity for photosynthesis under drought conditions, and the ability of cellular membrane regeneration after stress cessation. Two closely related introgression forms of Lolium multiflorum/Festuca arundinacea, differing in the level of photosynthetic capacity during stress, and in the ability to regenerate their cellular membranes after stress cessation, were used as forage grass models in a primary metabolome profiling and in an evaluation of chloroplast 1,6-bisphosphate aldolase accumulation level and activity, during 11 days of water deficit, followed by 10 days of rehydration. It was revealed here that the introgression form, characterized by the ability to regenerate membranes after rehydration, contained higher amounts of proline, melibiose, galactaric acid, myo-inositol and myo-inositol-1-phosphate involved in osmoprotection and stress signaling under drought. Moreover, during the rehydration period, this form also maintained elevated accumulation le