WorldWideScience

Sample records for sour gas concentrations

  1. Corrosion of steels in sour gas environments

    International Nuclear Information System (INIS)

    Twigg, R.J.

    1984-03-01

    This report presents a study on the effects of sour gas environments on steels. Emphasis is placed on alloys commonly used in the heavy water, sour gas and refining industries. In addition, 'high strength, low alloy' steels, known as 'oil country tubular goods', are included. Reference is made to the effects of hydrogen sulphide environments on austenitic steels and on certain specialty steels. Theories of hydrogen-related cracking mechanisms are outlined with emphasis placed on sulphide stress cracking and hydrogen induced cracking in carbon and low alloy steels. Methods of controlling sulphide stress cracking and hydrogen induced cracking are addressed separately. Case histories from the heavy water, refining, and sour gas industries are used to illustrate operating experience and failure mechanisms. Finally, recommendations, based largely on the author's industrial experience, are made with respect to quality assurance and inspection requirements for sour service components. Only published literature was surveyed. Abstracts were made of all references, reviewing the major sources in detail

  2. Numerical simulation of a sour gas flare

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A. [Alberta Research Council, Devon, AB (Canada)

    2008-07-01

    Due to the limited amount of information in the literature on sour gas flares and the cost of conducting wind tunnel and field experiments on sour flares, this presentation presented a modelling project that predicted the effect of operating conditions on flare performance and emissions. The objectives of the project were to adapt an existing numerical model suitable for flare simulation, incorporate sulfur chemistry, and run simulations for a range of conditions typical of sour flares in Alberta. The study involved the use of modelling expertise at the University of Utah, and employed large eddy simulation (LES) methods to model open flames. The existing model included the prediction of turbulent flow field; hydrocarbon reaction chemistry; soot formation; and radiation heat transfer. The presentation addressed the unique features of the model and discussed whether LES could predict the flow field. Other topics that were presented included the results from a University of Utah comparison; challenges of the LES model; an example of a run time issue; predicting the impact of operating conditions; and the results of simulations. Last, several next steps were identified and preliminary results were provided. Future work will focus on reducing computation time and increasing information reporting. figs.

  3. Nature of local benefits to communities impacted by sour gas development : Public safety and sour gas recommendation 79 : Final report

    International Nuclear Information System (INIS)

    2003-09-01

    The Provincial Advisory Committee on Public Safety and Sour Gas of Alberta issued a report in December 2002, in which recommendations were made on how to improve the sour gas regulatory system and reduce the impacts of sour gas on public safety and health. Recommendation 79 of this report called for a study to determine the nature of local benefits such as property taxes and local business opportunities, to communities affected by sour gas development. The present document was prepared by a multi-stake holder committee consisting of representatives from municipal government, academia, industry associations, the provincial government, and the public. One of its objectives was to identify matters of importance to stake holders concerning the study. The committee examined three major areas: economic benefit, net financial benefit to municipalities, and impact of sour gas development on local residents. The results indicated that the province and municipalities in which sour gas activities take place benefit from these activities. All Albertans benefit somewhat, and those living in areas where the sour gas industry operates might benefit through employment or the net benefit accrued to municipal government. A detailed quantification of local benefits at the municipal level for individuals was provided in this document. A full accounting of costs or negative impacts that may affect some individuals was not provided. refs., 6 tabs

  4. Dense film polyimide membranes for aggressive sour gas feed separations

    KAUST Repository

    Kraftschik, Brian

    2013-02-01

    Dense film membranes of the copolyimide 6FDA-DAM:DABA (3:2) are studied for simultaneous removal of CO2 and H2S from sour natural gas streams. Pure and mixed gas permeation as well as pure gas sorption data are reported at 35°C and pressures up to 62bar. The H2S partial pressures used are representative of highly aggressive field operations. Penetrant-induced plasticization effects are evident at feed pressures below 1bar in pure H2S feeds; sub-Tg thermal annealing is used to effectively mitigate this effect, and these annealed films are used throughout the study. Surprisingly, H2S/CH4 selectivity nearly doubles for mixed gas testing in comparison to the pure component ideal selectivity values and approaches the level of a state-of-the-art glassy polymer, cellulose acetate (CA), at H2S partial pressures above 2bar. Furthermore, permeation experiments using a 9.95% H2S, 19.9% CO2, 70.15% CH4 mixture at low feed pressures give CO2/CH4 selectivity of up to 49-over 30% greater than the pure component selectivity for 6FDA-DAM:DABA (3:2). The overall sour gas separation performance of this polyimide is comparable to high-performance rubbery polymer membranes, which have been reported for only moderate H2S partial pressure feeds, and is superior to that for CA based on a practical combined acid gas separation efficiency metric that we introduce. Finally, methods for continued development of the current polyimide membrane material for aggressive sour gas separations are presented. © 2012 Elsevier B.V.

  5. Dense film polyimide membranes for aggressive sour gas feed separations

    KAUST Repository

    Kraftschik, Brian; Koros, William J.; Johnson, J.R.; Karvan, Oguz

    2013-01-01

    Dense film membranes of the copolyimide 6FDA-DAM:DABA (3:2) are studied for simultaneous removal of CO2 and H2S from sour natural gas streams. Pure and mixed gas permeation as well as pure gas sorption data are reported at 35°C and pressures up to 62bar. The H2S partial pressures used are representative of highly aggressive field operations. Penetrant-induced plasticization effects are evident at feed pressures below 1bar in pure H2S feeds; sub-Tg thermal annealing is used to effectively mitigate this effect, and these annealed films are used throughout the study. Surprisingly, H2S/CH4 selectivity nearly doubles for mixed gas testing in comparison to the pure component ideal selectivity values and approaches the level of a state-of-the-art glassy polymer, cellulose acetate (CA), at H2S partial pressures above 2bar. Furthermore, permeation experiments using a 9.95% H2S, 19.9% CO2, 70.15% CH4 mixture at low feed pressures give CO2/CH4 selectivity of up to 49-over 30% greater than the pure component selectivity for 6FDA-DAM:DABA (3:2). The overall sour gas separation performance of this polyimide is comparable to high-performance rubbery polymer membranes, which have been reported for only moderate H2S partial pressure feeds, and is superior to that for CA based on a practical combined acid gas separation efficiency metric that we introduce. Finally, methods for continued development of the current polyimide membrane material for aggressive sour gas separations are presented. © 2012 Elsevier B.V.

  6. Condensed Rotational Separation to upgrade sour gas

    NARCIS (Netherlands)

    Brouwers, J.J.H.; Kemenade, van H.P.

    2010-01-01

    A steadily increasing amount of newly located natural gas fields is severely contaminated with CO2 and/or H2S. Percentages of 30 % CO2/H2S or even larger are not uncommon. Fields with such high degrees of contaminant can not be economically exploited by conventional techniques based on amine

  7. Sour gas map of Alberta and British Columbia

    International Nuclear Information System (INIS)

    2000-01-01

    Geographic locations of sour gas wells in Alberta and British Columbia are shown (by geographic coordinates) on a large-size fold-out map issued as a supplement to the July issue of Oilweek Magazine. Pools are color coded based on hydrogen sulphide content. Five classes are recognized, i. e.: hydrogen sulphide content less than one percent; between one and 4.9 per cent; between five and 9.9 per cent; between ten and 29.9 per cent ; and hydrogen sulphide content exceeding 30 per cent. The locations of gas processing plants with sulphur recovery are also identified

  8. Investigating animal health effects of sour gas acid forming emissions

    International Nuclear Information System (INIS)

    Edwards, W.C.

    1992-01-01

    The effects of sour gas well blowout emissions on livestock are reviewed. Guidelines for safe drilling operations in hydrogen sulfide environments, general hazards and characteristics of hydrogen sulfide, and guidelines for field investigation into the effects of sour gas and acid emissions on livestock are discussed. A case history involving the Ross No. 2 gas well blowout of July 1985 in Rankin County, Mississippi is presented. The blowout lasted for 72 days, and at peak discharge the 500 ppM radius was ca 3.5 miles. A cattle embryo transplant operation located one half mile from the well was affected by the blowout. Examination by a local veterinarian of the cattle demonstrated eye irritation, epiphora, nasal discharge and coughing. After one and a half months of exposure, most animals showed clinical signs of a severe dry hacking cough, epiphora, dry rales over the thoracic inlet, and a bronchial popping sound over the lateral thorax. All animals had eye irritation. Of 55 animals showing signs of respiratory distress and eye irritations, 15 were still clinically ill in May of 1986. 7 refs., 1 tab

  9. A review of the implications of sour gas setbacks on the ability to develop property : public safety and sour gas recommendation 53

    International Nuclear Information System (INIS)

    2005-09-01

    All sour gas facilities in Alberta have a required setback, which is the minimum distance that must be maintained between the energy facility and a dwelling, rural housing development, urban centre or public facility. The size of the setback depends on the classification levels of the sour gas facilities. This paper reviewed the economic implications of sour gas setback restrictions for landowners with reference to Recommendation 53. The methodology of the study included a telephone and electronic mail survey to prequalify municipalities, cities and towns located in the sour gas producing regions of Alberta and the selection of 11 cases for further detailed analysis. The findings of the survey and case studies were then used to examine whether landowners were treated fairly in cases where a setback impact occurred. The frequency of setback incidents was described as common by 13 jurisdictions, occasional by 33 jurisdictions and as emerging by 30 jurisdictions. Results indicated that impacts on property development due to sour gas setbacks were widespread across the province. Observed mitigation measures included the modification of development plans by landowners to avoid setback restrictions; encouraging land development proposals away from areas known to have sour gas activity; and the oil and gas industry working with landowners to locate proposed facilities in order to minimize setback restrictions. Results of the survey suggested that ineffective communication was the predominant factor leading to conflicts, particularly when parties were not familiar with setback requirements or the implications for property development. It was suggested that policy makers should aim to reduce the number of conflicts between sour gas setbacks and property development. Recommendations to improve communication included closing gaps in regulations, processes and practices; and reducing surface and subsurface interface conflicts. 9 refs., 1 tab., 4 figs

  10. Corrosion behaviour of steels and CRA in sour gas environments

    Energy Technology Data Exchange (ETDEWEB)

    Lara, M. Alvarez de; Lancha, A.M.; Hernandez, F.; Gomez-Briceno, D. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Coca, P. [ELCOGAS, S.A., C.T. GICC Puertollano, Carretera de Calzada de Calatrava a Puertollano, km 27, 13500 Puertollano, Ciudad Real (Spain)

    2004-07-01

    The ELCOGAS power plant in Puertollano (Spain), with 335 MWe (ISO conditions), is an Integrated Gasification Combined Cycle (IGCC) plant built to demonstrate both the technical and economic feasibility of this alternative for clean generation of electricity from coal. IGCC technology is based on a coal gasification process, namely the conversion of coal into combustible gas, which is then subjected to an exhaustive cleaning process. The result is a synthetic gas, virtually free of pollutants that can be burned with a high efficiency in a combined cycle electricity-generating unit. Basically, the ELCOGAS plant consists of three islands jointly designed and integrated into the process: gasification island, air separation island and combined cycle island. In the gasification island, the gas from the gasifier is cleaned (de-dusted and washed) and desulfurized before being sent to the combined cycle island. The washing system consists of a Venturi scrubber with a separator where halogens and alkalis (NH{sub 3}, HCl, HF) are removed from the previously de-dusted gas by means of the wash water. The halogens and alkalis removed are then stripped from the wash water as stripped gas, which is a sour gas. The coal-gas coming from the separator proceeds to sulphur removal in a MDEA system and then, the clean gas (mainly CO, H{sub 2}) is sent to the combined cycle plant. As COS is a significant part of the sulphur containing gases in the coal gas, hydrolysis of the COS to H{sub 2}S takes place before the desulfurization stage, since MDEA is a selective amine for H{sub 2}S. There are many important areas related to materials corrosion within the gas cleaning system. In the ELCOGAS plant carbon steels, austenitic stainless steels and nickel based alloys, such as AISI 316Ti, AISI 904L and Hastelloy C276, are used in the Venturi, the water separator and the strippers. AISI 316Ti is used for the gas piping from the separator to the COS hydrolysis system. Laboratory tests to evaluate

  11. Precipitation hardened nickel-base alloys for sour gas environments

    International Nuclear Information System (INIS)

    Igarashi, M.; Mukai, S.; Kudo, T.; Okada, Y.; Ikeda, A.

    1987-01-01

    SCC (Stress Corrosion Cracking) in sour gas environments of γ'(gamma prime: Ni/sub 3/(Ti and/or Al)) and γ''(gamma double prime: Ni/sub 3/Nb) precipitation hardened nickel-base alloys has been studied using the SSRT (Slow Strain Rate Tensile) test, anodic polarization measurement and transmission electron microscopy (TEM). The γ'-type alloy containing Ti was more susceptible to SCC in the SSRT tests up to 350 0 F(450 K) than the γ''-type alloy containing Nb. The susceptibility to SCC was related to their deformation structures in terms of stress localization and sensitivity to pitting corrosion in H/sub 2/S solutions. TEM observation showed the γ'-type alloy deformed by the superlattice dislocations in coplanar structures. This mode of deformation induced the stress localization to some boundaries such as grain boundary and as a result the susceptibility to SCC of the γ'-type alloy was increased. On the other hand, the γ''-type alloy deformed by the massive dislocation not in coplanar structures so that it was less susceptible to SCC in terms of the stress localization. The anodic polarization measurement suggested the γ'-type alloy was more susceptible to pitting corrosion compared with the γ''-type alloy

  12. A Numerical Study of the Sour Gas Reforming in a Dielectric Barrier Discharge Reactor

    Directory of Open Access Journals (Sweden)

    Sajedeh Shahsavari

    2016-10-01

    Full Text Available In this paper, using a one-dimensional simulation model, the reforming process of sour gas, i.e. CH4, CO2, and H2S, to the various charged particles and syngas in a dielectric barrier discharge (DBD reactor is studied. An electric field is applied across the reactor radius, and thus a non-thermal plasma discharge is formed within the reactor. Based on the space-time coupled finite element method, the governing equations are solved, and the temporal and spatial profiles of different formed charged species from sour gas inside the plasma reactor are verified. It is observed that the electric field increases radially towards the cathode electrode. Moreover, the electron density growth rate at the radial positions closer to the cathode surface is smaller than the one in the anode electrode region. Furthermore, as time progresses, the positive ions density near the anode electrode is higher. In addition, the produced syngas density is mainly concentrated in the proximity of anode dielectric electrode.

  13. Public safety and sour gas quarterly progress report October - December 2002

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, V.; Lillo, H.; Craig, M.; Neilson, G.

    2003-01-01

    This third quarterly progress report for the business year 2002-2003 on the Alberta Energy and Utilities Board (EUB) Public Safety and Sour Gas initiative covers projects based on the 87 recommendations made by the Provincial Advisory Committee on Public Safety and Sour Gas (Advisory Committee) in December 2000. As of December 2002, work has been completed on 16 recommendations and is proceeding on 50 recommendations. This report includes several tables indicating the status of recommendations as either complete or ongoing. The recommendation categories include: (1) sour gas development, planning and approval, (2) sour gas operations, (3) emergency preparedness, and (4) information, communication and consultation. The report also summarizes the health effects and sour gas research. Recommendations completed as of December 2002 include: plant proliferation; pre-license review of critical well license applications; license application training/certification information requirement; increase sour gas inspections; increase inspections of new and noncompliant operators; implement 100 per cent inspection rate for critical wells near people; response to sour gas complaints; enhance EUB capability to monitor for complaint response/compliance; complaint/incident response program for Aboriginal communities; interim policy on ERP review and reduced EPZs; infrastructure and resources for Aboriginal community ERP; field staff in industry-landowner discussions; EUB involvement in mediation of application issues; and, timely and meaningful public consultation for First Nations and Metis. Alberta Health and Wellness is currently evaluating the health effects of H{sub 2}S and SO{sub 2} and the work is near completion. Other ongoing work includes the development of a draft protocol to address the involvement of regional health authorities (RHAs), the early involvement of RHAs and other local government bodies, and a process for communication between the EUB field staff and

  14. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  15. New progress in wastewater treatment technology for standard-reaching discharge in sour gas fields

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2018-02-01

    Full Text Available Gas field water is generally characterized by complex contaminant components and high salinity. Its proper treatment has always been the great concern in the field of environmental protection of oil & gas fields. In this paper, the wastewater from a gas field in the Sichuan Basin with high salinity and more contaminants (e.g. sulfides was treated as a case study for the standard-reaching discharge. Lab experiments were carried out to analyze the adaptability and effectiveness of coagulation–desulfurization composite treatment technology, chemical oxidation based ammonia nitrogen removal technology and cryogenic multi-efficacy distillation technology in the treatment of wastewater in this field. The results show that the removal rate of sulfides and oils is over 90% if polymeric ferric sulfate (PFS is taken as the coagulant combined with TS-1 desulfurization agent. Besides, the removal rate of ammonia nitrogen is over 96% if CA-1 is taken as the oxidant. Finally, after the gas field water is treated by means of cryogenic three-efficacy distillation technology, chloride concentration of distilled water is below 150 mg/L and CODcr concentration is less than 60 mg/L. It is concluded that after the whole process treatment, the main contaminant indicators of wastewater in this case study can satisfy the grade one standard specified in the Integrated Wastewater Discharge Standard (GB 8978–1996 and the chloride concentration can meet the requirement of the Standards for Irrigation Water Quality (GB 5084–2005. To sum up, the above mentioned composite technologies are efficient to the wastewater treatment in sour gas fields. Keywords: Sulfide-bearing gas field water, Coagulation, Desulfurization, Chemical oxidation, Standard discharge, Ammonia nitrogen, Chloride, Cryogenic multi-efficacy distillation, Sichuan Basin

  16. Formation and Control of Sulfur Oxides in Sour Gas Oxy-Combustion: Prediction Using a Reactor Network Model

    KAUST Repository

    Bongartz, Dominik

    2015-11-19

    © 2015 American Chemical Society. Sour natural gas currently requires expensive gas cleanup before it can be used in power generation because it contains large amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2) that entail a low heating value and highly corrosive combustion products. A potential alternative is to use the gas directly in a gas turbine process employing oxy-fuel combustion, which could eliminate the need for gas cleanup while also enabling the application of carbon capture and sequestration, possibly combined with enhanced oil recovery (EOR). However, the exact influence of an oxy-fuel environment on the combustion products of sour gas has not been quantified yet. In this work, we used a reactor network model for the combustor and the gas turbine together with our recently assembled and validated detailed chemical reaction mechanism for sour gas combustion to investigate the influence of some basic design parameters on the combustion products of natural gas and sour gas in CO2 or H2O diluted oxy-fuel combustion as well as in conventional air combustion. Our calculations show that oxy-fuel combustion produces up to 2 orders of magnitude less of the highly corrosive product sulfur trioxide (SO3) than air combustion, which clearly demonstrates its potential in handling sulfur containing fuels. Unlike in air combustion, in oxy-fuel combustion, SO3 is mainly formed in the flame zone of the combustor and is then consumed as the combustion products are cooled in the dilution zone of the combustor and the turbine. In oxy-fuel combustion, H2O dilution leads to a higher combustion efficiency than CO2 dilution. However, if the process is to be combined with EOR, CO2 dilution makes it easier to comply with the very low levels of oxygen (O2) required in the EOR stream. Our calculations also show that it might even be beneficial to operate slightly fuel-rich because this simultaneously decreases the O2 and SO3 concentration further. The flame zone

  17. Supply, storage and handling of elemental sulfur derived from sour gas

    International Nuclear Information System (INIS)

    Clark, P.D.; Davis, P.M.; Dowling, N.I.; Calgary Univ., AB

    2003-01-01

    This presentation reviews the supply picture for solid elemental sulfur. It also assesses methods for its storage as well as the disposal of the precursor hydrogen sulfide (H 2 S) by acid gas injection. Both above and below ground block storage is considered environmentally acceptable for sulfur storage as long as measures are taken to minimize the physical and biological breakdown of the sulfur. The preferred option is to store solid elemental sulfur underground, particularly if it is to remain in storage for a prolonged period. Future changes in supply of sulfur will likely be controlled by incremental production of sour gas and utilization of oil sands bitumen. It is expected that future sulfur production from conventional crude oil will remain static or will slowly decrease. The degree to which acid gas injection is applied to large sour gas developments in the Middle East and the Caspian regions will have a significant impact on world sulfur supply. 9 refs., 1 tab., 5 figs

  18. Sulphur recovery and sulphur emissions at Alberta sour gas plants : annual report for 2005

    International Nuclear Information System (INIS)

    2005-01-01

    The sulphur recovery of Alberta's grandfathered sour gas plants is monitored by the Alberta Energy and Utilities Board. This report provides an annual summary of industry performance for sulphur recovery at large acid gas flaring sour gas plants, and sulphur recovery at all acid gas injection sour gas plants. It follows Interim Directive (ID) 2001-3 which stipulates guidelines for sulphur recovery for the province of Alberta. It includes a list of grandfathered and non grandfathered plants in Alberta. Grandfathered sulphur recovery plants that exceed expectations have the option to file a sulphur emission performance credit report and can use the credits to meet some of their sulphur requirement in the future. Acid gas flaring plants face more stringent requirements and cannot earn credits. Several plants have degrandfathered in the past 5 years. Eleven have made upgrades, 4 have been relicensed to meet the requirements for new plants, and 4 have shut down. Forty-one grandfathered plants remain. Sulphur emissions have decreased 39 per cent for grandfathered acid gas flaring plants, and 28 per cent for grandfathered sulphur recovery plants. 10 tabs., 3 figs

  19. Community inflamed: Passionate opposition mounted to sour-gas drilling plan upwind of Canada's energy capital

    International Nuclear Information System (INIS)

    Lorenz, A.

    1998-01-01

    Residents of Bearspaw and Glendale, two small communities near Calgary are up in arms in opposition to the plans of Canadian 88 Energy Company to drill a 'level four' sour gas well in the area. The target gas contains 33.9 per cent hydrogen sulfide, a substance rated as lethal in much lower doses. Since the well is slated to be drilled on high ground upwind of Calgary, an accident causing a leak could expose community residents and thousands of Calgarians within half hour distance from the well to hydrogen sulfide concentrations several times higher than the Alberta Energy Board considers safe. Seepage into the water system poses yet another danger. For reasons that are not too well understood the Alberta Energy Board relaxed the size of the area for which the company must provide an emergency response plan from a radius of 18 km to a radius of 4 km, considered by experts to be totally unacceptable in a populated area. The Board granted the relaxation of the area covered by the emergency response plan on the assurances of the Company that it would substantially increase the criteria needed to make the plan manageable. However, the community is not convinced that the emergency response plan comes near to addressing the problem, and is prepared to oppose drilling of the well by all available means

  20. Using random event simulation to evaluate the effectiveness of indoor sheltering during a sour gas release

    International Nuclear Information System (INIS)

    Wilson, D.

    2003-01-01

    In the event of sour gas releases to the atmosphere, there is a strong bias toward evacuation rather than sheltering-in-place. This paper described the critical factors in decision-making for shelter-in-place versus evacuation. These include: delay time expected before release begins; size of potential release, explosion or fire; expected duration; direction to safety for evacuation; the air tightness of the building; and, the number of people in the emergency response zone. A shelter-in-place decision chart developed by the Canadian Association of Fire Chiefs was presented. It shows the usual bias toward evacuation as the default position. It also shows the greatest drawbacks of sheltering-in-place. The main factor in maintaining the effectiveness of the building shelter is the rate of air infiltration into the building. Other issues to consider include: reactive versus passive chemicals in the release; light versus heavy gas releases; building type (houses, high-rise apartments, office buildings, or warehouses); tightness of building construction; whether to turn the house heating and air conditioning on or off during shelter; daytime versus nighttime conditions; and, cost factors. Equations for calculating indoor and outdoor toxic exposure to decide on shelter versus evacuation were also presented. It was concluded that the absence of peak concentrations dramatically reduce the risk of fatality to people sheltering indoors. Keeping people indoors is the best way to assure their safety for the first hour following a toxic release. 8 refs., 6 figs

  1. Domino effect of pollution from sour gas fields : failing legume nodulation and the honey industry

    International Nuclear Information System (INIS)

    Pirker, H.J.

    1998-01-01

    The sustainability of the honey industry in Alberta's Peace Country has been threatened by pollution from sour gas fields. The region has suffered crop reductions and chlorosis in grains, grasses, and legumes. Severe die-back and die-off of aspens and poplars has also been observed. Crops per colony were reduced by as much as 75 per cent, and winter losses more than tripled. Nectar flow patterns shifted from main flow in early summer to late flows in August or September from second growth alfalfa. A sampling of 27 fields found nitrogen fixation in alfalfa and red clovers lacking in areas downwind from major oil and sour gas flaring facilities. The reduction of the early season nectar flow appears to be caused by the synergistic interaction of ozone and sulphur compounds when ozone levels are at their highest. Reduced ozone levels in the fall permit a late, but uncertain flow from alfalfa plants

  2. Domino effect of pollution from sour gas fields : failing legume nodulation and the honey industry

    Energy Technology Data Exchange (ETDEWEB)

    Pirker, H.J. [Peace Country Agricultural Protection Association, AB (Canada)

    1998-10-01

    The sustainability of the honey industry in Alberta`s Peace Country has been threatened by pollution from sour gas fields. The region has suffered crop reductions and chlorosis in grains, grasses, and legumes. Severe die-back and die-off of aspens and poplars has also been observed. Crops per colony were reduced by as much as 75 per cent, and winter losses more than tripled. Nectar flow patterns shifted from main flow in early summer to late flows in August or September from second growth alfalfa. A sampling of 27 fields found nitrogen fixation in alfalfa and red clovers lacking in areas downwind from major oil and sour gas flaring facilities. The reduction of the early season nectar flow appears to be caused by the synergistic interaction of ozone and sulphur compounds when ozone levels are at their highest. Reduced ozone levels in the fall permit a late, but uncertain flow from alfalfa plants.

  3. Sour gas injection for use with in situ heat treatment

    Science.gov (United States)

    Fowler, Thomas David [Houston, TX

    2009-11-03

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

  4. Dispersion and exposure of sour gas flare emissions

    International Nuclear Information System (INIS)

    Davies, M.

    2002-01-01

    This presentation described the implications of flare research project findings with reference to reduced combustion efficiency, stack plume down wash and minor species. A plume model shows that reduced combustion efficiency decreases the energy available for plume rise. Reduced combustion may therefore decrease H 2 S to SO 2 conversion. Stack plume down wash can decrease plume rise under high wind speed conditions, and in extreme cases can also preclude any plume rise. Minor species include vapour phase emissions of polynuclear aromatic hydrocarbons (PAH), benzene, toluene, ethyl-benzene and xylenes (BTEX), and aldehydes. They also include particulate phase emissions such as soot and PAH. Observed concentrations of minor species were presented along with predicted vapour phase concentrations and particulate phase emissions. The standard modelling approaches used in this study included the Gaussian plume model, flame height, plume rise and dispersion. figs

  5. Cross-Linkable Polyimide Membranes for Improved Plasticization Resistance and Permselectivity in Sour Gas Separations

    KAUST Repository

    Kraftschik, Brian

    2013-09-10

    A series of cross-linkable membrane materials based on the 6FDA-DAM:DABA (3:2) polyimide backbone were synthesized for improved sour gas separation performance, in terms of both membrane stability and permselectivity. Short-chain poly(ethylene glycol) (PEG) molecules were used as cross-linking agents in an esterification-based cross-linking reaction. Pure and mixed gas permeation and pure gas sorption experiments were performed on dense films of these materials. Compared to unmodified 6FDA-DAM:DABA (3:2), higher sour gas permselectivity and membrane stability were achieved under aggressive feed conditions. H2S-induced plasticization was not evident until pure H2S feed pressures greater than approximately 6-8 bar. Pure CO 2-induced plasticization only occurred at feed pressures greater than about 25 bar. Under mixed gas feed conditions with 20% H2S, 20% CO2, and 60% CH4 at 35 C, attractive selectivities above 22 and 27 for H2S/CH4 and CO2/CH4, respectively, were observed for a feed pressure of 62 bar with both triethylene glycol and tetraethylene glycol cross-linking agents. © 2013 American Chemical Society.

  6. Cross-Linkable Polyimide Membranes for Improved Plasticization Resistance and Permselectivity in Sour Gas Separations

    KAUST Repository

    Kraftschik, Brian; Koros, William J.

    2013-01-01

    A series of cross-linkable membrane materials based on the 6FDA-DAM:DABA (3:2) polyimide backbone were synthesized for improved sour gas separation performance, in terms of both membrane stability and permselectivity. Short-chain poly(ethylene glycol) (PEG) molecules were used as cross-linking agents in an esterification-based cross-linking reaction. Pure and mixed gas permeation and pure gas sorption experiments were performed on dense films of these materials. Compared to unmodified 6FDA-DAM:DABA (3:2), higher sour gas permselectivity and membrane stability were achieved under aggressive feed conditions. H2S-induced plasticization was not evident until pure H2S feed pressures greater than approximately 6-8 bar. Pure CO 2-induced plasticization only occurred at feed pressures greater than about 25 bar. Under mixed gas feed conditions with 20% H2S, 20% CO2, and 60% CH4 at 35 C, attractive selectivities above 22 and 27 for H2S/CH4 and CO2/CH4, respectively, were observed for a feed pressure of 62 bar with both triethylene glycol and tetraethylene glycol cross-linking agents. © 2013 American Chemical Society.

  7. Formation and Control of Sulfur Oxides in Sour Gas Oxy-Combustion: Prediction Using a Reactor Network Model

    KAUST Repository

    Bongartz, Dominik; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 American Chemical Society. Sour natural gas currently requires expensive gas cleanup before it can be used in power generation because it contains large amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2) that entail a low heating

  8. Microbially-Enhanced Redox Solution Reoxidation for Sour Natural Gas Sweetening

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Brezinsky

    2008-01-15

    The specific objective of this project are to advance the technology and improve the economics of the commercial iron-based chelate processes such as LO-CAT II and SulFerox process utilizing biologically enhanced reoxidation of the redox solutions used in these processes. The project is based on the use of chelated ferric iron as the catalyst for the production of elemental sulfur, and then oxidizing bacteria, such as Thiobacillus Ferrooxidans (ATCC 23270) as an oxidizer. The regeneration of Fe{sup 3+} - chelate is accomplished by the use of these same microbes under mild conditions at 25-30 C and at atmospheric pressure to minimize the chelate degradation process. The pH of the redox solution was observed to be a key process parameter. Other parameters such as temperature, total iron concentration, gas to liquid ratio and bacterial cell densities also influence the overall process. The second part of this project includes experimental data and a kinetic model of microbial H{sub 2}S removal from sour natural gas using thiobacillus species. In the experimental part, a series of experiments were conducted with a commercial chelated iron catalyst at pH ranges from 8.7 to 9.2 using a total iron concentration range from 925 ppm to 1050 ppm in the solution. Regeneration of the solution was carried out by passing air through the solution. Iron oxidizing bacteria were used at cell densities of 2.3 x 10{sup 7}cells/ml for optimum effective performance. In the modeling part, oxidation of Fe{sup 2+} ions by the iron oxidizing bacteria - Thiobacillus Ferrooxidans was studied for application to a continuous stirred tank reactor (CSTR). The factors that can directly affect the oxidation rate such as dilution rate, temperature, and pH were analyzed. The growth of the microorganism was assumed to follow Monod type of growth kinetics. Dilution rate had influence on the rate of oxidation of ferrous iron. Higher dilution rates caused washout of the biomass. The oxidation rate was

  9. a Real-Time GIS Platform for High Sour Gas Leakage Simulation, Evaluation and Visualization

    Science.gov (United States)

    Li, M.; Liu, H.; Yang, C.

    2015-07-01

    The development of high-sulfur gas fields, also known as sour gas field, is faced with a series of safety control and emergency management problems. The GIS-based emergency response system is placed high expectations under the consideration of high pressure, high content, complex terrain and highly density population in Sichuan Basin, southwest China. The most researches on high hydrogen sulphide gas dispersion simulation and evaluation are used for environmental impact assessment (EIA) or emergency preparedness planning. This paper introduces a real-time GIS platform for high-sulfur gas emergency response. Combining with real-time data from the leak detection systems and the meteorological monitoring stations, GIS platform provides the functions of simulating, evaluating and displaying of the different spatial-temporal toxic gas distribution patterns and evaluation results. This paper firstly proposes the architecture of Emergency Response/Management System, secondly explains EPA's Gaussian dispersion model CALPUFF simulation workflow under high complex terrain and real-time data, thirdly explains the emergency workflow and spatial analysis functions of computing the accident influencing areas, population and the optimal evacuation routes. Finally, a well blow scenarios is used for verify the system. The study shows that GIS platform which integrates the real-time data and CALPUFF models will be one of the essential operational platforms for high-sulfur gas fields emergency management.

  10. Practices and prospect of petroleum engineering technologies in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2016-12-01

    Full Text Available Located in the Sichuan Basin, the Yuanba Gasfield is the deepest marine sour gas field among those developed in China so far. Its biohermal gas reservoir of the Upper Permian Changxing Fm is characterized by ultra depth, high content of hydrogen sulfide, medium–low porosity and permeability, and small reservoir thickness. Economic evaluation on it shows that horizontal well drilling is the only way to develop this gas reservoir efficiently and to reduce the total development investment. At present, the petroleum engineering technology for this type of ultra-deep sour gas reservoir is less applied in the world, so an ultra-deep horizontal well is subject to a series of petroleum engineering technology difficulties, such as safe and fast well drilling and completion, mud logging, well logging, downhole operation, safety and environmental protection. Based on the successful development experience of the Puguang Gasfield, therefore, Sinopec Southwest Petroleum Engineering Co., Ltd. took the advantage of integrated engineering geology method to carry out specific technical research and perform practice diligently for 7 years. As a result, 18 key items of technologies for ultra-deep sour gas reservoirs were developed, including horizontal-well drilling speed increasing technology, horizontal-well mud logging and well logging technology, downhole operation technology, and safety and environmental protection technology. These technologies were applied in 40 wells during the first and second phases of productivity construction of the Yuanba Gasfield. All the 40 wells have been built into commercial gas wells, and the productivity construction goal of 3.4 billion m3 purified gas has also been achieved. These petroleum engineering technologies for ultra-deep sour gas fields play a reference role in exploring and developing similar gas reservoirs at home and abroad.

  11. Options for cleaning up subsurface contamination at Alberta sour gas plants

    International Nuclear Information System (INIS)

    Hardisty, P.; Dabrowski, T.L.

    1992-01-01

    At the conclusion of two major phases of a study on subsurface treatment technologies for Alberta sour gas plants, a candidate site was selected for a remediation technologies demonstration project. The plant has an extensive groundwater monitoring network in place, monitoring records for a period exceeding 10 years, ten recovery wells with aquifer test data and four reinjection wells. Hydrogeological exploration determined the presence and delineated a plume of free phase natural gas condensate. Aquifer remediation efforts at the site began in 1990 with the installation of recovery wells. Recovered groundwater was treated using a pilot scale air stripping system with pretreatment for iron, manganese and hardness. Dual pump system, water depression and free product skimmers were installed in the wells and tested. The nature and extent of contamination, study methodology, technology-dependent criteria, assessment of technology, and conceptual design are discussed for the three demonstration projects selected, which are enhanced soil vapour extraction with off-gas treatment, pump-and-treat with soil vapour extraction, biological treatment and air sparging, and treatment of dissolved process chemicals by advanced oxidation. 5 refs., 1 fig., 1 tab

  12. Families near proposed sour gas wells wary company can protect them

    International Nuclear Information System (INIS)

    Anon

    2005-01-01

    Public objections to the Compton Petroleum Corporation's intentions to add six new sour gas wells to an existing well it now operates near a residential area in the Calgary area, are discussed. Fifty-five families live within 15 km of the proposed wellsite; they are concerned about the safety of the plan, claiming that the company has not done enough to inform them about the potential hazards. Company officials assured residents that those living within the emergency zone (i.e. within four km of the wells) will be evacuated from the area before a blowout occurs. As far as residents outside the emergency zone are concerned, independent risk analysis experts testified that the risk to those residents is negligible. The company claims that Alberta law compels them to maximize the recovery of petroleum resources and by not drilling the proposed wells the company leaves itself open to charges for leaving some reserves in the ground. The Company also claims that by drilling the additional wells, it would be in a position to deplete the gas reserves faster, shut down the existing wells and return the land to the city much sooner than otherwise would be possible. Lawyers for the Coalition of Concerned Communities are challenging the Company's claim that the wells must be drilled so industry can make way for city expansion. 1 fig

  13. Air emissions from sour-gas processing plants and dairy-cattle reproduction in Alberta, Canada.

    Science.gov (United States)

    Scott, H M; Soskolne, C L; Martin, S W; Shoukri, M M; Lissemore, K D; Coppock, R W; Guidotti, T L

    2003-02-15

    The dispersion of air pollutants from all 231 licensed sour-gas processing plants in Alberta, Canada, was modeled on a monthly basis over a 10-year period (1985-1994). Exposure estimates for sulfur dioxide (SO(2)-used as a surrogate for exposure to combusted emissions) then were assigned to 1382 provincial dairy farms using a geographical-information system. Individual average and peak exposure for periods prior to each of 15 months of age and conception (four exposure-averaging periods for each of two dispersion models) were estimated for 163,988 primiparous female dairy-cattle between 1986 and 1994. Monthly or annual average farm-site exposure estimates likewise were assigned to associated herd-level data sets for the biologically relevant period of interest for each of three additional reproductive outcomes: monthly herd-average calving interval, stillbirth risk, and twinning risk. In one of the main-effects models, the maximum (i.e., peak) monthly sour-gas exposure experienced by individual-animals from birth to conception was associated with an increased time to first-calving in the very-highest exposure category (hazard ratio=0.86, 95% CI=0.80, 0.92). This equates to a decreased hazard (lambda) of calving (in each month subsequent to 22 months of age) for the highest-exposure animals (lambda=0.170) versus the zero-exposure animals (lambda=0.198) in a model with referent values for agro-ecological region and season of birth. The dose-response was not consistent across the full range of exposure categories. There was significant (P=0.003) interaction of emissions with agro-ecological region. After accounting for the interaction, a more-consistent dose-response was evident for some (but not all) agro-ecological regions. This suggests that any effect of emissions on dairy-heifer reproduction is subject to modification by features of soil type, vegetative cover, and/or climate. The increase in monthly herd-average calving interval on farms exposed to the very

  14. Shell Canada Limited application for increased throughput sour gas plant - Caroline Field : decision 97-5

    International Nuclear Information System (INIS)

    1998-06-01

    The Alberta Energy and Utilities Board considered an application by Shell Canada Limited to amend its existing Caroline Gas plant approval. Shell desires to add additional cooling equipment to enhance gas processing during the warmer months. Interveners raised several concerns, including the impact of the existing operation on the environment, and the health and safety of the community. Shell stated that the proposed increased throughput of sour gas would result in a 21 per cent increase in sulphur inlet, but that the emissions of SO 2 would still remain below the currently-approved daily maximum level of 45 t/d. Shell also stated that the proposed project would have no impact on flaring duration or frequency. The Board reviewed the evidence filed, and considered the comments of the participants made at a pre-hearing on June 11, 1996. The Board's assessment was that a public hearing was necessary to address Shell's application. The Board also expressed the belief that the scope of the public hearing should be limited to the possible impacts that may occur from the processing of incremental raw inlet gas and sulphur. A hearing date of July 22, 1996 was set. Having regard to the evidence which the Board received and considered, the Board declared itself satisfied that the technical changes to the plant were satisfactory and that the applied-for plant modifications would meet regulatory standards. The Board also believed that the approval of the application to increase throughput at the plant would be in the public interest. Accordingly, the Board declared its readiness to approve the application provided that Shell agreed to meet certain specified conditions. tab., 1 fig

  15. High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture

    OpenAIRE

    Chakroun, Nadim Walid; Ghoniem, Ahmed F

    2015-01-01

    The growing concerns over global warming and carbon dioxide emissions have driven extensive research into novel ways of capturing carbon dioxide in power generation plants. In this regard, oxy-fuel combustion has been considered as a promising technology. One unconventional fuel that is considered is sour gas, which is a mixture of methane, hydrogen sulfide and carbon dioxide. In this paper, carbon dioxide is used as the dilution medium in the combustor and different combined cycle configurat...

  16. HPLC and MS/MS study of polar contaminants in a wetland adjoining a sour-gas plant

    International Nuclear Information System (INIS)

    Dickson, L.C.; Headley, J.V.; Peru, K.; Spiegel, K.; Gandrass, J.

    1995-01-01

    An analytical methodology was developed for target analyses and broad spectrum characterization of polar contaminants such as nitrogenous and organosulfur compounds in wetlands using the complementary techniques of HPLC with electrochemical (EC) detection and tandem MS with probe and electrospray ionization. Tandem MS was well suited for the identification and quantification of mixtures of polar compounds in water samples and soil extracts, while HPLC-EC provided sensitive detection of compounds transparent to MS detection and conventional methods. The usefulness of the methodology is demonstrated by studying the removal of polar contaminants from a wetland in western Canada affected by releases of hydrocarbon-rich condensate and free product from an adjoining sour-gas plant. The concern is that the mobile water-soluble polar contaminants may not be as efficiently attenuated by volatilization or adsorption processes as the more hydrophobic hydrocarbons and that some of the polar toxic compounds may break through to contaminate groundwater and surface waters. Samples of groundwater, surface water, and aqueous soil extracts were analyzed to quantify levels of polar contaminants in the presence of high concentrations of hydrocarbons. The use of water extracts reduced the background interference from hydrocarbons and other non-polar compounds that were present in the soil samples. HPLC-EC was used to quantify the target compounds that included monoethanolamine, diethanolamine and methyldiethanolamine and sulfolane-derived compounds while tandem MS was used to identify related compounds and degradation products. Influent concentrations were in the ppm range and discharge concentrations were in the ppb range

  17. The effects of the lodgepole sour gas well blowout on coniferous tree growth

    International Nuclear Information System (INIS)

    Baker, K.A.

    1991-01-01

    A dendrochronological study was used to evaluate growth impacts on White Spruce (Picea glauca (Moench) resulting from the 1982 Lodgepole sour gas well blowout. Stem analysis was evaluated from four ecologically similar monitoring sites located on a 10 kilometre downwind gradient and compared to a control site. Incremental volume was calculated, standardized using running mean filters and analyzed using one-way ANOVA. Pre and post-blowout growth trends were analyzed between sites and were also evaluated over a height profile in order to assess growth impact variability within individual trees. Growth reductions at the two sites closest the wellhead were statistically significant for five post-blowout years. Growth at these condensate impacted sites was reduced to 9.8% and 38.1% in 1983. Differences in growth reductions reflect a gradient of effects and a dose-response relationship. Recovery of surviving trees has been rapid but is leveling off at approximately 80% of pre-blowout growth. growth reductions were greater and recovery rates slower than those previously predicted by other authors. Statistically significant differences in height profile growth responses were limited to the upper portions of the trees. Growth rates over a tree height profile ranged from 10% less to 50% more than growth rates observed at a 1.3 metres. Analytical methodologies detected and described growth differences over a height profile but a larger sample size was desirable. As is always the case in catastrophic events, obtaining pre-event baseline data is often difficult. Dendrochronological methods described in this paper offer techniques for determining pre-blowout growth and monitoring impacts and recovery in forested areas

  18. Key technologies for well drilling and completion in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jiaxiang Xia

    2016-12-01

    Full Text Available The Yuanba Gasfield is a large gas field discovered by Sinopec in the Sichuan Basin in recent years, and another main exploration area for natural gas reserves and production increase after the Puguang Gasfield. The ultra-deep sour gas reservoir in the Yuanba Gasfield is characterized by complicated geologic structure, deep reservoirs and complex drilled formation, especially in the continental deep strata which are highly abrasive with low ROP (rate of penetration and long drilling period. After many years of drilling practice and technical research, the following six key drilling and completion technologies for this type reservoir are established by introducing new tools and technologies, developing specialized drill bits and optimizing drilling design. They are: casing program optimization technology for ROP increasing and safe well completion; gas drilling technology for shallow continental strata and high-efficiency drilling technology for deep high-abrasion continental strata; drilling fluid support technologies of gas–liquid conversion, ultra-deep highly-deviated wells and horizontal-well lubrication and drag reduction, hole stability control and sour gas contamination prevention; well cementing technologies for gas medium, deep-well long cementing intervals and ultra-high pressure small space; horizontal-well trajectory control technologies for measuring instrument, downhole motor optimization and bottom hole assembly design; and liner completion modes and completion string optimization technologies suitable for this gas reservoir. Field application shows that these key technologies are contributive to ROP increase and efficiency improvement of 7000 m deep horizontal wells and to significant operational cycle shortening.

  19. Hydrogen sulfide (H{sub 2}S) and sour gas effects on the eye. A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Timothy William [Environmental Health, Calgary Health Region, 1509 Centre St SW, Calgary Alberta, T2G 2E6 (Canada)]. E-mail: tim.lambert@calgaryheathregion.ca; Goodwin, Verona Marie [VM Goodwin Research and Consulting Ltd. (Canada); Stefani, Dennis [Environmental Health, Calgary Health Region, 1509 Centre St SW, Calgary Alberta, T2G 2E6 (Canada); Strosher, Lisa [Environmental Health, Calgary Health Region, 1509 Centre St SW, Calgary Alberta, T2G 2E6 (Canada)

    2006-08-15

    The toxicology of hydrogen sulfide (H{sub 2}S) and sour gas on the eye has a long history beginning at least with Ramazzini's observations [Ramazzini B. Diseases of Workers-De Morbis Artificum Diatriba-1713. Wright WC (trans). New York, C. Hafner Publishing Co Inc.; 1964. 98-99 pp.]. In contrast, a recent review by Alberta Health and Wellness (AHW Report) concluded that there is little evidence of eye irritation following short-term exposures to H{sub 2}S at concentrations up to 100 ppm and that the H{sub 2}S literature on the eye is a series of unsubstantiated claims reproduced in review articles dating back to the 1930s [Alberta Health and Wellness (AHW report). Health effects associated with short-term exposure to low levels of hydrogen sulfide: a technical review, Alberta Health and Wellness, October 2002, 81pp.]. In this paper, we evaluated this claim through a historical review of the toxicology of the eye. Ramazzini noted the effects of sewer gas on the eye [Ramazzini B. Diseases of Workers-De Morbis Artificum Diatriba-1713. Wright WC (trans). New York, C. Hafner Publishing Co Inc. 1964. 98-99 pp.]. Lehmann experimentally showed eye effects in men at 70-90 ppm H{sub 2}S and also in animals [Lehmann K. Experimentalle Studien uber den Einfluss technisch und hygienisch wichtiger Gase und Dampfe auf den Organismus. Arch Hyg 1892;14:135-189]. In 1923, Sayers, Mitchell and Yant reported eye effects in animals and men at 50 ppm H{sub 2}S. Barthelemy showed eye effects in animals and men at 20 ppm H{sub 2}S [Barthelemy HL. Ten years' experience with industrial hygiene in connection with the manufacture of viscose rayon. J Ind Hyg Toxicol 1939;21:141-51]. Masure experimentally showed that H{sub 2}S is the causative agent of eye impacts in animals and men [Masure R. La Keratoconjunctivite des filatures de viscose; etude clinique and experiementale. Rev Belge Pathol 1950;20:297-341]. Michal upon microscopic examination of the rat's cornea, found nuclear

  20. Applications of UT results to confirm defects findings by utilization of relevant metallurgical investigations techniques on gas/condensate pipeline working in wet sour gas environment

    Science.gov (United States)

    El-Azhari, O. A.; Gajam, S. Y.

    2015-03-01

    The gas/condensate pipe line under investigation is a 12 inch diameter, 48 km ASTM, A106 steel pipeline, carrying hydrocarbons containing wet CO2 and H2S.The pipe line had exploded in a region 100m distance from its terminal; after 24 years of service. Hydrogen induced cracking (HIC) and sour gas corrosion were expected due to the presence of wet H2S in the gas analysis. In other areas of pipe line ultrasonic testing was performed to determine whether the pipeline can be re-operated. The results have shown presence of internal planner defects, this was attributed to the existence of either laminations, type II inclusions or some service defects such as HIC and step wise cracking (SWC).Metallurgical investigations were conducted on fractured samples as per NACE standard (TM-0284-84). The obtained results had shown macroscopic cracks in the form of SWC, microstructure of steel had MnS inclusions. Crack sensitivity analyses were calculated and the microhardness testing was conducted. These results had confirmed that the line material was suffering from sour gas deteriorations. This paper correlates the field UT inspection findings with those methods investigated in the laboratory. Based on the results obtained a new HIC resistance material pipeline needs to be selected.

  1. ERCB investigation report : Daylight Energy Amalgamation Co Ltd. sour gas release surface location 06-23-047-10W5M December 16, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Temple, B.; Schlager, J.; Wilkes, J.; Saulnier, P.; Mayall, J.; Duben, A.; Ravensdale, C.

    2010-07-21

    This report discussed a sour gas release that occurred at a well located near the town of Lodgepole. The well had a hydrogen sulfide (H{sub 2}S) concentration of 29.19 per cent, with an emergency planning zone (EPZ) of 570 m. The owner of the well contacted stakeholders in the region, and road blocks were set up north of the well. Three mobile air monitoring units were dispatched to the site, and service contractors were hired to kill the well. The road blocks were removed after a review of the air monitoring data. Prior to the release, a heat tape assembly had been installed in the well as a result of ongoing hydrate formation problems. An investigation of the well after the release showed damage to the connectors in the heat tape assembly. A failure analysis showed that the damage was caused by excessive temperatures created by a short circuit in the wires located in each connector. The heat allowed downhole gas pressure to push the wire to the surface. Gas was released from the damaged assembly seal. An outline of all steps taken to address the emergency was provided. 4 figs.

  2. Developing remediation criteria on the basis of health and ecological risks at a former sour gas plant site

    International Nuclear Information System (INIS)

    Brown, G. L.; Wilson, R. M.; Clyde, G. A.; Chollak, D. F.

    1997-01-01

    A human health and ecological risk assessment was completed for the Okotoks sour gas processing gas plant, based on the existing environmental sampling and toxicity testing that has been collected at the site since 1987. For the human health risk assessment, two potential scenarios were considered, including industrial use and parkland use. The ecological risk assessment involved synthesis of existing sampling and toxicity testing results as well as the assessment of potential risk to ecological receptors such as the meadow vole, red-tailed hawk and cattle. The assessment included chemical screening, receptor and exposure pathway selection, toxicity assessment of chemicals of concern, estimation of exposures, risk characterization and generation of soil and groundwater remediation criteria. Results of the assessments to date indicate that limited subsurface remediation is required for the protection of human health under industrial/parkland use. In contrast, ecological considerations will require remediation or reclamation of surface soil and the imposition of certain risk management controls, such as e. g. encumbrances on land title. 2 figs

  3. Decision 99-13: Crestar Energy Inc. applications to construct and operate sour gas batteries and pipelines, Vulcan Field

    International Nuclear Information System (INIS)

    1999-06-01

    On 1 December 1998, the applicant applied pursuant to Part 4 of the Pipeline Act and Section 7.001 of the Oil and Gas Conservation Regulations for approval to construct and operate a sour gas pipeline and various surface facilities to tie in three wells. These are located at Legal Subdivision 12 of Section 36, Township 16, Range 24, West of the fourth Meridian (12-36 facility), Lsd 10-35-16-24 WM4 (10-35 facility), and Lsd 7-26-16-24 WM4 (7-26 facility), to an existing pipeline and proposed surface facility at Lsd 16-16-16-24 WM4. The 10-35, 7-26 and 16-16 facilities would each have a separator, a flare knockout drum, and a flare stack. The 12-36 facility would have two separators, one for each of the two producing zones at the 12-36 facility, a flare knockout drum, and flare stack. A compressor would be installed at the 16-16 facility. All fluids would be measured and re-injected into the pipeline for removal at the 16-16 facility. All proposed flare stacks would consists of a continuously burning sweet gas pilot and would be used for emergencies, routine well servicing, and pigging operations only. The pipeline would be designated as a Level 1 facility, and would transport up to 18 moles of hydrogen sulfide per kilomole of natural gas. Although the Board approved Application No. 1037084 after carefully considering the evidence, subject to meeting all the regulatory requirements and conditions set out in Attachment 1, it rejected Application No. 1033453

  4. Application of natural antimicrobial compounds for reservoir souring and MIC prevention in offshore oil and gas production systems

    DEFF Research Database (Denmark)

    Thomsen, Mette Hedegaard; Skovhus, Torben Lund; Mashietti, Marco

    Offshore oil production facilities are subjectable to internal corrosion, potentially leading to human and environmental risk and significant economic losses. Microbiologically influenced corrosion (MIC) and reservoir souring - sulphide production by sulfate reducing microorganisms in the reservo...

  5. Decision 99-16: Canadian 88 Energy Corp. application to drill a level 4 critical sour gas well, Lochend Field

    International Nuclear Information System (INIS)

    1999-07-01

    Canadian 88 Energy Corp. applied, pursuant to section 2.020 of the Oil and Gas Conservation Regulations, for a licence to drill a level 4 critical sour gas well to be located at Legal Subdivision 10 of Section 35, Township 26, Range 3, West of the fifth Meridian. The level 4 designation is used to determine the minimum separation distance between the well and land-use surface developments during the suspended or producing stage. This 10-35 well would require a minimum separation distance of 100 m from any individual dwelling development up to eight dwellings per quarter section, 500 m from an unrestricted county development, and 1500 m from an urban centre or public facility. The application and interventions were considered at a hearing in Calgary, Alberta commencing on 4 May 1998. The issues respecting the application were: the need for the well, the proposed well location, the potential hydrogen sulfide release rate, the drilling and completion considerations, the public safety risk assessment, emergency preparedness, the land use impacts, and public consultation. The Board believes that the public safety risks associated with the proposed well are representative of normal industrial risks accepted by society and that the well can be safely drilled. Also, the Board believes that these risks are similar to existing facilities and are acceptable if managed through strict adherence to the risk control measures required in the existing regulations. Given this, and having considered all the evidence, the Board is prepared to issue the well licence after Canadian 88 has undertaken, committed to, and submitted a number of requirements for review

  6. Corrosion inhibitor development for slightly sour environments with oxygen intrusion

    Energy Technology Data Exchange (ETDEWEB)

    Wylde, J.; Wang, H.; Li, J. [Clariant Oil Services North America, Calgary, AB (Canada)

    2009-07-01

    This presentation reported on a study that examined the effect of oxygen on the inhibition of carbon steel in slightly sour corrosion, and the initiation and propagation of localized attack. Oxygen can enter sour water injection systems through the vapor space in storage tanks and process system. Oxygen aggravates the corrosion attack by participating in the cathodic reaction under full or partial diffusion control. Laboratory testing results were reported in this presentation along with the development of corrosion inhibitors for such a slightly sour system. Bubble testing cells were used with continuous H{sub 2}/CO{sub 2} mixture gas sparging and occasional oxygen intrusion of 2 to 4 hours during a week long test. Linear polarization resistance (LPR) measurements and weight loss corrosion coupons were used to quantify the corrosion attack. The findings were presented in terms of the magnitude of localized attacks at different oxygen concentrations and intrusion periods, with and without the presence of corrosion inhibitors. tabs., figs.

  7. The chemistry of sour taste and the strategy to reduce the sour taste of beer.

    Science.gov (United States)

    Li, Hong; Liu, Fang

    2015-10-15

    The contributions of free hydrogen ions, undissociated hydrogen ions in protonated acid species, and anionic acid species to sour taste were studied through sensory experiments. According to tasting results, it can be inferred that the basic substance producing a sour taste is the hydrogen ion, including free hydrogen ions and undissociated hydrogen ions. The intensity of a sour taste is determined by the total concentration of free hydrogen ions and undissociated hydrogen ions. The anionic acid species (without hydrogen ions) does not produce a sour taste but can intensify or weaken the intensity of a sour taste. It seems that hydroxyl or conjugated groups in anionic acid species can intensify the sour taste produced by hydrogen ions. The following strategy to reduce the sensory sourness is advanced: not only reduce free hydrogen ions, namely elevate pH value, but also reduce the undissociated hydrogen ions contained in protonated acid species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Meet the biologists: Sour gas treatment uses biology rather than chemistry to clean things up

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2003-03-01

    Basic elements of the new bio-desulfurization technology are described. The new process uses the commonly occurring bacterium, Thiobacillus, rather than chemical means to remove hydrogen sulfide from natural gas. Development of the process began some ten years ago in the Netherlands as a means to clean sewage water and purify water for beer. The application of removing hydrogen sulfide from natural gas evolved upon discovery that the process was able to convert hydrogen sulfide to sulfur. Key to the bio-desulfurization process is the Thiobacillus bacterium, which unlike other plant forms, relies on chemosynthesis (instead of photosynthesis) of hydrogen sulfide, oxygen and carbon dioxide for its energy requirements. The technology has applications in refineries as well as in gas processing plants. It is well suited for use in Canada where operations tend to be on the small scale (less than 50 tonnes per day). The portable unit can be moved to another location when production at a given well drops off.

  9. The toxicity of sulfolane and DIPA from sour gas plants to aquatic species

    International Nuclear Information System (INIS)

    Lintott, D.R.; Goudey, J.S.; Wilson, J.; Swanson, S.; Drury, C.

    1997-01-01

    The ecological effects of sulfolane and diisopropanolamine (DIPA), which are used to remove sulfur compounds from natural gas, were studied to establish risk-based cleanup criteria and to evaluate effective remedial measures. Toxicity tests were conducted on both the parent compounds and the thermal and biological degradation products. Toxicity testing focused on aquatic species because surface outlets, such as creeks, were found to be the major pathways for the water soluble DIPA and sulfolane chemicals. Sulfolane proved to be relatively non-toxic to aquatic species, with the exception of bacteria. DIPA was relatively toxic to algae at pH found in ground and surface waters. Aqueous and methanol reclaimer bottom extracts from five different gas plant sites were also tested using modified acute toxicity screening tests with different species. The reclaimer bottoms were found to be highly toxic to all species tested. DIPA and sulfolane did not entirely account for the toxicity of the reclaimer bottoms. Inorganic salts and metals present in reclaimer bottoms were found not to contribute to toxicity directly. The same was true for DIPA and sulfolane degradation products. 3 refs., 7 tabs., 8 figs

  10. The toxicity of sulfolane and DIPA from sour gas plants to aquatic species

    Energy Technology Data Exchange (ETDEWEB)

    Lintott, D.R.; Goudey, J.S. [HydroQual Consultants, Inc., Calgary, AB (Canada); Wilson, J.; Swanson, S. [Golder Associates, Calgary, AB (Canada); Drury, C. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre

    1997-12-31

    The ecological effects of sulfolane and diisopropanolamine (DIPA), which are used to remove sulfur compounds from natural gas, were studied to establish risk-based cleanup criteria and to evaluate effective remedial measures. Toxicity tests were conducted on both the parent compounds and the thermal and biological degradation products. Toxicity testing focused on aquatic species because surface outlets, such as creeks, were found to be the major pathways for the water soluble DIPA and sulfolane chemicals. Sulfolane proved to be relatively non-toxic to aquatic species, with the exception of bacteria. DIPA was relatively toxic to algae at pH found in ground and surface waters. Aqueous and methanol reclaimer bottom extracts from five different gas plant sites were also tested using modified acute toxicity screening tests with different species. The reclaimer bottoms were found to be highly toxic to all species tested. DIPA and sulfolane did not entirely account for the toxicity of the reclaimer bottoms. Inorganic salts and metals present in reclaimer bottoms were found not to contribute to toxicity directly. The same was true for DIPA and sulfolane degradation products. 3 refs., 7 tabs., 8 figs.

  11. Tail gas treatment of sour-SEWGS CO2 product. Public version

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, H.A.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-06-15

    This literature review covers the technologies suitable for the CO2-H2S separation within the context of CO2 purification of a pre-combustion captured stream intended for storage or reuse. The technologies considered cover existing industrially applied processes, emerging processes as well as processes in development. Several technologies capable of achieving the desired CO2-H2S separation were identified. Among them are liquid scrubbing processes Thiopaq and CrystaSulf producing elemental sulphur, selective oxidation to elemental sulphur such as MODOP or based on novel catalysts and sorbent-based (reactive) separations using low-, medium- or high-temperature (reactive) sorbents. SEWGS stands for Sorption Enhanced Water Gas Shift process.

  12. Completion difficulties of HTHP and high-flowrate sour gas wells in the Longwangmiao Fm gas reservoir, Sichuan Basin, and corresponding countermeasures

    Directory of Open Access Journals (Sweden)

    Yufei Li

    2016-05-01

    Full Text Available For safe and efficient development of the sour gas reservoirs of the Cambrian Longwangmiao Fm in the Anyue Gas Field, the Sichuan Basin, and reduction of safety barrier failures and annulus abnormal pressure which are caused by erosion, corrosion, thread leakage and improper well completion operations, a series of studies and field tests were mainly carried out, including optimization of well completion modes, experimental evaluation and optimization of string materials, sealing performance evaluation of string threads, structural optimization design of downhole pipe strings and erosion resistance evaluation of pipe strings, after the technical difficulties related with the well completion in this reservoir were analyzed. And consequently, a set of complete well completion technologies suitable for HTHP (high temperature and high pressure and high-flowrate gas wells with acidic media was developed as follows. First, optimize well completion modes, pipe string materials and thread types. Second, prepare optimized string structures for different production allocation conditions. And third, formulate well completion process and quality control measures for vertical and inclined wells. Field application results show that the erosion of high-flowrate production on pipe strings and downhole tools and the effect of perforation on the sealing performance of production packers were reduced effectively, well completion quality was improved, and annulus abnormal pressure during the late production was reduced. This research provides a reference for the development of similar gasfields.

  13. Findings of a retrospective survey conducted after the Lodgepole sour gas well blowout to determine if the natural occurrence of bovine abortions and fetal anomalies increased

    International Nuclear Information System (INIS)

    Klavano, G.G.; Christian, R.G.

    1992-01-01

    A survey was conducted after the Lodgepole sour gas well blowout of October 1982 to determine if the incident changed the number and type of bovine abortions and abnormal bovine feti submitted to the diagnostic laboratory from the blowout area. The records of the total number of bovine feti submitted were compared between three areas to determine if there was a significant difference between the areas closer to the well site and the larger total area. No changes or trends could be ascribed to the well blowout. 2 refs., 5 tabs

  14. Increasing of the processing capacity of an alkanoamine in aqueous solution mixed sour gas treatment unit; Incremento de la capacidad de procesamiento de una planta de tratamiento de gas amargo con mezclas de alcanolaminas en solucion acuosa

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, J. Manuel; Valtierra, Victor H.; Cabrales, Alberto [Instituto Mexicano del Petroleo, Mexico City (Mexico)

    1998-07-01

    The necessity of increasing the process capacity of the existing sour gas treating units, has been a factor that has driven the investigation centers to develop new solvent formulations that could been capable of removing the sour gases without majors changes in the equipment that conforms those units. In this sense, the Instituto Mexicano del Petroleo has carried out the study in order to increase the processing capacity of a sour gas treatment plant of Petroleos Mexicanos. In this work, the use of solvents or alternative formulations, based on the use of methyl-diethanolamine (MDEA), as single solvent, or in mixture with others are considered. Our experimental data indicates that the use of MDEA in a formulation, in mixture with another amines, carry out to combination of attributes such as high absorption capacity and a high speed of absorption of the preferred acid gas (H{sub 2}S), besides it reduces the degradation index of the solvent and minimizes the equipment corrosion situation that is transformed in considerable improvement in the processing capacity and/or in the energy process savings, finally the operative problems are minimized. (author)

  15. Sour pressure swing adsorption process

    Science.gov (United States)

    Bhadra, Shubhra Jyoti; Wright, Andrew David; Hufton, Jeffrey Raymond; Kloosterman, Jeffrey William; Amy, Fabrice; Weist, Jr., Edward Landis

    2017-11-07

    Methods and apparatuses for separating CO.sub.2 and sulfur-containing compounds from a synthesis gas obtained from gasification of a carbonaceous feedstock. The primary separating steps are performed using a sour pressure swing adsorption (SPSA) system, followed by an acid gas enrichment system and a sulfur removal unit. The SPSA system includes multiple pressure equalization steps and a rinse step using a rinse gas that is supplied from a source other than directly from one of the adsorber beds of the SPSA system.

  16. Burnable gas concentration control device

    International Nuclear Information System (INIS)

    Goto, Hiroshi; Sanada, Takahiro; Kuboniwa, Takao.

    1980-01-01

    Purpose: To provide connecting ports by doubling nitrogen gas injection pipes thereby to secure lengthiness of the device only by providing one nitrogen gas generator. Constitution: Nitrogen gas injection pipes are provided in two lines separately, and attachable and detachable connecting ports for feeding nitrogen gas connectable to a movable type nitrogen gas supply installation for the purpose of backing up the nitrogen gas generator. (Yoshihara, H.)

  17. Organic constituents in sour condensates from shale-oil and petroleum-crude runs at Sohio's Toledo refinery: identification and wastewater-control-technology considerations

    Energy Technology Data Exchange (ETDEWEB)

    Wingender, R J; Harrison, W; Raphaelian, L A

    1981-02-01

    Samples of sour condensate generated from the continuous processing of both crude shale oil and petroleum crude were collected and extracted with methylene chloride. The extracts were analyzed using capillary-column gas chromatography/mass spectrometry at Argonne National Laboratory and Radian Corporation. Qualitatively, the predominant types of organic compounds present in the shale-oil sour condensate were pyridines and anilines; semiquantitatively, these compounds were present at a concentration of 5.7 ppM, or about 78% of the total concentration of components detected. In contrast, straight-chain alkanes were the predominant types of compounds found in the sour condensate produced during isocracking of conventional crude oil. The approximate concentration of straight-chain alkanes, 8.3 ppM, and of other branched and/or unsaturated hydrocarbons, 6.8 ppM, amounted to 88% of the total concentration of components detected in the sour condensate from the petroleum-crude run. Nitrogen compounds in the shale-oil sour condensate may necessitate alterations of the sour water and refinery wastewater-treatment facilities to provide for organics degradation and to accommodate the potentially greater ammonia loadings. This would include use of larger amounts of caustic to enhance ammonia removal by steam stripping. Possible problems associated with biological removal of organic-nitrogen compounds should be investigated in future experimental shale-oil refining runs.

  18. Polyphenols and Volatiles in Fruits of Two Sour Cherry Cultivars, Some Berry Fruits and Their Jams

    Directory of Open Access Journals (Sweden)

    Branka Levaj

    2010-01-01

    Full Text Available This paper reports about the content of polyphenols and volatiles in fresh fruits of two sour cherry cultivars (Marasca and Oblačinska, some berry fruits (strawberry Maya, raspberry Willamette and wild blueberry and the corresponding low sugar jams. Phenolic compounds (hydroxybenzoic and hydroxycinnamic acids, flavan 3-ols and flavonols were determined by high-performance liquid chromatography (HPLC. Those found in the fruits were also found in the jams. Jams contained lower amounts of polyphenols than fresh fuits, but their overall retention in jams was relatively high. Among fruits, sour cherry Marasca had the highest level of polyphenols, while sour cherry Marasca jam and raspberry Willamette jam had the highest level of polyphenols among jams. The major flavonoid in all investigated fruits, except in sour cherry Oblačinska, was (–-epicatechin. Sour cherry Marasca had the highest level of (–-epicatechin (95.75 mg/kg, and it also contained very high amounts of flavonols, derivatives of quercetin and kaempferol. Hydroxybenzoic acids (HBAs were not found in sour cherries Marasca and Oblačinska, but were found in berry fruits and jams. Phenolic compound (+-gallocatechin was found only in Marasca fruit and jam. Ellagic acid was found in the highest concentration in raspberry Willamette fruit and jam. Hydroxycinnamic acids (HCAs were found in all the investigated fruits, with the exception of a derivative of ferulic acid, which was not found in strawberry. Derivatives of caffeic, p-coumaric and chlorogenic acids were found in all the investigated fruits, with chlorogenic acid being the most abundant, especially in sour cherry Marasca. Volatiles were determined by gas chromatography (GC and expressed as the peak area of the identified compounds. All investigated volatiles of fresh fruit were also determined in the related jams with relatively high retention. Sour cherries Marasca and Oblačinska contained the same volatile compounds, but

  19. Reservoir souring: it is all about risk mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Kuijvenhoven, Cor [Shell (Canada)

    2011-07-01

    The presence of H2S in produced fluid can be due to various sources, among which are heat/rock interaction and leaks from other reservoirs. This paper discusses the reasons, risk assessment and tools for mitigating reservoir souring. Uncontrolled microorganism activity can cause a sweet reservoir (without H2S) to become sour (production of H2S). The development of bacteria is one of the main causes of reservoir souring in unconventional gas fields. It is difficult to predict souring in seawater due to produced water re-injection (PWRI). Risk assessment and modeling techniques for reservoir souring are discussed. Some of the factors controlling H2S production include injection location, presence of scavenging minerals and biogenic souring. Mitigation methods such as biocide treatment of injection water, sulphate removal from seawater, microbial monitoring techniques such as the molecular microbiology method (MMM), and enumeration by serial dilution are explained. In summary, it can be concluded that reservoir souring is a long-term problem and should be assessed at the beginning of operations.

  20. A high-performance hydroxyl-functionalized polymer of intrinsic microporosity for an environmentally attractive membrane-based approach to decontamination of sour natural gas

    KAUST Repository

    Yi, Shouliang

    2015-09-24

    Acid gases carbon dioxide (CO2) and hydrogen sulfide (H2S) are important and highly undesirable contaminants in natural gas, and membrane-based removal of these contaminants is environmentally attractive. Although removal of CO2 from natural gas using membranes is well established in industry, there is limited research on H2S removal, mainly due to its toxic nature. In actual field operations, wellhead pressures can exceed 50 bar with H2S concentrations up to 20%. Membrane plasticization and competitive mixed-gas sorption, which can both lead to a loss of separation efficiency, are likely to occur under these aggressive feed conditions, and this is almost always accompanied by a significant decrease in membrane selectivity. In this paper, permeation and separation properties of a hydroxyl-functionalized polymer with intrinsic microporosity (PIM-6FDA-OH) are reported for mixed-gas feeds containing CO2, H2S or the combined pair with CH4. The pure-gas permeation results show no H2S-induced plasticization of the PIM-6FDA-OH film in a pure H2S feed at 35 °C up to 4.5 bar, and revealed only a slight plasticization up to 8 bar of pure H2S. The hydroxyl-functionalized PIM membrane exhibited a significant pure-gas CO2 plasticization resistance up to 28 bar feed pressure. Mixed-gas (15% H2S/15% CO2/70% CH4) permeation results showed that the hydroxyl-functionalized PIM membrane maintained excellent separation performance even under exceedingly challenging feed conditions. The CO2 and H2S permeability isotherms indicated minimal CO2-induced plasticization; however, H2S-induced plasticization effects were evident at the highest mixed gas feed pressure of 48 bar. Under this extremely aggressive mixed gas feed, the binary CO2/CH4 and H2S/CH4 permselectivities, and the combined CO2 and H2S acid gas selectivity were 25, 30 and 55, respectively. Our results indicate that OH-functionalized PIM materials are very promising candidate membrane materials for simultaneous removal of CO2

  1. Modelling souring in a high salinity reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael; Crossland, Alan; Stott, Jim

    2006-03-15

    CAPCIS Ltd (Capcis) have developed a souring model for use in highly saline reservoirs where salinity limits the growth of sulphate reducing bacteria (SRB). Capcis have successfully applied the model to a field in North Africa. The conceptual basis of the model considers the course of the H2S from generation in the reservoir including dilution, sulphide retardation and scavenging and H2S fluid phase partitioning. At each stage mathematical equations governing the behaviour of the H2S were produced. In order to estimate the potential for H2S generation, it is required to know the chemistry of the injection and formation waters, as well as the properties of the indigenous SRB, i.e. the maximum salinity for their growth. This is determined by bottle testing of H2S generation by SRB at a range of injection/formation water ratios. The maximum salinity for SRB growth then determines the mixing ratios at which H2S generation takes place. Sulphide retardation due to adsorption at immobile interfaces was empirically modeled from reservoir data. Sulphide scavenging due to reaction with iron generated from corrosion was also modelled. Reservoir mineral scavenging was not modelled but could be incorporated in an extension to the model. Finally, in order to compute the gas-phase concentration of generated H2S, the H2S in the well stream is partitioned between the gas, oil and water phases. Capcis has carried out detailed computations of H2S solubility in crude oil and formation waters and the derivation of distribution ratios based on the respective partition coefficients using Gerard's line method, a modification of Henry's Law. (author) (tk)

  2. Evaluation and improvement of sour property packages in UniSim design

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Zhao, E.; Wang, L.; Saha, S. [Honeywell, Calgary, AB (Canada)

    2010-07-01

    This presentation described specialty fluid packages for modeling oil and gas process systems involving sour gases in contact with aqueous phase. UniSim Design is a popular process simulation tool in the oil and gas industry. The sour Peng-Robinson (PR) and sour Soave-Redlich-Kwong (SRK) models are commonly used for handling sour system where hydrogen sulphide (H{sub 2}S), carbon dioxide (CO{sub 2}) or ammonia (NH{sub 3}) are in contact with an aqueous phase. These sour options combine the PR/SRK equation of state and Wilson's API-sour model where the equation of state is used to determine the fugacities of the vapor and liquid hydrocarbon phases, plus the enthalpy for all 3 phases. The Wilson's API-sour method is used for the aqueous phase calculations, which accounts for the ionization of H{sub 2}S, CO{sub 2} and NH{sub 3} in the aqueous phase. The efficiency of these 2 thermodynamic property packages were evaluated in this study by comparing industrial and experimental data and the results from other similar models. The purpose of this study was to improve these property packages for more accurate and reliable modeling of sour systems. tabs., figs.

  3. Control device for combustible gas concentration

    International Nuclear Information System (INIS)

    Osawa, Yasuo.

    1988-01-01

    Purpose: To control the concentration of combustible gases such as hydrogen evolved in a reactor container upon loss-of-coolant accidents. Constitution: Combustible gases evolved from the lower area of a drywell in which a combustible atmosphere is liable to be formed locally are taken out through a take-out pipeway to the outside of a reactor container and processed by a hydrogen-oxygen recombiner. Combustible gases in other areas of the drywell are also introduced to the lower area of the drywell and then taken-out externally for procession. Further, combustible gases in the suppression chamber are introduced by the opening of a vacuum breaking valve through a gas supply pipe to the lower area of the drywell and fluids in the drywell are stirred and diluted with fluids exhausted from the gas supply pipe. Disposition of such take-out pipeway and gas supply pipe can reduce the possibility of forming local combustible atmosphere to improve the integrity of the reactor container. (Kamimura, M.)

  4. A high-performance hydroxyl-functionalized polymer of intrinsic microporosity for an environmentally attractive membrane-based approach to decontamination of sour natural gas

    KAUST Repository

    Yi, Shouliang; Ma, Xiaohua; Pinnau, Ingo; Koros, William J.

    2015-01-01

    Acid gases carbon dioxide (CO2) and hydrogen sulfide (H2S) are important and highly undesirable contaminants in natural gas, and membrane-based removal of these contaminants is environmentally attractive. Although removal of CO2 from natural gas

  5. Decision 99-28: Mobil Oil Canada, Ltd., and Mobil Resources Ltd., - application for a well licence to drill a critical sour gas well LSD 4-36-27-28 W4, Crossfield Field, application No. 1037560

    International Nuclear Information System (INIS)

    1999-01-01

    On 12 February 1999, Mobil submitted Application No. 1037560 to the Alberta Energy and Utilities (EUB) Board on a routine basis, pursuant to Section 2.020 of the Oil and Gas Conservation Regulations, for a well licence to drill a critical sour gas well. The well would be drilled from a surface location in Legal Subdivision (LSD) 4 of Section 36, Township 27, Range 28, West of the 4th Meridian to a bottomhole location in LDS 7-36-27-28 W4M, with an 1100 m horizontal section. The aim of the 4-36 well was to obtain gas production from the Crossfield member. On 17 February 1999, the EUB issued Well Licence No. 221575 on the understanding that there were no outstanding objections to the 4-36 well. Mobil spudded the 4-36 well on 3 March 1999, drilled to 363 m and set surface casing. The EUB subsequently received objections to the application from area residents near the proposed well location. Accordingly, pursuant to Section 43 of the Energy Resources Conservation Act, the EUB directed that a public hearing be held to consider the application. The Board assessed in detail the effects that would likely result and the mitigative measures that would have to be taken to reduce any negative effects considering: the proposed well location, impacts of the proposed well, safety of the well, and public notification and consultation. Having carefully considered all the evidence, the EUB Board determined that Application No. 1037560 met all the EUB's regulatory requirements and was satisfied that appropriate measures were taken to ensure that public safety risks and impacts were minimized

  6. Reservoir Souring - Latest developments for application and mitigation

    DEFF Research Database (Denmark)

    Johnson, Richard J; Folwell, Benjamin D; Wirekoh, Alexander

    2017-01-01

    Sulphate-reducing prokaryotes (SRP) have been identified in oil field fluids since the 1920s. SRP reduce sulphate to sulphide, a toxic and corrosive species that impacts on operational safety, metallurgy and both capital and operational cost. Differences in water cut, temperature, pressure...... and fluid chemistry can impact on the observed H2S concentration, meaning that an increase in H2S concentration does not always correlate with activity of SRP. However it wasn't until the 1990s that SRP activity was accepted as the leading cause of reservoir souring (i.e. an increase in H2S concentrations...... to reservoir souring. This has led to some recent advances in microbial control and detection, however, despite this, many of the methods used routinely for microbial control and detection are over a century old. We therefore look towards emerging and novel mitigation technologies that may be used...

  7. Antihyperlipidemic Effects of Sour Cherries Characterized by Different In Vitro Antioxidant Power and Polyphenolic Composition.

    Science.gov (United States)

    Papp, Nóra; Blázovics, Anna; Fébel, Hedvig; Salido, Sofía; Altarejos, Joaquín; Fehér, Erzsébet; Kocsis, Ibolya; Szentmihályi, Klára; Abrankó, László; Hegedűs, Attila; Stefanovits-Bányai, Éva

    2015-12-01

    The aims of the present study were to clarify in vivo effects of three sour cherry cultivars characterized by different polyphenolic composition in hyperlipidemic animals in a short term experiment. The three different sour cherry cultivars were chosen based on their total in vitro antioxidant capacity, total polyphenolic, monomeric anthocyanin and flavonoid content. Male Wistar rats were divided randomly into eight groups: rats kept on normal diet (control) and normal diet supplied with sour cherry powder of one of the three cultivars; others were kept on fat-rich diet and fat-rich diet supplied with sour cherry powder prepared from one of the three cultivars. The treatment lasted 10 days. Lyophilized sour cherry administered in the diet decreased both total cholesterol and LDL cholesterol levels, and increased the HDL cholesterol concentration in sera of hyperlipidemic animals. Significant differences were found in the efficacy of different sour cherry cultivars in case of hyperlipidemia. Sour cherries characterized by higher polyphenol content seem to have a more pronounced effect on serum cholesterol levels. Our results suggest that besides anthocyanins, colourless polyphenols also have lipid lowering effect.

  8. Influence of ph on corrosion control of carbon steel by peroxide injection in sour water

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Martins Magda; Baptista, Walmar; Joia, Carlos Jose Bandeira de Mello [PROTEMP - PETROBRAS/CENPES, Cidade Universitaria, Quadra 7, Rio de Janeiro, CEP 21949-900 (Brazil); Ponciano, Gomes Jose Antonio da Cunha [Departamento de Engenharia Metalurgica e de Materiais-COPPE/UFRJ, Cidade Universitaria, Rio de Janeiro (Brazil)

    2004-07-01

    Sour hydrogen damage is considered the most important corrosive process in the light-ends recovery section of Fluid Catalytic Cracking Units (FCCU). Corrosion in this condition is due to heavy gas oil that originates great amount of contaminants, such as H{sub 2}S, NH{sub 3} and HCN. Hydrogen absorption is promoted by the presence of free cyanides in the environment. The attenuation of this process requires the use of some inhibitors, such as oxygen, hydrogen peroxide (H{sub 2}O{sub 2}) or commercial polysulfides. The effect of these compounds is to neutralize free cyanides (CN{sup -}) into thio-sulfides (SCN{sup -}). When peroxide injection is selected, cyanide concentration in sour water has been used as key parameter to start the peroxide introduction. However, the importance of pH in this system has been pointed out by many authors. The aim of this work is to investigate the influence of pH when peroxide injection is carried out in less alkaline conditions of sour water. Electrochemical techniques - like anodic polarization and hydrogen permeation tests - and weight loss measurements were used to evaluate the effectiveness of corrosion control of carbon steel. It was concluded that at pH 7.5 peroxide injection can drive to an increment of the corrosion rate. Besides that, it was concluded that hydrogen permeation into the metal is promoted. Both detrimental effects were due to elemental sulfur generation in this pH range. The adoption of pH as a key parameter for peroxide injection is then suggested. (authors)

  9. Use of an integrated human health/ecological risk assessment to develop a long-term groundwater/site management plan for a sour gas facility

    International Nuclear Information System (INIS)

    Swanson, S.M.; Shaw, R.D.; McClymont, G.; Nadeau, S.

    1995-01-01

    An integrated human health and ecological risk assessment was used to quantify the level of risk associated with the off-site movement of contaminants via groundwater and soils at a medium-sized gas processing facility in southern Alberta. The study incorporated three key aspects: (1) integration; (2) consultation; and, (3) pro-active remedial actions. Integration was complete, beginning with the Problem Formulation stage and progressing through Risk Characterization and Risk Management. This integration was reflected in a multidisciplinary team of hydrogeologists, biologists and human health specialists. Several lessons emerged from the integrated approach: (1) spending 2/3 of the time and resources on Problem Formulation prevented later problems; (2) the different perspectives provided by the various specialists helped reveal the relative importance of pathways and ecological receptors (3) clear, consistent screening procedures for contaminants of concern and receptors were very effective with stakeholders; (4) exposure scenarios that incorporated common-sense situations (although still conservative) contributed to the credibility of the risk analysis; and, (5) an innovative combination of toxicity testing and chemical analysis helped delineate the boundaries of the potentially contaminated area for both human and ecological receptors in a cost effective manner. Consultation included directly affected parties, regulatory personnel and community members. The consultation extended through the project, with key ''buy-in'' points during Problem Formulation and Risk Characterization/Management. Pro-active remedial action included the removal of contaminant sources in the 1980's, a pump-and-treat system and extensive monitoring. These actions showed commitment and set the stage for credible risk-based mitigation and long-term monitoring

  10. Natural Gas

    OpenAIRE

    Bakar, Wan Azelee Wan Abu; Ali, Rusmidah

    2010-01-01

    Natural gas fuel is a green fuel and becoming very demanding because it is environmental safe and clean. Furthermore, this fuel emits lower levels of potentially harmful by-products into the atmosphere. Most of the explored crude natural gas is of sour gas and yet, very viable and cost effective technology is still need to be developed. Above all, methanation technology is considered a future potential treatment method for converting the sour natural gas to sweet natural gas.

  11. Device for measuring the tritium concentration in a measuring gas

    International Nuclear Information System (INIS)

    Koran, P.

    1987-01-01

    The measuring gas is brought into contact via a measuring gas path with a diaphragm permeable to water, which separates the measuring gas path from a counter gas path leading to a proportional detector. The measuring gas path and the counter gas path are in counterflow in the area of diaphragm. The preferably hose diaphragm consists of a well-known ion exchange material, which can be used for gas drying purposes, which is permeable to water and tritium compounds similar to water, but is impermeable to other gases and liquids contained in air, particularly rare gases. In this way, the tritium concentration can be measured with great rare gas suppression. (orig./HP) [de

  12. Rapid and sensitive determination of deuterium concentration by gas chromatography

    International Nuclear Information System (INIS)

    Takahashi, Tomiki; Ohokoshi, Sumio; Shinriki, Nariko; Sato, Toshio

    1984-01-01

    Gas chromatographic determination of hydrogen isotopes D 2 and HD has hitherto been carried out with a molecular sieve column kept at -195 0 C under the H 2 carrier gas. However, the amount of D 2 in hydrogen gas containing low HD concentration of less than 5 % can be practically neglected judging from the equilibrium constant of H 2 -D 2 exchange reaction. Therefore, there is no need to separate HD from D 2 . As an improvement, in this paper, the gas chromatographic determination of HD in low concentration ( 2 as a carrier gas enabled us to enhance the cell current of TCD drastically, hence gave rise to high sensitivity of HD detection. The limit of determination of the concentration of HD was 0.01%. In the case of the higher concentration (>5%) of HD in hydrogen gas, D 2 and HD have been separated and determined by the method described above, but this method takes more than ten minutes. Therefore, we designed a new gas chromatographic analysis of the HD-D 2 mixture with an activated alumina column at -195 0 C under the H 2 carrier gas (330 ml/min). The advantages of this method are in (1) rapid analysis (in 1 min), (2) no need of the rigid activation temperature ((110--250) 0 C), (3) no change of the relative molar sensitivity of HD to D 2 at the various flow rates of H 2 carrier gas ((100--300)ml/min). (author)

  13. SOUR MILK FORMULAS IN NUTRITION OF INFANTS

    Directory of Open Access Journals (Sweden)

    E.F. Lukushkina

    2010-01-01

    Full Text Available Health-giving properties of fermented food are related to the fact, that acid medium improves assimilation of protein and fat, increases absorption of iron and zinc, improves digestion. But the kefir and other sour milk food based on the whole milk can’t be used in nutrition of infants as human milk substitute because of high content of protein, high osmolarity, deficiency of vitamins and microelements. The article describes the results of clinical approbation of new modern sour milk formula «NAN sour milk», containing proper amount of high-quality protein (OptiPro, enriched with lactalbumin and all sufficient vitamins and microelements. This mixture contains also probiotics (B. lactis, providing high functionality of this food. Key words: infants, sour milk formula, nutrition.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2010;9(1:136-141

  14. Bortezomib alters sour taste sensitivity in mice

    Directory of Open Access Journals (Sweden)

    Akihiro Ohishi

    Full Text Available Chemotherapy-induced taste disorder is one of the critical issues in cancer therapy. Bortezomib, a proteasome inhibitor, is a key agent in multiple myeloma therapy, but it induces a taste disorder. In this study, we investigated the characteristics of bortezomib-induced taste disorder and the underlying mechanism in mice. Among the five basic tastes, the sour taste sensitivity of mice was significantly increased by bortezomib administration. In bortezomib-administered mice, protein expression of PKD2L1 was increased. The increased sour taste sensitivity induced by bortezomib returned to the control level on cessation of its administration. These results suggest that an increase in protein expression of PKD2L1 enhances the sour taste sensitivity in bortezomib-administered mice, and this alteration is reversed on cessation of its administration. Keywords: Taste disorder, Bortezomib, Sour taste, Chemotherapy, Adverse effect

  15. Impact assessment of concentrate recirculation on the landfill gas production

    Directory of Open Access Journals (Sweden)

    Džolev Nikola M.

    2016-01-01

    Full Text Available This paper explores the impact of concentrate recirculation, as a product of leachate treated by reverse osmosis plant, on the production of landfill gas at the real-scale landfill for municipal solid waste. In an effort to come up with results experimental measurements were carried out at the landfill in Bijeljina. All measurements performed, were divided into 3 groups. The aims of two groups of measurement were to determine landfill gas and methane yield from concentrate and leachate in laboratory conditions (1st group and to find out concentrations of oxidizing matters (COD and BOD5 present in leachate and concentrate at different points of treatment as well as its variability over the time (2nd group which could be used to calculate the potential of landfill gas and methane generation from concentrate by recirculation, theoretically. 3rd group of measurements, carried out in parallel, have goal to determine the quality and quantity of the collected landfill gas at wells throughout the landfill. The results of analysis carried out in this experimental research show the clear evidence of concentrate recirculation impact on methane production by increasing the landfill gas flow, as well as its concentration within the landfill gas composition, at the nearby well. Although results indicated relatively high impact of concentrate recirculation on landfill gas production, comparing to its theoretical potential, the influence on the landfill at whole, is negligible, due to relatively low volumes in recirculation with respect to its size and objectively low potential given by organic matter present in concentrate.

  16. Combustible gas concentration control facility and operation method therefor

    International Nuclear Information System (INIS)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi

    1998-01-01

    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  17. Combustible gas concentration control facility and operation method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi

    1998-09-25

    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  18. A Multistage Fluidized Bed for the Deep Removal of Sour Gases : Proof of Concept and Tray Efficiencies

    NARCIS (Netherlands)

    Driessen, Rick T.; Bos, Martin J.; Brilman, Derk W. F.

    2018-01-01

    Currently there are significant amounts of natural gas that cannot be produced and treated to meet pipeline specifications, because that would not be economically viable. This work investigates a bench scale multistage fluidized bed (MSFB) with shallow beds for sour gas removal from natural gas

  19. SOUR MILK FOODSTUFF IN INFANTS DIET

    Directory of Open Access Journals (Sweden)

    T. E. Borovik

    2014-01-01

    Full Text Available Products of sour milk are widely used in nutrition of infants. They are an important source of digestible proteins, vitamins and potassium. Regular intake of sour milk foodstuff has favorable influence on intestinal microbiocenosis, functioning of the immune system, improves secretory and motor functions of the gastrointestinal tract, stimulates appetites and increases bioavailability of micronutrients. Modern line in functional diet is enrichment of sour milk foodstuff with probiotics. Strains of microorganisms used in manufacture of products with probiotic action are proven to be safe and effective in prophylaxis and treatment of various diseases. Modern data which confirm prophylactic and medicinal properties of probiotic-containing foodstuff, especially bioyoghurts for children, are shown in this article.

  20. Assessment of indoor radon gas concentration change of college

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul [Dept. of of Radiological Technology, Shingu College, Seongnam (Korea, Republic of); Lee, Ju Young [Dept. of Radiological Technology, Songho College, Hoengseong (Korea, Republic of)

    2017-03-15

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction.

  1. Assessment of indoor radon gas concentration change of college

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul; Lee, Ju Young

    2017-01-01

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction

  2. Sweet and sour taste preferences of children

    NARCIS (Netherlands)

    Liem, D.G.

    2004-01-01

    In the industrialized countries children have many foods to choose from, both healthy and unhealthy products, these choices mainly depend on children's taste preferences. The present thesis focused on preferences for sweet and sour taste of young children (4- to 12-years of age) living in the US and

  3. 21 CFR 131.160 - Sour cream.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.160 Sour cream. (a... of analysis. Referenced methods in paragraph (c) (1) and (2) of this section are from “Official Methods of Analysis of the Association of Official Analytical Chemists,” 13th Ed. (1980), which is...

  4. Source-Sink Relations in Fruits VII. Effects of Pruning in Sour Cherry and Plum

    DEFF Research Database (Denmark)

    Toldam-Andersen, Torben Bo; Hansen, P.

    1993-01-01

    Sour cherries cv. 'Stevnsbær' and plums cv. 'Victoria' were heavily pruned in 1987. Fruit samples were collected during the growing season and concentrations of different quality components were determined. Pruning resulted in a small increase in fruit size, the effect being greater on the older...... trees (sour cherries) or at the lower crop load (plum). Additionally, pruning decreased the con­centrations of total and soluble dry matter and of anthocya­nins ('Stevnsbær'), while titratable acids showed an increas­ing tendency. The effects of pruning are discussed based on influences on root...

  5. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    Science.gov (United States)

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  6. Device for separating and concentrating rare gases containing krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, S; Sugimoto, K

    1975-06-11

    In orer to highly concentrate krypton by means of adsorption and desorption of activated carbon, in a device for continuously separating and concentrating rare gases containing krypton gas by means of adsorbing and desorbing operation of activated carbon, the device includes adsorbers arranged in parallel and more than two stages of adsorbers arranged in series with the first mentioned adsorbers with the amount of activated carbon filled successively reduced, and a cooling mechanism for cooling the adsorbers when adsorbed and a heating mechanism for heating the adsorbers when desorbed.

  7. Direct photothermal techniques for quantification of anthocyanins in sour cherry cultivars

    NARCIS (Netherlands)

    Doka, O.; Ficzek, G.; Bicanic, D.D.; Spruijt, R.B.; Luterotti, S.; Toth, M.; Buijnsters, J.G.; György Végvári, G.

    2011-01-01

    The analytical performance of the newly proposed laser-based photoacoustic spectroscopy (PAS) and of optothermal window (OW) method for quantification of total anthocyanin concentration (TAC) in five sour cherry varieties is compared to that of the spectrophotometry (SP). High performance liquid

  8. Using Thermodynamics to Predict the Outcomes of Nitrate-Based Oil Reservoir Souring Control Interventions

    Directory of Open Access Journals (Sweden)

    Jan Dolfing

    2017-12-01

    Full Text Available Souring is the undesirable production of hydrogen sulfide (H2S in oil reservoirs by sulfate-reducing bacteria (SRB. Souring is a common problem during secondary oil recovery via water flooding, especially when seawater with its high sulfate concentration is introduced. Nitrate injection into these oil reservoirs can prevent and remediate souring by stimulating nitrate-reducing bacteria (NRB. Two conceptually different mechanisms for NRB-facilitated souring control have been proposed: nitrate-sulfate competition for electron donors (oil-derived organics or H2 and nitrate driven sulfide oxidation. Thermodynamics can facilitate predictions about which nitrate-driven mechanism is most likely to occur in different scenarios. From a thermodynamic perspective the question “Which reaction yields more energy, nitrate driven oxidation of sulfide or nitrate driven oxidation of organic compounds?” can be rephrased as: “Is acetate driven sulfate reduction to sulfide exergonic or endergonic?” Our analysis indicates that under conditions encountered in oil fields, sulfate driven oxidation of acetate (or other SRB organic electron donors is always more favorable than sulfide oxidation to sulfate. That predicts that organotrophic NRB that oxidize acetate would outcompete lithotrophic NRB that oxidize sulfide. However, sulfide oxidation to elemental sulfur is different. At low acetate HS− oxidation is more favorable than acetate oxidation. Incomplete oxidation of sulfide to S0 is likely to occur when nitrate levels are low, and is favored by low temperatures; conditions that can be encountered at oil field above-ground facilities where intermediate sulfur compounds like S0 may cause corrosion. These findings have implications for reservoir management strategies and for assessing the success and progress of nitrate-based souring control strategies and the attendant risks of corrosion associated with souring and nitrate injection.

  9. Measurement of average radon gas concentration at workplaces

    International Nuclear Information System (INIS)

    Kavasi, N.; Somlai, J.; Kovacs, T.; Gorjanacz, Z.; Nemeth, Cs.; Szabo, T.; Varhegyi, A.; Hakl, J.

    2003-01-01

    In this paper results of measurement of average radon gas concentration at workplaces (the schools and kindergartens and the ventilated workplaces) are presented. t can be stated that the one month long measurements means very high variation (as it is obvious in the cases of the hospital cave and the uranium tailing pond). Consequently, in workplaces where the expectable changes of radon concentration considerable with the seasons should be measure for 12 months long. If it is not possible, the chosen six months period should contain summer and winter months as well. The average radon concentration during working hours can be differ considerable from the average of the whole time in the cases of frequent opening the doors and windows or using artificial ventilation. (authors)

  10. Primary souring: A novel bacteria-free method for sour beer production.

    Science.gov (United States)

    Osburn, Kara; Amaral, Justin; Metcalf, Sara R; Nickens, David M; Rogers, Cody M; Sausen, Christopher; Caputo, Robert; Miller, Justin; Li, Hongde; Tennessen, Jason M; Bochman, Matthew L

    2018-04-01

    In the beverage fermentation industry, especially at the craft or micro level, there is a movement to incorporate as many local ingredients as possible to both capture terroir and stimulate local economies. In the case of craft beer, this has traditionally only encompassed locally sourced barley, hops, and other agricultural adjuncts. The identification and use of novel yeasts in brewing lags behind. We sought to bridge this gap by bio-prospecting for wild yeasts, with a focus on the American Midwest. We isolated 284 different strains from 54 species of yeast and have begun to determine their fermentation characteristics. During this work, we found several isolates of five species that produce lactic acid and ethanol during wort fermentation: Hanseniaspora vineae, Lachancea fermentati, Lachancea thermotolerans, Schizosaccharomyces japonicus, and Wickerhamomyces anomalus. Tested representatives of these species yielded excellent attenuation, lactic acid production, and sensory characteristics, positioning them as viable alternatives to lactic acid bacteria (LAB) for the production of sour beers. Indeed, we suggest a new LAB-free paradigm for sour beer production that we term "primary souring" because the lactic acid production and resultant pH decrease occurs during primary fermentation, as opposed to kettle souring or souring via mixed culture fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Minimum detectable gas concentration performance evaluation method for gas leak infrared imaging detection systems.

    Science.gov (United States)

    Zhang, Xu; Jin, Weiqi; Li, Jiakun; Wang, Xia; Li, Shuo

    2017-04-01

    Thermal imaging technology is an effective means of detecting hazardous gas leaks. Much attention has been paid to evaluation of the performance of gas leak infrared imaging detection systems due to several potential applications. The minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) are commonly used as the main indicators of thermal imaging system performance. This paper establishes a minimum detectable gas concentration (MDGC) performance evaluation model based on the definition and derivation of MDTD. We proposed the direct calculation and equivalent calculation method of MDGC based on the MDTD measurement system. We build an experimental MDGC measurement system, which indicates the MDGC model can describe the detection performance of a thermal imaging system to typical gases. The direct calculation, equivalent calculation, and direct measurement results are consistent. The MDGC and the minimum resolvable gas concentration (MRGC) model can effectively describe the performance of "detection" and "spatial detail resolution" of thermal imaging systems to gas leak, respectively, and constitute the main performance indicators of gas leak detection systems.

  12. Methods to assess high-resolution subsurface gas concentrations and gas fluxes in wetland ecosystems

    DEFF Research Database (Denmark)

    Elberling, Bo; Kühl, Michael; Glud, Ronnie Nøhr

    2013-01-01

    The need for measurements of soil gas concentrations and surface fluxes of greenhouse gases at high temporal and spatial resolution in wetland ecosystem has lead to the introduction of several new analytical techniques and methods. In addition to the automated flux chamber methodology for high-re...

  13. Dissolved gas concentrations of the geothermal fluids in Taiwan

    Science.gov (United States)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  14. Apparatus for measuring the concentration of a gas

    International Nuclear Information System (INIS)

    Manin, Ange.

    1974-01-01

    The apparatus described for measuring the concentration of a gas in an atmosphere is of the kind which has an ionization chamber with an internal radioactive source and associated electronics enabling the ionization current crossing the chamber to be measured. It includes at least one cylindrical metal grid forming an electrode brought to a high voltage in relation to a cylindrical collection electrode fitted to the axis of the grid coated with a radioactive deposit and, around this grid, a screen acting as a protective envelope. The radioactive deposit is tritiated titanium [fr

  15. High concentration tritium gas measurement with small volume ionization chambers for fusion fuel gas monitors

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Okuno, Kenji; Matsuda, Yuji; Naruse, Yuji

    1991-01-01

    To apply ionization chambers to fusion fuel gas processing systems, high concentration tritium gas was experimentally measured with small volume 0.16 and 21.6 cm 3 ionization chambers. From plateau curves, the optimum electric field strength was obtained as 100∼200 V/cm. Detection efficiency was confirmed as dependent on the ionization ability of the filled gas, and moreover on its stopping power, because when the range of the β-rays was shortened, the probability of energy loss by collisions with the electrode and chamber wall increased. Loss of ions by recombination was prevented by using a small volume ionization chamber. For example the 0.16 cm 3 ionization chamber gave measurement with linearity to above 40% tritium gas. After the tritium gas measurements, the concentration levels inside the chamber were estimated from their memory currents. Although more than 1/4,000 of the maximum, current was observed as a memory effect, the smaller ionization chamber gave a smaller memory effect. (author)

  16. The variation of particle gas-borne concentration with time in a gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J; Hall, D; Reeks, M W [Central Electricity Generating Board, Berkeley Nuclear Laboratories (United Kingdom)

    1985-07-01

    If volatile fission products are released from fuel during a reactor fault, a significant fraction could become attached to small particles also present in the coolant. In such circumstances the retention of those particles by the reactor circuit will limit the level of gas-borne particle concentration and hence be important in reducing the potential release of fission product activity to the atmosphere. Clearly the retention of particles will be influenced by both the deposition and resuspension of particles from surfaces exposed to the coolant flow. In this paper we consider deposition and resuspension but pay particular attention to the role of resuspension, which in the past has been given little consideration. A recently developed model for the resuspension of small particles by a turbulent flow is outlined. Traditionally, resuspension has been interpreted as a force balance between the aerodynamic removal forces and the surface adhesive forces. In contrast, this new approach embodies an energy balance criterion for particle resuspension. Furthermore, the stochastic nature of this new model has shown that resuspension can be sub-divided into two regimes: (i) initial resuspension (resuspension occurring in times less than a second) which reduces the net deposition of particles to a surface; and (ii) longer term resuspension (resuspension after 1 second) which determines the asymptotic decay of particle gas-borne concentration. It is seen that the asymptotic decay varies almost inversely as the decay time. Force balance models are unsuccessful in accounting for the experimentally observed longer term resuspension. We show that a Volterra integro-differential equation best describes the variation of particle gas-borne concentration with time in a recirculating gas flow such as a gas cooled reactor. It is seen that the longer term resuspension has a major influence in the final decay of particle concentration. (author)

  17. The variation of particle gas-borne concentration with time in a gas cooled reactor

    International Nuclear Information System (INIS)

    Reed, J.; Hall, D.; Reeks, M.W.

    1985-01-01

    If volatile fission products are released from fuel during a reactor fault, a significant fraction could become attached to small particles also present in the coolant. In such circumstances the retention of those particles by the reactor circuit will limit the level of gas-borne particle concentration and hence be important in reducing the potential release of fission product activity to the atmosphere. Clearly the retention of particles will be influenced by both the deposition and resuspension of particles from surfaces exposed to the coolant flow. In this paper we consider deposition and resuspension but pay particular attention to the role of resuspension, which in the past has been given little consideration. A recently developed model for the resuspension of small particles by a turbulent flow is outlined. Traditionally, resuspension has been interpreted as a force balance between the aerodynamic removal forces and the surface adhesive forces. In contrast, this new approach embodies an energy balance criterion for particle resuspension. Furthermore, the stochastic nature of this new model has shown that resuspension can be sub-divided into two regimes: (i) initial resuspension (resuspension occurring in times less than a second) which reduces the net deposition of particles to a surface; and (ii) longer term resuspension (resuspension after 1 second) which determines the asymptotic decay of particle gas-borne concentration. It is seen that the asymptotic decay varies almost inversely as the decay time. Force balance models are unsuccessful in accounting for the experimentally observed longer term resuspension. We show that a Volterra integro-differential equation best describes the variation of particle gas-borne concentration with time in a recirculating gas flow such as a gas cooled reactor. It is seen that the longer term resuspension has a major influence in the final decay of particle concentration. (author)

  18. Ammonia concentration modeling based on retained gas sampler data

    International Nuclear Information System (INIS)

    Terrones, G.; Palmer, B.J.; Cuta, J.M.

    1997-09-01

    The vertical ammonia concentration distributions determined by the retained gas sampler (RGS) apparatus were modeled for double-shell tanks (DSTs) AW-101, AN-103, AN-104, and AN-105 and single-shell tanks (SSTs) A-101, S-106, and U-103. One the vertical transport of ammonia in the tanks were used for the modeling. Transport in the non-convective settled solids and floating solids layers is assumed to occur primarily via some type of diffusion process, while transport in the convective liquid layers is incorporated into the model via mass transfer coefficients based on empirical correlations. Mass transfer between the top of the waste and the tank headspace and the effects of ventilation of the headspace are also included in the models. The resulting models contain a large number of parameters, but many of them can be determined from known properties of the waste configuration or can be estimated within reasonable bounds from data on the waste samples themselves. The models are used to extract effective diffusion coefficients for transport in the nonconvective layers based on the measured values of ammonia from the RGS apparatus. The modeling indicates that the higher concentrations of ammonia seen in bubbles trapped inside the waste relative to the ammonia concentrations in the tank headspace can be explained by a combination of slow transport of ammonia via diffusion in the nonconvective layers and ventilation of the tank headspace by either passive or active means. Slow transport by diffusion causes a higher concentration of ammonia to build up deep within the waste until the concentration gradients between the interior and top of the waste are sufficient to allow ammonia to escape at the same rate at which it is being generated in the waste

  19. Concentration fluctuations in gas releases by industrial accidents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Chatwin, P.C.; Joergensen, H.E.; Mole, N.; Munro, R.J.; Ott, S.

    2002-05-01

    The COFIN project studied existing remote-sensing Lidar data on concentration fluctuations in atmospheric dispersion from continuous sources at ground level. Fluctuations are described by stochastic models developed by a combination of statistical analyses and surface-layer scaling. The statistical moments and probability density distribution of the fluctuations are most accurately determined in a frame of reference following the instantaneous plume centreline. The spatial distribution of these moments is universal with a gaussian core and exponential tails. The instantaneous plume width is fluctuating with a log-normal distribution. The position of the instantaneous plume centre-line is modelled by a normal distribution and a Langevin equation, by which the meander effect on the time-averaged plume width is predicted. Fixed-frame statistics are modelled by convolution of moving-frame statistics and the probability distribution for the plume centreline. The distance-neighbour function generalized for higher-order statistics has a universal exponential shape. Simulation tools for concentration fluctuations have been developed for either multiple correlated time series or multi-dimensional fields. These tools are based on Karhunen-Loeve expansion and Fourier transformations using iterative or correlation-distortion techniques. The input to the simulation is the probability distribution of the individual processes, assumed stationary, and the cross-correlations of all signal combinations. The use in practical risk assessment is illustrated by implementation of a typical heavy-gas dispersion model, enhanced for prediction and simulation of concentration fluctuations. (au)

  20. Domestic gas contribution to natural radon concentration in Paraguay

    International Nuclear Information System (INIS)

    Coronel, G.; Sajo B, L.

    1996-01-01

    The technique for measuring the concentration of radon in gas sold commercially for domestic use is presented. It is shown that the contribution is not significant, 5.5±1.4 (Bq/m 3 ), nevertheless it could reach in some cases significant values of intervention (200 Bq/m 3 ). The results indicate that the additional dose to which the population is exposed is approximately 26% of the natural background calculated in approximately 0,28 mSv/year. By assuming a lineal proportionality between dose and risk, the increase of the possibility of catching lethal leukemia or cancer is 16 cases for every million of population. (authors). 8 refs., 1 fig

  1. Evaluation of thiosulfate as a substitute for hydrogen sulfide in sour corrosion fatigue studies

    Science.gov (United States)

    Kappes, Mariano Alberto

    This work evaluates the possibility of replacing hydrogen sulfide (H 2S) with thiosulfate anion (S2O32- ) in sour corrosion fatigue studies. H2S increases the corrosion fatigue crack growth rate (FCGR) and can be present in carbon steel risers and flowlines used in off-shore oil production. Corrosion tests with gaseous H2S require special facilities with safety features, because H2S is a toxic and flammable gas. The possibility of replacing H2S with S2O32-, a non-toxic anion, for studying stress corrosion cracking of stainless and carbon steels in H2S solutions was first proposed by Tsujikawa et al. ( Tsujikawa et al., Corrosion, 1993. 49(5): p. 409-419). In this dissertation, Tsujikawa work will be extended to sour corrosion fatigue of carbon steels. H2S testing is often conducted in deareated condition to avoid oxygen reaction with sulfide that yields sulfur and to mimic oil production conditions. Nitrogen deareation was also adopted in S2O3 2- testing, and gas exiting the cell was forced through a sodium hydroxide trap. Measurements of the sulfide content of this trap were used to estimate the partial pressure of H2S in nitrogen, and Henry's law was used to estimate the content of H2S in the solution in the cell. H2S was produced by a redox reaction of S2O 32-, which required electrons from carbon steel corrosion. This reaction is spontaneous at the open circuit potential of steel. Therefore, H2S concentration was expected to be maximum at the steel surface, and this concentration was estimated by a mass balance analysis. Carbon steel specimens exposed to S2O32- containing solutions developed a film on their surface, composed by iron sulfide and cementite. The film was not passivating and a good conductor of electrons. Hydrogen permeation experiments proved that this film controls the rate of hydrogen absorption of steels exposed to thiosulfate containing solutions. The absorption of hydrogen in S2O3 2- solutions was compared with the absorption of hydrogen in

  2. Analytical and sensorial characterization of the aroma of wines produced with sour rotten grapes using GC-O and GC-MS: identification of key aroma compounds.

    Science.gov (United States)

    Barata, André; Campo, Eva; Malfeito-Ferreira, Manuel; Loureiro, Virgílio; Cacho, Juan; Ferreira, Vicente

    2011-03-23

    In the present work, the aroma profiles of wines elaborated from sound and sour rot-infected grapes as raw material have been studied by sensory analysis, gas chromatography-olfactometry (GC-O), and gas chromatography-mass spectrometry (GC-MS), with the aim of determining the odor volatiles most likely associated with this disease. The effect of sour rot was tested in monovarietal wines produced with the Portuguese red grape variety Trincadeira and in blends of Cabernet Sauvignon and sour rotten Trincadeira grapes. Wines produced from damaged berries exhibited clear honey-like notes not evoked by healthy samples. Ethyl phenylacetate (EPhA) and phenylacetic acid (PAA), both exhibiting sweet honey-like aromas, emerged as key aroma compounds of sour rotten wines. Their levels were 1 order of magnitude above those found in controls and reached 304 and 1668 μg L(-1) of EPhA and PAA, respectively, well above the corresponding odor thresholds. Levels of γ-nonalactone also increased by a factor 3 in sour rot samples. Results also suggest that sour rot exerts a great effect on the secondary metabolism of yeast, decreasing the levels of volatiles related to fatty acids and amino acid synthesis. The highest levels of γ-decalactone of up to 405 μg L(-1) were also found in all of the samples, suggesting that this could be a relevant aroma compound in Trincadeira wine aroma.

  3. Municipalities in Western Norway concentrate on natural gas

    International Nuclear Information System (INIS)

    2001-01-01

    Only one percent of the natural gas from the Norwegian gas fields is currently used in Norway and it is a national goal that 10 percent of the gas produced shall be used for domestic purposes. Western Norway should pioneer this development, as this is where the gas is brought on land. ''Vestlandsroeret AS'' is a project in which sixteen municipalities - including the city Bergen - and eleven companies plan to develop infrastructure which will provide for transport of the gas to customers and markets in Western Norway. The article also discusses environmental considerations, public opinion, the utilization of waste heat and extensive development of cod culture

  4. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    Science.gov (United States)

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but

  5. Gas Concentration Prediction Based on the Measured Data of a Coal Mine Rescue Robot

    Directory of Open Access Journals (Sweden)

    Xiliang Ma

    2016-01-01

    Full Text Available The coal mine environment is complex and dangerous after gas accident; then a timely and effective rescue and relief work is necessary. Hence prediction of gas concentration in front of coal mine rescue robot is an important significance to ensure that the coal mine rescue robot carries out the exploration and search and rescue mission. In this paper, a gray neural network is proposed to predict the gas concentration 10 meters in front of the coal mine rescue robot based on the gas concentration, temperature, and wind speed of the current position and 1 meter in front. Subsequently the quantum genetic algorithm optimization gray neural network parameters of the gas concentration prediction method are proposed to get more accurate prediction of the gas concentration in the roadway. Experimental results show that a gray neural network optimized by the quantum genetic algorithm is more accurate for predicting the gas concentration. The overall prediction error is 9.12%, and the largest forecasting error is 11.36%; compared with gray neural network, the gas concentration prediction error increases by 55.23%. This means that the proposed method can better allow the coal mine rescue robot to accurately predict the gas concentration in the coal mine roadway.

  6. De novo transcriptome assembly of a sour cherry cultivar, Schattenmorelle

    Directory of Open Access Journals (Sweden)

    Yeonhwa Jo

    2015-12-01

    Full Text Available Sour cherry (Prunus cerasus in the genus Prunus in the family Rosaceae is one of the most popular stone fruit trees worldwide. Of known sour cherry cultivars, the Schattenmorelle is a famous old sour cherry with a high amount of fruit production. The Schattenmorelle was selected before 1650 and described in the 1800s. This cultivar was named after gardens of the Chateau de Moreille in which the cultivar was initially found. In order to identify new genes and to develop genetic markers for sour cherry, we performed a transcriptome analysis of a sour cherry. We selected the cultivar Schattenmorelle, which is among commercially important cultivars in Europe and North America. We obtained 2.05 GB raw data from the Schattenmorelle (NCBI accession number: SRX1187170. De novo transcriptome assembly using Trinity identified 61,053 transcripts in which N50 was 611 bp. Next, we identified 25,585 protein coding sequences using TransDecoder. The identified proteins were blasted against NCBI's non-redundant database for annotation. Based on blast search, we taxonomically classified the obtained sequences. As a result, we provide the transcriptome of sour cherry cultivar Schattenmorelle using next generation sequencing.

  7. Beyond phthalates: Gas phase concentrations and modeled gas/particle distribution of modern plasticizers

    Energy Technology Data Exchange (ETDEWEB)

    Schossler, Patricia [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Institute of Environmental and Sustainable Chemistry, Technische Universitaet Braunschweig, Hagenring 30, D-38106 Braunschweig (Germany); Schripp, Tobias, E-mail: tobias.schripp@wki.fraunhofer.de [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Salthammer, Tunga [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Bahadir, Muefit [Institute of Environmental and Sustainable Chemistry, Technische Universitaet Braunschweig, Hagenring 30, D-38106 Braunschweig (Germany)

    2011-09-01

    The ongoing health debate about polymer plasticizers based on the esters of phthalic acid, especially di(2-ethylhexyl) phthalate (DEHP), has caused a trend towards using phthalates of lower volatility such as diisononyl phthalate (DINP) and towards other acid esters, such as adipates, terephthalates, citrates, etc. Probably the most important of these so-called 'alternative' plasticizers is diisononyl cyclohexane-1,2-dicarboxylate (DINCH). In the indoor environment, the continuously growing market share of this compound since its launch in 2002 is inter alia apparent from the increasing concentration of DINCH in settled house dust. From the epidemiological point of view there is considerable interest in identifying how semi-volatile organic compounds (SVOCs) distribute in the indoor environment, especially in air, airborne particles and sedimented house dust. This, however, requires reliable experimental concentration data for the different media and good measurements or estimates of their physical and chemical properties. This paper reports on air concentrations for DINP, DINCH, diisobutyl phthalate (DIBP), diisobutyl adipate (DIBA), diisobutyl succinate (DIBS) and diisobutyl glutarate (DIBG) from emission studies in the Field and Laboratory Emission Cell (FLEC). For DINP and DINCH it took about 50 days to reach the steady-state value: for four months no decay in the concentration could be observed. Moreover, vapor pressures p{sub 0} and octanol-air partitioning coefficients K{sub OA} were obtained for 37 phthalate and non-phthalate plasticizers from two different algorithms: EPI Suite and SPARC. It is shown that calculated gas/particle partition coefficients K{sub p} and fractions can widely differ due to the uncertainty in the predicted p{sub 0} and K{sub OA} values. For most of the investigated compounds reliable experimental vapor pressures are not available. Rough estimates can be obtained from the measured emission rate of the pure compound in a

  8. Methods of gas hydrate concentration estimation with field examples

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, D.; Dash, R.; Dewangan, P.

    physics and seismic inversion: examples from the northern deepwater Gulf of Mexico: The Leading Edge, 23, 60-66. Dash R., 2007, Crustal structure and marine gas hydrate studies near Vancouver Island using seismic tomography: PhD thesis, University...-resistivity logs: Examples from Green Canyon, Gulf of Mexico: SEG expanded abstracts, 26, 1579-1583. Singh, S. C., Minshull, T. A., and Spence, G. D., 1993, Velocity structure of a gas hydrate reflector: Science, 260, 204-207. Sloan, E. D. Jr., 1998, Clathrate...

  9. Determination of radon concentration in soil gas by gamma-ray spectrometry of olive oil

    International Nuclear Information System (INIS)

    Al-Azmi, Darwish; Karunakara, N.

    2007-01-01

    Measurements of radon concentration in soil gas have been carried out using a bubbling system in which the soil gas is drawn through an active pumping to bubble a liquid absorber (olive oil) for the deposition of the soil gas in it. After the bubbling process, the absorber is then taken for gamma-ray measurements. Gamma-ray photopeaks from the 214 Pb and the 214 Bi radon progeny are considered for the detection of the 222 Rn gas to study the concentration levels for radon soil gas. Results for some field measurements were obtained and compared with results obtained using AlphaGuard radon gas monitor. The technique provides a possible approach for the measurements of radon soil gas with gamma-ray spectrometry

  10. Gas, oil, and environmental biotechnology IV

    Energy Technology Data Exchange (ETDEWEB)

    Akin, C; Markuszewski, R; Smith, J [eds.; Institute of Gas Technology, Chicago, IL (United States)

    1992-01-01

    Contains 32 papers presented at the 4th international IGT symposium on gas, oil and environmental biotechnology. Topics covered were: hydrocarbon bioremediation; groundwater, soil and explosives bioremediation; gas and oil reservoir souring; and biodesulfurization. 2 papers have been abstracted separately.

  11. Effects of aqueous extracts of dried calyx of sour tea (Hibiscus sabdariffa L. on polygenic dyslipidemia: A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Majid Hajifaraji

    2017-12-01

    Full Text Available Objective: Dyslipidemia has been considered as a major risk factor for coronary heart disease. Alternative medicine has a significant role in treatment of dyslipidemia. There are controversial findings regarding the effects of sour tea on dyslipidemia. The aim of this study was to evaluate the impact of aqueous extract of dried calyx of sour tea on polygenic dyslipidemia. Materials and Methods: This clinical trial was done on 43 adults (30-60 years old with polygenic dyslipidemia that were randomly assigned to the intervention and control groups. The control group was trained in lifestyle modifications at baseline. The intervention group was trained for lifestyle modifications at baseline and received two cups of sour tea daily, and both groups were followed up for 12 weeks. Lipid profile was evaluated at baseline, and six and 12 weeks following the intervention. In addition, dietary and physical activity assessed at baseline for twelve weeks. Results: Mean concentration of total cholesterol, HDL-C and LDL-C significantly decreased by up to 9.46%, 8.33%, and 9.80%, respectively, after 12 weeks in the intervention group in comparison to their baseline values. However, LDL-C/HDL-C ratio significantly increased  by up to 3.15%, following 12 weeks in the control group in comparison to their baseline values. This study showed no difference in lipid profiles between the two groups, except for HDL-C concentrations. Conclusion: sour tea may have significant positive effects on lipid profile of polygenic dyslipidemia subjects and these effect might be attributed to its anthocyanins and inflation factor content. Therefore, sour tea intake with recommended dietary patterns and physical activity can be useful in regulation of lipid profile in patients with polygenic dyslipidemia.

  12. Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems.

    Science.gov (United States)

    Jayaprakasha, G K; Girennavar, Basavaraj; Patil, Bhimanagouda S

    2008-07-01

    Antioxidant fractions from two different citrus species such as Rio Red (Citrus paradise Macf.) and Sour orange (Citrus aurantium L.) were extracted with five different polar solvents using Soxhlet type extractor. The total phenolic content of the extracts was determined by Folin-Ciocalteu method. Ethyl acetate extract of Rio Red and Sour orange was found to contain maximum phenolics. The dried fractions were screened for their antioxidant activity potential using in vitro model systems such as 1,1-diphenyl-2-picryl hydrazyl (DPPH), phosphomolybdenum method and nitroblue tetrazolium (NBT) reduction at different concentrations. The methanol:water (80:20) fraction of Rio Red showed the highest radical scavenging activity 42.5%, 77.8% and 92.1% at 250, 500 and 1000 ppm, respectively, while methanol:water (80:20) fraction of Sour orange showed the lowest radical scavenging activity at all the tested concentrations. All citrus fractions showed good antioxidant capacity by the formation of phosphomolybdenum complex at 200 ppm. In addition, superoxide radical scavenging activity was assayed using non-enzymatic (NADH/phenaxine methosulfate) superoxide generating system. All the extracts showed variable superoxide radical scavenging activity. Moreover, methanol:water (80:20) extract of Rio Red and methanol extract of Sour orange exhibited marked reducing power in potassium ferricyanide reduction method. The data obtained using above in vitro models clearly establish the antioxidant potential of citrus fruit extracts. However, comprehensive studies need to be conducted to ascertain the in vivo bioavailability, safety and efficacy of such extracts in experimental animals. To the best of our knowledge, this is the first report on antioxidant activity of different polar extracts from Rio Red and Sour oranges.

  13. Soil gas radon concentration across faults near Caracas, Venezuela

    International Nuclear Information System (INIS)

    Sajo-Bohus, L.; Flores, N.; Urbani, F.; Carreno, R.

    2001-01-01

    SSNTD were used across tectonic features of different degree of activity and lithology in four localities north of Caracas, Venezuela. The homemade dosimeters with LR115 film were buried 20-30 cm in the ground. This cheap and low- tech method proved very useful to understand the tectonic features involved, measuring higher Radon concentration above traces of active faults while in old and sealed faults the results only show the effect of the surrounding lithology. Radon concentration range is 4.3 - 27.2 kB/m 3 . (Author)

  14. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300

    NARCIS (Netherlands)

    Meinhausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; Thomson, A.; Velders, G.J.M.; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X

    2011-01-01

    We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new

  15. Concentration fluctuations in gas releases by industrial accidents

    DEFF Research Database (Denmark)

    Nielsen, M.; Chatwin, P.C.; Ejsing Jørgensen, Hans

    2002-01-01

    The COFIN project studied existing remote-sensing Lidar data on concentration fluctuations in atmospheric dispersion from continuous sources at ground level. Fluctuations are described by stochastic models developed by a combination of statisticalanalyses and surface-layer scaling. The statistical...... and the probability distribution for the plume centreline. The distance-neighbour function generalizedfor higher-order statistics has a universal exponential shape. Simulation tools for concentration fluctuations have been developed for either multiple correlated time series or multi-dimensional fields. These tools...... moments and probability density distribution of the fluctuations are most accurately determined in a frame of reference following the instantaneous plume centreline. The spatial distribution of thesemoments is universal with a gaussian core and exponential tails. The instantaneous plume width...

  16. Measuring gas concentration and wind intensity in a turbulent wind tunnel with a mobile robot

    OpenAIRE

    Martínez Lacasa, Daniel; Moreno Blanc, Javier; Tresánchez, Marcel; Clotet Bellmunt, Eduard; Jiménez-Soto, Juan M.; Magrans, Rudys; Pardo Martínez, Antonio; Marco Colás, Santiago; Palacín Roca, Jordi

    2016-01-01

    This paper presents themeasurement of gas concentration and wind intensity performed with amobile robot in a customturbulent wind tunnel designed for experimentation with customizable wind and gas leak sources.This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber...

  17. Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores

    Directory of Open Access Journals (Sweden)

    Vargas-Cordero Iván

    2017-12-01

    Full Text Available Two sectors, Itata and Valdivia, which are located in the Chilean margin were analysed by using seismic data with the main purpose to characterize the gas hydrate concentration. Strong lateral velocity variations are recognised, showing a maximum value in Valdivia offshore (2380 ms−1 above the BSR and a minimum value in the Itata offshore (1380 m·s−1 below the BSR. In both of the sectors, the maximum hydrate concentration reaches 17% of total volume, while the maximum free gas concentration is located Valdivia offshore (0.6% of total volume in correspondence of an uplift sector. In the Itata offshore, the geothermal gradient that is estimated is variable and ranges from 32 °C·km−1 to 87 °C·km−1, while in Valdivia offshore it is uniform and about 35 °C·km−1. When considering both sites, the highest hydrate concentration is located in the accretionary prism (Valdivia offshore and highest free gas concentration is distributed upwards, which may be considered as a natural pathway for lateral fluid migration. The results that are presented here contribute to the global knowledge of the relationship between hydrate/free gas presence and tectonic features, such as faults and folds, and furnishes a piece of the regional hydrate potentiality Chile offshore.

  18. HARAD, Decay Isotope Concentration from Atmospheric Noble-Gas Release

    International Nuclear Information System (INIS)

    Moore, R.E.

    1986-01-01

    1 - Description of problem or function: HARAD calculates concentrations of radioactive daughters in air following the atmospheric release of a parent radionuclide for a variety of release heights and meteorological conditions. It can be applied most profitably to the assessment of doses to man from the noble gases such as Rn-222, Rn-220, and Xe and Kr isotopes. These gases can produce significant quantities of short-lived particulate daughters in an airborne plume, which are the major contributors to dose. The simultaneous processes of radioactive decay, buildup and environmental loss due to wet and dry deposition on ground surfaces are calculated for a daughter chain in an airborne plume as it is dispersed downwind from a point of release of a parent. 2 - Method of solution: The code evaluates the analytic solution to the set of coupled first order differential equations describing time variation of the concentration of a chain of radionuclides. The analytic solutions assume that the coefficient describing the fractional rate of dry deposition is constant with time. To account for the variation the time coordinate is automatically divided into intervals and a set of average values are used. 3 - Restrictions on the complexity of the problem: - The maximum length of decay chain is 10 nuclides; calculations can be made at a maximum of 24 downwind distances

  19. Sour Taste preferences of children relate to preference of novel and intense stimuli

    NARCIS (Netherlands)

    Liem, D.G.; Westerbeek, A.; Wolterink, S.; Kok, F.J.; Graaf, de C.

    2004-01-01

    Previous research has suggested that some children have a preference for sour tastes. The origin of this preference remains unclear. We investigated whether preference for sour tastes is related to a difference in rated sour intensity due to physiological properties of saliva, or to an overall

  20. Industrial processing effects on phenolic compounds in sour cherry (Prunus cerasus L.) fruit

    NARCIS (Netherlands)

    Toydemir, G.; Capanoglu, E.; Gomez-Roldan, M.V.; Vos, de R.C.H.; Boyacioglu, D.; Hall, R.D.; Beekwilder, M.J.

    2013-01-01

    The processed juice (or nectar) of the sour cherry, Prunus cerasus L., is widely consumed in the Balkan region and Turkey. Sour cherry is known to be rich in polyphenolic compounds, such as anthocyanins and procyanidins. In this work, the effects of processing of sour cherry fruit to nectar on

  1. Degradation of Anthocyanin Content in Sour Cherry Juice During Heat Treatment

    Directory of Open Access Journals (Sweden)

    Lilla Szalóki-Dorkó

    2015-01-01

    Full Text Available Sour cherry juices made from two sour cherry cultivars (Érdi bőtermő and Kántorjánosi 3, were investigated to determine their total anthocyanin content and half-life of anthocyanins during heat treatment at different temperatures (70, 80 and 90 °C for 4 h. Before the heat treatment, Érdi bőtermő juice had higher anthocyanin concentration (812 mg/L than Kántorjánosi 3 juice (513 mg/L. The greatest heat sensitivity of anthocyanins was measured at 90 °C, while the treatments at 80 and 70 °C caused lower thermal degradation. The loss of anthocyanins in Érdi bőtermő juice after treatment was 38, 29 and 18 %, respectively, while in Kántorjánosi 3 juice losses of 46, 29 and 19 % were observed, respectively. At 90 °C sour cherry Érdi bőtermő juice had higher half-life (t1/2 of anthocyanins, while the Kántorjánosi 3 juice had higher t1/2 values at 70 °C. Cyanidin-3-glucosyl-rutinoside was present in higher concentrations in both cultivars (Érdi bőtermő: 348 and Kántorjánosi 3: 200 mg/L than cyanidin-3-rutinoside (177 and 121 mg/L before treatment. However, during the experiment, cyanidin-3-rutinoside was proved to be more resistant to heat. Comparing the two varieties, both investigated pigment compounds were more stable in Kántorjánosi 3 than in Érdi bőtermő. Degradation rate of anthocyanins was cultivar-dependent characteristic, which should be taken into account in the food production.

  2. Evaluating the gas content of coals and isolated maceral concentrates from the Paleocene Guasare Coalfield, Venezuela

    International Nuclear Information System (INIS)

    Berbesi, L.A.; Marquez, G.; Martinez, M.; Requena, A.

    2009-01-01

    This work presents the results from evaluating the gases sorbed by coal samples extracted from the Paleocene Guasare Coalfield (Marcelina Formation, northwestern Venezuela), as well as by their distinct maceral concentrates. The aim of this work has been to obtain an initial experimental main value of the gas content per unit weight of high volatile bituminous A coal samples from the open-pit Paso Diablo mine. An additional goal was to study differences in the CH 4 storage ability of the distinct maceral groups forming part of the coal matrix. Both the coal samples and the maceral concentrates were studied by thermogravimetric analysis (TGA) in order to determine the temperature to be used in subsequent experiments. On-line analyses of hydrocarbons (C 1 , C 2 , C 3 ) and CO 2 yielded gas concentrations, plus δ 13 C values. Thermogenic gas is prevalent in the Guasare coals with vitrinite reflectance (%R o ) values from 0.65% to 0.88%. The amount of gas retained in the coals and maceral concentrates was measured with a special device that allows determination of the volume of gas sorbed by a solid sample subjected to controlled thermal treatment. The average coalbed gas concentration obtained was 0.51 cm 3 /g. The following list of maceral concentrates shows the relative capacity for the volume of sorbed gas per unit weight: inertinite > low-density vitrinite > liptinite ∼ high-density vitrinite. It is concluded that the gas volumes retained in the distinct maceral concentrates are not controlled by porosity but rather by their microscopic morphology.

  3. Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data

    Science.gov (United States)

    Kumar, Dhananjay; Sen, Mrinal K.; Bangs, Nathan L.

    2007-12-01

    A seismic experiment composed of streamer and ocean bottom seismometer (OBS) surveys was conducted in the summer of 2002 at southern Hydrate Ridge, offshore Oregon, to map the gas hydrate distribution within the hydrate stability zone. Gas hydrate concentrations within the reservoir can be estimated with P wave velocity (Vp); however, we can further constrain gas hydrate concentrations using S wave velocity (Vs), and use Vs through its relationship to Vp (Vp/Vs) to reveal additional details such as gas hydrate form within the matrix (i.e., hydrate cements the grains, becomes part of the matrix frame or floats in pore space). Both Vp and Vs can be derived simultaneously by inverting multicomponent seismic data. In this study, we use OBS data to estimate seismic velocities where both gas hydrate and free gas are present in the shallow sediments. Once Vp and Vs are estimated, they are simultaneously matched with modeled velocities to estimate the gas hydrate concentration. We model Vp using an equation based on a modification of Wood's equation that incorporates an appropriate rock physics model and Vs using an empirical relation. The gas hydrate concentration is estimated to be up to 7% of the rock volume, or 12% of the pore space. However, Vp and Vs do not always fit the model simultaneously. Vp can vary substantially more than Vs. Thus we conclude that a model, in which higher concentrations of hydrate do not affect shear stiffness, is more appropriate. Results suggest gas hydrates form within the pore space of the sediments and become part of the rock framework in our survey area.

  4. Bioactivity of sour cherry cultivars grown in Denmark

    DEFF Research Database (Denmark)

    Khoo, Gaik Ming; Clausen, Morten Rahr; Pedersen, Bjarne Hjelmsted

    2012-01-01

    Thirty four varieties of sour cherries (Prunus cerasus) were investigated for their total antioxidant activity, Caco-2 cancer cell proliferation inhibitory activity and effect on prostaglandin E2 (PGE2) production. Total phenolic content, oxygen radical absorbance capacity (ORAC) and cancer cell ...

  5. Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios

    Science.gov (United States)

    Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.

    2013-12-01

    Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other

  6. Impact of stream geomorphology on greenhouse gas concentration in a New York mountain stream

    Science.gov (United States)

    Philippe Vidon; Satish Serchan

    2016-01-01

    As increased greenhouse gas concentrations (GHG: N2O, CO2, CH4) in our atmosphere remain a major concern, better quantifying GHG fluxes from natural systems is essential. In this study, we investigate GHG concentrations in saturated riparian sediments (dry, wet, mucky), streambed hyporheic zone...

  7. The effect of produced water reinjection on reservoir souring in the Statfjord field

    Energy Technology Data Exchange (ETDEWEB)

    Bjoernestad, Eva Oe.; Sunde, Egil; Dinning, Anthony J.

    2006-03-15

    A produced water reinjection (PWRI) pilot test was performed in one well in the Statfjord field in the period 2000-2001. In order to establish the souring parameters and influence of PWRI in the near well area, the well was back flowed prior to PWRI, and at the end of the PWRI test period. Tracer was used for mass balance evaluations. After the PWRI pilot test was finished, the PWRI plant was upgraded at the Statfjord C platform and since 2003; two wells have been re injecting produced water. Nitrate has substituted biocides for corrosion control in the water injection system at the Statfjord B and Statfjord C platforms. Based on experience from other Statoil operated fields, nitrate will improve the corrosion control and in addition reduce the reservoir souring and hence the H2S production. In 2004, three wells were backflowed; a PWRI- injector, a seawater injector and a sea water injector with addition of nitrate. Results from the PWRI pilot test, showed that the sulphide production increased 17 times after PWRI in comparison with seawater injection. In the backflowing studies in 2004, water from the PWRI injector showed considerable higher H2S content (approximately 300 mg/l) than the well injecting only seawater (approximately 3-4 mg/l). The well injecting nitrate showed the lowest sulphide concentration in the backflowed fluids in comparison with the other wells (below 1 mg/l). This illustrates a significant increase in microbiological activity within the near injection area as a result of increased nutrient availability due to PWRI. The impact of PWRI in the lifetime of the Statfjord field has been evaluated and the PWRI strategy may be altered due to increases in souring. (Author)

  8. Determination of natural in vivo noble-gas concentrations in human blood.

    Directory of Open Access Journals (Sweden)

    Yama Tomonaga

    Full Text Available Although the naturally occurring atmospheric noble gases He, Ne, Ar, Kr, and Xe possess great potential as tracers for studying gas exchange in living beings, no direct analytical technique exists for simultaneously determining the absolute concentrations of these noble gases in body fluids in vivo. In this study, using human blood as an example, the absolute concentrations of all stable atmospheric noble gases were measured simultaneously by combining and adapting two analytical methods recently developed for geochemical research purposes. The partition coefficients determined between blood and air, and between blood plasma and red blood cells, agree with values from the literature. While the noble-gas concentrations in the plasma agree rather well with the expected solubility equilibrium concentrations for air-saturated water, the red blood cells are characterized by a distinct supersaturation pattern, in which the gas excess increases in proportion to the atomic mass of the noble-gas species, indicating adsorption on to the red blood cells. This study shows that the absolute concentrations of noble gases in body fluids can be easily measured using geochemical techniques that rely only on standard materials and equipment, and for which the underlying concepts are already well established in the field of noble-gas geochemistry.

  9. Effects of nitrate injection on microbial enhanced oil recovery and oilfield reservoir souring.

    Science.gov (United States)

    da Silva, Marcio Luis Busi; Soares, Hugo Moreira; Furigo, Agenor; Schmidell, Willibaldo; Corseuil, Henry Xavier

    2014-11-01

    Column experiments were utilized to investigate the effects of nitrate injection on sulfate-reducing bacteria (SRB) inhibition and microbial enhanced oil recovery (MEOR). An indigenous microbial consortium collected from the produced water of a Brazilian offshore field was used as inoculum. The presence of 150 mg/L volatile fatty acids (VFA´s) in the injection water contributed to a high biological electron acceptors demand and the establishment of anaerobic sulfate-reducing conditions. Continuous injection of nitrate (up to 25 mg/L) for 90 days did not inhibit souring. Contrariwise, in nitrogen-limiting conditions, the addition of nitrate stimulated the proliferation of δ-Proteobacteria (including SRB) and the associated sulfide concentration. Denitrification-specific nirK or nirS genes were not detected. A sharp decrease in water interfacial tension (from 20.8 to 14.5 mN/m) observed concomitantly with nitrate consumption and increased oil recovery (4.3 % v/v) demonstrated the benefits of nitrate injection on MEOR. Overall, the results support the notion that the addition of nitrate, at this particular oil reservoir, can benefit MEOR by stimulating the proliferation of fortuitous biosurfactant-producing bacteria. Higher nitrate concentrations exceeding the stoichiometric volatile fatty acid (VFA) biodegradation demands and/or the use of alternative biogenic souring control strategies may be necessary to warrant effective SRB inhibition down gradient from the injection wells.

  10. Thermodynamic characteristics of a low concentration methane catalytic combustion gas turbine

    International Nuclear Information System (INIS)

    Yin, Juan; Su, Shi; Yu, Xin Xiang; Weng, Yiwu

    2010-01-01

    Low concentration methane, emitted from coal mines, landfill, animal waste, etc. into the atmosphere, is not only a greenhouse gas, but also a waste energy source if not utilised. Methane is 23 times more potent than CO 2 in terms of trapping heat in the atmosphere over a timeframe of 100 years. This paper studies a novel lean burn catalytic combustion gas turbine, which can be powered with about 1% methane (volume) in air. When this technology is successfully developed, it can be used not only to mitigate the methane for greenhouse gas reduction, but also to utilise such methane as a clean energy source. This paper presents our study results on the thermodynamic characteristics of this new lean burn catalytic combustion gas turbine system by conducting thermal performance analysis of the turbine cycle. The thermodynamic data including thermal efficiencies and exergy loss of main components of the turbine system are presented under different pressure ratios, turbine inlet temperatures and methane concentrations.

  11. Stress corrosion cracking resistance of 22% Cr duplex stainless steel in simulated sour environments

    International Nuclear Information System (INIS)

    Kudo, T.; Tsuge, H.; Moroishi, T.

    1989-01-01

    This paper reports the effect of nickel and nitrogen contents on stress corrosion cracking (SCC) of 22%Cr - 3%Mo-base duplex stainless steel investigated in simulated sour environments with respect to both the base metal and the heat-affected zone (HAZ) of welding. The threshold stress and the critical chloride concentration for SCC were evaluated as a function of the ferrite content (α-content) in the alloy. The threshold stress is highest at the α-content of 40 to 45%, and is lowered with decreasing and increasing the α-content from its value. The alloy whose α-content exceeds 80% at the HAZ has also high susceptibilities to pitting corrosion and intergranular corrosion (ICG). The critical chloride concentration for cracking increases with the decrease in the α-content. Moreover, the contents of chromium, nickel and molybdenum in the α-phase are considered to be an important factor for determining the critical chloride concentration

  12. Hybrid ATDL-gamma distribution model for predicting area source acid gas concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Jakeman, A J; Taylor, J A

    1985-01-01

    An air quality model is developed to predict the distribution of concentrations of acid gas in an urban airshed. The model is hybrid in character, combining reliable features of a deterministic ATDL-based model with statistical distributional approaches. The gamma distribution was identified from a range of distributional models as the best model. The paper shows that the assumptions of a previous hybrid model may be relaxed and presents a methodology for characterizing the uncertainty associated with model predictions. Results are demonstrated for the 98-percentile predictions of 24-h average data over annual periods at six monitoring sites. This percentile relates to the World Health Organization goal for acid gas concentrations.

  13. Method to make accurate concentration and isotopic measurements for small gas samples

    Science.gov (United States)

    Palmer, M. R.; Wahl, E.; Cunningham, K. L.

    2013-12-01

    Carbon isotopic ratio measurements of CO2 and CH4 provide valuable insight into carbon cycle processes. However, many of these studies, like soil gas, soil flux, and water head space experiments, provide very small gas sample volumes, too small for direct measurement by current constant-flow Cavity Ring-Down (CRDS) isotopic analyzers. Previously, we addressed this issue by developing a sample introduction module which enabled the isotopic ratio measurement of 40ml samples or smaller. However, the system, called the Small Sample Isotope Module (SSIM), does dilute the sample during the delivery with inert carrier gas which causes a ~5% reduction in concentration. The isotopic ratio measurements are not affected by this small dilution, but researchers are naturally interested accurate concentration measurements. We present the accuracy and precision of a new method of using this delivery module which we call 'double injection.' Two portions of the 40ml of the sample (20ml each) are introduced to the analyzer, the first injection of which flushes out the diluting gas and the second injection is measured. The accuracy of this new method is demonstrated by comparing the concentration and isotopic ratio measurements for a gas sampled directly and that same gas measured through the SSIM. The data show that the CO2 concentration measurements were the same within instrument precision. The isotopic ratio precision (1σ) of repeated measurements was 0.16 permil for CO2 and 1.15 permil for CH4 at ambient concentrations. This new method provides a significant enhancement in the information provided by small samples.

  14. Antimicrobial effect of sour pomegranate sauce on Escherichia coli O157:H7 and Staphylococcus aureus.

    Science.gov (United States)

    Kışla, Duygu; Karabıyıklı, Şeniz

    2013-05-01

    Pomegranate sauce is one of the most popular pomegranate products produced in Turkey. This study was conducted to determine the minimum inhibitory concentrations (MICs) of both traditional and commercial sour pomegranate sauce samples on Staphylococcus aureus (ATCC 25923) and Escherichia coli O157:H7 (ATCC 43895). The initial microflora of the pomegranate sauce samples was determined by performing the enumerations of total aerobic mesophilic bacteria, yeast and mold, S. aureus, E. coli, and the determination of Salmonella spp. MIC tests were applied to the neutralized and the original (unneutralized) sour pomegranate sauce samples in order to put forth the inhibition effect depending on low pH value. It was found that inhibitory effect of the traditional and the commercial samples, except one sample, on pathogens was not only due to the acidity of the products. The results of MIC tests indicated that although both traditional and commercial samples showed a considerable inhibitory effect on test microorganisms, the traditional pomegranate sauce samples were more effective than the commercial ones. © 2013 Institute of Food Technologists®

  15. Multiwire proportional chamber and multistage avalanche chamber with low concentration photoionization gas

    International Nuclear Information System (INIS)

    Zhao Pingde; Xu Zhiqing; Tang Xiaowei

    1986-01-01

    The characteristics of multiwire proportional chamber and multistage avalanche chamber filled with argon and photoionization gas (C 2 H 5 ) 3 N were measured. The spatial resolution curves and output pulse height spectra were measured as well. Low concentration (C 2 H 5 ) 3 N can play an effective part in quenching. At very low concentration, the phenomena of avalanche transverse expansion was observed obviously

  16. Prediction of Dissolved Gas Concentrations in Transformer Oil Based on the KPCA-FFOA-GRNN Model

    Directory of Open Access Journals (Sweden)

    Jun Lin

    2018-01-01

    Full Text Available The purpose of analyzing the dissolved gas in transformer oil is to determine the transformer’s operating status and is an important basis for fault diagnosis. Accurate prediction of the concentration of dissolved gas in oil can provide an important reference for the evaluation of the state of the transformer. A combined predicting model is proposed based on kernel principal component analysis (KPCA and a generalized regression neural network (GRNN using an improved fruit fly optimization algorithm (FFOA to select the smooth factor. Firstly, based on the idea of using the dissolved gas ratio of oil to diagnose the transformer fault, gas concentration ratios are also used as characteristic parameters. Secondly, the main parameters are selected from the feature parameters using the KPCA method, and the GRNN is then used to predict the gas concentration in the transformer oil. In the training process of the network, the FFOA is used to select the smooth factor of the neural network. Through a concrete example, it is shown that the method proposed in this paper has better data fitting ability and more accurate prediction ability compared with the support vector machine (SVM and gray model (GM methods.

  17. Combination scattering of dissociating gas applied to measurements of temperature and concentration of components

    International Nuclear Information System (INIS)

    Pashkov, V.A.; Kurganova, F.I.; Grishchuk, M.Kh.

    1987-01-01

    The method to calculate the combination scattering power of the components of the dissociating N 2 O 4 ↔ 2NO 2 → 2NO+O 2 gas subjected to the laser radiation effect is given. The combination scattering power has been calculated for temperatures 400-600 K, pressures 1-3 MPa, with the neodymium laser (λ=1.06 μm) as a source and the possibility of measuring the local temperatures and concentration of the given gas components with the help of the combination scattering has been analysed. It follows from the calculated data that combination scattering power of N 2 O 4 ↔ 2NO 2 ↔ 2NO+O 2 gas in excitation with the neodymium laser as a source is sufficient for detection. Gas temperature is likely to be measured with the minimum error relative to stokes and anti-stokes bands of the combination scattering, produced by nitrogen tetroxide. From calculated data it also follows that measurement of NO 2 concentration in the range 400-600 K is possible. At the same time combination scattering power, produced by NO and O 2 components is sufficient for measurement merely with the concentration of the components of the order of 10 18 molecules/cm 3 guaranteed in static conditions only at N 2 O 4 ↔ 2NO 2 ↔ 2NO+O 2 gas temperature 500 K and higher

  18. Steady-state ozone concentration in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O 2 and noble gas-O 2 -SF 6 mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10 15 eV.cm -3 .s -1 . The experimental apparatus and proceedure were previously described. The experimentally observed stead-state ozone concentrations in noble gas-O 2 discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O 2 -SF 6 mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF 6 addition. This observation was contrary to only a small increase observed after SF 6 addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O 2 discharges

  19. Steady-state ozone concentrations in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O/sub 2/ and noble gas-o/sub 2/-SF/sub 6/ mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10/sup 15/ eV . cm/sup -3/ . s/sup -1/. The experimental apparatus and procedure were previously described. The experimentally observed steady-state ozone concentrations in noble gas-O/sub 2/ discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O/sub 2/-SF/sub 6/ mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF/sub 6/ addition. This observation was contrary to only a small increase observed after SF/sub 6/ addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O/sub 2/ discharges

  20. Methane emission from naturally ventilated livestock buildings can be determined from gas concentration measurements

    DEFF Research Database (Denmark)

    Bjerg, B; Zhang, Guoqiang; Madsen, J

    2012-01-01

    Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat pr...... to investigate the influence of feed composition on methane emission in a relative large number of operating cattle buildings and consequently it can support a development towards reduced greenhouse gas emission from cattle production.......Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat...... ventilated, 150 milking cow building. The results showed that the methane emission can be determined with much higher precision than ammonia or laughing gas emissions, and, for methane, relatively precise estimations can be based on measure periods as short as 3 h. This result makes it feasible...

  1. THEORETICAL GAS CONCENTRATIONS ACHIEVING 100% FILL OF THE VITREOUS CAVITY IN THE POSTOPERATIVE PERIOD: A Gas Eye Model Study.

    Science.gov (United States)

    Williamson, Tom H; Guillemaut, Jean-Yves; Hall, Sheldon K; Hutter, Joseph C; Goddard, Tony

    2017-12-11

    To determine the concentrations of different gas tamponades in air to achieve 100% fill of the vitreous cavity postoperatively and to examine the influence of eye volume on these concentrations. A mathematical model of the mass transfer dynamics of tamponade and blood gases (O2, N2, and CO2) when injected into the eye was used. Mass transfer surface areas were calculated from published anatomical data. The model has been calibrated from published volumetric decay and composition results for three gases sulphahexafluoride (SF6), hexafluoroethane (C2F6), or perfluoropropane (C3F8). The concentrations of these gases (in air) required to achieve 100% fill of the vitreous cavity postoperatively without an intraocular pressure rise were determined. The concentrations were calculated for three volumes of the vitreous cavity to test whether ocular size influenced the results. A table of gas concentrations was produced. In a simulation of pars plana vitrectomy operations in which an 80% to 85% fill of the vitreous cavity with gas was achieved at surgery, the concentrations of the 3 gases in air to achieve 100% fill postoperatively were 10% to 13% for C3F8, 12% to 15% for C2F6, and 19% to 25% for SF6. These were similar to the so-called "nonexpansive" concentrations used in the clinical setting. The calculations were repeated for three different sizes of eye. Aiming for an 80% fill at surgery and 100% postoperatively, an eye with a 4-mL vitreous cavity required 24% SF6, 15% C2F6, or 13% C3F8; 7.2 mL required 25% SF6, 15% C2F6, or 13% C3F8; and 10 mL required 25% SF6, 16% C2F6, or 13% C3F8. When using 100% gas (e.g., used in pneumatic retinopexy), to achieve 100% fill postoperatively, the minimum vitreous cavity fill at surgery was 43% for SF6, 29% for C2F6, and 25% for C3F8 and was only minimally changed by variation in the size of the eye. A table has been produced, which could be used for surgical innovation in gas usage in the vitreous cavity. It provides concentrations

  2. Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.

    Science.gov (United States)

    Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf

    2013-07-02

    The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.

  3. Organic acid profile of commercial sour cassava starch

    Directory of Open Access Journals (Sweden)

    DEMIATE I.M.

    1999-01-01

    Full Text Available Organic acids are present in sour cassava starch ("polvilho azedo" and contribute with organoleptic and physical characteristics like aroma, flavor and the exclusive baking property, that differentiate this product from the native cassava starch. Samples of commercial sour cassava starch collected in South and Southeast Brazil were prepared for high performance liquid chromatography (HPLC analysis. The HPLC equipment had a Biorad Aminex HPX-87H column for organic acid analysis and a refractometric detector. Analysis was carried out with 0.005M sulfuric acid as mobile phase, 0.6ml/min flow rate and column temperature of 60° C. The acids quantified were lactic (0.036 to 0.813 g/100g, acetic (0 to 0.068 g/100g, propionic (0 to 0.013 g/100g and butyric (0 to 0.057 g/100g, that are produced during the natural fermentation of cassava starch. Results showed large variation among samples, even within the same region. Some samples exhibited high acid levels, mainly lactic acid, but in these neither propionic nor butyric acids were detected. Absence of butyric acid was not expected because this is an important component of the sour cassava starch aroma, and the lack of this acid may suggest that such samples were produced without the natural fermentation step.

  4. Experimental Study of Hydroxy Gas (HHO) Production with Variation in Current, Voltage and Electrolyte Concentration

    Science.gov (United States)

    Alam, Noor; Pandey, K. M.

    2017-08-01

    In this paper, work has been carried out experimentally for the investigation of the effects of variation incurrent, voltage, temperature, chemical concentration and reaction time on the amount of hydroxy gas produced. Further effects on the overall electrolysis efficiency of advance alkaline water is also studied. The hydroxy gas (HHO) has been produced experimentally by the electrolysis of alkaline water with parallel plate electrode of 316L-grade stainless steel. The electrode has been selected on the basis of corrosion resistance and inertness with respect to electrolyte (KOH). The process used for the production of HHO is conventional as compared to the other production processes because of reduced energy consumption, less maintenance and low setup cost. From the experimental results, it has been observed that with increase in voltage, temperature and electrolyte concentration of alkaline solution, the production of hydroxy gas has increased about 30 to 40% with reduction in electrical energy consumption.

  5. Exhaust gas concentration of CNG fuelled direct injection engine at MBT timing

    International Nuclear Information System (INIS)

    Hassan, M.K.; Aris, I.; Mahmod, S.; Sidek, R.

    2009-01-01

    Full text: This paper presents an experimental result of exhaust gas concentration of high compression engine fuelled with compressed natural gas (CNG) at maximum brake torque (MBT). The engine uses central direct injection (DI) technique to inject the CNG into the cylinder. The engine geometry bases on gasoline engine with 14:1 compression ratio and called CNGDI engine. The injectors are positioned within a certain degrees of spark plug location. The objective of the experiment is to study the influence and significant of MBT timing in CNGDI engine towards exhaust gases. The experimental tests were carried out using computer-controlled eddy-current dynamometer, which measures the CNGDI engine performance. At MBT region, exhaust gas concentration as such CO, HC, NO x , O 2 and CO 2 , were recorded and analyzed during the test using the Horiba analyzer. A closed loop wide band lambda sensor has been mounted at the exhaust manifold to indicate the oxygen level during the exercise. (author)

  6. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    Science.gov (United States)

    Stephen M Ogle; Kenneth Davis; Thomas Lauvaux; Andrew Schuh; Dan Cooley; Tristram O West; Linda S Heath; Natasha L Miles; Scott Richardson; F Jay Breidt; James E Smith; Jessica L McCarty; Kevin R Gurney; Pieter Tans; A Scott. Denning

    2015-01-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country's contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated...

  7. Comparative measurements of soil gas radon concentration using thermoluminescent and track detectors

    Czech Academy of Sciences Publication Activity Database

    Turek, Karel; Gelev, M.; Dimov, I.

    2004-01-01

    Roč. 38, spec. iss. (2004), s. 843-846 ISSN 1350-4487 Institutional research plan: CEZ:AV0Z1048901 Keywords : soil gas * radon concentration * thermoluminescent detectors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.664, year: 2004

  8. Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue.

    Directory of Open Access Journals (Sweden)

    Taufiqul Huque

    2009-10-01

    Full Text Available The perception of sour taste in humans is incompletely understood at the receptor cell level. We report here on two patients with an acquired sour ageusia. Each patient was unresponsive to sour stimuli, but both showed normal responses to bitter, sweet, and salty stimuli.Lingual fungiform papillae, containing taste cells, were obtained by biopsy from the two patients, and from three sour-normal individuals, and analyzed by RT-PCR. The following transcripts were undetectable in the patients, even after 50 cycles of amplification, but readily detectable in the sour-normal subjects: acid sensing ion channels (ASICs 1a, 1beta, 2a, 2b, and 3; and polycystic kidney disease (PKD channels PKD1L3 and PKD2L1. Patients and sour-normals expressed the taste-related phospholipase C-beta2, the delta-subunit of epithelial sodium channel (ENaC and the bitter receptor T2R14, as well as beta-actin. Genomic analysis of one patient, using buccal tissue, did not show absence of the genes for ASIC1a and PKD2L1. Immunohistochemistry of fungiform papillae from sour-normal subjects revealed labeling of taste bud cells by antibodies to ASICs 1a and 1beta, PKD2L1, phospholipase C-beta2, and delta-ENaC. An antibody to PKD1L3 labeled tissue outside taste bud cells.These data suggest a role for ASICs and PKDs in human sour perception. This is the first report of sour ageusia in humans, and the very existence of such individuals ("natural knockouts" suggests a cell lineage for sour that is independent of the other taste modalities.

  9. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    Science.gov (United States)

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  10. Analysis of problems and failures in the measurement of soil-gas radon concentration.

    Science.gov (United States)

    Neznal, Martin; Neznal, Matěj

    2014-07-01

    Long-term experience in the field of soil-gas radon concentration measurements allows to describe and explain the most frequent causes of failures, which can appear in practice when various types of measurement methods and soil-gas sampling techniques are used. The concept of minimal sampling depth, which depends on the volume of the soil-gas sample and on the soil properties, is shown in detail. Consideration of minimal sampling depth at the time of measurement planning allows to avoid the most common mistakes. The ways how to identify influencing parameters, how to avoid a dilution of soil-gas samples by the atmospheric air, as well as how to recognise inappropriate sampling methods are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Risk assessment of radon gas concentration for some selected offices of KNUST campus, Kumasi

    International Nuclear Information System (INIS)

    Bediako, Yaw Addo

    2013-11-01

    Radon (Rn-222) has been identified as an factor that could result in a health hazard by studies all around the world. The health risks can be minimised by preventing measures where radon is highly concentrated as in some mines or homes or offices. A study in the buildup concentration of the inert gas, will give us a better understanding of its possible pathways through soil into the air surrounding and offices where radon releases can become hazardous. Measuring the radon concentrations on campus, can help to deduce the radon flux to identify the problem areas for rehabilitation. An active method incorporating Trace level radon gas detection and continious monitoring method was used in this study to determine the radon concentration of the selected offices. Concentrations ranging from 0.010 to 0.498 pCi/I were detected, with the head of optometry and Visual Science recording the highest concentration of 0.498 pCi/I, while the head of Agricultural Engineering Department office with the least concentration of 0.010 pCi/I. Although these concentrations are generally low as compared with the EPA guidelines of an action level of 4 pCi/I, but no amount of radiation is said to be safe. (au)

  12. Radon in a Karstic Region School: Concentrations in Soil Gas and Indoors

    International Nuclear Information System (INIS)

    Vaupotic, J.; Kobal, I.; Barisic, D.; Lulic, S.

    1998-01-01

    The school presented in this paper exceeded instantaneous indoor radon concentration of 1000 Bqm -3 , obtained within the Slovene radon programme. Thus, additional measurements were performed and the radiation doses of teachers and pupils estimated. Radon concentrations between 1000 and 3000 Bqm -3 during teaching hours were found and the yearly effective doses from 0.75 to 1.1 mSv for the pupils and from 1.1 to 4.2 mSv for the teachers were calculated. In the soil gas radon and thoron concentration ranging from 70 to 150 kBqm -3 were obtained. The school was mitigated during summer 1998. (author)

  13. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    Science.gov (United States)

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Numerical predictions of the separation of heavy components inside the trace gas concentrator

    International Nuclear Information System (INIS)

    Mo, J.D.

    1995-01-01

    The component with a heavier molecular weight can be separated from the one with a lighter molecular weight in a binary mixture by applying an appropriate pressure gradient. A centrifugal force field effectively generates the required pressure gradient and a favorable flow field along the radial direction in a trace gas concentrator for such an application. This paper presents the numerical predictions of the mass separation inside a trace gas concentrator, which enriches Xenon in air. A Navier-Stokes solver in primitive variables using a pressure based algorithm has been applied to solve for the flow fields. Subsequently, the transport equations with a strong centrifugal field are solved for the mass concentration. This study is the continued effort for the proof-of-concept of centrifugal separation of components with a considerable difference in their molecular weight in a binary mixture. The significant effects of rotational speed, flow field, and the geometrical configuration on the mass separation are presented in this paper

  15. Measurement of radon exhalation rate and soil gas radon concentration in areas of southern Punjab (Pakistan)

    International Nuclear Information System (INIS)

    Mujahid, S. A.; Hussain, S.; Ramzan, M.

    2010-01-01

    Plastic track detectors were used to measure the radon concentration and exhalation rate from the soil samples. The samples were collected from areas of southern Punjab (Pakistan). In a laboratory experiment, passive alpha dosemeters were installed inside cylindrical bottles containing the soil samples. The radon concentrations and the radon exhalation rate were found in the ranges of 34±7 to 260±42 Bq m -3 and 38±8 to 288±46 mBq m -2 h -1 , respectively. The on-site measurements of radon in the soil gas were also carried out in these areas using a scintillation alpha counter. The concentration of radon in the soil gas was found in the range of 423±82-3565±438 Bq m -3 . (authors)

  16. A new method research of monitoring low concentration NO and SO2 mixed gas

    Science.gov (United States)

    Bo, Peng; Gao, Chao; Guo, Yongcai; Chen, Fang

    2018-01-01

    In order to reduce the pollution of the environment, China has implemented a new ultra-low emission control regulations for polluting gas, requiring new coal-fired power plant emissions SO2 less than 30ppm, NO less than 75ppm, NO2 less than 50ppm, Monitoring low concentration of NO and SO2 mixed gases , DOAS technology facing new challenges, SO2 absorb significantly weaken at the original absorption peak, what more the SNR is very low, it is difficult to extract the characteristic signal, and thus cannot obtain its concentration. So it cannot separate the signal of NO from the mixed gas at the wavelength of 200 230nm through the law of spectral superposition, it cannot calculate the concentration of NO. The classical DOAS technology cannot meet the needs of monitoring. In this paper, we found another absorption spectrum segment of SO2, the SNR is 10 times higher than before, Will not be affected by NO, can calculate the concentration of SO2 accurately, A new method of segmentation and demagnetization separation technology of spectral signals is proposed, which achieves the monitoring the low concentration mixed gas accurately. This function cannot be achieved by the classical DOAS. Detection limit of this method is 0.1ppm per meter which is higher than before, The relative error below 5% when the concentration between 0 5ppm, the concentration of NO between 6 75ppm and SO2 between 6 30ppm the relative error below 1.5%, it has made a great breakthrough In the low concentration of NO and SO2 monitoring. It has great scientific significance and reference value for the development of coal-fired power plant emission control, atmospheric environmental monitoring and high-precision on-line instrumentation.

  17. Performance analysis of different working gases for concentrated solar gas engines: Stirling & Brayton

    International Nuclear Information System (INIS)

    Sharaf Eldean, Mohamed A.; Rafi, Khwaja M.; Soliman, A.M.

    2017-01-01

    Highlights: • Different working gases are used to power on Concentrated Solar Gas Engines. • Gases are used to increase the system efficiency. • Specific heat capacity is considered a vital role for the comparison. • Brayton engine resulted higher design limits. • CO 2 is favorable as a working gas more than C 2 H 2 . - Abstract: This article presents a performance study of using different working fluids (gases) to power on Concentrated Solar Gas Engine (CSGE-Stirling and/or Brayton). Different working gases such as Monatomic (five types), Diatomic (three types) and Polyatomic (four types) are used in this investigation. The survey purported to increase the solar gas engine efficiency hence; decreasing the price of the output power. The effect of using different working gases is noticed on the engine volume, dish area, total plant area, efficiency, compression and pressure ratios thence; the Total Plant Cost (TPC, $). The results reveal that the top cycle temperature effect is reflected on the cycle by increasing the total plant efficiency (2–10%) for Brayton operational case and 5–25% for Stirling operational case. Moreover; Brayton engine resulted higher design limits against the Stirling related to total plant area, m 2 and TPC, $ while generating 1–100 MW e as an economic case study plant. C 2 H 2 achieved remarkable results however, CO 2 is considered for both cycles operation putting in consideration the gas flammability and safety issues.

  18. A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit

    International Nuclear Information System (INIS)

    Su, Shi; Yu, Xinxiang

    2015-01-01

    Low concentration methane, emitted from various industries e.g. coal mines and landfills into atmosphere, is not only an important greenhouse gas, but also a wasted energy resource if not utilized. In the past decade, we have been developing a novel VAMCAT (ventilation air methane catalytic combustion gas turbine) technology. This turbine technology can be used to mitigate methane emissions for greenhouse gas reduction, and also to utilize the low concentration methane as an energy source. This paper presents our latest research results on the development and demonstration of a 25 kWe lean burn catalytic combustion gas turbine prototype unit. Recent experimental results show that the unit can be operated with 0.8 vol% of methane in air, producing about 19–21 kWe of electricity output. - Highlights: • A novel low concentration methane catalytic turbine prototype unit was developed. • The 25 kWe unit can be operated with ∼0.8 vol.% CH 4 in air with 19–21 kWe output. • A new start-up method was developed for the prototype unit

  19. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, M.J.; Liekhus, K.J. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R. [Benchmark Environmental Corp. (United States)

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  20. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers. Revision 1

    International Nuclear Information System (INIS)

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1995-08-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering Laboratory (INEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations

  1. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    International Nuclear Information System (INIS)

    Connolly, M.J.; Liekhus, K.J.

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations

  2. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wenjuan, E-mail: Wenjuan.Wei@cstb.fr [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); Mandin, Corinne [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); Blanchard, Olivier [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Mercier, Fabien [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Pelletier, Maud [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Le Bot, Barbara [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); and others

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25 °C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R > 0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6 °C, while it increased by up to 750% when the indoor temperature increased from 15 °C to 30 °C. - Highlights: • A theoretical relationship between K{sub p} and temperature was developed. • The relationship was based on the SVOC absorptive mechanism. • The temperature impact was quantified by a dimensionless analysis.

  3. Monitoring and modeling wetland chloride concentrations in relationship to oil and gas development

    Science.gov (United States)

    Post van der Burg, Max; Tangen, Brian A.

    2015-01-01

    Extraction of oil and gas via unconventional methods is becoming an important aspect of energy production worldwide. Studying the effects of this development in countries where these technologies are being widely used may provide other countries, where development may be proposed, with some insight in terms of concerns associated with development. A fairly recent expansion of unconventional oil and gas development in North America provides such an opportunity. Rapid increases in energy development in North America have caught the attention of managers and scientists as a potential stressor for wildlife and their habitats. Of particular concern in the Northern Great Plains of the U.S. is the potential for chloride-rich produced water associated with unconventional oil and gas development to alter the water chemistry of wetlands. We describe a landscape scale modeling approach designed to examine the relationship between potential chloride contamination in wetlands and patterns of oil and gas development. We used a spatial Bayesian hierarchical modeling approach to assess multiple models explaining chloride concentrations in wetlands. These models included effects related to oil and gas wells (e.g. age of wells, number of wells) and surficial geology (e.g. glacial till, outwash). We found that the model containing the number of wells and the surficial geology surrounding a wetland best explained variation in chloride concentrations. Our spatial predictions showed regions of localized high chloride concentrations. Given the spatiotemporal variability of regional wetland water chemistry, we do not regard our results as predictions of contamination, but rather as a way to identify locations that may require more intensive sampling or further investigation. We suggest that an approach like the one outlined here could easily be extended to more of an adaptive monitoring approach to answer questions about chloride contamination risk that are of interest to managers.

  4. Evidence for the concentration induced extinction of gas sensitivity in amorphous and nanostructured Te thin films

    International Nuclear Information System (INIS)

    Tsiulyanu, D.; Mocreac, O.; Enachi, M.; Volodina, G.

    2013-01-01

    The extinction of sensitivity to nitrogen dioxide induced by high gas concentration have been observed in ultrathin tellurium films. The phenomenon becomes apparent in both continuous and nanostructured films shown by AFM, SEM and XRD analyses to be in amorphous state. Sensitivity of 30 nm thickness Te film decreases near linearly with concentration increase between 150 and 500 ppb of nitrogen dioxide. The results are explained in terms of formation of a nitrogen dioxide catalytic gate in which a molecule adsorbs (and desorbs) without reacting. (authors)

  5. Results of gas exposure experiments for determination of HF concentrations injurious to plants

    Energy Technology Data Exchange (ETDEWEB)

    Guderian, R

    1971-01-01

    Gas exposure experiments were performed under greenhouse conditions to determine the effects of hydrogen fluoride on the growth capacity, yield and quality of plants. Damage to plants was assessed after HF concentrations of 0.85-25 ..mu..g/m/sup 3/. The effects of definite HF quantities on plants are described and relative sensitivities of 17 deciduous trees, 9 evergreens, 24 agricultural garden plants and 17 ornamental plants are presented. 2 references, 7 tables.

  6. Development of metal oxide gas sensors for very low concentration (ppb) of BTEX vapors

    Science.gov (United States)

    Favard, A.; Aguir, K.; Contaret, T.; Caris, L.; Bendahan, M.

    2017-12-01

    The control and analysis of air quality have become a major preoccupation of the last twenty years. In 2008, the European Union has introduced a Directive (2008/50/EC) to impose measurement obligations and thresholds to not exceed for some pollutants, including BTEX gases, in view of their adverse effects on the health. In this paper, we show the ability to detect very low concentrations of BTEX using a gas microsensor based on metal oxide thin-film. A test bench able to generate very low vapors concentrations has been achieved and fully automated. Thin metal oxides layers have been realized by reactive magnetron sputtering. The sensitive layers are functionalized with gold nanoparticles by thermal evaporation technique. Our sensors have been tested on a wide range of concentrations of BTEX (5 - 500 ppb) and have been able to detect concentrations of a few ppb for operating temperatures below 593 K. These results are very promising for detection of very low BTEX concentration for indoor as well as outdoor application. We showed that the addition of gold nanoparticles on the sensitive layers decreases the sensors operating temperature and increases the response to BTEX gas. The best results are obtained with a sensitive layer based on ZnO.

  7. Measuring Gas Concentration and Wind Intensity in a Turbulent Wind Tunnel with a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Dani Martínez

    2016-01-01

    Full Text Available This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms.

  8. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Energy Technology Data Exchange (ETDEWEB)

    Prasetyaningrum, A., E-mail: ajiprasetyaningrum@gmail.com; Ratnawati,; Jos, B. [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto Tembalang, Semarang, Central Java, Indonesia, 50276 (Indonesia)

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  9. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    International Nuclear Information System (INIS)

    Prasetyaningrum, A.; Ratnawati,; Jos, B.

    2015-01-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O 3 ) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV

  10. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Science.gov (United States)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  11. Heptyl vicianoside and methyl caramboside from sour star fruit.

    Science.gov (United States)

    Yang, Dan; Jia, Xuchao; Xie, Haihui

    2018-04-23

    Two new alkyl glycosides, heptyl vicianoside (1) and methyl 2-O-β-d-fucopyranosyl-α-l-arabinofuranoside (methyl caramboside, 4), were isolated from the sour fruit of Averrhoa carambola L. (Oxalidaceae), along with octyl vicianoside (2), cis-3-hexenyl rutinoside (3), and methyl α-d-fructofuranoside (5). Their structures were determined by spectroscopic and chemical methods. Compounds 2, 3, and 5 were obtained from the genus Averrhoa for the first time. All the compounds were evaluated for in vitro α-glucosidase, pancreatic lipase, and acetylcholinesterase inhibitory activities, but none of them were potent.

  12. SOUR CHERRY (Prunus cerasus L. GENETIC VARIABILITY AND PHOTOSYNTHETIC EFFICIENCY DURING DROUGHT

    Directory of Open Access Journals (Sweden)

    Marija Viljevac

    2012-12-01

    Full Text Available Sour cherry is an important fruit in Croatian orchards. Cultivar Oblačinska is predominant in existing orchards with noted intracultivar phenotypic heterogeneity. In this study, the genetic variability of 22 genotypes of cvs. Oblačinska, Maraska and Cigančica, as well as standard cvs. Kelleris 14, Kelleris 16, Kereška, Rexelle and Heimann conserved were investigated. Two types of molecular markers were used: microsatellite markers (SSR in order to identify intercultivar, and AFLP in order to identify intracultivar variabilities. A set of 12 SSR markers revealed small genetic distance between cvs. Maraska and Oblačinska while cv. Cigančica is affined to cv. Oblačinska. Furthermore, cvs. Oblačinska, Cigančica and Maraska were characterized compared to standard ones. AFLP markers didn`t confirm significant intracultivar variability of cv. Oblačinska although the variability has been approved at the morphological, chemical and pomological level. Significant corelation between SSR and AFLP markers was found. Identification of sour cherry cultivars tolerant to drought will enable the sustainability of fruit production with respect to the climate change in the future. For this purpose, the tolerance of seven sour cherry genotypes (cvs. Kelleris 16, Maraska, Cigančica and Oblačinska represented by 4 genotypes: OS, 18, D6 and BOR to drought conditions was tested in order to isolate genotypes with the desired properties. In the greenhouse experiment, cherry plants were exposed to drought stress. The leaf relative water content, OJIP test parameters which specify efficiency of the photosynthetic system based on measurements of chlorophyll a fluorescence, and concentrations of photo-synthetic pigments during the experiment were measured as markers of drought tolerance. Photosynthetic performance index (PIABS comprises three key events in the reaction centre of photosystem II affecting the photosynthetic activity: the absorption of energy

  13. Concentration of saline produced water from coalbed methane gas wells in multiple-effect evaporator using waste heat from the gas compressor and compressor drive engine

    International Nuclear Information System (INIS)

    Sadler, L.Y.; George, O.

    1995-01-01

    The use of heat of compression from the gas compressor and waste heat from the diesel compressor drive engine in a triple-effect feed forward evaporator was studied as a means of concentrating saline produced water to facilitate its disposal. The saline water, trapped in deeply buried coal seams, must be continuously pumped from coalbed natural gas wells so that the gas can desorb from the coal and make its way to the wellbore. Unlike conventional natural gas which is associated with petroleum and usually reaches the wellhead at high pressure, coalbed natural gas reaches the wellhead at low pressure, usually around 101 kPa (1 atm), and must be compressed near the well site for injection into gas transmission pipelines. The water concentration process was simulated for a typical 3.93 m 3 /s (500 MCF/h), at standard conditions (101 kPa, 289K), at the gas production field in the Warrior Coal Basin of Alabama, but has application to the coalbed gas fields being brought into production throughout the world. It was demonstrated that this process can be considered for concentrating saline water produced with natural gas in cases where the gas must be compressed near the wellhead for transportation to market. 9 refs., 1 fig., 2 tabs

  14. Radon soil-gas concentration and exhalation from mine tailings dams in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ongori, J.; Lindsay, R. [University of the Western Cape, Department of Physics, Private Bag X17, Bellville 7535 (South Africa); Newman, R. [Stellenbosch University, Department of Physics, Private Bag X1 Matieland 7602 (South Africa); Maleka, P. [iThemba LABS, Department of Nuclear Physics, P. O. Box 722, Somerset West 7129 (South Africa)

    2014-07-01

    In Africa as well as in the world, South Africa plays an important role in the mining industry which dates back almost 120 years. Mining activities in South Africa mainly take place in Gauteng Province. Every year million of tons of rocks are taken from underground, milled and processed to extract gold. The uranium bearing tailings are disposed in dumpsites. These tailings dumps contain considerable amounts of radium ({sup 226}Ra) and have therefore been identified as large sources of radon ({sup 222}Rn). Radon is a noble gas formed by the decay of radium which in turn is derived from the radioactive decay of uranium ({sup 238}U). Radon release from these tailings dumps pose health concerns for the surrounding communities. Radon soil gas concentrations and exhalations from a non-operational mine dump (Kloof) which belongs to Carletonville Gold Field, Witwatersrand, South Africa have been investigated. The continuous radon monitor, the Durridge RAD7 was used to measure {sup 222}Rn soil gas concentration in the tailings dump at five different spots. The radon soil gas concentration levels were measured at depths starting from 30 cm below ground/air interface up to 110 cm at intervals of 20 cm. The concentrations recorded ranged from 26±1 to 472±23 kBq.m{sup -3}. Furthermore, thirty four soil samples were taken from the spots where radon soil gas measurements were measured for laboratory-based measurement using the low background Hyper Pure Germanium (HPGe) gamma-ray detector available at the Environmental Radioactivity Laboratory (ERL), iThemba LABS, Western Cape Province. The soil samples were collected in the depth range 0-30 cm. After analysis the weighted average activity concentrations in the soils samples were 308±7 Bq.kg{sup -1}, 255±5 Bq.kg{sup -1} and 18±1 Bq.kg{sup -1} for {sup 238}U, {sup 40}K and {sup 232}Th, respectively. A number of factors such as the radium activity concentration and its distribution in soil grains, soil grain size, soil porosity

  15. 27 CFR 25.192 - Removal of sour or damaged beer.

    Science.gov (United States)

    2010-04-01

    ... beer. 25.192 Section 25.192 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Removals Without Payment of Tax Removal of Beer Unfit for Beverage Use § 25.192 Removal of sour or damaged beer. (a) Containers. The brewer shall remove sour or...

  16. Some effects of winter grazing of Dohne sour veld | PF | African ...

    African Journals Online (AJOL)

    The utilisation of spared sour veld poses practical problems. As a result of the development of high level protein or nitrogen supplements it has however become possible to efficiently graze spared veld. Results of experiments during three winters where spared sour veld was grazed off either by sheep or by cattle are given.

  17. Effect of adding sour yoghurt and dough as bacterial inoculant on ...

    African Journals Online (AJOL)

    Inoculation of whole-crop corn with sourdough and sour yoghurt significantly decreased pH, ash content and ammonia nitrogen, while dry matter determined using toloen distillation (DMT), Flieg point, crude protein (CP), and total nitrogen increased (P<0.05). Key words: Silage, sour yoghurt, sourdough, corn forage.

  18. The noble gas concentrations of the Martian meteorites GRV 99027 and paired NWA 7906/NWA 7907

    Science.gov (United States)

    Stephenson, Peter C.; Lin, Yangting; Leya, Ingo

    2017-12-01

    Here we present the isotopic concentrations of He, Ne, Ar, Kr, and Xe for the three Martian meteorites, namely Grove Mountains 99027 (GRV 99027), Northwest Africa 7906 (NWA 7906), and Northwest Africa 7907 (NWA 7907). The cosmic ray exposure (CRE) age for GRV 99027 of 5.7 ± 0.4 Ma (1σ) is consistent with CRE ages for other poikilitic basaltic shergottites and suggests that all were ejected in a single event 5.6 Ma ago. After correcting for an estimated variable sodium concentration, the CRE ages for NWA 7906 and NWA 7907 of 5.4 ± 0.4 and 4.9 ± 0.4 Ma (1σ), respectively, are in good agreement with the CRE age of 5 Ma favored by Cartwright et al. for NWA 7034. The data, therefore, support the conclusion that all three basaltic regolith breccias are paired. The 40Ar gas retention age for NWA 7907 of 1.3 Ga is in accord with Cartwright et al. For NWA 7906, we were unable to determine a 40Ar gas retention age. The 4He gas retention ages for NWA 7906 and 7907 are in the range of 200 Ma and are much shorter than the 40Ar gas retention age of NWA 7907, indicating that about 86-88% of the radiogenic 4He has been lost. The Kr and Xe isotopic concentrations in GRV 99027 are composed almost exclusively of Martian interior (MI) gases, while for NWA 7906 and NWA 7907, they indicate gases from the MI, elementally fractionated air, and possibly Martian atmosphere.

  19. Sour and duke cherry viruses in South-West Europe

    Directory of Open Access Journals (Sweden)

    Rodrigo PÉREZ-SÁNCHEZ

    2017-05-01

    Full Text Available This study investigated the phytosanitary status of sour and duke cherry genetic resources in the Iberian Peninsula, and the incidence and leaf symptoms induced by the Prunus necrotic ringspot virus (PNRSV, Prune dwarf virus (PDV and Apple chlorotic leaf spot virus (ACLSV. Young leaf samples were taken from 204 sour and duke cherry trees belonging to ten cultivars, and were assayed by DAS-ELISA. Samples positive for any of the three viruses were also tested by RT-PCR. To associate the leaf symptoms with virus presence, 50 mature leaves from each infected tree were visually inspected during the summer. The ELISA and RT-PCR results indicated that 63% of the cherry trees were infected by at least one of these viruses. PNRSV occurred in all cultivars sampled and presented the highest infection rate (46%, followed by PDV (31% and ACLSV (6%. Many trees, (60 to 100%, were asymptomatic while harbouring single and mixed virus infections. The leaf symptoms associated with the viruses included chlorotic and dark brown necrotic ringspots on secondary veins and interveinal regions, for PNRSV, generalized chlorosis around the midveins, for PDV, chlorotic and reddish necrotic ringspots, for ACLSV, and generalized interveinal chlorosis, for mixed PNRSV and PDVinfections.

  20. Aqueous Rare Earth Element Patterns and Concentration in Thermal Brines Associated With Oil and Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Nye, Charles [University of Wyoming; Quillinan, Scott Austin [University of Wyoming; Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-13

    This study is part of a joint effort by the University of Wyoming (UW) School of Energy Resources (SER), the UW Engineering Department, Idaho National Laboratories (INL), and the United States Geological Survey (USGS) to describe rare earth element concentrations in oil and gas produced waters and in coal-fired power station ash ponds. In this work we present rare earth element (REE) and trace metal behavior in produced water from four Wyoming oil and gas fields and surface ash pond water from two coal-fired power stations. The concentration of REEs in oil and gas produced waters is largely unknown. For example, of the 150,000 entries in the USGS National Produced Waters Geochemical Database less than 5 include data for REEs. Part of the reason for this scarcity is the analytical challenge of measuring REEs in high salinity, hydrocarbon-bearing waters. The industry standard for water analysis struggles to detect REEs in natural waters under ideal conditions. The detection of REEs in oil and gas field samples becomes all but impossible with the background noise and interferences caused by high concentrations of non-REE ions and residual hydrocarbons. The INL team members have overcome many of these challenges (e.g. McLing, 2014), and continue to develop their methods. Using the methods of the INL team members we measured REEs in high salinity oil and gas produced waters. Our results show that REEs exist as a dissolved species in all waters measured for this project, typically within the parts per trillion range. The samples may be grouped into two broad categories analytically, and these categories match their genesis: Wyoming oil and gas brines contain elevated levels of Europium, and Wyoming industrial pond waters show elevation in heavy REEs (HREEs). While broadly true, important variations exist within both groups. In the same field Europium can vary by more than an order of magnitude, and likewise HREEs in industrial ponds at the same site can vary by more than

  1. Predictive Modelling of Concentration of Dispersed Natural Gas in a Single Room

    Directory of Open Access Journals (Sweden)

    Abdulfatai JIMOH

    2009-07-01

    Full Text Available This paper aimed at developing a mathematical model equation to predict the concentration of natural gas in a single room. The model equation was developed by using theoretical method of predictive modelling. The model equation developed is as given in equation 28. The validity of the developed expression was tested through the simulation of experimental results using computer software called MathCAD Professional. Both experimental and simulated results were found to be in close agreement. The statistical analysis carried out through the correlation coefficients for the results of experiment 1, 2, 3 and 4 were found to be 0.9986, 1.0000, 0.9981 and 0.9999 respectively, which imply reasonable close fittings between the experimental and simulated concentrations of dispersed natural gas within the room. Thus, the model equation developed can be considered a good representation of the phenomena that occurred when there is a leakage or accidental release of such gas within the room.

  2. Sustainable Solution for Crude Oil and Natural Gas Separation using Concentrated Solar Power Technology

    Science.gov (United States)

    Choudhary, Piyush; Srivastava, Rakesh K.; Nath Mahendra, Som; Motahhir, Saad

    2017-08-01

    In today’s scenario to combat with climate change effects, there are a lot of reasons why we all should use renewable energy sources instead of fossil fuels. Solar energy is one of the best options based on features like good for the environment, independent of electricity prices, underutilized land, grid security, sustainable growth, etc. This concept paper is oriented primarily focused on the use of Solar Energy for the crude oil heating purpose besides other many prospective industrial applications to reduce cost, carbon footprint and moving towards a sustainable and ecologically friendly Oil & Gas Industry. Concentrated Solar Power technology based prototype system is proposed to substitute the presently used system based on natural gas burning method. The hybrid system which utilizes the solar energy in the oil and gas industry would strengthen the overall field working conditions, safety measures and environmental ecology. 40% reduction on natural gas with this hybrid system is estimated. A positive implication for an environment, working conditions and safety precautions is the additive advantage. There could also decrease air venting of CO2, CH4 and N2O by an average of 30-35%.

  3. The Huber’s Method-based Gas Concentration Reconstruction in Multicomponent Gas Mixtures from Multispectral Laser Measurements under Noise Overshoot Conditions

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2016-01-01

    Full Text Available Laser gas analysers are the most promising for the rapid quantitative analysis of gaseous air pollution. A laser gas analysis problem is that there are instable results in reconstruction of gas mixture components concentration under real noise in the recorded laser signal. This necessitates using the special processing algorithms. When reconstructing the quantitative composition of multi-component gas mixtures from the multispectral laser measurements are efficiently used methods such as Tikhonov regularization, quasi-solution search, and finding of Bayesian estimators. These methods enable using the single measurement results to determine the quantitative composition of gas mixtures under measurement noise. In remote sensing the stationary gas formations or in laboratory analysis of the previously selected (when the gas mixture is stationary air samples the reconstruction procedures under measurement noise of gas concentrations in multicomponent mixtures can be much simpler. The paper considers a problem of multispectral laser analysis of stationary gas mixtures for which it is possible to conduct a series of measurements. With noise overshoots in the recorded laser signal (and, consequently, overshoots of gas concentrations determined by a single measurement must be used stable (robust estimation techniques for substantial reducing an impact of the overshoots on the estimate of required parameters. The paper proposes the Huber method to determine gas concentrations in multicomponent mixtures under signal overshoot. To estimate the value of Huber parameter and the efficiency of Huber's method to find the stable estimates of gas concentrations in multicomponent stationary mixtures from the laser measurements the mathematical modelling was conducted. Science & Education of the Bauman MSTU 108 The mathematical modelling results show that despite the considerable difference among the errors of the mixture gas components themselves a character of

  4. First in situ determination of gas transport coefficients (DO2, DAr and DN2) from bulk gas concentration measurements (O2, N2, Ar) in natural sea ice

    DEFF Research Database (Denmark)

    Crabeck, O.; Delille, B.; Rysgaard, Søren

    2014-01-01

    We report bulk gas concentrations of O2, N2, and Ar, as well as their transport coefficients, in natural landfast subarctic sea ice in southwest Greenland. The observed bulk ice gas composition was 27.5% O2, 71.4% N2, and 1.09% Ar. Most previous studies suggest that convective transport is the main...... driver of gas displacement in sea ice and have neglected diffusion processes. According to our data, brines were stratified within the ice, so that no convective transport could occur within the brine system. There- fore, diffusive transport was the main driver of gas migration. By analyzing the temporal...... evolution of an internal gas peak within the ice, we deduced the bulk gas transport coefficients for oxygen (DO2), argon (DAr), and nitrogen (DN2). The values fit to the few existing estimates from experimental work, and are close to the diffusivity values in water (1025 cm2 s21). We suggest that gas...

  5. Experimental procedures for the calibration of scintillation cells used in the determination of radon gas concentrations

    International Nuclear Information System (INIS)

    Grenier, M; Bigu, J.

    1982-02-01

    Experimental and analytical procedures are described for the calibration of scintillation cells used for the determination of radon gas concentration. In-house designed and built scintillation cells, used routinely in the monitoring of radon gas in uranium mine underground environments and in the laboratory, were calibrated. The cells had a volume of approximately 158 cm 3 and an α-counting efficiency ranging from 50% to 64%. Calibration factors for the cells were determined. Values ranged approximately from 0.177 cpm/pCiL -1 (4.77 cpm/BqL -1 ) to 0.224 cpm/pCiL -1 (6.05 cpm/BqL -1 ). The calibration facilities at the Elliot Lake Laboratory are briefly described

  6. Atmospheric CO{sub 2}, trace gas and CN concentrations in Vaerrioe

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, T; Aalto, P; Kulmala, M; Rannik, U; Vesala, T [Helsinki Univ. (Finland). Dept. of Physics; Hari, P; Pohja, T [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The Vaerrioe environmental measurement station is founded in 1991. The aim of the station is to obtain more information on air quality influenced by Kola industrial areas and effects of pollutants on photosynthesis in subarctic climate. In the station air quality and meteorological quantities are measured together with photosynthesis, which makes it quite unique in comparison with other measurement stations located in northern Finland. The measurements also provide information of aerosol and trace gas concentrations in order to study the direct and indirect aerosol effects on climate. These measurements also increase the knowledge of atmospheric chemistry and deposition in subarctic conditions

  7. Determination of low concentrations of pyridine in piperidine by gas chromatography and infrared spectroscopy

    International Nuclear Information System (INIS)

    Perez Garcia, M. M.; Parellada Bellod, R.

    1979-01-01

    This paper describes the determination of low amounts of piperidine in pyridine in the concentration range of 0-5%. After an exhausting review of the bibliography on the column selection, the chromatographic separation and determination are made on the following column: 27% Pennwalt- 223; 4% KOH on Gas-Chrom R; 80-100 mesh with flame ionization detector. The retention indexes of both compounds and tho Rohrschneider constants of the phase used are calculated. The minimum detection limit achieved for piperidine is 0,25%. (Author) 25 refs

  8. Comparison of calculated and measured soil-gas radon concentration and radon exhalation rate

    International Nuclear Information System (INIS)

    Neznal, Martin; Neznal, Matej; Jiranek, Martin

    2000-01-01

    The computer model RADON2D for WINDOWS, which makes it possible to estimate the radon exhalation rate from the ground surface and the distribution of soil-gas radon concentration, was tested using a large set of experimental data coming from four reference areas located in regions with different geological structure. A good agreement between calculated and experimental data was observed. In the majority of cases, a correct description of the real situation was obtained using non-modified experimental input data. (author)

  9. Atmospheric CO{sub 2}, trace gas and CN concentrations in Vaerrioe

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, T.; Aalto, P.; Kulmala, M.; Rannik, U.; Vesala, T. [Helsinki Univ. (Finland). Dept. of Physics; Hari, P.; Pohja, T. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1995-12-31

    The Vaerrioe environmental measurement station is founded in 1991. The aim of the station is to obtain more information on air quality influenced by Kola industrial areas and effects of pollutants on photosynthesis in subarctic climate. In the station air quality and meteorological quantities are measured together with photosynthesis, which makes it quite unique in comparison with other measurement stations located in northern Finland. The measurements also provide information of aerosol and trace gas concentrations in order to study the direct and indirect aerosol effects on climate. These measurements also increase the knowledge of atmospheric chemistry and deposition in subarctic conditions

  10. Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy.

    Science.gov (United States)

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana Dinora; Baeza-Serrato, Roberto

    2018-06-04

    In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi constant over a much larger dynamic range compared with that obtained by typical methods based on a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a quasi linear relationship between the concentration and some specific statistics features over a wider dynamic range. In order to test the viability of our algorithm, a basic C 2 H 2 sensor based on DA-ATLAS was implemented, and its experimental measurements support the simulated results provided by our algorithm.

  11. Lack of oil and gas resources leads to concentration on coal and nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-20

    The Bulgarian energy sector is characterised by a marked shortage of domestic resources. The country has no oil to speak of, no gas, relatively little hydro potential compared with its neighbours, and the one resource it does have in fair abundance - coal - is of the poorest quality. This poverty of resources has led to an extraordinary dependence on the Soviet Union for supplies of every resource and for technology to utilise them. Most oil, all gas, some electricity and even significant quantities of coal are all imported from the USSR. There is little Bulgaria can do about its oil needs for the transport sector, but otherwise current policy is to concentrate development in the nuclear and coal sectors. One of the main thrusts of the energy policy is to continue expansion of coal, largely opencast lignite deposits, in order to feed thermal power stations and, when clean coal technology is developed, to use coal in CHP plants. The country uses a small amount of natural gas but no development is foreseen; instead district heating is considered a more efficient use of resources. 5 figs., 1 tab.

  12. Breath-by-breath analysis of expiratory gas concentration in chickens.

    Science.gov (United States)

    Itabisashi, T

    1981-01-01

    Expiratory oxygen and carbon-dioxide concentration were analysed breath by breath in order to examine their wave forms in adult awake hens restrained in various postural positions, including supine, prone and sitting positions. Expired gas was collected at the nostril in almost all the hens. In the sitting position free from vocalization, feeding, drinking, panting, and restlessness, hens showed various forms of stable pattern of oxygen-gas curves. These forms were classified into three types, or the ascending, flat and descending types, with respect to the plateau inclination. The waves of carbon-dioxide were not always a mirror image of those of oxygen. The rate of occurrence of each type varied with the hen's postural position. The wave form was altered with the experimental body-rotation of the hen. When placed between the deflections of stable pattern, the episodes of wave deformation resembling that seen at the time of uneven pulmonary ventilation in mammals could frequently be observed in any hen's posture examined. Cardiogenic oscillation appeared on the plateau of expired-gas curves.

  13. Compact type mutants in apple and sour cherries

    International Nuclear Information System (INIS)

    Zagaja, S.W.; Przybyla, A.

    1976-01-01

    Induction of mutations in deciduous fruits is considered complementary to the conventional breeding methods. Several promissing mutants, particularly in apples, were described and some of them were introduced to commercial orchards. Studies described herein are aimed at developing compact type mutants in apple cultivars, apple rootstocks and in sour cherry cultivars. Data obtained so far confirm the results of the other authors, who developed compact type mutants in apples and sweet cherries. Physiological studies have shown that the leaves of spontaneous apple mutants of compact type are more efficient in photosynthesis than the leaves of respective standards. In spite of this, using branch ringing techniques, it was found that the leaves of compacts and those of standards do not differ in their productivity. There seem to be several advantages in employing tissue culture technique in mutation breeding. That is why a project was started to work out a method of growing apple shoots from adventitious buds developed on sections of roots. (author)

  14. Two-dimensional simulation of gas concentration impedance for a planar solid oxide fuel cell

    International Nuclear Information System (INIS)

    Fadaei, M.; Mohammadi, R.; Ghassemi, M.

    2014-01-01

    Highlights: • The 2D simulation shows another feature in concentration impedance. • The channel gas transport causes a capacitive behavior. • Anode polarization variation has a significant influence on velocity distribution. • The influence of 2D simulation is important for channel height bigger than 2 mm. - Abstract: This paper presents a two-dimensional model for a planar solid oxide fuel cell (SOFC) anode in order to simulate the steady-state performance characteristics as well as the electrochemical impedance spectra. The developed model couples the mass transport with the electrochemical kinetics. The transient conservation equations (momentum and species equations) are solved numerically and the linear kinetic is used for the anode electrochemistry. In order to solve the system of the nonlinear equations, an in-house code based on the finite volume method is developed and utilized. A parametric study is also carried out and the results are discussed. Results show a capacitive semicircle in the Nyquist plot which is identical to the gas concentration impedance. The simulation results are in good agreement with published data

  15. Investigation of MTBE and aromatic compound concentrations at a gas service station.

    Science.gov (United States)

    Lin, Chi-Wen; Chiang, Song-Bor; Lu, San-Ju

    2005-06-01

    Methyl tert-butyl ether (MTBE) has been used as a fuel additive at levels of 2-11% in Taiwan for the past decade. The purpose of this additive is to enhance the octane, replace the use of lead-based anti-knock gasoline additives and reduce aromatic hydrocarbons. However, it is possible that oxygenated fuel has a potential health impact. To determine the air quality impact of MTBE, measurements were made of ambient MTBE and other gasoline constituents at a service station. Additionally, environmental conditions (wind speed, wind direction, and temperature, etc.) that could affect concentrations of emission constituents were measured. Gas samples were analyzed for target MTBE and volatile organic compounds, e.g., benzene and toluene. Ambient samples were collected using Tenax adsorbent tubes for mass spectrometric analysis at a service station located in Changhua County, Taiwan. The resulting measured ambient air concentrations were compared with Taiwan's regulatory standards for hazardous air pollutants. Subsequently, the factors controlling the formation of high-VOC levels at the service station and in the residential neighborhoods were identified. Additionally, the results can provide the Environmental Protection Agency (EPA) of Taiwan with useful information and prompt them to mandate this gas service station to install a refueling vapor recovery system.

  16. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    CERN Document Server

    Rondo, L.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosolnucleation. Based on quantum chemical calculations it has been suggested that the quantitative detectionof gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased inthe presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was setup at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection ofH2SO4in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time inthe CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF(Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutralsulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presenceof dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS...

  17. Growth and gas exchange in white pitaya under different concentrations of potassium and calcium

    Directory of Open Access Journals (Sweden)

    João Paulo Cajazeira

    Full Text Available ABSTRACT Agriculture in Brazil has improved at a fast pace in recent years, given the growing demand for quality and the need for new products. In this respect, white pitaya [Hylocereus undatus (Haw. Britton & Rose] has become a feasible alternative for Northeast farmers. The limiting factors include a small amount of data on plant mineral nutrition and crop growth (phenology. Therefore, this study goal was to evaluate the effect of different concentrations of potassium (K and calcium (Ca on crop development and gas exchange in white pitaya grown in the coastal region of the state of Ceará, in Brazil. Sixteen treatments with three repetitions were organized in a completely randomized block design and a 4 × 4 factorial arrangement. Treatments consisted of various concentrations of K (0; 125; 250 and 375 mg dm-3 and Ca (0, 53, 106, and 159 mg dm-3. Biometric characteristics and gas exchange were determined after 270 and 240 days of treatment, respectively. For morphometric characteristics, the most significant nutrient combination was 250 mg dm-3 of K and 159 mg dm-3 of Ca. Net photosynthesis was higher at the dose of 125 mg dm-3 of K and 0 mg dm-3 of Ca. Our results indicate that, for the environmental conditions under which the test was conducted, an optimum nutrient combination for the analyzed variables was 250 mg dm-3 K and 159 mg dm-3 Ca.

  18. Prediction of Coal Face Gas Concentration by Multi-Scale Selective Ensemble Hybrid Modeling

    Directory of Open Access Journals (Sweden)

    WU Xiang

    2014-06-01

    Full Text Available A selective ensemble hybrid modeling prediction method based on wavelet transformation is proposed to improve the fitting and generalization capability of the existing prediction models of the coal face gas concentration, which has a strong stochastic volatility. Mallat algorithm was employed for the multi-scale decomposition and single-scale reconstruction of the gas concentration time series. Then, it predicted every subsequence by sparsely weighted multi unstable ELM(extreme learning machine predictor within method SERELM(sparse ensemble regressors of ELM. At last, it superimposed the predicted values of these models to obtain the predicted values of the original sequence. The proposed method takes advantage of characteristics of multi scale analysis of wavelet transformation, accuracy and fast characteristics of ELM prediction and the generalization ability of L1 regularized selective ensemble learning method. The results show that the forecast accuracy has large increase by using the proposed method. The average relative error is 0.65%, the maximum relative error is 4.16% and the probability of relative error less than 1% reaches 0.785.

  19. Diode Laser Sensor for Gas Temperature and H2O Concentration in a Scramjet Combustor Using Wavelength Modulation Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Rieker, Gregory B; Li, Jonathan T; Jeffries, Jay B; Mathur, Tarun; Gruber, Mark R; Carter, Campbell D

    2005-01-01

    A diode laser absorption sensor which probes three spectral features of water vapor in the near infrared region to infer gas temperature and water vapor concentration near the exit of a scramjet combustor is presented...

  20. Adaptive spatial-resolved gas concentration measurement using a micro-drone; Adaptive ortsaufgeloeste Gaskonzentrationsmessung mit einer Mikrodrohne

    Energy Technology Data Exchange (ETDEWEB)

    Bartholmai, Matthias; Neumann, Patrick [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachgruppe Mess- und Prueftechnik

    2011-07-01

    Gas emissions are crucial in many hazardous scenarios and can be threatening for persons close-by. The examination of such scenarios without endangering people was objective of a research project. Development and validation of a remote-controlled gas concentration measurement using a microdrone were carried out. (orig.)

  1. Higs-instrument: design and demonstration of a high performance gas concentration imager

    Science.gov (United States)

    Verlaan, A. L.; Klop, W. A.; Visser, H.; van Brug, H.; Human, J.

    2017-09-01

    Climate change and environmental conditions are high on the political agenda of international governments. Laws and regulations are being setup all around the world to improve the air quality and to reduce the impact. The growth of a number of trace gasses, including CO2, Methane and NOx are especially interesting due to their environmental impact. The regulations made are being based on both models and measurements of the trend of those trace gases over the years. Now the regulations are in place also enforcement and therewith measurements become more and more important. Instruments enabling high spectral and spatial resolution as well as high accurate measurements of trace gases are required to deliver the necessary inputs. Nowadays those measurements are usually performed by space based spectrometers. The requirement for high spectral resolution and measurement accuracy significantly increases the size of the instruments. As a result the instrument and satellite becomes very expensive to develop and to launch. Specialized instruments with a small volume and the required performance will offer significant advantages in both cost and performance. Huib's Innovative Gas Sensor (HIGS, named after its inventor Huib Visser), currently being developed at TNO is an instrument that achieves exactly that. Designed to measure only a single gas concentration, opposed to deriving it from a spectrum, it achieves high performance within a small design volume. The instrument enables instantaneous imaging of the gas distribution of the selected gas. An instrument demonstrator has been developed for NO2 detection. Laboratory measurements proved the measurement technique to be successful. An on-sky measurement campaign is in preparation. This paper addresses both the instrument design as well as the demonstrated performances.

  2. Fluid simulation of species concentrations in capacitively coupled N2/Ar plasmas: Effect of gas proportion

    Science.gov (United States)

    Liang, Ying-Shuang; Liu, Gang-Hu; Xue, Chan; Liu, Yong-Xin; Wang, You-Nian

    2017-05-01

    A two-dimensional self-consistent fluid model and the experimental diagnostic are employed to investigate the dependencies of species concentrations on the gas proportion in the capacitive N2/Ar discharges operated at 60 MHz, 50 Pa, and 140 W. The results indicate that the N2/Ar proportion has a considerable impact on the species densities. As the N2 fraction increases, the electron density, as well as the Ar+ and Arm densities, decreases remarkably. On the contrary, the N2 + density is demonstrated to increase monotonically with the N2 fraction. Moreover, the N density is observed to increase significantly with the N2 fraction at the N2 fractions below 40%, beyond which it decreases slightly. The electrons are primarily generated via the electron impact ionization of the feed gases. The electron impact ionization of Ar essentially determines the Ar+ density. For the N2 + production, the charge transition process between the Ar+ ions and the feed gas N2 dominates at low N2 fraction, while the electron impact ionization of N2 plays the more important role at high N2 fraction. At any gas mixtures, more than 60% Arm atoms are generated through the radiative decay process from Ar(4p). The dissociation of the feed gas N2 by the excited Ar atoms and by the electrons is responsible for the N formation at low N2 fraction and high N2 fraction, respectively. To validate the simulation results, the floating double probe and the optical emission spectroscopy are employed to measure the total positive ion density and the emission intensity originating from Ar(4p) transitions, respectively. The results from the simulation show a qualitative agreement with that from the experiment, which indicates the reliable model.

  3. Measured concentrations of combustion gases from the use of unvented gas fireplaces.

    Science.gov (United States)

    Francisco, P W; Gordon, J R; Rose, B

    2010-10-01

    Measurements of combustion product concentrations were taken in 30 homes where unvented gas fireplaces were used. Measurements of CO, CO(2), NO(x), NO(2) , O(2) (depletion), and water vapor were taken at 1-min interval. The analyzers were calibrated with certified calibration gases for each placement and were in operation for 3-4 days at each home. Measured concentrations were compared to published health-based standards and guidelines. The two combustion gases that exceeded published values were NO(2) and CO. For NO(2) , the Health Canada guideline of 250 ppb (1-h average) was exceeded in about 43% of the sample and the World Health Organization (WHO) guideline of 110 ppb (1-h average) was exceeded in 80% of the sample. Carbon monoxide levels exceeded the U.S. EPA 8-h average standard of 9 ppm in 20% of the sample. Moisture problems were not evident in the test homes. An analysis of the distribution of CO showed that the CO is dispersed throughout the home almost immediately upon operation of the fireplace and that the concentrations throughout the home away from the immediate vicinity of the fireplace are 70-80% of the level near the fireplace. Decay analysis of the combustion gases showed that NO was similarly stable to CO and CO(2) in the indoor environment but that both NO(2) and water vapor were removed from the air at much greater rates. Previous studies on unvented gas fireplaces have made assumptions of how they are operated by users. This article presents the results of field monitoring of 30 unvented gas fireplaces under normal operation, regardless of whether users follow industry recommendations regarding installation, usage patterns, and maintenance. The monitoring found that health-based standards and guidelines were exceeded for CO in 20% of homes and for NO(2) in most homes. There were no identified moisture problems in these homes. Nearly, half of the fireplaces were used at least once for longer than 2 h, counter to manufacturers' intended usage

  4. Surface Studies of Ultra Strength Drilling Steel after Corrosion Fatigue in Simulated Sour Environment

    Energy Technology Data Exchange (ETDEWEB)

    M. Ziomek-Moroz; J.A. Hawk; R. Thodla; F. Gui

    2012-05-06

    The Unites States predicted 60% growth in energy demand by 2030 makes oil and natural gas primary target fuels for energy generation. The fact that the peak of oil production from shallow wells (< 5000 m) is about to be reached, thereby pushing the oil and natural gas industry into deeper wells. However, drilling to depths greater than 5000 m requires increasing the strength-to weight ratio of the drill pipe materials. Grade UD-165 is one of the ultra- high yield strength carbon steels developed for ultra deep drilling (UDD) activities. Drilling UDD wells exposes the drill pipes to Cl{sup -}, HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}, and H{sub 2}S-containig corrosive environments (i.e., sour environments) at higher pressures and temperatures compared to those found in conventional wells. Because of the lack of synergism within the service environment, operational stresses can result in catastrophic brittle failures characteristic for environmentally assisted cracking (EAC). Approximately 75% of all drill string failures are caused by fatigue or corrosion fatigue. Since there is no literature data on the corrosion fatigue performance of UD-165 in sour environments, research was initiated to better clarify the fatigue crack growth (FCGR) behavior of this alloy in UDD environments. The FCGR behavior of ultra-strength carbon steel, grade UD-165, was investigated by monitoring crack growth rate in deaerated 5%NaCl solution buffered with NaHCO{sub 3}/Na{sub 2}CO{sub 3} and in contact with H{sub 2}S. The partial pressure of H{sub 2}S (p{sub H2S}) was 0.83 kPa and pH of the solution was adjusted by NaOH to 12. The fatigue experiments were performed at 20 and 85 C in an autoclave with surface investigations augmented by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. In this study, research focused on surface analyses supported by the fatigue crack growth rate measurements. Fig. 1 shows an SEM micrograph of the crack that propagated from the

  5. Effects of Salinity Stress on Gas Exchange, Growth, and Nutrient Concentrations of Two Citrus Rootstocks

    Directory of Open Access Journals (Sweden)

    D. Khoshbakht

    2015-03-01

    Full Text Available A greenhouse study was undertaken to assess the salt tolerance of two citrus rootstocks, namely, Bakraii (Citrus sp. and Trifoliate orange (Poncirus trifoliata. A factorial experiment through a completely randomized design (CRD with three replications and four levels of salt including 0, 20, 40 and 60 mM NaCl was conducted. After eight weeks of treatment, number of leaves, plant height, leaf area, wet and dry weight of leaf, stem and root, length of root, chlorophyll content, net CO2 assimilation rate (ACO2, stomatal conductance (gs, transpiration (E and water use efficiency (WUE and ion concentrations were measured. Salinity decreased growth and net gas exchange. Trifoliate orange showed the most decrease in growth indices and net gas exchange compared with Bakraii. The ability to limit the transfer of sodium to leaves in low levels of salt was observed in Trifoliate orange, but this ability was not observed in high levels of salt. Results showed that accumulation of chloride in leaves and roots were less in Bakraii compared to the Trifoliate orange. The lower Cl- concentration in leaves of Bakraii than trifoliate orange suggests that the salinity tolerance of Bakraii is associated with less transport of Cl- to the leaves. Salinity increased K+ and decreased Mg2+ and Ca2+ concentrations in leaves of both rootstocks. It is proposed that salt stress effect on plant physiological processes such as changes in plant growth, Cl- and Na+ toxicity, and mineral distribution, decreases chlorophyll content and reduces the photosynthetic efficiency of these citrus species.

  6. Influence of sol concentration on CdO nanostructure with gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, Jeevitesh K. [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Pathak, Trilok K. [Department of Physics, University of the Free State, Bloemfontein (South Africa); Kumar, Vinod [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi (India); Purohit, L.P., E-mail: lppurohit@gmail.com [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India)

    2017-07-01

    Highlights: • CdO thin films are prepared by spin coater of precursor solution of different molarity. • Nano-structure of CdO is cauliflower like change with concentration. • Relation of strain and crystal size with conductivity as a function of molarity. • A CdO thin film shows nitrogen sensing at room temperature. - Abstract: The effect of sol concentration has been investigated on the sol-gel derived CdO nanostructures to optimize the optical and electrical properties enhancing gas sensing properties at low temperatures. X-ray diffraction patterns show that 0.5 M CdO film has cubic structure (111) preferred orientation with 34 nm particle size. Scanning electron micrographs indicated concentration dependent surface morphology. The optical band gap energy for highly transparent thin films increases from 1.9 eV to 2.34 eV as molarity was increased from 0.2 M to 1.0 M. The photoluminescence spectra of the samples have a violet to blue emission peak centred at 435 nm. J-V characteristics show that thin film of 0.5 M has conductivity 1.41 × 10{sup −3} S/m. The sensor characteristic such as response curve, sensor response, response time and recovery time were measured for optimized thin film at different operating temperatures. The sensor response was found 20% near room temperature (32 °C) and proportional to temperature. Fastest response time 10 s and recovery time 20 s were observed near room temperature. The resistivity of sensor was found to decrease in presence of gas attribute to more charge carriers with flower like morphology. Our study is encouraging to get faster response by CdO thin films near room temperature.

  7. Process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas and catalyst assembly therefor

    International Nuclear Information System (INIS)

    Stevens, W.H.

    1975-01-01

    A bithermal, catalytic, hydrogen isotope exchange process between liquid water and hydrogen gas to effect concentration of the deuterium isotope of hydrogen is described. Liquid water and hydrogen gas are contacted with one another and with at least one catalytically active metal selected from Group VIII of the Periodic Table; the catalyst body has a water repellent, gas and water vapor permeable, organic polymer or resin coating, preferably a fluorinated olefin polymer or silicone resin coating, so that the isotope exchange takes place by two simultaneously occurring, and closely coupled in space, steps and concentration is effected by operating two interconnected sections containing catalyst at different temperatures. (U.S.)

  8. Numerical Simulation and Experimental Study on Formation of High Concentration of H2 Generated by Gas Explosion

    Directory of Open Access Journals (Sweden)

    Lei Baiwei

    2016-10-01

    Full Text Available In coal mine fire rescues, if the abnormal increase of gas concentration occurs, it is the primary thing to analyze the reasons and identify sources of the abnormal forming, which is also the basis of judge the combustion state of fire area and formulate proper fire reliefs. Nowadays, related researches have recognized the methane explosion as the source of high concentration of H2 formation, but there are few studies about the conditions and reaction mechanism of gas explosion generating high concentration of H2.Therefore, this paper uses the chemical kinetic calculation software, ChemKin, and the 20L spherical explosion experimental device to simulate the generating process and formation conditions of H2 in gas explosion. The experimental results show that: the decomposition of water vapor is the main base element reaction (R84 which leads to the generation of H2.The free radical H is the key factor to influence the formation of H2 generated from gas explosion. With the gradual increase of gas explosion concentration, the explosive reaction becomes more incomplete, and then the generating quantity of H2 increases gradually. Experimental results of 20L spherical explosion are consistent with the change trend about simulation results, which verifies the accuracy of simulation analysis. The results of explosion experiments show that when gas concentration is higher than 9%, the incomplete reaction of methane explosion increases which leads to the gradual increase of H2 formation.

  9. Advanced technologies for manufacturing high strength sour grade UOE line pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kenji; Omura, Tomohiko; Takahashi, Nobuaki; Minato, Izuru; Yamamoto, Akio [Sumitomo Metal Industries, Ltd., Kashima, (Japan)

    2010-07-01

    A new kind of high strength pipeline has been manufactured for sour service in offshore pipelines. This paper first presents a review of developments in manufacturing technology to improve sour resistance. This was particularly the case with Grade UOE line pipe. The improvement was achieved by optimizing the continuous casting process, monitoring the shape of inclusions (such as MnS, CaS, Al2O3, CaO-Al2O3) and decreasing coarse precipitates (Nb(C,N), TiN). The study then used the HIC evaluation method to determine hydrogen induced cracking (HIC) resistance of the material and HAZ test for sulfide stress cracking (SSC) resistance. The evaluation of the NACE TM0284 solution A showed that these pipelines are able to resist severe sour conditions because of good HIC and SSC resistance. Optimizing others components like alloying elements and the ACC process would improve sour resistance in future applications.

  10. Levels of radon gas concentration and progeny in homes of Potosi City, Bolivia to 4000 m

    International Nuclear Information System (INIS)

    Mamani M, R.; Claros J, J.; Vasquez A, R.

    2015-10-01

    Full text: In this work the presence of radon gas was determined, which is a radioactive contaminant that comes from underground, able to penetrate the houses. The danger is that when mixed air and when inhaled can cause serious damage to the lungs, for the short life time that has radon and progeny for decay, damaging the pulmonary alveoli and reducing breathing capacity of the habitants, then causing polycythemia in some cases. The study was carried out in homes in the city of Potosi, Bolivia located at 4000 m. The quantification of radon gas and progeny was performed with the equipment Alpha-Zaeller-2 (Az-2), quantification was realized in 6 zones of the city of Potosi, chosen randomly. In each zone were carried out measurements in 40 homes (2 rooms more permanent), both day and night, for a period of 3 days in two different seasons and with concentrations of average humidity of 20, 50 and 80%. The values obtained for each period vary depending on the season and 30 to 50% of the allowable values given by the EPA and Who for housing. (Author)

  11. Bulk manufacture of concentrated oxygen gas-filled microparticles for intravenous oxygen delivery.

    Science.gov (United States)

    Kheir, John N; Polizzotti, Brian D; Thomson, Lindsay M; O'Connell, Daniel W; Black, Katherine J; Lee, Robert W; Wilking, James N; Graham, Adam C; Bell, David C; McGowan, Francis X

    2013-08-01

    Self-assembling, concentrated, lipid-based oxygen microparticles (LOMs) have been developed to administer oxygen gas when injected intravenously, preventing organ injury and death from systemic hypoxemia in animal models. Distinct from blood substitutes, LOMs are a one-way oxygen carrier designed to rescue patients who experience life-threatening hypoxemia, as caused by airway obstruction or severe lung injury. Here, we describe methods to manufacture large quantities of LOMs using an in-line, recycling, high-shear homogenizer, which can create up to 4 liters of microparticle emulsion in 10 minutes, with particles containing a median diameter of 0.93 microns and 60 volume% of gas phase. Using this process, we screen 30 combinations of commonly used excipients for their ability to form stable LOMs. LOMs composed of DSPC and cholesterol in a 1:1 molar ratio are stable for a 100 day observation period, and the number of particles exceeding 10 microns in diameter does not increase over time. When mixed with blood in vitro, LOMs fully oxygenate blood within 3.95 seconds of contact, and do not cause hemolysis or complement activation. LOMs can be manufactured in bulk by high shear homogenization, and appear to have a stability and size profile which merit further testing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise.

    Science.gov (United States)

    Drescher, U; Mookerjee, S; Steegmanns, A; Knicker, A; Hoffmann, U

    2017-06-01

    To evaluate the effects of exercise velocity (60, 150, 240deg∙s -1 ) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO 2 ) following high-intensity concentric-eccentric isokinetic exercise. Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t 1/2 ) for oxygen uptake (V˙O 2 pulm), carbon dioxide output (V˙CO 2 pulm), and ventilation (V˙ E ). Significant differences of the t 1/2 values were identified between 60 and 150deg∙s -1 . Significant differences in the t 1/2 values were observed between V˙O 2 pulm and V˙CO 2 pulm and between V˙CO 2 pulm and V˙ E . The time to attain the first avDO 2 -peak showed significant differences between arm and leg exercise. The present study illustrates, that V˙O 2 pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O 2 pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    International Nuclear Information System (INIS)

    Ogle, Stephen M; Davis, Kenneth; Lauvaux, Thomas; Miles, Natasha L; Richardson, Scott; Schuh, Andrew; Cooley, Dan; Breidt, F Jay; West, Tristram O; Heath, Linda S; Smith, James E; McCarty, Jessica L; Gurney, Kevin R; Tans, Pieter; Denning, A Scott

    2015-01-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with managing lands for carbon sequestration and other activities, which often have large uncertainties. We report here on the challenges and results associated with a case study using atmospheric measurements of CO 2 concentrations and inverse modeling to verify nationally-reported biogenic CO 2 emissions. The biogenic CO 2 emissions inventory was compiled for the Mid-Continent region of United States based on methods and data used by the US government for reporting to the UNFCCC, along with additional sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an estimated flux of −408 ± 136 Tg CO 2 for the entire study region, which was not statistically different from the biogenic flux of −478 ± 146 Tg CO 2 that was estimated using the atmospheric CO 2 concentration data. At sub-regional scales, the spatial density of atmospheric observations did not appear sufficient to verify emissions in general. However, a difference between the inventory and inversion results was found in one isolated area of West-central Wisconsin. This part of the region is dominated by forestlands, suggesting that further investigation may be warranted into the forest C stock or harvested wood product data from this portion of the study area. The results suggest that observations of atmospheric CO 2 concentration data and inverse modeling could be used to verify biogenic emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC. (letter)

  14. A field demonstration of the microbial treatment of sour produced water

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L. [Univ. of Tulsa, OK (United States); Morse, D.; Raterman, K. [Amoco Production Co., Tulsa, OK (United States)

    1995-12-31

    The potential for detoxification and deodorization of sulfide-laden water (sour water) by microbial treatment was evaluated at a petroleum production site under field conditions. A sulfide-tolerant strain of the chemautotroph and facultative anaerobe, Thiobacillus denitrificans, was introduced into an oil-skimming pit of the Amoco Production Company LACT 10 Unit of the Salt Creek Field, Wyoming. Field-produced water enters this pit from the oil/water separation treatment train at an average flowrate of 5,000 bbl/D (795 m{sup 3}/D) with a potential maximum of 98,000 bbl/D (15,580 m{sup 3}/D). Water conditions at the pit inlet are 4,800 mg/l TDS, 100 mg/l sulfide, pH 7.8, and 107{degrees}F. To this water an aqueous solution of ammonium nitrate and diphosphorous pentoxide was added to provide required nutrients for the bacteria. The first 20% of the pit was aerated to a maximum depth of 5 ft (1.5 m) to facilitate the aerobic oxidation of sulfide. No provisions for pH control or biomass recovery and recycle were made. Pilot operations were initiated in October 1992 with the inoculation of the 19,000 bbl (3,020 m{sup 3}) pit with 40 lb (18.1 kg) of dry weight biomass. After a brief acclimation period, a nearly constant mass flux of 175 lb/D (80 kg/D) sulfide was established to the pit. Bio-oxidation of sulfide to elemental sulfur and sulfate was immediate and complete. Subsequent pilot operations focused upon process optimization and process sensitivity to system upsets. The process appeared most sensitive to large variations in sulfide loading due to maximum water discharge events. However, recoveries from such events could be accomplished within hours. This paper details all pertinent aspects of pilot operation, performance, and economics. Based on this body of evidence, it is suggested that the oxidation of inorganic sulfides by T denitrificans represents a viable concept for the treatment of sour water coproduced with oil and gas.

  15. Aqueous extraction of pectin from sour orange peel and its preliminary physicochemical properties.

    Science.gov (United States)

    Hosseini, Seyed Saeid; Khodaiyan, Faramarz; Yarmand, Mohammad Saeid

    2016-01-01

    Sour orange peel, a by-product of the fruit juice industry, was used as a source of pectin. The effects of temperature (75-95°C), time (30-90 min), and liquid-solid ratio (20-40, v/w) were investigated on yield, methoxylation degree (DE), and galacturonic acid content using a Box-Behnken design and response surface methodology. The highest extraction yield (17.95 ± 0.3%) was obtained at temperature of 95°C, time of 90 min, and liquid-solid ratio of 25 (v/w). The DE values for the pectin ranged from 17% to 30.5%, indicating that the pectin was low in methoxyle. The emulsifying activity of pectin extracted under optimal conditions was 45%. The emulsions were 86.6% stable at 4°C and 71.4% at 23°C after 30 days of storage. The pectin exhibited Newtonian flow at low concentrations (≤ 1.0%, w/v); as the concentration increased, pseudoplastic flow became dominant. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Simultaneous measurement of the concentrations of soot particles and gas species in light hydrocarbon flames using mass spectrometry

    International Nuclear Information System (INIS)

    Li, Qingxun; Liu, Fang; Wang, Dezheng; Wang, Tiefeng

    2014-01-01

    Besides gas species concentrations, soot volume fractions are also important data in the study of flames. This work describes the simultaneous measurement of the concentrations of soot and gas species in light hydrocarbon flames by in situ sampling and mass spectrometry (MS).The reaction medium was frozen by sampling into a very low-pressure tube, and the soot selectivity (proportion of carbon atoms in the reactant converted to soot) was determined from the C and H mass balances using the measured concentrations of the gas species and the mass of soot present per unit gas volume. The H/C ratio of the soot was measured by a thermogravimetry–mass spectrometry combination. The soot volume fraction was calculated from the soot selectivity and density of the soot. The soot selectivity measured by this reduced pressure sampling mass spectrometry (RPSMS) method was verified by measurements using the gravimetric sampling technique where the mass of soot collected in a volume of gas was weighed by a high precision balance. For most of the measurements, the uncertainty in the soot volume fraction was ±5%, but this would be larger when the soot volume fractions are less than 1 ppm. For demonstration, the RPSMS method was used to study a methane fuel-rich flame where the soot volume fractions were 1–5 ppm. The simultaneous measurement of concentrations of soot and gas species is useful for the quantitative study of flames. (paper)

  17. Stabilising greenhouse gas concentrations at low levels. An assessment of options and costs

    Energy Technology Data Exchange (ETDEWEB)

    Van Vuuren, D.P.; Den Elzen, M.G.J.; Lucas, P.L.; Eickhout, B.; Strengers, B.J.; Van Ruijven, B.; Berk, M.M.; De Vries, H.J.M.; Wonink, S.J.; Van den Houdt, R.; Oostenrijk, R. [Netherlands Environmental Assessment Agency MNP, Bilthoven (Netherlands); Hoogwijk, M. [Ecofys, Utrecht (Netherlands); Meinshausen, M. [Potsdam Institute for Climate Impact Research PIK, Postdam (Germany)

    2006-10-15

    Preventing 'dangerous anthropogenic interference of the climate system' may require stabilisation of greenhouse gas concentrations in the atmosphere at relatively low levels such as 550 ppm CO2-eq. and below. Relatively few studies exist that have analysed the possibilities and implications of meeting such stringent climate targets. This report presents a series of related papers that address this issue - either by focusing on individual options or by presenting overall strategies at the global and regional level. The results show that it is technically possible to reach ambitious climate targets - with abatement costs for default assumptions in the order of 1-2% of global GDP. To achieve these lower concentration levels, global emissions need to peak within 15-20 years. The stabilisation scenarios use a large portfolio of measures, including energy efficiency but also carbon capture and storage, large scale application of bio-energy, reduction of non-CO2 gasses, increased use of renewable and/or nuclear power and carbon plantations.

  18. An analysis on social cost benefit of city gas safety supervision system - concentrated on estimating the intended amount paid about gas safety of households using city gas

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Sung [Korea Energy Economics Institute, Euiwang (Korea)

    1999-04-01

    With the increase of convenient and clean gas fuel consumption, the danger of gas safety accident is also increasing. Therefore, now is the time for requiring many thoughtful concerns and cares for the prevention of gas accident. In this study, the perception of city gas end users on use of city gas was studied and the economic value of improving gas safety was estimated by examining the intended amount paid for improving safety of city gas use. Although most of city gas end-users perceive that gas use is generally safe, they are concerned about a possibility of dander of accidents happened without any notice. On the other hand, about 97% of households using city gas know checking gas safety at a minimum, but only 60% among them are implementing self-checkup. The economic benefit of improving gas safety of city gas end-users in Korea is estimated from the lowest of 121.47 billion to the highest of 317.97 billion annually. (author). 38 refs., 5 figs., 45 tabs.

  19. Augmented switching linear dynamical system model for gas concentration estimation with MOX sensors in an open sampling system.

    Science.gov (United States)

    Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne

    2014-07-11

    In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector.

  20. Development of compact mutants in apple and sour cherry

    International Nuclear Information System (INIS)

    Zagaja, S.W.; Przybyla, A.; Machnik, B.

    1982-01-01

    During the period 1973 - 79 studies were conducted with the aim of developing compact mutants in apple and cherry cultivars and in apple vegetative rootstocks. During the investigations the effect of the dose of gamma rays on frequency of the mutants was studied. Attempts were also made to evolve a micropropagation technique adapted to propagate P 2 and P 22 apple rootstocks, as an aid in mutation breeding. Several mutants were produced in all the material studied, but none of them have yet reached a sufficient developmental stage to enable their complete assessment. On the basis of the results obtained so far the following conclusions can be drawn: higher doses of irradiation resulted in higher frequency of mutants in most apple cultivars and apple rootstocks; in sour cherries the effect of dose depended on the cultivars. Among V 1 shoots developed from sleeping buds on irradiated scion wood, compact mutants were found; their frequency, however, was about 60% lower than among V 1 shoots developed directly from irradiated dormant buds. In apple rootstocks A 2 and M 26 several dwarfed mutants were found; some of these produced thorny plants and some had lower rooting ability; both these characteristics are inferior from the practical point of view. Multiplication and rooting media for in vitro propagation of apple rootstocks, worked out for M 26, were found unsuitable for the rootstocks P 2 and P 22; modifications made in the growth substance composition of the above media enabled satisfactory propagation to be obtained. (author)

  1. Design of small diameter HT/HP sour service reeled rigid pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Daniel; Gouveia, Joao; Tardelli, Luciano [Tecnitas, Rio de Janeiro, RJ (Brazil)], e-mail: daniel.carneiro@br.bureauveritas.com; Parrilha, Rafael [Bureau Veritas Group, London (United Kingdom); Oazen, Eduardo; Cardoso, Carlos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The paper presents an overview of the challenges overcome in the engineering design of two 219 mm diameter, 6 km length oil production pipelines, to be installed by reeling at Espirito Santo Basin, offshore Brazilian coast in 1500 m water depth. The high temperature and high pressure (HT/HP) operating conditions and sour content associated with the small diameter required to single well oil production would usually lead to flexible flow line solution in Brazilian fields. The decision of employing small diameter thick-walled rigid C-Mn steel pipelines with thick thermal insulation made necessary extensive engineering work to achieve a safe and robust thermal expansion control arrangement, including the design of walking mitigation and buckle initiation apparatus; a feasible weld acceptance criterion covering both high cycle fatigue due to pipe lay and vortex induced vibration (VIV) at free spans, and high strain low cycle fatigue and fracture growth induced by reeling installation and in-service lateral buckling. Several studies were performed using highly non-linear three-dimensional finite element models considering: pipe-soil interaction with full 3D seabed bathymetry; load history maintained from pipe lay to operational cycles, including temperature transient effects; high plastic strains (including steel properties de-rating due to high temperature) and section ovalization; mechanical contact between pipe and appurtenances during both installation and operational phases. Pipe-soil interaction comprised embedment considering dynamic effects of pipe lay and full non-linear lateral and axial response curves including break-out and residual resistance. Strain concentration factors due to field joints were evaluated using detailed solid models considering non-linear response of both steel and insulation materials. Susceptibility to VIV at free spans was assessed considering post loaded deformed span natural frequencies, including multi-span interaction effects and

  2. Numerical model for stack gas diffusion in terrain with buildings. Variations in air flow and gas concentration with additional building near stack

    International Nuclear Information System (INIS)

    Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi; Komiyama, Sumito; Numata, Kunio

    2009-01-01

    A numerical simulation method for predicting atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings has been developed. The turbulence closure technique using a modified k-ε-type model without a hydrostatic approximation was used for flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by trajectories of released particles. The developed numerical model was applied to a virtual terrain and building conditions in this study prior to the applications of a numerical model for real terrain and building conditions. The height of the additional building (H a ), located about 200 m leeward from the stack, was varied (i.e., H a =0, 20, 30 and 50 m), and its effects on airflow and the concentration of stack gas at a released height of 75 m were calculated. Furthermore, effective stack height, which was used in the safety analysis of atmospheric diffusion for nuclear facilities in Japan, was evaluated from the calculated ground-level concentration of stack gas. The cavity region behind the additional building was calculated, and turbulence near the cavity was observed to decrease when the additional building was present. According to these flow variations with the additional building, tracer gas tended to diffuse to the ground surface rapidly with the additional building at the leeward position of the cavity, and the ground-level stack gas concentration along the plume axis also increased with the height of the additional building. However, the variations in effective stack height with the height of the additional building were relatively small and ranged within several m in this study. (author)

  3. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    Science.gov (United States)

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  4. A large increase of sour taste receptor cells in Skn-1-deficient mice does not alter the number of their sour taste signal-transmitting gustatory neurons.

    Science.gov (United States)

    Maeda, Naohiro; Narukawa, Masataka; Ishimaru, Yoshiro; Yamamoto, Kurumi; Misaka, Takumi; Abe, Keiko

    2017-05-01

    The connections between taste receptor cells (TRCs) and innervating gustatory neurons are formed in a mutually dependent manner during development. To investigate whether a change in the ratio of cell types that compose taste buds influences the number of innervating gustatory neurons, we analyzed the proportion of gustatory neurons that transmit sour taste signals in adult Skn-1a -/- mice in which the number of sour TRCs is greatly increased. We generated polycystic kidney disease 1 like 3-wheat germ agglutinin (pkd1l3-WGA)/Skn-1a +/+ and pkd1l3-WGA/Skn-1a -/- mice by crossing Skn-1a -/- mice and pkd1l3-WGA transgenic mice, in which neural pathways of sour taste signals can be visualized. The number of WGA-positive cells in the circumvallate papillae is 3-fold higher in taste buds of pkd1l3-WGA/Skn-1a -/- mice relative to pkd1l3-WGA/Skn-1a +/+ mice. Intriguingly, the ratio of WGA-positive neurons to P2X 2 -expressing gustatory neurons in nodose/petrosal ganglia was similar between pkd1l3-WGA/Skn-1a +/+ and pkd1l3-WGA/Skn-1a -/- mice. In conclusion, an alteration in the ratio of cell types that compose taste buds does not influence the number of gustatory neurons that transmit sour taste signals. Copyright © 2017. Published by Elsevier B.V.

  5. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    Science.gov (United States)

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  6. Genetic and molecular characterization of three novel S-haplotypes in sour cherry (Prunus cerasus L.).

    Science.gov (United States)

    Tsukamoto, Tatsuya; Potter, Daniel; Tao, Ryutaro; Vieira, Cristina P; Vieira, Jorge; Iezzoni, Amy F

    2008-01-01

    Tetraploid sour cherry (Prunus cerasus L.) exhibits gametophytic self-incompatibility (GSI) whereby the specificity of self-pollen rejection is controlled by alleles of the stylar and pollen specificity genes, S-RNase and SFB (S haplotype-specific F-box protein gene), respectively. As sour cherry selections can be either self-compatible (SC) or self-incompatible (SI), polyploidy per se does not result in SC. Instead the genotype-dependent loss of SI in sour cherry is due to the accumulation of non-functional S-haplotypes. The presence of two or more non-functional S-haplotypes within sour cherry 2x pollen renders that pollen SC. Two new S-haplotypes from sour cherry, S(33) and S(34), that are presumed to be contributed by the P. fruticosa species parent, the complete S-RNase and SFB sequences of a third S-haplotype, S(35), plus the presence of two previously identified sweet cherry S-haplotypes, S(14) and S(16) are described here. Genetic segregation data demonstrated that the S(16)-, S(33)-, S(34)-, and S(35)-haplotypes present in sour cherry are fully functional. This result is consistent with our previous finding that 'hetero-allelic' pollen is incompatible in sour cherry. Phylogenetic analyses of the SFB and S-RNase sequences from available Prunus species reveal that the relationships among S-haplotypes show no correspondence to known organismal relationships at any taxonomic level within Prunus, indicating that polymorphisms at the S-locus have been maintained throughout the evolution of the genus. Furthermore, the phylogenetic relationships among SFB sequences are generally incongruent with those among S-RNase sequences for the same S-haplotypes. Hypotheses compatible with these results are discussed.

  7. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data

    Science.gov (United States)

    Collett, T.S.; Ladd, J.

    2000-01-01

    Let 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Site 994, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m3 of gas.

  8. Gas concentration and temperature in acoustically excited Delft turbulent jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Ana Maura A. Rocha; Joao A. Carvalho Jr.; Pedro T. Lacava [Sao Paulo State University, Guaratingueta (Brazil)

    2008-11-15

    This paper shows the experimental results for changes in the flame structure when acoustic fields are applied in natural gas Delft turbulent diffusion flames. The acoustic field (pulsating combustion) generates zones of intense mixture of reactants in the flame region, promoting a more complete combustion and, consequently, lower pollutant emissions, increase in convective heat transfer rates, and lower fuel consumption. The results show that the presence of the acoustic field changes drastically the flame structure, mainly in the burner natural frequencies. However, for higher acoustic amplitudes, or acoustic pressures, a hydrogen pilot flame is necessary in order to keep the main flame anchored. In the flame regions where the acoustic field is more intense, premixed flame characteristics were observed. Besides, the pulsating regime modifies the axial and radial combustion structure, which could be verified by the radial distribution of concentrations of O{sub 2}, CO, CO{sub 2}, and NOx, and by the temperature profile. The experiments also presented the reduction of flame length with the increase of acoustic amplitude. 30 refs., 15 figs., 3 tabs.

  9. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    Energy Technology Data Exchange (ETDEWEB)

    Amy, Fabrice [Air Products and Chemicals Inc., Allentown, PA (United States); Hufton, Jeffrey [Air Products and Chemicals Inc., Allentown, PA (United States); Bhadra, Shubhra [Air Products and Chemicals Inc., Allentown, PA (United States); Weist, Edward [Air Products and Chemicals Inc., Allentown, PA (United States); Lau, Garret [Air Products and Chemicals Inc., Allentown, PA (United States); Jonas, Gordon [Air Products and Chemicals Inc., Allentown, PA (United States)

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined with simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.

  10. Possibility of determining the concentration of the gas phase in a two-phase stream by an acoustical method

    Energy Technology Data Exchange (ETDEWEB)

    Butenko, A N; Potapenko, A E; Chistyakov, E S

    1976-01-01

    The method is based on the recording of the amplitude-frequency characteristics of a circular piezoelectric resonator (sensor) during movement of a stream of a two-phase medium. It is shown that the electrical voltage drop across the transducer and the natural oscillating frequency of the transducer depend on the concentration of the gas phase in the two-phase mixture, allowing an instrument to be developed for measurement of this concentration.

  11. Assessment of aversion to different concentrations of CO2 gas by weaned pigs using an approach-avoidance paradigm

    Science.gov (United States)

    The objective of this study was to examine the aversiveness of carbon dioxide (CO2) to weaned pigs using approach-avoidance and condition place avoidance paradigms. A preference-testing device was custom designed with two connected chambers maintained at static gas concentrations. The control chambe...

  12. EMISSION OF SOIL GAS RADON CONCENTRATION AROUND MAIN CENTRAL THRUST IN UKHIMATH (RUDRAPRAYAG) REGION OF GARHWAL HIMALAYA.

    Science.gov (United States)

    Aswal, Sunita; Kandari, Tushar; Sahoo, B K; Bourai, A A; Ramola, R C

    2016-10-01

    In this paper, the result of systematic measurement of the soil gas radon concentrations is discussed and the background values are defined along and around the Main Central Thrust (MCT) in Ukhimath region of Garhwal Himalaya, India. The Ukhimath region is being subjected to intense neotectonic activities like earthquake and landslide. For the systematic study, the measurement has been done in grid pattern form along and across the MCT. The soil gas radon concentrations were measured using RAD7 with appropriate accessories and followed proper protocol proposed by the manufacturer. The soil gas concentration was measured at different depths 10, 30 and 50 cm with a wide range of different points from the MCT. At 10 cm depth, the soil gas radon concentration was found to vary from 125 to 800 Bq m -3 with an average of 433 Bq m -3 ; at 30 cm, it was found to vary from 203 to 32 500 Bq m -3 with an average of 2387 Bq m -3 ; and at 50 cm, it was found to vary from 1330 to 46 000 Bq m -3 with an average of 15 357 Bq m -3 The data analysis clearly reveals anomalous values along the fault. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Emission of soil gas radon concentration around main central thrust in Ukhimath (Rudraprayag) region of Garhwal Himalaya

    International Nuclear Information System (INIS)

    Aswal, Sunita; Kandari, Tushar; Bourai, A.A.; Ramola, R.C.; Sahoo, B.K.

    2016-01-01

    In this paper, the result of systematic measurement of the soil gas radon concentrations is discussed and the background values are defined along and around the Main Central Thrust (MCT) in Ukhimath region of Garhwal Himalaya, India. The Ukhimath region is being subjected to intense neotectonic activities like earthquake and landslide. For the systematic study, the measurement has been done in grid pattern form along and across the MCT. The soil gas radon concentrations were measured using RAD7 with appropriate accessories and followed proper protocol proposed by the manufacturer. The soil gas concentration was measured at different depths 10, 30 and 50 cm with a wide range of different points from the MCT. At 10 cm depth, the soil gas radon concentration was found to vary from 125 to 800 Bq m -3 with an average of 433 Bq m -3 ; at 30 cm, it was found to vary from 203 to 32 500 Bq m -3 with an average of 2387 Bq m -3 ; and at 50 cm, it was found to vary from 1330 to 46 000 Bq m -3 with an average of 15 357 Bq m -3 . The data analysis clearly reveals anomalous values along the fault. (authors)

  14. Effects of curvature on rarefied gas flows between rotating concentric cylinders

    Science.gov (United States)

    Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

    2013-05-01

    The gas flow between two concentric rotating cylinders is considered in order to investigate non-equilibrium effects associated with the Knudsen layers over curved surfaces. We investigate the nonlinear flow physics in the near-wall regions using a new power-law (PL) wall-scaling approach. This PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. We also report new direct simulation Monte Carlo results covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Our simulation data are compared with both the classical slip flow theory and the PL model, and we find that non-equilibrium effects are not only dependent on Knudsen number and accommodation coefficient but are also significantly affected by the surface curvature. The relative merits and limitations of both theoretical models are explored with respect to rarefaction and curvature effects. The PL model is able to capture some of the nonlinear trends associated with Knudsen layers up to the early transition flow regime. The present study also illuminates the limitations of classical slip flow theory even in the early slip flow regime for higher curvature test cases, although the model does exhibit good agreement throughout the slip flow regime for lower curvature cases. Torque and velocity profile comparisons also convey that a good prediction of integral flow properties does not necessarily guarantee the accuracy of the theoretical model used, and it is important to demonstrate that field variables are also predicted satisfactorily.

  15. Source characterization and exposure modeling of gas-phase polycyclic aromatic hydrocarbon (PAH) concentrations in Southern California

    Science.gov (United States)

    Masri, Shahir; Li, Lianfa; Dang, Andy; Chung, Judith H.; Chen, Jiu-Chiuan; Fan, Zhi-Hua (Tina); Wu, Jun

    2018-03-01

    Airborne exposures to polycyclic aromatic hydrocarbons (PAHs) are associated with adverse health outcomes. Because personal air measurements of PAHs are labor intensive and costly, spatial PAH exposure models are useful for epidemiological studies. However, few studies provide adequate spatial coverage to reflect intra-urban variability of ambient PAHs. In this study, we collected 39-40 weekly gas-phase PAH samples in southern California twice in summer and twice in winter, 2009, in order to characterize PAH source contributions and develop spatial models that can estimate gas-phase PAH concentrations at a high resolution. A spatial mixed regression model was constructed, including such variables as roadway, traffic, land-use, vegetation index, commercial cooking facilities, meteorology, and population density. Cross validation of the model resulted in an R2 of 0.66 for summer and 0.77 for winter. Results showed higher total PAH concentrations in winter. Pyrogenic sources, such as fossil fuels and diesel exhaust, were the most dominant contributors to total PAHs. PAH sources varied by season, with a higher fossil fuel and wood burning contribution in winter. Spatial autocorrelation accounted for a substantial amount of the variance in total PAH concentrations for both winter (56%) and summer (19%). In summer, other key variables explaining the variance included meteorological factors (9%), population density (15%), and roadway length (21%). In winter, the variance was also explained by traffic density (16%). In this study, source characterization confirmed the dominance of traffic and other fossil fuel sources to total measured gas-phase PAH concentrations while a spatial exposure model identified key predictors of PAH concentrations. Gas-phase PAH source characterization and exposure estimation is of high utility to epidemiologist and policy makers interested in understanding the health impacts of gas-phase PAHs and strategies to reduce emissions.

  16. Radon Gas Concentration Measurement In Soil For Some Holy Positions In Al-Najaf Al-Ashraf Governorate

    International Nuclear Information System (INIS)

    Hasan, K.H.; Hussain, H.H.

    2014-01-01

    In this search we measurement Radon gas concentration in the soil of holy positions in Al-Najaf Al-Ashraf city.We choice it for honorable position in all the world and, because millions of peoples and religious sciences students visit it.we selected 23 positions .By using a short-term way in modern technology its (RAD7) to measured concentration for depths (10,30,50,70)cm in all the holy positions.All the concentration in position studies within the range allowed of the global

  17. PO.RA project. An analysis on gas radon concentrations in soil versus fluctuations in the groundwater table

    International Nuclear Information System (INIS)

    Serentha', C.; Torretta, M.

    2001-01-01

    Man is daily exposed to natural radiation, mainly due to cosmic rays and natural radioactive elements, whose most important radioactive daughters are 222 Rn (radon) and 220 Rn (thoron). Being these ones gaseous, they can spread through the ground, reaching the atmosphere and accumulating in rooms, where their concentrations may be very high. As radon exhalation is strongly connected with the hydrogeological features of the environment, this study tried to find a relationship between fluctuations in the groundwater table and gas radon concentrations in soil, in order to try estimates of indoor radon concentrations [it

  18. [The reconstruction of two-dimensional distributions of gas concentration in the flat flame based on tunable laser absorption spectroscopy].

    Science.gov (United States)

    Jiang, Zhi-Shen; Wang, Fei; Xing, Da-Wei; Xu, Ting; Yan, Jian-Hua; Cen, Ke-Fa

    2012-11-01

    The experimental method by using the tunable diode laser absorption spectroscopy combined with the model and algo- rithm was studied to reconstruct the two-dimensional distribution of gas concentration The feasibility of the reconstruction program was verified by numerical simulation A diagnostic system consisting of 24 lasers was built for the measurement of H2O in the methane/air premixed flame. The two-dimensional distribution of H2O concentration in the flame was reconstructed, showing that the reconstruction results reflect the real two-dimensional distribution of H2O concentration in the flame. This diagnostic scheme provides a promising solution for combustion control.

  19. Efficacy of gaseous ozone to counteract postharvest table grape sour rot.

    Science.gov (United States)

    Pinto, L; Caputo, L; Quintieri, L; de Candia, S; Baruzzi, F

    2017-09-01

    This work aims at studying the efficacy of low doses of gaseous ozone in postharvest control of the table grape sour rot, a disease generally attributed to a consortium of non-Saccharomyces yeasts (NSY) and acetic acid bacteria (AAB). Sour rot incidence of wounded berries, inoculated with 8 NSYstrains, or 7 AAB, or 56 yeast-bacterium associations, was monitored at 25 °C up to six days. Sour rot incidence in wounded berries inoculated with yeast-bacterium associations resulted higher than in berries inoculated with one single NSY or AAB strain. Among all NSY-AAB associations, the yeast-bacterium association composed of Candida zemplinina CBS 9494 (Cz) and Acetobacter syzygii LMG 21419 (As) showed the highest prevalence of sour rot; thus, after preliminary in vitro assays, this simplified As-Cz microbial consortium was inoculated in wounded berries that were stored at 4 °C for ten days under ozone (2.14 mg m -3 ) or in air. At the end of cold storage, no berries showed sour-rot symptoms although ozonation mainly affected As viable cell count. After additional 12 days at 25 °C, the sour rot index of inoculated As-Cz berries previously cold-stored under ozone or in air accounted for 22.6 ± 3.7% and 66.7 ± 4.5%, respectively. Molecular analyses of dominant AAB and NSY populations of both sound and rotten berries during post-refrigeration period revealed the appearance of new strains mainly belonging to Gluconobacter albidus and Hanseniaspora uvarum species, respectively. Cold ozonation resulted an effective approach to extend the shelf-life of table grapes also after cold storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pilot study on feasibility of application of gas chromatography for the assessment of acrylamide concentration in sewage sludge.

    Science.gov (United States)

    Włodarczyk, Elżbieta; Próba, Marta; Wolny, Lidia; Wojtal, Łukasz

    2014-01-01

    The aim of this study was to determine the possibility of using gas chromatography to measurement of the acrylamide concentration in sewage sludge. Acrylamide, as a toxic substance, is not indifferent to human health, but it is used in the production of plastics, dyes, adhesives, cosmetics, mortar, as well as a coagulant for water treatment, wastewater or sewage sludge conditioning. Determination of acrylamide by gas chromatography was based on standard: EPA Method 8032A "Acrylamid by gas chromatography." It consists of a bromination reaction of the compound in the presence of dibromopropendial derivative, a triple extraction with the ethyl acetate, a concentration of the eluate sample up to the 1 ml volume, and an analysis by the gas chromatography using an electron capture detector (ECD). The acrylamide concentration of was calculated according to the formula presented in the mentioned standard. All samples were performed twice (the difference between the results was not greater than 10%), and the average value of the four samples was 17.64 µg/L(-1). The presence of acrylamide in sewage sludge has been confirmed.

  1. New challenges in gas

    Energy Technology Data Exchange (ETDEWEB)

    Mandil, C. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Chabrelie, M.F. [Cedigaz, 92 - Rueil Malmaison (France); Streicher, C. [Prosernat, 92 - Paris la Defense (France)] [and others

    2003-07-01

    New developments in the area of gas treatment will be to a large extent driven by the need to find appropriate solutions to the fundamental need of sustainable development. New gas treatment processes are developed with the aim to minimise contaminant emissions and meet most stringent environmental specifications. A new major challenge for the industry will be to implement new cost effective technologies for reducing CO{sub 2} emissions. Industry has also to minimise its costs, and therefore, in order to ensure at the same time a better protection of the environment and a better safety, it is necessary to innovate. The purpose of this seminar is precisely to identify better the innovations which are required in the area of gas treatment. These proceedings comprise 8 papers and a summary of the contributions to a round-table discussion dealing with the options for CO{sub 2} capture and sequestration. The presentations treat of: the future prospects for the gas industry (M.F. Chabrelie, Cedigaz); the solutions for offshore gas treatment (C. Streicher, Prosernat); gas treatment with membranes (H. Meyer, GTI); the Axens Multibed{sub TM} technology for natural gas treatment (G. Jochem, Axens); the potentials and applications for the Propure co-current contactors (F.P. Nilsen, ProPure); the production of very-sour and super-sour large gas reserves: the new challenges (F. Lallemand, TotalFinaElf); Hybrisol, a new gas treatment process for sour natural gases (F. Lecomte, IFP); and the conception and building of large acid-gas removal units (J. Castel, Technip-Coflexip). (J.S.)

  2. Mulher, cura e pajelança em Soure (Ilha do Marajó-PA).

    OpenAIRE

    Mayra Cristina Silva Faro; UEPA

    2012-01-01

    Neste trabalho pretendo apresentar alguns resultados de uma pesquisa que vem sendo realizada desde 2009 sobre a pajelança cabocla e as mulheres pajés na cidade de Soure, Ilha do Marajó/PA. Este estudo tem como objetivos analisar práticas e saberes de cura em Soure, e observar o papel da mulher no contexto religioso e simbólico da pajelança. Compreende-se pajelança cabocla como um conjunto de crenças e práticas de cura bastante difundida na Amazônia, em que encontram-se mesclados em graus vari...

  3. Model equations for Calculating Rn-gas Concentrations in Air of Uranium Exploratory Tunnels, Allouga, West-Central Sinai , Egypt

    International Nuclear Information System (INIS)

    Abdel-Monem, A.A.; Soliman, S.F.H.; Abd El-Kader, F.H.; El-Naggar, A.M.; Eissa, H.M.; Abd El-Hafez, A.A.

    2001-01-01

    Gabal Allouga area is located some 40 km due east from Abu Zenima town on the east coast of the Gulf of Suez, West-Central Sinai, Egypt. A network of exploratory tunnels totaling 670m in length and approximately 2x2 m in cross section, were excavated within a paleosol clayey bed. They host (Fe, Mn)-, Cu-, and U-mineralizations. Portions of the tunnels are naturally ventilated and others portions are non-ventilated and show ground water seepage through fractures. Model equations were developed for calculating the Rn-gas concentrations in the air of the tunnels under dry conditions where Rn-gas transport is mainly by air flow through porous media as well as for wet conditions where Rn-gas transport is mainly by ground water flow into the tunnels. Under dry conditions the model calculated Rn-gas concentrations(15.2-60.6 PCi/1) are consistent with measured values by active techniques (3.26-22.85 pCi/1) and by SSNTD techniques (19-69.1 pCi/1) when the Rn-emanation coefficient (alpha= 0.05-0.2), the emanating rock thickness (X=10 cm) and U-concentration averages 30 ppm. Under wet and non-ventilated conditions the model calculated Rn-gas concentrations (159-1248 pCi/1) are consistent with the measured values by active techniques (231-1348 pCi/1) and by SSNTD techniques (144-999pCi/1), when the Rn-emanation coefficient (alpha=0.1-0.25), the ground water flow (F=0.04-0.10 ml/s -1 cm -2 ) and U-concertrations (100-250ppm)

  4. Effects of total replacement of soybean meal and corn on ruminal fermentation, volatile fatty acids, protozoa concentration, and gas production

    Directory of Open Access Journals (Sweden)

    A. Bahri

    2018-03-01

    Full Text Available The main purpose of this study is to evaluate the effect of total replacement of soybean meal and corn with triticale and faba bean or field pea on rumen fermentation, protozoa counts, and gas production of lactating ewes. A total of 30 Sicilo-Sarde ewes were randomly allocated into three groups and were fed 1.8 kg drymatter of oat hay plus 500 g of one of three concentrates: the first concentrate (CS was mainly composed of soybean meal, corn, and barley; the second (TFB was formed by triticale and faba bean; and the third (TFP was composed of triticale and field pea. The type of concentrate did not affect ruminal pH or ammonia nitrogen concentration (P  >  0.05. The individual concentrations of volatile fatty acids showed a significant interaction between the type of concentrate and sampling time (P  <  0.05, except for Butyric and Isobutyric acids. Within a post-feeding time, the pattern of evolution of total volatile fatty, acetic, and propionic acids differed significantly at 2 h post feeding (P  <  0.05, while butyric and valeric acid changed at 0 and 4 h post feeding. The type of concentrate affected the total number of ciliate protozoa and the Isotricha species (P  <  0.05, whereas Entodinium, Ophryoscolex, and Polyplastron were similar among concentrates (P  >  0.05. The cumulative gas production from the in vitro fermentation, the time of incubation, and their interaction was affected by concentrate (P  <  0.001. The substitution of soybean meal and corn in the concentrate with faba bean or field peas and triticale might maintain rumen parameters of dairy ewes.

  5. Measurements of hydrogen concentration in liquid sodium by using an inert gas carrier method

    International Nuclear Information System (INIS)

    Funada, T.; Nihei, I.; Yuhara, S.; Nakasuji, T.

    1979-01-01

    A technique was developed to measure the hydrogen level in liquid sodium using an inert gas carrier method. Hydrogen was extracted into an inert gas from sodium through a thin nickel membrane in the form of a helically wound tube. The amount of hydrogen in the inert gas was analyzed by gas chromatography. The present method is unique in that it can be used over the wide range of sodium temperatures (150 to 700 0 C) and has no problems associated with vacuum systems. The partial pressure of hydrogen in sodium was determined as a function of cold-trap temperature (T/sub c/). Sieverts' constant (K/sub s/) was determined as a function of sodium temperature (T). From Sieverts' constant, the solubility of hydrogen in sodium is calculated. It was found that other impurities in sodium, such as (O) and (OH), have little effect on the hydrogen pressure in the sodium loop

  6. 5-HT3A -driven green fluorescent protein delineates gustatory fibers innervating sour-responsive taste cells: A labeled line for sour taste?

    Science.gov (United States)

    Stratford, J M; Larson, E D; Yang, R; Salcedo, E; Finger, T E

    2017-07-01

    Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT 3 receptors on the gustatory nerves. We show here, using 5-HT 3A GFP mice, that 5-HT 3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT 3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT 3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT 3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus. © 2017 Wiley Periodicals, Inc.

  7. Cloning, Expression, and Characterization of Sorbitol Transporters from Developing Sour Cherry Fruit and Leaf Sink Tissues1

    Science.gov (United States)

    Gao, Zhifang; Maurousset, Laurence; Lemoine, Remi; Yoo, Sang-Dong; van Nocker, Steven; Loescher, Wayne

    2003-01-01

    The acyclic polyol sorbitol is a primary photosynthetic product and the principal photosynthetic transport substance in many economically important members of the family Rosaceace (e.g. almond [Prunus dulcis (P. Mill.) D.A. Webber], apple [Malus pumila P. Mill.], cherry [Prunus spp.], peach [Prunus persica L. Batsch], and pear [Pyrus communis]). To understand key steps in long-distance transport and particularly partitioning and accumulation of sorbitol in sink tissues, we have cloned two sorbitol transporter genes (PcSOT1 and PcSOT2) from sour cherry (Prunus cerasus) fruit tissues that accumulate large quantities of sorbitol. Sorbitol uptake activities and other characteristics were measured by heterologous expression of PcSOT1 and PcSOT2 in yeast (Saccharomyces cerevisiae). Both genes encode proton-dependent, sorbitol-specific transporters with similar affinities (Km sorbitol of 0.81 mm for PcSOT1 and 0.64 mm for PcSOT2). Analyses of gene expression of these transporters, however, suggest different roles during leaf and fruit development. PcSOT1 is expressed throughout fruit development, but especially when growth and sorbitol accumulation rates are highest. In leaves, PcSOT1 expression is highest in young, expanding tissues, but substantially less in mature leaves. In contrast, PcSOT2 is mainly expressed only early in fruit development and not in leaves. Compositional analyses suggest that transport mediated by PcSOT1 and PcSOT2 plays a major role in sorbitol and dry matter accumulation in sour cherry fruits. Presence of these transporters and the high fruit sorbitol concentrations suggest that there is an apoplastic step during phloem unloading and accumulation in these sink tissues. Expression of PcSOT1 in young leaves before completion of the transition from sink to source is further evidence for a role in determining sink activity. PMID:12692316

  8. The Reference Laboratory for Radon Gas Activity Concentration Measurements at PSI; Das Referenzlabor fuer Radongas-Konzentrationsmessungen am PSI

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, Christoph

    1998-09-01

    Active or passive radon gas measuring instruments are exposed during intercomparison exercises in the radon chamber of the Reference Laboratory for Radon Gas Concentration Measurements at Paul Scherrer Institut: The traceability of radon gas measurements to nationally and internationally acknowledged standards is inspected in the reference atmosphere of the chamber with calibrated {sup 222}Rn activity concentration. The use of secondary standards guarantees the traceability of the radon chamber reference atmosphere. Besides the principal secondary standard, a radon gas standard (secondary standard I), a {sup 226}Ra standard solution (secondary standard II) and a {sup 222}Rn emanation standard (secondary standard III) are used. The {sup 222}Rn activity delivered by one of these standards is quantitatively transferred into a reference volume and hence converted to an activity concentration serving for the calibration of a measuring instrument transfer standard consisting of scintillation cell and counter. By this way, the transfer standard calibration is related and traceable to the internationally acknowledged primary standard laboratories National Institute of Standards and Technology, Gaithersburg, Maryland (U.S.A.) or National Physical Laboratory, Teddington, Middlesex (UK). The calibrated transfer standard is then used to calibrate the radon gas activity concentration in the radon chamber. For a single grab sampling determination of the {sup 222}Rn activity concentration in the radon chamber with the transfer standard, the estimation of Type A and Type B uncertainties yields a relative expanded uncertainty (95% confidence level) of minimum 3% for high concentration levels (10 kBqm{sup -3}) and maximum 30% for low concentration levels (0.2 kBqm{sup -3}). Extended evaluations of the reproducibility of calibration factor measurements obtained by calibration of the transfer standard with the secondary standards I, II and III show a very good reproducibility quality

  9. Numerical Study on Flow, Temperature, and Concentration Distribution Features of Combined Gas and Bottom-Electromagnetic Stirring in a Ladle

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-01-01

    Full Text Available A novel method of combined argon gas stirring and bottom-rotating electromagnetic stirring in a ladle refining process is presented in this report. A three-dimensional numerical model was adopted to investigate its effect on improving flow field, eliminating temperature stratification, and homogenizing concentration distribution. The results show that the electromagnetic force has a tendency to spiral by spinning clockwise on the horizontal section and straight up along the vertical section, respectively. When the electromagnetic force is applied to the gas-liquid two phase flow, the gas-liquid plume is shifted and the gas-liquid two phase region is extended. The rotated flow driven by the electromagnetic force promotes the scatter of bubbles. The temperature stratification tends to be alleviated due to the effect of heat compensation and the improved flow. The temperature stratification tends to disappear when the current reaches 1200 A. The improved flow field has a positive influence on decreasing concentration stratification and shortening the mixing time when the combined method is imposed. However, the alloy depositing site needs to be optimized according to the whole circulatory flow and the region of bubbles to escape.

  10. Gamma densitomeric measurements of gas concentrations at a heated tube bundle; Gammadensitometrische Gasgehaltsmessungen an einem beheizten Rohrbuendel

    Energy Technology Data Exchange (ETDEWEB)

    Franz, R.; Sprewitz, U.; Hampel, U.

    2012-07-01

    The contribution under consideration reports on a gamma denitometric measurement of gas concentrations in a vertical heated tube bundle which is flowed around by a fluid. Two measurement positions, two flow rates of the circulating fluid, two subcooling values and eleven heat fluxes were selected for the measurement. The authors of this contribution describe the test facility, measurement methodology, results and their interpretation. The measurement uncertainty is described in detail.

  11. Analysis of local-scale background concentrations of methane and other gas-phase species in the Marcellus Shale

    Directory of Open Access Journals (Sweden)

    J. Douglas Goetz

    2017-02-01

    Full Text Available The Marcellus Shale is a rapidly developing unconventional natural gas resource found in part of the Appalachian region. Air quality and climate concerns have been raised regarding development of unconventional natural gas resources. Two ground-based mobile measurement campaigns were conducted to assess the impact of Marcellus Shale natural gas development on local scale atmospheric background concentrations of air pollution and climate relevant pollutants in Pennsylvania. The first campaign took place in Northeastern and Southwestern PA in the summer of 2012. Compounds monitored included methane (CH4, ethane, carbon monoxide (CO, nitrogen dioxide, and Proton Transfer Reaction Mass Spectrometer (PTR-MS measured volatile organic compounds (VOC including oxygenated and aromatic VOC. The second campaign took place in Northeastern PA in the summer of 2015. The mobile monitoring data were analyzed using interval percentile smoothing to remove bias from local unmixed emissions to isolate local-scale background concentrations. Comparisons were made to other ambient monitoring in the Marcellus region including a NOAA SENEX flight in 2013. Local background CH4 mole fractions were 140 ppbv greater in Southwestern PA compared to Northeastern PA in 2012 and background CH4 increased 100 ppbv from 2012 to 2015. CH4 local background mole fractions were not found to have a detectable relationship between well density or production rates in either region. In Northeastern PA, CO was observed to decrease 75 ppbv over the three year period. Toluene to benzene ratios in both study regions were found to be most similar to aged rural air masses indicating that the emission of aromatic VOC from Marcellus Shale activity may not be significantly impacting local background concentrations. In addition to understanding local background concentrations the ground-based mobile measurements were useful for investigating the composition of natural gas emissions in the region.

  12. Gas sampling method for determining pollutant concentrations in the flame zone of two swirl-can combustor modules

    Science.gov (United States)

    Duerr, R. A.

    1975-01-01

    A gas sampling probe and traversing mechanism were developed to obtain detailed measurements of gaseous pollutant concentrations in the primary and mixing regions of combustors in order to better understand how pollutants are formed. The gas sampling probe was actuated by a three-degree-of-freedom traversing mechanism and the samples obtained were analyzed by an on-line gas analysis system. The pollutants in the flame zone of two different swirl-can combustor modules were measured at an inlet-air temperature of 590 K, pressure of 6 atmospheres, and reference velocities of 23 and 30 meters per second at a fuel-air ratio of 0.02. Typical results show large spatial gradients in the gaseous pollutant concentration close to the swirl-can module. Average concentrations of unburned hydrocarbons and carbon monoxide decrease rapidly in the downstream wake regions of each module. By careful and detailed probing, the effect of various module design features on pollutant formation can be assessed. The techniques presently developed seem adequate to obtain the desired information.

  13. Deuterium concentration deterioration in feed synthesis gas from ammonia plant to heavy water plant (Preprint No. ED-5)

    International Nuclear Information System (INIS)

    Sah, A.K.

    1989-04-01

    Heavy Water Plant (Thal) is designed for 110 T/ Year capacity (55 T/Year each stream), with inlet deuterium concentration of feed synthesis gas at 115 ppm and depleted to 15 ppm. During first start up of plant the inlet concentration to feed synthesis gas was about 97 ppm. At that time the rich condensate recirculation was not there. To make the effective recirculation of deuterium rich condensate and minimum posssible losses some modifications were carried out in ammonia plant. Major ones are: (i)Demineralised (DM) water export for heavy water plant and urea plant which was having deuterium rich DM water connection was connected with DM water of urea plant which is not rich in deuterium, (ii)Sample cooler pump suction was connected with raw water, (iii)Ammonia plant line No.II condensate stripper was rectified during annual shut down to avoid excessive steam venting from its top and other draining, and (iv)Stripper condensate directly connected to make up water bypassing open settler to avoid evaporation and diffusion losses. With these modifications the deuterium concentration in feed synthesis gas improved to about 105 ppm. To improve it to 115 ppm, further modifications are suggested. (author). 5 figs

  14. Evaluation of maize-soybean flour blends for sour maize bread ...

    African Journals Online (AJOL)

    Properties examined included amylose content, bulk density, dispersibility, swelling power, water absorption capacity and viscoelastic properties. The effect of the different flour/meal samples on the properties of sour maize bread were evaluated by baking bread samples with the different flours/meals using a mixed starter ...

  15. Changes in sour cherry (Prunus cerasus L.) antioxidants during nectar processing and in vitro gastrointestinal digestion.

    NARCIS (Netherlands)

    Toydemir, G.; Capanoglu, E.; Kamiloglu, S.; Boyacioglu, D.; Vos, de C.H.; Hall, R.D.; Beekwilder, M.J.

    2013-01-01

    Sour cherry (Prunus cerasus L.) is rich in polyphenols, and like its processed products, is especially rich in anthocyanins. We have applied HPLC, spectrophotometric and on-line antioxidant detection methods to follow the fate of cherry antioxidants during an entire multi-step industrial-scale

  16. Music to Make Your Mouth Water? Assessing the Potential Influence of Sour Music on Salivation

    Science.gov (United States)

    Wang, Qian J.; Knoeferle, Klemens; Spence, Charles

    2017-01-01

    People robustly associate various sound attributes with specific smells/tastes, and soundtracks that are associated with specific tastes can influence people’s evaluation of the taste of food and drink. However, it is currently unknown whether such soundtracks directly impact the eating experience via physiological changes (an embodiment account), or whether they act at a higher cognitive level, or both. The present research assessed a version of the embodiment account, where a soundtrack associated with sourness is hypothesized to induce a physiological response in the listener by increasing salivary flow. Salivation was measured while participants were exposed to three different experimental conditions – a sour soundtrack, a muted lemon video showing a man eating a lemon, and a silent baseline condition. The results revealed that salivation during the lemon video condition was significantly greater than in the sour soundtrack and baseline conditions. However, contrary to our hypothesis, there was no significant difference between salivation levels in the sour soundtrack compared to the baseline condition. These results are discussed in terms of potential mechanisms underlying the auditory modulation of taste perception/evaluation. PMID:28491044

  17. Phytoplasmas in apricot, peach and sour cherry orchards in East Bohemia, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, H.; Fránová, Jana; Suchá, J.

    2011-01-01

    Roč. 64, Suppl. (2011), s. 67-68 ISSN 1721-8861 R&D Projects: GA MŠk OC09021 Institutional research plan: CEZ:AV0Z50510513 Keywords : Candidatus Phytoplasma prunorum * PCR/RFLP * apricot, peach and sour cherry orchards Subject RIV: EE - Microbiology, Virology Impact factor: 0.592, year: 2011

  18. Music to Make Your Mouth Water? Assessing the Potential Influence of Sour Music on Salivation

    Directory of Open Access Journals (Sweden)

    Qian J. Wang

    2017-04-01

    Full Text Available People robustly associate various sound attributes with specific smells/tastes, and soundtracks that are associated with specific tastes can influence people’s evaluation of the taste of food and drink. However, it is currently unknown whether such soundtracks directly impact the eating experience via physiological changes (an embodiment account, or whether they act at a higher cognitive level, or both. The present research assessed a version of the embodiment account, where a soundtrack associated with sourness is hypothesized to induce a physiological response in the listener by increasing salivary flow. Salivation was measured while participants were exposed to three different experimental conditions – a sour soundtrack, a muted lemon video showing a man eating a lemon, and a silent baseline condition. The results revealed that salivation during the lemon video condition was significantly greater than in the sour soundtrack and baseline conditions. However, contrary to our hypothesis, there was no significant difference between salivation levels in the sour soundtrack compared to the baseline condition. These results are discussed in terms of potential mechanisms underlying the auditory modulation of taste perception/evaluation.

  19. Fruit and snack consumption related to sweet, sour and salty taste preferences

    NARCIS (Netherlands)

    Sijtsema, S.J.; Reinders, M.J.; Hiller, S.; Guardia, D.

    2012-01-01

    Purpose – To better understand fruit consumption and its determinants this paper aims to explore the relationship between the consumption of different types of fruit and other snacks and consumer taste preferences for sweet, salty and sour is explored. Design/methodology/approach – Respondents

  20. Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions.

    Science.gov (United States)

    Hasegawa, R; Toyama, K; Miyanaga, K; Tanji, Y

    2014-02-01

    Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.

  1. Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    Science.gov (United States)

    Miller, J. Houston; Melroy, Hilary R.; Ott, Lesley E.; Mclinden, Matthew L.; Holben, Brent; Wilson, Emily L.

    2012-01-01

    , pressure, and species mixing ratios are defined at these boundaries. Between the boundaries, temperature is assumed to vary linearly with altitude while pressure (and thus gas density) vary exponentially. The observed spectrum at the LHR instrument will be the integration of the contributions along this light path. For any absorption measurement the signal at a particular spectral frequency is a linear combination of spectral line contributions from several species. For each species that might absorb in a spectral region, we have pre-calculated its contribution as a function of temperature and pressure. The integrated path absorption spectrum can then by calculated using the initial sun angle (from location, date, and time) and assumptions about pressure and temperature profiles from an atmospheric model. The modeled spectrum is iterated to match the experimental observation using standard multilinear regression techniques. In addition to the layer concentrations, the numerical technique also provides uncertainty estimates for these quantities as well as dependencies on assumptions inherent in the atmospheric models.

  2. Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    Science.gov (United States)

    Miller, J. H.; Melroy, H.; Ott, L.; McLinden, M. L.; Holben, B. N.; Wilson, E. L.

    2012-12-01

    , pressure, and species mixing ratios are defined at these boundaries. Between the boundaries, temperature is assumed to vary linearly with altitude while pressure (and thus gas density) vary exponentially. The observed spectrum at the LHR instrument will be the integration of the contributions along this light path. For any absorption measurement the signal at a particular spectral frequency is a linear combination of spectral line contributions from several species. For each species that might absorb in a spectral region, we have pre-calculated its contribution as a function of temperature and pressure. The integrated path absorption spectrum can then by calculated using the initial sun angle (from location, date, and time) and assumptions about pressure and temperature profiles from an atmospheric model. The modeled spectrum is iterated to match the experimental observation using standard multilinear regression techniques. In addition to the layer concentrations, the numerical technique also provides uncertainty estimates for these quantities as well as dependencies on assumptions inherent in the atmospheric models.

  3. Denitrification rates and excess nitrogen gas concentrations in the Arabian Sea oxygen deficient zone

    Digital Repository Service at National Institute of Oceanography (India)

    Devol, A; Uhlenhopp, A; Naqvi, S.W.A; Brandes, J.A; Jayakumar, D.A; Naik, H.; Gaurin, S.; Codispoti, L.A.; Yoshinari, T.

    Rates of canonical, i.e. heterotrophic, water-column denitrification were measured by sup(15)N incubation techniques at a number of coastal and open ocean stations in the Arabian Sea. Measurements of N2 :Ar gas ratios were also made to obtain...

  4. Rn-Gas Concentration and Working Level Measurements Using SSNTD in Uranium Exploration Galleries Allouga Mine, Sinai, Egypt

    International Nuclear Information System (INIS)

    Abdel-Monem, A.A.; Hassan, S.F.; Abdel-Kader, F.H.; El-Naggar, A.M.; Essia, H.M.; Abdel-Hafez, A.A.

    2008-01-01

    Measurements of Rn-gas concentrations and Working Level (WL), were carried out in the U-exploration galleries at El- Allouga Mine, Sinai, Egypt by passive techniques (SSNTD) during the four seasons ( Summer, Fall, Winter and Spring) using four different detector types: CR-39, MK, CN-85 and LR-115.Twenty eight (28) stations were chosen for this purpose reflecting different environmental conditions as measurement sites within the galleries. The Rn-gas concentrations , in the summer period ranged from 25.86 to 44.2 pCi/l in the ventilated stations and from 488.98 to 611.16 pCi/l in the non-ventilated stations. In the fall period , the average Rn-gas concentrations in the ventilated stations ranged from 31.61 to 56.36 pCi/l while in the non-ventilated stations from 457.61 to 621.52 pCi/l. In the winter period, the average Rn-gas concentrations in the ventilated stations ranged from 27.59 to 66.45 pCi/l while in the non- ventilated stations from 499.09 to 603.81 pCi/l. In the spring the Rn-gas concentrations ranged from 30.8 to 46.77 pCi/l in the ventilated stations, whereas, in the non-ventilated stations from 404.06 to 445.18 pCi/l. The (WL), in the summer period, ranged from 0.143 to 0.247 in the ventilated sector and from 4.408 to 5.497 in the non-ventilated stations .In fall, the( WL) ranged from 0.166 to 0.295 in the ventilated stations and from 4.123 to 5.624 in the non-ventilated stations. In the winter, the (WL) ranged from 0.105 to 0.37 in the ventilated stations and from 4.138 to 5.26 in the non-ventilated stations. In the spring, the (WL) in the ventilated stations ranged from 0.152 to 0.241 and from 3.696 to 4.087 in the non-ventilated stations. These results indicate that: i)The low measured Rn gas and (WL) values in the ventilated stations reflect the effect of variations in meteorological conditions on (WL) determination where the air flow carries the Rn-gas before it decays and the daughters are plated onto the SSNTD . ii) The larger ranges for Rn-gas

  5. Alteration of natural "3"7Ar activity concentration in the subsurface by gas transport and water infiltration

    International Nuclear Information System (INIS)

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R.

    2016-01-01

    High "3"7Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of "3"7Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict "3"7Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating "3"7Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for "3"7Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural "3"7Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of "3"7Ar activity concentrations. The influence of soil water content on "3"7Ar production is shown to be negligible to first order, while "3"7Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. - Highlights: • "3"7Ar in the subsurface as a key evidence to detect underground nuclear explosions. • Numerical modeling of "3"7Ar production and transport in variably saturated soil. • Large uncertainty on predicting "3"7Ar activity concentration in soil gas. • Control of subsurface "3"7Ar temporal variability by water infiltration events. • Limited influence of soil water content on "3"7Ar production.

  6. Design of ultrasonic probe and evaluation of ultrasonic waves on E.coli in Sour Cherry Juice

    Directory of Open Access Journals (Sweden)

    B Hosseinzadeh Samani

    2015-09-01

    Full Text Available Introduction: The common method used for juice pasteurization is the thermal method since thermal methods contribute highly to inactivating microbes. However, applying high temperatures would lead to inefficient effects on nutrition and food value. Such effects may include vitamin loss, nutritional flavor loss, non-enzyme browning, and protein reshaping (Kuldiloke, 2002. In order to decrease the adverse effects of the thermal pasteurization method, other methods capable of inactivation of microorganisms can be applied. In doing so, non-thermal methods including pasteurization using high hydrostatic pressure processing (HPP, electrical fields, and ultrasound waves are of interest (Chen and Tseng, 1996. The reason for diminishing microbial count in the presence of ultrasonic waves could be due to the burst of very tiny bubbles developed by ultrasounds which expand quickly and burst in a short time. Due to this burst, special temperature and pressure conditions are developed which could initiate or intensify several physical and/or chemical reactions. The aim of this study is to evaluate the non-thermal ultrasonic method and its effective factors on the E.coli bacteria of sour cherry. Materials and methods: In order to supply uniform ultrasonic waves, a 1000 W electric generator (Model MPI, Switzerland working at 20±1 kHz frequency was used. The aim of this study is to evaluate the non-thermal ultrasonic method and its effective factors on the E.coli bacteria of sour cherry. For this purpose, a certain amount of sour cherry fruit was purchased from local markets. First, the fruits were washed, cleaned and cored. The prepared fruits were then dewatered using an electric juicer. In order to separate pulp suspensions and tissue components, the extracted juice was poured into a centrifuge with the speed of 6000 rpm for 20 min. For complete separation of the remaining suspended particles, the transparent portion of the extract was passed through a

  7. Optimization research on the concentration field of NO in selective catalytic reduction flue gas denitration system

    Science.gov (United States)

    Zheng, Qingyu; Zhang, Guoqiang; Che, Kai; Shao, Shikuan; Li, Yanfei

    2017-08-01

    Taking 660 MW generator unit denitration system as a study object, an optimization and adjustment method shall be designed to control ammonia slip, i.e. adjust ammonia injection system based on NO concentration distribution at inlet/outlet of the denitration system to make the injected ammonia distribute evenly. The results shows that, this method can effectively improve NO concentration distribution at outlet of the denitration system and decrease ammonia injection amount and ammonia slip concentration. Reduce adverse impact of SCR denitration process on the air preheater to realize safe production by guaranteeing that NO discharge shall reach the standard.

  8. Spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China.

    Science.gov (United States)

    Zeng, Jianfei; Shen, Xiuli; Sun, Xiaoxi; Liu, Ning; Han, Lujia; Huang, Guangqun

    2018-05-01

    With the advantages of high treatment capacity and low operational cost, large-scale trough composting has become one of the mainstream composting patterns in composting plants in China. This study measured concentrations of O 2 , CO 2 , CH 4 and NH 3 on-site to investigate the spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China. The results showed that the temperature in the center of the pile was obviously higher than that in the side of the pile. Pore O 2 concentration rapidly decreased and maintained composting process during large-scale trough composting when the pile was naturally aerated, which will contribute to improving the current undesirable atmosphere environment in China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    Science.gov (United States)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  10. Radionuclides in produced water from Norwegian oil and gas installations - concentrations and bioavailability

    International Nuclear Information System (INIS)

    Eriksen, D.Oe.; Sidhu, R.; Stralberg, E.; Iden, K.I.; Hylland, K.; Ruus, A.; Roeyset, O.; Berntssen, M.H.G.; Rye, H.

    2006-01-01

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226 Ra and 228 Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. This study reports results indicating that the presence of added chemicals such as scale inhibitors in produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bioavailability of radium (and barium) will be larger than anticipated. Also, the bioavailability of food-borne radium is shown to increase due to presence of such chemicals. (author)

  11. Radionuclides in produced water from Norwegian oil and gas installations — Concentrations and bioavailability

    Science.gov (United States)

    Eriksen, D. Ø.; Sidhu, R.; Strålberg, E.; Iden, K. I.; Hylland, K.; Ruus, A.; Røyset, O.; Berntssen, M. H. G.; Rye, H.

    2006-01-01

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226Ra and 228Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. This study reports results indicating that the presence of added chemicals such as scale inhibitors in produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bioavailability of radium (and barium) will be larger than anticipated. Also, the bioavailability of food-borne radium is shown to increase due to presence of such chemicals.

  12. Short-term temporal variations of soil gas radon concentration and comparison of measurement techniques

    Czech Academy of Sciences Publication Activity Database

    Neznal, M.; Matolín, M.; Just, G.; Turek, Karel

    2004-01-01

    Roč. 108, č. 1 (2004), s. 55-63 ISSN 0144-8420 R&D Projects: GA AV ČR KSK2067107; GA AV ČR KSK4055109 Grant - others:Projekt SÚJB(CZ) R/2/2000 Institutional research plan: CEZ:AV0Z1048901 Keywords : radon * soil gas * temporal variations Subject RIV: DL - Nuclear Waste, Radioactive Pollution ; Quality Impact factor: 0.617, year: 2003

  13. Financial and environmental costs of manual versus automated control of end-tidal gas concentrations.

    Science.gov (United States)

    Tay, S; Weinberg, L; Peyton, P; Story, D; Briedis, J

    2013-01-01

    Emerging technologies that reduce the economic and environmental costs of anaesthesia have had limited assessment. We hypothesised that automated control of end-tidal gases, a new feature in anaesthesia machines, will consistently reduce volatile agent consumption cost and greenhouse gas emissions. As part of the planned replacement of anaesthesia machines in a tertiary hospital, we performed a prospective before and after study comparing the cost and greenhouse gas emissions of isoflurane, sevoflurane and desflurane when using manual versus automated control of end-tidal gases. We analysed 3675 general anaesthesia cases with inhalational agents: 1865 using manual control and 1810 using automated control. Volatile agent cost was $18.87/hour using manual control and $13.82/hour using automated control: mean decrease $5.05/hour (95% confidence interval: $0.88-9.22/hour, P=0.0243). The 100-year global warming potential decreased from 23.2 kg/hour of carbon dioxide equivalents to 13.0 kg/hour: mean decrease 10.2 kg/hour (95% confidence interval: 2.7-17.7 kg/hour, P=0.0179). Automated control reduced costs by 27%. Greenhouse gas emissions decreased by 44%, a greater than expected decrease facilitated by a proportional reduction in desflurane use. Automated control of end-tidal gases increases participation in low flow anaesthesia with economic and environmental benefits.

  14. Atmospheric concentration characteristics and gas-particle partitioning of PCBs in a rural area of eastern Germany

    International Nuclear Information System (INIS)

    Mandalakis, Manolis; Stephanou, Euripides G.

    2007-01-01

    Atmospheric concentrations of polychlorinated biphenyls (PCBs) were measured in 14 successive daytime and nighttime air samples collected from Melpitz, a rural site in eastern Germany. The average total concentration of PCBs was 110+/-80pgm -3 and they were predominately present in the gas phase (∼95%). Composition of individual congeners closely resembled those of Clophen A30 and Aroclor 1232. Partial vapor pressures of PCBs were well correlated with temperature and the steep slopes obtained from Clausius-Clapeyron plots (-4500 to -8000) indicated that evaporation from adjacent land surfaces still controls the atmospheric levels of these pollutants. Particle-gas partitioning coefficients (K P ) of PCBs were well correlated with the respective sub-cooled vapor pressures (P L o ), but the slopes obtained from logK P versus logP L o plots (-0.16 to -0.59) deviated significantly from the expected value of -1. Overall, gas-particle partitioning of PCBs was better simulated by Junge-Pankow than octanol/air partition coefficient-based model

  15. Effects of annealing gas and drain doping concentration on electrical properties of Ge-source/Si-channel heterojunction tunneling FETs

    Science.gov (United States)

    Bae, Tae-Eon; Wakabayashi, Yuki; Nakane, Ryosho; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    Improvement in the performance of Ge-source/Si-channel heterojunction tunneling FETs (TFETs) with high on-current/off-current (I on/I off) ratio and steep subthreshold swing (SS) is demonstrated. In this paper, we experimentally examine the effects of gas ambient [N2 and forming gas (4% H2/N2)] and a doping concentration in the drain regions on the electrical characteristics of Ge/Si heterojunction TFETs. The minimum SS (SSmin) of 70.9 mV/dec and the large I on/I off ratio of 1.4 × 107 are realized by postmetallization annealing in forming gas. Also, the steep SSmin and averaged SS (SSavr) values of 64.2 and 78.4 mV/dec, respectively, are obtained in low drain doping concentration. This improvement is attributable to the reduction in interface state density (D it) in the channel region and to the low leakage current in the drain region.

  16. Eagle Ford Shale BTEX and NOx concentrations are dominated by oil and gas industry emissions

    Science.gov (United States)

    Schade, G. W.; Roest, G. S.

    2017-12-01

    US shale oil and gas exploration has been identified as a major source of greenhouse gases and non-methane hydrocarbon (NMHC) emissions to the atmosphere. Here, we present a detailed analysis of 2015 air quality data acquired by the Texas Commission on Environmental Quality (TCEQ) at an air quality monitoring station in Karnes County, TX, central to Texas' Eagle Ford shale area. Data include time series of hourly measured NMHCs, nitrogen oxides (NOx), and hydrogen sulfide (H2S) alongside meteorological measurements. The monitor was located in Karnes City, and thus affected by various anthropogenic emissions, including traffic and oil and gas exploration sources. Highest mixing ratios measured in 2015 included nearly 1 ppm ethane, 0.8 ppm propane, alongside 4 ppb benzene. A least-squares minimization non-negative matrix factorization (NMF) analysis, tested with prior data analyzed using standard PMF-2 software, showed six major emission sources: an evaporative and fugitive source, a flaring source, a traffic source, an oil field source, a diesel source, and an industrial manufacturing source, together accounting for more than 95% of data set variability, and interpreted using NMHC composition and meteorological data. Factor scores strongly suggest that NOx emissions are dominated by flaring and associated sources, such as diesel compressor engines, likely at midstream facilities, while traffic in this rural area is a minor NOx source. The results support, but exceed existing 2012 emission inventories estimating that local traffic emitted seven times fewer NOx than oil and gas exploration sources in the county. Sources of air toxics such as the BTEX compounds are also dominated by oil and gas exploration sources, but are more equally distributed between the associated factors. Benzene abundance is only 20-40% associated with traffic sources, and may thus be 2.5-5 times higher now than prior to the shale boom in this area. Although the monitor was located relatively

  17. Comparison of gas chromatography/mass spectrometry and immunoassay techniques on concentrations of atrazine in storm runoff

    Science.gov (United States)

    Lydy, Michael J.; Carter, D.S.; Crawford, Charles G.

    1996-01-01

    Gas chromatography/mass spectrometry (GC/MS) and enzyme-linked immunosorbent assay (ELISA) techniques were used to measure concentrations of dissolved atrazine in 149 surface-water samples. Samples were collected during May 1992–September 1993 near the mouth of the White River (Indiana) and in two small tributaries of the river. GC/MS was performed on a Hewlett-Packard 5971 A, with electron impact ionization and selected ion monitoring of filtered water samples extracted by C-18 solid phase extraction; ELISA was performed with a magnetic-particle-based assay with photometric analysis. ELISA results compared reasonably well to GC/MS measurements at concentrations below the Maximum Contaminant Level for drinking water set by the U.S. Environmental Protection Agency (3.0 μg/L), but a systematic negative bias was observed at higher concentrations. When higher concentration samples were diluted into the linear range of calibration, the relation improved. A slight positive bias was seen in all of the ELISA data compared to the GC/MS results, and the bias could be partially explained by correcting the ELISA data for cross reactivity with other triazine herbicides. The highest concentrations of atrazine were found during the first major runoff event after the atrazine was applied. Concentrations decreased throughout the rest of the sampling period even though large runoff events occurred during this time, indicating that most atrazine loading to surface waters in the study area occurs within a few weeks after application.

  18. Thermal Boundary Layer Effects on Line-of-Sight Tunable Diode Laser Absorption Spectroscopy (TDLAS) Gas Concentration Measurements.

    Science.gov (United States)

    Qu, Zhechao; Werhahn, Olav; Ebert, Volker

    2018-06-01

    The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.

  19. Hierarchical porous ZnO microflowers with ultra-high ethanol gas-sensing at low concentration

    Science.gov (United States)

    Song, Liming; Yue, He; Li, Haiying; Liu, Li; Li, Yu; Du, Liting; Duan, Haojie; Klyui, N. I.

    2018-05-01

    Hierarchical porous and non-porous ZnO microflowers have been successfully fabricated by hydrothermal method. Their crystal structure, morphology and gas-sensing properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical gas sensing intelligent analysis system (CGS). Compared with hierarchical non-porous ZnO microflowers, hierarchical porous ZnO microflowers exhibited ultra-high sensitivity with 50 ppm ethanol at 260 °C and the response is 110, which is 1.8 times higher than that of non-porous ZnO microflowers. Moreover, the lowest concentration limit of hierarchical porous ZnO microflowers (non-porous ZnO microflowers) to ethanol is 0.1 (1) ppm, the response value is 1.6 (1).

  20. Size distribution and concentration of soot generated in oil and gas-fired residential boilers under different combustion conditions

    Science.gov (United States)

    Jiménez, Santiago; Barroso, Jorge; Pina, Antonio; Ballester, Javier

    2016-05-01

    In spite of the relevance of residential heating burners in the global emission of soot particles to the atmosphere, relatively little information on their properties (concentration, size distribution) is available in the literature, and even less regarding the dependence of those properties on the operating conditions. Instead, the usual procedure to characterize those emissions is to measure the smoke opacity by several methods, among which the blackening of a paper after filtering a fixed amount of gas (Bacharach test) is predominant. In this work, the size distributions of the particles generated in the combustion of a variety of gaseous and liquid fuels in a laboratory facility equipped with commercial burners have been measured with a size classifier coupled to a particle counter in a broad range of operating conditions (air excesses), with simultaneous determination of the Bacharach index. The shape and evolution of the distribution with progressively smaller oxygen concentrations depends essentially on the state of the fuel: whereas the combustion of the gases results in monomodal distributions that 'shift' towards larger diameters, in the case of the gas-oils an ultrafine mode is always observed, and a secondary mode of coarse particle grows in relevance. In both cases, there is a strong, exponential correlation between the total mass concentration and the Bacharach opacity index, quite similar for both groups of fuels. The empirical expressions proposed may allow other researchers to at least estimate the emissions of numerous combustion facilities routinely characterized by their smoke opacities.

  1. Carbon economy of sour orange in response to different Glomus spp.

    Science.gov (United States)

    Graham, J. H.; Drouillard, D. L.; Hodge, N. C.

    1996-01-01

    Vesicular-arbuscular mycorrhizal (M) fungal colonization, growth, and nonstructural carbohydrate status of sour orange (Citrus aurantium L.) seedlings were compared at low- and high-phosphorus (P) supply following inoculation with four Glomus isolates: G. intraradices (Gi, FL208), G. etunicatum (Ge, UT316), G. claroideum (Gc, SC186), and Glomus sp. (G329, FL906). Nonmycorrhizal (NM) seedlings served as controls. At low-P supply, increases in incidence of M colonization, vesicles and accumulation of fungal fatty acid 16:1omega(5)C in roots were most rapid for G329-inoculated seedlings, followed closely by Gi- and Gc-inoculated seedlings. Glomus etunicatum was a less aggressive colonizer and produced lower rates of fungal fatty acid accumulation in seedling roots than the other Glomus species. Nonmycorrhizal and Ge-inoculated seedlings had lower P status and growth rates than seedlings inoculated with Gi or G329. Glomus claroideum increased seedling P status, but growth rate was lower than for seedlings colonized by Gi or G329, suggesting higher belowground costs for Gc colonization. In P-sufficient roots colonized by Gi, Gc, or G329, starch and ketone sugar concentrations were lower than in P-deficient NM and Ge-inoculated plants. Under conditions of high-P supply where mycorrhizae provided no P benefit to the seedlings, colonization by Gc, Gi, and G329 was delayed and reduced compared to that at low-P supply; however, the relative colonization rates among Glomus spp. were similar. Colonization by Ge was not detected in roots until 64 days after inoculation. Compared to NM seedlings, growth rates of mycorrhizal seedlings were reduced by the three aggressive fungi but not by the less aggressive Ge. After 64 days, starch and ketone sugar concentrations were lower in fibrous roots colonized by Gc, Gi, and G329 than in NM roots, indicating greater utilization of nonstructural carbohydrates in roots colonized by the aggressive fungi. After 49 days, colonization by the

  2. Sensing sulfur oxides and other sulfur bearing pollutants with solid electrolyte pellets. I. Gas concentration cells

    Energy Technology Data Exchange (ETDEWEB)

    Chamberland, A M; Gauthier, J M

    1977-01-01

    A new sensing technique using a solid electrolyte has been demonstrated for sulfur-bearing pollutants. Based on potentiometric measurements across a pellet of potassium sulfate, this sensor allows concentrations of sulfur dioxides, sulfur trioxide, hydrogen sulfide, methyl mercaptan and carbonyl sulfide in air to be measured with accuracy. Its operational concentration range at the present time is 0.1 ppM up to at least 10,000 ppM. The presence of other common pollutants such as carbon dioxide, methane, nitric oxide and nitrogen dioxide does not interfere with the measurement of air samples containing sulfur-bearing pollutants.

  3. Ground-truthing predicted indoor radon concentrations by using soil-gas radon measurements

    International Nuclear Information System (INIS)

    Reimer, G.M.

    2001-01-01

    Predicting indoor radon potential has gained in importance even as the national radon programs began to wane. A cooperative study to produce radon potential maps was conducted by the Environmental Protection Agency (EPA), U.S. Geological Survey (USGS), Department of Energy (DOE), and Lawrence Berkeley Laboratory (LBL) with the latter taking the lead role. A county-wide predictive model based dominantly on the National Uranium Resource Evaluation (NURE) aerorad data and secondly on geology, both small-scale data bases was developed. However, that model breaks down in counties of complex geology and does not provide a means to evaluate the potential of an individual home or building site. Soil-gas radon measurements on a large scale are currently shown to provide information for estimating radon potential at individual sites sort out the complex geology so that the small-scale prediction index can be validated. An example from Frederick County, Maryland indicates a positive correlation between indoor measurements and soil-gas data. The method does not rely on a single measurement, but a series that incorporate seasonal and meteorological considerations. (author)

  4. Determination of the Minimal Fresh Gas Flow to Maintain a Therapeutic Inspired Oxygen Concentration in a Semi-Closed Anesthesia Circle System Using an Oxygen Concentrator as the Oxygen Source

    National Research Council Canada - National Science Library

    Grano, Joan

    2001-01-01

    The purpose of this study was to determine the rate of oxygen dilution, resulting from argon accumulation, using 3 low fresh gas flow rates using an oxygen concentrator in a semi-closed anesthesia circle system...

  5. Mineral concentrations of forage legumes and grasses grown in acidic soil amended with flue gas desulfurization products

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.B.; Baligar, V.C. [USDA ARS, Beltsville, MD (USA). Beltsville Agricultural Research Center West

    2003-07-01

    Considerable quantities of flue gas desulfurization products (FGDs) are generated when coal is burned for production of electricity, and these products have the potential to be reused rather than discarded. Use of FGDs as soil amendments could be important in overall management of these products, especially on acidic soils. Glasshouse studies were conducted to determine shoot concentrations of calcium (Ca), sulfur (S), potassium (K), magnesium (Mg), phosphorus (P), boron (B), zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), aluminum (Al), sodium (Na), molybdenum (Mo), nickel (Ni), cadmium (Cd), chromium (Cr), and lead (Pb) in alfalfa (Medicago sativa), white clover (Trifolium repens), orchardgrass (Dacrylis glomerata), tall fescue (Festuca arundinacea), switchgrass (Panicum virgatum), and eastern gamagrass (Tripsacum dactyloides) grown in acidic (pH 4) soil (Typic Hapludult) amended with various levels of three FGDs and the control compounds CaCO{sub 3}, CaSO{sub 3}, and CaSO{sub 4}. Shoot concentrations of Ca, S, Mg, and B generally increased as levels of soil applied FGD increased. Concentrations of Mn, Fe, Zn, Cu were lower in shoots, especially when soil pH was high ({gt}7). Shoot concentrations of the trace elements Mo, Ni, Cd, Cr, and Pb were not above those reported as normal for foliage. Overall concentrations of most minerals remained near normal for shoots when plants were grown in FGD amended acidic soil.

  6. Determination of breath isoprene and acetone concentration with a needle-type extraction device in gas chromatography-mass spectrometry.

    Science.gov (United States)

    Ueta, Ikuo; Mizuguchi, Ayako; Okamoto, Mitsuyoshi; Sakamaki, Hiroyuki; Hosoe, Masahiko; Ishiguro, Motoyuki; Saito, Yoshihiro

    2014-03-20

    Isoprene in human breath is said to be related to cholesterol metabolism, and the possibility of the correlations with some clinical parameters has been studied. However, at this stage, no clear benefit of breath isoprene has been reported for clinical diagnosis. In this work, isoprene and acetone concentrations were measured in the breath of healthy and obese subjects using a needle-type extraction device for subsequent analysis in gas chromatography-mass spectrometry (GC-MS) to investigate the possibility of these compounds as an indicator of possible diseases. After measuring intraday and interday variations of isoprene and acetone concentrations in breath samples of healthy subjects, their concentrations were also determined in 80 healthy and 17 obese subjects. In addition, correlation between these breath concentrations and the blood tests result was studied for these healthy and obese subjects. The results indicated successful determination of breath isoprene and acetone in this work, however, no clear correlation was observed between these measured values and the blood test results. Breath isoprene concentration may not be a useful indicator for obesity or hypercholesterolemia. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Iridium concentration and noble gas composition of Cretaceous-Tertiary boundary clay from Stevens Klint, Denmark

    International Nuclear Information System (INIS)

    Osawa, Takahito; Hatsukawa, Yuichi; Nagao, Keisuke; Koizumi, Mitsuo; Oshima, Masumi; Toh, Yosuke; Kimura, Atsushi; Furutaka, Kazuyoshi

    2009-01-01

    The Cretaceous-Tertiary (K-T) boundary about 65 million years ago records a mass extinction event caused by a bolide impact. K-T boundary clay collected from Stevns Klint, Denmark was investigated in this work. Iridium concentrations of eight clays across the K-T boundary were determined using a multiple gamma-ray analysis system after neutron activation. Anomalously high Ir concentrations were detected in five marl samples, with the highest concentration being 29.9 ppb. Four samples were analyzed for all noble gases. NO extraterrestrial Ar, Kr, and Xe were discovered in any of the samples, although most of the 3 He which was detected was extraterrestrial. Solar-like Ne was observed only in the sample SK4, which had an Ir concentration of 14.3 ppb, indicating the presence of micrometeorites. The solar-like Ne clearly did not originate from an asteroid/comet associated with the bolide impact, as that asteroid is thought to have been extremely large. Also, because there was no sign of a high accretion rate of micrometeorites at the boundary it could not be ascertained whether the solar-like Ne was related to a catastrophic event that led to the extinction of the dinosaurs. (author)

  8. Seal plate with concentrate annular segments for a gas turbine engine

    International Nuclear Information System (INIS)

    Harris, D.P.; Light, S.H.

    1991-01-01

    This patent describes a gas turbine engine. It comprises a radial outflow, rotary compressor; a radial inflow turbine wheel; means coupling the compressor and the turbine wheel in slightly spaced back to back relating so that the turbine wheel may drive the compressor; a housing surrounding the compressor and the turbine wheel; and a stationary seal mounted on the housing and extending into the space between the compressor and the turbine wheel, the seal including a main sealing and support section adjacent the compressor and a multiple piece diaphragm mounted to the main section, but generally spaced therefrom, the pieces of the diaphragm being movable with respect to each other and with respect to the main section, and including a radially inner ring and a radially outer ring, one of the rings including a lip which overlaps an edge of the other of the rings, the lip and the edge being in sliding, sealing engagement

  9. Contribution to internal pressure and flammable gas concentration in RAM [radioactive material] transport packages

    International Nuclear Information System (INIS)

    Warrant, M.M.; Brown, N.

    1989-01-01

    Various facilities in the US generate wastes contaminated with transuranic (TRU) isotopes (such as plutonium and americium) that decay primarily by emission of alpha particles. The waste materials consist of a wide variety of commercially available plastics, paper, cloth, and rubber; concreted or sludge wastes containing water; and metals, glass, and other solid inorganic materials. TRU wastes that have surface dose rates of 200 mrem/hr or less are typically packaged in plastic bags placed inside metal drums or boxes that are vented through high efficiency particulate air (HEPA) filters. These wastes are to be transported from waste generation or storage sites to the Waste Isolation Pilot Plant (WIPP) in the TRUPACT-II, a Type B package. Radiolysis of organic wastes or packaging materials, or wastes containing water generates gas which may be flammable or simply contribute to the internal pressure of the radioactive material (RAM) transport package. This paper discusses the factors that affect the amount and composition of this gas, and summarizes maximum radiolytic G values (number of molecules produced per 100 eV absorbed energy) found in the technical literature for many common materials. These G values can be used to determine the combination of payload materials and decay heats that are safe for transport. G values are established for categories of materials, based on chemical functional groups. It is also shown using transient diffusion and quasi-equilibrium statistical mechanics methods that hydrogen, if generated, will not stratify at the top of the transport package void space. 9 refs., 1 tab

  10. An Excel®-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion.

    Science.gov (United States)

    Verginelli, Iason; Yao, Yijun; Suuberg, Eric M

    2016-01-01

    In this study we present a petroleum vapor intrusion tool implemented in Microsoft ® Excel ® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.

  11. Comparison between the measurements of Radon Gas Concentrations and γ-ray intensities in Exploring the Black Sands at El-Burullus Beach

    International Nuclear Information System (INIS)

    Abdel-Razek, Y.A; Bakhit, A.F

    2009-01-01

    Ten well-located monitoring stations along El-Burullus beach were chosen to measure radon gas concentrations in the beach sands below surface, and γ-ray intensities at 10 cm above the surface. These stations were chosen to represent apparent concentrations of the black sands. Sand samples were collected from the different stations and analyzed to study the relation between the concentrations of the heavy minerals and the measured radon concentrations or the measured γ-ray intensities at these stations. It was found that radon gas concentrations measured at 6:00 Pm were about 2.82 times those measured at 1 :00 Pm due to diurnal variation of temperature. Measurements of radon gas concentrations inside the beach sands are found to be more reliable in qualitative exploration of black sands than the measurements of γ-ray intensities above the shore sands due to the random arrangement of the layers of these sands below surface

  12. Optimization of Sour Cherry Juice Spray Drying as
Affected by Carrier Material and Temperature

    Science.gov (United States)

    Zorić, Zoran; Pedisić, Sandra; Dragović-Uzelac, Verica

    2016-01-01

    Summary Response surface methodology was applied for optimization of the sour cherry Marasca juice spray drying process with 20, 30 and 40% of carriers maltodextrin with dextrose equivalent (DE) value of 4–7 and 13–17 and gum arabic, at three drying temperatures: 150, 175 and 200 °C. Increase in carrier mass per volume ratio resulted in lower moisture content and powder hygroscopicity, higher bulk density, solubility and product yield. Higher temperatures decreased the moisture content and bulk density of powders. Temperature of 200 °C and 27% of maltodextrin with 4–7 DE were found to be the most suitable for production of sour cherry Marasca powder. PMID:28115901

  13. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  14. Effects of a sour bolus on the intramuscular electromyographic (EMG) activity of muscles in the submental region.

    Science.gov (United States)

    Palmer, Phyllis M; McCulloch, Timothy M; Jaffe, Debra; Neel, Amy T

    2005-01-01

    A sour bolus has been used as a modality in the treatment of oropharyngeal dysphagia based on the hypothesis that this stimulus provides an effective preswallow sensory input that lowers the threshold required to trigger a pharyngeal swallow. The result is a more immediate swallow onset time. Additionally, the sour bolus may invigorate the oral muscles resulting in stronger contractions during the swallow. The purpose of this investigation was to compare the intramuscular electromyographic activity of the mylohyoid, geniohyoid, and anterior belly of the digastric muscles during sour and water boluses with regard to duration, strength, and timing of muscle activation. Muscle duration, swallow onset time, and pattern of muscle activation did not differ for the two bolus types. Muscle activation time was more tightly approximated across the onsets of the three muscles when a sour bolus was used. A sour bolus also resulted in a stronger muscle contraction as evidenced by greater electromyographic activity. These data support the use of a sour bolus as part of a treatment paradigm.

  15. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    Directory of Open Access Journals (Sweden)

    Tharun Konduru

    2015-01-01

    Full Text Available A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone, acetonitrile (nitrile, ethyl acetate (ester, and ethanol (alcohol. The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm of methlypropyl sulfide and two concentrations (145 and 1452 ppm of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  16. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    Science.gov (United States)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  17. THE EFFECT OF DISTILLATE STORING DISTILLED FROM FRUCTOSE SYRUPS TOWARD ITS ACETALDEHYDE CONCENTRATION MEASURED BY GAS CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    Maria Monica Sianita Basukiwardojo

    2010-06-01

    Full Text Available Acetaldehyde is a compound of aldehyde group that is very volatile and toxic. This compound can be found in fructose syrups used in carbonate beverages. The syrups had been distilled then analysed using gas chromatography. The concentration of acetaldehyde was 289.78 g/g in the distillates kept for one week, 295.30 g/g in those kept for two weeks, 429.45 g/g in those kept for three weeks, and 449.38 g/g in those kept for four weeks. The optimum column temperature was programmed with initial temperature of 40 oC held on for four minutes, then increasing by 40 oC/minute to 200 oC. It can be concluded that the longer the distillates have been kept, the greater the concentration of acetaldehyde in the distillates. A further research to investigate the present of microbe in the distillates and the effect of pH should be conducted   Keywords: acetaldehyde, fructose syrup, distillates, gas chromatography.

  18. Test plan for headspace gas concentration measurement and headspace ventilation rate measurement for DCRTs 241-A-244, 241-BX-244, 241-S-244, 241-TX-244

    International Nuclear Information System (INIS)

    Bauer, R.E.

    1998-01-01

    This test plan provides the directions to characterize the headspace gas concentrations and the headspace ventilation rate for double contained receiver tanks 241-A-244, 241-BX-244, 241-S-244, and 241-TX-244

  19. Adsorption of SO{sub 2} on activated carbon for low gas concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P.; Wanko, H.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaften, Verfahrenstechnik/TVT, Halle (Saale) (Germany)

    2007-05-15

    Adsorption experiments of SO{sub 2} on activated carbon has been carried out for low concentrations (about 100 ppm) at room temperature (15 to 33 C) with varying humidity in the air. The breakthrough curves show that at high relative humidity or relative higher SO{sub 2} concentration, the load capacity increases with respect to temperature. The humidity of the air is also of benefit to the load capacity of SO{sub 2}. When an adsorption process is interrupted and the activated carbon is kept closed for a while, the SO{sub 2} concentration at the exit of a fixed-bed adsorber is similar to that of the fresh activated carbon and begins at a very low value. It appears that the sorption potential has been refreshed after the storage period. Analysis of desorption experiments by simultaneous thermal analysis combined with mass spectrometry (MS) after loading, shows that the physisorbed SO{sub 2} and H{sub 2}O are desorbed at low temperatures. At higher temperatures, the MS peak of SO{sub 2} and H{sub 2}O occur at the same time. Compared with desorption immediately after loading, after one day, the desorption peak due to the physisorbed SO{sub 2} disappears. From this, it can be concluded that the refreshment of the loading capacity of the activated carbon after storage is mainly due to a change in the nature of the SO{sub 2} from a physisorbed state to a chemisorbed form. The same mechanism leads to a continuous refreshment of the sorption potential by means of a chemical reaction during the adsorption process. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  20. Distance to faults as a proxy for radon gas concentration in dwellings.

    Science.gov (United States)

    Drolet, Jean-Philippe; Martel, Richard

    2016-02-01

    This research was done to demonstrate the usefulness of the local structural geology characteristics to predict indoor radon concentrations. The presence of geologic faults near dwellings increases the vulnerability of the dwellings to elevated indoor radon by providing favorable pathways from the source uranium-rich bedrock units to the surface. Kruskal-Wallis one-way analyses of variance by ranks were used to determine the distance where faults have statistically significant influence on indoor radon concentrations. The great-circle distance between the 640 spatially referenced basement radon concentration measurements and the nearest fault was calculated using the Haversine formula and the spherical law of cosines. It was shown that dwellings located less than 150 m from a major fault had a higher radon potential. The 150 m threshold was determined using Kruskal-Wallis ANOVA on: (1) all the basement radon measurements dataset and; (2) the basement radon measurements located on uranium-rich bedrock units only. The results indicated that 22.8% of the dwellings located less than 150 m from a fault exceeded the Canadian radon guideline of 200 Bq/m(3) when using all the basement radon measurements dataset. This percentage fell to 15.2% for the dwellings located between 150 m and 700 m from a fault. When using only the basement radon measurements located on uranium-rich bedrock units, these percentages were 30.7% (0-150 m) and 17.5% (150 m-700 m). The assessment and management of risk can be improved where structural geology characteristics base maps are available by using this proxy indicator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Human Health Risk Assessment of a landfill based on volatile organic compounds emission, immission and soil gas concentration measurements

    International Nuclear Information System (INIS)

    Martí, Vicenç; Jubany, Irene; Pérez, Consol; Rubio, Xavier; De Pablo, Joan; Giménez, Javier

    2014-01-01

    Highlights: • VOCs were quantified as emission fluxes, immission and soil–gas levels. • HHRA was performed with these measurements and admissible risk was obtained. • VOCs that contributed more to risk indexes were chlorinated aliphatics hydrocarbons. • The methodology approach can be applied to other landfills with potential risk. - Abstract: A Human Health Risk Assessment (HHRA) was required for a closed landfill located in Cerdanyola del Vallès (Barcelona, Spain). The HHRA had two objectives, to evaluate the present risk of the identified receptors in the area and to safely develop the future urban planning of the area, therefore 3 scenarios for the current situation and 4 for the future situation were developed. After reviewing the existing data and exploring the needs of information, the assessment in this study was focused on the measurement of volatile organic compounds (VOCs) fluxes from the subsoil (emission from the landfill at 5 points), concentrations of VOCs in the air (immission in 4 urban sites) and concentration of VOCs in soil–gas (measurements at 5 m below ground surface outside the landfill at 8 sites). Around 70 VOCs were analyzed by using multi-sorbent tubes and Thermal Desorption Gas Chromatography (TD–GC–MS). The VOCs that were detected and quantified include alkanes, aromatic hydrocarbons, alcohols, ketones, halocarbons, aldehydes, esters, terpenoids, ethers and some nitrogenated and sulfur compounds, furans and carboxylic acids. Specific mercury flux measurements were performed in a hot spot by using carulite tubes, that were also analyzed by using Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. Results showed average values of volatile emission fluxes ranging from non-detected to 331 μg m −2 day −1 (dichlorodifluoromethane). In the case of immission, the concentration of VOCs measured in the air of populated area surrounding the landfill ranged values from non-detected to 42.0 μg m −3

  2. Electricity capacity investment under risk aversion: A case study of coal, gas, and concentrated solar power

    International Nuclear Information System (INIS)

    Fan Lin; Norman, Catherine S.; Patt, Anthony G.

    2012-01-01

    The policy instrument many economists favor to reduce greenhouse gas emissions and to shift new investment towards low carbon technologies is the tradable allowance system. Experience with this instrument has been mixed, with a crucial design issue being the choice of whether to auction allowances to firms, or to grandfather them based on historical emissions. In this paper, we examine the changing incentives of investment in different technologies, when investors are risk averse and are expecting an allowance system with a certain allocation rule but do not know if the policy is going to take place in the near future. Investors also cannot fully predict future investment costs for the low-carbon technology. We apply a game theoretic model to examine the combined effects of uncertainty and risk aversion on the actions of potential investors into high and low carbon generating capacity, under both allocation rules and uncertain costs. We find that uncertainty and risk aversion do have implications towards investment incentives. We discuss policy implications of these findings. - Highlights: ► We examined capacity investments under alternative carbon permit allocation schemes. ► Uncertainty in future permit markets’ existence reduces investments into renewables. ► If permits are grandfathered, risk averse companies decrease renewable investment. ► Risk aversion minimizes the effects of uncertainty if carbon permits are auctioned.

  3. Genetic Diversity Assessment and Identification of New Sour Cherry Genotypes Using Intersimple Sequence Repeat Markers

    Directory of Open Access Journals (Sweden)

    Roghayeh Najafzadeh

    2014-01-01

    Full Text Available Iran is one of the chief origins of subgenus Cerasus germplasm. In this study, the genetic variation of new Iranian sour cherries (which had such superior growth characteristics and fruit quality as to be considered for the introduction of new cultivars was investigated and identified using 23 intersimple sequence repeat (ISSR markers. Results indicated a high level of polymorphism of the genotypes based on these markers. According to these results, primers tested in this study specially ISSR-4, ISSR-6, ISSR-13, ISSR-14, ISSR-16, and ISSR-19 produced good and various levels of amplifications which can be effectively used in genetic studies of the sour cherry. The genetic similarity among genotypes showed a high diversity among the genotypes. Cluster analysis separated improved cultivars from promising Iranian genotypes, and the PCoA supported the cluster analysis results. Since the Iranian genotypes were superior to the improved cultivars and were separated from them in most groups, these genotypes can be considered as distinct genotypes for further evaluations in the framework of breeding programs and new cultivar identification in cherries. Results also confirmed that ISSR is a reliable DNA marker that can be used for exact genetic studies and in sour cherry breeding programs.

  4. Distribution of the dominant microbial communities in marine sediments containing high concentrations of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.; Colwell, F.; Carini, P.; Torres, M. [Oregon State Univ., Corvallis, OR (United States); Hangsterfer, A.; Kastner, M. [California Univ., San Diego, CA (United States). Scripps Inst. of Oceanography; Brodie, E. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Center for Environmental Biotechnology; Daly, R. [California Univ., Berkeley, CA (United States); Holland, M. [GeoTek, Daventry, Northants (United Kingdom); Long, P.; Schaef, H. [Pacific Northwest National Laboratory, Richland, WA (United States). Environmental Technology; Delwiche, M. [Idaho National Laboratory, Idaho Falls, ID (United States). Biotechnology; Winters, W. [United States Geological Survey, Woods Hole, MA (United States). Woods Hole Science Center; Riedel, M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences

    2008-07-01

    Methane produced by microorganisms represents a large portion of the methane that occurs in marine sediments where gas hydrates are present. The diverse communities that populate these formations have been documented by cultures or through molecular traces. Previous studies have explored the biogeography of hydrate-bearing systems by comparing clone libraries developed from sediments where hydrates are abundant with those developed from sediments that lack hydrates. There is a distinct microbial community present in sediments that have methane hydrates. This paper presented an investigation into finer-scale biogeography, in order to determine how factors such as the presence or absence of hydrates, grain size, and the depositional environment in marine sediments may control the number, type and distribution of microbial communities in sediments. The purpose of the study was to understand the controls on the distribution and activity of all microbes that contribute to the conversion of organic matter to methane. To this aim, DNA was extracted from deep marine sediments cored from continental slope locations including offshore India and the Cascadia Margin. The data from the study was used to refine computational models that require biological rate terms that are consistent with sediment conditions in order to accurately describe the dynamics of this large methane reservoir. The paper discussed the materials and methods used for the study, including the sample site, sample collection and microbiological analysis. Results were presented in terms of DNA extractions; microbial diversity; and biofilm analyses. It was concluded that the findings from the study complemented previously reported studies which indicated the presence of diverse microbial communities in sediments containing methane hydrates. 9 refs., 5 figs.

  5. Origin and in situ concentrations of hydrocarbons in the Kumano forearc basin from drilling mud gas monitoring during IODP NanTroSEIZE Exp. 319

    International Nuclear Information System (INIS)

    Wiersberg, Thomas; Schleicher, Anja M.; Horiguchi, Keika; Doan, Mai-Linh; Eguchi, Nobuhisa; Erzinger, Jörg

    2015-01-01

    Highlights: • Exp. 319 of IODP was the first cruise in the history of scientific ocean drilling with drilling mud gas monitoring. • Hydrocarbons were the only formation-derived gases identified in drilling mud. • Chemical and isotopic compositions of hydrocarbons exhibit a microbial origin. • Absolute CH 4 concentrations in the formation reaching up to 24 L gas /L sediment . - Abstract: NanTroSEIZE Exp. 319 of the Integrated Ocean Drilling Program (IODP) was the first cruise in the history of scientific ocean drilling with drilling mud circulation through a riser. Drilling mud was pumped through the drill string and returned to the drill ship through the riser pipe during drilling of hole C0009A from 703 to 1604 mbsf (meter below sea floor) and hole enlargement from 703 to 1569 mbsf. During riser drilling, gas from returning drilling mud was continuously extracted, sampled and analyzed in real time to reveal information on the gas composition and gas concentrations at depth. Hydrocarbons were the only formation-derived gases identified in drilling mud and reached up to 14 vol.% of methane and 48 ppmv of ethane. The chemical and isotopic compositions of hydrocarbons exhibit a microbial origin. Hydrocarbons released from drilling mud and cuttings correlate with visible allochthonous material (wood, lignite) in drilling cuttings. At greater depth, addition of small but increasing amounts of hydrocarbons probably from low-temperature thermal degradation of organic matter is indicated. The methane content is also tightly correlated with several intervals of low Poisson’s ratio from Vp/Vs observed in sonic velocity logs, suggesting that the gas is situated in the pore space of the rock as free gas. The gas concentrations in the formation, determined from drilling mud gas monitoring, reaching up to 24 L gas /L sediment for methane in hole C0009A, in line with gas concentrations from interpreted downhole sonic logs

  6. Pollutant Concentrations and Emission Rates from Scripted Natural Gas Cooking Burner Use in Nine Northern California Homes

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Delp, William W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lorenzetti, David M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Maddalena, Randy L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    METHODS: Combustion pollutant concentrations were measured during the scripted operation of natural gas cooking burners in nine homes. In addition to a base condition of closed windows, no forced air unit (FAU) use, and no mechanical exhaust, additional experiments were conducted while operating an FAU and/or vented range hood. Test homes included a 26m2 two-room apartment, a 134m2 first floor flat, and seven detached homes of 117–226m2. There were four single-story, four two-story and one 1.5 story homes. Cooktop use entailed boiling and simmering activities, using water as a heat sink. Oven and broiler use also were simulated. Time-resolved concentrations of carbon dioxide (CO2), nitric oxide (NO), nitrogen oxides (NOX), nitrogen dioxide (NO2), particles with diameters of 6 nm or larger (PN), carbon monoxide (CO), and fine particulate matter (PM2.5) were measured in the kitchen (K) and bedroom area (BR) of each home. CO2, NO, NO2, and PN data from sequential experiments were analyzed to quantify the contribution of burner use to the highest 1h and 4h time-integrated concentrations in each room. RESULTS: Four of the nine homes had kitchen 1h NO2 exceed the national ambient air quality standard (100 ppb). Two other homes had 1h NO2 exceed 50 ppb in the kitchen, and three had 1h NO2 above 50 ppb in the bedroom, suggesting substantial exposures to anyone at home when burners are used for a single substantial event. In all homes, the highest 1h kitchen PN exceeded 2 x105 cm-3-h, and the highest 4h PN exceeded 3 x105 cm-3-hr in all homes. The lowest 1h kitchen/bedroom ratios were 1.3–2.1 for NO in the apartment and two open floor plan homes. The largest K/BR ratios of 1h NO2 were in a two-story 1990s home retrofitted for deep energy savings: ratios in this home were 3.3 to 6.6. Kitchen 1h ratios of NO, NO2 and PN to CO2 were used to calculate fuel normalized emission factors (ng J-1). Range hood use substantially reduced cooking burner pollutant concentrations both

  7. Blood gas sample spiking with total parenteral nutrition, lipid emulsion, and concentrated dextrose solutions as a model for predicting sample contamination based on glucose result.

    Science.gov (United States)

    Jara-Aguirre, Jose C; Smeets, Steven W; Wockenfus, Amy M; Karon, Brad S

    2018-05-01

    Evaluate the effects of blood gas sample contamination with total parenteral nutrition (TPN)/lipid emulsion and dextrose 50% (D50) solutions on blood gas and electrolyte measurement; and determine whether glucose concentration can predict blood gas sample contamination with TPN/lipid emulsion or D50. Residual lithium heparin arterial blood gas samples were spiked with TPN/lipid emulsion (0 to 15%) and D50 solutions (0 to 2.5%). Blood gas (pH, pCO2, pO2), electrolytes (Na+, K+ ionized calcium) and hemoglobin were measured with a Radiometer ABL90. Glucose concentration was measured in separated plasma by Roche Cobas c501. Chart review of neonatal blood gas results with glucose >300 mg/dL (>16.65 mmol/L) over a seven month period was performed to determine whether repeat (within 4 h) blood gas results suggested pre-analytical errors in blood gas results. Results were used to determine whether a glucose threshold could predict contamination resulting in blood gas and electrolyte results with greater than laboratory-defined allowable error. Samples spiked with 5% or more TPN/lipid emulsion solution or 1% D50 showed glucose concentration >500 mg/dL (>27.75 mmol/L) and produced blood gas (pH, pO 2 , pCO 2 ) results with greater than laboratory-defined allowable error. TPN/lipid emulsion, but not D50, produced greater than allowable error in electrolyte (Na + ,K + ,Ca ++ ,Hb) results at these concentrations. Based on chart review of 144 neonatal blood gas results with glucose >250 mg/dL received over seven months, four of ten neonatal intensive care unit (NICU) patients with glucose results >500 mg/dL and repeat blood gas results within 4 h had results highly suggestive of pre-analytical error. Only 3 of 36 NICU patients with glucose results 300-500 mg/dL and repeat blood gas results within 4 h had clear pre-analytical errors in blood gas results. Glucose concentration can be used as an indicator of significant blood sample contamination with either TPN

  8. Evaluating intrinsic bioremediation at five sour gas processing facilities in Alberta

    International Nuclear Information System (INIS)

    Armstrong, J. E.; Moore, B. J.; Sevigny, J. H.; Forrester, P. I.

    1997-01-01

    Mass attenuation through intrinsic bioremediation of the aromatic hydrocarbons benzene, toluene, ethylbenzene and xylene (BTEX) was studied at four facilities in Alberta. The objective of the study was to assess whether intrinsic bioremediation could attenuate BTEX-contaminated groundwater plumes at the four sites. The depletion of electron acceptors, and the enriched metabolic byproducts within the BTEX plumes indicate that BTEX biodegradation is occurring at all four sites. Bacterial plate counts were generally higher at three of the sites and lower at one site. At the three sites microcosm experiments indicated aerobic biodegradation, while anaerobic biodegradation was observed at only two sites after four to five months incubation. Theoretical estimates of the biodegradation potential were calculated for each site with intrinsic bioremediation appearing to have bioremediation potential at three of the sites. 13 refs., 4 tabs., 4 figs

  9. Equity implications of two burden-sharing rules for stabilizing greenhouse-gas concentrations

    International Nuclear Information System (INIS)

    Miketa, Asami; Schrattenholzer, Leo

    2006-01-01

    This paper focuses on the equity aspects of international burden sharing for global CO 2 emission stabilization. It first summarizes and classifies equity principles proposed in the published literature of the field. Of these, the authors selected three major equity principles, i.e., egalitarian equity, horizontal equity, and proportional equality (often referred to also as sovereign equity) to carry out a detailed examination of two sets of quantitative emission entitlements, which are based on two burden-sharing rules, i.e., the equal emissions per capita approach and the carbon intensity approach. The two burden-sharing rules were chosen as not only particularly popular, but also because their application results in distinctly different burden sharing among countries. To make the two rules comparable, we used a global carbon-emission path until the year 2050 that leads to an atmospheric CO 2 concentration of 550 ppm. We then used the two rules for allocating the global emissions described by that path to allocate carbon emission entitlements to 67 countries and 9 world regions. In general, developing countries receive relatively higher entitlements under the equal emissions per capita approach whereas industrialized countries are relatively better off under the carbon intensity approach. In some countries and regions, emission entitlements as calculated by any of the two burden-sharing rules are so low that it would be unrealistic to assume that actual emissions can be limited to the emission entitlements assigned to them without using flexibility mechanisms such as those defined in the Kyoto Protocol. In this sense, the calculated entitlements can be also interpreted as the initial allocation of tradable emission allowances of countries or regions. Nonetheless, we considered any numerical determination of resulting carbon trade flows to be outside the scope of our paper

  10. Morphometry, floral resources and efficiency of natural and artificial pollination in fruit quality in cultivars of sour passion fruit

    Directory of Open Access Journals (Sweden)

    Laís Alves Lage

    2018-05-01

    Full Text Available Abstract This study aimed to provide information on the biology and floral resources, stigmatic receptivity and viability of pollen grains during rainy season and dry season, and to evaluate the efficiency of natural and artificial pollination on quality of fruits of eight passion fruit cultivars sourced in Tangará da Serra - MT. Five commercial cultivars and three populations of the genetic improvement program of the sour passion fruit from the Universidade do Estado de Mato Grosso were evaluated. The climatic conditions of the rainy season favored the greater development of the floral pieces. The sugar concentration in the nectar presented higher averages in the rainy season, in all cultivars, except for FB 200. The climatic conditions of the dry season favored the replacement of the nectar volume. All cultivars evaluated presented pollen viability and stigmatic receptivity higher than 79% and 90%, respectively. The characteristics of fruit mass and percentage of pulp were better in artificial pollination, and the fruits obtained from natural and artificial pollination in all cultivars evaluated presented physical and chemical characteristics that are within the quality standards desired in the commercialization.

  11. Brominated flame retardants in the urban atmosphere of Northeast China: Concentrations, temperature dependence and gas-particle partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li, E-mail: mawanli002@163.com; Li, Yi-Fan, E-mail: ijrc_pts_paper@yahoo.com

    2014-09-01

    57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m{sup 3} and 180 pg/m{sup 3}, respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas–particle partitioning coefficients (logK{sub p}) for most low molecular weight BFRs were highly temperature dependent as well. Gas–particle partitioning coefficients (logK{sub p}) also correlated with the sub-cooled liquid vapor pressure (logP{sub L}{sup o}). Our results indicated that absorption into organic matter is the main control mechanism for the gas–particle partitioning of atmospheric PBDEs. - Highlights: • Both PBDEs and alternative BFRs were analyzed in the atmosphere of Northeast China. • Partial pressure of BFRs was significantly correlated with the ambient temperature. • A strong temperature dependence of gas-particle partitioning was found. • Absorption into organic matter was the control mechanism for G-P partitioning.

  12. CENTAURE, a numerical model for the computation of the flow and isotopic concentration fields in a gas centrifuge

    International Nuclear Information System (INIS)

    Soubbaramayer

    1977-01-01

    A numerical code (CENTAURE) built up with 36000 cards and 343 subroutines to investigate the full interconnected field of velocity, temperature, pressure and isotopic concentration in a gas centrifuge is presented. The complete set of Navier-Stokes equations, continuity equation, energy balance, isotopic diffusion equation and gas state law, form the basis of the model with proper boundary conditions, depending essentially upon the nature of the countercurrent and the thermal condition of the walls. Sources and sinks are located either inside the centrifuge or in the boundaries. The model includes not only the usual terms of CORIOLIS, compressibility, viscosity and thermal diffusivity but also the non linear terms of inertia in momentum equations, thermal convection and viscous dissipation in energy equation. The computation is based on finite element method and direct resolution instead of finite difference and iterative process. The code is quite flexible and well adapted to compute many physical cases in one centrifuge: the computation time per one case is then very small (we work with an IBM-360-91). The numerical results are exploited with the help of a visualisation screen IBM 2250. The possibilities of the code are exposed with numerical illustration. Some results are commented and compared to linear theories

  13. Comparison of use of an infrared anesthetic gas monitor and refractometry for measurement of anesthetic agent concentrations.

    Science.gov (United States)

    Ambrisko, Tamas D; Klide, Alan M

    2011-10-01

    To assess agreement between anesthetic agent concentrations measured by use of an infrared anesthetic gas monitor (IAGM) and refractometry. SAMPLE-4 IAGMs of the same type and 1 refractometer. Mixtures of oxygen and isoflurane, sevoflurane, desflurane, or N(2)O were used. Agent volume percent was measured simultaneously with 4 IAGMs and a refractometer at the common gas outlet. Measurements obtained with each of the 4 IAGMs were compared with the corresponding refractometer measurements via the Bland-Altman method. Similarly, Bland-Altman plots were also created with either IAGM or refractometer measurements and desflurane vaporizer dial settings. Bias ± 2 SD for comparisons of IAGM and refractometer measurements was as follows: isoflurane, -0.03 ± 0.18 volume percent; sevoflurane, -0.19 ± 0.23 volume percent; desflurane, 0.43 ± 1.22 volume percent; and N(2)O, -0.21 ± 1.88 volume percent. Bland-Altman plots comparing IAGM and refractometer measurements revealed nonlinear relationships for sevoflurane, desflurane, and N(2)O. Desflurane measurements were notably affected; bias ± limits of agreement (2 SD) were small (0.1 ± 0.22 volume percent) at < 12 volume percent, but both bias and limits of agreement increased at higher concentrations. Because IAGM measurements did not but refractometer measurements did agree with the desflurane vaporizer dial settings, infrared measurement technology was a suspected cause of the nonlinear relationships. Given that the assumption of linearity is a cornerstone of anesthetic monitor calibration, this assumption should be confirmed before anesthetic monitors are used in experiments.

  14. Indus Basin Floods of 2010: Souring of a Faustian Bargain?

    Directory of Open Access Journals (Sweden)

    Daanish Mustafa

    2011-02-01

    Full Text Available The great flood of 2010 in Pakistan was not an accidental, unpredictable and random episode in the hydrologic development of the Indus basin, but rather a by-product of national decisions on water use, integrally linked, as well, to the design of the social landscape. In immediate and mid terms, acute impacts are expected to be concentrated among households with fragile and sensitive livelihoods. To attenuate an evolving low-level humanitarian, social and political crisis, and to prevent backsliding to Pakistan’s development progress, attention should focus on water drainage and rapid rehabilitation of farmland. Local government structures can be engaged in the distribution and implementation of recovery programs. In Pakistan, the hydrological priorities have always been irrigation and power generation, but in the interest of preventing a costly recurrence, Pakistani flood management and early alert systems require structural revision.

  15. Acid Gas Removal from Natural Gas with Alkanolamines

    DEFF Research Database (Denmark)

    Sadegh, Negar

    commercially for the removal of acid gas impurities from natural gas. Alkanolamines, simple combinations of alcohols and ammonia, are the most commonly used category of chemical solvents for acid gas capture. This Ph.D. project is aboutthermodynamics of natural gas cleaning process with alkanolamines......Some 40 % of the world’s remaining gas reserves are sour or acid, containing large quantities of CO2 and H2S and other sulfur compounds. Many large oil and gas fields have more than 10 mole % CO2 and H2S content. In the gas processing industry absorption with chemical solvents has been used...... pressure on acid gas solubility was also quantitatively investigated through both experimental and modeling approaches....

  16. Spectrophotometric flow-injection determination of sulphite in white wines involving gas diffusion through a concentric tubular membrane

    Directory of Open Access Journals (Sweden)

    Melo Denise

    2003-01-01

    Full Text Available A flow-injection system is proposed for the spectrophotometric determination of sulphite in white wines. The method involves analyte conversion to SO2, gas diffusion through a Teflon® semi-permeable membrane, collection into an alkaline stream (pH 8, reaction with Malachite green (MG and monitoring at 620 nm. With a concentric tubular membrane, the system design was simplified. Influence of reagent concentrations, pH of donor and acceptor streams, temperature, timing, surfactant addition and presence of potential interfering species of the wine matrix were investigated. A pronounced (ca. 100% enhancement in sensitivity was noted by adding cetylpyridinium chloride (CPC. The proposed system is robust and baseline drift is not observed during 4 h operating periods. Only 400 muL of sample and 0.32 mg MG are required per determination. The system handles 30 samples per hour, yielding precise results (r.s.d. < 0.015 for 1.0 - 20.0 mg L-1 SO2 in agreement with those obtained by an alternative procedure.

  17. Simultaneous Assay of Isotopic Enrichment and Concentration of Guanidinoacetate and Creatine by Gas Chromatography-Mass Spectrometry

    Science.gov (United States)

    Kasumov, Takhar; Gruca, Lourdes L.; Dasarathy, Srinivasan; Kalhan, Satish C.

    2012-01-01

    A gas chromatographic-mass spectrometric (GC-MS) method for the simultaneous measurement of isotopic enrichment and concentration of guanidinoacetic acid and creatine in plasma sample for kinetic studies is reported. The method, based on preparation of the bis(trifluoromethyl)-pyrimidine methyl ester derivatives of guanidinoacetic acid and creatine, is robust and sensitive. The lowest measurable m1 and m3 enrichment for guanidinoacetic acid and creatine, respectively, was 0.3%. The calibration curves for measurements of concentration were linear over a range of 0.5-250 μM guanidinoacetic acid and 2-500 μM for creatine. The method was reliable for inter-assay and intra-assay precision, accuracy and linearity. The technique was applied in a healthy adult to determine in vivo fractional synthesis rate of creatine using primed- constant rate infusion of [1-13C]glycine. It was found that isotopic enrichment of guanidinoacetic acid reached plateau by 30 min of infusion of [1-13C]glycine, indicating either a small pool size or a rapid turnover rate or both, of guanidinoacetic acid. In contrast, tracer appearance in creatin was slow (slope: 0.00097), suggesting a large pool size and a slow rate of synthesis of creatine. This method can be used to estimate rate of synthesis of creatine in-vivo in human and animal studies. PMID:19646413

  18. Aged erythrocytes: a fine wine or sour grapes?

    Science.gov (United States)

    Cohen, B; Matot, I

    2013-12-01

    Blood transfusion saves many lives but carries significant risk of injury. Currently, red blood cell (RBC) concentrates can be stored up to 42 days. Concerns have recently been raised about the safety and efficacy of transfusing stored RBCs. Refrigerated storage results in a 'storage lesion' that is reflected by metabolic derangements, RBC shape modification, rheological changes, oxidative injury to lipids and proteins, alterations in oxygen affinity and delivery, increased adhesion of RBCs to endothelial cells, and accumulation of bioactive substances in storage media. In animal models, transfusion of aged, but not fresh, RBCs induces organ injury, inflammation, coagulopathy, and impaired oxygen delivery. A number of clinical studies, mostly observational or retrospective and from a single centre, have reported an association between transfusion of older RBCs and increased clinically significant outcomes, such as increased morbidity and mortality in certain patient populations, including trauma, critical care, and cardiac surgery. Others, however, have failed to indicate an influence of RBC age on outcome. The quality of evidence is currently too poor to make recommendations to change current transfusion practice; however, the transfusion community looks forward to the results of randomized trials currently addressing the long-standing question regarding the effects of RBC storage on clinically significant outcomes.

  19. Case studies of the application of enhanced steel alloys for bottom hole assembly components for sour service conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Alvaro [Nov Grant Prideco, Navasota (United States); Moura, Carlos [ASPEN Assesoria Tecnica e Comercial, Cascavel, PR (Brazil); Johnson, Charles; Landriault, Alain [Weatherford Canda Partnership, Calgary, AB (Canada)

    2008-07-01

    The new more modern drilling programs require the drill string to travel across sour formations in order to reach the hydrocarbon reservoirs. Traditional materials have been employed in the manufacture of HWDP components along with basic heat treatment processes. Standard HWDP tools have started to show their operational as well as environmental limitations when subjected to sour service applications. The advanced, more complex drilling programs require for the HWDP tools to be put in service under different configurations. Either at the bottom of the drill string near the drill bit for vertical well configurations or on top of the drill string for weight application on horizontal or extended reach applications. An operator in northwestern Canada has replaced standard HWDP with enhanced sour service HWDP in order to complete the programmed wells. These enhanced tools offer higher tensile and torque capabilities and improved toughness than standard HWDP tools and in addition, provide protection against sour service conditions. The use of second-generation double shoulder connections (2nd-Gen. DSC) has also provided added torque and tensile capacities to these versatile HWDP tools. For over a year more than a dozen wells have been drilled employing these enhanced BHA tools and have helped the operator reach its targets through sour service formations and produce wells in a safe and cost effective manner. (author)

  20. The influence of sour taste and cold temperature in pharyngeal transit duration in patients with stroke

    Directory of Open Access Journals (Sweden)

    Paula Cristina Cola

    2010-03-01

    Full Text Available CONTEXT: The effect of sour taste and food temperature variations in dysphagic patients has not been entirely clarified. OBJECTIVE: To determine the effect of sour and cold food in the pharyngeal transit times of patients with stroke. METHODS: Patients participating in this study were 30 right-handed adults, 16 of which were male and 14 were female, aged 41 to 88 (average age 62.3 years with ictus varying from 1 to 30 days (median of 6 days. To analyze the pharyngeal transit time a videofluoroscopy swallow test was performed. Each patient was observed during swallow of a 5 mL paste bolus given by spoon, totaling four different stimuli (natural, cold, sour and cold sour, one at a time, room temperature (22ºC and cold (8ºC were used. Later, the tests were analyzed using specific software to measure bolus transit time during the pharyngeal phase. RESULTS: The results showed that the pharyngeal transit time was significantly shorter during swallow of cold sour bolus when compared with other stimuli. Conclusion - Sour taste stimuli associated to cold temperature cause significant change in swallowing patterns, by shortening the pharyngeal transit time, which may lead to positive effects in patients with oropharyngeal dysphagia.CONTEXTO: O efeito do sabor azedo e as variações da temperatura dos alimentos em indivíduos disfágicos, ainda não foi totalmente esclarecidos. OBJETIVO: Verificar o efeito do sabor azedo e da temperatura fria no tempo de trânsito faríngeo da deglutição em indivíduos após acidente vascular encefálico hemisférico isquêmico. MÉTODOS: Participaram deste estudo 30 indivíduos adultos, sendo 16 do gênero masculino e 14 do feminino, destros, com faixa etária variando de 41 a 88 anos (média de 62,3 anos e ictus que variou de 1 a 30 dias (mediana de 6 dias. Para analisar o tempo de trânsito faríngeo da deglutição foi realizado o exame de videofluoroscopia da deglutição. Cada indivíduo foi observado durante a

  1. Development of a novel processing system for efficient sour water stripping

    International Nuclear Information System (INIS)

    Kazemi, Abolghasem; Mehrabani-Zeinabad, Arjomand; Beheshti, Masoud

    2017-01-01

    Application of vapor recompression systems can result in enhanced energy efficiency and reduced energy requirements of distillation systems. In vapor recompression systems, temperature and dew point temperature of the top product of the column are increased through compression. By transferring heat from top to bottoms product, required boil up and reflux streams for the column are provided. In this paper, a new system is proposed for efficient stripping of sour water based on vapor recompression. Ammonia and H 2 S are the contaminants of sour water. Initially, based on a certain specifications of products, a sour water stripping system is implemented. A novel processing system is then developed and simulated to reduce utility requirements. The two processing systems are economically evaluated by Aspen Economic Evaluation software. There are 89.0% and 83.7% reduction of hot and cold utility requirements for the proposed system in comparison to the base processing system. However, the new processing system requires new equipment such as compressor and corresponding mechanical work that increases its capital and operating costs in comparison to the base case. However, the results indicate that the proposed system results in reduction of 11.4% of total annual costs and 14.9% of operating costs. - Highlights: • A novel system was developed for enhancement of performance of a distillation system based on vapor recompression. • In this system, utility streams are used for providing thermal energy. • A parametric study is carried out on the proposed processing system. • Applying the proposed system resulted in reduction of energy and utility requirements and costs of the separation process. • Environmental performance of the model was investigated.

  2. Effective pollination period in "Oblačinska" sour cherry clones

    Directory of Open Access Journals (Sweden)

    Fotirić-Akšić Milica

    2014-01-01

    Full Text Available To obtain high yields there should be high flower density and fruit set in sour cherry (Prunus cerasus L. production. Furthermore, in order to ensure successful fertilization, there should be satisfactory stigma receptivity, rapid pollen tube growth along the style, as well as adequate ovule longevity. This manuscript presents the study of the effective pollination period (EPP of four ‘Oblačinska’ sour cherry clones (II/2, III/9, XI/3 and XIII/1 that differs in pollen germination, fruit set and yields. In order to estimate EPP, pollination was conducted in six different stages of flower development: balloon stage, 2 d before anthesis (-2, at anthesis (0, and 2, 4, 6 and 8 d after anthеsis (DAA. The initial (IFS and final fruit set (FFS were recorded under the field conditions. Alongside with this, the rate of pollen tubes growth in the style was observed with fluorescent microscopy. The experimental design was completely randomized, a two-factorial analysis of variance was carried out and individual testing was performed using LSD test (p ≤ 0.05; p ≤ 0.01. The experiment was set in triplicates. Regarding FFS, clones II/2 and III/9 showed the best results (p ≤ 0.01 in 4 and 6 DAA. The number of pollen tubes in the style of the pistil decreased with subsequent terms of pollination, while its number in the ovule increased up to sixth day after pollination, followed by a decline. Clones II/2 and III/9 showed EPP which lasted from 6 to 8 d, while EPP found in clone XI/3, lasted only 2 d. It is concluded that only clone having long EPP should be used as parents for creating new sour cherry cultivars. [Projekat Ministarstva nauke Republike Srbije, br. TR 31063 and FP7 Project AREA 316004

  3. Investigations of corrosion films formed on API-X52 pipeline steel in acid sour media

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Espejel, A. [Instituto Politecnico Nacional, Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico); Dominguez-Crespo, M.A. [Instituto Politecnico Nacional, CICATA-Unidad Altamira-Tamaulipas, km 14.5, Carretera Tampico-Puerto Industrial Altamira, 89600 Altamira, Tamps (Mexico); Cabrera-Sierra, R. [Instituto Politecnico Nacional, Departamento de Ingenieria Quimica Industrial, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico); Rodriguez-Meneses, C. [Instituto Politecnico Nacional, Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico); Arce-Estrada, E.M., E-mail: earce@ipn.m [Instituto Politecnico Nacional, Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico)

    2010-07-15

    Corrosion films formed by voltammetry using different switching potentials and by immersion on API-X52 pipeline steel in simulated acid sour media (NACE ID182) have been characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Linear Polarization and Electrochemical Impedance Spectroscopy (EIS) techniques. XRD and EDS analysis showed that the films are mainly composed of sulphide compounds (mackinawite, troilite, marcasite and pyrite) as well as iron oxides, as steel damage increases. Across SEM micrographs the corrosion films formed by potentiodynamic and immersion tests are very similar, covering most of the steel. Polarization and EIS results corroborate poor behavior against corrosion.

  4. SUBSTANTIATION OF STORAGE PARAMETERS OF THE SOUR-MILK INFANT DRINK «BIOLAKT»

    Directory of Open Access Journals (Sweden)

    N. Tkachenko

    2017-10-01

    Full Text Available Changes in the quality indicators of sour-milk infant drink «Biolakt» characterized by high probiotic and immunomodulatory properties and low allergic effect that were made according to the improved technology and stored in sealed-off containers at temperature (4±2 ºС during 28 days have been studied: organoleptic properties of taste and odour, consistency and appearance; physical and chemical properties – titrated acidity, ºТ; active acidity, pH units; moisture retention property, %; microbiological properties – number of living cells of mixed cultures B. bifidum 1 + B. longum Я3 + B. infantis 512, CFU/cm3; the most probable number of living cells of monocultures L. acidophilus La-5, CFU/cm3; presence of coli form bacteria in 0.3 cm3; presence of  Salmonella in 50 cm3; biochemical properties – antioxidant activity, activity units; and maximum possible content of malondialdehyde at complete oxidation of the product ingredients, mg/100 g. It is proved that under indicated conditions in the course of 24 days the studied samples of target products possess high organoleptic and standardized for sour-milk infant drinks physical, chemical, biochemical and microbiological indicators and are, also, characterized by high content of probiotics: (0.43…8.60∙109 and (0.25…1.10∙109 CFU/cm3 of living cells of bifidus bacteria and lactobacilli, accordingly.It has been established that the limit storage period of sour-milk infant drink «Biolakt» produced according to the improved technology and stored at temperature (4±2 ºС should not exceed 12 days with due account of the safety margin for sour-milk infant drinks (provided they are kept in sealed-off containers.It has been proved that the target product formulas should include lactulose, polyunsaturated fatty acids omega-3 FT EU of «Fortitech» company (Denmark, vitamin complex FT 041081EU of «Fortitech» company (Denmark and/or complex of mineral substances FT 042836EU of

  5. Investigations of corrosion films formed on API-X52 pipeline steel in acid sour media

    International Nuclear Information System (INIS)

    Hernandez-Espejel, A.; Dominguez-Crespo, M.A.; Cabrera-Sierra, R.; Rodriguez-Meneses, C.; Arce-Estrada, E.M.

    2010-01-01

    Corrosion films formed by voltammetry using different switching potentials and by immersion on API-X52 pipeline steel in simulated acid sour media (NACE ID182) have been characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Linear Polarization and Electrochemical Impedance Spectroscopy (EIS) techniques. XRD and EDS analysis showed that the films are mainly composed of sulphide compounds (mackinawite, troilite, marcasite and pyrite) as well as iron oxides, as steel damage increases. Across SEM micrographs the corrosion films formed by potentiodynamic and immersion tests are very similar, covering most of the steel. Polarization and EIS results corroborate poor behavior against corrosion.

  6. Controlling thermal properties of dense gas fluidized beds for concentrated solar power by internal and external solids circulation

    Science.gov (United States)

    Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto

    2017-06-01

    Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.

  7. Determination of the speed of gases in the subsoil by means of method based on the variations of the concentration of the gas radon

    International Nuclear Information System (INIS)

    Garcia Vindas, J.R.

    2001-01-01

    In this paper a theoretic model is proposed to calculate the gas velocity in the subsoil based on radon concentration variations. The general transport equation for radon in a homogeneous soil with constant porosity is assumed. The diffusion coefficient and the gas velocity being constant. In order to illustrate the model, three geological areas were considered: the Irazu and Arenal volcanoes, situated in the volcanic range in costa Rica, and the Agua Caliente fault located in San Jose, Costa Rica. (Author) [es

  8. Atmospheric concentrations and air–soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing–Tianjin region, North China

    Science.gov (United States)

    Wang, Wentao; Simonich, Staci; Giri, Basant; Chang, Ying; Zhang, Yuguang; Jia, Yuling; Tao, Shu; Wang, Rong; Wang, Bin; Li, Wei; Cao, Jun; Lu, Xiaoxia

    2013-01-01

    Forty passive air samplers were deployed to study the occurrence of gas and particulate phase PAHs in remote, rural village and urban areas of Beijing–Tianjin region, North China for four seasons (spring, summer, fall and winter) from 2007 to 2008. The influence of emissions on the spatial distribution pattern of air PAH concentrations was addressed. In addition, the air–soil gas exchange of PAHs was studied using fugacity calculations. The median gaseous and particulate phase PAH concentrations were 222 ng/m3 and 114 ng/m3, respectively, with a median total PAH concentration of 349 ng/m3. Higher PAH concentrations were measured in winter than in other seasons. Air PAH concentrations measured at the rural villages and urban sites in the northern mountain region were significantly lower than those measured at sites in the southern plain during all seasons. However, there was no significant difference in PAH concentrations between the rural villages and urban sites in the northern and southern areas. This urban–rural PAH distribution pattern was related to the location of PAH emission sources and the population distribution. The location of PAH emission sources explained 56%–77% of the spatial variation in ambient air PAH concentrations. The annual median air–soil gas exchange flux of PAHs was 42.2 ng/m2/day from soil to air. Among the 15 PAHs measured, acenaphthylene (ACY) and acenaphthene (ACE) contributed to more than half of the total exchange flux. Furthermore, the air–soil gas exchange fluxes of PAHs at the urban sites were higher than those at the remote and rural sites. In summer, more gaseous PAHs volatilized from soil to air because of higher temperatures and increased rainfall. However, in winter, more gaseous PAHs deposited from air to soil due to higher PAH emissions and lower temperatures. The soil TOC concentration had no significant influence on the air–soil gas exchange of PAHs. PMID:21669328

  9. A wind-tunnel study on exhaust gas dispersion from road vehicles. Part 1. Velocity and concentration fields behind single vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Isao; Uehara, Kiyoshi; Yamao, Yukio [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 (Japan); Yoshikawa, Yasuo; Morikawa, Tazuko [Petroleum Energy Center, 4-3-9 Toranomon, Minato-ku, Tokyo, 105-0001 (Japan)

    2006-09-15

    By a reduced-scale model in a wind tunnel, we investigate the dispersion behavior of exhaust gas from automobiles. Two types of vehicles are considered, a passenger car and a small-size truck. Tracer gas experiments show that the exhaust gas dispersion is enhanced significantly by the vehicle wake compared to the case when the vehicle body is absent. The passenger car and the truck promote dispersion in the horizontal and the vertical direction, respectively. The wake field is analyzed by particle image velocimetry (PIV), and the distribution of the mean and the fluctuation fields is found to conform to the concentration field of the exhaust gas. The buoyancy of the exhaust gas has minor effect except on the vertical spread behind the truck whose wake flow amplifies the vertical displacement generated near the pipe exit. (author)

  10. Determination of any gas composition using high energy molecular beams. Application to the simultaneous concentration measurement of ten pollutants in air

    International Nuclear Information System (INIS)

    Devienne, F.M.; Laugier, Lucette; Roustan, J.-C.; Clapier, Robert.

    1975-01-01

    A high energy argon beam collides the gas to be abalyzed in a special box. The ions formed are extracted and collide a target gas (such as argon) filling a collision chamber, some of them are dissociated. The number of these ions is measured by means of an electrostatic analyzer and an electron multiplier as detector. By this way, it is possible to measure the concentrations of ten or more gaseous pollutants in air in a time shorter than a minute. The method was applied to study the effluents of a jet; the concentrations in CO, NO, NO 2 , CO 2 and SO 2 were measured [fr

  11. New highly divergent Plum pox virus isolates infecting sour cherry in Russia.

    Science.gov (United States)

    Chirkov, Sergei; Ivanov, Peter; Sheveleva, Anna; Zakubanskiy, Alexander; Osipov, Gennady

    2017-02-01

    Unusual Plum pox virus (PPV) isolates (named Tat isolates) were discovered on sour cherry (Prunus cerasus) in Russia. They failed to be recognized by RT-PCR using commonly employed primers specific to the strains C or CR (the only ones that proved able to infect sour cherry) as well as to the strains M and W. Some of them can be detected by RT-PCR using the PPV-D-specific primers P1/PD or by TAS-ELISA with the PPV-C-specific monoclonal antibody AC. Phylogenetic analysis of the 3'-terminal genomic region assigned the Tat isolates into the cluster of cherry-adapted strains. However, they grouped separately from the C and CR strains and from each other as well. The sequence divergence of the Tat isolates is comparable to the differences between the known PPV strains. They may represent new group(s) of cherry-adapted isolates which do not seem to belong to any known strain of the virus. Copyright © 2016. Published by Elsevier Inc.

  12. Inhibitory effect of sour pomegranate sauces on some green vegetables and kisir.

    Science.gov (United States)

    Karabiyikli, Seniz; Kisla, Duygu

    2012-04-16

    In this study, the antimicrobial effects of both traditional and commercial pomegranate sour sauce samples on some green vegetables and also on "kısır" which is a popular and traditional appetizer in Turkey were investigated. The inhibitory effect of the pomegranate products on the naturally existing bacterial microflora of lettuce, spring onion, parsley and kısır were analyzed. Also, all these food samples were inoculated with Staphylococcus aureus (ATCC-25923) and Escherichia coli O157:H7 (ATCC-43895) and antimicrobial effect of the pomegranate products on the inoculated microflora was detected. All the food samples were treated with pomegranate products for different time periods and the effect of treatment time was investigated. pH and titratable acidity values of the traditional and commercial pomegranate sour sauce samples were detected. The results showed that although the pomegranate products had an antimicrobial effect on the natural bacterial microflora of the food samples, the effect on inoculated food samples was more prominent and additionally the application time was found to be a crucial parameter for both cases. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Effect of different levels of sugar on qualitative characteristics of lassi prepared from sour dahi

    Directory of Open Access Journals (Sweden)

    Muhammad Shah Moazzem

    2018-08-01

    Full Text Available An investigation was carried out to develop lassi from sour dahi using different levels of sugar (10, 15, 20 and 25% and 15% water. Lassi quality was assayed through the study of physical, chemical and microbiological parameters. Results revealed that significant difference existed in overall physical score of lassi samples and the highest score was found in 15% sugar lassi whereas, the lowest score was found in 25% sugar lassi. Total solids, carbohydrate, fat, protein and ash contents differed significantly among various levels of sugar added lassi. From chemical test, it appears that, 15% sugar added lassi possess the highest fat and protein values whereas, the highest total solids and carbohydrate values posses in 25% sugar added lassi. No significant difference (p>0.05 revealed in terms of pH value and acidity percentage among lassi types. Lassi made from 10% sugar was most inferior than other levels of sugar added lassi in respect of microbiological quality- total viable count (×104 cfu/mL content was 95.67±2.08 and coliform (×10 cfu/mL content was 1.00±0.00. Considering above mentioned quality aspects, it might be resolved that lassi could be prepared successfully from sour dahi with 15% sugar keeping water level constant at 15%. [Fundam Appl Agric 2018; 3(2.000: 434-439

  14. Terminal acidic shock inhibits sour beer bottle conditioning by Saccharomyces cerevisiae.

    Science.gov (United States)

    Rogers, Cody M; Veatch, Devon; Covey, Adam; Staton, Caleb; Bochman, Matthew L

    2016-08-01

    During beer fermentation, the brewer's yeast Saccharomyces cerevisiae experiences a variety of shifting growth conditions, culminating in a low-oxygen, low-nutrient, high-ethanol, acidic environment. In beers that are bottle conditioned (i.e., carbonated in the bottle by supplying yeast with a small amount of sugar to metabolize into CO2), the S. cerevisiae cells must overcome these stressors to perform the ultimate act in beer production. However, medium shock caused by any of these variables can slow, stall, or even kill the yeast, resulting in production delays and economic losses. Here, we describe a medium shock caused by high lactic acid levels in an American sour beer, which we refer to as "terminal acidic shock". Yeast exposed to this shock failed to bottle condition the beer, though they remained viable. The effects of low pH/high [lactic acid] conditions on the growth of six different brewing strains of S. cerevisiae were characterized, and we developed a method to adapt the yeast to growth in acidic beer, enabling proper bottle conditioning. Our findings will aid in the production of sour-style beers, a trending category in the American craft beer scene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.

    Science.gov (United States)

    Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D

    2008-06-15

    Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.

  16. Simulation of a thermoelectric gas sensor that determines hydrocarbon concentrations in exhausts and the light-off temperature of catalyst materials

    Directory of Open Access Journals (Sweden)

    T. Ritter

    2017-12-01

    Full Text Available Catalyst materials can be characterized with a thermoelectric gas sensor. Screen-printed thermopiles measure the temperature difference between an inert part of the planar sensor and a part that is coated with the catalyst material to be analyzed. If the overall sensor temperature is modulated, the catalytic activity of the material can be varied. Exothermic reactions that occur at the catalyst layer cause a temperature increase that can then be measured as a sensor voltage due to the Seebeck coefficient of the thermopiles. This mechanism can also be employed at stationary conditions at constant sensor temperature to measure gas concentrations. Then, the sensor signal changes linearly with the analyte concentration. Many variables influence the sensing performance, for example, the offset voltage due to asymmetric inflow and the resulting inhomogeneous temperature distributions are an issue. For even better understanding of the whole sensing principle, it is simulated in this study by a 3-D finite element model. By coupling all influencing physical effects (fluid flow, gas diffusion, heat transfer, chemical reactions, and electrical properties a model was set up that is able to mirror the sensor behavior precisely, as the comparison with experimental data shows. A challenging task was to mesh the geometry due to scaling problems regarding the resolution of the thin catalyst layer in the much larger gas tube. Therefore, a coupling of a 3-D and a 1-D geometry is shown. This enables to calculate the overall temperature distribution, fluid flow, and gas concentration distribution in the 3-D model, while a very accurate calculation of the chemical reactions is possible in a 1-D dimension. This work does not only give insight into the results at stationary conditions for varying feed gas concentrations and used substrate materials but shows also how various exhaust gas species behave under transient temperature modulation.

  17. Quality of sour cherry juice of different clones and cultivars (Prunus cerasus L.) determined by a combined sensory and NMR spectroscopic approach

    DEFF Research Database (Denmark)

    Clausen, Morten Rahr; Pedersen, Bjarne Hjelmsted; Bertram, Hanne Christine S.

    2011-01-01

    Juice was manufactured from seven different sour cherry clones/cultivars and evaluated by quantitative descriptive sensory analysis and 1H NMR spectroscopy. The sensory evaluation showed a large variation in several sensory attributes between the sour cherry clones/cultivars, which could be divided...... into two groups on the basis of both the sensory data and the NMR spectroscopic data. These groups were closely related to the genetic background of the clones. Kelleris clones were distinctly different from Stevnsberry and Fanal clones. Hence, 1H NMR spectroscopic data seem to correlate with sensory...... quality of different sour cherry clones. In addition, malic acid was the most important metabolite for modeling the two highly correlated sensory attributes sweetness and sourness, whereas the glucose content had a slight effect and the fructose content had no impact on sweetness/sourness. Other...

  18. Evaluation of a portable gas chromatograph with photoionization detector under variations of VOC concentration, temperature, and relative humidity.

    Science.gov (United States)

    Soo, Jhy-Charm; Lee, Eun Gyung; LeBouf, Ryan F; Kashon, Michael L; Chisholm, William; Harper, Martin

    2018-04-01

    The objective of this present study was to evaluate the performance of a portable gas chromatograph-photoionization detector (GC-PID), under various test conditions to determine if it could be used in occupational settings. A mixture of 7 volatile organic compounds (VOCs)-acetone, ethylbenzene, methyl isobutyl ketone, toluene, m-xylene, p-xylene, and o-xylene-was selected because its components are commonly present in paint manufacturing industries. A full-factorial combination of 4 concentration levels (exposure scenarios) of VOC mixtures, 3 different temperatures (25°C, 30°C, and 35°C), and 3 relative humidities (RHs; 25%, 50%, and 75%) was conducted in a full-size controlled environmental chamber. Three repetitions were conducted for each test condition allowing for estimation of accuracy. Time-weighted average exposure data were collected using solid sorbent tubes (Anasorb 747, SKC Inc.) as the reference sampling medium. Calibration curves of Frog-4000 using the dry gases showed R 2 > 0.99 for all analytes except for toluene (R 2 = 0.97). Frog-4000 estimates within a test condition showed good consistency for the performance of repeated measurement. However, there was ∼41-64% reduction in the analysis of polar acetone with 75% RH relative to collection at 25% RH. Although Frog-4000 results correlated well with solid sorbent tubes (r = 0.808-0.993, except for toluene) most of the combinations regardless of analyte did not meet the <25% accuracy criterion recommended by NIOSH. The effect of chromatographic co-elution can be seen with m, p-xylene when the results are compared to the sorbent tube sampling technique with GC-flame ionization detector. The results indicated an effect of humidity on the quantification of the polar compounds that might be attributed to the pre-concentrator placed in the selected GC-PID. Further investigation may resolve the humidity effect on sorbent trap with micro GC pre-concentrator when water vapor is present. Although this

  19. Evaluation Of Radioactivity Concentration In The Primary Cooling Water System Of The RSG-GAS During Operation With 30% Silicide Fuels

    International Nuclear Information System (INIS)

    Hartoyo, Unggul; Udiyani, P.M.; Setiawanto, Anto

    2001-01-01

    The evaluating radioactivity concentration in the primary cooling water of the RSG-GAS during operation with 30% silicide fuels has been performed. The method of the research is sampling of primary cooling water during operation of the reactor and calculation of its radioactivity concentration. Based on the data obtained from calculation, the identified nuclides in the water are, Mn-56, Sb-124, Sb-122 and Na-24, under the limit of safety value

  20. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis.

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-05

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Surgical management of macular holes: results using gas tamponade alone, or in combination with autologous platelet concentrate, or transforming growth factor beta 2.

    LENUS (Irish Health Repository)

    Minihan, M

    2012-02-03

    BACKGROUND: Vitrectomy and gas tamponade has become a recognised technique for the treatment of macular holes. In an attempt to improve the anatomic and visual success of the procedure, various adjunctive therapies--cytokines, serum, and platelets--have been employed. A consecutive series of 85 eyes which underwent macular hole surgery using gas tamponade alone, or gas tamponade with either the cytokine transforming growth factor beta 2 (TGF-beta 2) or autologous platelet concentrate is reported. METHODS: Twenty eyes had vitrectomy and 20% SF6 gas tamponade; 15 had vitrectomy, 20% SF6 gas, and TGF-beta 2; 50 had vitrectomy, 16% C3F8 gas tamponade, and 0.1 ml of autologous platelet concentrate prepared during the procedure. RESULTS: Anatomic success occurred in 86% of eyes, with 96% of the platelet treated group achieving closure of the macular hole. Visual acuity improved by two lines or more in 65% of the SF6 only group, 33% of those treated with TGF-beta 2 and in 74% of the platelet treated group. In the platelet treated group 40% achieved 6\\/12 or better and 62% achieved 6\\/18 or better. The best visual results were obtained in stage 2 holes. CONCLUSION: Vitrectomy for macular holes is often of benefit and patients may recover good visual acuity, especially early in the disease process. The procedure has a number of serious complications, and the postoperative posturing requirement is difficult. Patients need to be informed of such concerns before surgery.

  2. Measurements for the determination of acid dew point and SO[sub 3] concentration in the flue gas of utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Derichs, W.; Menden, W.; Ebel, P.K. (RWE Energie AG, Bergheim (Germany))

    1991-10-01

    Until now, the well-known measuring systems for determining acid dewpoint have been applied primarily to flue gases from oil-fired combustion. Using an acid dewpoint measuring system which has now been available on the market for some time, it is possible to measure the acid dewpoint reliably and continuously in flue gas from coal-fired combustion, with low SO[sub 3] concentrations. This measuring system has also been used for flue gas from which the dust and sulphur have been removed as well as for untreated flue gas of conventional combustion systems with gas, oil, hard coal and brown coal firing and also in fluidized bed combustion systems. 6 refs., 11 figs., 2 tabs.

  3. Analysis of feed stream acid gas concentration effects on the transport properties and separation performance of polymeric membranes for natural gas sweetening: A comparison between a glassy and rubbery polymer

    KAUST Repository

    Vaughn, Justin T.; Koros, William J.

    2014-01-01

    %. These promising results suggest that glassy polymers possessing favorable intrinsic plasticization resistance, such as 6F-PAI-1, may be appropriate for the typical case of natural gas sweetening where CO2 concentration in the feed is higher than it is for H2S

  4. Evaluation of optimum roughage to concentrate ratio in maize stover based complete rations for efficient microbial biomass production using in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    Y. Ramana Reddy

    2016-06-01

    Full Text Available Aim: A study was undertaken to evaluate the optimum roughage to concentrate ratio in maize stover (MS based complete diets for efficient microbial biomass production (EMBP using in vitro gas production technique. Materials and Methods: MS based complete diets with roughage to concentrate ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, and 30:70 were formulated, and 200 mg of oven-dried sample was incubated in water bath at 39°C along with media (rumen liquor [RL] - buffer in in vitro gas syringes to evaluate the gas production. The gas produced was recorded at 8 and 24 h of inc ubation. In vitro organic matter digestibility (IVOMD, metabolizable energy (ME, truly digestible organic matter (TDOM, partitioning factor (PF, and EMBP were calculated using appropriate formulae. Ammonia nitrogen and total volatile fatty acids (TVFAs production were analyzed in RL fluid-media mixture after 24 h of incubation. Results: In vitro gas production (ml at 24 h incubation, IVOMD, ME, TDOM, TVFA concentration, and ammonia nitrogen production were increased (p<0.01 in proportion to the increase in the level of concentrate in the diet. Significantly (p<0.01 higher PF and EMBP was noticed in total mixed ration with roughage to concentrate ratio of 60:40 and 50:50 followed by 70:30 and 40:60. Conclusion: Based on the results, it was concluded that the MS can be included in complete rations for ruminants at the level of 50-60% for better microbial biomass synthesis which in turn influences the performance of growing sheep.

  5. Evaluation of optimum roughage to concentrate ratio in maize stover based complete rations for efficient microbial biomass production using in vitro gas production technique.

    Science.gov (United States)

    Reddy, Y Ramana; Kumari, N Nalini; Monika, T; Sridhar, K

    2016-06-01

    A study was undertaken to evaluate the optimum roughage to concentrate ratio in maize stover (MS) based complete diets for efficient microbial biomass production (EMBP) using in vitro gas production technique. MS based complete diets with roughage to concentrate ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, and 30:70 were formulated, and 200 mg of oven-dried sample was incubated in water bath at 39°C along with media (rumen liquor [RL] - buffer) in in vitro gas syringes to evaluate the gas production. The gas produced was recorded at 8 and 24 h of incubation. In vitro organic matter digestibility (IVOMD), metabolizable energy (ME), truly digestible organic matter (TDOM), partitioning factor (PF), and EMBP were calculated using appropriate formulae. Ammonia nitrogen and total volatile fatty acids (TVFAs) production were analyzed in RL fluid-media mixture after 24 h of incubation. In vitro gas production (ml) at 24 h incubation, IVOMD, ME, TDOM, TVFA concentration, and ammonia nitrogen production were increased (p<0.01) in proportion to the increase in the level of concentrate in the diet. Significantly (p<0.01) higher PF and EMBP was noticed in total mixed ration with roughage to concentrate ratio of 60:40 and 50:50 followed by 70:30 and 40:60. Based on the results, it was concluded that the MS can be included in complete rations for ruminants at the level of 50-60% for better microbial biomass synthesis which in turn influences the performance of growing sheep.

  6. Inhibitory effect of cyanide on wastewater nitrification determined using SOUR and RNA-based gene-specific assays

    Science.gov (United States)

    The effect of CN- (CN-) on nitrification was examined with samples from nitrifying wastewater enrichments using two different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), and by using RT-qPCR to quantify the transcripts of functional genes inv...

  7. Microsatellite marker development by partial sequencing of the sour passion fruit genome (Passiflora edulis Sims).

    Science.gov (United States)

    Araya, Susan; Martins, Alexandre M; Junqueira, Nilton T V; Costa, Ana Maria; Faleiro, Fábio G; Ferreira, Márcio E

    2017-07-21

    The Passiflora genus comprises hundreds of wild and cultivated species of passion fruit used for food, industrial, ornamental and medicinal purposes. Efforts to develop genomic tools for genetic analysis of P. edulis, the most important commercial Passiflora species, are still incipient. In spite of many recognized applications of microsatellite markers in genetics and breeding, their availability for passion fruit research remains restricted. Microsatellite markers in P. edulis are usually limited in number, show reduced polymorphism, and are mostly based on compound or imperfect repeats. Furthermore, they are confined to only a few Passiflora species. We describe the use of NGS technology to partially assemble the P. edulis genome in order to develop hundreds of new microsatellite markers. A total of 14.11 Gbp of Illumina paired-end sequence reads were analyzed to detect simple sequence repeat sites in the sour passion fruit genome. A sample of 1300 contigs containing perfect repeat microsatellite sequences was selected for PCR primer development. Panels of di- and tri-nucleotide repeat markers were then tested in P. edulis germplasm accessions for validation. DNA polymorphism was detected in 74% of the markers (PIC = 0.16 to 0.77; number of alleles/locus = 2 to 7). A core panel of highly polymorphic markers (PIC = 0.46 to 0.77) was used to cross-amplify PCR products in 79 species of Passiflora (including P. edulis), belonging to four subgenera (Astrophea, Decaloba, Distephana and Passiflora). Approximately 71% of the marker/species combinations resulted in positive amplicons in all species tested. DNA polymorphism was detected in germplasm accessions of six closely related Passiflora species (P. edulis, P. alata, P. maliformis, P. nitida, P. quadrangularis and P. setacea) and the data used for accession discrimination and species assignment. A database of P. edulis DNA sequences obtained by NGS technology was examined to identify microsatellite repeats in

  8. Dependences of deposition rate and OH content on concentration of added trichloroethylene in low-temperature silicon oxide films deposited using silicone oil and ozone gas

    Science.gov (United States)

    Horita, Susumu; Jain, Puneet

    2018-03-01

    We investigated the dependences of the deposition rate and residual OH content of SiO2 films on the concentration of trichloroethylene (TCE), which was added during deposition at low temperatures of 160-260 °C with the reactant gases of silicone oil (SO) and O3. The deposition rate depends on the TCE concentration and is minimum at a concentration of ˜0.4 mol/m3 at 200 °C. The result can be explained by surface and gas-phase reactions. Experimentally, we also revealed that the thickness profile is strongly affected by gas-phase reaction, in which the TCE vapor was blown directly onto the substrate surface, where it mixed with SO and O3. Furthermore, it was found that adding TCE vapor reduces residual OH content in the SiO2 film deposited at 200 °C because TCE enhances the dehydration reaction.

  9. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Evelise G.; Oliveira, Arno Heeren de, E-mail: evelise.lara@gmail.com, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Rocha, Zildete; Rios, Francisco Javier, E-mail: rochaz@cdtn.br, E-mail: javier@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The {sup 226}Ra, {sup 232}Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The {sup 226}Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to {sup 232}Th and U content. The soil permeability is 5.0 x 10{sup -12}, which is considered average. The {sup 226}Ra (22.2 ± 0.3 Bq.m{sup -3}); U content (73.4 ± 3.6 Bq.kg{sup -1}) and {sup 232}Th content (55.3 ± 4.0 Bq.kg{sup -1}) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg{sup -1}) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m{sup -3}) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m{sup -3}). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  10. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    International Nuclear Information System (INIS)

    Lara, Evelise G.; Oliveira, Arno Heeren de

    2015-01-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The 226 Ra, 232 Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The 226 Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to 232 Th and U content. The soil permeability is 5.0 x 10 -12 , which is considered average. The 226 Ra (22.2 ± 0.3 Bq.m -3 ); U content (73.4 ± 3.6 Bq.kg -1 ) and 232 Th content (55.3 ± 4.0 Bq.kg -1 ) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg -1 ) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m -3 ) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m -3 ). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  11. Evaluation of the glycoside hydrolase activity of a Brettanomyces strain on glycosides from sour cherry (Prunus cerasus L.) used in the production of special fruit beers.

    Science.gov (United States)

    Daenen, Luk; Sterckx, Femke; Delvaux, Freddy R; Verachtert, Hubert; Derdelinckx, Guy

    2008-11-01

    The glycoside hydrolase activity of Saccharomyces cerevisiae and Brettanomyces custersii was examined on sour cherry (Prunus cerasus L.) glycosides with bound volatile compounds. Refermentations by the beta-glucosidase-negative S. cerevisiae strains LD25 and LD40 of sour cherry juice-supplemented beer demonstrated only a moderate increase of volatiles. In contrast, the beta-glucosidase-positive B. custersii strain LD72 showed a more pronounced activity towards glycosides with aliphatic alcohols, aromatic compounds and terpenoid alcohols. Important contributors to sour cherry aroma such as benzaldehyde, linalool and eugenol were released during refermentation as shown by analytical tools. A gradually increasing release was observed during refermentations by B. custersii when whole sour cherries, sour cherry pulp or juice were supplemented in the beer. Refermentations with whole sour cherries and with sour cherry stones demonstrated an increased formation of benzyl compounds. Thus, amygdalin was partially hydrolysed, and a large part of the benzaldehyde formed was mainly reduced to benzyl alcohol and some further esterified to benzyl acetate. These findings demonstrate the importance and interesting role of certain Brettanomyces species in the production of fruit lambic beers such as 'Kriek'.

  12. Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas.

    Science.gov (United States)

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Hua, Lei; Li, Haiyang

    2016-06-01

    Malodorous hydrogen sulfide (H2S) gas often exists in the sewer system and associates with the problems of releasing the dangerous odor to the atmosphere and causing sewer pipe to be corroded. A simple method is in demand for real-time measuring H2S level in the sewer gas. In this paper, an innovated method based on dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with on-line semiconductor cooling inlet was put forward and successfully applied for the real-time measurement of H2S in sewer gas. The influence of moisture was effectively reduced via an on-line cooling method and a non-equilibrium dilution with drift gas. The limits of quantitation for the H2S in ≥60% relative humidity air could be obtained at ≤79.0ng L(-1) with linear ranges of 129-2064ng L(-1). The H2S concentration in a sewer manhole was successfully determined while its product ions were identified by an ion-mobility time-of-fight mass spectrometry. Finally, the correlation between sewer H2S concentration and the daily routines and habits of residents was investigated through hourly or real-time monitoring the variation of sewer H2S in manholes, indicating the power of this DANP-IMS method in assessing the H2S concentration in sewer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Detection and partial molecular characterization of atypical plum pox virus isolates from naturally infected sour cherry.

    Science.gov (United States)

    Chirkov, Sergei; Ivanov, Peter; Sheveleva, Anna

    2013-06-01

    Atypical isolates of plum pox virus (PPV) were discovered in naturally infected sour cherry in urban ornamental plantings in Moscow, Russia. The isolates were detected by polyclonal double antibody sandwich ELISA and RT-PCR using universal primers specific for the 3'-non-coding and coat protein (CP) regions of the genome but failed to be recognized by triple antibody sandwich ELISA with the universal monoclonal antibody 5B and by RT-PCR using primers specific to for PPV strains D, M, C and W. Sequence analysis of the CP genes of nine isolates revealed 99.2-100 % within-group identity and 62-85 % identity to conventional PPV strains. Phylogenetic analysis showed that the atypical isolates represent a group that is distinct from the known PPV strains. Alignment of the N-terminal amino acid sequences of CP demonstrated their close similarity to those of a new tentative PPV strain, CR.

  14. Effect of Fermentation and Cooking on Soluble and Bound Phenolic Profiles of Finger Millet Sour Porridge.

    Science.gov (United States)

    Gabaza, Molly; Shumoy, Habtu; Muchuweti, Maud; Vandamme, Peter; Raes, Katleen

    2016-10-12

    The aim of this study was to evaluate the soluble and bound phenolic content of finger millet and the impact of process induced changes on phenolic profiles of their sour porridge. Finger millet porridge and intermediate products were collected from four groups of households in the Hwedza communal area, Zimbabwe, after which soluble and bound phenolic compounds (PC) including condensed tannins (CT) were quantified. Bound PC and CT contributed 95% of the total PC and CT. The CT were only detected in the red varieties. Major individual PC identified were catechin occurring in the soluble fraction only, while ferulic, sinapic, and salicylic acid were mainly present in the bound fraction. Fermentation and cooking caused a more than 2-fold increase in soluble PC, CT, and individual PC. Improved traditional processing techniques optimized for improved bioavailability and health benefits of phenolics are highly relevant for the low income populations.

  15. Technique of optimum extraction of pectin from sour orange peels and its chemical evaluation

    International Nuclear Information System (INIS)

    Abid, H.; Hussain, A.; Ali, J.

    2009-01-01

    The extraction of pectin from sour orange peels and effect of pH, temperature, extraction time on the yield and quality of pectin was studied. The extracting reagent was 0.1 N sulphuric acid and variables were pH (1.5, 2.5 and 3.5), extraction time (30, 60 and 120 minutes) and temperature (70 degree C, 80 degree C arid 90 degree C). These variables were significantly affected the extraction of pectin. The best yield (16.10 %) was obtained on soaking the finely ground peels in the sulphuric acid solution of pH, 25 at 80 degree C for 120 minutes. Anhydrogalacturonic acid, methoxyl content were 7310 % and 9.93 %, respectively, while equivalent weight value 945 was obtained by using pH, 2.5 at 80 degree C for 120 minutes. (author)

  16. Control of degreening in postharvest green sour citrus fruit by electrostatic atomized water particles.

    Science.gov (United States)

    Yamauchi, Naoki; Takamura, Kohtaro; Shigyo, Masayoshi; Migita, Catharina Taiko; Masuda, Yukihiro; Maekawa, Tetsuya

    2014-08-01

    The effect of electrostatic atomized water particles (EAWP) on degreening of green sour citrus fruit during storage was determined. Superoxide anion and hydroxyl radicals included in EAWP were present on the surface of the fruit peel after the treatment. Hydrogen peroxide was formed from EAWP in an aqueous solution, which could indicate that a hydroxyl radical of EAWP turns to hydrogen peroxide in the fruit flavedo as well as in the aqueous solution. EAWP treatment effectively suppressed the degreening of green yuzu and Nagato-yuzukichi fruits during storage at 20°C. The enhancement in K+ ion leakage of both EAWP-treated fruits reduced in comparison with the control. In spite of EAWP treatment, total peroxide level in both fruits showed almost no changes during storage, suggesting that hydrogen peroxide formed by EAWP treatment could stimulate the activation of hydrogen peroxide scavenging system and control degreening of these fruits during storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. REPEATED MEASURES ANALYSIS OF CHANGES IN PHOTOSYNTHETIC EFFICIENCY IN SOUR CHERRY DURING WATER DEFICIT

    Directory of Open Access Journals (Sweden)

    Marija Viljevac

    2012-06-01

    Full Text Available The objective of this study was to investigate changes in photosynthetic efficiency applying repeated measures ANOVA using the photosynthetic performance index (PIABS of the JIP-test as a vitality parameter in seven genotypes of sour cherry (Prunus cerasus, L. during 10 days of continuous water deficit. Both univariate and multivariate ANOVA repeated measures revealed highly significant time effect (Days and its subsequent interactions with genotype and water deficit. However, the multivariate Pillai’s trace test detected the interaction Time × Genotype × Water deficit as not significant. According to the Tukey’s Studentized Range (HSD test, differences between the control and genotypes exposed to water stress became significant on the fourth day of the experiment, indicating that the plants on the average, began to lose their photosynthetic efficiency four days after being exposed to water shortage. It corroborates previous findings in other species that PIABS is very sensitive tool for detecting drought stress.

  18. Study on fracture and stress corrosion cracking behavior of casing sour service materials

    International Nuclear Information System (INIS)

    Sequera, C.; Gordon, H.

    2003-01-01

    Present work describes sulphide stress corrosion cracking and fracture toughness tests performed to high strength sour service materials of T-95, C-100 and C-110 oil well tubular grades. P-110 was considered as a reference case, since it is one of the high strength materials included in specification 5CT of American Petroleum Institute, API. Sulphide stress corrosion cracking, impact and fracture toughness values obtained in the tests show that there is a correspondence among them. A decreasing classification order was established, namely C-100, T-95, C-110 and P-110. Special grades steels studied demonstrated a better behavior in the evaluated properties than the reference case material grade: P-110. Results obtained indicate that a higher sulphide stress corrosion cracking resistance is related to a higher toughness. The fracture toughness results evidence the hydrogen influence on reducing the toughness values. (author)

  19. Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production.

    Science.gov (United States)

    Aslam, Ambreen; Thomas-Hall, Skye R; Manzoor, Maleeha; Jabeen, Faiza; Iqbal, Munawar; Uz Zaman, Qamar; Schenk, Peer M; Asif Tahir, M

    2018-02-01

    Biodiesel is produced by transesterification of fatty acid methyl esters (FAME) from oleaginous microalgae feedstock. Biodiesel fuel properties were studied and compared with biodiesel standards. Qualitative analysis of FAME was done while cultivating mixed microalgae consortia under three concentrations of coal fired flue gas (1%, 3.0% and 5.5% CO 2 ). Under 1% CO 2 concentration (flue gas), the FAME content was 280.3 μg/mL, whereas the lipid content was 14.03 μg/mL/D (day). Both FAMEs and lipid contents were low at other CO 2 concentrations (3.0 and 5.5%). However, mixed consortia in the presence of phosphate buffer and flue gas (PB + FG) showed higher saturated fatty acids (SFA) (36.28%) and unsaturated fatty acids (UFA) (63.72%) versus 5.5% CO 2 concentration, which might be responsible for oxidative stability of biodiesel. Subsequently, higher cetane number (52) and low iodine value (136.3 gI 2 /100 g) biodiesel produced from mixed consortia (PB + FG) under 5.5% CO 2 along with 50 mM phosphate buffer were found in accordance with European (EN 14214) standard. Results revealed that phosphate buffer significantly enhanced the biodiesel quality, but reduced the FAME yield. This study intended to develop an integrated approach for significant improvement in biodiesel quality under surplus phosphorus by utilizing waste flue gas (as CO 2 source) using microalgae. The CO 2 sequestration from industrial flue gas not only reduced greenhouse gases, but may also ensure the sustainable and eco-benign production of biodiesel. Copyright © 2018. Published by Elsevier B.V.

  20. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-01

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.

  1. [Health effects of sour cherries with unique polyphenolic composition in their fruits].

    Science.gov (United States)

    Hegedűs, Attila; Papp, Nóra; Blázovics, Anna; Stefanovitsné Bányai, Éva

    2018-05-01

    Health effects of fruit consumption are confirmed by many studies. Such effects are attributed to the polyphenolic compounds accumulating in fruit skin and mesocarp tissues. They contribute to the regulation on transcriptional, post-transcriptional and epigenetic levels. Since people consume much less fruits than the recommended quantities, a new approach includes the promotion of super fruits that are extremely rich sources of specific health compounds. A comparative analysis of Hungarian stone fruit cultivars detected a huge variability in fruit in vitro antioxidant capacity and total polyphenolic content. Two outstanding sour cherry cultivars ('Pipacs 1' and 'Fanal') were identified to accumulate elevated levels of polyphenolic compounds in their fruits. Sour cherries with different polyphenolic compositions were tested against alimentary induced hyperlipidemia using male Wistar rat model. Consumption of cherry fruit had different consequences for different cultivars: consumption of 'Pipacs 1' and 'Fanal' fruits resulted in 30% lower total cholesterol levels in the sera of hyperlipidemic animals after only 10 days of treatment. However, the consumption of 'Újfehértói fürtös' fruit has not induced significant alterations in the same parameter. Other lipid parameters also reflected the short-term beneficial effects of 'Pipacs 1' and 'Fanal' fruits. We suggest that not only some tropical and berry fruits might be considered as super fruits but certain genotypes of stone fruits as well. These have indeed marked physiological effects. Since 'Pipacs 1' and 'Fanal' are rich sources of colourless polyphenolics (e.g., phenolic acids and isoflavonoids) and anthocyanins, respectively, the protective effects associated with their consumption can be attributed to different polyphenolic compounds. Orv Hetil. 2018; 159(18): 720-725.

  2. Effect of the improved fermentation on physicochemical properties and sensorial acceptability of sour cassava starch

    Directory of Open Access Journals (Sweden)

    Maria Janete Angeloni Marcon

    2007-11-01

    Full Text Available The aim of this work was to study the effect of improved fermentation on sour cassava starch, aiming to reduce its fermentation time and to enhance its expansion capacity as well as its viscoamylographic properties and its sensorial acceptability. Results showed that the improved process of cassava starch production did not harm starch expansion, physicochemical properties or sensorial acceptability; it also produced starches with different viscoamylographic properties, which compared favourably to those of the sour cassava starch produced through current industrial methods.O Polvilho azedo é caracterizado pelas suas propriedades físicas, químicas e reológicas, as quais são diferentes do amido nativo do qual se originou. A propriedade de expansão é uma das mais importantes características do produto, sendo um parâmetro fundamental de avaliação do polvilho azedo. O resultado do perfil viscoamilográfico também é uma importante maneira de avaliação uma vez que cada amido tem um padrão viscoamilográfico definido de acordo com sua organização granular. Este trabalho determinou o efeito da fermentação melhorada pela adição de glicose, sobre o polvilho azedo, apontando para uma redução no tempo de fermentação e avaliando sua capacidade de expansão, suas propriedades viscoamilográficas e aceitabilidade sensorial. O processo de produção de polvilho azedo melhorado não prejudicou a expansão do amido, suas propriedades físico-químicas e sensoriais, mas sim resultou em amidos com diferentes propriedades viscoamilográficas melhores comparativamente ao polvilho azedo produzido pelo processo industrial atual.

  3. Evaluation of ground level concentration of pollutant due to gas flaring by computer simulation: A case study of Niger - Delta area of Nigeria

    Directory of Open Access Journals (Sweden)

    A. S. ABDULKAREEM

    2005-01-01

    Full Text Available The disposal of associated gases through flaring has been a major problem for the Nigerian oil and gas industries and most of theses gases are flared due to the lack of commercial out lets. The resultant effects of gas flaring are the damaging effect of the environment due to acid rain formation, green house effect, global warming and ozone depletion.This writes up is aimed at evaluating ground level concentration of CO2, SO2, NO2 and total hydrocarbon (THC, which are product of gas flared in oil producing areas. Volumes of gas flared at different flow station were collected as well as geometrical parameters. The results of simulation of model developed based on the principles of gaseous dispersion by Gaussian showed a good agreement with dispersion pattern.The results showed that the dispersion pattern of pollutants at ground level depends on the volume of gas flared, wind speed, velocity of discharge and nearness to the source of flaring. The results shows that continuous gas flaring irrespective of the quantity deposited in the immediate environment will in long run lead to change in the physicochemical properties of soil.

  4. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: impact of natural gas appliances on air pollutant concentrations.

    Science.gov (United States)

    Mullen, N A; Li, J; Russell, M L; Spears, M; Less, B D; Singer, B C

    2016-04-01

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX , NO2 , formaldehyde, and acetaldehyde over ~6-day periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX , NO2 , and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, although bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX , NO2 , and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Atmospheric concentrations and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing-Tianjin region, North China.

    Science.gov (United States)

    Wang, Wentao; Simonich, Staci; Giri, Basant; Chang, Ying; Zhang, Yuguang; Jia, Yuling; Tao, Shu; Wang, Rong; Wang, Bin; Li, Wei; Cao, Jun; Lu, Xiaoxia

    2011-07-01

    Forty passive air samplers were deployed to study the occurrence of gas and particulate phase PAHs in remote, rural village and urban areas of Beijing-Tianjin region, North China for four seasons (spring, summer, fall and winter) from 2007 to 2008. The influence of emissions on the spatial distribution pattern of air PAH concentrations was addressed. In addition, the air-soil gas exchange of PAHs was studied using fugacity calculations. The median gaseous and particulate phase PAH concentrations were 222 ng/m³ and 114 ng/m³, respectively, with a median total PAH concentration of 349 ng/m³. Higher PAH concentrations were measured in winter than in other seasons. Air PAH concentrations measured at the rural villages and urban sites in the northern mountain region were significantly lower than those measured at sites in the southern plain during all seasons. However, there was no significant difference in PAH concentrations between the rural villages and urban sites in the northern and southern areas. This urban-rural PAH distribution pattern was related to the location of PAH emission sources and the population distribution. The location of PAH emission sources explained 56%-77% of the spatial variation in ambient air PAH concentrations. The annual median air-soil gas exchange flux of PAHs was 42.2 ng/m²/day from soil to air. Among the 15 PAHs measured, acenaphthylene (ACY) and acenaphthene (ACE) contributed to more than half of the total exchange flux. Furthermore, the air-soil gas exchange fluxes of PAHs at the urban sites were higher than those at the remote and rural sites. In summer, more gaseous PAHs volatilized from soil to air because of higher temperatures and increased rainfall. However, in winter, more gaseous PAHs deposited from air to soil due to higher PAH emissions and lower temperatures. The soil TOC concentration had no significant influence on the air-soil gas exchange of PAHs. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The unique field experiments on the assessment of accident consequences at industrial enterprises of gas-chemical complexes

    International Nuclear Information System (INIS)

    Belov, N.S.; Trebin, I.S.; Sorokovikova, O.

    1998-01-01

    Sour natural gas fields are the unique raw material base for setting up such large enterprises as gas chemical complexes. The presence of high toxic H 2 S in natural gas results in widening a range of dangerous and harmful factors for biosphere. Emission of such gases into atmosphere during accidents at gas wells and gas pipelines is of especial danger for environment and first of all for people. Development of mathematical forecast models for assessment of accidents progression and consequences is one of the main elements of works on safety analysis and risk assessment. The critical step in development of such models is their validation using the experimental material. Full-scale experiments have been conducted by the All-Union Scientific-Research institute of Natural Gases and Gas Technology (VNIIGAZ) for grounding of sizes of hazard zones in case of the severe accidents with the gas pipelines. The source of emergency gas release was the working gas pipelines with 100 mm dia. And 110 km length. This pipeline was used for transportation of natural gas with significant amount of hydrogen sulphide. During these experiments significant quantities of the gas including H 2 S were released into the atmosphere and then concentrations of gas and H 2 S were measured in the accident region. The results of these experiments are used for validation of atmospheric dispersion models including the new Lagrangian trace stochastic model that takes into account a wide range of meteorological factors. This model was developed as a part of computer system for decision-making support in case of accident release of toxic gases into atmosphere at the enterprises of Russian gas industry. (authors)

  7. A study on the concentration of CO by the length and the variation of the bent tube of the exhaust pipe for a household gas boiler

    International Nuclear Information System (INIS)

    Leem, Sa Hwan; Huh, Yong Jeong; Lee, Jong Rark

    2008-01-01

    Energy and environment become increasingly serious after the industrial revolution. The demand for gas as an ecofriendly energy source is also increasing. With the demand, the installation and the use of gas boilers have also increased, so the damage to human life by the waste gas (CO and CO 2 ) continues increasing every year. Hence, the aim of this study was to investigate the concentration of CO (Carbon Monoxide) by the length and the variation of the bent tube of the exhaust pipe by installing a boiler with the same method as a household boiler and to discover the harm to humans. For the effect of the length, the allowable concentration of CO is 50ppm, and the 3m of the once bent tube starts exceeding the allowable concentration of CO after 5 minutes, and the 4m and 5m starts exceeding after 3 minutes. In addition, the 1m of three times bent tube starts exceeding the allowable concentration of CO after 3 minutes

  8. Gas sensing performance at room temperature of nanogap interdigitated electrodes for detection of acetone at low concentration

    NARCIS (Netherlands)

    Minh, Q. Nguyen; Tong, H.D.; Kuijk, A.; van de Bent, F.; Beekman, Pepijn; Van Rijn, C. J.M.

    2017-01-01

    A facile approach for the fabrication of large-scale interdigitated nanogap electrodes (nanogap IDEs) with a controllable gap was demonstrated with conventional micro-fabrication technology to develop chemocapacitors for gas sensing applications. In this work, interdigitated nanogap electrodes

  9. Differences in Swallowing between High and Low Concentration Taste Stimuli

    Directory of Open Access Journals (Sweden)

    Ahmed Nagy

    2014-01-01

    Full Text Available Taste is a property that is thought to potentially modulate swallowing behavior. Whether such effects depend on taste, intensity remains unclear. This study explored differences in the amplitudes of tongue-palate pressures in swallowing as a function of taste stimulus concentration. Tongue-palate pressures were collected in 80 healthy women, in two age groups (under 40, over 60, stratified by genetic taste status (nontasters, supertasters. Liquids with different taste qualities (sweet, sour, salty, and bitter were presented in high and low concentrations. General labeled magnitude scale ratings captured perceived taste intensity and liking/disliking of the test liquids. Path analysis explored whether factors of taste, concentration, age group, and/or genetic taste status impacted: (1 perceived intensity; (2 palatability; and (3 swallowing pressures. Higher ratings of perceived intensity were found in supertasters and with higher concentrations, which were more liked/disliked than lower concentrations. Sweet stimuli were more palatable than sour, salty, or bitter stimuli. Higher concentrations elicited stronger tongue-palate pressures independently and in association with intensity ratings. The perceived intensity of a taste stimulus varies as a function of stimulus concentration, taste quality, participant age, and genetic taste status and influences swallowing pressure amplitudes. High-concentration salty and sour stimuli elicit the greatest tongue-palate pressures.

  10. Gas-hydrate concentration estimated from P- and S-wave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada

    Science.gov (United States)

    Carcione, José M.; Gei, Davide

    2004-05-01

    We estimate the concentration of gas hydrate at the Mallik 2L-38 research site using P- and S-wave velocities obtained from well logging and vertical seismic profiles (VSP). The theoretical velocities are obtained from a generalization of Gassmann's modulus to three phases (rock frame, gas hydrate and fluid). The dry-rock moduli are estimated from the log profiles, in sections where the rock is assumed to be fully saturated with water. We obtain hydrate concentrations up to 75%, average values of 37% and 21% from the VSP P- and S-wave velocities, respectively, and 60% and 57% from the sonic-log P- and S-wave velocities, respectively. The above averages are similar to estimations obtained from hydrate dissociation modeling and Archie methods. The estimations based on the P-wave velocities are more reliable than those based on the S-wave velocities.

  11. Minimum concentrations of NO/sub 2/ causing acute effects on the respiratory gas exchange and airway-resistance in patients with chronic bronchitis

    Energy Technology Data Exchange (ETDEWEB)

    von Nieding, G; Wagner, M; Krekeler, H; Smidt, U; Muysers, K

    1971-01-01

    Nitrogen dioxide-air mixtures containing 0.5 to 5.0 ppM NO/sub 2/ were inhaled by 88 patients with chronic bronchitis over a 15-minute period for a total of 30 breaths during studies investigating the effects of the gas on airway resistance and respiratory gas exchange. End-expiratory oxygen pressures remained nearly constant during inhalation of 4 or 5 ppM NO/sub 2/, though significant decreases in arterial oxygen pressure accompanied by increases in end-expiratory-arterial oxygen pressure difference occurred. Inhalation of 2 ppM NO/sub 2/ did not decrease arterial oxygen pressure. Airway resistances increased significantly down to 1.5 ppM NO/sub 2/ concentrations. Lower concentrations caused no significant effects.

  12. Glutamate decarboxylase and. gamma. -aminobutyric acid transaminase activity in brain structures during action of high concentrated sulfide gas on a background of hypo- and hypercalcemia

    Energy Technology Data Exchange (ETDEWEB)

    Kadyrov, G.K.; Aliyev, A.M.

    Activity of the following enzymes was studied on the background of hypo- and hypercalcemia and exposure to high concentration of sulfide gas: glutamate decarboxylase (GDC) and {gamma}-aminobutyric acid transaminase (GABA-T). These enzymes regulate metabolism of GABA. The results showed that a 3.5 hr exposure to sulfide gas at a concentration of 0.3 mg/1 led to significantly increased activity of GDC in cerebral hemispheres, cerebellum and in brain stem. Activity of GABA-T dropped correspondingly. On the background of hypercalcemia induced by im. injection of 10% calcium gluconate (0.6 m1/200 g body weight of experimental rats) the negative effect caused by the exposure to sulfide gas was diminished. Under conditions of hypocalcemia (im. injection of 10 mg/200 g body weight of sodium oxalate), exposure to sulfide gas led to a significantly decreased activity of GDC and GABA-T in the hemispheres and in the brain stem, but in the cerebellum the activity of GDC increased sharply while that of GABA-T decreased correspondingly. 8 refs.

  13. Summer–winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting

    International Nuclear Information System (INIS)

    Wang Thanh; Han Shanlong; Yuan Bo; Zeng Lixi; Li Yingming; Wang Yawei; Jiang Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9–33.0 ng/m 3 during wintertime. Significantly higher levels were found during the summer (range 112–332 ng/m 3 ). The average fraction of total SCCPs in the particle phase (φ) was 0.67 during wintertime but decreased significantly during the summer (φ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol–air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge–Pankow adsorption and K oa -based absorption models. - Highlights: ► Short chain chlorinated paraffins were investigated in air samples from Beijing. ► Higher levels of SCCPs were found in air during summertime than wintertime. ► Relevant physical–chemical properties were estimated by SPARC and EPI Suite. ► Obtained data were used to model the gas-particle partitioning of SCCPs. - Atmospheric levels and gas-particle partitioning of SCCPs in Beijing, China.

  14. Implementation of gas concentration measurement systems using mass spectrometry in containment thermal-hydraulics test facilities: different approaches for calibration and measurement with steam/air/helium mixtures

    International Nuclear Information System (INIS)

    Auban, O.; Malet, J.; Brun, P.; Brinster, J.; Quillico, J. J.; Studer, E.

    2003-01-01

    Thermal-hydraulic test facilities are used to investigate various containment phenomena such as, for example, mixing and stratification of gases or steam condensation in the presence of noncondensable. Experiments are also required for validation of codes possessing capabilities for modelling such three-dimensional effects. The need for advanced instrumentation allowing to measure gas concentration in such conditions (typically: 100-180 .deg. C; 1-10 bar) and to get sufficiently refined information about spatial distribution of the different gas species has become apparent. This paper deals with the implementation of gas analysis systems using some commercial Quadrupole Mass Spectrometers (QMS) that have been recently added to the basic instrumentation in three thermal-hydraulics test facilities namely MISTRA (CEA, France), TOSQAN (IRSN, France) and PANDA (PSI, Switzerland). In recent years, QMS have increasingly been selected for various applications because of attractive metrological characteristics (sensibility, span of concentration range, response time, stability, etc.), relatively compact size and low cost. Although commercial QMS are sold as 'turnkey' systems, these instruments are delicate to bring into operation. As QMS are not absolute instruments, reliable calibration procedures are required for quantitative measurements. A mass spectrometer can be regarded as an ionisation gauge with subsequent separation system for the different ion species. The calculation of gas concentrations considers the partial pressure of a particular gas species to be proportional to the ion current it generates. Anyway, one must know the QMS sensitivity to the gases of interest and the only practical method is to use calibration gases. Calibration must be carried out using mixtures whose compositions are close to any possible sample compositions and the procedure selected should duplicate as closely as possible the measurement conditions established during the real experiment

  15. Gas-phase naphthalene concentration data recovery in ambient air and its relevance as a tracer of sources of volatile organic compounds

    Science.gov (United States)

    Uria-Tellaetxe, Iratxe; Navazo, Marino; de Blas, Maite; Durana, Nieves; Alonso, Lucio; Iza, Jon

    2016-04-01

    Despite the toxicity of naphthalene and the fact that it is a precursor of atmospheric photooxidants and secondary aerosol, studies on ambient gas-phase naphthalene are generally scarce. Moreover, as far as we are concerned, this is the first published one using long-term hourly ambient gas-phase naphthalene concentrations. In this work, it has been also demonstrated the usefulness of ambient gas-phase naphthalene to identify major sources of volatile organic compounds (VOC) in complex scenarios. Initially, in order to identify main benzene emission sources, hourly ambient measurements of 60 VOC were taken during a complete year together with meteorological data in an urban/industrial area. Later, due to the observed co-linearity of some of the emissions, a procedure was developed to recover naphthalene concentration data from recorded chromatograms to use it as a tracer of the combustion and distillation of petroleum products. The characteristic retention time of this compound was determined comparing previous GC-MS and GC-FID simultaneous analysis by means of relative retention times, and its concentration was calculated by using relative response factors. The obtained naphthalene concentrations correlated fairly well with ethene (r = 0.86) and benzene (r = 0.92). Besides, the analysis of daily time series showed that these compounds followed a similar pattern, very different from that of other VOC, with minimum concentrations at day-time. This, together with the results from the assessment of the meteorological dependence pointed out a coke oven as the major naphthalene and benzene emitting sources in the study area.

  16. Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow

    KAUST Repository

    Wang, Shuo; Li, Xiaohang; Fischer, Alec M.; Detchprohm, Theeradetch; Dupuis, Russell D.; Ponce, Fernando A.

    2017-01-01

    We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 oC, with B/(B+Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges x = 0.06 to 0.16, closely following gas-flow ratios. Transmission electron microscopy indicates the sole presence of wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B+Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films.The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B+Al) gas-flow ratios that we used, which is significantly higher than previously thought.

  17. Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow

    KAUST Repository

    Wang, Shuo

    2017-07-20

    We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 oC, with B/(B+Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges x = 0.06 to 0.16, closely following gas-flow ratios. Transmission electron microscopy indicates the sole presence of wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B+Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films.The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B+Al) gas-flow ratios that we used, which is significantly higher than previously thought.

  18. Analysis of the structural steels corrosion resistance in sour water from petroleum refineries; Analise da resistencia a corrosao de acos estruturais em aguas acidas de refinarias de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Proenca, Marcos B.; Freire, Celia M. de A. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica; Santos, Margatita B. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica. Dept. de Fisica Aplicada

    1994-07-01

    The presence of H{sub 2} S in refineries FCC sour water provokes the formation of a passive Fe S scale. The cyanides present on sour water remove this scale, raising the corrosion rate in pipping and vessels. In this work it was measured the corrosion rate of structural steels in this water by electrochemical methods. Anodic polarization curves were plotted and the corrosion rates of the steels were determined. (author)

  19. Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown.

    Science.gov (United States)

    Nikinmaa, Eero; Sievänen, Risto; Hölttä, Teemu

    2014-09-01

    Tree models simulate productivity using general gas exchange responses and structural relationships, but they rarely check whether leaf gas exchange and resulting water and assimilate transport and driving pressure gradients remain within acceptable physical boundaries. This study presents an implementation of the cohesion-tension theory of xylem transport and the Münch hypothesis of phloem transport in a realistic 3-D tree structure and assesses the gas exchange and transport dynamics. A mechanistic model of xylem and phloem transport was used, together with a tested leaf assimilation and transpiration model in a realistic tree architecture to simulate leaf gas exchange and water and carbohydrate transport within an 8-year-old Scots pine tree. The model solved the dynamics of the amounts of water and sucrose solute in the xylem, cambium and phloem using a fine-grained mesh with a system of coupled ordinary differential equations. The simulations predicted the observed patterns of pressure gradients and sugar concentration. Diurnal variation of environmental conditions influenced tree-level gradients in turgor pressure and sugar concentration, which are important drivers of carbon allocation. The results and between-shoot variation were sensitive to structural and functional parameters such as tree-level scaling of conduit size and phloem unloading. Linking whole-tree-level water and assimilate transport, gas exchange and sink activity opens a new avenue for plant studies, as features that are difficult to measure can be studied dynamically with the model. Tree-level responses to local and external conditions can be tested, thus making the approach described here a good test-bench for studies of whole-tree physiology.

  20. A range of newly developed mobile generators to dynamically produce SI-traceable reference gas mixtures for reactive compounds at atmospheric concentrations

    Science.gov (United States)

    Leuenberger, Daiana; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Niederhauser, Bernhard

    2017-04-01

    Three new mobile facilities have been developed at METAS to dynamically generate SI-traceable reference gas mixtures for a variety of reactive compounds at atmospheric amount of substance fractions and at very low levels of uncertainty (Ux balance. The carrier gas is previously purified from the compounds of interest using commercially available purification cartridges. The permeation chambers of ReGaS2 and ReGaS3 have multiple individual cells allowing for the generation of mixtures containing up to 5 different components if required. ReGaS1 allows for the generation of one-component mixtures only. These primary mixtures are then diluted to the required amount of substance fractions using thermal mass flow controllers for full flexibility and adaptability of the generation process over the entire range of possible concentrations. In order to considerably reduce adsorption/desorption processes and thus stabilisation time, all electro-polished stainless steel parts of ReGaS1 and ReGaS2 in contact with the reference gas mixtures are passivated with SilcoNert2000® surface coating. These three state-of-the-art mobile reference gas generators are applicable under both, laboratory and field conditions. Moreover the dynamic generation method can be adapted and applied to a large variety of molecules (e.g. BTEX, CFCs, HCFCs, HFCs and other refrigerants) and is particularly suitable for reactive gas species and/or at concentration ranges which are unstable when stored in pressurised cylinders. Acknowledgement: This work was supported by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

  1. Reação da laranjeira azêda à tristeza Reaction of the sour orange plant to tristeza

    Directory of Open Access Journals (Sweden)

    A. S. Costa

    1954-01-01

    plantas sadias se desenvolvem mais ou menos satisfatòriamente quando sôbre-enxertadas em galhos de laranjeira doce sobre laranjeira azêda, já em avançado estado de declínio. Uma copa mista de laranjeiras azêda e doce sôbre cavalo de azêda pode causar alguns benefícios à planta afetada pela tristeza sob determinadas condições, mas êsse benefício não é duradouro e o método não oferece possibilidades práticas. A laranjeira azêda em viveiro tem sido utilizada com vantagem na determinação da presença do vírus da tristeza em borbulhas de vários tipos de Citrus, pela observação do crescimento feito a partir dessas borbulhas em comparação com aquêle de borbulhas da mesma variedade garantidamente sadias. Para a determinação da presença de estirpes fracas do vírus o método é mais demorado. Interenxertos de laranjeira azêda entre copas e raízes de laranjeira doce são suficientes para que haja manifestação de sintomas da moléstia. Há aparentemente alguma translocação através do interenxêrto, pois o desenvolvimento do cavalo abaixo e acima dele é aproximadamente igual.Young sour orange seedlings are more easily infected with the tristeza virus by approach-grafts than by means of the aphid vector. Under natural conditions adult plants in the field are highly resistant to infection by the aphid vector. Recovery of the tristeza virus from infected sour orange plants is also more easily accomplished by tissue union than by means of the aphid vector. Sour orange seedlings show yellowing of young leaves followed by stunting and shedding of leaves when infected with the ordinary strain of the tristeza virus in Brazil. These symptoms do not differ from those described for seedling yellows. The symptoms of leaf yellowing are less evident in plants infected with mild strains of the tristeza virus and there is subsequent recovery. New flushes of young leaves may show occasional vein dashes. Sour orange tissues below the bud union of the sweet

  2. The effect of gas and oil well blowout emissions on livestock in Alberta

    International Nuclear Information System (INIS)

    Beck, B.E.

    1992-01-01

    Poisoning caused by emissions from sour gas well or oil well blowouts is not acute because the gases are diluted by the atmosphere before they reach livestock. Exposure may last a month or more and may produce a syndrome indistinguishable from common disorders of flu, malaise, mood change, and in the case of animals, lack of production or decreased production. Little information is available on the composition of releases from well blowouts, which may change due to concurrent reactions with oxygen and photodecomposition. Effects on livestock observed to results from sour gas plant emissions (mostly sulfur dioxide) include runny eyes in cattle, loss of production, diarrhea and abortion. Blowout emissions may contain oxidant gases as well as hydrogen sulfides. These products irritate mucous membranes, and can lead to pink eye. Respiratory problems may include upper respiratory tract infections, and may produce susceptibility to secondary pneumonia. Abortion, infertility and congenital effects are areas of concern. It is considered unlikely that hydrogen sulfide can cause such effects, however carbon disulfide and carbonyl sulfide, both present in sour gas blowouts, are known to have effects on the fetus. Effects on production and performance are unknown, and it is postulated that amounts of sulfur deposition are insufficient to cause nutrient deficiencies. Psychological reactions are suggested to explain some of the adverse effects of exposure to sour gas. 1 ref

  3. Fifty per cent reduction in solution gas flaring : a report to the Saddle Hills Awareness Committee

    International Nuclear Information System (INIS)

    1999-01-01

    Information by the Alberta Energy Company to the Saddle Hills Awareness Committee (SHAC) regarding company operations in the West Peace River Arch of the western Canadian Sedimentary Basin in northwest Alberta is presented, the purpose being to bring the Committee up-to-date, and respond to concerns about the health effects of sour gas emissions. The SHAC represents citizens who are concerned about issues relating to sour gas emissions. AEC West, a business unit of Alberta Energy Company, operates two sour gas processing plants, one sweet gas plant and three sour oil batteries in the Grande Prairie area. AEC's gas plants are connected by pipelines and process petroleum and natural gas products from approximately 200 oil and gas wells. The H 2 S content of the natural gas being processed by AEC's various plants ranges from trace amounts to 11 per cent. Activities at AEC's Hythe plant and at the Sexsmith plant, and the company's gas storage project are briefly reviewed. An analysis is included of the role that flaring plays in the petroleum and natural gas industry, emphasizing AEC West's efforts during 1997 to reduce solution gas flaring volumes from single well oil batteries by 50 per cent. Other AEC West environmental protection initiatives include the preliminary regional airshed study sponsored by the company which resulted in part from SHAC feedback and in part from the innovative approach of AEC employees. AEC West established the industry's first Ombudsman to provide a problem resolution focus on landowner complaints and introduced a policy of making available solution gas that would eventually be flared to industrial colleagues, free of charge

  4. PO.RA project. An analysis on gas radon concentrations in soil versus fluctuations in the groundwater table; Progetto PO.RA.. Analisi della concentrazione di gas radon nel non saturo in relazione alla soggiacenza della falda freatica

    Energy Technology Data Exchange (ETDEWEB)

    Serentha' , C.; Torretta, M. [Agenzia Regionale per la Protezione dell' Ambiente della Lombardia, Dipartimento di Monza, Monza (Italy)

    2001-09-01

    Man is daily exposed to natural radiation, mainly due to cosmic rays and natural radioactive elements, whose most important radioactive daughters are {sup 222}Rn (radon) and {sup 220}Rn (thoron). Being these ones gaseous, they can spread through the ground, reaching the atmosphere and accumulating in rooms, where their concentrations may be very high. As radon exhalation is strongly connected with the hydrogeological features of the environment, this study tried to find a relationship between fluctuations in the groundwater table and gas radon concentrations in soil, in order to try estimates of indoor radon concentrations. [Italian] L'uomo e' quotidianamente esposto ad una radioattivita' di origine naturale, dovuta principalmente ai raggi cosmici ed alla presenza di alcuni elementi radioattivi naturali, i cui discendenti radioattivi piu' importanti sono il {sup 222}Rn (radon) e il {sup 220}Rn (thoron). Tali elementi, a causa della loro natura gassosa, si possono diffondere attraverso il terreno e raggiungere l'atmosfera sovrastante; cio' puo' provocarne l'accumulo in ambienti chiusi, dando luogo a concentrazioni anche elevate con possibili conseguenze sulla salute. Poiche' l'esalazione del gas radon e' foremente legata alle caratteristiche idrogeologiche dell'ambiente, in questo lavoro si e' cercato di definire una relazione che legasse le variazioni della soggiacenza della falda freatica alle variazioni della concentrazione del gas radon nel non saturo, al fine di verificare se sia possibile effettuare un'attivita' previsionale applicabile ai rilievi di gas radon indoor.

  5. Effect of ultrasound on some chemical and microbiological properties of sour cherry juice by response surface methodology.

    Science.gov (United States)

    Türken, Tuğba; Erge, Hande S

    2017-09-01

    In this study, it is aimed to determine effect of ultrasonication on some chemical and microbiological properties of sour cherry juice by response surface methodology, since ultrasound is known as an alternative method for thermal food processing. Sour cherry juice was sonicated at varying amplitude levels (50, 75, 100%); moderate temperatures (20, 30, 40 ℃); and treatment times of 2, 6, 10 min at a constant frequency of 20 kHz. Different ultrasonication amplitudes, temperatures, and times had no significant effect on pH,°Bx, and titratable acidity. A significant increase in total monomeric anthocyanins was observed as the amplitude level and temperature increased (p < 0.01). An increase in the total phenolics was also obtained as the temperature increased (p < 0.05). The effect of amplitude level on antioxidant capacity of sour cherry juice was also found significant (p < 0.05). Color parameters (L*, a*, b*, C, h) generally increased by increasing temperature, amplitude level, and treatment time. It was determined that Escherichia coli O157:H7 significantly affected by temperature and treatment time (p < 0.05).

  6. Lactic acid bacteria and yeasts associated with spontaneous fermentations during the production of sour cassava starch in Brazil.

    Science.gov (United States)

    Lacerda, Inayara C A; Miranda, Rose L; Borelli, Beatriz M; Nunes, Alvaro C; Nardi, Regina M D; Lachance, Marc-André; Rosa, Carlos A

    2005-11-25

    Sour cassava starch is a traditional fermented food used in the preparation of fried foods and baked goods such as traditional cheese breads in Brazil. Thirty samples of sour cassava starch were collected from two factories in the state of Minas Gerais. The samples were examined for the presence of lactic acid bacteria, yeasts, mesophilic microorganisms, Bacillus cereus and faecal coliforms. Lactic acid bacteria and yeasts isolates were identified by biochemical tests, and the identities were confirmed by molecular methods. Lactobacillus plantarum and Lactobacillus fermentum were the prevalent lactic acid bacteria in product from both factories, at numbers between 6.0 and 9.0 log cfu g(-)(1). Lactobacillus perolans and Lactobacillus brevis were minor fractions of the population. Galactomyces geothricum and Issatchenkia sp. were the prevalent yeasts at numbers of 5.0 log cfu g(-)(1). A species similar to Candida ethanolica was frequently isolated from one factory. Mesophilic bacteria and amylolytic microorganisms were recovered in high numbers at all stages of the fermentation. B. cereus was found at low numbers in product at both factories. The spontaneous fermentations associated with the production of sour cassava starch involve a few species of lactic acid bacteria at high numbers and a variety of yeasts at relatively low numbers.

  7. A simple bubbling system for measuring radon (222Rn) gas concentrations in water samples based on the high solubility of radon in olive oil.

    Science.gov (United States)

    Al-Azmi, D; Snopek, B; Sayed, A M; Domanski, T

    2004-01-01

    Based on the different levels of solubility of radon gas in organic solvents and water, a bubbling system has been developed to transfer radon gas, dissolving naturally in water samples, to an organic solvent, i.e. olive oil, which is known to be a good solvent of radon gas. The system features the application of a fixed volume of bubbling air by introducing a fixed volume of water into a flask mounted above the system, to displace an identical volume of air from an air cylinder. Thus a gravitational flow of water is provided without the need for pumping. Then, the flushing air (radon-enriched air) is directed through a vial containing olive oil, to achieve deposition of the radon gas by another bubbling process. Following this, the vial (containing olive oil) is measured by direct use of gamma ray spectrometry, without the need of any chemical or physical processing of the samples. Using a standard solution of 226Ra/222Rn, a lowest measurable concentration (LMC) of radon in water samples of 9.4 Bq L(-1) has been achieved (below the maximum contaminant level of 11 Bq L(-1)).

  8. Novel approach for tomographic reconstruction of gas concentration distributions in air: Use of smooth basis functions and simulated annealing

    Science.gov (United States)

    Drescher, A. C.; Gadgil, A. J.; Price, P. N.; Nazaroff, W. W.

    Optical remote sensing and iterative computed tomography (CT) can be applied to measure the spatial distribution of gaseous pollutant concentrations. We conducted chamber experiments to test this combination of techniques using an open path Fourier transform infrared spectrometer (OP-FTIR) and a standard algebraic reconstruction technique (ART). Although ART converged to solutions that showed excellent agreement with the measured ray-integral concentrations, the solutions were inconsistent with simultaneously gathered point-sample concentration measurements. A new CT method was developed that combines (1) the superposition of bivariate Gaussians to represent the concentration distribution and (2) a simulated annealing minimization routine to find the parameters of the Gaussian basis functions that result in the best fit to the ray-integral concentration data. This method, named smooth basis function minimization (SBFM), generated reconstructions that agreed well, both qualitatively and quantitatively, with the concentration profiles generated from point sampling. We present an analysis of two sets of experimental data that compares the performance of ART and SBFM. We conclude that SBFM is a superior CT reconstruction method for practical indoor and outdoor air monitoring applications.

  9. H2S and mercaptans in the air in the Molve gas field

    International Nuclear Information System (INIS)

    Vadjic, V.; Tomic, M.

    1995-01-01

    During the processing and refining of natural gas the working areas and ambient air can be polluted by emission of specific pollutants. The natural gas from gas and gas-condensate fields Molve, Stari Gradac and Kalinovac near Bjelovar in northern Croatia contains high levels of hydrogen sulphide and mercaptans. At the central gas station located in the gas field Molve the sour gas from all fields is collected and cleaned by absorption of sulphur compounds in K 2 CO 3 solution before emission to the atmosphere

  10. Determination of local concentration of H2O molecules and gas temperature in the process of hydrogen – oxygen gas mixture heating by means of linear and nonlinear laser spectroscopy

    International Nuclear Information System (INIS)

    Kozlov, D N; Kobtsev, V D; Stel'makh, O M; Smirnov, Valery V; Stepanov, E V

    2013-01-01

    Employing the methods of linear absorption spectroscopy and nonlinear four-wave mixing spectroscopy using laserinduced gratings we have simultaneously measured the local concentrations of H 2 O molecules and the gas temperature in the process of the H 2 – O 2 mixture heating. During the measurements of the deactivation rates of pulsed-laser excited singlet oxygen O 2 (b 1 Σ + g ) in collisions with H 2 in the range 294 – 850 K, the joint use of the two methods made it possible to determine the degree of hydrogen oxidation at a given temperature. As the mixture is heated, H 2 O molecules are formed by 'dark' reactions of H 2 with O 2 in the ground state. The experiments have shown that the measurements of tunable diode laser radiation absorption along an optical path through the inhomogeneously heated gas mixture in a cell allows high-accuracy determination of the local H 2 O concentration in the O 2 laser excitation volume, if the gas temperature in this volume is known. When studying the collisional deactivation of O 2 (b 1 Σ + g ) molecules, the necessary measurements of the local temperature can be implemented using laser-induced gratings, arising due to spatially periodic excitation of O 2 (X 3 Σ - g ) molecules to the b 1 Σ + g state by radiation of the pump laser of the four-wave mixing spectrometer. (laser spectroscopy)

  11. Fast Lemons and Sour Boulders: Testing Crossmodal Correspondences Using an Internet-Based Testing Methodology

    Directory of Open Access Journals (Sweden)

    Andy T. Woods

    2013-09-01

    Full Text Available According to a popular family of hypotheses, crossmodal matches between distinct features hold because they correspond to the same polarity on several conceptual dimensions (such as active–passive, good–bad, etc. that can be identified using the semantic differential technique. The main problem here resides in turning this hypothesis into testable empirical predictions. In the present study, we outline a series of plausible consequences of the hypothesis and test a variety of well-established and previously untested crossmodal correspondences by means of a novel internet-based testing methodology. The results highlight that the semantic hypothesis cannot easily explain differences in the prevalence of crossmodal associations built on the same semantic pattern (fast lemons, slow prunes, sour boulders, heavy red; furthermore, the semantic hypothesis only minimally predicts what happens when the semantic dimensions and polarities that are supposed to drive such crossmodal associations are made more salient (e.g., by adding emotional cues that ought to make the good/bad dimension more salient; finally, the semantic hypothesis does not explain why reliable matches are no longer observed once intramodal dimensions with congruent connotations are presented (e.g., visually presented shapes and colour do not appear to correspond.

  12. A numerical study of under-deposit pitting corrosion in sour petroleum pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Sand, K.W.; Teevens, P.J. [Broadsword Corrosion Engineering Ltd., Calgary, AB (Canada)

    2010-07-01

    Insufficient fluid velocity in petroleum pipelines can lead to the deposit of sand, corrosion products, and non-corrosion products on the pipe's metal surface, which in turn can lead to pitting corrosion. There is currently no reliable means of detecting and preventing the pitting process. This paper presented a computerized simulation tool that used the finite element method to model mass transfer-governed internal pitting corrosion under solids deposition in sour petroleum pipelines. The computational domain consisted of a hemispherical pit and a thin stagnant solution film under a surface deposit. The moving mesh method was used to track pitting growth. A Poisson equation was used to determine aqueous path migration of ions. Pitting corrosion rates were estimated using the Nernst-Planck equation. The model was used to predict the effects of different operating parameters on pitting corrosion rates. The model can be used to develop pigging and in-line-inspection (ILI) procedures. 35 refs., 2 tabs., 16 figs.

  13. Selection of autochthonous sour cherry (Prunus cerasus L. genotypes in Feketić region

    Directory of Open Access Journals (Sweden)

    Radičević Sanja

    2012-01-01

    Full Text Available Autochthonous genotypes of fruit species are very important source of genetic variability and valuable material for breeding work. Fruit Research Institute-Čačak has a long tradition of studying autochthonous genotypes of temperate fruits sporadically spread and preserved in some localities in Serbia. Over 2005-2006, the following properties of nine autochthonous sour cherry genotypes grown in Feketic region were investigated: flowering and ripening time, pomological properties, biochemical composition of fruits and field resistance to causal agents of cherry diseases - cherry leaf spot (Blumeriella jaapii (Rehm. v. Arx., shot-hole (Clasterosporium carpophilum (Lév. Aderh. and brown rot (Monilinia laxa /Ader et Ruhl./ Honey ex Whetz.. The genotypes were tested for the presence of Prune dwarf virus and Prunus necrotic ring spot virus. In majority of genotypes fruits were large, with exceptional organoleptical properties, whereas ripening time was in the first ten or twenty days of June. The highest fruit weight was observed in F-1 genotype (8.1 g. The highest soluble solids and total sugars content were found in F- 4 genotype (17.60% and 14.25%, respectively. As for field resistance to causal agents of diseases and good pomo-technological properties, F-1, F-2, F-3, F-7 and F-8 genotypes were singled out. [Projekat Ministarstva nauke Republike Srbije, br. TR31064

  14. Determination of Low Concentrations of Acetochlor in Water by Automated Solid-Phase Extraction and Gas Chromatography with Mass-Selective Detection

    Science.gov (United States)

    Lindley, C.E.; Stewart, J.T.; Sandstrom, M.W.

    1996-01-01

    A sensitive and reliable gas chromatographic/mass spectrometric (GC/MS) method for determining acetochlor in environmental water samples was developed. The method involves automated extraction of the herbicide from a filtered 1 L water sample through a C18 solid-phase extraction column, elution from the column with hexane-isopropyl alcohol (3 + 1), and concentration of the extract with nitrogen gas. The herbicide is quantitated by capillary/column GC/MS with selected-ion monitoring of 3 characteristic ions. The single-operator method detection limit for reagent water samples is 0.0015 ??g/L. Mean recoveries ranged from about 92 to 115% for 3 water matrixes fortified at 0.05 and 0.5 ??g/L. Average single-operator precision, over the course of 1 week, was better than 5%.

  15. Prediction of Adsorption Equilibrium of VOCs onto Hyper-Cross-Linked Polymeric Resin at Environmentally Relevant Temperatures and Concentrations Using Inverse Gas Chromatography.

    Science.gov (United States)

    Jia, Lijuan; Ma, Jiakai; Shi, Qiuyi; Long, Chao

    2017-01-03

    Hyper-cross-linked polymeric resin (HPR) represents a class of predominantly microporous adsorbents and has good adsorption performance toward VOCs. However, adsorption equilibrium of VOCs onto HPR are limited. In this research, a novel method for predicting adsorption capacities of VOCs on HPR at environmentally relevant temperatures and concentrations using inverse gas chromatography data was proposed. Adsorption equilibrium of six VOCs (n-pentane, n-hexane, dichloromethane, acetone, benzene, 1, 2-dichloroethane) onto HPR in the temperature range of 403-443 K were measured by inverse gas chromatography (IGC). Adsorption capacities at environmentally relevant temperatures (293-328 K) and concentrations (P/P s = 0.1-0.7) were predicted using Dubinin-Radushkevich (DR) equation based on Polany's theory. Taking consideration of the swelling properties of HPR, the volume swelling ratio (r) was introduced and r·V micro was used instead of V micro determined by N 2 adsorption data at 77 K as the parameter q 0 (limiting micropore volume) of the DR equation. The results showed that the adsorption capacities of VOCs at environmentally relevant temperatures and concentrations can be predicted effectively using IGC data, the root-mean-square errors between the predicted and experimental data was below 9.63%. The results are meaningful because they allow accurate prediction of adsorption capacities of adsorbents more quickly and conveniently using IGC data.

  16. Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2.

    Science.gov (United States)

    Cummings, Beth; Hamilton, Michelle L; Ciaffoni, Luca; Pragnell, Timothy R; Peverall, Rob; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A

    2011-07-01

    The use of sidestream analyzers for respired gas analysis is almost universal. However, they are not ideal for measurements of respiratory gas exchange because the analyses are both temporally dissociated from measurements of respiratory flow and also not generally conducted under the same physical conditions. This study explores the possibility of constructing an all optical, fast response, in-line breath analyzer for oxygen and carbon dioxide. Using direct absorption spectroscopy with a diode laser operating at a wavelength near 2 μm, measurements of expired carbon dioxide concentrations were obtained with an absolute limit of detection of 0.04% at a time resolution of 10 ms. Simultaneously, cavity enhanced absorption spectroscopy at a wavelength near 760 nm was employed to obtain measurements of expired oxygen concentrations with an absolute limit of detection of 0.26% at a time resolution of 10 ms. We conclude that laser-based absorption spectroscopy is a promising technology for in-line analysis of respired carbon dioxide and oxygen concentrations.

  17. Detection and Estimation of 2-D Distributions of Greenhouse Gas Source Concentrations and Emissions over Complex Urban Environments and Industrial Sites

    Science.gov (United States)

    Zaccheo, T. S.; Pernini, T.; Dobler, J. T.; Blume, N.; Braun, M.

    2017-12-01

    This work highlights the use of the greenhouse-gas laser imaging tomography experiment (GreenLITETM) data in conjunction with a sparse tomography approach to identify and quantify both urban and industrial sources of CO2 and CH4. The GreenLITETM system provides a user-defined set of time-sequenced intersecting chords or integrated column measurements at a fixed height through a quasi-horizontal plane of interest. This plane, with unobstructed views along the lines of sight, may range from complex industrial facilities to a small city scale or urban sector. The continuous time phased absorption measurements are converted to column concentrations and combined with a plume based model to estimate the 2-D distribution of gas concentration over extended areas ranging from 0.04-25 km2. Finally, these 2-D maps of concentration are combined with ancillary meteorological and atmospheric data to identify potential emission sources and provide first order estimates of their associated fluxes. In this presentation, we will provide a brief overview of the systems and results from both controlled release experiments and a long-term system deployment in Paris, FR. These results provide a quantitative assessment of the system's ability to detect and estimate CO2 and CH4 sources, and demonstrate its ability to perform long-term autonomous monitoring and quantification of either persistent or sporadic emissions that may have both health and safety as well as environmental impacts.

  18. 222Rn flux and soil air concentration profiles in West-Germany. Soil 222Rn as tracer for gas transport in the unsaturated soil zone

    International Nuclear Information System (INIS)

    Doerr, H.; Muennich, K.O.

    1990-01-01

    Measurements of the 222 Rn activity concentration profile in the soil and the 222 Rn flux in West-Germany are presented. The spatial pattern of the 222 Rn flux depends more on soil type than on the 226 Ra activity of the soil material. The average 222 Rn flux from sandy soils is 1000-2000 dpm m -2 h -1 and 4000-6000 dpm m -2 h -1 froam loamy and clayey soils. Weekly 222 Rn flux measurements during a period of 1 year at a sandy site show no significant temporal variations. At a clayey site, the 222 Rn flux tends to be higher in summer than in winter. The permeability coefficient P Rn , obtained from simultaneous 222 Rn flux and concentration profile measurements in various soils, can be expressed as a function of the soil parameters total porosity ε 0 , soil moisture F, tortuosity k and the molecular diffusion coefficient D 0 of 222 Rn in air: P = D 0 ((ε 0 -F)/k-const.). The flux of any other gas into or out of the soil can thus be calculated from its measured concentration profile in the soil and from the 222 Rn permeability coefficient, replacing the molecular diffusion coefficient of 222 Rn by that of the specific gas under consideration. As an example, this method of flux determination is demonstrated for the soil CO 2 flux to the atmosphere and for the flux of atmospheric CH 4 into the soil. (author) 14 refs

  19. Determination of low specific activity iodine-129 off-gas concentrations by GC separation and negative ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S.J.; Rankin, R.A.; McManus, G.J.; Nielsen, R.A.; Delmore, J.E.; Hohorst, F.A.; Murphy, L.P.

    1983-09-01

    This document is the final report of the laboratory development of a method for determining the specific activity of the /sup 129/I emitted from a nuclear fuel reprocessing plant. The technique includes cryogenic sample collection, chemical form separation, quantitation by gas chromatography, and specific activity measurement of each chemical species by negative ionization mass spectrometry. The major conclusions were that both organic and elemental iodine can be quantitatively collected without fractionation and that specific activity measurements as low as one atom of /sup 129/I per 10/sup 5/ atoms of /sup 127/I are possible.

  20. Determination of low specific activity iodine-129 off-gas concentrations by GC separation and negative ionization mass spectrometry

    International Nuclear Information System (INIS)

    Fernandez, S.J.; Rankin, R.A.; McManus, G.J.; Nielsen, R.A.; Delmore, J.E.; Hohorst, F.A.; Murphy, L.P.

    1983-09-01

    This document is the final report of the laboratory development of a method for determining the specific activity of the 129 I emitted from a nuclear fuel reprocessing plant. The technique includes cryogenic sample collection, chemical form separation, quantitation by gas chromatography, and specific activity measurement of each chemical species by negative ionization mass spectrometry. The major conclusions were that both organic and elemental iodine can be quantitatively collected without fractionation and that specific activity measurements as low as one atom of 129 I per 10 5 atoms of 127 I are possible

  1. Resonance absorption measurements of atom concentrations in reacting gas mixtures. II. Calibration of microwave sources over a wide temperature range

    International Nuclear Information System (INIS)

    Chiang, C.; Lifshitz, A.; Skinner, G.B.; Wood, D.R.

    1979-01-01

    A series of experiments was carried out to calibrate three different microwave discharge lamps for analysis for D or H atoms, using Lyman-α absorption. Known concentrations of D atoms were produced in a shock tube by the reaction of 0.05--4 ppm D 2 with N 2 O in argon at 1800--3000 K. H atoms were produced by dissociation of 2,2,3,3-tetramethylbutane (10 ppm in argon) at 980--1140 K. These absorption data were compared with the absorption calculated from Lyman-α line shapes reported in an earlier paper, good agreement being found. These experiments provide a sound basis for obtaining the temperature and concentration dependence of the absorption coefficient over a wide temperature range, for H and D concentrations between 10 -12 and 10 -10 mole/cc

  2. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Xia Hui-Hui; Kan Rui-Feng; Liu Jian-Guo; Xu Zhen-Yu; He Ya-Bai

    2016-01-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H 2 O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. (paper)

  3. Effect of phytoremediation on concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site, Charleston, South Carolina, USA, 1998–2014

    Science.gov (United States)

    Landmeyer, James E.; Effinger, Thomas N.

    2016-01-01

    Concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site near Charleston, South Carolina, USA, have been monitored since the installation of a phytoremediation system of hybrid poplar trees in 1998. Between 2000 and 2014, the concentrations of benzene, toluene, and naphthalene (BT&N) in groundwater in the planted area have decreased. For example, in the monitoring well containing the highest concentrations of BT&N, benzene concentrations decreased from 10,200 µg/L to less than 4000 µg/L, toluene concentrations decreased from 2420 µg/L to less than 20 µg/L, and naphthalene concentrations decreased from 6840 µg/L to less than 3000 µg/L. Concentrations of BT&N in groundwater in all wells were observed to be lower during the summer months relative to the winter months of a particular year during the first few years after installing the phytoremediation system, most likely due to increased transpiration and contaminant uptake by the hybrid poplar trees during the warm summer months; this pathway of uptake by trees was confirmed by the detection of benzene, toluene, and naphthalene in trees during sampling events in 2002, and later in the study in 2012. These data suggest that the phytoremediation system affects the groundwater contaminants on a seasonal basis and, over multiple years, has resulted in a cumulative decrease in dissolved-phase contaminant concentrations in groundwater. The removal of dissolved organic contaminants from the aquifer has resulted in a lower demand on dissolved oxygen supplied by recharge and, as a result, the redox status of the groundwater has changed from anoxic to oxic conditions. This study provides much needed information for water managers and other scientists on the viability of the long-term effectiveness of phytoremediation in decreasing groundwater contaminants and increasing dissolved oxygen at sites contaminated by benzene, toluene, and naphthalene.

  4. Higher prices at Canadian gas pumps: international crude oil prices or local market concentration? An empirical investigation

    International Nuclear Information System (INIS)

    Anindya Sen

    2003-01-01

    There is little consensus on whether higher retail gasoline prices in Canada are the result of international crude oil price fluctuations or local market power exercised by large vertically-integrated firms. I find that although both increasing local market concentration and higher average monthly wholesale prices are positively and significantly associated with higher retail prices, wholesale prices are more important than local market concentration. Similarly, crude oil prices are more important than the number of local wholesalers in determining wholesale prices. These results suggest that movements in gasoline prices are largely the result of input price fluctuations rather than local market structure. (author)

  5. Radioactivity in produced water from Norwegian oil and gas installations - concentrations, bioavailability and doses to marine biota

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, R.; Eriksen, D. Oe.; Straalberg, E.; Iden, K. I.; Rye, H.; Hylland, K.; Ruus, A.; Roeyset, O.; Berntssen, M. H. G.

    2006-03-15

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226Ra and 228Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. Preliminary results indicate that presence of added chemicals such as scale inhibitors in the produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bio-availability of radium (and barium) may be larger than anticipated. Also, the bio-availability of radium may be increased due to presence of such chemicals, and this is presently being studied. (author) (tk)

  6. Silica Gel Coated Spherical Micro resonator for Ultra-High Sensitivity Detection of Ammonia Gas Concentration in Air.

    Science.gov (United States)

    Mallik, Arun Kumar; Farrell, Gerald; Liu, Dejun; Kavungal, Vishnu; Wu, Qiang; Semenova, Yuliya

    2018-01-26

    A silica gel coated microsphere resonator is proposed and experimentally demonstrated for measurements of ammonia (NH 3 ) concentration in air with ultra-high sensitivity. The optical properties of the porous silica gel layer change when it is exposed to low (parts per million (ppm)) and even ultra-low (parts per billion (ppb)) concentrations of ammonia vapor, leading to a spectral shift of the WGM resonances in the transmission spectrum of the fiber taper. The experimentally demonstrated sensitivity of the proposed sensor to ammonia is estimated as 34.46 pm/ppm in the low ammonia concentrations range from 4 ppm to 30 ppm using an optical spectrum analyser (OSA), and as 800 pm/ppm in the ultra-low range of ammonia concentrations from 2.5 ppb to 12 ppb using the frequency detuning method, resulting in the lowest detection limit (by two orders of magnitude) reported to date equal to 0.16 ppb of ammonia in air. In addition, the sensor exhibits excellent selectivity to ammonia and very fast response and recovery times measured at 1.5 and 3.6 seconds, respectively. Other attractive features of the proposed sensor are its compact nature, simplicity of fabrication.

  7. Induced ferromagnetic and gas sensing properties in ZnO-nanostructures by altering defect concentration of oxygen and zinc vacancies

    CSIR Research Space (South Africa)

    Motaung, DE

    2015-01-01

    Full Text Available synthesis reaction-time due to a decreased surface area, as well as VþO and VZn concentrations. Thus, the synthesis reaction-time clearly controls the relative occupancy of the VþO and VZn present on the surface of ZnO- nanostructures, which is enunciated...

  8. Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Yunusa, I.A.M.; Burchett, M.D.; Manoharan, V.; DeSilva, D.L.; Eamus, D.; Skilbeck, C.G. [University of Technology Sydney, Sydney, NSW (Australia). Dept. of Environmental Science

    2009-07-15

    There is uncertainty as to the rates of coal fly ash needed for optimum physiological processes and growth. In the current study we tested the hyothesis that photosynthetic pigments concentrations and CO{sub 2} assimilation (A) are more sensitive than dry weights in plants grown on media amended with coal fly ash. We applied the Terrestrial Plant Growth Test (Guideline 208) protocols of the Organization for Economic Cooperation and Development (OECD) to monocots (barley (Hordeum vulgare) and ryegrass (Secale cereale)) and dicots (canola (Brasica napus), radish (Raphanus sativus), field peas (Pisum sativum), and lucerne (Medicago sativa)) on media amended with fly ashes derived from semi-bituminous (gray ash) or lignite (red ash) coals at rates of 0, 2.5, 5.0, 10, or 20 Mg ha(-1). The red ash had higher elemental concentrations and salinity than the gray ash. Fly ash addition had no significant effect on germination by any of the six species. At moderate rates ({<=}10 Mg ha{sup -1}) both ashes increased (P < 0.05) growth rates and concentrations of chlorophylls a and b, but reduced carotenoid concentrations. Addition of either ash increased A in radish and transpiration in barley. Growth rates and final dry weights were reduced for all of the six test species when addition rates exceeded 10 Mg ha{sup -1} for gray ash and 5 Mg ha{sup -1} for red ash. We concluded that plant dry weights, rather than pigment concentrations and/or instantaneous rates of photosynthesis, are more consistent for assessing subsequent growth in plants supplied with fly ash.

  9. Analysis of feed stream acid gas concentration effects on the transport properties and separation performance of polymeric membranes for natural gas sweetening: A comparison between a glassy and rubbery polymer

    KAUST Repository

    Vaughn, Justin T.

    2014-09-01

    A 6FDA based polyamide-imide, 6F-PAI-1, is compared to Pebax®, a commercially available rubbery polyether/polyamide block copolymer, for the simultaneous separation of CO2 and H2S from CH4. Feed streams of 20/20/60 and 5/45/50H2S/CO2/CH4 were used to compare the effect of acid gas concentration on the separation efficiency of 6F-PAI-1 and Pebax® under industrially relevant conditions. 6F-PAI-1 showed CO2/CH4 selectivities at 850psia total feed pressure of 30 and 40 for the 20/20/60 and 5/45/50 feed streams, respectively, while selectivity for H2S/CH4 was approximately 20 for both feeds. Pebax® showed selectivities of 40 and 10 for H2S/CH4 and CO2/CH4, respectively. Both selectivities were mostly independent of acid gas concentration in the feed, an unsurprising trend considering the non-glassy nature of this material. The selectivities in 6F-PAI-1 translated to less than 6% CH4 lost in the permeate stream for both feeds, while for the 5/45/50 feed, CH4 fraction in the permeate at 850psia was less than 4%. These promising results suggest that glassy polymers possessing favorable intrinsic plasticization resistance, such as 6F-PAI-1, may be appropriate for the typical case of natural gas sweetening where CO2 concentration in the feed is higher than it is for H2S. © 2014 Elsevier B.V.

  10. A comparative study of the effect of green tea and sour tea on blood pressure and lipid profile in healthy adult men

    Directory of Open Access Journals (Sweden)

    Marzieh Kafeshani

    2017-06-01

    Full Text Available BACKGROUND: Cardiovascular diseases (CVD are a set of metabolic disorders affecting heart and blood vessels. Green tea and sour tea (Hibiscus sabdariffa L. have attracted significant attention recently due to their high popularity, nutrient profile and therapeutic effects. The aim of the present study was to compare the effects of green tea and sour tea supplementation on blood pressure and lipid profile in healthy adult men. METHODS: This randomized, double-blind, placebo-controlled trial included 54 healthy adult men. The participants were randomly assigned to two intervention groups receiving 450 mg green tea or sour tea and one placebo group which consumed 450 mg placebo (maltodextrin for 6 weeks. Blood pressure, lipid profile, dietary intake and physical activity were measured pre- and post-intervention and compared. RESULTS: After 6 weeks of intervention, sour tea supplementation led to a significant decrease in systolic blood pressure (SBP compared with the placebo group. However, we faild to find any significant difference in SBP between green tea and control groups. Also, no significant changes were observed in diastolic blood pressure (DBP and lipid profile between the three groups. In comparison with baseline, there was a significant increase in the mean level of serum high-density lipoprotein cholesterol (HDL-C in green tea and sour tea groups. Also, the interventions resulted in significant decrease in the mean levels of serum total cholesterol (TC and low-density lipoprotein cholesterol (LDL-C and DBP in the sour tea group compared with the pre-intervention value. CONCLUSION: On the basis of our findings, sour tea supplementation led to decreased SBP in healthy men compared with the placebo, but there was no significant difference between their effects on DBP and lipid profile. 

  11. Gas in Place Resource Assessment for Concentrated Hydrate Deposits in the Kumano Forearc Basin, Offshore Japan, from NanTroSEIZE and 3D Seismic Data

    Science.gov (United States)

    Taladay, K.; Boston, B.

    2015-12-01

    Natural gas hydrates (NGHs) are crystalline inclusion compounds that form within the pore spaces of marine sediments along continental margins worldwide. It has been proposed that these NGH deposits are the largest dynamic reservoir of organic carbon on this planet, yet global estimates for the amount of gas in place (GIP) range across several orders of magnitude. Thus there is a tremendous need for climate scientists and countries seeking energy security to better constrain the amount of GIP locked up in NGHs through the development of rigorous exploration strategies and standardized reservoir characterization methods. This research utilizes NanTroSEIZE drilling data from International Ocean Drilling Program (IODP) Sites C0002 and C0009 to constrain 3D seismic interpretations of the gas hydrate petroleum system in the Kumano Forearc Basin. We investigate the gas source, fluid migration mechanisms and pathways, and the 3D distribution of prospective HCZs. There is empirical and interpretive evidence that deeply sourced fluids charge concentrated NGH deposits just above the base of gas hydrate stability (BGHS) appearing in the seismic data as continuous bottoms simulating reflections (BSRs). These HCZs cover an area of 11 by 18 km, range in thickness between 10 - 80 m with an average thickness of 40 m, and are analogous to the confirmed HCZs at Daini Atsumi Knoll in the eastern Nankai Trough where the first offshore NGH production trial was conducted in 2013. For consistency, we calculated a volumetric GIP estimate using the same method employed by Japan Oil, Gas and Metals National Corporation (JOGMEC) to estimate GIP in the eastern Nankai Trough. Double BSRs are also common throughout the basin, and BGHS modeling along with drilling indicators for gas hydrates beneath the primary BSRs provides compelling evidence that the double BSRs reflect a BGHS for structure-II methane-ethane hydrates beneath a structure-I methane hydrate phase boundary. Additional drilling

  12. Recognition and measurement gas-liquid two-phase flow in a vertical concentric annulus at high pressures

    Science.gov (United States)

    Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin

    2018-02-01

    The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.

  13. Relationship of Temperature and NO{sub x} Concentration during Primary Method on Reduction using in Flame of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Poskart, Monika; Szecowka, Lech [Technical Univ. of Czestochowa (Poland). Dept. of Industrial Furnaces and Environmental Protection

    2006-01-15

    Nitrogen oxides are some of the most harmful components polluting the atmosphere. Energetic criteria require establishing the complex technological parameters (capacity, temperature, pressure, composition of products, lost of heat and others) with the possibility of the highest energy efficiency. Ecological criteria lead to minimization of harmful substations emission. However, it is possible to limit the negative influence of hazardous components on natural environment. So-called 'primary methods', which relied on the modification of combustion process, are the most effective and cheapest methods of pollution limitation. This paper included the results of NO{sub x} reduction in combustion process with application of primary methods such as: flue gas recirculation, air and fuel staging.

  14. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  15. Optimization of Concentration and EM4 Augmentation for Improving Bio-Gas Productivity from Jatropha curcas Linn Capsule Husk

    Directory of Open Access Journals (Sweden)

    Praptiningsih G.A

    2014-02-01

    Full Text Available Most literature suggests that two-phase digestion is more efficient than single-phase. The series of two-phase digestion studies have been conducted from 2011 to 2013 at the research farm of PT Bumimas Ekapersada, West Java, Indonesia. This paper reports on a research on optimation of concentration and augmentation of EM-4 (effective microorganism-4, a local commercial decomposer, as efforts to stabilize a biogas technology which made ​​from husk capsules of Jatropha curcas Linn (DH-JcL. The studies of increasing organic loading rate (OLR for the two-phase digestion was conducted to improve efficiency.  The concentration variable studied was 1: 8 (1 part DH-JCL and 8 parts water, compared to 1: 12 as a control. The augmentation treatment is the addition of EM-4 by 5% (v/v. It was also examined the augmentation of F2-EM4 (150 times duplication of EM-4 due to cost consideration. The studies were conducted in the laboratory which using a liter and two liters of glass digester and glass wool as immobilized growth. The results of this study support the previous studies: the optimum concentration was 1: 8, EM-4 was able to increase biogas production in two-phase digestion, yet biogas production decrease at single-phase. F2-EM4’s ability to support production of biogas were equivalent to that of EM-4.

  16. Redox potential characterization and soil greenhouse gas concentration across a hydrological gradient in a Gulf coast forest

    Science.gov (United States)

    Yu, K.; Faulkner, S.P.; Patrick, W.H.

    2006-01-01

    Soil redox potential (Eh), concentrations of oxygen (O2) and three greenhouse gases (CO2, CH4, and N2O) were measured in the soil profile of a coastal forest at ridge, transition, and swamp across a hydrological gradient. The results delineated a distinct boundary in soil Eh and O2 concentration between the ridge and swamp with essentially no overlap between the two locations. Critical soil Eh to initiate significant CH4 production under this field conditions was about +300 mV, much higher than in the homogenous soils (about -150 mV). The strength of CH4 source to the atmosphere was strong for the swamp, minor for the transition, and negligible or even negative (consumption) for the ridge. Maximum N2O concentration in the soils was found at about Eh +250 mV, and the soil N2O emission was estimated to account for less than 4% for the ridge and transition, and almost negligible for the swamp in the cumulative global warming potential (GWP) of these three gases. The dynamic nature of this study site in response to water table fluctuations across a hydrological gradient makes it an ideal model of impact of future sea level rise to coastal ecosystems. Soil carbon (C) sequestration potential due to increasing soil water content upon sea level rise and subsidence in this coastal forest was likely limited and temporal, and at the expense of increasing soil CH4 production and emission. ?? 2005 Elsevier Ltd. All rights reserved.

  17. Implementation of dataflow programming based Fuzzy Logic algorithm for gas concentration index in around of Sidoarjo mudflow, Indonesia

    Directory of Open Access Journals (Sweden)

    Widasari Edita Rosana

    2018-01-01

    Full Text Available Sidoarjo mudflow or known as Lapindo mudflow erupted since 2006. The Sidoarjo mudflow is located in Sidoarjo City, East Java, Indonesia. The mudflow-affected area has high air pollution level and high health risk. Therefore, in this paper was implemented a system that can categorize the level of air pollution into several categories. The air quality index can be categorized using fuzzy logic algorithm based on the concentration of air pollutant parameters in the mudflow-affected area. Furthermore, Dataflow programming is used to process the fuzzy logic algorithm. Based on the result, the measurement accuracy of the air quality index in the mudflow-affected area has an accuracy rate of 93.92% in Siring Barat, 93.34% in Mindi, and 95.96% in Jatirejo. The methane concentration is passes the standard quality even though the air quality index is safe. Hence, the area is indicated into Hazardous level. In addition, Mindi has highest and stable methane concentration. It means that Mindi has high-risk air pollution.

  18. Br2 production from the heterogeneous reaction of gas-phase OH with aqueous salt solutions: Impacts of acidity, halide concentration, and organic surfactants.

    Science.gov (United States)

    Frinak, Elizabeth K; Abbatt, Jonathan P D

    2006-09-07

    This study reports the first laboratory measurement of gas-phase Br2 production from the reaction between gas-phase hydroxyl radicals and aqueous salt solutions. Experiments were conducted at 269 K in a rotating wetted-wall flow tube coupled to a chemical-ionization mass spectrometer for analysis of gas-phase components. From both pure NaBr solutions and mixed NaCl/NaBr solutions, the amount of Br2 released was found to increase with increasing acidity, whereas it was found to vary little with increasing concentration of bromide ions in the sample. For mixed NaCl/NaBr solutions, Br2 was formed preferentially over Cl2 unless the Br- levels in the solution were significantly depleted by OH oxidation, at which point Cl2 formation was observed. Presence of a surfactant in solution, sodium dodecyl sulfate, significantly suppressed the formation of Br2; this is the first indication that an organic surfactant can affect the rate of interfacial mass transfer of OH to an aqueous surface. The OH-mediated oxidation of bromide may serve as a source of active bromine in the troposphere and contribute to the subsequent destruction of ozone that proceeds in marine-influenced regions of the troposphere.

  19. A method to calculate equilibrium concentrations of gas and defects in the vicinity of an over-pressured bubble in UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, L., E-mail: laurence.noirot@cea.fr

    2014-04-01

    We present a method devised to calculate the equilibrium concentration of point defects and gas atoms in the vicinity of a bubble in UO{sub 2}. First, we neglect the mechanical energy stored in the solid around an over-pressured bubble and then we explain how to take it into account. We apply the method to helium in interstitial positions in UO{sub 2}, and compare our theoretical value of Henry’s constant with experiments and a molecular dynamics computation. Then, we apply the method to xenon in a Schottky defect and use it to assess the realism of two scenarios elaborated to explain the “paradox of annealing experiments”, i.e. “why a large proportion of gas is released from grains in annealing experiments on irradiated fuel, even though there are thousands of intragranular bubbles to trap the gas?” These two scenarios (thermal resolution or blockage of trapping due to the stress field around the bubbles) were both found to be unrealistic, at least with the formation energies available from ab initio calculations, and with the assumption made to calculate the Z3 term of the partition function. This term is related to the vibration frequencies of xenon atoms in Schottky defects and lattice atoms close to defects.

  20. Summer-winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting.

    Science.gov (United States)

    Wang, Thanh; Han, Shanlong; Yuan, Bo; Zeng, Lixi; Li, Yingming; Wang, Yawei; Jiang, Guibin

    2012-12-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9-33.0 ng/m(3) during wintertime. Significantly higher levels were found during the summer (range 112-332 ng/m(3)). The average fraction of total SCCPs in the particle phase (ϕ) was 0.67 during wintertime but decreased significantly during the summer (ϕ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol-air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge-Pankow adsorption and K(oa)-based absorption models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Hydrothermal synthesis of p-type nanocrystalline NiO nanoplates for high response and low concentration hydrogen gas sensor application

    KAUST Repository

    Nakate, Umesh T.; Lee, Gun Hee; Ahmad, Rafiq; Patil, Pramila; Bhopate, Dhanaji P.; Hahn, Y.B.; Yu, Y.T.; Suh, Eun-kyung

    2018-01-01

    High quality nanocrystalline NiO nanoplates were synthesized using surfactant and template free hydrothermal route. The gas sensing properties of NiO nanoplates were investigated. The nanoplates morphology of NiO with average thickness ~20 nm and diameter ~100 nm has been confirmed by FE-SEM and TEM. Crystalline quality of NiO has been studied using HRTEM and SAED techniques. Structural properties and elemental compositions have been analysed by XRD and energy dispersive spectrometer (EDS) respectively. The detailed investigation of structural parameters has been carried out. The optical properties of NiO were analyzed from UV-Visible and photoluminescence spectra. NiO nanoplates have good selectivity towards hydrogen (H2) gas. The lowest H2 response of 3% was observed at 2 ppm, whereas 90% response was noted for 100 ppm at optimized temperature of 200 °C with response time 180 s. The H2 responses as functions of different operating temperature as well as gas concentrations have been studied along with sensor stability. The hydrogen sensing mechanism was also elucidated.

  2. Hydrothermal synthesis of p-type nanocrystalline NiO nanoplates for high response and low concentration hydrogen gas sensor application

    KAUST Repository

    Nakate, Umesh T.

    2018-05-30

    High quality nanocrystalline NiO nanoplates were synthesized using surfactant and template free hydrothermal route. The gas sensing properties of NiO nanoplates were investigated. The nanoplates morphology of NiO with average thickness ~20 nm and diameter ~100 nm has been confirmed by FE-SEM and TEM. Crystalline quality of NiO has been studied using HRTEM and SAED techniques. Structural properties and elemental compositions have been analysed by XRD and energy dispersive spectrometer (EDS) respectively. The detailed investigation of structural parameters has been carried out. The optical properties of NiO were analyzed from UV-Visible and photoluminescence spectra. NiO nanoplates have good selectivity towards hydrogen (H2) gas. The lowest H2 response of 3% was observed at 2 ppm, whereas 90% response was noted for 100 ppm at optimized temperature of 200 °C with response time 180 s. The H2 responses as functions of different operating temperature as well as gas concentrations have been studied along with sensor stability. The hydrogen sensing mechanism was also elucidated.

  3. High hydrostatic pressure inactivation of total aerobic bacteria, lactic acid bacteria, yeasts in sour Chinese cabbage.

    Science.gov (United States)

    Li, Lin; Feng, Lun; Yi, Junjie; Hua, Cheng; Chen, Fang; Liao, Xiaojun; Wang, Zhengfu; Hu, Xiaosong

    2010-08-15

    This study investigated the inactivation of total aerobic bacteria (TAB), lactic acid bacteria (LAB), yeasts in sour Chinese cabbage (SCC) treated by high hydrostatic pressure (HHP). The pressure level ranged from 200 to 600 MPa and the treatment time were 10-30 min. All samples were stored at 4, 27 and 37 degrees C for 90 days. The pressure level of 200 MPa had no significant impact on these microorganisms. The counts of TAB were significantly reduced by 2.7-4.0 log(10)CFU/g at 400 MPa and 4.2-4.5 log(10)CFU/g at 600 MPa from 6.2 log(10)CFU/g; the counts of LAB were also reduced by 2.4-4.3 log(10)CFU/g at 400 MPa from 7.0 log(10)CFU/g and LAB was completely inactivated at 600 MPa; the counts of yeasts were reduced by 1.5-2.0 log(10)CFU/g at 400 and 600 MPa from 4.2 log(10)CFU/g. Storage temperatures significantly influenced the microbial proliferation in HHP-treated SCC depending on the pressure levels. The surviving TAB and LAB at 400 MPa equaled initial counts after 15-day storage at 27 and 37 degrees C, whereas they were inhibited at 4 degrees C up to 60 days. The surviving TAB at 600 MPa did not grow. Yeasts at 400 and 600 MPa decreased below detectable level after 2 days at all the three storage temperatures. From the microbial safety point of view, the result indicated that HHP at 600 MPa could be used as an alternative preservation method for SCC. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Carbohydrate production, balance and translocation in leaves, shoots and fruits of Montmorency sour cherry

    International Nuclear Information System (INIS)

    Kappes, E.M.

    1986-01-01

    Carbohydrate production, export and use were studied for different organs of sour cherry (Prunus cerasus L. Montmorency). Gross carbohydrate ( 14 CO 2 ) export started between 27.2 and 77.6% of full leaf expansion. The 10th leaf developing started export later than the 7th leaf, suggesting that higher carbohydrate availability during leaf expansion delays export initiation. In support of this, gross export started earlier (44.4-52.4% full expansion) after source leaf removal, than in the control (77.6%). Translocation was primarily vertical (following orthostichies). Most leaves of fruiting shoots exported bidirectionally to the apex and fruits, only leaves closest to fruits exported exclusively to fruits during rapid cell division (Stage I) and rapid cell expansion (Stage III). Net export, determined from carbohydrate balance models started at 17 and 51% expansion for the 7th and terminal leaf, and at 26.5% of shoot elongation. Cumulative carbohydrate production of the 7th and terminal leaves during the first 9 and 11 days after emergence, exceeded carbohydrate accumulated at final size, 464.2 and 148.9 mg. A fruit carbohydrate balance was developed to determine contributions by fruit photosynthesis and fruit respiration, and to identify periods of greatest carbohydrate import. Fruit photosynthesis during development was characterized under different environmental conditions. Gross photosynthesis and chlorophyll content per fruit increased to a maximum during stage II and decreased thereafter. Gross photosynthesis approached a maximum at 40 0 C. Since dark respiration increased exponentially over the same temperature range, net photosynthesis reached a maximum at 18 0 C. Photorespiration was not detected

  5. TEXTURAL, FLOW AND SENSORY PROPERTIES OF FIVE “FRUZELINA” WITH SOUR CHERRIES

    Directory of Open Access Journals (Sweden)

    Irena Bojdo Tomasiak

    2010-05-01

    Full Text Available Gel with sour cherries called “Fruzelina” is a new product in the Polish market widely used in food industry as a decorative element or filling for pastries, as an ingredient in fruit desserts, as an additive to ice creams, whipped cream and waffles. The cherry gels are the product prepared using different types of chemically modified starches. Starch is an additive used to ensure rich and short texture and high viscosity of “Fruzelina”. Food texture and viscosity may be measured by senses and instrumentally. Because of fact that sensory analysis is time consuming and very costly, it is easier and cheaper to determine food properties, especially their texture and flow behaviour by appropriate mechanical tests. The aim of this work was to study the rheological behavior of five cherry gels and evaluate the correlation between textural, flow and sensory properties of these gels measured instrumentally and by human senses. The back extrusion test has been found to be applicable to study the textural properties of cherry gels. There was high positive correlation between gel texture measured by senses and texture parameters measured in back extrusion test. Similar high correlation was identified for consistency coefficient K obtained in Ostwald de Waele model and gel texture assessed by sensory panel. It was found that values of sensory parameters such as taste and odour decreased as the rheological parameters increased. High negative correlations were observed in these cases. Therefore, instrumental measurements can be alternative for more expensive sensory methods. doi:10.5219/53

  6. Acid stimulation (sour taste elicits GABA and serotonin release from mouse taste cells.

    Directory of Open Access Journals (Sweden)

    Yijen A Huang

    Full Text Available Several transmitter candidates including serotonin (5-HT, ATP, and norepinephrine (NE have been identified in taste buds. Recently, γ-aminobutyric acid (GABA as well as the associated synthetic enzymes and receptors have also been identified in taste cells. GABA reduces taste-evoked ATP secretion from Receptor cells and is considered to be an inhibitory transmitter in taste buds. However, to date, the identity of GABAergic taste cells and the specific stimulus for GABA release are not well understood. In the present study, we used genetically-engineered Chinese hamster ovary (CHO cells stably co-expressing GABA(B receptors and Gαqo5 proteins to measure GABA release from isolated taste buds. We recorded robust responses from GABA biosensors when they were positioned against taste buds isolated from mouse circumvallate papillae and the buds were depolarized with KCl or a stimulated with an acid (sour taste. In contrast, a mixture of sweet and bitter taste stimuli did not trigger GABA release. KCl- or acid-evoked GABA secretion from taste buds was Ca(2+-dependent; removing Ca(2+ from the bathing medium eliminated GABA secretion. Finally, we isolated individual taste cells to identify the origin of GABA secretion. GABA was released only from Presynaptic (Type III cells and not from Receptor (Type II cells. Previously, we reported that 5-HT released from Presynaptic cells inhibits taste-evoked ATP secretion. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the present results indicate that GABA and 5-HT are inhibitory transmitters in mouse taste buds and both likely play an important role in modulating taste responses.

  7. Detecting the effects of coal mining, acid rain, and natural gas extraction in Appalachian basin streams in Pennsylvania (USA) through analysis of barium and sulfate concentrations.

    Science.gov (United States)

    Niu, Xianzeng; Wendt, Anna; Li, Zhenhui; Agarwal, Amal; Xue, Lingzhou; Gonzales, Matthew; Brantley, Susan L

    2018-04-01

    To understand how extraction of different energy sources impacts water resources requires assessment of how water chemistry has changed in comparison with the background values of pristine streams. With such understanding, we can develop better water quality standards and ecological interpretations. However, determination of pristine background chemistry is difficult in areas with heavy human impact. To learn to do this, we compiled a master dataset of sulfate and barium concentrations ([SO 4 ], [Ba]) in Pennsylvania (PA, USA) streams from publically available sources. These elements were chosen because they can represent contamination related to oil/gas and coal, respectively. We applied changepoint analysis (i.e., likelihood ratio test) to identify pristine streams, which we defined as streams with a low variability in concentrations as measured over years. From these pristine streams, we estimated the baseline concentrations for major bedrock types in PA. Overall, we found that 48,471 data values are available for [SO 4 ] from 1904 to 2014 and 3243 data for [Ba] from 1963 to 2014. Statewide [SO 4 ] baseline was estimated to be 15.8 ± 9.6 mg/L, but values range from 12.4 to 26.7 mg/L for different bedrock types. The statewide [Ba] baseline is 27.7 ± 10.6 µg/L and values range from 25.8 to 38.7 µg/L. Results show that most increases in [SO 4 ] from the baseline occurred in areas with intensive coal mining activities, confirming previous studies. Sulfate inputs from acid rain were also documented. Slight increases in [Ba] since 2007 and higher [Ba] in areas with higher densities of gas wells when compared to other areas could document impacts from shale gas development, the prevalence of basin brines, or decreases in acid rain and its coupled effects on [Ba] related to barite solubility. The largest impacts on PA stream [Ba] and [SO 4 ] are related to releases from coal mining or burning rather than oil and gas development.

  8. Correction factor to determine total hydrogen+deuterium concentration obtained by inert gas fusion-thermal conductivity detection (IGF- TCD) technique

    International Nuclear Information System (INIS)

    Ramakumar, K.L.; Sesha Sayi, Y.; Shankaran, P.S.; Chhapru, G.C; Yadav, C.S.; Venugopal, V.

    2004-01-01

    The limitation of commercially available dedicated equipment based on Inert Gas Fusion- Thermal Conductivity Detection (IGF - TCD) for the determination of hydrogen+deuterium is described. For a given molar concentration, deuterium is underestimated vis a vis hydrogen because of lower thermal conductivity and not considering its molecular weight in calculations. An empirical correction factor based on the differences between the thermal conductivities of hydrogen, deuterium and the carrier gas argon, and the mole fraction of deuterium in the sample has been derived to correct the observed hydrogen+deuterium concentration. The corrected results obtained by IGF - TCD technique have been validated by determining hydrogen and deuterium contents in a few samples using an independent method based on hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). Knowledge of mole fraction of deuterium (XD) is necessary to effect the correction. The correction becomes insignificant at low X D values (XD < 0.2) as the precision in the IGF measurements is comparable with the extent of correction. (author)

  9. D2O clusters isolated in rare-gas solids: Dependence of infrared spectrum on concentration, deposition rate, heating temperature, and matrix material

    Science.gov (United States)

    Shimazaki, Yoichi; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-04-01

    The infrared absorption spectra of D2O monomers and clusters isolated in rare-gas matrices were systematically reinvestigated under the control of the following factors: the D2O concentration, deposition rate, heating temperature, and rare-gas species. We clearly show that the cluster-size distribution is dependent on not only the D2O concentration but also the deposition rate of a sample; as the rate got higher, smaller clusters were preferentially formed. Under the heating procedures at different temperatures, the cluster-size growth was successfully observed. Since the monomer diffusion was not enough to balance the changes in the column densities of the clusters, the dimer diffusion was likely to contribute the cluster growth. The frequencies of the bonded-OD stretches of (D2O)k with k = 2-6 were almost linearly correlated with the square root of the critical temperature of the matrix material. Additional absorption peaks of (D2O)2 and (D2O)3 in a Xe matrix were assigned to the species trapped in tight accommodation sites.

  10. Solving widespread low-concentration VOC air pollution problems: Gas-phase photocatalytic oxidation answers the needs of many small businesses

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, C; Turchi, C; Gratson, D

    1995-04-01

    Many small businesses are facing new regulations under the 1990 Amendments to the Clean Air Act. Regulators, as well as the businesses themselves, face new challenges to control small point-source air pollution emissions. An individual business-such as a dry cleaner, auto repair shop, bakery, coffee roaster, photo print shop, or chemical company-may be an insignificant source of air pollution, but collectively, the industry becomes a noticeable source. Often the businesses are not equipped to respond to new regulatory requirements because of limited resources, experience, and expertise. Also, existing control strategies may be inappropriate for these businesses, having been developed for major industries with high volumes, high pollutant concentrations, and substantial corporate resources. Gas-phase photocatalytic oxidation (PCO) is an option for eliminating low-concentration, low-flow-rate emissions of volatile organic compounds (VOCs) from small business point sources. The advantages PCO has over other treatment techniques are presented in this paper. This paper also describes how PCO can be applied to specific air pollution problems. We present our methodology for identifying pollution problems for which PCO is applicable and for reaching the technology`s potential end users. PCO is compared to other gas-phase VOC control technologies.

  11. On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System

    Science.gov (United States)

    Ferguson, Frank T.; Johnson, Natasha M.; Nuth, Joseph A., III

    2015-01-01

    One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, the gas phase above these grain analogs is sampled using Fourier transform infrared (FT-IR) spectroscopy. To provide quantitative estimates of the concentration of these gases, a technique in which high-resolution spectra of the gases are calculated using the high-resolution transmission molecular absorption (HITRAN) database is used. Next, these spectra are processed via a method that mimics the processes giving rise to the instrumental line shape of the FT-IR spectrometer, including apodization, self-apodization, and broadening due to the finite resolution. The result is a very close match between the measured and computed spectra. This technique was tested using four major gases found in the FTT reactions: carbon monoxide, methane, carbon dioxide, and water. For the ranges typical of the FTT reactions, the carbon monoxide results were found to be accurate to within 5% and the remaining gases accurate to within 10%. These spectra can then be used to generate synthetic calibration data, allowing the rapid computation of the gas concentrations in the FTT experiments.

  12. AN APPLICATION OF FLOW INJECTION ANALYSIS WITH GAS DIFFUSION AND SPECTROPHOTOMETRIC DETECTION FOR THE MONITORING OF DISSOLVED SULPHIDE CONCENTRATION IN ENVIRONMENTAL SAMPLES

    Directory of Open Access Journals (Sweden)

    Malwina Cykowska

    2014-10-01

    Full Text Available The monitoring of the concentration of sulphide is very important from the environment point of view because of high toxicity of hydrogen sulphide. What is more hydrogen sulphide is an important pollution indicator. In many cases the determination of sulphide is very difficult due to complicated matrix of some environmental samples, which causes that most analytical methods cannot be used. Flow injection analysis allows to avoid matrix problem what makes it suitable for a wide range of applications in analytical laboratories. In this paper determination of dissolved sulphide in environmental samples by gas-diffusion flow injection analysis with spectrophotometric detection was presented. Used gas-diffusion separation ensures the elimination of interferences caused by sample matrix and gives the ability of determination of sulphides in coloured and turbid samples. Studies to optimize the measurement conditions and to determine the value of the validation parameters (e.g. limit of detection, limit of quantification, precision, accuracy were carried out. Obtained results confirm the usefulness of the method for monitoring the concentration of dissolved sulphides in water and waste water. Full automation and work in a closed system greatly reduces time of analysis, minimizes consumption of sample and reagents and increases safety of analyst’s work.

  13. Anomalous spreading of a density front from an infinite continuous source in a concentration-dependent lattice gas automaton diffusion model

    CERN Document Server

    Kuentz, M

    2003-01-01

    A two-dimensional lattice gas automaton (LGA) is used for simulating concentration-dependent diffusion in a microscopically random heterogeneous structure. The heterogeneous medium is initialized at a low density rho sub 0 and then submitted to a steep concentration gradient by continuous injection of particles at a concentration rho sub 1 >rho sub 0 from a one-dimensional source to model spreading of a density front. Whereas the nonlinear diffusion equation generally used to describe concentration-dependent diffusion processes predicts a scaling law of the type phi = xt sup - sup 1 sup / sup 2 in one dimension, the spreading process is shown to deviate from the expected t sup 1 sup / sup 2 scaling. The time exponent is found to be larger than 1/2, i.e. diffusion of the density front is enhanced with respect to standard Fickian diffusion. It is also established that the anomalous time exponent decreases as time elapses: anomalous spreading is thus not a timescaling process. We demonstrate that occurrence of a...

  14. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems

    International Nuclear Information System (INIS)

    Klein, Sharon J.W.; Rubin, Edward S.

    2013-01-01

    Concentrated solar power (CSP) is unique among intermittent renewable energy options because for the past four years, utility-scale plants have been using an energy storage technology that could allow a CSP plant to operate as a baseload renewable energy generator in the future. No study to-date has directly compared the environmental implications of this technology with more conventional CSP backup energy options. This study compares the life cycle greenhouse gas (GHG) emissions, water consumption, and direct, onsite land use associated with one MW h of electricity production from CSP plants with wet and dry cooling and with three energy backup systems: (1) minimal backup (MB), (2) molten salt thermal energy storage (TES), and (3) a natural gas-fired heat transfer fluid heater (NG). Plants with NG had 4–9 times more life cycle GHG emissions than plants with TES. Plants with TES generally had twice as many life cycle GHG emissions as the MB plants. Dry cooling reduced life cycle water consumption by 71–78% compared to wet cooling. Plants with larger backup capacities had greater life cycle water consumption than plants with smaller backup capacities, and plants with NG had lower direct, onsite life cycle land use than plants with MB or TES. - highlights: • We assess life cycle environmental effects of concentrated solar power (CSP). • We compare CSP with three energy backup technologies and two cooling technologies. • We selected solar field area to minimize energy cost for plants with minimal backup and salt storage. • Life cycle greenhouse gas emissions were 4–9 times lower with thermal energy storage than with fossil fuel backup. • Dry cooling reduced life cycle water use by 71–78% compared to wet cooling

  15. Professional ski waxers' exposure to PFAS and aerosol concentrations in gas phase and different particle size fractions.

    Science.gov (United States)

    Nilsson, Helena; Kärrman, Anna; Rotander, Anna; van Bavel, Bert; Lindström, Gunilla; Westberg, Håkan

    2013-04-01

    Previous reports show that professional ski waxers have elevated blood levels of perfluorinated substances (PFAS) such as perfluorooctanoate (PFOA) and are exposed to very high concentrations of PFAS in air during ski waxing. Aerosol exposure increases the risk of cardiovascular disease, and PFOA is a potential hormonal disruptor and carcinogen, and can affect the fatty acid metabolism. Animal studies have shown that 8:2 FTOH can undergo biotransformation to PFOA. For the first time, this study presents an occupational scenario of professional ski waxers who are exposed to extremely high dust levels as well as per- and polyfluorinated compounds. Personal and fixed measurements of total aerosol, inhalable and respirable fractions were performed during World Cup events 2007-2010. The occupational exposure limit (OEL) is exceeded in 37% of the personal measurements with concentrations up to 15 mg m(-3) in air. There are differences between personal and area total aerosol concentrations with levels from personal measurements twice as high as those from the area measurements. The personal levels for FTOH ranged up to 996 μg m(-3) (mean = 114 μg m(-3)) and for PFOA up to 4.89 μg m(-3) (mean = 0.53 μg m(-3)) in ENV+ sorbent samples as compared to the general exposure levels from air reaching only low ng m(-3) (PFAS is not in compliance with the occupational exposure standards and by far exceed the general populations' exposure. Preventive measures must be taken to minimize the exposure in this occupational group.

  16. Direct measurement of the concentration of metastable ions produced from neutral gas particles using laser-induced fluorescence

    Science.gov (United States)

    Chu, Feng; Skiff, Fred; Berumen, Jorge; Mattingly, Sean; Hood, Ryan

    2017-10-01

    Extensive information can be obtained on wave-particle interactions and wave fields by direct measurement of perturbed ion distribution functions using laser-induced fluorescence (LIF). For practical purposes, LIF is frequently performed on metastables that are produced from neutral gas particles and existing ions in other electronic states. We numerically simulate the ion velocity distribution measurement and wave-detection process using a Lagrangian model for the LIF signal. The results show that under circumstances where the metastable ion population is coming directly from the ionization of neutrals (as opposed to the excitation of ground-state ions), the velocity distribution will only faithfully represent processes which act on the ion dynamics in a time shorter than the metastable lifetime. Therefore, it is important to know the ratio of metastable population coming from neutrals to that from existing ions to correct the LIF measurements of plasma ion temperature and electrostatic waves. In this paper, we experimentally investigate the ratio of these two populations by externally launching an ion acoustic wave and comparing the wave amplitudes that are measured with LIF and a Langmuir probe using a lock-in amplifier. DE-FG02-99ER54543.

  17. The correlations between Radon in soil gas and its exhalation and concentration in air in the southern part of Syria

    International Nuclear Information System (INIS)

    Shweikani, R.; Hushari, M.

    2005-01-01

    The aim of this work is to measure the concentration of the radon ( 222 Rn) in soil air, 222 Rn exhalation from soil and 222 Rn in outdoor air which may have great influence on 222 Rn levels in houses. 222 Ra activity concentrations were also determined in soil samples. The studied areas are located in southern part of Syria. The common bed rock of this area is black and massive granite which are poor in uranium content [Jubeli Y.M., 1990. Uranium exploration in Syria. Internal Technical Report, vol. 1 (in English), vol. 2 (in Arabic), SAEC, Damascus; Technoexport (USSR), 1966. In: Ponikarov (Ed.), The Geological Map of Syria Scale: 1:200.000, Ministry of Industry, Damascus, Syria]. Results showed that the maximum measurement in all areas was 32500Bqm -3 in soil air with an exhalation rate of 9Bqm -2 s -1 in Darra region and 66.43Bqm -3 of radon in open air, with 77Bqkg -1 of radium content in soil (Damascus suburb). In addition, correlations between Rn in soil and exhalation of Radon from soil and radon in houses were found in some areas (Sweda and Darra), while, no correlations were found in other studied areas. Moreover, no correlation between radon in houses and radon measurements in soil and in outdoors were found. This was attributed to the methodology used and the influence of building design and inhabitants behavior

  18. Upgrade Egyptian biogas to meet the natural gas network quality standard

    Directory of Open Access Journals (Sweden)

    Sameh Tawfik Abd Elfattah

    2016-09-01

    Full Text Available Biogas is one of the promising renewable energy sources in Egypt. The objective of this research was to treat the raw biogas in order to clean it from acidic gases CO2 and H2S to meet the standard of the natural gas network. The acidic gases treating plant of the biogas were built up and numerically simulated using Aspen HYSYS 8.6 and a proper design of the plant was performed. The main purpose of the simulation is to determine the optimum working pressure, which can achieve the methane purity of the Egyptian biogas comparable to natural gas quality. The biogas treating process was accomplished inside Pressure Swing Absorber (PSA where the feed sour gas enters the absorber at the CO2 contents of 0.25, H2S contents of 0.0004, a temperature of 30 °C, a pressure of 1.1 bars, a flow rate of 13 m3/h, Diethanolamine (DEA concentration of 0.3 and 20 stages PSA with a tray diameter of 1.7 m. it is found that a PSA working pressure of 5 bars is required to obtain a biogas with methane purity of 95%.

  19. The Effect of Green Tea and Sour Tea (Hibiscus sabdariffa L.) Supplementation on Oxidative Stress and Muscle Damage in Athletes.

    Science.gov (United States)

    Hadi, Amir; Pourmasoumi, Makan; Kafeshani, Marzieh; Karimian, Jahangir; Maracy, Mohammad Reza; Entezari, Mohammad Hasan

    2017-05-04

    Additional oxygen consumption during intense exercises may lead to oxidative stress and contribute to muscular fatigue. Green tea and sour tea (Hibiscus sabdariffa L.), which contain various flavonoids and polyphenols, have many healthful properties such as anticarcinogenic, anti-inflammatory, and heart protecting effects. The aim of the present study was to assess the effects of green tea and sour tea supplementation on oxidative stress and muscle damage in soccer athletes. This randomized, double-blind control trial was conducted on 54 male soccer players. Participants were randomly assigned to three groups to receive: 450 mg/d green tea extract (GTE) in the first group (n = 18), 450 mg/d sour tea extract (STE) in the second group (n = 18) and 450 mg/d maltodextrin in the control group (n = 18). Fasting whole blood samples were taken under resting conditions at the beginning and the end of the study to quantify the serum levels of muscle damage indices, aspartate aminotransferase (AST), creatine kinase (CK), lactate dehydrogenase (LDH), and oxidative stress biomarkers, malondialdehyde (MDA), and total antioxidant capacity (TAC). After six weeks intervention, athletes who received GTE and STE supplements compared with the placebo had a significantly decreased MDA level (P = 0.008). Furthermore, STE supplementation resulted in a significant increase in TAC level compared with GTE and placebo groups (P = 0.01). However, supplementation with GTE and STE had no significant effects on muscle damage indices. GTE and STE supplementation have beneficial effects on oxidative stress status in male athletes. However, both kinds of tea extract did not affect muscle damage status.

  20. In Vivo Fast Induction of Homogeneous Autopolyploids via Callus in Sour Jujube (Ziziphus acidojujuba Cheng et Liu

    Directory of Open Access Journals (Sweden)

    Qinghua Shi

    2016-05-01

    Full Text Available Polyploidization has been demonstrated as a very effective approach in fruit tree improvement. Sour jujube (Ziziphus acidojujuba Cheng et Liu is a promising diploid wild, traditional fruit species (2n = 2x = 24 that is rich in vitamin C, which is the main rootstock of Chinese jujube (Z. jujuba Mill.. The novel method we developed for rapid in vivo induction of homogeneous autopolyploids (IVIHA via callus in Chinese jujube was first applied and further optimized in sour jujube. Under optimized conditions, an average of one pure autotetraploid shoot could be regenerated from one treated branch, thereby indicating a relatively high efficiency rate. A total of 9 pure autotetraploid genotypes were created, and one of these was released as a new cultivar named ‘Zhuguang’ in 2015. Moreover, unexpected octoploids and hexaploids were also simultaneously created and detected. The leaves of tetraploids were thicker, broader, and darker in color than those of the original diploids, whereas the leaf sizes of octoploids were much smaller compared to that of diploids. However, stoma size increased with the occurrence of ploidy, mainly from diploid to octoploid. The well grown ploidies of jujube included diploids, triploids, and tetraploids. Anatomical observation indicated that adventitious buds/shoots emerged from the callus that formed on the cut, which was then followed by the development of connective vascular tissues between the adventitious bud and the stock plant tissue. This study demonstrates the universality of the IVIHA method that was initially developed in Chinese jujube, as well as provides a foundation for high-efficiency pure polyploid induction in sour jujube.

  1. Screening method to assess the greenhouse gas mitigation potential of old landfills, based on downwind methane concentration measurements

    DEFF Research Database (Denmark)

    Fredenslund, Anders Michael; Mønster, J.; Kjeldsen, Peter

    2017-01-01

    A nationwide effort is taking place in Denmark to mitigate methane emissions from landfills, by using biocovers. A large number of older landfills were found to be potential candidates for biocover implementation, but very little information was available for these sites to help evaluate if signi......A nationwide effort is taking place in Denmark to mitigate methane emissions from landfills, by using biocovers. A large number of older landfills were found to be potential candidates for biocover implementation, but very little information was available for these sites to help evaluate...... if significant methane emissions occur. To assess these sites, we developed a low-cost and quick remote sensing methodology, whereby downwind methane concentrations from 91 landfills were measured using a mobile analytical platform, and emission rates were calculated using an inverse dispersion model. The method...

  2. Axial concentration profiles and N{sub 2}O flue gas in a pilot scale bubbling fluidised bed coal combustor

    Energy Technology Data Exchange (ETDEWEB)

    Tarelho, L.A.C.; Matos, M.A.A.; Pereira, F.J.M.A. [Environment and Planning Department, University of Aveiro, 3810-193 Aveiro (Portugal)

    2005-05-15

    Atmospheric Bubbling Fluidised Bed Coal Combustion (ABFBCC) of a bituminous coal and anthracite with particle diameters in the range 500-4000 {mu}m was investigated in a pilot-plant facility (circular section with 0.25 m internal diameter and 3 m height). The experiments were conducted at steady-state conditions using three excess air levels (10%, 25% and 50%) and bed temperatures in the 750-900 {sup o}C range. Combustion air was staged, with primary air accounting for 100%, 80% and 60% of total combustion air. For both types of coal, virtually no N{sub 2}O was found in significant amounts inside the bed. However, just above the bed-freeboard interface, the N{sub 2}O concentration increased monotonically along the freeboard and towards the exit flue. The N{sub 2}O concentrations in the reactor ranged between 0-90 ppm during bituminous coal combustion and 0-30 ppm for anthracite. For both coals, the lowest values occurred at the higher bed temperature (900 {sup o}C) with low excess air (10%) and high air staging (60% primary air), whereas the highest occurred at the lower bed temperature (750 {sup o}C for bituminous, 825 {sup o}C for anthracite) with high excess air (50%) and single stage combustion. Most of the observed results could be qualitatively interpreted in terms of a set of homogeneous and heterogeneous reactions, where catalytic surfaces (such as char, sand and coal ash) can play an important role in the formation and destruction of N{sub 2}O and its precursors (such as HCN, NH{sub 3} and HCNO) by free radicals (O, H, OH) and reducing species (H{sub 2}, CO, HCs)

  3. Atmospheric concentrations, sources and gas-particle partitioning of PAHs in Beijing after the 29th Olympic Games

    Energy Technology Data Exchange (ETDEWEB)

    Ma Wanli [International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Sun Dezhi [International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China); Shen Weiguo [College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China); Yang Meng [IJRC-PTS, Dalian Maritime University, Dalian (China); Qi Hong; Liu Liyan; Shen Jimin [International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Li Yifan, E-mail: ijrc_pts_paper@yahoo.com [International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Science and Technology Branch, Environment Canada, Toronto, Ontario M3H5T4 (Canada)

    2011-07-15

    A comprehensive sampling campaign was carried out to study atmospheric concentration of polycyclic aromatic hydrocarbons (PAHs) in Beijing and to evaluate the effectiveness of source control strategies in reducing PAHs pollution after the 29th Olympic Games. The sub-cooled liquid vapor pressure (logP{sub L}{sup o})-based model and octanol-air partition coefficient (K{sub oa})-based model were applied based on each seasonal dateset. Regression analysis among log K{sub P}, logP{sub L}{sup o} and log K{sub oa} exhibited high significant correlations for four seasons. Source factors were identified by principle component analysis and contributions were further estimated by multiple linear regression. Pyrogenic sources and coke oven emission were identified as major sources for both the non-heating and heating seasons. As compared with literatures, the mean PAH concentrations before and after the 29th Olympic Games were reduced by more than 60%, indicating that the source control measures were effective for reducing PAHs pollution in Beijing. - Highlights: > This is the first comprehensive study of PAHs in atmosphere after the 29th Olympics in Beijing, China. > The air quality before and after 29th Olympics has attracted much attention worldwide. > The study was helpful for other countries to understand how the Olympics affected PAHs emissions. > The study would act as a case study to know the effects that big events can impose on the host cities. - The source control measures implemented before and during the 29th Olympic Games were effective for reducing the emissions of air pollutants in Beijing.

  4. Trace gas concentrations, intertropical convergence, atmospheric fronts, and ocean currents in the tropical Pacific m(Paper 8C1060)

    International Nuclear Information System (INIS)

    Wilkniss, P.E.; Rodgers, E.B.; Swinnerton, J.W.; Larson, R.E.; Lamontagne, R.A.

    1979-01-01

    Shipboard measurements of atmospheric 222 Rn, CO, and CH 4 and of dissolved CO in surface waters have been carried out in the equatorial Pacific on a cruise from Ecuador to Hawaii, Tahiti and Panama in March and April of 1974, and during transit from Los Angeles to Antarctica in November and December of 1972. The trace gas results, combined with conventional meteorological data and with satellite images from Nimbus 5 and the defense meteorological satellite project (DMSP), have provided descriptions of the intertropical convergence zones (ITCZ) near 04 0 N, 102 0 W and 03 0 N, 154 0 W in March of 1974, near 04 0 N, 86 0 W in April of 1974, and near 05 0 N, 139 0 W in November of 1972. In all cases the ITCZ seems to be located north of the south equatorial current (SEC) as shown by dissolved CO peaks in surface waters. In April of 1974 a 'second' ITCZ was observed near 01 0 S, 102 0 W just south of the SEC. A stationary front near Hawaii (20 0 N, 147 0 W) in March of 1974 was investigated. The ITCZ was marked by light shifting winds near a zone of heavy cloud cover and precipitation. In the eastern Tropical Pacific atmospheric 222 Rn increases distinctly north of the ITCZ and thus serves as an indicator for the ITCZ. CO and CH 4 do not always increase coincident with atmospheric 222 Rn. The atmospheric features of the stationary front near Hawaii are in many ways similar to those observed for the ITCZ. The front is marked by cloud cover, precipitation zone and light shifting winds. 222 Rn, CO and CH 4 increase signifantly behind the front in subsiding air which was traced back to the Asian continent. The variation of atmospheric 222 Rn, CO and CH 4 with time and geographical area over the equatorial Pacific seems to be a consequence of seasonal variations of the trade wind field and long range transport to the central Pacific from Asia and to the eastern equatorial Pacific from North and Central America

  5. Gas Hydrate Occurrence Inferred from Dissolved Cl− Concentrations and δ18O Values of Pore Water and Dissolved Sulfate in the Shallow Sediments of the Pockmark Field in Southwestern Xisha Uplift, Northern South China Sea

    Directory of Open Access Journals (Sweden)

    Min Luo

    2014-06-01

    Full Text Available Deep-water pockmarks are frequently accompanied by the occurrence of massive gas hydrates in shallow sediments. A decline in pore-water Cl− concentration and rise in δ18O value provide compelling evidence for the gas hydrate dissociation. Mega-pockmarks are widely scattered in the southwestern Xisha Uplift, northern South China Sea (SCS. Pore water collected from a gravity-core inside of a mega-pockmark exhibits a downward Cl− concentration decrease concomitant with an increase in δ18O value at the interval of 5.7–6.7 mbsf. Concentrations of Cl−, Na+, and K+ mainly cluster along the seawater freshening line without distinct Na+ enrichment and K+ depletion. Thus, we infer that the pore water anomalies of Cl− concentrations and δ18O values are attributed to gas hydrate dissociation instead of clay mineral dehydration. Moreover, the lower δ18O values of sulfate in the target core (C14 than those in the reference core (C9 may be associated with the equilibrium oxygen fractionation during sulfate reduction between sulfate and the relatively 18O-depleted ambient water resulting from gas hydrate formation. The gas hydrate contents are estimated to be 6%–10% and 7%–15%, respectively, according to the offset of Cl− concentrations and δ18O values from the baselines. This pockmark field in southwestern Xisha Uplift is likely to be a good prospective area for the occurrence of gas hydrate in shallow sediments.

  6. Increasing the capacity of the NEAG natural gas processing plants; Kapazitaetssteigerung der Erdgasaufbereitungsanlagen der NEAG

    Energy Technology Data Exchange (ETDEWEB)

    Rest, W.; Weiss, A. [Mobil Erdgas-Erdoel GmbH, Celle (Germany)

    1998-12-31

    The fact that new deposits of sour natural gas were found in the concessions at Scholen/Wesergebirgsvorland and that a sour gas pipeline was built from the BEB-operated field in South-Oldenburg increased the sour gas volume handled by the North German Natural Gas Processing Company (NEAG) so much, that capacities had to be stepped up. This paper describes the measures taken to increase capacities. Various interesting process engineering methods employed to remove bottlenecks in the parts of the plant are described in detail. These refer to the modification of the baffle plates in the high-pressure absorber of the Purisolwashers NEAG I, as well as in the expansion tank and the purified gas waher of the NEAG III washing plant as well as comprehensive modifications of the MODOP-flue gas scrubber NEAG III (orig.) [Deutsch] Neue Sauergasfunde in den Konzessionen Scholen/Wiehengebirgsvorland sowie der Bau der Sauergasverbindungsleitung aus dem von BEB operierten Feldesbereich Sued-Oldenburg haben die der Norddeutschen Erdgas-Aufbereitungsgesellschaft (NEAG) in Voigtei angebotenen Sauergasmengen soweit erhoeht, dass eine Kapazitaetserhoehung notwendig wurde. Im Rahmen des Vortrages werden die Massnahmen zur Kapazitaetssteigerung vorgestellt. Einige verfahrenstechnisch besonders interessante Loesungen zur Beseitigung von Engpaessen in Anlagenteilen werden detailliert beschrieben. Es handelt sich hierbei um die Modifikation der Einbauten im Hochdruckabsorber der Purisolwaesche NEAG I, im Entspannungsbehaelter und Reingaswaescher der Waesche NEAG III sowie umfangreiche Aenderungen im Bereich der MODOP-Abgasreinigungsanlage NEAG III. (orig.)

  7. A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol

    International Nuclear Information System (INIS)

    Deng, Huichao; Zhang, Yufeng; Zheng, Xue; Li, Yang; Zhang, Xuelin; Liu, Xiaowei

    2015-01-01

    A novel MEA (membrane electrode assembly) structure of passive μ-DMFC (micro-direct methanol fuel cell) controls water management and decreases methanol crossover. The CNT (carbon nanotube) paper replacing CP (carbon paper) as GDL (gas diffusion paper) enhances water back diffusion which passively prevents flooding in the cathode and promotes low methanol crossover. Moreover, the unique structure of CNT paper can also enhance efficiency of oxygen mass transport and catalyst utilization. The passive μ-DMFC with CNT-MEA exhibits significantly higher performance than passive μ-DMFC with CP-MEA and can operate in high methanol concentration, showing the peak power density of 23.2 mW cm −2 . The energy efficiency and fuel utilization efficiency are obviously improved from 11.54% to 22.7% and 36.61%–49.34%, respectively, and the water transport coefficient is 0.47 which is lower than previously reported passive μ-DMFC with CP. - Highlights: • This novel GDL (gas diffusion layer) solves water management and methanol crossover. • This GDL creates a hydraulic pressure in the cathode increasing water back diffusion. • This GDL improves the electrical conductivity and activity of catalyst

  8. Effectiveness of managed populations of wild and honey bees as supplemental pollinators of sour cherry (Prunus cerasus L.) under different climatic conditions

    DEFF Research Database (Denmark)

    Hansted, Lise; Grout, Brian William Wilson; Toldam-Andersen, Torben Bo

    2015-01-01

    Managed populations of Apis mellifera, Bombus terrestris and Osmia have been investigated rufa as sour cherry pollinators in two flowering seasons with different weather patterns. Flight activity of the three bee species during the pollination-receptive period of the cultivar ‘Stevnsbaer’ was rec......Managed populations of Apis mellifera, Bombus terrestris and Osmia have been investigated rufa as sour cherry pollinators in two flowering seasons with different weather patterns. Flight activity of the three bee species during the pollination-receptive period of the cultivar ‘Stevnsbaer...

  9. Influence of the date of cut of rootstocks to the stub on growth of maider sour cherry trees cv. 'Łutówka'

    Directory of Open Access Journals (Sweden)

    Stanisław Wociór

    2013-12-01

    Full Text Available Over a three-year period (1997-1999 investigations were conducted on the effect of 6 date of cut to the stub on tree trunk diameter, height and branching of sour cherry maidens in the nursery.On the Prunus mahaleb seedling rootstock were found no significant influen ce of the date between January, 15 - March, 30 of cut to the stub on growth of sour cherry maidens cv. ´Łutówka' (tree trunk diameter and branching and efficiency of nursery. The date of cutting in 15 April decreased trunk diameter and percent of the first quality trees.

  10. Coherent anti-Stokes Raman scattering for quantitative temperature and concentration measurements in a high-pressure gas turbine combustor rig

    Science.gov (United States)

    Thariyan, Mathew Paul

    Dual-pump coherent anti-Stokes Raman scattering (DP-CARS) temperature and major species (CO2/N2) concentration measurements have been performed in an optically-accessible high-pressure gas turbine combustor facility (GTCF) and for partially-premixed and non-premixed flames in a laminar counter-flow burner. A window assembly incorporating pairs of thin and thick fused silica windows on three sides was designed, fabricated, and assembled in the GTCF for advanced laser diagnostic studies. An injection-seeded optical parametric oscillator (OPO) was used as a narrowband pump laser source in the dual-pump CARS system. Large prisms on computer-controlled translation stages were used to direct the CARS beams either into the main optics leg for measurements in the GTCF or to a reference optics leg for measurements of the nonresonant CARS spectrum and for aligning the CARS system. Combusting flows were stabilized with liquid fuel injection only for the central injector of a 9-element lean direct injection (LDI) device developed at NASA Glenn Research Center. The combustor was operated using Jet A fuel at inlet air temperatures up to 725 K and combustor pressures up to 1.03 MPa. Single-shot DP-CARS spectra were analyzed using the Sandia CARSFT code in the batch operation mode to yield instantaneous temperature and CO2/N2 concentration ratio values. Spatial maps of mean and standard deviations of temperature and CO2/N2 concentrations were obtained in the high-pressure LDI flames by translating the CARS probe volume in axial and vertical directions inside the combustor rig. The mean temperature fields demonstrate the effect of the combustor conditions on the overall flame length and the average flame structure. The temperature relative standard deviation values indicate thermal fluctuations due to the presence of recirculation zones and/or flame brush fluctuations. The correlation between the temperature and relative CO 2 concentration data has been studied at various combustor

  11. Investigation of time-resolved atmospheric conditions and indoor/outdoor particulate matter concentrations in homes with gas and biomass cook stoves in Nogales, Sonora, Mexico.

    Science.gov (United States)

    Holmes, Heather A; Pardyjak, Eric R

    2014-07-01

    This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States-Mexico border During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14-30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 microg m(-3) and biomass stoves 163 to 504 microg m(-1). Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 microg m(-3)). The former is evident in the median and range of daytime PM values (median PM3: 250 microg m(-3), maximum: 9411 microg m(-3)), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 microg m(-3), maximum: 10,846 microg m(-3)). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 microg m(-3)). Implications: Regulatory air quality standards are based on outdoor

  12. Investigating the effect of gas flow rate, inlet ozone concentration and relative humidity on the efficacy of catalytic ozonation process in the removal of xylene from waste airstream

    Directory of Open Access Journals (Sweden)

    H.R. MokaramI

    2010-10-01

    Full Text Available Background and aimsThe catalytic ozonation is an efficient process for the degradation of volatile organic compounds from contaminated air stream. This study was aimed at investigating the efficacy of catalytic ozonation process in removal of xylene from the polluted air stream andthe influence of retention time (gas flow rate, inlet ozone dose and relative humidity on this performanceMethodsthe catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selectedoperational variables.ResultsThe results indicated that the efficiency of catalytic ozonation was greater than that of single adsorption in removal of xylene under similar inlet concentration and relative humidity. We found a significant catalytic effect for activated carbon when used in combination with ozonation process, leading to improvement of xylene removal percentage. In addition, the elimination capacity of the system improved with the increase of inlet ozone dose as well as gas flow rate. The relative humidity showed a positive effect of the xylene removal at the range of 5 to 50%, while the higher humidity (more than 50% resulted in reduction of the performance.ConclusionThe findings of the present work revealed that the catalytic ozonation process can be an efficient technique for treating the air streams containing industrial concentrations of xylene. Furthermore, there is a practical potential to retrofit the present adsorption systems intothe catalytic ozonation simply by coupling them with the ozonation system. the catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selected

  13. Gas and particle concentrations in horse stables with individual boxes as a function of the bedding material and the mucking regimen.

    Science.gov (United States)

    Fleming, K; Hessel, E F; Van den Weghe, H F A

    2009-11-01

    The aim of this study was to compare different types of bedding and mucking regimens used in horse stables on the generation of airborne particulate matter bedding material (wheat straw, straw pellets, and wood shavings) used for horses were assessed according to their ammonia generation. Each type of bedding was used for 2 wk, with 3 repetitions. The mean ammonia concentrations within the stable were 3.07 +/- 0.23 mg/m(3) for wheat straw, 4.79 +/- 0.23 mg/m(3) for straw pellets, and 4.27 +/- 0.17 mg/m(3) for wood shavings. In Exp. 2, the effects of the mucking regimen on the generation of ammonia and PM10 from wheat straw (the bedding with the least ammonia generation in the previous experiment) were examined using 3 different daily regimens: 1) no mucking out, 2) complete mucking out, and 3) partial mucking out (removing only feces). The mean ammonia concentrations in the stable differed significantly among all 3 mucking regimens (P bedding regimen without mucking out was evaluated with regard to gas and airborne particle generation. The ammonia values were found not to increase constantly during the course of the 6-wk period. The average weekly values for PM10 also did not increase constantly but varied between approximately 90 and 140 microg/m. It can be concluded from the particle and gas generation patterns found in the results of all 3 experiments that wheat straw was the most suitable bedding of the 3 types investigated and that mucking out completely on a daily basis should not be undertaken in horse stables.

  14. Changes in gas exchange characteristics during the life span of giant sequoia: Implications for response to current and future concentrations of atmospheric ozone

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, N.E.; Miller, P.R. (USDA Forest Service, Riverside, CA (United States))

    Native stands of giant sequoia are being exposed to relatively high concentrations of atmospheric ozone produced in urban and agricultural areas upwind. The expected change in environmental conditions over the next 100 y is likely to be unprecendented in the life span (ca 2,500 y) of giant sequoia. Changes in the physiological responses of three age classes of giant sequoia (current year, 12 y and 25 y) to different concentrations of ozone were determined, and age-related differences in sensitivity to pollutants were assessed by examining physiological changes (gas exchange, water use efficiency) across the life span of giant sequoia. The CO[sub 2] exchange rate (CER) was greater in current year (12.1 [mu]mol CO[sub 2]/m[sup 2]s) and 2 year old seedlings (4.8 [mu]mol CO[sub 2]/m[sup 2]s) than in all older trees (average of 3.0 [mu]mol CO[sub 2]/m[sup 2]s). Dark respiration was highest for current year seedlings and was increased twofold in symptotic individuals exposed to elevated ozone concentrations. Stomatal conductance was greater in current-year and 2 year old seedlings (335 and 200 mmol H[sub 2]O/m[sup 2]s), respectively, than in all older trees (50 mmol H[sub 2]O/m[sup 2]s), indicating that the ozone concentration in substomatol cavities is higher in young seedlings than in older trees. Significant changes in water use efficiency occurred in trees between ages 5 and 20 years. It is concluded that giant sequoia seedlings are sensitive to atmospheric ozone until they are ca 5 y old. Low conductance, high water use efficiency, and compact mesophyll all contribute to a natural ozone tolerance, or defense, or both, in foliage of older trees. 11 refs., 1 fig., 1 tab.

  15. Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots.

    Science.gov (United States)

    Nally, M C; Pesce, V M; Maturano, Y P; Rodriguez Assaf, L A; Toro, M E; Castellanos de Figueroa, L I; Vazquez, F

    2015-07-02

    The aim of this study was to determine the putative modes of action of 59 viticultural yeasts (31 Saccharomyces and 28 non-Saccharomyces) that inhibited fungi isolated from sour and grey rot in grapes. Inhibition of fungal mycelial growth by metabolites, enzyme activities (laminarinases, chitinases), antifungal volatiles, competition for nutrients (siderophores, Niche Overlap Index (NOI)), inhibition of fungal spore germination and decreased germinal tube length and induction of resistance were assayed. Biofungicide yeasts were classified into "antifungal patterns", according to their mechanisms of action. Thirty isolates presented at least two of the mechanisms assayed. We propose that inhibition of fungal mycelial growth by metabolites, laminarinases, competition for nutrients, inhibition of fungal spore germination and decreased germinal tube length, and antifungal volatiles by Saccharomyces and non-Saccharomyces viticultural yeasts is used as putative biocontrol mechanisms against phytopathogenic fungi. Twenty-four different antifungal patterns were identified. Siderophore production (N)and a combination of siderophore production and NOI>0.92 (M)were the most frequent antifungal patterns observed in the biofungicide yeasts assayed. Elucidation of these mechanisms could be useful for optimization of an inoculum formulation, resulting in a more consistent control of grey and sour rot with Saccharomyces and non-Saccharomyces biocontrol yeasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Characterization of Sugar and Polyphenolic Diversity in Floral Nectar of Different 'Oblačinska' Sour Cherry Clones.

    Science.gov (United States)

    Guffa, Basem; Nedić, Nebojša M; Dabić Zagorac, Dragana Č; Tosti, Tomislav B; Gašić, Uroš M; Natić, Maja M; Fotirić Akšić, Milica M

    2017-09-01

    'Oblačinska' sour cherry, an autochthonous cultivar, is the most planted cultivar in Serbian orchards. Since fruit trees in temperate zone reward insects by producing nectar which 'quality' affects the efficiency of insect pollination, the aim of this study was analyzing of sugars and polyphenolics in floral nectar of 16 'Oblačinska' sour cherry clones with different yielding potential. The contents of sugars and sugar alcohols were analyzed by ion chromatography, while polyphenolic profile was established using liquid chromatography/mass spectrometry technique. Fourteen sugars and six sugar alcohols were detected in nectar samples and the most abundant were fructose, glucose, and sucrose. Eleven polyphenols were quantified using available standards, while another 17 were identified according to their exact masses and characteristic fragmentations. Among quantified polyphenols, rutin, naringenin, and chrysin were the most abundant in nectar. Principal component analysis showed that some polyphenol components (naringin, naringenin, and rutin) together with sugars had high impact of spatial distribution of nectar samples on score plot. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  17. Fruit Set of Several Sour Cherry Cultivars in Latvia Influenced by Weather Conditions Before and During Flowering

    Directory of Open Access Journals (Sweden)

    Feldmane Daina

    2017-06-01

    Full Text Available Fruit set is a crucial stage in the process of yield formation, which is influenced by environmental factors, growing technologies and peculiarities of genotype. The aim of the study was to evaluate the quality of pollen (viability and germination capacity and the effect of weather before and during flowering on fruit set in sour cherry cultivars ‘Latvijas Zemais’, ‘Zentenes’, ‘Bulatnikovskaya’, and ‘Orlica’. The research was carried out in Institute of Horticulture (Latvia University of Agriculture in 2009-2016. Good pollen viability and germination was found for cultivars ‘Latvijas Zemais’ and ‘Bulatnikovskaya’. Negative effects of increasing air temperature (in the range of 7.7 to 17.5 °C and relative humidity (in the range of 51.4 to 88.5% was observed for all cultivars during flowering. The effects of diurnal temperature fluctuations, wind and the amount of days with precipitation differed depending on sour cherry cultivar.

  18. Problems Caused by Microbes and Treatment Strategies Monitoring and Preventing Reservoir Souring Using Molecular Microbiological Methods (MMM)

    Science.gov (United States)

    Gittel, Antje

    The injection of seawater during the process of secondary oil recovery in offshore oilfields supplies huge amounts of sulphate to the prokaryotic reservoir communities. Together with the presence of oil organics and their degradation products as electron donors, this facilitates the enrichment and growth of sulphate-reducing prokaryotes (SRP) in the reservoir, as well as in pipings and top-side installations (Sunde and Torsvik, 2005; Vance and Thrasher, 2005). The activity of SRP causes severe economic problems due to the reactivity and toxicity of the produced hydrogen sulphide (H2S), one of the major problems being reservoir souring. Besides the use of broad-spectrum biocides or inhibitors for sulphate reduction, the addition of nitrate effectively decreased the net production of H2S in model column studies (Myhr et al., 2002; Hubert et al., 2005; Dunsmore et al., 2006) and field trials (Telang et al., 1997; Bødtker et al., 2008). The mechanisms by which nitrate addition might affect souring control are (i) the stimulation of heterotrophic nitrate-reducing bacteria (hNRB) that outcompete SRP for electron donors, (ii) the activity of nitrate-reducing, sulphide-oxidising bacteria (NR-SOB), and (iii) the inhibition of SRP by the production of nitrite and nitrous oxides (Sunde and Torsvik, 2005; Hubert and Voordouw, 2007).

  19. Levels of radon gas concentration and progeny in homes of Potosi City, Bolivia to 4000 m; Niveles de concentracion de gas radon y progenie en viviendas de la Ciudad de Potosi, Bolivia a 4000 msnm

    Energy Technology Data Exchange (ETDEWEB)

    Mamani M, R. [Universidad Autonoma Tomas Frias, Carrera de Fisica, Av. del maestro s/n, Edif. Central Potosi, Villa Imperial de Potosi (Bolivia, Plurinational State of); Claros J, J. [Universidad Autonoma Tomas Frias, Facultad de Minas Potosi, Centro de Investigacion, Av. Serrudo y Arce s/n, Villa Imperial de Potosi (Bolivia, Plurinational State of); Vasquez A, R., E-mail: raulm2k13@hotmail.com [Instituto Boliviano de Biologia de Altura, Calle Hoyos 953, La Paz (Bolivia, Plurinational State of)

    2015-10-15

    Full text: In this work the presence of radon gas was determined, which is a radioactive contaminant that comes from underground, able to penetrate the houses. The danger is that when mixed air and when inhaled can cause serious damage to the lungs, for the short life time that has radon and progeny for decay, damaging the pulmonary alveoli and reducing breathing capacity of the habitants, then causing polycythemia in some cases. The study was carried out in homes in the city of Potosi, Bolivia located at 4000 m. The quantification of radon gas and progeny was performed with the equipment Alpha-Zaeller-2 (Az-2), quantification was realized in 6 zones of the city of Potosi, chosen randomly. In each zone were carried out measurements in 40 homes (2 rooms more permanent), both day and night, for a period of 3 days in two different seasons and with concentrations of average humidity of 20, 50 and 80%. The values obtained for each period vary depending on the season and 30 to 50% of the allowable values given by the EPA and Who for housing. (Author)

  20. On-line monitoring of benzene air concentrations while driving in traffic by means of isotopic dilution gas chromatography/mass spectrometry.

    Science.gov (United States)

    Davoli, E; Cappellini, L; Moggi, M; Ferrari, S; Fanelli, R

    1996-01-01

    There is no shortage of information about the average benzene concentrations in urban air, but there is very little about microenvironmental exposure, such as in-vehicle concentrations while driving in various traffic conditions, while refuelling, or while in a parking garage. The main reason for this lack of data is that no analytical instrumentation has been available to measure on-line trace amounts of benzene in such situations. We have recently proposed a highly accurate, high-speed cryofocusing gas chromatography/mass spectrometry (GC/MS) system for monitoring benzene concentrations in air. Accuracy of the analytical data is achieved by enrichment of the air sample before trapping, with a stable isotope permeation tube system. The same principles have been applied to a new instrument, specifically designed for operation on an electric vehicle (Ducato Elettra, Fiat). The zero emission vehicle and the fully transportable, battery-operated GC/MS system provide a unique possibility of monitoring benzene exposure in real everyday situations such as while driving, refuelling, or repairing a car. All power consumptions have been reduced so as to achieve a battery-operated GC/MS system. Liquid nitrogen cryofocusing has been replaced by a packed, inductively heated, graphitized charcoal microtrap. The instrument has been mounted on shock absorbers and installed in the van. The whole system has been tested in both fixed and mobile conditions. The maximum monitoring period without external power supply is 6 h. The full analytical cycle is 4 min, allowing close to real-time monitoring, and the minimum detectable level is 1 microgram/m3 for benzene. In-vehicle monitoring showed that, when recirculation was off and ventilation on, i.e., air from outside the vehicle was blown inside, concentrations varied widely in different driving conditions: moving from a parking lot into normal traffic on an urban traffic condition roadway yielded an increase in benzene concentration

  1. Single-step transesterification with simultaneous concentration and stable isotope analysis of fatty acid methyl esters by gas chromatography-combustion-isotope ratio mass spectrometry.

    Science.gov (United States)

    Panetta, Robert J; Jahren, A Hope

    2011-05-30

    Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is increasingly applied to food and metabolic studies for stable isotope analysis (δ(13) C), with the quantification of analyte concentration often obtained via a second alternative method. We describe a rapid direct transesterification of triacylglycerides (TAGs) for fatty acid methyl ester (FAME) analysis by GC-C-IRMS demonstrating robust simultaneous quantification of amount of analyte (mean r(2) =0.99, accuracy ±2% for 37 FAMEs) and δ(13) C (±0.13‰) in a single analytical run. The maximum FAME yield and optimal δ(13) C values are obtained by derivatizing with 10% (v/v) acetyl chloride in methanol for 1 h, while lower levels of acetyl chloride and shorter reaction times skewed the δ(13) C values by as much as 0.80‰. A Bland-Altman evaluation of the GC-C-IRMS measurements resulted in excellent agreement for pure oils (±0.08‰) and oils extracted from French fries (±0.49‰), demonstrating reliable simultaneous quantification of FAME concentration and δ(13) C values. Thus, we conclude that for studies requiring both the quantification of analyte and δ(13) C data, such as authentication or metabolic flux studies, GC-C-IRMS can be used as the sole analytical method. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Clinical, blood gas and biochemical profile of diarrheic dairy calves fed starter concentrate containing citrus pulp as a replacement for corn

    Directory of Open Access Journals (Sweden)

    Marcelo Cezar Soares

    Full Text Available ABSTRACT: The objective of this study was to evaluate clinical signs, gas analysis, and metabolic effects of diarrhea in milk-fed calves consuming starter feed containing citrus pulp (CP as a replacement for corn. Twenty-four newborn Holstein male calves were distributed into treatments according to starter composition: (1 0% CP, (2 32% CP, (3 64% CP, on dry matter basis. The calves were housed in individual hutches, with free access to water and concentrate, and received 4 L/d of milk replacer. After diarrhea diagnosis, evaluations of fecal score, score of clinical signs and measurement of physiological parameters were performed three times a day during 3-d. Blood samples were collected for electrolytes, blood gases, and plasma biochemical analysis. Starter feed composition had no negative effect (P>0.05 on fecal score, characteristics of diarrheic stools and on the aggravation of diarrhea clinical signs. Biochemical, blood gases and electrolytes changes, as a function of starter composition, did not resulted (P>0.05 in dehydration, acidosis, or other metabolic disturbance animals. Total lactate and D-lactate plasma concentrations were higher for calves on control and 64% CP, and L-lactate was highest for the 64% CP; however, calves showed no signs of metabolic acidosis. Thermal comfort indexes influenced clinical and physiological parameters (P<0.05. Citrus pulp may replace corn in starter composition without prejudice to intestinal health or metabolism of young diarrheic calves.

  3. Effect of essential oil from Cordia verbeancea on the fermentation of a high concentrate diet by using the in vitro gas production technique

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, R C; Pires, A V [ESALQ, Universidade de Sao Paulo, Piracicaba, SP (Brazil); Abdalla, A.L. [CENA, Universidade de Sao Paulo, Piracicaba, SP (Brazil)], E-mail: rcanonenco@hotmail.com (and others)

    2009-07-01

    Studies with plant secondary metabolites as rumen fermentation modifiers have increased as an attempt to reproduce the effects of ionophores. Cordia verbenacea D.C. is a Brazilian bush with antimicrobial properties attributed to its essential oil (EO). The objective of this experiment was to determine the effects of C. verbenacea EO on the ruminal fermentation by using an in vitro gas production system. Treatments were defined as: Control - without addition of monensin or EO; MON - addition of monensin (Sigma Aldrich Inc.) at 3 {mu}M as a positive control; COR37.5 . addition of 37.5 {mu}L of EO in 75 mL of buffered rumen fluid; COR75 - addition of 75 {mu}L of EO in 75 mL of buffered rumen fluid. A complete randomized design was utilized with six replicates for gas production (mL/g OM{sub incub}) and three replicates for all other variables. Two conditions were independently assessed: a) Coastcross (Cynodon sp.) hay (89.2% DM, 9.7% CP, 1.3% EE, 7.9% ash, 60.2% NDF, and 30.6% ADF) as substrate + inoculum of sheep on pasture; b) 80:20 concentrate:forage diet (20.0% Coastcross hay, 62.7% corn, 15.0% soybean meal, 1.0% limestone, and 1.3% mineral premix on DM basis; 91.5% DM, 15.7% CP, 3.3% EE, 4.3% ash, 20.3% NDF, and 8.8% ADF) as substrate + inoculum of sheep adapted to this diet. Two different inocula for each condition were used as source of variation. In each flask (160 mL), 0.5 g of substrate was incubated with 50 mL of incubation medium and 25 mL of rumen fluid at 39 deg C. Incubation time was 24 h for the hay and 16 h for the high-concentrate diet. Flasks without substrate (blanks) and flasks containing standard hay were also included. According to the GC-MS analysis, the major compounds of C. verbenacea EO were: transcaryophyllene (28.19%), alpha-pinene (23.58%), aloaromadendrene (6.90%), and alpha-humulene (4.54%). Considering both substrates, MON reduced gas and methane productions, increased propionate concentration, and decreased acetate:propionate ratio

  4. Well-to-wheel analysis of renewable transport fuels: synthetic natural gas from wood gasification and hydrogen from concentrated solar energy[Dissertation 17437

    Energy Technology Data Exchange (ETDEWEB)

    Felder, R.

    2007-07-01

    In order to deal with problems such as climate change, an increasing energy demand and the finiteness of fossil resources, alternative CO{sub 2}-low technologies have to be found for a sustainable growing future. Laboratories at PSI are conducting research on two pathways delivering such car fuels: synthetic natural gas from wood gasification (SNG) and hydrogen from solar thermochemical ZnO dissociation (STD). The biofuel SNG is produced using wood in an auto-thermal gasification reactor. It can be supplied to the natural-gas grid and be used in a compressed natural gas (CNG) vehicle. STD is a long-term option, using concentrated solar radiation in a thermochemical reactor, producing zinc as solar energy carrier. Zinc can be used for hydrolysis, in order to produce hydrogen as a locally low-polluting future car fuel. In the frame of the thesis, both fuels are assessed using a life cycle assessment, i.e. investigating all environmental interactions from the extraction of resources over the processing and usage steps to the final disposal. Different methodologies are applied for a rating, compared to alternatives and standard fuels of today. In addition, costs of the technologies are calculated in order to assess economic competitiveness. The thesis is structured as follows: After an introduction giving an overview (chapter A), the methodology is presented (chapter B). It includes various life cycle impact assessment methods such as greenhouse gas emissions, the cumulative energy demand or comprehensive rating approaches. Calculations of the production and supply costs of the assessed fuels are included as well as the eco-efficiency, a combination of environmental with economic indicators. In addition, external costs caused by the emissions are quantified. Sensitivity studies investigate the importance of different parameters and substantiate conclusions. In chapter C, the production, supply and use of the assessed fuels is discussed, following the well

  5. The Effect of Green Tea versus Sour Tea on Insulin Resistance, Lipids Profiles and Oxidative Stress in Patients with Type 2 Diabetes Mellitus: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Hassan Mozaffari-Khosravi

    2014-09-01

    Full Text Available Background: By decreasing oxidative stress and whereby decreasing insulin resistance, it may be possible to decrease complications of Diabetes Mellitus (DM. Green tea and sour tea contain phytochemicals which have anti-oxidative function. The aim of this study is to compare the effect of sour and green tea consumption on insulin resistance and oxidative stress in DM. Methods: This study is a randomized clinical trial in which 100 type 2 diabetes patients were randomly assigned into sour tea group (ST and green tea group (GT. The patients were instructed to drink 150ml sour tea and green tea infusion, respectively, three times a day for 4 weeks. Fasting blood sugar (FBS, fructosamine, lipid profiles, fasting blood insulin (FBI, homeostasis model assessment of insulin resistance (HOMA-IR; beta cell function (b%, insulin sensitivity (S% and malondialdehyde (MDA were monitored. Results: HDL-c significantly increased in both groups. The median of FBI in GT showed significant decrease (8.5 to 6.6 μIU/mL unlike the ST which showed significant increase (8.2 to 16.3 μIU/mL. The median of HOMA-IR after the intervention in GT showed lower levels than the ST (1.1 vs. 1.6, P=0.004. The median of b% only in ST showed significant increase from 38.2% at the baseline to 47.7% after the intervention. The mean of S% only in ST showed significant decrease after the intervention. Conclusion: This study shows that the use of 150 ml infusion of green tea or sour tea, three times a day for four weeks, has positive effect on insulin resistance and certain lipoproteins in type 2 DM. Trial Registration Number: IRCT201107317161N1

  6. Validation of GOSAT XCO2 and XCH4 retrieved by PPDF-S method and evaluation of sensitivity of aerosols to gas concentrations

    Science.gov (United States)

    Iwasaki, C.; Imasu, R.; Bril, A.; Yokota, T.; Yoshida, Y.; Morino, I.; Oshchepkov, S.; Rokotyan, N.; Zakharov, V.; Gribanov, K.

    2017-12-01

    Photon path length probability density function-Simultaneous (PPDF-S) method is one of effective algorithms for retrieving column-averaged concentrations of carbon dioxide (XCO2) and methane (XCH4) from Greenhouse gases Observing SATellite (GOSAT) spectra in Short Wavelength InfraRed (SWIR) [Oshchepkov et al., 2013]. In this study, we validated XCO2 and XCH4 retrieved by the PPDF-S method through comparison with the Total Carbon Column Observing Network (TCCON) data [Wunch et al., 2011] from 26 sites including additional site of the Ural Atmospheric Station at Kourovka [57.038°N and 59.545°E], Russia. Validation results using TCCON data show that bias and its standard deviation of PPDF-S data are respectively 0.48 and 2.10 ppm for XCO2, and -0.73 and 15.77 ppb for XCH4. The results for XCO2 are almost identical with those of Iwasaki et al. [2017] for which the validation data were limited at selected 11 sites. However, the bias of XCH4 shows opposite sign against that of Iwasaki et al. [2017]. Furthermore, the data at Kourouvka showed different features particularly for XCH4. In order to investigate the causes for the differences, we have carried out simulation studies mainly focusing on the effects of aerosols which modify the light path length of solar radiation [O'Brien and Rayner, 2002; Aben et al., 2007; Oshchepkov et al., 2008]. Based on the simulation studies using multiple radiation transfer code based on Discrete Ordinate Method (DOM), Polarization System for Transfer of Atmospheric Radiation3 (Pstar3) [Ota et al., 2010], sensitivity of aerosols to gas concentrations was examined.

  7. Effects of Ultrasound Assistance on Dehydration Processes and Bioactive Component Retention of Osmo-Dried Sour Cherries.

    Science.gov (United States)

    Siucińska, Karolina; Mieszczakowska-Frąc, Monika; Połubok, Aleksandra; Konopacka, Dorota

    2016-07-01

    Despite having numerous health benefits, dried sour cherries have proven to be more acceptable to consumers when infused with sugar or other sweeteners to enhance their flavor, which, in turn, leads to serious anthocyanin losses. For this reason, a consideration was made for the application of ultrasound to accelerate solid gain and shorten drying time, thus favoring bioactive component retention. To determine the usefulness of ultrasound as a tool for sour cherry osmotic infusion enhancement, the effect of sonication time on dehydration effectiveness, as well as the stability of bioactive components during osmotic treatment and consecutive convective drying, was investigated. Fruits were osmo-dehydrated using a 60% sucrose solution for 120 min (40 °C), during which, ultrasound of 25 kHz (0.4 W/cm(2) ), was applied for 0, 30, 60, 90, and 120 min, after which, the fruits were convectively dried. In the range of the applied ultrasound energy no significant effect of sonication on mass transfer intensification was observed; moreover, longer acoustic treatment seemed to retard moisture removal during subsequent convective drying, which can be related to the breakdown of the parenchyma cell walls caused by the prolonged ultrasound (US) action. It was concluded that although US assistance could be considered neutral for bioactive component retention, excessive sonication time can lead to some anthocyanin deterioration. According to high-performance liquid chromatography analysis, the particular anthocyanin alterations, both during dehydration and final drying, occurred in a similar way. Sonication time prolongation caused approximately 10% more bioactive compound deterioration, than earlier, shorter trials. © 2016 Institute of Food Technologists®

  8. Branch growth and gas exchange in 13-year old loblobby pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization

    International Nuclear Information System (INIS)

    Maier, C. A.; Johnsen, K. H.; Butnor, J.; Kress, L. W.; Anderson, P. H.

    2002-01-01

    The combined effects of nutrient availability and carbon dioxide on growth and physiology in mature loblobby pine trees was investigated. Whole-tree open top chambers were used to expose 13-year old loblobby pine trees, growing in soil with high or low nutrient availability to elevated carbon dioxide to examine how carbon dioxide, foliar nutrition and crown position affect branch growth, phenology and physiology. Results showed that fertilization and elevated carbon dioxide increased branch leaf area, and the combined effects were additive. However, fertilization and elevated carbon dioxide differentially altered needle lengths, number of fascicles and flush length in such a way that flush density increased with improved nutrition but decreased with exposure to elevated carbon dioxide. Based on these results, it was concluded that changes in nitrogen availability and atmospheric carbon dioxide may alter canopy structure, facilitating greater foliage retention and deeper crowns in loblobby pine forests. Net photosynthesis and photosynthetic efficiency was increased in the presence of elevated carbon dioxide concentration and lowered the light compensation point, whereas fertilization had no appreciable effect on foliage gas exchange. 71 refs., 7 tabs., 7 figs

  9. A Novel Gas Sensor Based on MgSb2O6 Nanorods to Indicate Variations in Carbon Monoxide and Propane Concentrations

    Directory of Open Access Journals (Sweden)

    Héctor Guillén-Bonilla

    2016-01-01

    Full Text Available Bystromite (MgSb2O6 nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P42/mnm was identified. Using scanning electron microscopy (SEM, microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO and propane (C3H8 at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres.

  10. Sensitivity analysis of bubble size and probe geometry on the measurements of interfacial area concentration in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Kataoka, Isao; Ishii, Mamoru; Serizawa, Akimi

    1994-01-01

    Interfacial area concentration measurement is quite important in gas-liquid two-phase flow. To determine the accuracy of measurement of the interfacial area using electrical resistivity probes, numerical simulations of a passing bubble through sensors are carried out. The two-sensors method, the four-sensors method and the correlative method are tested and the effects of sensor spacing, bubble diameter and hitting angle of the bubbles on the accuracy of each measurement method are investigated. The results indicated that the two-sensors method is insensitive to the ratio between sensor spacing and bubble diameter, and hitting angle. It overestimates the interfacial area for small hitting angles while it gives a reasonable accuracy for smaller bubbles and large hitting angles. The four-sensors method gives accurate interfacial area measurements particularly for the larger bubble diameters and smaller hitting angles, while for smaller bubbles and larger hitting angles, the escape probability of bubbles through the sensors becomes large and the accuracy becomes worse. The correlative method gives an overall accuracy for interfacial area measurement. Particularly, it gives accurate measurements for large bubbles and larger hitting angles while for smaller hitting angles, the spatial dependence of the correlation functions affects the accuracy. (orig.)

  11. A Novel Gas Sensor Based on MgSb2O6 Nanorods to Indicate Variations in Carbon Monoxide and Propane Concentrations

    Science.gov (United States)

    Guillén-Bonilla, Héctor; Flores-Martínez, Martín; Rodríguez-Betancourtt, Verónica-María; Guillen-Bonilla, Alex; Reyes-Gómez, Juan; Gildo-Ortiz, Lorenzo; de la Luz Olvera Amador, María; Santoyo-Salazar, Jaime

    2016-01-01

    Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P42/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres. PMID:26840318

  12. Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration.

    Science.gov (United States)

    Wang, Wenzheng; Wang, Honglei; Zhu, Tianle; Fan, Xing

    2015-07-15

    Ag/HZSM-5, Mn/HZSM-5, Ce/HZSM-5, Ag-Mn/HZSM-5 and Ce-Mn/HZSM-5 were prepared by impregnation method. Both their adsorption capacity and catalytic activity were investigated for the removal of gas phase low-concentration toluene by periodical operation of adsorption and non-thermal plasma regeneration. Results show that catalysts loaded with Ag (Ag/HZSM-5 and Ag-Mn/HZSM-5) had larger adsorption capacity for toluene than the other catalysts. And Ag-Mn/HZSM-5 displayed the best catalytic performance for both toluene oxidation by non-thermal plasma and byproducts suppression. On the other hand, the deactivated catalyst can be fully regenerated by calcining in air stream when its adsorption capacity and catalytic activity of the Ag-Mn/HZSM-5 catalyst was found to be decreased after 10 cycles of periodical adsorption and non-thermal regeneration. Copyright © 2015. Published by Elsevier B.V.

  13. Ethanol concentration in 56 refillable electronic cigarettes liquid formulations determined by headspace gas chromatography with flame ionization detector (HS-GC-FID).

    Science.gov (United States)

    Poklis, Justin L; Wolf, Carl E; Peace, Michelle R

    2017-10-01

    Personal battery-powered vaporizers or electronic cigarettes were developed as an alternative to traditional cigarettes. The modern electronic cigarettes were patented in 2004 by Hon Lik in China. In May 2016, the US Food and Drug Administration (FDA) imposed regulatory statutes on e-cigarettes and their liquid formulations (e-liquids); prior to that, they were unregulated. E-liquids are typically composed of propylene glycol and/or glycerin, flavouring component(s), and active ingredient(s), such as nicotine. Fifty-six commercially available e-liquids, purchased from various sources, contained a variety of flavours and active ingredients. A headspace gas chromatography with flame ionization detector (HS-GC-FID) method was used to analyze these e-liquids for volatiles content. Only one of the e-liquids listed ethanol as a component. The chromatographic separation of volatiles was performed on a Restek BAC-1 column. A linear calibration was generated for ethanol with limits of detection and quantification (LOD/LOQ) of 0.05 mg/mL. Ethanol concentrations in the 56 e-liquids ranged from none detected to 206 mg/mL. The ethanol determined in these products may have been used in flavourants or a solvent; the reason for inclusion cannot be fully ascertained. The implications of vaporizing ethanol as an e-liquid component are unknown. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. A dua